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Modelling metabolomic changes in human Bone Marrow derived Mesenchymal Stem 

Cells during Osteogenic Differentiation via Genome scale metabolic models to further 

their use in Regenerative Medicine 
 

Þóra Björg Sigmarsdóttir 

September  2021 
 

Abstract 
 

In recent years the fields of regenerative and translational medicine have become the subjects 
of significantly growing interest due to their offer of previously unimaginable therapeutics. 

Within these fields are several novel tools believed to hold the keys to furthering 

existing and new developments and one of those tools is human mesenchymal stem cells. One 

of the applications hMSCs have been studied for is enhanced osteogenic regeneration or 

reconstruction of new bone tissue. Although various studies have been performed and some 

strides been made towards a plausible clinical application there is still lot left to be 

discovered. 

A methodical studying and relatively detailed in silico genome scale metabolic model 

modelling occurring changes and the accompanying metabolic phenotypes could provide a 

means to fill in the existing knowledge gaps (from the protein level all the way to the genomic 

level) and, additionally, a means to perform hypotheses testing with a significant reduction 

when it comes to the accompanying cost. 

The objective of this thesis was to study the metabolomic changes in hMSCs during 

osteogenic differentiation using original transcriptomic, intracellular and extracellular 

metabolomic data in order try and define possible metabolic stages over the course of the 

differentiation and use genome scale network reconstruction to create in silico models.  

In the first part of this work extracellular and intracellular data were used to define 

possible stages to osteogenic differentiation and hypothesise which pathways may 

characterise the different metabolic phenotypes. Three stages were suggested based on the 

data and labelled intracellular metabolomics indicated a decrease in glycolytic dependencies 

throughout the differentiation period with an increase in mitochondria related energy 

producing functions as the osteogenesis progressed. This will help focus specific time points 

of interest and relevance when it comes to mapping the significant metabolomic changes.  

In the second part of this work extracellular metabolomic data collected from BM-

hMSCs during proliferation, adipogenic and osteogenic differentiation was used along with 

experimentally specific data to create three directly comparable genome scale metabolic 

models, two of which have no comparable predecessors, for those cell lineages during the first 

7 days of cell culture. Models were biologically feasible and showed all lineage specific 

characteristic reactions as active. By analysis and comparison, the various enriched 

subsystems and pathways most significant for each lineage were found. Results were varied 

for proliferating cells, which matches that they have to synthesise various metabolites and 

substances to expand, whilst fatty acid oxidation and fatty acid synthesis was most prominent 

in adipogenesis with fatty acid oxidation as well as transport reactions characteristic for 

osteogenesis. These models can be used for model-driven experimental design to engineer 

osteogenesis and, with modifications, to create disease model for osteoporosis. 

In the third part presented we summarized the various characteristics and possibilities 

that lie in using MSCs as a tool in tissue engineering and regenerative medicine and how, via 

implementation of genome scale metabolic model reconstruction, their possibilities could 
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possibly be taken much further in a faster, more methodical manner while reducing the related 

experimental cost.  

To summarise, this work has provided real strides when it comes to closing the 

existing gap regarding metabolomic changes during differentiation of hMSCs as well as 

providing novel tools that can be used to make further studies more efficient and cost 

effective. 

 

Keywords: Metabolism, MSCs, osteogenesis, metabolic models, tissue engineering  
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Bygging erfðafræðilegra tölvulíkana sem módela efnaskiptabreytingar við 

beinsérhæfingu í mennskum mesenkýmal stofnfrumum einangruðum úr beinmerg. 
 

Þóra Björg Sigmarsdóttir 

September 2021 
 

Útdráttur 
Á undanförnum árum hafa sviðin endurnýjunar og tilfærslu lækningar vakið sífellt 

meiri áhuga vegna möguleikanna sem í þeim felast er varða nýjungar í læknavísindum. Innan 

þeirra má finna ýmis tól sem talin eru vera lykilatriði þegar kemur að því að finna og þróa ný 

meðferðarúrræði, og er eitt þessara tóla notkun mesenkýmal stofnfrumna (MSF). MSF hafa 

verið rannsakaðar m.t.t. ýmissa þátta þ.á.m. getu þeirra til að bæta endurnýjun beina og 

endurbyggingu beinvefs. Þrátt fyrir margvíslegar rannsóknir og meðfylgjandi framfarir í 

áttina að mögulegri klínískri notkun er margt sem er enn óljóst er varðar virkni og möguleika 

þessara frumna. 

Nákvæm og skipulögð rannsókn ásamt tiltölulega nákvæmum tölvulíkönum sem geta 

hermt eftir efnaskiptabreytingum og líkt eftir samfylgjandi svipgerðum gætu verið leiðir til að 

stoppa upp í núverandi göt í þekkingu hvað varðar efnaskiptabreytingar, frá tjáningu gena til 

framleiðslu próteina, ásamt því að veita möguleika á tilgátuprófunum án meðfylgjandi 

kostnaðar. 

Markmið verkefnisins sem hér er kynnt var að rannsaka efnaskiptabreytingar í 

mennskum MSF við beinsérhæfingu til að reyna að skilgreina mögulega efnaskipta fasa sem 

beinsérhæfingartímabilið væri samsett úr og búa til in silico módel byggð á genatengdum 

upplýsingum til að líkja eftir breytingunum.  

Í fyrsta hluta þessa verkefnis var notast við innan- og utanfrumu metabolómísk gögn 

til að skilgreina möguleg mismunandi stig beinsérhæfingar og hvaða efnaskiptabrautir geta 

legið þar að baki. Eftir greiningu gagna var lögð var fram tilgáta um tilveru þriggja 

mismunandi fasa og merkt innanfrumu gögn bentu til dvínandi virkni í glýkólýsu í gegnum 

sérhæfingartímann á sama tíma og aukningu gætti í hvatbera tengdum orkugefandi ferlum 

eftir því sem leið á. Þessar niðurstöður geta hjálpað með að finna tímapunkta sem eru af 

sérstökum áhuga er varðar kortlagningu mikilvægra efnaskiptabreytinga.  

Í öðrum hluta verkefnisins var notast við utanfrumu metabólómísk gögn sem safnað 

var frá mennskum MSF einangruðum úr beinmerg sem ræktaðar voru við venjulega skiptingu, 

fitu- og beinsérhæfingu, og þau notuð ásamt sértækum tilraunatengdum gögnum til að búa til 

þrjú sambærileg in silico módel, þau fyrstu sinnar gerðar, er líkja eftir efnaskiptabreytingum 

þessara þriggja frumugerða fyrstu 7 daga ræktunar. Módelin voru öll líffræðilega möguleg og 

sýndu af sér öll helstu einkennandi hvörf sem virk. Við greiningu og samanburð á módelunum 

fundust helstu breyttu undirkerfi og efnaskiptaferlar er voru einkennandi fyrir hverja 

frumugerð fyrir sig. Í tilviki frumna í venjulegri skiptingu voru breytt kerfi mjög fjölbreytt 

sem endurspeglar þær fjölbreyttu kröfur sem fruma þarf að uppfylla við að búa til annað 

eintak af sér, í tilviki fitusérhæfingar var nýmyndun og oxun fitusýra hvað mest áberandi og 

oxun fitusýra ásamt flutnings hvörfum einkenndu beinsérhæfingu. Þessi módel má nota til að 

sigta úr og setja upp ákjósanlegar tilraunir til að besta beinsérhæfingu og með breytingum 

mætti búa til sjúkdómsmódel til að líkja eftir beinþynningu. 

Í þriðja þætti verkefnisins sem hér er kynnt hafa verið tekið saman þau margvíslegu 

einkenni og fjölmörgu möguleikar er felast í MSF sem tóli til að nýta í endurnýjunar 

lækningum og vefjaverkfræði og hvernig, með notkun in silico efnaskiptamódela byggðum á 

genaupplýsingum, þá möguleika mætti þróa áfram á skilvirkari og hraðari máta samtímis því 

að lækka tilraunatengdan kostnað. 

Þetta verkefni hefur lagt sitt af mörkum er kemur að því að minnka núverandi eyðu þekkingar 

er varðar efnaskiptabreytingar er eiga sér stað í gegnum beinsérhæfingu mennskra MSF og 
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hefur komið með að borðinu ný tól sem geta nýst til frekari rannsókna á sama sviði meðfram 

því að geta gert þær skilvirkari og hagkvæmari.  

 

Lykilorð: Efnaskipti, mesenkýmal stofnfrumur, beinsérhæfing, tölvulíkön, vefjaverkfræði 
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1 Introduction 
‘‘Any sufficiently advanced  

technology is indistinguishable from magic. “ 

 

Arthur C. Clarke, British Science-Fiction writer (1917-2008). 

 

The skeleton is the foundation upon which a body stands. Its function is by and large six-fold; 

protection, support, movement, production of blood cells, storage of minerals and endocrine 

regulation [2]. From this it is fair to say that strong, stable, well-functioning bones are 

precious and important to a person’s wellbeing and a necessity to be able to maintain an 

active role in modern society.  

Bone is a dynamic structure, it is constantly renewing and changing throughout a 

person’s lifespan in order to mend microfractures and adjust to the ever changing load that it 

is put under [3]. 

There are various factors that can negatively impact the skeletons’ integrity (e.g. 

drugs, hormonal changes, and physical activities) but the one that is most prevalent is age. 

With increased age this important foundation becomes brittle; a combination of the ever 

ongoing remodelling process becoming less efficient and a decrease in loading stimulus in the 

aged are thought to be the primary causes [4]. Osteoporosis and even osteoarthritis start to 

gain leverage, often in such a manner that intervention is needed. The fields of regenerative 

medicine (RM) and tissue engineering (TE) have been developing possible treatments for use 

in such instances, but the field of RM seeks solutions for the restoration of structure and 

function of tissues and organs that have in some way become permanently damaged [5], [6]. 

As of yet more often than not the chosen intervention or therapeutic is only partially 

successful [7], [8]. 

Age does not even have to get a hold in order to compromise mechanical properties of 

bones. The body can only mend fractures that are below a certain critical size on its own and 

so bone defects created either by accidents or necessary surgical intervention (e.g. due to 

osteosarcoma) may in many cases need external aid in order to heal [9]. This aid can range 

from metal screws to fasten bone fractures to bone grafts or implantations meant to bridge an 

otherwise unbridgeable gap [10].  

Bone grafts and bone related substitutes are used in various applications during 

orthopaedic surgeries, with approximately two million bone grafts performed globally in the 

year 2017 [11]  and the market for such applications only expected to continue to rise with an 

annual growth rate of 5% at least until the year 2028 [12].  

There are a few key factors that are driving the market growth in bone graft and bone 

substitute demand (e.g. growing prevalence of orthopaedic defects and transition towards 

minimally invasive surgeries) but the main reason is an unprecedented growth of the aging 

global population [12]. It is predicted that by the year 2050 the number of people over the age 

of 60 will have gone from 900 million (recorded in 2015) to over 2 billion [13], and the 

currently available materials all come with various risks and limitations.  
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Currently, a varied array of bone related substitutes exist, ranging from being in the 

early stages of development to being relatively common and in clinical use [14]. Roughly 

they can be divided into two groups, synthetic and natural materials. In the synthetic material 

group substances such as ceramics, bone cement and polymers can be found whilst in the 

group spanning natural materials biological substitutes are more prevalent, i.e. autografts, 

allografts and demineralised bone matrixes to name a few [14], [15]. 

 Currently hydroxyapatite (HA) and bone cement (calcium-phosphate cement (CPC) 

in particular) are the most common materials in clinical use today but natural materials, with 

autografts in the lead, are overall preferred due to their osteogenic potential and are often 

considered to be the gold standard for bone substitution [14].  

However, with each and every one of the available substitutes come some risks and 

limitations. With bone cements the risk of cement fragmentation, foreign body reaction due to 

wear debris and potential allergic reactions follow its use whilst with natural materials such as 

autografts the rather great potential risk of donor site morbidity problems due to the highly 

invasive surgeries required for material gathering is presented along with possibilities of 

donor-host problems (applicable if using e.g. allografts) and a very limited material supply 

relative to synthetic materials [8], [11], [15]. Due to all of these existing problems regarding 

available material, along with the rising demand of bone grafts and substitutes the use of 

mesenchymal stem cells (MSCs), as a way to enhance the use of already available 

therapeutics and aid in development of new ones has been on the rise in TE and RM [16]–

[19]. Mesenchymal stem or stromal cells (MSCs) are post-natal, self-renewing, multipotent 

cells with stem cell like abilities that can be isolated from various adult tissues (e.g. peripheral 

blood, bone-marrow and adipose tissue) as well as neonatal tissue types (e.g. Wharton’s jelly 

and umbilical cord blood) found within the body [20], [21], [22]. They are defined e.g. by 

their ability to differentiate into cells of the mesodermal origin (e.g. chondrocytes, adipocytes 

and osteoblasts) whilst maintaining their proliferation abilities, their remarkable 

immunomodulatory capabilities and homing effects [17], [23] and they are currently one of 

the most common type of cell used in TE and RM related research [16]–[18], [24]–[26]. In 

this regard MSC metabolism has for the past decade been of an ever growing interest due to 

accumulation of evidence suggesting that metabolic manipulation of the cells may allow for 

enhanced therapeutic uses via augmented cell retention, cell survival, differentiation and 

immunoregulation to name but a few ways [27]–[36]. However, despite there being a partial 

success when it comes to research where MSCs are used in bone replacement focused TE 

[37][38][39] there are certain problems that keep turning up and need to be addressed in a 

methodical and decisive manner in order to enable a continued and greater use of these cells 

in a way that is more efficient when it comes to both cost and therapeutical manner.  

All cell focused applications in regenerative medicine require a relatively large 

amount of cells (though optimal amount is still unclear) [40] but prolonged expansion can 

have adverse effect of the quality of function desired from the cells [41] even though it has 

been shown that transplantation of expanded cells is not in itself harmful [42], [43].  

In order to reduce costs related to cell focused therapies it will be necessary to create a 

focused and efficient way to expand and differentiate the cells in vitro whilst keeping their 

characteristics and functionality as optimal as possible.  
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Another problem that needs addressing and for which cell focused therapies are a 

good candidate is osteoporosis. Osteoporosis is a quite common and sometimes severe age or 

lifestyle related disease that can go unnoticed up until a major fraction occurs. A certain 

“malfunction” of MSCs in osteoporosis pushes cells towards adipogenesis, resulting in 

adipose accretion in the bone marrow. This happens at the expense of osteoblast formation 

which indicates that in this disease condition the cell behaviour is altered, and their 

microenvironment disturbed. A similar occurrence has been observed when under 

microgravity conditions [44]–[47].  

Both proliferation (expansion of cells) and the progress of differentiation of MSCs 

have been directly linked to their metabolic states and those states have been shown to change 

throughout the different processes[30], [31], [34], [48]–[51].Cellular metabolism comprises a 

very intricate and complex system, involving various pathways, metabolites, enzymatic 

reactions and cofactors that all have numerous effects on both the cell and its immediate 

microenvironment [32], [52]–[54]. The interplay between these aspects down to the way 

genes, RNA and proteins connect and interact, is extremely complicated and as of yet unclear 

in its various aspects to the research community.  

By gaining a more thorough understanding of how various factors affect the apparent 

metabolic change a greater optimisation of both expansion methods and initial in vitro 

differentiation methods for MSCs could be made possible and development of more effective 

standardized culturing methods might be pushed. Additionally the undesired shift from 

osteogenesis to adipogenesis that occasionally seems to happen upon in vivo implantation and 

that is at least partially to blame for osteoporosis development [4], [7], [44], [55] might be 

prevented. A more grounded understanding could additionally give better focus to research 

aimed at developing or advancing therapeutics for such diseases as osteoporosis and 

osteonecrosis – disease states that both seem to be dependent upon metabolically linked 

changes in the body’s’ osteoprogenitor cell capabilities [56], [57]. 

In order to get closer to this and do it with the additional hopes of reducing future 

experimental cost, implementation of genome scale metabolic models (GEMs) [58] is 

reasonable way to go.  

As a wholistic systems biology approach GEMs acknowledge that biological systems, 

such as cells or cell metabolism, are made up of a network of networks and with the advent of 

high throughput (HT) –omics technologies the detailing that genome scale metabolic 

networks entail has been enabled [59]–[61].  

Over the course of the last few years, it has become clearer that data analysis and 

interpretation is becoming the most prevalent bottleneck when it comes to any kind of 

biological discovery due to increasingly more efficient ways in generating HT data. A robust 

modelling and analysis formalism such as GEMs are can be used to organise and interpret the 

HT data as they serve as a model concentric databases built upon current DNA sequencing 

technologies as well as the HT data and so provide a framework for wholistic studies of 

cellular metabolism [59]–[61].   

Whilst some form of constraint based models focus on metabolism at the reaction 

level GEMs allow its study at the gene level by accounting for individual fluxes of enzymes 

encoded by each gene [62][63], [64]. This makes it easier to study the mechanistic link 
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between a cell phenotype and a genotype through the complex gene-protein reaction 

association. 

This is in large part done by combination of various types of -omics data that together 

form stoichiometric, thermodynamic, enzyme capacity and in some instances kinetic 

constraints [59]–[62], [65].   

Metabolic or metabolomic data can provide a biochemical snapshot of a global metabolic 

state within a system but it does not manage to account for any reactions nor enzymes that are 

producing the governing state. Conversely, genomic data only shows the potential of a cell 

without any information regarding its current functional state [66]. By integrating these types 

of data, along with other ones (e.g. proteomics and genomics), in a unified modelling 

framework such as a genome scale reconstruction one can obtain a much more distinctive 

understanding not just of the observed state of metabolism at a particular point in time but of 

how a cell achieves the observed metabolic state. These types of models are generally built 

through reverse engineering a network structure, making it more condition specific via 

integration of the previously mentioned types of data [59], [60], [67], [68].  

Through creation of the kind of models that focus on metabolic changes of human 

mesenchymal stem cells (hMSCs), as are described in this thesis, an in silico laboratory can 

be built capable of aiding in experimental design for cell culture laboratories that have higher 

probability of success and so aid in cost reduction as well as provide insights into complex 

internal workings of MSCs thus allowing for a better understanding of ways to implement 

them in an efficient therapeutic manner in regenerative medicine and tissue engineering.   
 

1.1 Biology of Mesenchymal Stem Cells (MSCs) 

Mesenchymal stem or stromal cells (MSCs) are believed to have been originally discovered in 

the year 1976 by Freidenstein and colleagues [69] though evidence of the presence of 

nonhematopoietic stem cells in bone marrow date back to the year 1867 [70]. The term 

mesenchymal stem cell was first proposed by Caplan in the early 90s as term to be used for 

progenitor cells isolated from human adult bone marrow (BM) and though the definition of it 

has widened through the years it maintains it wide spread popularity [71]. 

 Mesenchymal stem cells comprise non-hematopoietic cell that originate from the 

mesodermal germ layer [18], [72]. They are classified as multipotent cells with stem cell like 

abilities, capable of both self-renewal and multilineage differentiation into various tissues of 

the mesodermal origin [72] (figure 1). 

 These multipotent cells can be isolated from various adult tissues types, in additional 

to bone marrow, (e.g. skin, peripheral blood, adipose tissue) as well as neonatal tissues (e.g. 

umbilical cord blood, Wharton‘s jelly) [20].  

 Currently there does not exist any definitive historical concensus regarding methods of 

isolation, proliferation and characterisation of hMSCs, however the International Society for 

Cellular Therapy (ISCT) has produced a criteria that in a minimal way defines hMSCs [17], 

[23]. In order to be classified as hMSCs, the cells must be able to: 
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i. Adhere to plastic and develop as fibroblast colony-forming units and differentiate 

in to cells of the mesodermal origin (i.e. osteocytes, chondrocytes and adipocytes) 

when cultured in vitro.  

ii. Lack expression of surface markers CD11b, CD14, CD19, CD34, CD45 and HLA-

DR surface markers when cultured for proliferation in vitro.  

iii. Express surface markers CD73, CD90 and CD105 when cultured for proliferation 

in vitro. 
 

This criterion is likely to evolve and change over time with continued study and discovery 

relating to hMSCs. 

 
Figure 1: Characterisation of MSCs. MSCs can be isolated from various tissues, e.g. muscles and bone 

marrow, they can differentiate, are capable of self-renewal and immunomodulation (when activated) by secreting 

various factors. Figure created by author, adapted from [73]. Created using Biorender.com. 

 Differentiation on MSCs 1.1.1

One of the most identifying characteristics of hMSCs is their ability to differentiate into cells 

of the mesodermal origin.  

Though the hallmark trilineage differentiation (i.e. osteogenic, chondrocyte and 

adipogenic differentiation) is probably the one most researched there have been reports of 

hMSC differentiation into cells of the ectodermal and endodermal origin. This includes 

tenocytes, cardiomyocytes, skeletal myocytes, smooth muscle cells and neurons. There is 

however an ongoing debate about the functionality of the end product of these trans-

differentiations. 
 

Under standard in vitro conditions differentiation of hMSCs is induced via various media 

supplementation. There are also instances of inducing differentiation through the use of 

scaffolds with varying modules of elasticity or surface modifications and mechanical 

stimulation [74], [74]–[76]. 

MSC

Chondrocyte

Adipocyte

Osteoblast

Figure 1. 

Sox9 & 
Sox6/Sox5

PPARγ

Runx2

Osteocyte

Bone
Fat tissue

Hypertrophic 
Chondrocyte

Cartilage

Rnx2, ALP, COL1,
OC, ON, OP 

PPARγ, 
Ap2, 
LPL 

Sox9, COLII

Self-Renewal

Immunomodulation

Bone-Marrow
Umbilical Cord

Muscle

Peripheral Blood

IL-10, NO, IDO, TSG6
PGE2, CCL-2, TGF-β,

Galectins

Immune Cells

IFN-γ,  TNF-⍺,  
IL1- ⍺, IL1-β

Antigen 

Presenting Cell

Activated MSC

Differentiation

Cells must express following 

surface markers to be MSCs:
- CD73, CD90, CD105

Cells must not express following 
surface markers to be MSCs:

- CD11b, CD14, CD34, CD45, CD19, HLA-DR



Þóra Björg Sigmarsdóttir 

6 

Different supplements are required for the varying differentiations. Chondrogenesis 

requires additions of e.g. ascorbate 2-phosphate, dexamethasone and linoleic acid [77]–[79]. 

Osteogenesis is most often induced through supplementation of dexamethasone, ascorbic 

acid, 𝛽-glycerophosphate and bone morphogenic protein (BMP) 2 [18], [80], [81] and 

adipogenesis via dexamethasone, insulin and indomethacin to name but a few of the required 

additions [81]. A more comprehensive list of differentiation inducing components and 

methods that have been registered for a few varying differentiations of MSCs can be seen in 

table 1.  

 

Progression of the differentiation process is checked and verified throughout the culturing 

period to establish a successful culture. This is done by checking the expression levels of 

characteristic cell type markers that are different in each case. A common marker to check in 

the case of chondrogenesis is e.g. Sox9, in adipogenesis it is lipoprotein lipase (LPL) or 

peroxisome proliferator- activated receptor γ (PPAR γ) and for osteogenesis it most 

commonly is alkaline phosphatase (ALP) or runt-related transcription factor 2 (RUNX2) [79], 

[81].  

Differentiation is in many cases a multi-phased process, controlled throughout by interlinked 

set of regulatory molecules that together form highly complex signalling pathways. For the 

most part each type of differentiation has its own distinct signalling pathways but there can be 

found overlapping areas of some importance. This is true e.g. for the processes of adipogenic 

(AD) and osteogenic differentiation (OD).  The integrated signalling network involved in 

those differentiation maintains a delicate balance between the processes with activation or 

induction towards one having inhibitory effects on the other.  

 Immunomodulation of MSCs 1.1.2

As well as their differentiation potential, hMSCs have important immunomodulatory 

properties that have been gaining an increased focus when it comes to cell mediated 

therapeutics [82]. The immunomodulation enables the cells to either inhibit or promote 

immune responses of the host’s body through a combination of direct inhibitory effects and 

indirect regulatory effects. Largely this regulatory response entails decreased natural killer 

(NK) cell activation as well as dendritic cell maturation, inhibition of various cytokine 

production and inhibition of B- and T-cell proliferation [83]–[86].  

 Immunomodulatory effects of hMSCs are not steadily ongoing, the cells are only 

activated through inflammatory cytokines that are secreted by T-cells and other antigen-

presenting cells [82], [87], [88]. When activated hMSCs secret soluble immune factors that, 

by mediating the resulting regulatory response of the target cell in question, can affect both 

the adaptive and innate immune systems (figure 1). The combination of secreted factors 

determine the mediated immunoregulatory effects in each instance of activation [82], [87], 

[88][89]. In table 1 a summary of inflammatory cytokines capable of activating the 

immunoregulatory state of hMSCs can be seen, along with the major known soluble paracrine 

factors that the cells secret and resulting biological functions. 
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Table 1: Immunomodulation of hMSCs. Summary of secreted factors and exerted effects. 

Immunomodulation of hMSCs 

hMSC activating 

inflammatory 

cytokines 

Immune cell type hMSC function hMSC secreted 

immunosuppressive 

factors 

Biological functions 

exerted by hMSC 

secreted factors 

IFN-γ, IL-1⍺, IL-1β, 
TNF-⍺ 

DCs (innate IS) Inhibit migration, 

activation, 

differentiation, 
maturation and 

endocytosis 

CCL2 Promotion of monocyte 

migration. Suppression 

of activation and 
mitigation of TH17 cells 

NK cells (innate IS) Inhibit migration, 

proliferation, 
differentiation, 

maturation and activation 

Galectins Suppression of Tcell 

immunomodulatory 
effects 

Macrophages (innate 
IS) 

Activate M2 polarization 
in general, activate M1 

polarization in specific 

microenvironments 

IDO Suppression of effects 
and proliferation of 

immune cells 

T cells (adaptive IS) Inhibit cell survival 
proliferation, 

differentiation, 

maturation and 
activation, accelerate cell 

recruitment 

IL-10 Suppression of immune 
cell apoptosis 

B cells (adaptive IS) Inhibit proliferation, 
differentiation, 

maturation, chemotaxis 

and activation 

NO Promotion of immune 
cell apoptosis. 

Suppression of T cell 

proliferation and 
modulation 

  PGE2 Suppression of NK cell 

cytolytic activity and T 
cell proliferation 

TSG6 Overall anti-

inflammatory effect 

TGF-β Inhibition of NK cell 
activation and 

proliferation, Treg 

induction and mast cell 
degranulation 

 

 During the past few years there has been accumulation of emerging data that suggests 

that the immunoregulatory effects that hMSCs exert could become a promising tool in such 

therapeutical applications as tissue repair, inflammatory diseases (e.g. Graft versus Host 

Disease, Chron’s, Type 1 Diabetes) and immune disorders (e.g. Systemic Lupus 

Erythematosus) though many issues still need settling before common clinical application can 

take place [86]. 

 Homing effects of MSCs 1.1.3

In addition to secreting immunosuppressive factors, hMSCs secrete paracrine factors that 

promote tissue repair. As a response to tissue related damage hMSCs secrete factors that 

allow their navigation to the injured site, an effect commonly referred to as homing [90], [91]. 

This effect is generally considered as beneficial to tissue repair because of hMSC 

interaction with the damaged tissue through secretion of both trophic and paracrine factors. It 

is through a combination of this homing effect as well as direct cell delivery that enables 

engrafting or migration of hMSCs in experimental settings[90], [92]. Over 40 different 

migration and homing molecules have been recorded to be expressed on hMSCs [91]. 

 Both homing effect and the following migration of hMSCs has been observed in 

experimental setting, but the mechanisms that lie behind it are as of yet ill understood and 

only a small proportion of systematically administrated cells actually manages to reach target 



Þóra Björg Sigmarsdóttir 

8 

tissue and remain[91], [92]. Several factors are believed to be involved in causing this low 

success rate.  

The expression of homing molecules on hMSCs is fairly limited and it seems that in vitro 

expansion of the cells diminishes this low expression even further. Cultural and expressional 

heterogeneity of the cells and molecules also seems to be problem, but hMSCs derived from 

different sources seem to express different homing molecule profile. There are several 

ongoing researches aimed at improving the efficiency and retention of hMSCs homing to 

further their retention after systemic administration and strategies that either have or are in 

development are e.g. modification of the mode of administration, pre-treatment or priming of 

cells or culture conditions and genetic modification [91].   

 MSCs in regenerative medicine 1.1.4

Regenerative medicine, a term widely considered to have been coined in 1999 by William 

Haseltine, is considered to be novel frontier when it comes to medical research [5], [6], [93]. 

It is a field that combines the knowledge and application of tissue engineering, stem cell 

biology, cell transplantation, biochemistry, prosthetics and biology with the aim to either 

replace or restore human cells, tissues and organs that have become permanently damaged 

back to their original normal functions [6].  

There are a variety of regenerative medicine therapies available [92], [94]–[99], though at 

different stages in clinical development, but the associated success is so far very limited. This 

limitation is for the most part due to functional obstacles that in some way or form reduce the 

therapeutic efficacy and increase risk of harm towards patients. 

Though some applications have shown both progress and promise there is a great room 

for improvement, by targeting the above mentioned limiting factors.  

The hMSC characteristics, i.e. their multipotency, differentiation abilities, high 

proliferation potential, immunomodulatory activity and paracrine effect [17], [18], [100], have 

made these cells a focus of many researches as a possible novel tool to be developed for use 

in regenerative medicine. Included in this is immunotherapy and tissue engineering.  

At the beginning there were a few fundamental challenges that needed to be overcome in 

order to enable use of MSCs. Recent advancements have targeted this and now there are 

numerous clinical trials that have assessed hMSC safety and found that cell transfusions are 

safe [42], [43], [101]. Various methods of isolation and culturing have been developed as 

studies of these cells have continued and along with study of possible mechanisms of 

delivery.  These studies have managed to demonstrate that a relatively long-term culture of 

hMSCs is possible without loss of morphological, phenotypical or functional features, though 

cell senescence presents a problem [102], [103].  

Another aspect of hMSCs that has worked to increase interest in them within the field of 

biomedicine is growing availability. The most popular and commonly researched hMSCs in 

tissue engineering and cell-based medicine currently, despite the relatively invasive procedure 

required for collection,  are derived from either bone marrow (BM-hMSCs) or adipose tissue 

(Ad-hMSCs)[100]. The reasons working in their favour are varied [100]:  
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i. The total cell number that can be harvested at each time is higher compared to 

other types of stem cell. 

ii. The frequency of cells that are of interest is higher compared that with other stem 

cells. 

iii. Ad-hMSC harvesting can additionally be performed as a part of elective cosmetic 

surgery (e.g. liposuction). 

 

In addition to BM-hMSCs and Ad-hMSCs, placenta and umbilical cord derived hMSCs 

are of a growing interest. This is largely because the associated tissues are usually discarded 

as waste products at birth and so there is relatively high availability and a resulting waste 

reduction [92].  

The variance in phenotypic properties of the differently derived cells (if any) is still an 

open question and currently under research to some extent.  

Ad-hMSCs have been shown to have comparatively increased capacity for adipogenic 

differentiation in vitro, while BM-hMSCs show an increased trend towards osteogenesis and 

chondrogenesis [104]. A comparative study focused on the immunomodulatory abilities of 

hMSCs derived from these different tissues within the same donor showed Ad-hMSCs to 

have a greater capacity for inhibiting differentiation of dendritic cells compared to BM-

hMSCs, while the latter group seemed to have a higher capacity for NK cell cytotoxic activity 

inhibition [105]. These findings have been supported by several independent groups [106], 

[107].  

All of this indicates that choosing the right cell source may prove to be paramount to the 

success of particular clinical application. 

 Cell engraftment vs. Paracrine Factors  1.1.5

For the majority of the last several decades the focus of hMSCs therapeutic potential has been 

on the cell transplantation aspect, i.e. adding hMSCs to a recipient donor site in the hopes of 

aiding in repair of tissue damage via regeneration and differentiation[108]. Through co-

culturing studies done in animals it has already been shown that hMSCs, up to a certain 

extent, can enable tissue regeneration via infiltration and replacement in the damaged or 

injured tissues [109]–[112]. 

 Lately, however, increasing attention has been focused on the possibilities that lie in 

the immunomodulatory and suppressive abilities of hMSCs. This holds especially true for the 

autocrine and paracrine factors of the cells [85], [88], [89], [113]. 

 It has now been recognised that hMSCs exert majority of their healing effects through 

paracrine signalling and cell-to-cell contact, not by replacement [100].  

 A few notable examples have been recorded where this is utilised in symptom relief 

for immune disorders (e.g. graft versus host disease (GvHD) [114], arthritis [115], Crohn‘s 

[116]), skin healing [117], ischemic stroke treatments [85], neurovascular and 

musculoskeletal therapies [118] and recently there have been notions of using hMSCs in the 

search of cancer vaccinations, an increasingly active research topic, precisely because of their 

paracrine and immunomodulatory properties [113]. The newest suggested therapeutic use for 

hMSCs and their related secretome is in relation to the recent COVID-19 pandemic, but 
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reports have been made that claim hMSC infusion is proving to be both safe and effective in 

patients suffering from COVID-19 induced pneumonia [119].  

 The reported success of the above mentioned studies as well as others (see e.g. [120]–

[122] indicate that the secretome of hMSCs possess therapeutically beneficial effects that may 

well be exploited for enhancement and development of future applications.  

 Existing Challenges and Problems 1.1.6

As mentioned there have already been reports of successes in both animal-studies and early-

stage clinical trials when it comes to both safety and efficacy of hMSC based therapeutic 

applications. However, there are a number of existing challenges and problems as well as 

numerous questions that still go unanswered and that need to be addressed and resolved to 

move this aspect of regenerative medicine further. 

Cell source availability is still an existing problem though more tissue types are being 

studied[100], [123]. Possible variance between cells from different donors and isolation sites 

may be effecting experimental outcomes in a yet ill-understood manner  [108], [124] and lack 

of knowledge regarding optimal administration timing [125]–[127] , frequency and technique 

of cells adds yet another factor with unknown effects on therapeutic efficacy [108], [128], 

[129].  

Senescence of cells is an additional problem that has to be addressed if hMSCs are ever to 

be a standard tool in tissue engineering and regenerative medicine. Despite being proven to be 

able to retain their functionality and characteristics over long-term proliferation [130] hMSCs, 

like other cells, eventually become senescent [131]. This means that they have undergone 

functional changes to some degree (decrease in differentiation potential, reduced migration 

and homing-related abilities, compromised secretome profile) which can lead to exacerbated 

inflammatory response at a systemic level and promotion of migrating or proliferating cancer 

cells [131].  

Other problems include clinical grade production compliance with GMP [132], scalability 

[100], polarisation control [133], cell retention in vivo [108], [134], engraftment rate [127], 

localisation post-transplant and tissue persistence [108], [134],[135].  

1.2 Metabolism of MSCs 

The use of hMSCs in regenerative medicine holds a great promise for the future development 

of the field.  

Several challenges to their implementation have already been mentioned in section 

1.1.6., but it can be reasoned that one of the greatest barriers to potentially prevent a 

widespread and successful implementation of such cells as a form of therapeutics is a critical 

gap in knowledge and understanding of hMSCs metabolism. This gap presents an opportunity 

for advancement as accumulating evidence suggest that metabolism is tightly linked to 

functional capabilities of hMSCs. 

 Throughout adipogenic and osteogenic differentiations a metabolic shift has been 

observed, where hMSCs go from being almost solely glycolysis dependant towards using a 

mix of glycolysis, beta fatty acid oxidation and oxidative phosphorylation in their energy 

production. 
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 Additionally, in order for hMSCs to be able to exert their immunomodulatory effects 

it seems that they must maintain their primarily glycolytic state.  

 Even further, knowledge about the way that energy metabolism in early vs. late stages 

of the varying differentiations changes and to what extent as well as how cell source and age 

may affect it, will undoubtedly impact how hMSCs can be used both in vitro and in vivo. 

 And so, focusing attentions on the intricate effects metabolism may have on all 

hMSCs characteristics is likely to turn up possible ways to manipulate cells to further 

therapeutic applications. 

 Function is linked to Metabolism 1.2.1

The hMSCs‘ functions of immunomodulation, proliferation and differentiation have, through 

varied studies, all been found to be linked to metabolism [31], [136], [137].  

 Mounting evidence (from studies performed primarily on Ad- and BM-hMSCs) 

suggest that hMSCs are metabolically heterogenous and the difference shows itself to impact 

the cells` functionalities, such as differentiation ability and immunomodulatory capacity [54], 

[138].    

 There exist compelling evidence suggesting that proliferating hMSCs are primarily 

reliant upon glycolysis when it comes to energy production. This has been shown for BM-

hMSCs [29], [30], [32], [36] during proliferation but the cells seem to lean toward a more 

oxygen dependant metabolism when moving into osteogenic and adipogenic differentiation 

(OD, AD) such as oxidative phosphorylation (OxPhos) [32], [50]. Similar finding have been 

reported for Ad-hMSCs [34], [50]. 

Ad-hMSCs also seem to prefer glycolysis for energy production when proliferating, even 

when under aerobic conditions but when during OD the cells have been observed to increase 

both glycolysis and mitochondria linked metabolism (this includes OxPhos and fatty acid β-

oxidation). When undergoing AD, however, the cells have been recorded to show decreased 

pentose phosphate pathway (PPP) capacity as well as decreased glycolysis whilst an increase 

was observed in mitochondrial enzyme activities [34], [50].  

Consistent with these observations, it has also been noted that in addition to having a 

glycolytic phenotype, undifferentiated hMSCs have high levels of hypoxia-inducible factor 1 

(HIF-1). This is a transcriptional regulator central to regulation of genes involved in hypoxic 

processes and a crucial physiological regulator of anaerobic metabolism [139]. Cells that 

undergo OD downregulate HIF-1 and that downregulations seems to be required on order to 

activate mitochondrial OxPhos, which is an oxygen dependant pathway [140]. From this it 

can be deduced that hMSCs ability to differentiate is greatly impacted by mitochondrial 

functions [134].  

The metabolic phenotype of these cells has also been suggested to impact their 

immunomodulatory capabilities. A maintenance of a glycolytic phenotype seems to be a 

requirement for hMSCs to maintain and sustain secretion of immunosuppressive factors 

[138]. In 2019 Liu et al. [138] demonstrated this by utilizing IFN-γ to induce immune 

polarisation but hMSCs only start secreting immunomodulatory factors upon activation e.g. 

with IFN-γ. This led to remodelling of metabolic pathways towards glycolysis, reducing TCA 

cycle metabolism. The polarised cells were measured to have increased lactate levels, glucose 
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consumption and acidification rate. Increased expression was also observed of glucose 

transporter 1 and hexokinase isoform 2 (both are key enzymes in glycolysis), along with 

reduced OxPhos and electron transport. All of these points are indicative of increased 

glycolytic activity [138].   

 Mitochondrial Impact on MSC function 1.2.2

As has been touched upon in 1.2.1. active mitochondria are necessary for successful 

differentiation. Both mitochondrial enzymes and regulatory pathways are important to hMSCs 

in both their proliferating and differentiating states [27], [30], [134]. If not for active 

mitochondria, hMSCs would not be able to produce sufficient ATP to support e.g. OD. This 

happens via promotion of β-catenin signalling and acetylation due to active mitochondria. 

Increased β-catenin acetylation is a mechanism of osteogenesis that is driven by 

mitochondrial OxPhos [141] and it seems that acetylation increases throughout osteogenesis 

(at least for BM-hMSCs).  

There is other enzymatic activity that further supports this importance of mitochondrial 

activation, e.g. creatine kinase (CK) activity [34], reversible mitochondrial adenine 

dinucleotide (NADP)- dependent reaction of isocitrate dehydrogenase (NADP-IDH) [142] 

and activity related to reactive oxygen species (ROS) [134], [143]. 

 Possible Manipulation of Metabolism 1.2.3

As functionality and survival of hMSCs is greatly affected by changes in metabolism, a 

potential for therapeutic efficacy enhancement is present via metabolic manipulation.  

 Like many other cell types hMSCs can effectively reconfigure their functionality in 

response to stimuli. This applies to metabolism as well, but hMSCs can reconfigure their 

metabolism to respond to biochemical demands issued during tissue repair, be it secretion of 

immunomodulatory factors or integration and differentiation towards specific cell types 

[144]–[146]. 

 As it is, the currently most researched subtypes of hMSCs are the Ad-hMSCs and 

BM-hMSCs, but even in those subtypes the research cannot be described as exhaustive.  

 It has already been mentioned that both enzymes and pathways relating to 

mitochondrial functions seem to have significant impact on proliferation and differentiation of 

hMSCs [27], [30], [134] but in addition to that external mechanisms (e.g. mechanical and 

biochemical) such as microenvironment composition and scaffold stiffness can significantly 

influence the internal workings of the cells [147]. Previous work has explored various ways of 

affecting hMSCs functionality and mechanisms by impacting and controlling their metabolic 

function. Oxygen manipulation (see [30], [31], [134], [136], [137], [148]–[150]), chemical 

stimuli manipulation (see [151]–[153])  and gene knock-outs and knock-ins (see [154]–[156]) 

are some of the approaches that have been tried. 

 

 As has been mentioned and demonstrated in this thesis so far metabolism of hMSCs is 

a very complex and dynamic system, and there are several gaps present in the collective 

knowledge on this subject that are actively being addressed by the research community.         

Only by gaining further insight into workings of the primary energy-generating pathways 
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utilised during proliferation and differentiation can effective manipulation be achieved. In 

order to get to that stage a holistic perspective is needed, one that integrates knowledge on the 

varying biological levels (using varied types of data) of hMSC differentiation in order to gain 

how these cells work as a whole.  

One of the most prominent ways of doing this is through the use of -omics data and 

genome scale metabolic modelling such as has been done for this dissertation. 

1.3 Metabolomics and Transcriptomics 

Metabolomics, defined as the comprehensive and quantitative analysis of the full suite of 

small molecules in a biological specimen, is relatively new field of research within systems 

biology. „Metabolome“ first emerged as a term in 1998 and up to 2010 metabolomics was 

still considered as an emerging field [157], [158].  

In its practice metabolomics are a challenge when it comes their analysis because of how 

disparate physical properties the molecules involved have, going from very nonpolar lipids all 

the way to very water soluble organic acids [159]. This makes the metabolome field very 

different from other present in systems biology, like genomic and proteomic, that usually only 

require a single analytical run to acquire extensive coverage. Methods that deal with 

metabolomics have to be chosen based on what subset of molecules within the metabolome 

are to be analysed and each of the method introduces a certain bias both for and against each 

class, generating a sort of patchwork of results for the metabolome [157]. Because of the way 

the metabolome is analysed and the ever continuous evolvement of analytical methods, 

precision and reproducibility will most often not be the same for all measured metabolites 

[160]. 

Transcriptomics, also a field within system biology, is defined as the study of an 

organisms transcriptome [161]. The aims of transcriptomics are generally written as: 1) record 

all types of transcripts (i.e. mRNAs, non-coding RNAs, small RNAs); 2) determining the 

transcriptional structure of genes (e.g. start sites, splicing patterns, post-transcriptional 

modifications) and 3) quantify expression levels changes in each transcript during 

development and condition changes [162]. 

 The transcriptome (a term normally attributed to Charles Auffray [163]) is the complete 

set of RNA transcripts produced by the genome under a specific circumstance and connects 

the genome to gene function. The comparison of transcriptomes enables identification of 

differently expressed genes between either distinct cell populations, different cell states or 

different treatments. Modern day transcriptomics is possible due to high-throughput (HT) 

methods that analyse multiple transcripts [164], [165].  

 

There are several methods available for use when it comes to studying the metabolome 

and generate a metabolomic profile but the ones that are the most common are spectroscopic 

techniques like nuclear magnetic resonance (NMR) and the hyphenated mass spectrometry 

(MS) techniques that couple together on-line metabolite separation and mass spectrometry 

[166]. Metabolomic (extracellular and intracellular) data analysis done for this dissertation 

(Paper I and II) was done using liquid chromatography MS (LC-MS). More precisely liquid 
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chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QTOF-MS), 

and this method will be described in a bit more detail later in this section of the dissertation. 

As with the metabolome there exists a few methods to analyse and study the 

transcriptome, e.g. DNA microarray and RNA-seq [164], [167]. The latter one is a fairly 

recent addition to the method scope available for transcriptome analysis, it uses next-

generation sequencing platforms, and this is the methods that was used in generating and 

analysing the transcriptomic data used in Paper I. 

 Mass Spectrometry 1.3.1

Characterization of whole intact biomolecules using mass spectrometry (MS) has been 

possible since roughly the mid-1980s‘[168]. The MS technique is a widely used instrumental 

technique based on ionization and fragmentation of sample molecules in the gas phase. 

Molecules fragment in a unique manner so the resulting ion fragmentation patterns can be 

used to obtain structural information. In other terms the MS technique, in its most basic 

principle, generates and measures multiple ions from the same sample that is under 

investigation. It measures and separates the ions according to their specific mass-to-charge 

ratio and its results are usually presented as a mass spectrum with intensity as a function of 

the mass-to-charge ratios [168], [169]. 

A mass spectrometer in its basic form consists of a sample-introduction system, ionization 

source, mass analyser and an ion detector. The sample size that is required for MS analysis is 

much lower than that of the NMR spectroscopy (few microliters for the MS vs. 30-600 µl for 

the NMR). The MS also has a higher resolution (meaning it is better suited to distinguish 

between compounds with small mass differences) compared to NMR and it can be coupled 

with a separation technique (e.g. CE, LC or GC) [170], [171].  

The most common MSs used for studying the metabolome are time-of-flight MS (TOF-

MS), the quadrupole MS, ion trap MS and the Fourier-transform ion cyclotron resonance MS 

[172]. 

The MS that was used in the metabolomic analysis for this dissertation was a combination 

of two of the above-mentioned common MS, TOF-MS and the quadrupole MS and so they 

will be introduced further. 

 In TOF-MS, the ion mass-to-charge ratio is determined through time-of-flight 

measurements – i.e. the time it takes ion to travel a fixed distance in a vacuum. Electric field 

(located in the „pusher“ or acceleration-region of the analyser) is used to accelerate the 

gaseous ions, giving ions with the same charge the same amount of kinetic energy.  

 

As according to the physical laws that govern anything and everything, the ion‘s velocity 

will be in inverse proportions to their mass and so the time it takes the ion to go from 

„pusher“ to detector will tell the mass-to-charge ratio [168], [172].  

The quadrupole MS consists, as the name gives away, of four cylindrical rods set in 

parallel and it separates the ions based on the stability of their flight trajectory through an 

oscillating electric field. This field is generated by applying both direct current (DC) potential 

and alternating radio frequency current (RF-AC) potential to the rods. The ions follow flight 

trajectories specific to their mass-to-charge ratios when inside the space between the rods. By 

applying specific values of DC and RF-AC it is possible to only allow a very narrow ratio 
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range to have a stable flight trajectory within the field and so reach the detector, with all ratios 

outside the range colliding before being detected. The quadrupole MS can thus be used as a 

sort of filter when it comes to analysis [172], [173]. 

As mentioned, the MS used in this dissertation was a MS/MS configuration, also known 

as tandem MSs, made up of a quadrupole MS and a TOF MS or Q-TOF MS. Generally, the 

Q-TOF-MS is the most commonly used MS in untargeted metabolomics i.e., discovery-based 

analysis focused on global detection and relative quantitation of small molecules. Targeted 

metabolomics on the other hand is a validation-based analysis that focuses in measuring well 

defined groups of metabolites and allows for absolute quantitation. Targeted metabolomics 

was the focus of this dissertation, though some untargeted analysis was performed on the data 

as well [174]. 

 

It is quite common now a days to use more than one MS analysers in this sort of a “row” -

configuration (as is the case in this instance).  

This is done in order to increase the specificity of the analysis and aids with specific 

protein targeting. The coupling, normally done by using a collision cell, makes the latter 

analyser data dependant (i.e. dependant on the data of the first one). E.g. often the first MS is 

a quadrupole MS, which filters all ions outside of a narrow ratio range out, and the filtered 

ions are then fragmented before moving on to the second MS. The second analyser then 

measures the mass-to-charge ratios of the fragments and the fragmentation is reproducible. 

How highly depends on the molecular structure of the ions.  

So, instead of only being able to measure the precursor ion as is possible in MS 

configuration, in tandem MS/MS it is possible to analyse the product ions of the precursor 

ion. This can mean increased sensitivity and/or the possibility to gain more structural 

information on the analyte used (depending on what type of MSs are set up in tandem) [175]. 

  Techniques to Separate Metabolites 1.3.2

As mentioned in section 1.3, samples that are to be measured for metabolomic analysis are 

more often than not of high compositional complexity, and so in order for the MS to be able 

gather a good analysis it can be advantageous to sperate the metabolites beforehand. 

Chromatography is a technique that does this kind of separation and relies on differences in 

partitioning behaviour between a mobile phase and a stationary phase [176].  

The most common ways currently used to achieve separation are liquid or gas 

chromatography (LC, GC).  

In GC all compound intended for analysis must be sufficiently volatile and thermally 

stable as all samples need to be vaporized before being separated. Upon vaporization the 

sample is swept into a column by a carrier gas (e.g. helium or argon) where it is separated due 

to the interaction between the gas (mobile phase) and the interior coating of the column 

(stationary phase). Later part of the column then passes through a heated transfer line and 

ends at the entrance of an ion source [177]–[179].  

 

In LC the mobile phase is a liquid in which ion samples or molecules are dissolved. The 

sample passes through a column (or a plane, dependent upon the type of LC) packed with 
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stationary regularly or spherically shaped particles that enables the separation of molecules 

due to their inherent difference in ion-exchange, adsorption, partitioning and size. 

 

This gives different transmit times to different molecules. After being eluted from the 

column (or plane), the metabolites are converted from a soluble to a gas and ionized, after 

which they are ready to be measured by the MS [180], [181].  

Now it is common to use high pressure to separate the metabolites, resulting in a detection 

and quantification technique known as high-performance LC (HPLC) that gives very high 

resolution and fast analysis time, however yet another technique has emerged that is 

considered to give an even better result. This is known as ultra-performance LC (UPLC). The 

UPLC operates at a higher pressure (15.000 psi generally vs. 6000 psi for HPLC) which 

allows for even shorter run times, lower solvent consumption and smaller particle size in the 

column, i.e. greater analyte separation and so detection [176].  

 LC-MS data analysis 1.3.3

LC part of the LC-MS or MS/MS systems is very beneficial when it comes to capability of 

separating complex mixtures, but it is not applicable to obtain material structural information 

[181], [182]. 

Despite being widely used at present in metabolomic analysis, the coupling of LC and MS 

was not an easy feat to accomplish. This was mainly due to fact that maintenance of the high 

vacuum that MS requires was hard to contain because of the high liquid flows in the LC, i.e. 

one instrument operates in a condensed phase but the other under vacuum. This had to be 

solved using the correct interface between the LC and the MS or MS/MS systems – the two 

most commonly used ones are electrospray ionisation (EI) and atmospheric pressure chemical 

ionisation (APCI) [181].  

 

EI (often termed as a very soft ionisation technique), under optimal conditions, introduces 

the analyte to the source at flow rate around 1 µl min
-1

 and generates intact gas-phase ions by 

applying high voltage to the liquid, creating an aerosol. In other words the liquid (charged) is 

formatted and sprayed, in order to evaporate the solvent, ion formation occurs in the fission of 

the charged droplets because of high field intensity. EI is very useful for analysing ionic 

compounds and compounds with high molecular weight [183], [184]. 

Atmospheric pressure chemical ionisation (APCI), in its optimised format, has a mixture 

of both analyte and solvent molecules go through a corona discharge after a gas phase drying. 

Then the molecules in the solvent are ionised in order to create charged solvent ions, and that 

charge then transfers to analyte molecules crating analyte ions. This interface is often used to 

analyse nonpolar molecules of a more moderate weight than is done using EI [183].  

 

Combining LC and MS techniques then enables the physical separation of molecules in a 

liquid phase (that the LC part brings) as well as the mass analysis of the MS that is done via 

identification of the mass-to-charge ratios of gaseous ions in an electric and magnetic fields 

[168], [181], [185]. This kind of analysis method is able to produce a considerable amount of 

data in one experimental set up and the data points are known as three dimensional. This 

stems from each measurement containing information on the metabolites chromatographic 
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retention time, signal intensity, and the frequently talked about mass-to-charge ratio [186]. On 

top of this comes the fact that, aside from the large amount of metabolites contained within a 

system at each given time of sampling, each metabolite or primary ion is often fragmented in 

the run process so there are several resulting fragments and then there is the possibility of 

addition of adduct formation between the ions.  

Due to the scale of the data that is produced in metabolomics the identification of the 

metabolites often presents itself as a limiting, time consuming factor. Use of specific 

algorithms (e.g. TargetLynx from Waters [187] , XCMS [188]–[190]) is therefore needed to 

sort through the raw data and collect information about the sought after metabolites. This 

works when doing targeted metabolomics, where only known metabolites are being identified 

(often with known retention times, fragmentation patterns and mass-to-charge ratios) as this 

only reports information about them 

 

As already mentioned, the MS instrument used for this dissertation was of the UPLC-Q-

TOF-MS variety. Using this kind of a tandem MS set up enables provision of structural 

information (enable identification of unknown compounds), it increases specificity of the 

targeted analysis, and helps with achieving determination of high-sensitive trace levels [185]. 

Additionally, by using complex but complementary instrument setup such as this, greater 

sample throughput is achieved as the LC-MS set up markedly reduces the need for sample 

clean up strategies.  

 RNA-Sequencing (RNAseq) 1.3.4

Classified as a kind of an umbrella term for next-generation sequencing strategies that can be 

used to map the transcribed, RNAseq enables whole genome sequencing with a wide dynamic 

range of expression levels in a relatively easy manner which facilitates new molecular marker 

or novel transcript identification and could render polymerase chain reaction (PCR) 

unnecessary [162], [191], [192].  

This technique can be used to produce an almost complete snapshot of the mRNA in form 

of small tags corresponding to fragments of the transcripts. Other older sequencing methods 

that are still in current use, such as those that use complementary deoxyribonucleic acid 

(cDNA) clones to generate expressed sequencing tags (EST), are only able to detect the more 

abundant transcripts present. RNAseq methods however, when applied with enough 

sequencing depth (100-1000 reads/base pair/transcript) can deliver an almost complete 

transcriptome capture [164]. 

The general method used by this kind of technology is converting a population of RNA to 

a library of cDNA fragments with adaptors attached to both ends of the fragment strands. 

Next, each molecule (whether it is amplified or not) is sequenced in a HT-manner in order to 

obtain either single or pair-end sequencing. Any HT-sequencing technology can be used but 

the type chosen will affect the depth of the reads [162], [164]. For this dissertation Illumina 

HiSeq System was used. 

Following sequencing the reads can be either aligned (if using a reference genome) or 

assembled de novo without a guiding sequence if the desire is to produce a genome-scale 
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transcription map consisting of either one or both; structure of the transcriptome and the 

expression level for each gene [162]. 

To give a bit better overview of the run of a typical RNA-seq experiment, the steps can be 

divided and described largely as follows [165], [193]: 

 

1) RNA purification and isolation 

a. Here the RNA is also broken into small fragments, but RNA transcripts can be 

thousands of bases long whilst sequencing machines only sequence 200-300 

bp fragments). 

2) Library preparation. 

a. RNA is converted to cDNA which is more stable than RNA and sequencing 

adaptors are added. The adaptors purpose is to allow the machines to recognise 

the fragments and to allow the sequencing of multiple different samples at the 

same time, but different samples can use different adaptors. The addition of 

adaptors can be a problem as it does not work 100% of the time. Samples with 

adaptors are amplified in a PCR step and then a quality controls steps verifies 

library concentration and fragment lengths. 

3) Next generation sequencing (NGS) platform performs the sequencing itself. 

4) Resulting reads are analysed. 

 

Note that the precise configuration of each step as well as how the NGS run is performed 

is dependent upon the specific method.  

 

The key advantages of using RNAseq technology are that it is not limited to detecting 

transcript corresponding to existing genomic sequences, it can reveal the precise location of 

transcription boundaries, short reads from RNAseq can give information regarding the 

connection of two exons and it can aid with discovery of sequence variations in transcribed 

regions. It also has a very low background signal. 

These points, along with others, make RNAseq the first sequencing-based method that 

enables entire transcriptome observation in a HT and quantitative manner.  
 

 RNA data analysis  1.3.5

The typical steps of an RNA-seq experiment were gone through in section 1.3.4, the analysis 

of the resulting data itself also usually follows quite a structured process.  

It can in essence be broken down into six steps [165], [194]: 
 

1) Initial processing 

2) De novo assembly 

3) Mapping reads 

4) Transcript annotation 

5) Normalization 

6) Downstream analysis.  
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Figure 2: RNA data analysis workflow. The process can be split into six main steps – 1) Initial processing 

2) Transcript assembly 3) Either Reference genome mapping or De Novo Assembly and mapping 4) 

Transcript annotation or Read count 5) Normalisation of data and 6) Various downstream analysis. Created 

with BioRender.com 

During initial processing of the data the sequencing reads are demultiplexed (usually done 

as a part of the sequencing device‘s software), trimmed (the adaptors are removed) and run 

through a quality filtration where garbage reads (reads with low quality base calls or that are 

artifacts of chemistry) are filtered out. 

The second step, de novo assembly, is only necessary if a reference genome is not 

available. Then it is necessary to construct it out of RNA-seq reads.  

Mapping of the reads, also known as aligning RNA-seq reads to a reference genome is the 

next step. Here the genome and genome sequence is split into small fragments (allows 

alignment of read even if they are not exact matches to the genome) and index is created 

containing all the fragments and their locations on the genome. The sequence read is then, just 

as the genome, split into small fragments and the seq-read fragments are matched to the 

genome fragments. This determines the genome location of the fragment (both the 

chromosome and position on it, where applicable). 

Once position of a read is determined it is possible to see if it falls within a coordinate of a 

gene (or an interesting feature). The read counts per gene is summarized and the results are 

given as a matrix – this matrix (col 1 = gene names, read counts = counts for each samples 

sequenced). For this dissertation so called „bulk“RNA-sequencing was performed, resulting 

in a smaller matrix than if a „single-cell“RNA-sequencing were to have been done.  

Next comes the normalization of the data, but each sample will likely have a different 

number of reads assigned to it because one sample may have more low quality reads 
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compared to another or some samples may even just have a bit higher concentration in the 

machinery‘s flow cell. This normalisation step is supposed to try and account for both within 

and between sample variations. Normalised read counts used to be reported as either Read Per 

Kilobase Million (RPKM) or Fragments Per Kilobase Million (FPKM) but a more novel 

approach (that is being used ever more widely) was used for this thesis or Transcripts Per 

Million (TPM). The normalised read counts that this method gives have been normalised to 

count for both sequencing depth and the length of the gene. When using the TPM method one 

normalises for gene length first (each gene count is divided by gene length in Kb) and the 

sequencing depth second (read counts for each replicate are summed up, that sum is divided 

by million and the read counts are divided by the resulting scaling factor). TPM is by many 

considered a better method of normalisation than RPKM and FPKM because it gives a clearer 

indication of how large proportion of reads for a gene were mapped to a replicate because the 

sum of total normalised reads in each column of the data matrix (i.e. in each replicate) is 

always the same. Since RNA-seq is essentially all about being able to compare relative 

proportions of reads TPM has been found to be very useful. This method was used e.g. in 

Paper I.   

When normalisation of the data has been completed the downstream analysis can take 

place (this includes e.g. differential expression analysis, multivariate statistical analysis and 

visualisation). See paper I for more detailed downstream analysis performed. 

1.4 Genome Specific Metabolic Models 

Generic constraint-based modelling, an aspect of systems biology and biomedical 

engineering, has been around for roughly 30 years. During this time it has gone from an initial 

interest of theory and basic conception into a predictive biological practice where number of 

ongoing studies are combining the use of HT data and these models in a search for answers to 

relevant biological questions [195]. 

Genome scale metabolic models (GEMs) or genome scale metabolic networks are 

reconstructions that first were presented in 1999 (Haemophilus influenzae RD)  [196] and 

contain a comprehensively curated and systemized information on cellular metabolism of a 

given organism[195]. Since the presentation of the first GEM advances have been made to 

develop and reconstruct models that cover an increasing number of organisms reaching across 

the realms of bacteria, archaea and eukarya [66]. These reconstructions can be put into a 

mathematical format that follow the same principles are standard constraint based models 

(CBMs) except for where CBMs focus on metabolism at the reaction level, GEMs work at the 

gene-level and so account for the complex gene-protein reaction association [196]. Models 

like GEMs can be used to study the intricate genotype-phenotype relationship when it comes 

to cellular metabolism and function, which is a key factor when it comes to manipulation of 

cells to enhance their use in tissue engineering and regenerative medicine.  

 Mathematical Modelling of Human Metabolism 1.4.1

A bottom-up (going from fundamental units e.g. DNA, RNA, metabolites and protein to 

the organism as a complex whole) systems biology approach allows for a grounded, thorough 

mechanistic understanding of a system [197]. Models created in such a mathematical manner 
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can be used to predict potential interventions and so insight into possible ways to successfully 

manipulate hMSCs for therapeutic applications. As has been mentioned in previous sections 

of this dissertation, various individual components of hMSCs have been studied (in varying 

detail), but in order to be able to predict a cell‘s realistic phenotype a wholistic approach must 

be taken. An understanding of all systemic interactions of both environmental and cellular 

components that contribute in some manner to that phenotype has to be involved to get an 

accurate picture [61]. 

A combination of HT –omics technologies (e.g. proteomics, metabolomics, 

transcriptomics), enabling collections of very large data sets, along with improved 

computational modelling methods that enable a better holistic analysis of said data have made 

systems biology in its present format possible [60], [198].  

 

Generally speaking the first step in modelling metabolism at the genomic level, as is done 

in GEMs, is to reverse engineer the network structure [60], [61], [199], [200].  

The reconstruction process starts with collection of all genome and experimental evidence  

relating to biochemical reactions of the organism of interest [66]. This generates what can be 

called the base model. In this thesis the base model is the Recon3D [201] model, a base 

human genome reconstruction that covers all known metabolic reactions in Homo sapiens. 

These base models are generally too large and not focused enough to be used in search for an 

answer to a specific biological question, which are most aimed at a certain tissue or cell type. 

So, further constraints are placed upon the network based on existing biochemical knowledge 

– this includes stoichiometric constraints (e.g. mass and charge balance of reactions), 

thermodynamic constraints (e.g. directionality of reactions), and enzymatic capacity 

constraints (e.g. the maximum possible flux rates of reactions) [58], [66], [199], [202]. This 

eventually results in a GEM of metabolism. 

Transcriptomic and proteomic data is then used to learn and select which of the reactions 

are actually active in a given phenotype, based on the presence of the enzyme that catalyses 

the reaction (a chosen threshold value usually supports and enables this). 

Metabolomic data may then be used to constrain which metabolites should be either 

consumed or produced by the cell or organism being modelled [61].  

Resulting GEM can then be used to determine the flux state or pathway usage of the entire 

metabolic network via varied computation approaches (e.g. flux balance analysis (FBA) 

[203]).  

The ability of integrating information from multiple types of -omics data with detailed 

biochemical data that has been previously acquired makes this kind of metabolic modelling a 

very powerful and effective technique to answer biological questions regarding how 

phenotypes occur because of genetic mutation, functional changes or environmental 

perturbation [204]. 

A more specific example of how a GEM can be reconstructed in steps can be seen in the 

method section of Paper II.  

 

While constraint-based models such as GEMs are intrinsically quantitative (i.e. provide 

numerical values for all fluxes present in the network) they can answer both qualitative and 

quantitative questions relating to the metabolic behaviour of the cell. Predictions that are 
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focused on qualitative aspects usually require less physiological information (results being 

qualitatively insensitive to the imposed enzyme capacity constraints) but if quantitative 

predictions are the goal more physiological data is needed to properly constrain the model 

[205].  

As more and more data are obtained a model will represent the intended physiological 

conditions more closely, and the new and improved model can be used to produce some novel 

hypotheses that can affect what experimental directions are taken.  

This established back and forth feedback between the experimental design and data 

gathering and then the computational evaluation is important and enables a better 

understanding of how organisms, like hMSCs, organize their metabolic systems in response 

to shifts in either functional demand and environmental circumstances [60], [199]. In 

addition, the ability to contextualize models based on information at various levels (going 

from genomic to environmental) has the potential to allow them to inform the ever more 

desired personalization of medicine e.g., predicting potential genetic markers of a successful 

MSC donor.  

1.4.1.1 A brief overview of the mathematical representation of a metabolic network 

As described in section 1.4.1. network reconstructions such as GEMs, and other in silico 

models, are generally created in a bottom-up fashion. Based on both genomic and bibliomic 

data they can represent a biochemical, genetic and genomic (usually shortened to BiGG) 

knowledge base for the specific targeted organism. It is this reconstruction that is converted 

into a mathematical format. 

In this mathematical representation the metabolic network is converted into a 

stoichiometric matrix (S) were each column in the matrix represents a reaction in the network 

and each row represent a metabolite (S metabolite, reaction). If the matrix coefficient in question is 

represented by a negative number that means it is a substrate (i.e. that metabolite in that 

specific reaction is being consumed) whilst positive numbers represent a product (i.e. that 

metabolite in that specific reaction is being produced). Metabolites that partake in a reaction 

have a non-zero entry in the S matrix. This is what makes the format of the metabolic network 

actually computer readable. 

In order for proper mathematical representation of the holistic network to be possible and 

correct reaction fluxes, definition of system boundaries is needed. This is especially important 

when it comes to exchange reactions – that is all metabolites that can be either consumed or 

secreted by the cell itself. These can be added at a later stage of the reconstruction as a further 

definition of environmental conditions. Common reactions to have in a reconstruction are e.g. 

exchange reactions (define extracellular environment), extracellular reactions (denoted with 

an [e]), intracellular reactions (reactions happening completely within the cell, denoted with a 

[c] ) and transport reactions (reactions moving metabolites from extracellular to intracellular 

or vice versa, denoted with [e] ↔ [c] ). Metabolites in the stoichiometric matrix, S, are also 

denoted by the compartment they are located in. 

Then it comes to the constraints (as described in section 1.4.1). With mass conservation 

being the basic physical law that models adhere to the steady state of the model can be 

described by the equation 𝑆 ∗ 𝑣 = 0, where v is a vector representing reaction fluxes. Adding 
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the previously mentioned stoichiometric, thermodynamic and enzyme capacity constraints 

lead to a more confined set of a feasible steady state flux solution existing in what is known 

as the solution space).  

Once a constrained stoichiometric matrix has been defined in a proper manner an 

objective function (usually denoted by a vector 𝒁 =  𝒄𝑻 ∗ 𝒗, where c is a vector of weights 

indicating how much each reaction contributes to the objective function, and v is again a 

vector representing flux values for the reactions) can be defined and included in the matrix 

itself. This can also be a biological question of a sort. Most commonly this is the biomass 

reaction, a complex reaction that consists of the biomass precursors, is dominated by 

adenosine triphosphate (ATP) consumption, and returns the produced biomass (usually under 

optimised conditions). However, the objective function does not need to be constricted to 

biomass production, it can be focused on various other aspects (e.g. ATP production under 

specific circumstances, or production of other cellular components when specific additives 

have been put in the media). If only one specific reaction is the focus of either max-or 

minimization of the objective function then c is a vector of zeros with one (1) at the position 

of the reaction of interest [66], [206].  

Linear programming is then used to solve the resulting linear equations and the flux state 

of the network computed. 

1.4.1.2 Current Human Metabolic Reconstruction – Recon3D 

As mentioned in the previous section the base human metabolic model used for this 

dissertation was the Recon3D [201] model, the latest update of the Recon family of human 

metabolic reconstructions. Its key novel attributes are mainly twofold; one is the inclusion of 

information regarding protein and metabolite structures and the other is the number of 

reactions. Recon3D has almost double the number of reactions compared to its predecessor or 

13,453 total reactions and the inclusion of the 3D aspect has allowed its use to show that 

deleterious mutations map to specific areas of the genome. That specially has improved 

predictions of cancer related mutations compared to predictions made by previous Recon 

models, and the overall improvements of this newest addition have also enabled investigation 

of the metabolic effects of various drugs. This drug analysis has revealed that drug effect 

signatures often contained dissimilar functional domains and metabolites, indicating that drug 

effects can often be due to a compensatory downstream metabolic effect [201].  

A global network reconstruction that includes all known reactions of a whole organisms, 

such as Recon3D is, can thus provide a starting point for production of tissue-, cell-, or 

condition-specific GEMs (just like has been done for this dissertation).  

1.4.1.3 Current State-of-the-Art Application 

As has already been mentioned, a base GEM can be utilised to produce general predictions 

about human metabolism as a whole. This provides useful insights into human health as is 

and predictions of human metabolic functions that are currently unknown. 

For example, by analysing reactions in Recon1 [207] that were at the time defined as 

being present because of either genome annotation or literature data but that were not 

predicted to be active, and then adding surrounding reactions to activate them (in a sort of 
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„connect-the-missing-dots“ manner) making of predictions about previously unknown human 

metabolic functions has been enabled. Examples of this is the iduronic acid following glycan 

degradation, N-acetylglutamate in amino acid metabolism, and the human activity of 

glucokinase [208], [209].  

Another aspect that GEMs can be used for is personalised disease diagnostics, e.g. to 

predict biomarkers for inborn errors of metabolism (IEM), a collection of hereditary 

metabolic defects found in most of the main human metabolic pathways [210].  Here the 

accuracy of previous predictions is used and fed into improving the new models. For diseases 

such as IEM early recognition and treatment is very important, and identification of good 

biomarkers is key when it comes to successful early diagnosis. GEMs provide a novel 

computational approach that can systematically predict altered or effected metabolic 

biomarkers and so extend the information that can be inferred from obtained data. It is this 

that enables the accurate diagnosis for each individual patient, further insights into IEM 

focused hot spots in human metabolism and discovery of novel IEM which expands the range 

of metabolites associated with a diseased state [211]–[215].  

The gene-protein-reaction that GEMs are built on make metabolic pathways relevant to 

specific genotype-phenotype pair more feasible, meaning that disease-specific biological 

insights can be derived. 

 Benefits of integration of varied -omics data 1.4.2

Once the first step of a reconstruction has been taken (choosing the base model, e.g. 

Recon3D), there is a plethora of methods available that can be taken in order to make context-

specific models, i.e. models that are specific to both a certain cell type and circumstances. 

This is done via integration of transcriptomic, proteomic, and metabolomics data – an integral 

step in generating the more holistic, intricate models able to make the more accurate 

predictions. 

These context-specific models are able to provide much more detailed insights into human 

metabolism in the chosen cell type, and comparison of models (e.g. same cell type in different 

circumstances, as was done as a part of this dissertation for hMSCs in osteogenic 

differentiation and adipogenic differentiation) is particularly useful. Previous published 

context-specific human models have proven this by producing useful insights into healthy and 

diseased state metabolism.  

Expression of enzymes defines the metabolic state of a cell, and both transcriptomic and 

proteomic data provide information about what enzymes are expressed under each 

circumstance and up to what extent (i.e. expression levels), although not in a perfect manner 

[116], [216]. 

The process of downsizing a reconstructed network is most often called “pruning”, and 

several methods have been developed that do this based on expression data like 

transcriptomics. There are quite a few technical differences between the methods, but all seek 

to balance retention of reactions that are either known to be or thought likely to be present in a 

particular cell type under a given circumstance based on expression data or prior knowledge 

gained from literature research. Reactions that are by this defined as extraneous are removed.  
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The most commonly used methods to do this are GIMME [217][92], iMAT and INIT 

[35], [63], [78], [218], and MBA, Fastcore, and mCADRE [18], [99], [100], [219]–[221], 

[17], [222]. 

 

As was mentioned briefly in section 1.4.1. another way to generate a context specific 

model is to use metabolomic data that is collected either by mass spectrometry (MS) [169] 

and nuclear magnetic resonance (NMR) spectroscopy [170].  

This type of data creates a constraint on the values of metabolites that the model can either 

take up or secrete and makes them more realistic. Rate of metabolite secretion or uptake is 

determined by either measuring concentration changes of various metabolites in cell culture 

medium over time or by comparing relative values of metabolites at different times. The 

determined rates are then applied as additional constraints to the model and help with 

restricting possible predictions to be consistent with the metabolic data set [65].  

These kind of constraints help with predictions of different sets of active and inactive 

intracellular reactions based on extracellular data (this was used in the model reconstruction 

done for this dissertation) and the process may follow protocol such as Metabotools [223] or a 

similar one. The Metabotool protocol has been used to obtain metabolic insights into the 

metabolic differences between different leukemic cell lines [224], [225].  

 

The use of isotope labelled metabolomic data can yet again help with generating a more 

specific model by contributing even better constraints.   

Cells, such as those that are being modelled, can be fed on medium containing either 

glucose or glutamine that are labelled with heavy isotopes of carbon or nitrogen. The 

proportions of various metabolites labelled with these heavy isotopes in the cells sampled and 

analysed at different relevant time points after the labelling treatment then allow for 

inferences to be made about their production. See [128], [226] for examples of using isotope 

labelling in GEM reconstructions and predictions.  

Through this it is easy to see the value that the possibility of integration of varied types of 

data brings to the precision, holistic comprehension and focus of GEMs. 

 The value of Cell Specific and Circumstance specific Metabolic Models 1.4.3

When in search for answers regarding causes of a diseased state or changes in cell‘s 

functionality or characteristics the starting point is not always apparent, making defining an 

objective function difficult. 

Then it can be invaluable to be able to generate metabolic network reconstructions that are 

specific to each type of cell or circumstance that can then be compared in order to find the 

differences between the metabolic pathways (expression values, flux values, pathway usage 

etc).  

The discovered differences in the metabolic networks can then be used as guide posts 

when it comes to either discovery of drug or „treatment“-targets or targets for metabolic 

manipulation and possibly therapeutic enhancement. 
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1.4.3.1 Deeper Insights into Metabolism 

Historically, many constraint-based metabolic analyses have relied upon an objective 

function (mentioned briefly in section 1.4.1.1). It is defined as the metabolic objective of the 

cell in question, and as previously stated in 1.4.1.1, flux through this function or reaction is 

either maximized or minimized in order to compute the pathway usage or „flux-state“, across 

the entire network given the specific goal. 

When it comes to diseased metabolic states, such as cancer, where a well-defined 

objective-function is not present (cancer cells usually follow the goal of gross cellular growth) 

one needs algorithms that can create a cell or tissue specific networks without a particular 

objective function. An algorithm that has specifically been used with regard to cancer 

research is the metabolic transformation algorithm (MTA) [227]. This is an algorithm that 

uses GEMs to predict genetic perturbations that can shift a diseased metabolic state to a more 

healthy one, and has been used to determine reactions that are capable of shifting “old” 

muscles into “young” by providing possible targets that can reduce age related metabolic 

shifts. These have also been used to identify key reactions that when removed from network 

shift a model for Alzheimer’s  disease to that of a network more similar to a healthy state 

[228], [229]. 

Obesity is another example of a circumstance specific metabolic disease state that has 

been addressed by using human metabolic reconstruction. In this case the reconstruction was 

used to identify pathways implicated in the disease process. When it comes to obesity, just as 

for many other diseases, pinpointing the cause (in the form of either a specific genetic or 

environmental marker) and finding an effective “treatment” is not a simple task and having an 

in silico laboratory of sorts can aid in potential target elimination without being too costly 

[65], [230]–[232].   

Yet another valuable use for cell and circumstance specific GEMs can be found in the 

more cost-effective manner they offer when it comes to evaluating drug toxicity levels and 

side effects for both short and long periods of usage, see [232], [233].  

1.4.3.2 Uncovering Changes over Time 

Biological systems often change dynamically over time, either in a response to an internal or 

external stimulus (e.g. a hMSC going from proliferation into differentiation), and analysing 

how the changes come about can be a challenge. This challenge is now addressed by 

integrating time-course experimental data using approaches like dynamic flux balance 

analysis (dFBA) in order to give more accurate flux predictions [234]. This is done by 

providing a continuous prediction based on the changing inputs and outputs from the system 

over the time course. 

Another approach, known as unsteady-state flux balance analysis (uFBA) [68], integrates 

absolutely quantified time-course metabolomic data to model cellular dynamics and has been 

used to explore how temporal dynamics can impact metabolism of stored red blood cells. That 

work lead to proposed improved storage solutions for blood [235]. 

Methods like dFBA and uFBA can be used for cell types like hMSCs to detect, examine 

and compare as functions of time the key metabolic shifts that occur during trilineage 

differentiation just as has been done for this thesis. 
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1.5 What the future holds 

From the earlier sections of this introduction is should now be relatively easy for the 

scientific mind to gather what possibilities lie within the combination of GEMs, tissue 

engineering and cellular or regenerative medicine. 

Previously, a metabolic model of MSCs has been reconstructed and used to predict a 

possibly better way to expand the cell culture. This is the GEM iMSC1255 [64], the first 

GEM created to model MSCs. This model, after first being reconstructed and validated, was 

subsequently used to computationally predict possible metabolic interventions that could be 

used to optimize both proliferation and chondrogenic differentiation of MSCs as well as 

investigate effects of hypoxia on proliferating MSCs, see [236] for more detailed information. 

These studies both showed how a model of MSC metabolism can provide useful insights 

into MSC proliferation and differentiation. The model described in Paper II is to the authors 

best knowledge the only one of its kind that models hMSCs undergoing OD and is built on 

data gathered from cells grown with culture ingredients containing only human related 

additives. 

Some of the other ways that GEMs can be of use to further clinical applications of cell-

based medicine are 1) trials with faster in silico metabolic engineering ; 2) disease biomarker 

identification [210], [211], [237]; 3) drug target prediction, therapeutic window prediction 

[232], [233], [238], [239]; 4) experimental cost reduction via in silico result prediction e.g. 

optimizing cellular functions without having to go through the costly processes of cell 

expansion and differentiation; 5) multi cell models, e.g. to gain insight into how multiple 

types of cells residing within same environment interact [232], [240]; 6) age related 

exploration, to explore the effect of donor age on cellular functions [80], [241], [242]; 7) 

exploration of metabolic differences, to explore different capacities of hMSCs from different 

sources [22], [138], [243]–[246].  

In general GEMs can bring the highly valued engineering aspect of optimisation and 

overview to fields like tissue engineering and cell-based medicine, which have to deal with a 

lot of complicated and often unexpected and unforeseen situations that can spring up out of 

nowhere. 

 

 





29 

2 Purpose 
 

‘‘Face the demands of life voluntarily.  

Respond to a challenge, instead of bracing for a catastrophe. “ 

 

Jordan. B. Peterson,  

Canadian Clinical Psychologist (B. 1962). 

 12 Rules for life. 

 

The purpose of this project can be divided into three sections: 

 

1) To identify temporal changes in metabolic activity of mesenchymal stem cells 

during the course of osteogenic differentiation through analysis of 

metabolomic and transcriptomic data to see if the progression can be split up 

into different phases, each with its own identifying metabotype. Such 

identification of timepoints where metabolic shifts of interest are occurring can 

aid in focusing the scope of future research aimed at mapping metabolism of 

osteogenesis and the optimisation of the process within tissue engineering.  

 

2) To reconstruct an original and hitherto unseen trio of comparable genome scale 

metabolic models, modelling metabolism of mesenchymal stem cells during 

the first seven days of osteogenic and adipogenic differentiation as well as 

proliferation. The goal of these reconstructions is to create in silico metabolic 

models that can be used to compare metabolic states of the cell lineages and 

explore their differences as well as to be able to utilize the models as a virtual 

laboratory to explore e.g., possible ways to enhance osteogenic differentiation 

among other things. 

 

3) To bring together the possibilities that lie within the fields of genome scale 

metabolic modelling, metabolomics and stem cell based medicine and 

highlight how they can all be combined in order to further the use of 

mesenchymal stem cells in tissue engineering and regenerative medicine.  
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3 Materials and Methods 
 

‘‘Order and method, and the little grey cells  

That is all one needs, mon amie.“ 

-Hercule Poirot 

 

Dame Agatha Mary Clarissa Miller/Agatha Christie,  

 British Author (B. 1890 – D. 1976). 

 The Big Four. 

 

Main methods are summarised and presented in condensed versions in this section. For more 

detailed descriptions please refer to Papers I-II. 

 

3.1 Cell culturing 

 Seeding, harvesting and expanding MSCs 3.1.1

Cells used for experimentation in all works done for this Ph.D. were BM-MSCs that were 

purchased from Lonza (Walkersville, MD, USA).  

Prior to being subjected to differentiation conditions cell were seeded (500.000 

cells/175cm3 culture vessel) and expanded (from cryo-storage in liquid nitrogen) for one 

passage to allow stabilisation from the shock cells are believed to experience during the initial 

seeding from cryo-storage. Media composition used for general BM-MSC expansion is 

described in Paper I. 

Upon reaching desired confluency cells were harvested using trypsin and counted via 

trypan blue staining and haemocytometer (Assistant, Munich, Germany).  

 

Harvested cells were then used for differentiation and quality control assays. 

 Osteogenic Differentiation 3.1.2

Cells (n = 4) used to gather extracellular metabolomic data were cultured in 25cm2 culture 

vessels (5000cells/cm2) using 5ml of osteogenic inducing medium (detailed media 

composition can be found in Paper I as per previously S.O.P established protocols [input 

reference].  

Sampling was performed approximately every 24-36 hours for 28 days, with media 

change every 48 hours. Samples were stored at -80 C until prepared for mass spectrometry 

analysis. This data was both used in Paper I and in Paper II. 

Blank (unused) medium was also collected from the original batch (0.5 ml) for use as a 

control when looking at metabolite change between time points. 
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 Adipogenic Differentiation 3.1.3

Cells (n = 4) used to gather extracellular metabolomic data were cultured in 25cm2 culture 

vessels (10.000cells/cm2) using 5ml of adipogenic inducing medium (medium composition is 

described in Paper II) as per previously established S.O.P established protocols. 

Sampling was performed approximately every 24-36 hours for 14 days with media 

change every 48 hours. Samples were stored at -80 C until prepared for mass spectrometry 

analysis. This data was used in Paper II. 

Blank (unused) medium was also collected from the original batch (0.5 ml) for use as 

a control when looking at metabolite change between time points (to be used in later work). 

 Osteogenic differentiation for labelled extracellular metabolomic and 3.1.4

intracellular metabolomics sampling 

Cells (n = 3) used to gather labelled extracellular metabolomic data were cultured in 6 well 

plate culture vessels (15.600 cells/cm2). Extracellular labelled metabolite samples were 

collected from the same wells as the cells intended for labelled intracellular metabolite sample 

collection were cultured. This was done in order for the data to be completely comparable. 

Five separate wells were used for cells from each donor to match the desired day of 

culture (extrapolated from data presented in Paper I). Upon seeding cells were immediately 

placed in regular osteogenic inducing media (for detailed composition refer to Paper I), with 

media change (1.5 ml) occurring every 48 hours. Approximately 48 hours before sample 

harvesting regular osteogenic inducing media was switched out for labelled osteogenic 

inducing media. Three different types of labelled osteoinducing media were used (glucose13 

labelled, glutamine13 labelled and glutamine15N2 labelled). All in all, 15 wells were used for 

cells from each donor (5 for each type of media).  Upon the day of harvesting (approximately 

48 hours after labelled media was added to the cells) a media sample was collected (0.5ml -1 

ml) before the used media was discarded in order to collect the intracellular sample.  

 

Blank (unused) medium was also collected from each of the original batches (0.5 ml in 

each case) for use as a control when looking at metabolite change between time points. 

 Osteogenic differentiation for unlabelled intracellular metabolomics 3.1.5

sampling and BCA protein assay 

Cells (n = 3) used to gather unlabelled intracellular metabolomic data were cultured in 6 well 

plate culture vessels (15.600 cells/cm2).  Five separate wells were used for cells from each 

donor to match the desired day of culture (extrapolated from data presented in Paper I). Upon 

seeding cells were immediately placed in regular osteogenic inducing media (for detailed 

composition refer to Paper I), with media change (1.5 ml) occurring every 48 hours until 

sample collection was performed. 

  

Blank (unused) medium was also collected from each of the original batches (0.5 ml in 

each case) for use as a control when looking at metabolite change between time points. 
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 Osteogenic differentiation for RNA-sequence sampling 3.1.6

Cells (n = 3) used to gather RNA sequencing metabolomic data were cultured in 6 well plate 

culture vessels. The initial seeding density was 15.600 cells/cm2, but that yielded too low 

total RNA quantity, so experiment was repeated with seeding density of 26.041 cells/cm2. 

Five separate wells were used for cells from each donor to match the desired day of culture 

(time points extrapolated from data and methods presented in Paper I).  

Upon seeding cells were immediately placed in osteogenic inducing medium (2 ml 

because of cell number, for detailed composition of media refer to Paper I), with media 

change every 48 hours.  

 Quality Control Assays for Osteo- and Adipogenesis 3.1.7

In order to confirm that the cells in use were BM-MSCs capable of the desired differentiation 

quality control assays were performed.  

In the case of osteogenic differentiation Alizarin Red staining and quantification was 

performed on days 0, 14 and 28 (measures deposition of minerals), along with Alkaline 

phosphatase assay on days 0, 7, 14 and 28 (increased activity of alkaline phosphatase is 

suggestive of active osteoblast formation in MSC cultures) and RT-qPCR to gain the gene 

expression levels of known osteogenic markers (like RUNX2 and COL1A2) on days 0 and 

28. 

For detailed description of the methods along with kits and primers used refer to Paper I.  

In the case of adipogenic differentiation Oil Red O staining was used to assess and 

demonstrate the accumulation of lipid droplets within the cells and the gene expression of 

PPARG, a key gene in adipogenesis, was evaluated using RT-qPCR. More detailed 

description of methods can be found in Paper II. 

 

3.1.7.1 Reflection – How could cell culture experiment planning be changed to enhance 

precision and usefulness of downstream work? 

There are three points above others that come to mind when reflecting upon what was done 

and knowing more about the applied subjects that the author would now do differently. As 

they reflect things learned during the projects progress it feels appropriate to list them here.  

 

They are the following: 

 

During the cell culture used to gather exometabolomic data every 24 hours for the total of 

28 days I would have taken an additional blank sample of the media each time it was changed. 

This would have accounted for any kind of metabolite degradation possible in the newly 

supplied media and thus would have provided less possibilities for drawing inaccurate 

conclusions from metabolite changes over time.  

During that same cell culture, I would also have had a parallel cell culture of the same 

cells where I would have harvested those cells each time a used media sample was taken to 

perform a BCA protein assay (or another similar assay that can be used to assess cell number) 
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on the additional harvested cells. This would have provided a solid overview of the cell 

number progression during the time of osteogenic differentiation, but this is harder to assess 

for cells in differentiation compared to proliferating cells. This is mainly due to the changing 

nature of the cells, both in function and morphology – counting them becomes difficult. This 

would have provided a solid way to normalise the extracellular metabolomic data as well as 

possible to cell number which is a frequently requested addition for any statistical analysis. 

This would also have made all of the flux rate calculations in the GEMs more precise and so 

provided an even more stable base to build the models upon.  

I would have logged the exchange-time to the second in the cases where I changed media 

during all of my cell cultures. This would have provided a more exact time frame to work 

with regarding rates of uptake and secretion of metabolites essential in model evaluation and 

so would have provided possibly more precise model prediction and function. 

3.2 Metabolomic measurements 

  Non-MS Metabolite measurement - Paper I 3.2.1

Extracellular glucose and lactate were measured using ABL blood gas analysis (ABL90 Flex 

analyser, Radiometer Medical ApS, Denmark) with unused medium (blank medium) samples 

serving as control.  

The extracellular glutamine, glutamate and ammonia were assayed in spent medium 

samples, collected every 24 to 36 hours as described in previous section, using colorimetric 

assays (Megazyme, Wicklow, Ireland). L-glutamine and ammonia were measured using a 

single assay (Megazyme), as per the manufacturer’s instructions, via determining the decrease 

in absorbance of the reaction mixture at 340 nm using a Spectromax M3 plate reader 

(Molecular Devices, San Jose, CA). L-glutamic acid was measured with a separate assay 

(Megazyme), as per the manufacturer’s instructions, via absorbance measurements at 492 nm. 

Unused medium samples (blank medium) served as the controls for these assays.      

 These methods of metabolite measurements were used for Paper I instead of the more 

accurate mass spectrometry (as is the case for remaining metabolomic data) as the data was 

needed for further experimental planning and access to mass spectrometry was not possible at 

the time due to equipment malfunction. 

3.2.1.1 Data normalisation and processing - Paper I 

Non-MS extracellular metabolite data processing and normalization was performed in R 

[247]. One day was found to be missing more than 50% of data points and removed from 

further analysis. Other data points below limit of detection or for other reasons were replaced 

with the minimum metabolite value measured. For each metabolite measured a generalized 

linear model was fitted using the gamm4 package in R [248, p. 4], this modelled the change in 

metabolite concentration by day of differentiation protocol accounting for donor variation and 

analysis batch effects as random variables. Other possible models were considered also 

accounting for the media dwell time, and PIPL batch nested in donor and passage number 

nested in donor as random effects, however the Akaike Information Criteria of these models 

(see Table A2 in Appendix A) were higher indicating poorer models, either less good fit or 
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more over fitting. One exception to this was adding the effect of media well time to the lactate 

model. However, this was only slightly better and given the desire for consistency across 

metabolites and the use of rate of change for other analyses, which incorporates this factor, it 

was decided not to use this model. Change point detection was performed using the ECP 

package for R to perform change point detection in multivariate data using the e divisive 

method with a required significance level of 0.05 [249]. This analysis was performed on the 

modelled values for each day after they had been converted to the hourly rate of change (i.e. 

the secretion or uptake rate) for each day.  

The hourly rates of uptake and secretion were calculated by taking the difference of 

the absolute metabolite concentration levels between adjacent days and dividing by the 

appropriate number of hours that passed between media change and sample collection.      

 Extracellular Metabolite Extraction – Paper I and II  3.2.2

In order to extract extracellular metabolites from collected media samples the supernatants 

(previously stored at -80 C) were thawed and subsequently 200 µL of each sample was placed 

into a properly labelled Eppendorf tube (1.5 ml) along with 30 µL of previously mixed 

isotopically labelled internal standards (IS, see table 1 in the appendix for IS composition).  

The IS, which in this case is a mixture of known concentrations of compounds that are 

chemically similar to the ones being analysed but ones that are not expected to be naturally 

present in the samples (therefore isotope labelled compounds are most often used), has to be 

added as early as possible in the process to the samples. 

 The main purpose of IS is to improve the accuracy and precision of quantitation and 

robustness of the analysis. 

After, 500 µL of ice-cold methanol (MeOH) was added and the resulting solution 

vortexed for one minute. Samples were then centrifuged at 20817g and 4°C for 15 minutes. 

 Resulting supernatants were transferred to a new Eppendorf tube (1.5 ml) whilst 

precipitate was discarded. The supernatant samples were then evaporated by using a vacuum 

concentrator (MiVac) before adding 300 µL of a mixture containing dH2O and acetonitrile 

(ACN) in equal parts to reconstitute the dried residue left in the Eppendorf tubes 

In 2 separate sets of twelve Eppendorf tubes, 200 µL of varying dilutions of 

previously prepared CC mix (see table 2 in the appendix for CC mix detailed composition and 

dilution ratios) were transferred. The CC mix, also known as a mixture of metabolite 

standards, is a dilution series that can be used for absolute quantification of metabolite 

concentration by generating an external calibration curve by least-squares linear regression. 

This curve is then used to estimate the absolute concentrations of the corresponding 

metabolites in the measured experiment samples.  

The CC samples were put through the same evaporation and reconstitution procedure 

as the samples.  

 The reconstitutes samples as well as the two CC mixes were then filtered through a 

Pierce protein 96-well precipitation plate that had previously been prepared by wetting the 

filter (to facilitate correct filtration). The filtration was done via centrifugation for 30 minutes 

at 4 C and 2000rpm. 
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 The filtered precipitation was then transferred to a labelled set of glass mass 

spectrometry vials with glass inserts in order to be put through the mass spectrometer.  

 Intracellular labelled and unlabelled Metabolite Extraction – Paper I 3.2.3

Upon sample collection all media left after necessary extracellular metabolite sample 

collection was discarded. After, cells were washed 3 times using 1 ml of PBS (input ref if 

needed). PBS was discarded using a pipette after each wash.  

Next, 1 ml of 80% methanol solution (stored until needed at -20 C in order to keep it 

at the necessary cold temperature) was pipetted straight onto the cells and a cell scraper 

subsequently used to dislodge and scrape cells from the bottom of the culture vessel. The 

resulting methanol-cell suspension was placed in an Eppendorf tube and stored at -80 C until 

needed for metabolite extraction/preparation for mass spectrometry.  

To extract intracellular metabolites collected samples (a cell suspension in 80% 

methanol solution, previously stored at -80 C) were thawed and 30 µL of previously mixed 

isotopically labelled internal standards (IS, see table 1 in Appendix for IS composition) 

subsequently added. The samples were then placed on a floating rack and into a sonicating 

water bath for 20 second sonication before being put on ice for up to 2 minutes. This was 

done for a total of 3 times. Icing was needed in order to hinder the samples from heating up. 

Subsequently 800 µL of ice cold methanol:dH2O (7:3 v/v) solution was added to each sample 

and samples vortexed for approximately 30 seconds. 

The samples were then centrifuged at 20817g for 15 minutes at 4 C. 

 

The resulting supernatant was then transferred into properly labelled Eppendorf tubes (2 ml) 

whilst the precipitate was again reconstituted with 900 µL of previously described methanol 

solution before being vortexed and centrifuged for the second time. Resulting supernatant was 

combined with the previous one and precipitates retained at – 80 C for later protein assay.   

Similar to the extraction of extracellular metabolites, 200 µL of CC mix serial dilution 

were transferred to properly labelled Eppendorf tubes (1.5 mL). 

All samples (CCmix serial dilutions and intracellular samples) were then transferred to 

a vacuum concentrator (MinVac) for evaporation before being reconstituted in 300 µL 

solution containing dH2O and ACN in equal parts. 

The reconstitutes samples as well as the two CC mixes were then filtered through a Pierce 

protein 96-well precipitation plate that had previously been prepared by wetting the filter (to 

facilitate correct filtration). The filtration was done via centrifugation for 30 minutes at 4 C 

and 2000rpm. 

 The filtered precipitate was then transferred to a labelled set of glass mass 

spectrometry vials with glass inserts in order to be put through the mass spectrometer.  

3.3 UPLC-MS -Paper I and II 

All metabolite measurements based on mass spectrometry were performed using a gradient 

elution UPLC (ACQUITY) system (UPLC ACQUITY, Waters Corporation, Milford, MA) 

coupled with an ionization qTOF mass spectrometer (Synapt G2 HDMS, Waters Corporation, 

Manchester, U.K.) with an electrospray interface (ESI).  
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Gradient chromatographic separation was achieved by HILIC through an Aquity BEH 

amide column (2.1 mm x 150 mm, 1.7 µm particle size, Waters Corporation) at 45
◦
 C. 

Two different chromatographic conditions were used in combination with HILIC 

column, an acidic mobile phase (phase A) and a basic mobile phase (phase B).  In both cases 

the injection volume was 7.5 µL, the flow rate was 0.4 mL/min and the run time was 14 

minutes. Mobile phase A conditions consisted of ACN with 0.1 % of formic acid and mobile 

phase B conditions consisted of dH2O with 1%  formic acid.  

The following gradient patterns (solvent B) was used in both cases: 0 minutes 1% B, 

0.1 minutes 1% B, 6 minutes 60% B, 8 minutes 40% B, 8.5 minutes 1% B, 14 minutes 1% B. 

Both positive and negative ESI modes were acquired. The capillary voltage and the 

cone voltage were 1.5 kV, the temperatures were 120 C and 500 C respectively and 

desolvation gas flow was 800 L/h. 

3.4 RNA-sequence measurement, data processing and normalisation – 

Paper I 

When collecting, isolating and extracting the RNA samples RNAzol [250], [251] was used in 

all instances and the accompanying protocol for total RNA solation/extraction used. 

Upon collection used media was discarded and without washing 1 mL of RNAzol was 

pipetted into each culture well and the same pipette tip used to scrape and pipette in order to 

ensure lysis took place.  

 Samples were all stored at – 80 C until every time point had been collected. 

Upon completion of the experiment all samples were thawed at room temperature for 5 

minutes with regular mixing, after which 0.4 mL of dH2O was added to each sample. 

The resulting solution was then shaken or vortexed for 15 seconds before being incubated for 

15 minutes at room temperature, after which the samples were centrifuged for 15 minutes at 

12.000g. Specific temperature was not dictated. 

From the resulting supernatant 1 mL was collected and put into a new Eppendorf tube 

(2 mL) into which 1 mL of isopropanol was mixed. The resulting solution was then incubated 

at room temperature for 10 minutes before being centrifuged at 12.000g for 10 minutes. This 

causes the RNA to form a pellet, which is not really visible to the naked eye. Therefore, care 

had to be taken with the placement of the Eppendorf tubes in order to know on which side of 

the tube the small pellet would form. This was done in order to prevent the pellet to be 

accidentally pipetted loose and subsequently discarded in the next washing steps.  

 The washing step of the RNA isolation involved using 75% ethanol solution. Around 

0.4 mL of the ethanol solution was pipetted into the Eppendorf tube (directly onto the side 

opposite the intended RNA pellet) and the subsequent centrifuging for 2 minutes at 8000g. 

Here the same care of tube placement in the centrifuge had to be taken in order to preserve the 

pellet. The wash solution was discarded between washes via careful pipetting. 

The resulting RNA pellet was then submerged in 50 µL of RNAse free water, the RNA 

concentration measured using a nanodrop machine and a sample with the concentration of 

20ng/µL created in order to be run through RNA sequencing.  

 All RNA transcripts were sequenced using Illumina equipment (located at DeCOde 

genetics) and resulting fastaq files quantified using Kallisto version 0.46.1 [252] using default 
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parameters and the Ensembl Homo sapiens GRCh38 reference transcriptome. The R program 

„Sleuth“[253] was used for all statistical calculations from values in Kallisto output files.  

3.5 LC-MS Data Processing and Normalisation 

 Extracellular targeted data processing using TargetLynx – Paper II 3.5.1

The extracellular metabolomics analysis was run as a targeted analysis and based on an in-

house library generated by the author of this thesis. The library was used to identify a certain 

group of expected metabolites based on both their m/z ration of ion adducts to fragments and 

their chromatographic retention times. The software used for the purpose of integrating the 

chromatographic peak area of identified metabolites was TargetLynx (v4.1, Waters).  

Normalisation of said peak area is then performed by dividing it with the peak area of a 

isotopically labelled internal standard (one that is closest to the same retention time as the 

metabolite in question).  

In order to generate an absolute quantification, the previously mentioned dilution 

series of mixture of metabolite standards (also referred to as the CCmix) was used to obtain 

an external calibration curve by least-square standard linear regression which subsequently 

was used to estimate absolute concentrations of corresponding metabolites in all analytical 

samples. 

This method was used for the expansion, osteogenic and adipogenic extracellular data 

used to generate and compare the models in paper II. 

 Intracellular untargeted data processing using XCMS -Paper I 3.5.2

The intracellular metabolomic data was all run as an untargeted analysis using the R package 

XCMS [188].  

The first step of the process was conversion of the raw LC-MS data files but in order 

to be able to work with the data outside of MassLynx and TargetLynx it has to be converted 

to a MZdata format using MassWolf and a function called „water.convert.R“. That option is 

preferable to other like DataBridge and MSconvert since it supports MS
n 

data (unlike 

DataBridge) and adds lockmass calibrations to analyte measurements in the output files 

(unlike MZdata). XCMS can then correct such gaps by filling them using the nearest available 

analyte scan. 

After the raw data conversion had been completed the centWave algorithm was used 

in order to detect chromatographic peaks, also known as ion features, automatically. In broad 

strokes, the centWave algorithm sequentially goes over each chromatographic scan and 

records all m/z peaks into vectors or variables called regions of interest (ROI). It starts with 

the first scan and as it moves along it refers to the one before it to see if the previously 

recorded ROI that is being looked at in the new file contains the same peaks (a certain ppm 

range of the m/z values of the peaks is used as a reference. If the function confirms that the 

peaks are found in both files it calculates the mean m/z value between the files. This is done 

for each ROI. If the ppm is outside of the desired/allowed ppm range the ROI is discarded.  

If ROI are not found in a predetermined number of consecutive scans with a certain 

minimum predetermined intensity they are discarded. This is done through a filter function in 
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the centWave algorithm and for the purpose of this thesis it was decided that if 3 consecutive 

ROI did not contain a peak with intensity level of at least 100 it was discarded. 

Within the centWave algorithm ones all ROIs have been found a continuous wavelet 

transformation (CWT) was used to detect chromatographic peaks with variable peak widths. 

Here a minimum and maximum peak width.  

The obiwarp method was used to align retention times between samples and peak 

density method to group corresponding chromatographic peaks.  

The R package CAMERA [254] was then used in order to decrease the complexity of 

the generated data set. It groups ion features such as adducts and fragments that can 

potentially stem from the same compound. 

During the peak identification and peak picking process the data was processed in 

such a manner as to normalize with reference to donor variation. 

The resulting data was then normalized using NOMIS (NormQC, a function found in 

R) method, then by protein content (BCA protein piercing assay - to account for cell number) 

and finally log-transformed. This data was used for the PCA, PLSDA, one way ANOVA and 

Tukey’s Post-HOC analysis, all used in Paper I. 

3.5.2.1 Mummichog pathway and network analysis 

To search for enrichment patterns in metabolic networks and identify possible characteristic 

metabolites that were enriched for each stage we applied the Mummichog online software 

[255] in conjunction with the online database HMDB [256]. It bypasses the need for 

metabolite identification by using the organisation of metabolic networks in order to predict 

activity directly from supplied mass spectrometry data tables. The analysis was run as 

described in the protocol that follows the online software. 

3.5.2.2 Targeted MS-MS analysis to confirm Mummichog metabolite prediction 

The instrumentation used was an ACQUITY UPLC system (UPLC ACQUITY, Waters 

Corporation, Milford, MA) coupled to a qTOF mass spectrometer (Synapt G2 HDMS, Waters 

Corporation, Manchester, U.K.) with an electrospray interface (ESI). The gradient 

chromatographic separation was performed on an ACQUITY BEH Amide (2.1 mm × 150 

mm, 1.7 µm particle size, Waters Corporation) at 45◦C. Mobile phase A was Acetonitrile and 

mobile phase B H2O both with 0.1% of formic acid. Injection volume was 7.5 µL, flow rate 

was 0.4 mL/min and run time was 14 min. The following gradient pattern (solvent B) was 

used: 0 min, 1% B; 0.1 min, 1% B; 6 min, 60%B; 8 min, 40% B; 8.5 min, 1%B; 14 min, 1% 

B. Chromatograms were acquired on scan mode for  both positive (+) and negative (-) 

ionization. The capillary and cone voltage were 1.5 kV and 30 V, respectively. The source 

and desolvation temperature were 120 and 500 °C, respectively, and the desolvation gas flow 

was 800 L/h. 

 BCA Protein Assay 3.5.3

In order to evaluate cell quantity at each time point defined by change point analysis, that 

could then be used to normalize data with regards to cell count, a bicinchoninic acid (BCA) 
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protein assay was performed on the precipitates collected during the intracellular metabolite 

extractions (see section 3.2.3 – and Paper I). 

In order to extract and dissolve protein content a dissolving buffer was created. It 

constituted bufferA (RIPA buffer):bufferB (200mM NaOH, 1% SDS) in 1:1 v/v. 100 µL of 

the dissolving buffer was added to the Eppendorf tubes containing the protein pellets and 

volume adjusted based on estimated protein amount. Afterwards the tubes were vortexed and 

put through a freeze/thaw cycle to try and aid with pellet breakdown. Next, the pellets were 

sonicated for 1 hour at 60◦C before being vortexed again to try and dissolve as much protein 

as possible. Of the resulting suspension 5 µL of each sample were used for the assay. 

In performance of the assay itself (Pierce
TM 

BCA Protein Assay) the accompanying kit 

protocol from Thermo Scientific
TM 

 was followed [257].  

3.6 Statistical Analysis 

All statistical analysis and related data work was performed in R. 

 LC-MS data 3.6.1

With regards to the intracellular metabolomics data the normalisation process was split up 

into several sections. During the peak identification and peak picking process the data was 

processed in such a manner as to normalize with reference to donor variation. 

The resulting data was then normalized using NOMIS (NormQC, a function found in 

R) method, then by protein content (BCA protein piercing assay - to account for cell number) 

and finally log-transformed in order to bring all metabolites within a scale that would enable 

comparisons and resulting statistical analysis (e.g. ANOVA, PCA, PLSDA and heatmaps). 

This data was primarily used in Paper I and all statistical analysis can be seen there.   

With regards to the extracellular targeted metabolomics data (both for OD and AD) 

used in Paper II no statistical analysis was performed on the data after it had been normalised 

as described in section 3.5.1 as it was only needed to constrain the genome scale metabolic 

models reconstructed and described in that paper. There are plans however to use the data to 

do statistical comparisons on differences between the two cell states, adipogenesis and 

osteogenesis. 

 RNA sequence data 3.6.2

For detailed description of gene expression quantification and analysis methods please see 

method section 2.9 in paper I. 

3.7 Genome Scale Metabolic Modelling 

For a more detailed version of methods used to generate the osteogenic and adipogenic GEMs 

presented in this thesis please refer to Paper II. Only a brief overview will be presented here. 

 The models presented in Paper II were built on previously available transcriptomic 

data sets gathered from ArrayExpress [258]. Data sets were selected based on their relevance 

to the experimental conditions described below for collection of uptake and secretion data.  
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The transcriptomic data generated by the author was used for other work in this thesis with an 

additional intended used discussed in section 5.3. 

Selected transcriptomic data sets were processed using MATLAB (Mathworks, 

Natick, Massachusetts, USA) and those along with metabolomic data set generated both 

through UPLC-MS Analysis and ABL blood gas analysis were used in the construction of the 

models 

The model construction itself was performed using the Constraint-based reconstruction and 

analysis (COBRA) Toolbox version 3[259] in MATLAB 2017b (Mathwork, Natick, MA, 

USA). The model chosen as a base reconstruction of the global human metabolic network was 

a thermodynamically feasible version of the Recon3 model [201], which was curated as 

necessary in order to resemble more a MSC cell specific model. Details of curation steps can 

be found in Paper II.  

The resulting curated model was then constrained with known medium compositions 

(which are different for the different culture conditions), the list if additional metabolites 

detected by MS in the basic/non differentiating medium and data on cell weight and growth. 

This was done 3 times, a separate process for each cell state condition (proliferation, 

osteogenesis and adipogenesis). 

The three media constrained models were then made more specific by transcriptomic 

data constraints where certain core reactions specific to each state (found thorough literature 

research) were kept at a maximum expression. This was done via the GIMME [260] 

algorithm in the COBRA Toolbox[259]. 

The transcriptomically constrained models then had uptake and secretion constraint 

added based on the mass spectrometry data with minimal relaxation of those added 

constraints to allow for feasible models.  

Those versions of the models were then further pruned in order to give fully functional 

condition specific models which were subsequently checked for the inclusion of the core 

reactions and biological feasibility.  

Both base models and the final models were tested using the memote Cobrapy 

package [261] in Python after being exported from MATLAB in systems biology mark-up 

language (SBML) format.  

A previously existing MSC model (iMSC1255) modelling proliferating MSCs was used 

for comparison.  

3.8 Model Comparison 

Comparison between the newly reconstructed models was all performed using the COBRA 

Toolbox in MATLAB.  

Genes and reactions necessary to ensure flux through the biomass reactions were 

determined for each model and random sampling, flux balance analysis (FBA)[203] and flux 

variability analysis (FVA)[262] used with the biomass function as the objective to determine 

the different ranges, probability of distribution and optimal fluxes through all model reactions 

in each model.   

Possible reactions needed for optimisation of osteogenesis were explored and flux 

enrichment analysis used to explore what subsystems and gene rule had to be enriched or 

changed in order to get a model from proliferation or adipogenic state to an osteogenic one. A 

more detailed method description and the accompanying results can be found in Paper II.  
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4 Results and Discussion 
‘‘What you learn from a life in science  

is the vastness of our ignorance. “ 

 

David Eagleman,  

 American Neuroscientist (B. April 25, 1971). 

 

4.1 Paper I: Using measurements of key metabolites to define metabolic 

stages during osteogenic differentiation of mesenchymal stromal cells  

The aim of this work was dual. Firstly, to explore through the use of key extracellular 

metabolite measurements, the possibility of there existing different metabolic phenotypes for 

BM-MSCs during their course of 28-day osteogenic differentiation. Secondly, to build upon 

the gathered results with more expansive and elaborate intracellular mass spectrometry and 

RNA sequence data to further explore the metabolic shifts behind the proposed stages and 

gain insights into what metabolically linked transcription factors might be the ones 

contributing the most to the observed metabolic differences. 

In the author`s previous experiments (unpublished), using results from extracellular 

glucose and lactate measurements from BM-MSCs cultured under similar conditions 

glucose/lactate consumption rate was different in magnitude between the first and latter half 

of the differentiation period. A similar behaviour was observed in another study done by a 

different member of the group using the same cell type but during adipogenic differentiation 

[269].  

This along with literature research regarding an observed metabolic switch during MSCs 

transition from proliferation into differentiation, where cells move from being almost solely 

reliant upon glycolysis for energy production into a more mixed ATP production via initiation 

of mitochondrial activity, sparked the hypothesis of there existing more than one metabolic 

phenotype for BM-MSCs during osteogenic differentiation. Some research has explored 

things along similar lines [29], [31], [141] but to the groups best knowledge none that had 

systematically tried to establish and define such phenotypes nor explore where in the 

metabolic pathways the differences might lie.  

In this work the group first used previously defined biomarkers to verify osteogenic 

differentiation. Next, we used key metabolite markers to track differentiation and define 

metabolic stages of osteogenic differentiation. Then untargeted and targeted metabolomic 

analysis was used to globally characterize these metabolic shifts. Finally, we reconstructed a 

gene regulatory network to explore the underlying mechanisms of the observed metabolic 

shifts.  

To estimate changes in central carbon metabolism the group quantified extracellular 

glucose, lactate, glutamine, glutamate and ammonia concentrations in spent medium from 

MSCs undergoing osteogenic differentiation. Minor significant differences in concentration 

levels were observed, with lactate being the only metabolite that differed significantly from 
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that of measured blank or unused medium. Through the use of generalised linear modelling it 

was possible to observe minor trends in the other four metabolites. Similar things were found 

to be true when analysing the extracellular unlabeled data measured via UPLC-MS analysis. 

Donor variability, equipment measuring capacity and media evaporation over time most likely 

contributed to the small differences. 

By performing multivariate change point analysis using the model normalised metabolite 

values (converted to hourly rate of change) the group was able to use the utilisation and 

production of the previously mentioned essential metabolites to hypothesise stages of 

osteogenic differentiation. Two statistically significant change points within the 

differentiation period, in addition to the beginning and the end were identified, suggesting a 

total of three possible metabolic phases of differentiation. Phase 1 occurred over Days 1 to 4, 

Phase 2 was between Days 5 and 15, and Phase 3 was from Day 16 to the end of the study 

period at Day 28. This analysis along with calculations of glucose/lactate, 

glutamine/glutamate and glutamine/ammonia ratios suggest different metabolic phases over 

the 28 days of osteogenic differentiation that are defined by changes to glycolysis and 

glutaminolysis (see Figure 3). 

 

Figure 3: Phases of osteogenic differentiation. A) Change point analysis for glucose, lactate, glutamine, 

ammonia, and glutamate in spent medium from osteogenically differentiation MSCs between Days 1 and 28. 

Vertical lines indicate four possible change points separating the stages of differentiation. Points (various 

shapes) represent the model normalized rate of change on a given day (mmol/l/hr). Black lines represent the 

change points detected at less than p = 0.05. Grey line represents 0. Hourly rate of change of concentration of 

model normalized values (mmol/l/hr) per phase of osteogenic differentiation, mean and SEM of B) glucose, 

C) lactate D) glutamine, E) ammonia, and F) glutamate. Red = phase 1, blue = phase 2, yellow = phase 3. 

To further expand upon this we used the results from untargeted intracellular metabolomic 

analysis (encompassing 1682 mz values in total gathered from samples from BM-MSCs in 

osteogenic differentiation at 5 different time points, chosen based on the above mentioned 

change point analysis) and visualised them via PLSDA (see figure 4). Separation with time 
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was captured by principle component 1. With respect to the three proposed metabolic phases 

from the changepoint analysis, grouping was observed between day 9 (phase 2) and day 28 

(late phase 3). Day 9 (phase 2) however overlapped with day 16 (start of phase 3). A clear 

separation between day 3 and 6 (phase 1) with respect to day 28 was also seen. A slight 

overlap between day 6 and day 16 was also observed. In general the results support discrete 

metabolic phases during osteogenic differentiation. 

 

Figure 4: PLSDA visualization of m/z values with significantly different ion intensities during 

osteogenic differentiation. Ellipses indicate 95% confidence intervals. An overlap in confidence intervals is 

present for day 6, day 9 and day 16– however when observing day 3, day 9 and day 28 (timepoints firmly 

within the suggested phases) the overlap is less prominent.  Data were normalized to protein abundance and 

scaled prior to analysis. 

While offering good temporal resolution, our extracellular data lacked sensitivity. In order 

to support that altered metabolic phenotypes during osteogenic differentiation are defined by 

changes to glycolysis we fed cells with uniformly labelled 
13

C glucose and, to investigate if 

changes could be associated with altered glutaminolysis, 
13

C or 
15

N glutamine. Looking at 
13

C 

glucose label incorporation along with isotopolouge distribution in uridine diphosphate 

glucose (UDP-glucose) and UDP-N-Acetyl glucosamine we found indications of increased 

glycolytic flux coupled with decreased flux through the pentose phosphate pathway. This 

supports the notion of anaerobic switch following day 9 of osteogenic differentiation. 

Combining that with 
13

C glucose label enrichment patterns in aspartate and glutamate (that 

can only be derived from glucose via oxaloacetate and alpha ketoglutarate and thus give 

indications of flux through the TCA cycle) the results are indicative of changes in glycolytic 

flux compared to PPP flux, with PPP decreasing over time whilst glycolytic flux increases as 

well as increased TCA cycle activity as osteogenesis increases. All support previous findings 

suggesting that cellular expansion decreases and eventually stops within the first two weeks 

of osteogenesis (reference), with an increase in mitochondrial functions as the energy demand 

of the differentiating cell seemingly increases.  
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An unexpected additional result, gathered from associating m/z values with metabolic 

pathways and specific metabolites through the use of the mummichog algorithm (input ref), 

revealed changes indicative of altered lipid metabolism in the cells and changes to their redox 

potential. 

 The changes related to the cellular redox potential via glutathione synthesis are consistent 

with changes to mitochondrial respiration during differentiation but the altered lipid 

metabolism was not an avenue we had anticipated and provides an intriguing future avenue to 

explore. For more detailed results please see Paper I of this thesis. 

In conclusion, the changes observed in this study support distinct differences between early- 

and late-stage osteogenesis: there is an initial preparatory and proliferation stage, coinciding 

with high ALP activity, while later there is a plateau stage with lower ALP activity and 

possibly higher calcium accumulation. Our metabolomic analysis further supports these two 

stages, and preliminary results using general differential gene expression analysis indicate the 

possibility of three stages with a transcriptional state flip occurring between initial and last 

steps. Future functional work will be needed to fully define the relationships between 

transcriptomic, metabolic and functional changes. The current experiments also showed a 

high degree of inter-donor variability, with respect to both metabolism and osteogenic 

outcome. Further work to understand these differences will hopefully lead to the identification 

of metabolic biomarkers for successful osteogenesis, and possibly to interventions for 

increasing the success rate. Furthermore, it will be interesting to explore the observed 

metabolic changes in the area of lipidomics and related mitochondrial activity in a continuous 

manner around suggested time points of interest through such technology as Seahorse [263] 

technique and explore if by impacting the mitochondria in a positive manner can lead to a 

faster progression of osteogenesis. Such experiments would improve our understanding of 

how metabolism impacts the ability of cells to differentiate. 

4.2 Paper II: Analysing metabolic states of adipogenic and osteogenic 

differentiation in human mesenchymal stem cells via genome scale 

metabolic model reconstruction 

The aim of this work was to create 3 directly comparable genome scale metabolic models for 

BM-MSCs in 3 different cell states/lineages – proliferation, and early stage osteogenic and 

adipogenic differentiation – that were biologically feasible and to use the models to explore 

metabolic functions and main differences between these phenotypes.  

Despite genome scale metabolic modelling (GEM) becoming more popular over the years 

as a tool in translational and regenerative medicine, only one other GEM modelling MSC 

functions has been reconstructed [64] and that was for cells solely undergoing proliferation.  

As much interest in the research community lies within the differentiating MSC lineages 

and the current knowledge regarding metabolic function and differences is lacking, the group 

decided to bring forth something not seen before in order to try and start bridging the existing 

gap. By creating this set of equivalent but separate models, it is possible to create an in silico 

laboratory that helps to design experiments for the cell culture laboratory that have higher 

probability of success. 
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Using public transcriptomic data from ArrayExpress [258] (chosen based on relevance to 

experimental conditions present for collection of uptake and secretion data) along with new 

extracellular targeted metabolomic data (generated specifically for this work) and 

experimental data (such as media composition, specifically present in experiments done for 

this work) the 3 new metabolic networks were reconstructed via the COBRA Toolbox 

v3.0[259] with Recon3 [201] (a thermodynamically stable version of the global human 

network Recon3D) as the base model. This base was then manually refined before any cell 

specific reconstruction took place in order to have it more closely represent MSC metabolism. 

This included removal of extracellular bile acid metabolism, and drug metabolism as those are 

not of interest at this current point in time, and then the addition of a greater range of glycan 

and lipid metabolic sections back into the model along with appropriate links to make sure the 

results were still thermodynamically feasible. 

The iterated base model was then constrained (separately for each cell state) using known 

medium composition, list of additional metabolites detected by mass spectrometry and data 

on cell weight and growth – producing three media constrained reconstructions that were then 

further constrained via transcriptomic data and with certain core reactions (defined through 

literature research as being characteristic for each cell state) increased to maximal expression. 

At each time point it was ensured that the models remained both mathematically and 

biologically feasible, with all core reactions included (those not present in the base model 

from the start were manually added and linked with necessary reaction to connect them into 

the model). Next constraining involved application of uptake and secretion rates based on 

mass spectrometry data and the resulting models were then pruned to give fully functional 

condition specific models that were validated against the original Recon3D model using 

Memote [261], [264].  

During model comparisons (both new models against each other and them against the pre-

existing iMSC1255) it was shown that these models could recapitulate known metabolic 

differences among the three cell subtypes but they both expand coverage of metabolic 

pathways when compared to iMSC1255 and accurately represent core metabolic fluxes. ATP 

molecule production for both glucose and glutamine was very close to the correct number (32 

for aerobic glucose, 23 for aerobic glutamine and 2 for anaerobic conditions) and production 

from other important carbon sources was also generally close to theoretical values (see Figure 

5). 

By and large, mitochondrial function seemed to be a separating factor between 

proliferating and differentiating MSCs and flux rates of the PPP pathway seemed to 

distinguish between adipogenesis and osteogenesis (see Figure 6), but other reactions were 

looked at as well to determine differences and validate behaviour. 

Through enrichment analysis on grouped reactions (by metabolic subsystems) an 

overview over differentially enriched metabolic subsystems was obtained for each cell type. 

This showed that in the case of proliferating cells, biotin metabolism, vitamin A metabolism, 

sphingolipid metabolism and fatty acid oxidation and synthesis are all significantly more 

active compared to the differentiating states.  In the case of adipogenic differentiation fatty 

acid oxidation and fatty acid synthesis were both areas that were overrepresented in increased 

activity and in the case of osteogenic differentiation fatty acid oxidation especially showed 

increased activity (see Table 2). 
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As an additional point and a proof of the intended function, we used combined models of 

either osteogenic-adipogenic model or osteogenic-proliferating model to predict a possible 

way to increase osteogenesis, but metabolic modelling allows generation of hypothesise about 

means of optimizing one cell lineage over another. Through relaxation analysis a list of 

reactions was obtained that could be modified in order to move either model towards 

osteogenesis. Both lists indicate that alterations in the need for malate are changed, either with 

a reduced uptake or a switch to secretion being observed, and fatty acid and lipids involved in 

signalling, cell membranes and glycosylation are altered as well. The metabolites involved in 

these reactions could therefore be seen as possible metabolic markers for differentiation. One 

of the reactions that was highlighted is the need to increase transport of citrate from 

extracellular space to cytosol, and it has been shown that when growing cells on citrate rich 

materials they are encouraged to move towards osteogenesis [265], [266]. 

This discovery regarding citrate in combination with the enrichment of the 

exchange/demand reactions subsystem also suggests that other transporters may be interesting 

targets for future investigation when it comes to searching for new ways to increase 

osteogenesis of MSCs. 

 

In this work three new genome-scale metabolic models of MSC metabolism, 

representing expansion, osteogenesis and adipogenesis differentiation, are presented. These 

newly reconstructed models are increased in scope compared to previous models of this cell 

type both in terms of the coverage of multiple lineages in models produced specifically for 

two new lineages and with the models due to usage of a new and much improved base human 

metabolic reconstruction (Recon3). We computed a variety of metabolic phenotypes, 

demonstrating that the models presented here accurately represent qualitative and quantitative 

cellular characteristics and important differences between the cell types. Having validated 

these models, we used them for model-driven experimental design with the goal to optimize 

in vitro osteogenesis. One of predicted solutions, the citrate transporter, concurs with a 

previously identified target which encourages further possibilities of similar predictions. 

Through the use of mechanistic models such as are presented here, we provide a blueprint for 

the application and engineering of regenerative medicine therapies where promising 

therapeutics like MSCs can be made more efficient and attainable. 
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Figure 5: Estimates optimal fluxes for ATP production from various key carbon sources - a) Aerobic 

metabolism of the most energy dense substrates b) Aerobic metabolism of the least energy dense substrates c) 

Anaerobic metabolism. 

 

 
Figure 6: Relative mean fluxes 

(compared to expansion model) 

from various reactions – 
a) ATPsynthase  

b) Ornithine decarboxylase c) 

Mitochondrial glutaminase  

d) NAD dependent glutamate 

dehydrogenase  

e) NADP dependent glutamate 

dehydrogenase. 
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Table 2:  Showing subsystems that have a significantly overrepresented (adjusted p-value < 0.05) number of 

more active reactions in the relevant model compared to the other differentiation lineage in the case of 

osteogenesis/adipogenesis or compared to the two differentiation models in the case of expansion. 

Expansion 

Adjusted p-value Enriched set size Total set size Groups Increased 

0.000254 98 1368 Exchange/demand reaction 

0.001831 65 961 Fatty acid oxidation 

0.003348 9 242 Cholesterol metabolism 

0.003348 9 240 Fatty acid synthesis 

0.003348 1 105 Transport, lysosomal 

0.003348 25 453 Transport, mitochondrial 

0.006098 3 133 Sphingolipid, metabolism 

0.011893 7 185 Bile acid synthesis 

0.017589 11 47 Vitamin A metabolism 

0.019096 5 12 Biotin metabolism 

Osteogenesis 

Adjusted p-value Enriched set size Total set size Groups Increased 

7.09E-07 12 961 Fatty acid oxidation 

8.6E-06 28 1368 Exchange/demand reaction 

Adipogenesis 

Adjusted p-value Enriched set size Total set size Groups Increased 

1.64E-05 26 1368 Exchange/demand reaction 

0.000253 16 961 Fatty acid oxidation 

0.012651 1 240 Fatty acid synthesis 

 

 

4.3 Paper III: Current Status and Future Prospects of Genome-Scale 

Metabolic Modelling to Optimize the Use of Mesenchymal Stem Cells in 

Regenerative Medicine 

The aim of this work was to bring together a relatively comprehensive and, at that time point, 

up-to-date knowledge regarding MSCs, their characteristics, functions, limitation, current and 

possible future use in regenerative medicine and the concept and value that lies in constraint-

based models (CBM), specifically GEMs (genome scale metabolic models) when it comes to 

developing and advancing those therapeutical uses.  

It is intended as a review that can hopefully bring together two relatively different fields 

in the scientific community that do not necessarily realise the possible use and value that the 

other field can bring to their own.  

  Currently the number of scientists and laboratories that are well versed in, and 

implement, the use of GEMs in the purpose of advancing biological discoveries or reducing 

the cost that comes with such experimental work is growing. There are some excellent 

networks that have been reconstructed and used in cancer related research and drug target 

development but, if one looks at the increase in focus in cell based medicine and the 

popularity that MSCs have gathered as one of the best cell types to use in tissue engineering, 

it is a bit perplexing how relatively few have actually implemented the use of GEMs as a tool 

to further their application.  
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 In this work, along with introducing both MSCs, CBM and GEMs we put forth 

possible ways to combine the subjects and how that combination may be used to further the 

therapeutic application of MSCs. Some of these possible ways include: 1) trials with in silico 

metabolic engineering (i.e. gene knock outs and knock ins); 2) identifying biomarkers of 

diseases; 3) predicting drug targets and therapeutic windows; 4) optimization of cellular 

functions without the cost of wet lab experimentation; 5) Age related exploration (i.e. the 

effect of cell donor age on clinical outcome and therefore application value of cells) and 6) 

multi-cell models (i.e. ways to provide insights into metabolic functions of interacting cell 

types residing within the same organism).  

 The overall use of GEMs to further therapeutics in regenerative medicine is on the rise 

and hopefully this work will aid in bringing the existing possibilities to further and wider 

notice. 
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5 Conclusions and Future Directions 
 

‘‘Impossible only means that you haven’t found the solution yet. “ 

-Anonymous 

 

5.1 Conclusions 

The possibilities of MSCs with regards to their application as additional tool in translational 

and regenerative medicine have been known for some time and various aspects of their 

characteristics have been studied; however, when it comes to looking into metabolism and 

metabolic changes the research has often been lacking in either scope or conciseness. In some 

parts this has been due to limitations of technology available at the time and in others it may 

be partially due to the near to overwhelming popularity of genomics and genetic discovery 

that was brought about with NGS techniques and the progression of CRISPR-Cas9[267], 

[268] that took focus away from the importance of metabolomics and metabolic changes 

when it comes to cellular function, progression, and so possible applications. 

 With such technology as CRISPR-Cas9 becoming more of a “everyday” tool in the 

arsenal of the scientific community and with ever better modern metabolomic techniques the 

generation of large scale quantitative metabolomic data sets is becoming less of an issue and 

the interpretation and discovery of biologically relevant knowledge from the data is taking its 

place. This requires that methods and research with the aim of unravelling to any extent the 

metabolic intricacies of cells to be focused whilst still having the means of looking at the 

changes in a holistic manner.  

 

The aim of this thesis was to start methodically bridging the existing gap in 

knowledge when it comes to BM-MSC metabolism and its changes when the cells are 

changing states, specifically from proliferation into osteogenic differentiation, through the use 

of up to date metabolomics and transcriptomics techniques and to make the first such 

metabolic network reconstruction that can, down the line, be used to interpret the 

metabolomics data and give a better insight into the ongoing “behind-the-curtain” changes 

that can affect the way these cells may be employed in tissue engineering.  

 

In the first work presented in this thesis we focused on, first, seeing if there was a 

plausible reason to believe (beyond results via literature research) that during the course of 

full 28 day osteogenic differentiation there might be different metabolic phenotypes ongoing 

and if yes where approximately during the time course the changes were occurring, and 

secondly to try and verify those hypotheses and see what metabolic subsystems within the 

cells were most likely to be behind it/most likely to be significantly enriched. One of the main 

contributions from this work is the enormous amount of both labelled and unlabelled 

intracellular and extracellular metabolomics data that was generated as well as the RNA 

transcriptomics data.  
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Another, more focused contribution, was the suggestion of BM-MSCs displaying three 

distinctive metabolic phenotypes over the course of 28-day osteogenic differentiation and the 

possible underlying metabolic pathways contributing to those phenotypic changes. This can 

help focus future metabolomic research on BM-MSCs and aid in understanding the most 

optimal ways of applying them in tissue engineering and regenerative medicine. The 

group/author does realize that further research is necessary for more intricate conclusions, 

e.g., to confirm or disregard the probability of ongoing gluconeogenesis and that lipidomics 

are the next logical step to further verify the three phases existence and notes that much of the 

necessary data is now ready and awaiting statistical analysis.   

 

In the second work presented in this thesis the focus was to resolve the existing lack of 

genome scale metabolic network reconstruction that exists for MSCs by creating three new, 

directly comparable models modelling BM-MSCs in three cell states: proliferation, 

adipogenic differentiation and osteogenic differentiation. The reason behind this lineage 

choice is twofold, one, it is vital to understand the changes that are either driven by or drive 

the changes that happen when a cell changes its state (more precisely function) from being in 

proliferation to differentiation as it can greatly impact its survival and means of use and 

second, osteogenic and adipogenic differentiation pathways are interconnected and thus 

impact each other. With a more susceptibility towards adipogenic differentiation being one of 

the driving factors (it is believed) behind osteoporosis, the subsequent increase in yellow bone 

marrow and an ever-growing need for bone graft replacement material as well as adipogenic 

differentiation and lipid metabolism in general being of much interest with regards to various 

metabolomic diseases these differentiation choices presented themselves as obvious. 

One of the main contributions from this work were the three new models, especially the 

adipogenic and osteogenic ones that before this did not exist. They present a new tool to use 

to interpret large scale metabolomic data and ways to predict which experimental outcomes 

may have a greater chance of being favourable and so reduce proper experimental cost. The 

model behaviour was in good agreement with literature and all most characteristic reactions 

presented themselves. The model analysis and the direct metabolic comparison offered 

insights into the existing metabolic differences between the cell lineages and offered a way to 

propose a probable method of enhancing osteogenic differentiation though that has still yet to 

be verified by experimentation.  

 

The third work presented in this thesis, despite not being a presentation of original 

experimental work, had a very important goal. To bring to light the opportunities that lie in 

MSCs and genome scale network reconstructions that can be used to further the development 

of tissue engineering and other practices related to regenerative medicine. The combination of 

the two fields has not been implemented to any great extent the past decades and it is the 

authors believe that there goes a great opportunity unexplored and so this work was put 

together to try and bring together practitioners in very separate fields so that something new 

and exciting might be created as a result and which might be able to bridge, at least to some 

extent, the ever existing gap of knowledge regarding metabolic function and its impact on 

experimental and clinical results in the search for new cell based therapeutics in regenerative 

medicine.  
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In general, this thesis adds to the limited knowledge on MSC metabolism and its changes 

or differences in the instances of three distinct states of BM-MSCs. It also adds to the plethora 

of currently published GEMs with a trio of new ones, two of which currently have no 

president, and all have the potential to be used in predicting experimental outcomes.  

The major reported findings, despite needing further verification in some instances, are 

e.g., that BM-MSCs seem to have 3 distinct metabolic phenotypes during 28-day osteogenic 

differentiation with a significant increase in secretion of extracellular lactate and measured 

increase in transcription factors related to mitochondrial functions. Another interesting find is 

the seemingly inverse relationship between proliferation and osteogenesis that seems to take 

place during the differentiation period, suggesting a cyclic behaviour in the cells which if true 

might be very interesting to investigate further with microenvironment survival in mind. That 

may impact retention and survival after transplantation if oxygen dependencies are markedly 

different. It is also worth mentioning that no experiments or cell cultures done for this thesis 

used animal products, such as foetal bovine serum (FBS) for their cell culture. Instead, 

pathogen inactivated platelet lysate (PIPL) harvested from human platelets obtained from the 

Bloodbank that would otherwise have been discarded was used. That bears significance as 

regulatory bodies such as the World Health Organisation (WHO) have considered banning the 

use of FBS entirely for cell therapy protocols and currently there are strict regulations being 

passed regarding its use [269], [270]. 

To conclude, this thesis contributes to the ever-growing knowledge regarding MSC 

metabolism as well as provide new tools that can be used to focus and hopefully accelerate 

future research within that field whilst allowing the needed cost to be directed towards 

endeavours more likely to have significant impact.   

5.2 Challenges and Limitation 

The work presented in this thesis had several limitations when it came to experimental setup, 

measurement methods or equipment and time restraints. 

 

Limitations or presentation of things that the author would now have done differently, 

having gained further knowledge and experience, regarding cell culture experiment setup 

have already been presented in section 3.1.7.1 and so will not be listed here to limit repetition.  

The only point related to the cell culture or cells that the author would like to address 

additionally is that all findings and model presented in the works done for this thesis were 

performed using BM-MSCs but there exists a great number of MSCs that are all harvested 

from different sources (e.g., adipose tissue, peripheral blood and neonatal tissues). There is 

evidence supporting the hypothesis that despite all being classified as MSCs (and the author 

finds that definition to be a bit broad) these differently sourced cells may behave in a 

somewhat different manner, perhaps with slightly different metabolic changes and be 

dissimilarly well suited for various tasks. So the reported findings in this thesis are not 

necessarily applicable to all types of MSCs.    

The metabolomic methods that were implemented are by design more favourable when it 

comes to detection of hydrophilic compounds. Metabolites that are highly hydrophobic such 
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as phospholipid, steroids and other lipids are therefore either not measured at all or they 

measure very poorly and in an unreliable manner. Since MSCs can, as many other cells, 

utilize lipids in the case of energy production and literature research gives indications of shifts 

in lipid metabolism during proliferation and differentiation [271] the lack of quantitative lipid 

measurements in both extra and intracellular metabolomics adds an uncertainty when it comes 

to the network reconstruction but the addition of lipidomic data would undoubtedly increase 

the predictive capabilities of the reconstruction. It also causes a possible important blind spot 

that must be resolved when it comes to defining underlying pathways contributing towards 

suggested metabolic phenotypes. This has to be addressed in future studies. 

In relation to absolute quantification of the metabolomic data there are two things that 

must be noted. For the processing of the targeted extracellular data (used e.g., to constrain the 

models) the method of using isotopically labelled internal standards and external calibration 

curves was used, however, this method is limited in its use by the disproportional number of 

metabolites that were measured compared to the number of internal standards but not all 

metabolites had their corresponding labelled isotope as internal standard. The “nearest 

neighbour” had to suffice. If all metabolites would have an isotopically labelled internal 

standard the accuracy if measurements would doubtlessly be improved, however the author 

does not believe that method to be currently realistic in such cases as were in employment 

here where the aim was to measure and quantify a great number of metabolites. For more 

targeted approach this might proof of great use. 

For the processing of the untargeted intracellular data (e.g., used to discover contributing 

metabolic pathways towards phenotypic difference) there exists a more reliable way to 

normalise the data than through the use of limited number of internal standards. It uses the 

quality control samples or the “pool” samples to give the desired normalised output. In order 

to be able to use this method the sample order, when the mass spectrometry measurement is 

run, has to be very specific with a certain number of QC samples run before and after the 

measurement samples themselves. As this was not true in this case this method could not be 

implemented in this thesis. The difference and its effect are not definitive, but it would be 

recommended that sample order is well seen to in future mass spectrometry runs. 

 The next to last point of note that the author would like to make is with regards to the 

steady state assumption that is implemented in the metabolic reconstruction as well the 

growth assumption for the objective function used in most analyses. The former assumption 

effects the latter one but is necessary to allow for calculation and definition of the solution 

space but of course it bears no resemblance to the real-world situation (as is present when the 

intracellular metabolomic data is looked at). This is a note that has to be taken into account 

when the models or the ones built upon the presented ones will be validated and further 

curated using the intracellular data. 

 The last point that this author wants to address is the fact that presented model for 

osteogenesis only covers the first seven days of differentiation whilst similarly reporting (in a 

different paper) the metabolic differences that seem to occur between the various days and so 

the differences in metabolism between the three cell states are highly likely to become more 

pronounced and definitive with reconstruction of a further gone model.  
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5.3 Future Directions 

As previously stated, MSCs are multipotent cells with stem cell like abilities that have proven 

over the course of the last decades to have a significant potential as a new tool in therapeutical 

development within regenerative medicine. 

They are relatively easy to obtain (though the level of ease is dependent upon the desired 

source) and have various desirable characteristics. One of which is as enhancers of 

osteogenesis through paracrine factors or tissue replacement via transplantation. This 

application is however still hindered by various limitations and unknown factors such as ideal 

level or state of differentiation where the cells may have the best chance for survival in vivo, 

the optimal dosage or frequency of administration and how the progression of differentiation 

effects the functionality of the cells.  

In order to cast light upon the last issue a wholistic overview is necessary and the 

approach must be methodical and precise.  

By creating a genome scale reconstruction that models cellular behaviour during the 

various suggested phases of osteogenic differentiation the wholistic overview may be 

obtained and new insights into possible ways of cellular enhancement can be garnered. Such 

models would have to be directly comparable -  meaning that the experimental circumstances 

would have to be identical, and they would have to be constructed and constrained using: 1) 

Transcriptomic data (RNAseq data) that would be generated in the aforementioned identical 

circumstances 2) Extracellular and intracellular labelled and unlabelled metabolomic data 

(this would have to come from an identical cell culture as the transcriptomic data) 3) 

Lipidomics 4) Experimentally related data (e.g. cell growth, medium composition etc.).   

By using methods as have been described in the papers following this thesis directly 

comparable models could be generated, each modelling a suggested cellular phenotype for a 

separate phase in osteogenic differentiation that could then be used to explore from the 

genetic level upwards the differences in metabolic pathway activity and how similar 

manipulations may render different results depending on the state. This kind of a model has 

not been constructed to this group’s best knowledge, just as is the case for the early day 

adipogenic and osteogenic models presented in Paper II. The author also wants to state that 

the reconstruction of these models has already begun (although in very early stages) and that 

all data excepting the lipidomic data has been generated and processed. Modelling the late 

stages of osteogenic differentiation has not been done before and to the groups best 

knowledge there doesn’t even exist RNA sequenced data for BM-MSCs during those later 

stages which is necessary to build a thoroughly verified model aimed at modelling a specific 

cell state, so this would provide a novel tool for implementation in research related to bone 

engineering and osteoporosis treatment. 

Another aspect that the group believes should be explored to hopefully validate further the 

suggestion of the three metabolic phases and the underlying metabolic activity is the use of 

the Agilent Seahorse XF Analyzer technology [272], [273]. This technology provides a fast 

way to measure oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) 

at intervals of approximately 5-8 minutes so detailed monitoring of metabolic changes can be 

noticed. This can help identify global changes in glycolytic metabolism versus oxidative or 

mitochondrial metabolism and through the use if various available inhibitors that can be 
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implemented during the assay it is possible to obtain indication into what metabolites or 

substrates are contributing to the metabolic phenotype under observation. By incorporating 

labelling experiments, like 13-C metabolic flux analysis, it is also possible to map rather 

precisely which nutrients (e.g. glucose) are involved in specific metabolic fluxes and to which 

extent that nutrient gets incorporated in certain metabolites [263], [273]. By performing this 

kind of an assay during e.g. indicated timepoints of significant change it might be possible to 

observe more accurately where and when metabolic changes start happening. All additional 

knowledge provides a greater means for more accurate model prediction and therapeutical 

enhancement. 

 

A more realistic culturing of the cell might also be beneficial i.e., to perform all 

previously mentioned cell culture experiment using same type of cells but seeded on a three-

dimensional (3D) scaffolding and under the duress of perfusion and some sort of mechanical 

stimulation e.g. compression. This would allow cells to experience a more in vivo like 

microenvironment during their differentiation and so the data would be more likely to explain 

the “real life” function of BM-MSCs undergoing differentiation.  

One of the ways this could be obtained would be through the use of the “Organ-On-a-

Chip” (OoC) technology [274], [275]. The main principals and common design will not be 

introduced here, but these could be modified in order to design a chip specially for the growth 

of bone tissue micro-organ. Through proper design methods and applications this could be 

made so that continuous extracellular media sampling could be performed without 

disturbance of the cell culture at any given time and by designing multiple chips connected in 

parallel the possibility of performing multiple experiments at one time could be introduced. 

New technology such as nano engineering and fibre optic sensors [276]–[278] might even 

enable in situ single cell monitoring of certain intracellular functions, microscopic cameras 

could give visual conformation of morphological progression and micro-environmental 

sensors could monitor, log and maintain the desired set up without a break. A successful 

design of this kind of a system would also provide a way to model, enhance, and even 

personalise treatment possibilities in such types of bone related ailments. The OoC 

technology is being used in other parts of the world, like the U.S.A., to further drug 

development, disease modelling and personalized medicine but it has as of yet not been 

implemented anywhere in the Icelandic research or medical community. The author finds it an 

avenue worth exploring and believes that through the use of such cell culture environment the 

large-scale osteogenic models could be adjusted to give more precise and realistic predictions 

more likely to be translatable to in vivo circumstances. Such models might prove beneficial in 

a new avenue of bone tissue engineering that deals with studying the effects of situations like 

long term microgravity, as is prevalent during space flights, on bone function and how those 

negative effects may be prevented or haltered. 

In short, the possibilities seem almost to be endless. This thesis has made notable strides 

in furthering existing knowledge regarding metabolism and metabolic changes in BM-MSCs 

and provided new tools to take that knowledge even further, but despite that there are 

numerous avenues left to explore and various challenges and limitations left to be addressed 

some of which will be attempted in future works of this group.  
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All this is done in the certainty that only through improved systemic knowledge of the 

topic of MSC metabolism can the therapeutic potential of these cells fully be realised and thus 

implemented properly in tissue engineering and cellular medicine with the hopes to improve 

quality of life for future generations.  

 

 

 

 

 

“Science means constantly walking a tightrope  

between blind faith and curiosity;  

between expertise and creativity; 

 between bias and openness;  

between experience and epiphany; 

 between ambition and passion; 

 and between arrogance and conviction 

 – in short, between and old today and a new tomorrow.”  

— Henrich Rohrer 

Swiss Physicist (B. 6 June 1933 – 16 May 2013) 
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Abstract: Mesenchymal stromal cells (MSCs) are multipotent post-natal stem cells with applications in 

tissue engineering and regenerative medicine. MSCs can differentiate into osteoblasts, chondrocytes, 

or adipocytes, with functional differences in cells during osteogenesis accompanied by metabolic 

changes. The temporal dynamics of these metabolic shifts have not yet been fully characterized and are 

suspected to be of importance for therapeutic applications, such as osteogenesis optimization. Here, 

our goal was to characterize the metabolic shifts that occur during osteogenesis. We longitudinally 

profiled five key extracellular metabolites (glucose, lactate, glutamine, glutamate, and ammonia) from 

MSCs from four donors to classify osteogenic differentiation into three metabolic stages, defined by 

changes in the uptake and secretion rates of the metabolites in cell culture media. We used a 

combination of untargeted metabolomic analysis, targeted analysis of 13C-glucose labelled intracellular 

data, and RNA-sequencing data to reconstruct the gene regulatory network and further characterize 

cellular metabolism. The metabolic stages identified in this proof-of-concept study provide a 

framework for more detailed investigations aimed at identifying biomarkers of osteogenic 

differentiation and small molecule interventions to optimize MSC differentiation for clinical 

applications. 

Keywords: mesenchymal stromal cells (MSCs), osteogenic differentiation, metabolites, metabolism, 

metabolic changes, glycolysis, oxidative phosphorylation, gene regulatory network. 

1. Introduction 

Currently, around 2.2 million orthopaedic surgeries involving bone grafts are performed annually 

worldwide, a number expected to grow due to a global rise in the geriatric population. This increase 

will create an increased demand for graft material, which may pose a challenge because currently 

available sources all have limitations ranging from lack of safety or osteogenic potential to naturally 

limited supply [1]–[7]. In order to meet the ever-growing need for materials while eliminating risk to 

donors, the therapeutic application of mesenchymal stromal cells (MSCs) has been on the rise [6]. MSCs 

are multipotent, post-natal, self-renewing stem cells that can be isolated from various adult tissue types 

(e.g., fat, peripheral blood, and bone marrow) and are defined by the ability to differentiate in vitro into 

cells of mesodermal origin: osteoblasts, chondrocytes, and adipocytes [8]. The progression of 

differentiation depends on various factors, including hormonal and local factors, working together to 

form regulatory and metabolic pathways [9]. 
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Osteogenic differentiation, or bone formation, occurs in three stages. First, the proliferation of 

osteoprogenitor cells is promoted by various growth factors, including insulin-like growth factor (IGF), 

transforming growth factor (TGF), and fibroblast growth factor (FGF). Next, differentiation into 

osteoblasts and the production of extracellular matrix takes place. This stage is promoted by both 

hormonal and growth factors, many of which act by increasing the activity of Runt related transcription 

factor 2 (RUNX2) and its downstream genes. Finally, progressive mineralization of bone matrix 

proteins within the extracellular matrix creates bone tissue that is capable of withstanding stress and 

strain [9]. 

 

We currently have an incomplete understanding of cellular metabolism during osteogenic 

differentiation—most of which is based on extracellular metabolite studies along with mapping of 

enzyme activity—based on indications of a specific metabolic phenotype amongst in vitro differentiated 

MSCs [10]–[13]. During proliferation, MSCs preferentially use anaerobic glycolysis for energy 

production, as indicated by low mitochondrial activity [11]. During osteogenic differentiation, it has 

been established that mitochondrial biogenesis increases and indicates a shift to aerobic energy 

production through oxidative phosphorylation [12], [14]. Imaging of changing mitochondrial 

distribution (from being centrally gathered around the nucleus to uniformly spaced throughout the 

cytoplasm) support this hypothesis [15]. A concurrent increase in the mitochondrial area of the cells 

could be due to increasing mitochondrial biogenesis [16], possibly upregulated by inhibiting hypoxia-

inducible factor 1 (HIF-1), activating oxidative phosphorylation [12]. The metabolic shift from reliance 

on glycolysis to the activation of oxidative phosphorylation is important because it makes the survival 

of osteogenically differentiated MSCs more dependent upon oxygen; a reliance on oxygen may explain 

the reduced osteogenic differentiation under hypoxic conditions or under the typical oxygen levels 

present within human tissue. The activation of glutamine anaplerosis has been reported for cells in 

osteogenic differentiation, further indicating a greater reliance on mitochondrial energy production 

[16], [17]. Additionally, it has been demonstrated that various external factors used in regular practice 

in modern day labs, such as varying oxygen levels and the different osteoinductive agents, can have 

significant effects on the differentiation potential and/or metabolic pathway activity [18], [19].  

However, we lack an understanding of the underlying basic metabolic mechanisms that govern the 

processes of proliferation and differentiation represents a barrier to the development of successful 

therapeutics that can manipulate the cells for implantation or reimplantation [6], [20]. Acquiring a 

firmly grounded understanding of aspects such as metabolic progression and changes in a biological 

system is a difficult undertaking due to the broad scope and expansive nature of metabolism, especially 

if one is looking at a long period of time. Defining time points of interest that can serve as initial focus 

points for comprehensive and detailed study might serve as a strategy to hone in on more detailed 

understanding. 

 

In this study, we quantified changes in extracellular metabolites that contribute to energy production 

via oxidative phosphorylation, glycolysis, and anaplerosis to identify the metabolic phenotypes of 

osteogenesis. We profiled five metabolite biomarkers for cellular energy production—extracellular 

glucose, lactate, glutamine, glutamate, and ammonia—to study and further characterize the known 

change in metabolic activity levels between proliferation and differentiation. We observed three 

distinct metabolic stages during osteogenic differentiation, as defined by the temporal changes 

observed in the media concentrations of these five key metabolites that accompany MSC osteogenesis. 

We then performed both untargeted analysis of intracellular metabolomic data as well as targeted 

analysis of 13C-glucose labelled intracellular metabolomic data to validate these three stages and to 

identify which pathways were contributing to the observed functional difference. To elucidate the 

mechanistic underpinnings of these stages, we reconstructed a gene regulatory network from gene 

expression changes measured here using RNA-seq. This analysis allowed for insights into which genes 

were differentially expressed during the time course in question, which transcription factors regulated 

these changes, how the network topology changed, and whether any regulons were enriched for 
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metabolic enzymes. Taken together, this proof-of-concept study provides a molecular basis for the 

observed metabolic phenotypic shifts that we hope will serve as a foundation for future, more in-depth 

studies into the optimization of MSC osteogenic differentiation. 

 

2. Materials and Methods  

 
2.1. Cell Culture and Osteogenic Differentiation      

Human bone marrow-derived MSCs from four donors were purchased from Lonza (Basel, 

Switzerland). All experiments were performed in triplicate and cells were cultured under normoxic 

conditions at 5% CO2, 37 °C, and 95% humidity. Cells were maintained in basal growth medium (BGM). 

BGM was prepared by adding 5000 IU/ml of heparin (LEO Pharma A/Sm, Ballerup, Denmark), 1% 

penicillin/streptomycin (Gibco, Grand Island, NY) and 10% pathogen inactivated platelet lysate (PIPL) 

supernatant (Platome, Reykjavik, Iceland) into DMEM/F12 + Glutamax growth medium (Gibco, Grand 

Island, NY). The PIPL was centrifuged at 5000 rpm (4975 × g) for 10 min before the resulting supernatant 

was added to the medium. 

 

Cells were used for osteogenic differentiation experiments at passages 2 – 5. Osteogenic differentiation 

was initiated using osteogenic culture medium (OM), prepared from 45 ml of BGM supplemented with 

dexamethasone (50 μl of 0.1 mM stock solution, Sigma, St. Louis, MO), Bone Morphogenetic Protein 2 

(BMP-2, 50 μl of 50 ng/μl stock solution, Peprotech, Rocky Hill, USA), β-glycerophosphate (108 mg, 

Sigma), and ascorbic acid (50 μl of 50 mM stock solution, Sigma).  

 

For collection of samples for metabolite analyses (glucose, lactate, glutamine, glutamic acid, and 

ammonia), cells were seeded at 5000 cells/cm2 in 25 cm2 culture flasks with 5 ml OM. Medium was 

changed approximately every 48 hours and samples of spent medium (0.5 ml) were taken in duplicate 

from each of the culture flasks approximately every 24 and 36 hours for cells under osteogenic 

differentiation. All samples were stored at -80 °C until analysis. 

 

2.2. Alkaline Phosphatase Assay      

Enzymatic activity of ALP during osteogenic differentiation was measured for all four donors using 

standard procedures. Cells were grown for 7, 14, or 28 days in 12-well plates at 3500 cells/cm2 with 0.75 

ml OM. For the Day 0 (control) samples, cells were collected from BGM prior to culturing. After the 

relevant culture period (0, 7, 14, and 28 days), cells were washed with phosphate-buffered saline (PBS) 

and then lysed for protein extraction with 0.02% Triton-100 (Sigma) in PBS. A liquid p-nitrophenyl 

phosphate solution was then added at a 1:1 ratio and incubated at 37 °C for 30 min in the dark before 

being measured using a Multiskan Spectrum spectrometer (Thermo Scientific, Helsinki, Finland) at 

wavelength of 400 nm. The ALP activity in terms of the conversion of p-nitrophenyl phosphate into p-

nitrophenol was calculated using Equation 1.  

 

 
[1] 

 

2.3. Alizarin Red Staining 

Mineralization during osteogenic differentiation was determined by staining using Alizarin Red S 

indicator (Sigma-Aldrich) according to standard procedures. Cells for Alizarin Red staining were 

seeded at 3500 cells/cm2 in a 12-well plate and grown for up to 28 days with 0.75 ml OM, with Day 0 

samples cultured in BGM. Samples were collected after cells were grown for 0 (control), 14, or 28 days. 

After sampling, cells were washed with PBS and incubated for 15 min with paraformaldehyde. They 

were then washed again with deionized water before 2% Alizarin Red S solution (pH 4.1 – 4.3) was 

added. The samples were stained for 20 min on a rotating shaker then washed with deionized water 

and dried overnight. After drying, the samples were rehydrated by adding 1 ml of deionized water and 
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rehydrated overnight. After rehydration, 1 ml of 10% cetylpyridinium chloride solution was added to 

the cells and incubated for 15 min at 37 °C on a rotating shaker. The cell layer was then scraped, 

centrifuged for 10 min at 16,100 × g and 24 °C, and the resulting supernatant measured for optical 

density in a Multiskan Spectrum spectrometer (Thermo Scientific) at 562 nm. 

 

2.4. Gene Expression/q-PCR Analysis      

After culturing for 28 days, cells were harvested with trypsin and TRI reagent (Ambion, Austin, TX). 

All samples were kept in RNase-free microcentrifuge tubes at -80 °C until RNA isolation was 

performed. To perform the isolation, 150 μl of chloroform (Merck, Darmstadt, Germany) was added to 

all samples, after which they were centrifuged for 10 s at 12,000 × g and 4 °C and the resulting 

supernatant transferred to an RNase-free elution tube. Then 500 μl of isopropanol (Merck) was added, 

samples were centrifuged for 8 min at 12,000 × g and 10 °C, and the resulting supernatant discarded. 

Then 1 ml of 75% ethanol was added and samples were centrifuged for 5 min at 7500 × g and 22 °C. The 

RNA pellet was air dried before 50 μl of RNase-free water (Qiagen, Hilden, Germany) was added and 

the solution incubated at 58 °C on a PHMT Thermoshaker heat block (Grant Instruments, Shepreth, 

UK) for 12 min. Then 300 μl of RLT buffer (Qiagen) with 0.01% βb-mercaptoethanol (Sigma), and 350 

μl of 70% ethanol (Gamla Apótekið, Reykjavik, Iceland) were added and samples transferred to an 

RNeasy spin column. The columns were centrifuged for 15 s at 16,100 × g and 24 °C, then 700 μl of RW1 

buffer (Qiagen) was added and the columns centrifuged again for 15 s at 16,100 × g and 24 °C. 500 μl of 

RPE buffer (Qiagen) were then added to the columns and they were centrifuged again. After a final 

centrifugation step using the same settings, the column was placed in a new 1.5-ml collection tube and 

50 μl of RNase-free water (Qiagen) was added to elute the RNA. The resulting flow-through samples 

were then stored at -80 °C until cDNA synthesis was performed.  

 

For cDNA synthesis, isolated RNA samples were mixed in a new RNAse-free cDNA tube (Nunc, 

Roskilde, Denmark) at a 1:1 ratio with a master mix (8 μl nuclease-free H2O, 5 μl 10X RT buffer, 5 μl 

10X RT random primers, 2.5 μl RNase inhibitor, 2 μl 25X dNTP mix, and 2.5 μl MultiScribeTM Reverse 

transcriptase per sample) prepared from a High-Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Foster City, CA) and nuclease-free H2O (Qiagen). All samples and master mix components 

were thawed on ice prior to use. The mixed samples were centrifuged using a 96-well centrifuge 

adapter for a few seconds at 2500 rpm before being put into a thermal cycler (Applied Biosystems) 

operated under the following conditions: 27 °C for 10 min; 37 °C for 120 min; 85 °C for 5 s; 4 °C until 

use or storage at -20 °C. 

 

Real-time qPCR analysis of the prepared cDNA was then performed, with RUNX2 and COL1A2 

assayed as the genes of interest; both of these transcription factors are known and used to evaluate 

osteogenic differentiation. TATA box binding protein (TBP) was used as a housekeeping gene. 10X 

random primers were used (Applied Biosystems). All samples were mixed using an assay solution of 

1 μl Taqman Assay and 10 μl Master Mix plus 2 μl cDNA. All RUNX2 primers and probes were 

obtained from Integrated DNA Technologies as premixed assays but for COL1A2 primers/probes were 

obtained separately from Integrated DNA Technologies. All relevant primer pairs can be found in 

Supplementary Table S1 online.  

 

2.5. Cell culture and RNA isolation for RNAseq-data  

Bone marrow derived human mesenchymal stem cells from three donors (Lonza, Basel, Switzerland) 

were taken from liquid nitrogen storage (-180°C) and seeded into 175 cm2 culture flasks (Nunc, 

Penfield, NY, USA). About 500000 cells from each donor were used. Cells were expanded until about 

85% confluency was reached – one donor in each culture flasks. The media used during proliferation 

phase was BGM (45ml), and media change was performed every 48 hours.  
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 Upon reaching about 85% confluency the cells were harvested via trypsinization. Media was discarded 

from the culture flasks, 11.72 ml PBS (Gibco, Grand Island, NY, USA) used to remove remaining media 

before 11.72ml of 0.25% Trypsin (Gibco, Grand Island, NY, USA) was added. Culture flasks were 

incubated at 37°C (5% CO2, 95% H2O) for five minutes before 11.72 ml of BGM was added to neutralize 

and stop the trypsinization. Both BGM and 0.25% trypsin solution were warmed to 37°C before use.  

 

Cell solution was transferred to 15ml falcon tubes using a pipette-boy and centrifuged at 1750 rpm 

(609g) for 5 minutes. The resulting supernatant was discarded and cells resuspended in 5 ml of BGM. 

Cells were then counted using a Neubauer hemocytometer (Assistant, Munich, Germany). For 

osteogenic differentiation of the cells OM (2ml/well) was used. Cells were seeded on to 6-well plates 

(200000 cells/well). Five separate wells were used for each donor in question, one per time point that 

was to be assessed (Day 3, 6, 9, 16, 28). Total of 15 wells were used. Media was changed every 48 hours. 

Upon day of assessment the medium was discarded using a pipette and 1ml of RNAzol® RT (Molecular 

Research Center, Inc., Cincinnati, OH, USA) added to the wells in question in order to lyse the cells. 

Repeated pipetting was used to dislodge and lyse cells completely before moving the resulting lysate 

to a 2-ml Eppendorf tube. In order to precipitate DNA, protein and polysaccharides 0.4 ml of water was 

added to the lysate, mixture shaken for 15sec and then stored at RT for 15 minutes. Samples were then 

centrifuged for 15 minutes at 12000g. About 75% of the resulting supernatant was moved to a new 

Eppendorf tube. In order to precipitate the total RNA 1ml of isopropanol was added to the supernatant 

collected in the previous step. Samples were then incubated at RT for 10 minutes before being 

centrifuged for 10 minutes at 12000g. This collected a small RNA pellet at the bottom of the Eppendorf 

tube. The supernatant was discarded and the resulting pellet washed twice by adding 0.5 ml 75% 

ethanol (care was taken to not dislodge the small RNA pallet in washing) to the Eppendorf tube and 

centrifuging for two minutes at 5000g. Alcohol solution was removed using a pipette. The pellet was 

then dissolved in 25µl of RNase-free water and nanodrop used to measure the resulting concentration. 

RNase free water was added as needed to gain 20 ng/µl concentration for RNA sequencing.    

   
2.6. Cell culture and sample processing for intracellular metabolomics data      

Cell cultures (n = 3) used to gather unlabeled intracellular metabolomic data were grown in 6 well plate 

culture vessels (15.600 cells/cm2).  Five separate wells were used for cells from each donor to match the 

desired day of culture (selected based on change point analysis performed on extracellular metabolite 

data). Upon seeding cells were immediately placed in unlabeled OM, with media change (1.5 ml) 

occurring every 48 hours until sample collection took place. 

  Upon sample collection all media was discarded. Cells were then washed 3 times using 1 ml of 

PBS. PBS was discarded using a pipette after each wash.  

Next, 1 ml of 80% methanol solution (stored until needed at -20 C in order to keep it at the necessary 

cold temperature) was pipetted straight onto the cells and a cell scraper subsequently used to dislodge 

and scrape cells from the bottom of the culture vessel. The resulting methanol-cell suspension was 

placed in an eppendorf tube and stored at -80 C until needed for metabolite extraction/preparation for 

mass spectrometry.  

 

2.7. Glucose and Lactate Measurements           

Extracellular glucose and lactate concentrations were determined in spent medium samples, collected 

every 24 to 36 hours as described above for metabolites, using an ABL90 FLEX blood gas analyzer 

(Radiometer Medical ApS, Denmark). Unused medium samples (blank medium) served as the controls. 

 

2.8. Glutamine, Glutamic Acid, and Ammonia Measurements 

Glutamine, glutamic acid, and ammonia were assayed in spent medium samples, collected every 24 to 

36 hours as described for metabolites, using colorimetric assays (Megazyme, Wicklow, Ireland). L-

glutamine and ammonia were measured using a single assay (Megazyme), as per the manufacturer’s 

instructions, via determining the decrease in absorbance of the reaction mixture at 340 nm using a 
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Spectromax M3 plate reader (Molecular Devices, San Jose, CA). L-glutamic acid was measured with a 

separate assay (Megazyme), as per the manufacturer’s instructions, via absorbance measurements at 

492 nm.Unused medium samples (blank medium) served as the controls for these assays. 

 

2.9. RNA sequencing  

 
2.9.1. Gene expression quantification     

The RNA transcript expression was quantified with Kallisto version 0.46.1 [21] using default 

parameters and the Ensembl Homo_sapiens GRCh38 reference transcriptome and generated FASTQ 

files as input. 

 

2.9.2. Differential gene expression analysis 

We used DESeq2 [22] version 1.26.0 to determine statistically significant differentially expressed genes 

(DEGs) across experimental conditions  (P < 0.05 and Benjamini–Hochberg correction α = 0.1 adjusted 

P < 0.1). We filtered out from downstream analysis those DEGs that across comparing conditions (i) 

were lowly expressed (< 2 TPM), (ii) showed relatively small fold-change (FC) differences (abs log2 FC 

< 1), and (iii) had highly variable expression across biological replicates (relative standard error of the 

mean > 1/2) and (iv) were inconsistent across donors (significant change for only one of the three 

patients). This filter resulted in a set of  1,106 response genes that we used as input for downstream 

analysis. We used the resource DoRothEA to annotate DEGs as transcription factors [23]; the human 

genome-scale metabolic network reconstruction Recon3D to annotate DEGs as metabolic genes [24].  

 

2.9.3.  Gene set ontology enrichment analysis 

We used the gene ontology online tool AmiGO 2 (http://amigo.geneontology.org/amigo) to associate 

statistically significant pathway enrichments to gene sets of interest [25]. We selected the following 

options: “Reactome pathways” as annotation data set (Reactome version 65; released 2020-11-17), 

“Fisher’s exact test” as test type and “False Discovery Rate” as multiple test correction. We downloaded 

results as JSON files and formatted them as tables using custom Python scripts. 

 

2.9.4.  Gene regulatory influence inference algorithm 

First, we computed the expression z-score of the set of 1,106 response genes. Separately to upregulated 

and downregulated gene sets, we applied agglomerative clustering 

(sklearn.cluster.AgglomerativeClustering function) evaluating exhaustively the number of clusters (k) 

ranging from extreme values as low as 3 and as high as 114. Then, we quantified partition goodness 

using Silhouette, Calinski-Harabasz and Davies-Bouldin scores. Consistently optimal partitions (k = 41 

and k = 35 for upregulated and downregulated gene sets, respectively) defined expression clusters. 

Next, we probed obtained clusters for enriched regulatory influences defined in DoRothEA regulons 

using hypergeometric tests [23]. We corrected multiple testing using Benjamini–Hochberg correction α 

= 0.1. We then merged enriched gene sets that shared a common regulator. Finally, we evaluated if 

regulator expression profiles correlated (Pearson correlation coefficient > 0.8) with its identified target 

genes mean expression. We defined such sets as regulons. We assigned regulon activity for a particular 

condition as the gene expression mean over the target genes. We visualized clustered regulon activities 

in the form of a heatmap using the seaborn.clustermap function.  

 

2.9.5.  TF-TF regulatory influence network visualisation 

We established a directed edge between two TFs if a regulator (tail) had as target gene another TF 

(head). We used Cytoscape [26] version 3.8.2 to visualize the inferred TF-TF influence network applying 

the hierarchical layout. 

 

 
2.9.3.  Code availability 
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All computational methods used for the analysis of RNA-seq data and beyond are available in the 

GitHub repository https://github.com/adelomana/osteo. 

 

2.10. Intracellular labelled and unlabeled metabolite extraction 

In order to extract intracellular metabolites collected samples (a cell suspension in 80% methanol 

solution, previously stored at -80 C) were thawed and 30 µL of previously mixed isotopically labelled 

internal standards subsequently added. The samples were then placed on a floating rack and into a 

sonicating water bath for 20 second sonication before being put on ice for up to 2 minutes. This was 

done for a total of 3 times. Icing prevented the samples from over heating. Subsequently 800 µL of ice 

cold methanol:dH2O (7:3 v/v) solution was added to each sample and samples vortexed for 

approximately 30 seconds. The samples were then centrifuged at 20817g for 15 minutes at 4 C. 

 

The resulting supernatant was then transferred into properly labelled eppendorf tubes (2 ml) whilst the 

precipitate was again reconstituted with 900 µL of previously described methanol solution before being 

vortexed and centrifuged for the second time. The resulting supernatant was combined with the 

previous one and precipitates retained at – 80 C for later BCA protein assay (for data normalization 

purposes).   

 

In 2 separate sets of twelve eppendorf tubes, 200 µL of varying dilutions of previously prepared CC 

mix were transferred. The CC mix, also known as a mixture of metabolite standards, is a dilution series 

that can be used for absolute quantification of metabolite concentration by generating an external 

calibration curve by least-squares linear regression. This curve is then used to estimate the absolute 

concentrations of the corresponding metabolites in the measured experiment samples. 

 

All samples (CCmix serial dilutions and intracellular samples) were then transferred to a vacuum 

concentrator (MinVac) for evaporation before being reconstituted in 300 µL solution containing dH2O 

and ACN in equal parts. 

The reconstituted samples as well as the two CC mixes were then filtered through a Pierce protein 96-

well precipitation plate that had previously been prepared by wetting the filter (to facilitate correct 

filtration). The filtration was done via centrifugation for 30 minutes at 4 C and 2000rpm. 

 

 The filtered precipitation was then transferred to a labelled set of glass mass spectrometry vials with 

glass inserts in order to be put through the mass spectrometer (UPLC-MS).  

 

2.11.  BCA Protein Assay 

In order to evaluate cell quantity at each time point defined by change point analysis, that could then 

be used to normalize data, a bicinchoninic acid (BCA) protein assay was performed on the precipitates 

collected during the intracellular metabolite extractions. 

In order to extract and dissolve protein content a dissolving buffer was created. It constituted bufferA 

(RIPA buffer):bufferB (200mM NaOH, 1% SDS) in 1:1 v/v. 100 µL of the dissolving buffer was added to 

the eppendorf tubes containing the protein pellets and volume adjusted based on estimated protein 

amount. Afterwards the tubes were vortexed and put through a freeze/thaw cycle to try and aid with 

pellet breakdown. Next, the pellets were sonicated for 1 hour at 60◦C before being vortexed again to try 

and dissolve as much protein as possible. Of the resulting suspension 5 µL of each sample were used 

for the assay. 

In performance of the assay itself (PierceTM BCA Protein Assay) the accompanying kit protocol from 

Thermo ScientificTM  was followed.  

 

 

 

2.12. UPLC-MS set up and run configuration 

https://github.com/adelomana/osteo
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All metabolite measurements based on mass spectrometry were performed using a gradient elution 

UPLC (ACQUITY) system (UPLC ACQUITY, Waters Corporation, Milford, MA) coupled with an 

ionization qTOF mass spectrometer (Synapt G2 HDMS, Waters Corporation, Manchester, U.K.) with 

an electrospray interface (ESI) as previously described.  Briefly, gradient chromatographic separation 

of samples was achieved by HILIC through an Aquity BEH amide column (2.1 mm x 150 mm, 1.7 µm 

particle size, Waters Corporation) at 45 C. Two different chromatographic conditions were used in 

combination with HILIC column, an acidic mobile phase (phase A) and a basic mobile phase (phase B).  

In both cases the injection volume was 7.5 µL, the flow rate was 0.4 mL/min and the run time was 14 

minutes. Mobile phase A conditions consisted of ACN with 0.1 % of formic acid and mobile phase B 

conditions consisted of dH2O with 1%  formic acid. The following gradient patterns (solvent B) was 

used in both cases: 0 minutes 1% B, 0.1 minutes 1% B, 6 minutes 60% B, 8 minutes 40% B, 8.5 minutes 

1% B, 14 minutes 1% B. Both positive and negative ESI modes were acquired. The capillary voltage and 

the cone voltage were 1.5 kV, the temperatures were 120 C and 500 C respectively and desolvation gas 

flow was 800 L/h. 

 

2.13. Data Normalization and Processing     

   
2.13.1. Extracellular metabolomic data 

Data processing and normalization was performed in R [27]. One day was found to be missing more 

than 50% of data points and removed from further analysis. Other data points below limit of detection 

or for other reasons were replaced with the minimum metabolite value measured. For each metabolite 

measured a generalized linear model was fitted using the gamm4 package in R [28], this modelled the 

change in metabolite concentration by day of differentiation protocol accounting for donor variation 

and analysis batch effects as random variables. Other possible models were considered also accounting 

for the media dwell time, and PIPL batch nested in donor and passage number nested in donor as 

random effects, however the Akaike Information Criteria of these models (see Supplementary Table S2 

online) were higher indicating poorer models, either less good fit or more over fitting. One exception 

to this was adding the effect of media well time to the lactate model. However, this was only slightly 

better and given the desire for consistency across metabolites and the use of rate of change for other 

analyses, which incorporates this factor, it was decided not to use this model. Change point detection 

was performed using the ECP package for R to perform change point detection in multivariate data 

using the e divisive method with a required significance level of 0.05 [29]. This analysis was performed 

on the modelled values for each day after they had been converted to the hourly rate of change (i.e. the 

secretion or uptake rate) for each day.  

The hourly rates of uptake and secretion were calculated by taking the difference of the absolute 

metabolite concentration levels between adjacent days and dividing by the appropriate number of 

hours that passed between media change and sample collection. 

 
2.13.2. Intracellular unlabeled metabolomic data 

The unlabeled intracellular metabolomic data was all run as an untargeted analysis using the R package 

XCMS. The first step of the process was conversion of the raw LC-MS data files but in order to be able 

to work with the data outside of MassLynx and TargetLynx it has to be converted to a MZdata format 

using MassWolf an the „water.convert.R“ function. MassWolf is preferable to similar packages, 

DataBridge and MSconvert, since it supports MSn data (unlike DataBridge) and adds lockmass 

calibrations to analyte measurements in the output files (unlike MZdata). XCMS can then correct such 

gaps by filling them using the nearest available analyte scan. 

After the raw data conversion had been completed the centWave algorithm was used to automatically 

detect chromatographic peaks, ion features. In this analysis 3 consecutive ROI with no peaks with 

intensity level of at least 100 were considered empty and discarded. 
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Within the centWave algorithm once all ROIs have been found a continuous wavelet transformation 

(CWT) was used to detect chromatographic peaks with variable peak widths. Here a minimum and 

maximum peak width is applied.  

The obiwarp method was used to align retention times between samples and peak density method to 

group corresponding chromatographic peaks.  

The R package CAMERA was then used in order to decrease the complexity of the generated data set 

by grouping ion features such as adducts and fragments that can potentially stem from the same 

compound. 

During the peak identification and peak picking process the data was processed in such a manner as to 

normalize with reference to donor variation. 

The resulting data was then normalized using NOMIS (NormQC, a function found in R) method, then 

by protein content (BCA protein piercing assay - to account for cell number) and finally log-

transformed. This data was used for the PCA, PLSDA, one way ANOVA and Tukey’s Post-HOC 

analysis. 

 
2.13.3. Mummichog pathway and network analysis 

To search for enrichment patterns in metabolic networks and identify possible characteristic 

metabolites that were enriched for each stage we applied the Mummichog online software [30]. It 

bypasses the need for metabolite identification by using the organisation of metabolic networks in order 

to predict activity directly from supplied mass spectrometry data tables. The analysis was run as 

described in the protocol that follows the online software. 

 

2.13.4.  Targeted MS-MS analysis to confirm Mummichog metabolite prediction 

The instrumentation used was an ACQUITY UPLC system (UPLC ACQUITY, Waters Corporation, 

Milford, MA) coupled to a qTOF mass spectrometer (Synapt G2 HDMS, Waters Corporation, 

Manchester, U.K.) with an electrospray interface (ESI). The gradient chromatographic separation was 

performed on an ACQUITY BEH Amide (2.1 mm × 150 mm, 1.7 µm particle size, Waters Corporation) 

at 45◦C. Mobile phase A was Acetonitrile and mobile phase B H2O both with 0.1% of formic acid. 

Injection volume was 7.5 µL, flow rate was 0.4 mL/min and run time was 14 min. The following gradient 

pattern (solvent B) was used: 0 min, 1% B; 0.1 min, 1% B; 6 min, 60%B; 8 min, 40% B; 8.5 min, 1%B; 14 

min, 1% B. Chromatograms were acquired on scan mode for  both positive (+) and negative (-) 

ionization. The capillary and cone voltage were 1.5 kV and 30 V, respectively. The source and 

desolvation temperature were 120 and 500 °C, respectively, and the desolvation gas flow was 800 L/h. 

 

2.13.5. Intracellular labelled metabolomic data 

The labelled intracellular metabolomic data was all run as targeted analysis and integration of targeted 

compound peaks was done using TargetLynx (v.4.1, Waters), an application manager.  The raw MS 

data with was then corrected to account for all naturally abundant 13C-glucose isotopes via IsoCor [31]. 

This provided percentage of isotopes for each molecule that exceeded natural abundance along with 

corrected isotopolouge distribution. 
 

3. Results 

 
In the following sections, we first used previously defined biomarkers to verify osteogenic 

differentiation. Next, we used key metabolite markers to track differentiation and define metabolic 

stages of osteogenic differentiation. We then used untargeted and targeted metabolomic analysis to 

globally characterize these metabolic shifts. Finally, we reconstructed a gene regulatory network to 

explore the underlying mechanisms of the observed metabolic shifts.  

 

 
3.1. Verification of Osteogenic Differentiation  
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Determination of osteogenic differentiation during the 28-day experiment was performed for all donors 

using well-established procedures: Alkaline Phosphatase (ALP) activity (performed for four donors at 

four time points) and Alizarin Red staining (performed for four donors at three time points). Final 

differentiation was verified through measurements of transcript levels of RUNX2, secreted 

phosphoprotein 1 (SPP1), and collagen type 1 alpha 2 chain (COL1A2) (performed for three donors at 

Day 28). ALP activity was higher at all sampling timepoints for all donor samples than in the blank 

medium (see supplementary figure S1A), though the increase in average ALP level was only significant 

at Day 14 (Bonferroni-adjusted two-tailed unpaired t-test, p = 0.1194 for Day 7, p = 0.0117 for Day 14, 

and p = 0.6072 for Day 28). These results follow the typical pattern of ALP activity during osteogenic 

differentiation [32], [33], with an increase observed at earlier stages of differentiation before a plateau 

or a decrease in the final stages. Individual measurements, by donor, are presented in Supplementary 

Table S3 online.   

Mineralization, in the form of calcium phosphate accumulation, was verified using Alizarin Red 

staining of Day 0, 14, and 28 samples, both visually (supplementary figure S1B and supplementary 

figure S2) and by calculating the change from the Day 0 control (Supplementary Table S4 online). When 

compared to the control neither day 14 nor day 28 were measured as being statistically significant in 

difference despite accumulating mineralization. Individual measurements by donor are provided in 

Supplementary Table S4 online. Advanced stages of osteogenic differentiation are characterized by 

tissue mineralization; all samples in this study showed an increase in mineralization over time, though 

the changes were not statistically significant. 

Relative expression levels, compared to the housekeeping gene, of RUNX2 and COL1A2 are shown in 

Supplementary Table S5 online, along with the fold change compared to the Day 0 control. RUNX2 

expression increased while COL1A2 decreased over time. In summary, ALP activity, mineralization, 

and gene expression profiling over the 28-day study period all verified that osteogenic differentiation 

was initiated by the addition of osteogenic medium (OM). 

 
3.2. Lactate secretion changes during Osteogenic Differentiation 

In order to estimate changes in central carbon metabolism we quantified extracellular glucose, lactate, 

glutamate, glutamine and ammonia concentrations in spent medium from MSCs undergoing 

osteogenic differentiation (Fig. 1).  

To account for differences due to inter-donor variation and analysis batch variation, we fitted a model 

to these data; model predictions were used in all further analyses. Only extracellular lactate differed 

significantly from that of the blank medium on Days 19 and 23 (Fig. 1B). Average rates of concentration 

change (mmol/L/hr) each day can be seen in supplementary Fig. S3B. The average amount of lactate 

measured was significantly higher during the last 13 days of differentiation than in blank medium, 

with hourly secretions also higher in those later stages. The concentration changes observed for other 

metabolites were less apparent. Nevertheless trends were observed in extracellular glucose that 

dropped following day 12 but did not differ significantly from that in the blank medium (Fig 1A).  

Glutamine was generally consumed in small amounts each day with an increase in consumption over 

time, possibly due to an increase in cell number (see Figure 1C) and supplementary Fig. S3C)). 

Glutamate concentration was little changed in the medium at the beginning of the differentiation 

period, began to be slightly secreted around Day 15 and showed increasing secretion after Day 21, 

although the rate of secretion remained low (supplementary Fig. S3D). Ammonia showed an increasing 

trend towards secretion throughout differentiation, possibly due to variation in cell number 

(supplementary Fig. S3E). Despite variability, generalized linear modelling revealed patterns in the 

rates of change of these metabolites during osteogenic differentiation. In order to define these patterns 

we performed multivariate change point analysis using the normalized data for all five metabolites. 
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Figure 1. Extracellular metabolite measurements in spent medium from MSCs during osteogenic 

differentiation. Box plots show concentrations (mmol/l) of (A) glucose (n = 4), (B) lactate (n = 4), (C) 

glutamine (n = 4), (D) ammonia (n = 4), and (E) glutamate (n = 4). Dots (◦) show outliers. The ends of 

whiskers show SEM. Dots (* red shade) represent the model predicted value subsequently used in change 

point analysis. 

 

3.4.  The utilization and production of essential metabolites are indicative of three stages of 

osteogenic differentiation. 

Multivariate change point analysis was performed using model normalized values converted to hourly 

rate of change for all five metabolites in the spent medium from osteogenically differentiating MSCs 

from four donors. We identified two statistically significant change points within the differentiation 

period (p < 0.05), in addition to the beginning and end, defining three metabolic stages of differentiation 

(Figure 2). Phase 1 occurred over Days 1 to 4, Phase 2 was between Days 5 and 15, and Phase 3 was 

from Day 16 to the end of the study period at Day 28.  

We next calculated glucose/lactate ratios within the three phases as a proxy for glycolysis. These ratios 

were different within the three phases (Table 1). During Phase 1, a glucose/lactate ratio of -0.209 was 

observed that then dropped in phase 2 before increasing to 0.908 during Phase 3 indicating changes to 

glycoslysis between the three stages. Similarly, glutamine/glutamate and glutamine/ammonia were 

suggestive of changes to glutaminolysis. These analyses suggest different metabolic phases over the 28 

days of osteogenic differentiation that are defined by changes to glycolysis and glutaminolysis.  
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Figure 2. Phases of osteogenic differentiation. A) Change point analysis for glucose, lactate, glutamine, 

ammonia, and glutamate in spent medium from osteogenically differentiation MSCs between Days 1 and 

28. Vertical lines indicate four possible change points separating the stages of differentiation. Points (various 

shapes) represent the model normalized rate of change on a given day (mmol/l/hr). Black lines represent the 

change points detected at less than p = 0.05. Grey line represents 0. Hourly rate of change of concentration 

of model normalized values (mmol/l/hr) per phase of osteogenic differentiation, mean and SEM of B) glucose, 

C) lactate D) glutamine, E) ammonia, and F) glutamate. Red = phase 1, blue = phase 2, yellow = phase 3.  

Table 1. Key metabolite secretion/uptake ratios for all 4 stages of osteogenic differentiation as identified through 

change point analysis. Mean values are shown for all days in each phase normalized values. Expected perfect 

ratios (EPRs) are: glucose/lactate EPR = -0.5 with secretion of lactate and uptake of glucose; glutamine/glutamate 

EPR = -1 with higher number associated with higher use of glutamate, and glutamine/ammonia EPR =  -1, with 

secretion of ammonia and uptake of glutamine. A negative sign is indicative of  1) lacatate secretion and glucose 

uptake from the medium, 2) Glutamate  uptake at a high rate and secretion of glutamine. * = glucose and lactate 

were measured as secreted over this phase 

Phase Glucose/Lactate Glutamine/Glutamate Glutamine/Ammonia 

1 (Days 1-4) -0.209 -2.620 -0.444 

2 (Days 5-15) 0.088* -38.299 -0.374 

3 (Days 16-28) -0.908 -1.843 -0.284 

 

3.7 13C-glucose mean label enrichment suggests an anaerobic switch following day 9 of osteogenic 

differentiation 

While offering good temporal resolution, our extracellular data lacked sensitivity. In order to support 

that altered metabolic phenotypes during osteogenic differentiation are defined by changes to 

glycolysis we fed cells with uniformly labelled 13C glucose and traced the label to lactate at timepoints 

that fell within the phases proposed by the changepoint analysis (Figure 5). Label enrichment in glucose 

was near to 100% (>0.999) and was 95-97 % in spent medium during differentiation. A trend towards 

lowered glucose uptake into the cells was observed up until day 16 although this was not statistically 
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significant (Figure 5A). 13C lactate however increased over the first three time points (going from 71.8% 

to 81%) and dropped at day 16 (65%-72%) indicating an increase and subsequent slow down to 

glycolysis during differentiation.  

 

 

Figure 3. Mean % 13C-glucose label enrichment in intra-and extracellular glucose and lactate. Day 0 

of glucose is label enrichment in unused medium, which is near to 1 or 100%. Shown is average value (n=3) 

with SD.  Data is normalized to cell quantity. 

 

We also observed 13C label enrichment from glucose in uridine diphosphate glucose (UDP-Glu) that is 

derived from the glycolytic intermediate glucose-6-phosphate. UDP-glu is substrate for glycogen and 

glycan synthesis and consists of a pyrophosphate group, pentose sugar ribose, glucose, and the 

nucleobase uracil. The M+6 and M+11 isotopologues of UDP-Glu can be used to gain insight into 

glycolytic and pentose phosphate pathway activity on account of the hexose and pentose moieties, 

respectively. Specifically, the hexose in UDP-glucose originates from glycolysis and because the only 

source of glucose available to the cells is from the added 13C labelled glucose in the media, the % 

isotopologue distribution of the M+6 isotopologue of UDP-Glu is an indicator of glycolytic activity. 

Similarly, the M+11 isotopologue of UDP-Glu consists of both labelled glucose from glycolysis and the 

ribose originating from the pentose phosphate pathway (PPP).  

 

UPD-Glu concentration fluctuated during differentiation although changes observed were not 

statistically significant (Figure 6B). Somewhat surprisingly, the mean 13C label enrichment (Figure 6 A) 

dropped steadily up until day 16, as opposed to lactate although these were not statistically significant. 

Label enrichment into the M+6 isotopologue however increased steadily up until day 16  (Figure 6C) 

while the M+11 isotopologue decreased over the same period (Figure 6D) indicating increased 

glycolytic flux and decreased pentose phosphate pathway flux, respectively.  

 

Like UDP-Glu, UDP-nAcGlu is derived from glycolysis albeit via frucose-6-phosphate and the 

hexosamine biosynthetic pathway and can be used as a proxy to estimate flux through glycolysis and 

the PPP. Isotopologue distribution patterns for UDP-nAcGlu mirrored those seen for UDP-Glu 

(supplementary Figure S4).  Combined, the changes observed in lactate excretion during differentiation 

along with changes to isotopologue enrichment are indicative of glycolytic flux changes and altered 

flux into peripheral metabolic pathways including glycan synthesis and the pentose phosphate 

pathway. 
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Figure 4. Isotopologue distribution of UDP-Glucose supports increased glycolysis during osteogenic 

differentiation. A) Absolute Concentration of UDP-glucose in unlabeled intracellular data (n = 3, SD), B) 

Mean 13C-glucose label enrichment (n = 3, SD), C) Average % isotopolouge distribution of the M+6 

isotopolouge for UDP-glucose  (n = 3, SD). D) Average % isotopolouge distribution of the M+11 

isotopolouge for UDP-glucose (n = 3, SD). * P <0.05. S.I. = signal intensity. 

 

3.9 Mitochondrial activity increases as differentiation progresses and is significantly different between 

suggested phases. 

One reason for changes to glycolytic activity is enhanced reliance on TCA cycle driven respiration. 

Mitochondrial activity and aerobic metabolism have been shown to increase as osteogenic 

differentiation progresses [11], [12], [15]. Our metabolomics approach did not capture intermediates 

within the TCA cycle.  Therefore we investigated 13C-glucose label enrichment in aspartate and 

glutamate that can only be derived from glucose via oxaloacetate and alpha ketoglutarate, respectively. 
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Figure 5. Mean label enrichment for 13C-Glucose labelled A) Aspartate (n = 3, SD) and B) Glutamate (n = 

3, SD),.  * P<0.05,, ***P<0.0001, ****P<0.00001  

 

An increase in 13C incorporation into aspartate was observed with time prior to a slight drop between 

day 16 and day 28 (Figure 8) consistent with an overall increase in glucose derived carbon flux via 

oxaloacetate. Changes in enrichment were measured to be significant between the proposed three 

phases (p-value = 0.0001 day 3 vs. day 9, p-value = 0.0002 day 3 vs. day 28 and p-value = 0.0172 day 9 

vs. day 16). 13C label incorporation into glutamate was not as clear although a an increasing trend was 

observed. In particular however, increased label was observed in glutamate at day 28 and label 

incorporation was different for the proposed metabolic phases (p-value = 0.0131 day 3 vs day 28, p-

value = 0.0199 day 9 vs day 28). See supplementary table S6 for all comparisons. Combined the 

enrichment patterns of aspartate and glutamate are indicative of changes to TCA cycle flux concomitant 

with the decrease in glycolysis as osteogenic differentiation progresses. 

 

In order to investigate if these changes were associated with altered glutaminolysis as hypothesised 

from the changepoint analysis, we fed the cells with uniformly labelled 13C or 15N glutamine and again 

traced label incorporation to glutamate and aspartate.  The mean enrichment of 13C label in intracellular 

glutamine was quite variable (Figure 6 G)) and no statistically significant changes in label enrichment 

were observed during differentiation. Nevertheless, a trend in label enrichment in the m+5 

isotopologue of glutamine increased up until day 16. This trend was mirrored in the m+5 isotopologue 

of glutamate (Figure 6 F)) and coincided with a drop in the total intracellular concentrations of 

glutamine and glutamate (see supplementary figure S6 G)-H)) consistent with enhanced demand for 

extracellular glutamine.  15N label incorporation into glutamate and aspartate similarly increased at day 

16 consistent with altered glutaminolysis (see supplemental figure S5). 
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Figure 6 | 13C-glutamine enrichment in glutamate, aspartate and glutamine with isotopolouge 

distribution is consistent with increased need for extracellular glutamine as differentiation 

progresses.  A) Mean enrichment of 13C-Glutamine in intracellular Aspartate (n = 3, SD), B) 13C-

Glutamine m+2 isotopolouge distribution for Aspartate  (n = 3, SD), C) 13C-Glutamine m+4 

isotopolouge distribution for Aspartate (n = 3, SD), D) Mean enrichment of 13C-Glutamine in 

intracellular Glutamate (n = 3, SD), E) 13C-Glutamine m+3 isotopolouge distribution for Glutamate 

(n = 3, SD), F) 13C-Glutamine m+5 isotopolouge distribution for Glutamate (n = 3, SD) , G) Mean 

enrichment of 13C-Glutamine in intracellular Glutamine (n = 3, SD), H) 13C-Glutamine m+4 

isotopolouge distribution for Glutamine (n = 3, SD), I) 13C-Glutamine m+5 isotopolouge distribution 

for Aspartate (n = 3, SD)  

 

3.5 Intracellular metabolomics validate metabolic stages of osteogenic differentiation 

To confirm results from the change point analysis and screen for additional changes in metabolism, we 

performed untargeted intracellular metabolomic analysis of cells undergoing osteogenic differentiation 

at the 5 different time points based on the results (n=3 in all instances).  

 

Untargeted peak identification yielded a total 1682 mz values. One way ANOVA statistical analysis 

yielded a total of 1064 mz values that were significantly enriched (p<0.05, data normalised to cell 

content) between at least one of the comparisons of interest. After using Tukey‘s HSD post hoc test 

(THSDpht) analysis to correct for multiple comparisons total number of significant metabolites (p<0.05) 

was reduced to 1041 mz values (Table S3). We visualized these differences by PLSDA (Figure 7). 

Separation with time was captured by principle component 1. With respect to the three proposed 

metabolic phases from the changepoint analysis, grouping was observed between day 9 (phase 2) and 

day 28 (late phase 3). Day 9 (phase 2) however overlapped with day 16 (start of phase 3). A clear 
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separation between day 3 and 6 (phase 1) with respect to day 28 was also seen. A slight overlap between 

day 6 and day 16 was also observed. In general the results support discrete metabolic phases during 

osteogenic differentiation. 

 

 
Figure 7 | PLSDA visualization of m/z values with significantly different ion intensities during 

osteogenic differentiation. Ellipses indicate 95% confidence intervals. An overlap in confidence intervals is 

present for day 6, day 9 and day 16– however when observing day 3, day 9 and day 28 (timepoints firmly within 

the suggested phases) the overlap is less prominent.  Data were normalized to protein abundance and scaled prior 

to analysis. 
 

We next associated identified m/z values with metabolic pathways and specific metabolites using the 

mummichog algorithm [30]. We filtered the list of statistically significant m/z features due to the 

workload involved in validating hundreds of m/z feature annotations. Specifically, out of the 1041 

significant m/z values identified, different m/z features were found discriminate between the different 

days. However, a total of 57 common m/z features were found to discriminate day 3 vs. day 28, day 9 

vs. day 28 and day 3 vs. day 9. Emphasis was put on annotating the 1041 significant m/z (supplementary 

table S7) values by manually validating the computationally proposed mummichog annotations by 

comparison to an in-house spectral library with respect to peak retention time and MSMS 

fragmentation.  The mummichug algorithm provided annotations for 22 of these m/z values 

(supplementary Table S8). A total of four m/z features could be validated with high confidence 

corresponding to lysophosphatidyl choline (LPC) 16:0, LPC 18:0 and oxidized and reduced glutathione 

(Figure 8). 
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Figure 8 | Changes in absolute intracellular concentration levels for A) LPC18:0, B) LPC16:0 and C)-D) glutathione 

during differentiation. All metabolites show changed levels across the time observed. * P<0.05, ** P<0.0099. Shown area average 

values (n=3, SD). S.I. = Signal Intensity.  F) Volcano Plot showing fold changes for intracellular untargeted metabolites between 

day 28 and day 3 during osteogenic differentiation. LPC18:0, LPC16:0 shown as green triangles, glutathione as orange squares. 

Log2FC = Base 2 logarithmic value of calculated fold change.  

 

LPC18:0 decreased between day 3 and day 28 (p-value = 0.0083) similar to LPC16:0 (p-value = 0.0131). 

Reduced glutathione decreased steadily between days 3 and day 28 (p-value = 0.0052) while oxidized 

glutathione dropped at day 28 as compared to day 3 (p-value = 0.079) and day 9 (p-value = 0.0099). 

Other p-values can be found in supplementary table S6. Finally, we re-analysed our 13C glucose and 13C 

glutamine precursor experiments focusing on glutathione. These analyses indicated that glutathione 

synthesis from glucose derived carbon increased during differentiation (Figure 9A)). Carbon 

contribution from glutamine remained stable although a similar trend to that observed for glutamate 

(Figure 6F)) was observed in the m+5 isotopologue of glutathione (Figure 9D)). Combined these results 

are indicative of altered lipid metabolism and changes to redox potential and are consistent with 

changes to mitochondrial respiration during differentiation. 

 

F) 
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Figure 9 | Mean label enrichment for A) 13C-glucose and B) 13C-glutamine in intracellular 

glutathione, with C)-F) isotopolouge distribution for 13C-glutamine. Shown area average values (n=3, 

SD). 

 

3.10 Gene expression analysis indicates major changes in cellular function during osteogenic 

differentiation 

 

Towards a better understanding of the molecular mechanisms behind osteogenesis differentiation and 

observed metabolic changes, we sought to quantify which transcriptional changes occurred along with 

this transition.  

 

We sampled cell cultures on days 3, 6, 16 and 28 for RNA sequencing. We performed transcriptome 

quantification and gene differential expression calling with kallisto and DESeq2 respectively[22], 

[34].  Furthermore, we filtered out differentially expressed genes (DEGs) that (i) were lowly expressed, 

(ii) showed relatively small fold-change (FC) differences, (iii) had highly variable expression across 
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biological replicates, and (iv) had inconsistent expression between patients—see Methods for details—

resulting in a total set of 1,106 DEGs across all experimental conditions (Suppl. Info. Table SIT1). 

 

We sought to investigate the major sources of variation in the set of DEGs. We used principal 

component analysis (PCA) to project all samples into the two principal components (PCs) that 

maximized data variance. We found that differentiation time strongly associates with PC1 (52% of total 

variance), indicating that differentiation trajectory is the major experimental source of transcriptome 

variation (Fig. 10A). PC2 (10% of total variance) discriminates samples from two patients on the last 

differentiation time point (Day 28), indicative of a smaller divergence in cell differentiation trajectories 

between these two patients. Therefore, we conclude that cell differentiation is the major source of 

transcriptome variation and that trajectory divergence between two particular patients accounts for a 

smaller secondary source of variation. 

 

Next, we pursued to characterize the transcriptional changes associated with the differentiation 

process. Towards this goal, we identified the set of DEGs and their associated cellular functions 

between the last and first sampled time points. In later stages of differentiation, we found 488 

upregulated DEGs of which 25 are transcription factors (TFs) and 81 metabolic genes (MGs). Similarly, 

we found a total set of 453 downregulated DEGs containing 12 TFs and 81 MGs (Fig. 10B and Suppl. 

Info. Table SIT2). We further explored which cellular pathways are associated with DEGs using gene 

set ontology enrichment analysis (see Methods). 

 

The top three most upregulated TFs are FOS, RORB and NR1D1 with a fold-change of 54, 24 and 15, 

respectively. Other key upregulated TFs are PPARG, BCL6, FOXO1, CEBPD and NFYB. Different 

subsets of these TFs associate with enriched ontologies along three main cellular axes: inhibition of cell 

death (FOXO-mediated transcription of cell death genes), signalling (interleukin-4 and interleukin-13 

signalling) and metabolism (regulation of lipid metabolism by PPARα). Suppl. Info. Table SIT3 

contains all found enriched ontologies. With respect to metabolic genes, the top three most upregulated 

genes are ADH1B, APOE and MAOA with a fold-change of 52, 50 and 36, respectively. Other 

upregulated genes encoding influential enzymes are PTGDS, GPX3, PDK4, SOD2 and DGAT2. In this 

gene set, ontology analysis revealed enriched functions revolving around lipid metabolism 

(chylomicron clearance, steroid hormone, arachidonic acid and fatty acid metabolisms), compound 

functionalization and biological oxidation and iron uptake and transport. In addition to TFs and 

metabolic genes, we identified an upregulated set of 382 other genes. Examples of this set are IGF2, 

IL1RL1, FGF7, and TLR3 with a fold-change of 37, 36, 16, and 2, respectively. We would highlight four 

enriched functions in this set: degradation of the extracellular matrix, interferon and insulin-like growth 

factor signalling and regulation of the complement cascade. In summary, this set of 488 upregulated 

DEGs reflects the profound biological shift occurring during the process of osteogenic differentiation.  

 

Just as functionally important as gene upregulation is gene downregulation. Thus, we also determined 

which genes and biological functions are repressed between the late and early stages of differentiation. 

The top three downregulated TFs are MYBL2, FOXM1 and E2F1 with a fold-change of 13, 9 and 8, 

respectively (Suppl. Info. Table SIT2). Other key downregulated TFs are OSR1, HMGA2 and DNMT1. 

The last two genes encode proteins that regulate chromatin accessibility which suggests ongoing 

chromatin rearrangements. Furthermore, OSR1 is a direct target of RUNX2 [35] and its negative 

regulation is key for osteoblastic differentiation[36]. With regard to metabolic genes, the top three most 

downregulated genes are RRM2, PKMYT1 and UBE2C, with a fold-change of 21, 17 and 16, respectively. 

Collectively, cell cycle-related functions are overwhelmingly enriched in this set of downregulated 

genes: G2/M transition, mitotic anaphase, regulation of mitotic cell cycle, DNA replication initiation 

and centrosome maturation are just a few examples of the biological functions significantly enriched in 

the set of repressed genes in later stages of differentiation (Suppl. Info. Table SIT3). Selected examples 

of downregulated genes that align with these functions are CDK1, CDC25A and POLE. Furthermore, 
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we noted other enriched functions, e.g., metabolism of carbohydrates, reduction of cytosolic Ca2+ levels 

and solute-carrier mediated transmembrane transport. Particularly interesting is the downregulation 

of SLC25A10, a gene that encodes the mitochondrial dicarboxylate carrier, which transports 

dicarboxylates such as malonate, malate, and succinate across the inner mitochondrial membrane, thus 

potentially regulating key metabolic pathways like gluconeogenesis and fatty acid biosynthesis among 

others. Aside from TFs and metabolic genes, we identified a downregulated set of 360 other genes. This 

set is also consistently enriched in functions related to cell cycle progression. Moreover, other key 

factors of this set known to be implicated in osteogenic differentiation are IL6 and CXCL12 [37], [38]. In 

summary, this set of 453 downregulated DEGs reflects a substantial reduction in cell cycle progression 

during osteogenic differentiation.  

 

Fate decision of mesenchymal stem cells to either adipocytes or osteoblasts is controlled by many 

factors including the interplay between RUNX2 and PPARγ [39]. Consequently, we sought to quantify 

the temporal expression profile of RUNX2 and PPARG. We visualized both RUNX2 and PPARG 

expression levels across time (Fig. 10C). We found that PPARG expression pattern is increasing, starting 

from 4 transcripts per million (TPM) on Day 3, to 17 TPM on Day 28 (adjusted P < 2 × 10−12 and adjusted 

P < 5 × 10−12 for two patients, respectively). RUNX2 instead, while it also increases from 14 TPM to 27 

TPM, its temporal profile is mainly flat with a sharp increase from Day 3 to Day 6. RUNX2 Day 28 vs 

Day 3 contrast is significant only for one patient (adjusted P = 6.00 × 10−2 and adjusted P = 6.44 × 10−3 for 

two patients, respectively) and did not pass our fold-change filter (abs log2 FC > 1). Altogether, while 

both genes have a higher expression in the late stages of our experiment, the increasing trend for 

PPARG is more considerable than for RUNX2. This observation is in contradiction with the role of 

RUNX2 as a determinant of osteogenic fate in mesenchymal stromal cells and PPARγ as a counterpoint 

determining adipogenic fate [40], [41]. We propose several possible scenarios to reconcile this 

observation: (1) RUNX2/PPARG transcriptional toggle switch occurred much earlier than Day 3 and 

therefore we observed a stage already committed for these two master regulators, (2) RUNX2/PPARγ 

activity may be predominantly controlled by post-transcriptional modifications, e.g., MAPK-

dependent phosphorylation status [42], and (3) changes in other activating/repressing factors. For 

example, we found upregulation of both CEBPB and CEBPD, which are vital for both adipogenic [43], 

[44] and osteogenic identity [45], [46]. In parallel, two PPARγ coactivators are differentially expressed, 

but in opposite directions: PPARGC1A is upregulated (from 0 to 8 TPM; log2 FC = 3.17) and PPRC1 is 

downregulated (from 30 to 7 TPM; log2 FC = -1.95). These findings suggest that mesenchymal stromal 

cells commitment to either osteogenic or adipogenic fates is a rather complex decision involving 

multiple molecular regulators and interactions at various regulatory levels, ranging from genomic to 

transcriptional and post-translational mechanisms. 
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Figure 10 | Expression analysis indicates major transcriptional changes. A. Principal component 

analysis projection of sampled transcriptomes. PC, principal component. B. Scatter plot of differentially 

expressed genes between last (Day 28) and first sampled (Day 3) time points. Transcription factors are 

highlighted as large orange dots; metabolic genes as large green dots. FC, fold-change; TPM, transcripts per 

million. C. Expression profiles for RUNX2 and PPARG.  

 

3.11 Regulatory influence inference reveals a cell state switch 

 

Gene regulatory influence inference methods identify regulators of transcriptional response [47]. We 

took such an approach to infer which regulators, in this case, transcription factors (TFs) control the 

observed transcriptional changes during osteogenic differentiation. First, we determined regulon 

memberships. We defined a regulon as a set of expression coherent target genes that all share a binding 

site for a given TF and collectively correlate to such TF expression (see Methods). We identified 111 

regulons involving 111 TFs and 469 corresponding target genes. We observed a typical regulon size of 

nine target genes, ranging from as low as two and up to 123 target genes. We assigned regulons 

identifiers using the name of the regulator plus the number of target genes separated by a dot, e.g., our 

largest regulon, E2F8.123, consists of 123 target genes regulated by the transcription factor E2F8. All 

regulon memberships including their activity across sampled differentiation time points are provided 

as Suppl. Info. Table SIT4. We visualized regulon activity over time (Fig. 11A). We observed an 

evident switch pattern where a set of 60 regulons shifted from active to inactive while 51 other regulons 

followed the inverse transition. More than 50% of upregulated regulon target genes are controlled by 

just six TFs: ZNF521, FOXC1, PRRX2, TGIF1, ARID5B and OSR2. ZNF521, the controller of the largest 

upregulated regulon ZNF521.45, is a negative regulator of the adipogenic differentiation fate in 

mesenchymal stem cells[48]. FOXC1, PRRX2, TGIF1 and OSR2 are all known regulators of osteogenic 

differentiation [49]–[52]. However, ARID5B had not been yet implicated as a regulator of osteogenic 

differentiation to the best of our knowledge. Regarding the downregulation response, just three E2Fs 

(E2F1, E2F4 and E2F8) control up to 59% of all downregulated regulon target genes. E2Fs are well-

known regulators of cell-cycle progression, apoptosis and DNA synthesis [53], which aligns well with 

our previous findings from the ontology analysis on downregulated DEGs (Suppl. Info. Table SIT3). 

E2Fs role in specifying either osteocyte or adipocyte cell fates is still unclear with positive and negative 

influences from different family members at different stages of differentiation which complicates a 

simple interpretation of this finding [54], [55]. Furthermore, we show in Fig. 11B selected examples of 

regulon profiles across time including the TF and their target genes expression. The activity profiles of 

only three regulons do not strictly match a switch pattern: NFATC4.6, POU6F1.3 and ZFP90.2 display 

an early strong upregulation with a slower relaxation to near basal levels. From a systems perspective, 
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we observed a fairly ordered system at both early and late differentiation time points, with regulon 

activity constrained to either on or off states. On the contrary, intermediate time points manifest a much 

higher system entropy with regulons exploring a broad range of activity levels. This pattern is 

consistent with a critical state transition before a bifurcation point [56] and has been experimentally 

observed in other differentiation systems [57]. Overall, regulatory influence inference revealed a 

transcriptional state switch in osteogenic differentiation of mesenchymal stromal cells.  

 

TFs regulate target genes which may also be TFs potentially establishing a network of regulatory 

influences with simple but functionally rich network structures like network motifs [58]. In order to 

determine the network structure of regulatory influences in the osteogenic differentiation process, we 

considered a directed edge between two given TFs A and B if A (as the node tail) is the TF of a regulon 

and B (as the head node) is one of its target genes. We built a network of 28 TFs and 26 TF-TF regulatory 

influence interactions which collectively control 303 target genes (Fig. 11C). We observed regulatory 

cascades, e.g., ZBTB47 ➜ JDP2 ➜ TSC22D1; nodes integrating information from multiple upstream 

nodes, e.g., CEBPB integrates regulatory influences from four other TFs; subnetworks very close to bi-

fans, as FOXC1, TBX15, KLF11 and FOXO1 are one interaction away from the bi-fan motif; and denser 

and more complex interacting subgraphs, e.g., the downregulation response influence component with 

nodes integrating information from multiple nodes and concurrently regulating various other nodes. 

Conclusively, we found a rich network of regulatory influences controlling the osteogenic 

differentiation of mesenchymal stromal cells. This network has the potential to inform future 

perturbation experiments to validate the identity of presented master regulators, ultimately facilitating 

control of the differentiation process. 
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Figure 11 | Gene regulatory influence inference reveals a transcriptional switch in osteogenic 

differentiation. A. Regulon activity heatmap. B. Expression profile of selected regulons. Each line depicts a 

gene expression profile: black thick lines correspond to the regulon TF, other lines correspond to regulon target 

genes. C. TF-TF network. Each node represents a TF. Node size maps to the number of target genes of a 

particular regulator. Red and blue colours indicate transcriptional upregulation and downregulation, 

respectively. Directed edges denote inferred transcriptional influences 

 

4. Discussion 

 
Currently, a barrier to the development of MSC therapeutics is a lack of in depth understanding of the 

changes occurring within the metabolic processes that are underlying osteogenic differentiation and 
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proliferation [59]. In this study we utilized limited extracellular metabolites to put forth a hypothesis 

regarding timepoints of particular metabolic shifts and then used said hypothesis to execute more 

detailed metabolic studies around those focused time points with the goal of observing where the 

changes or differences lay. 

 

4.1 Increase in mitochondrial activity following day 9 – a possible point of enhancement? 

Through analysis of a limited number of extracellular metabolites an initial hypothesis, based on 

change point analysis, suggested 2 metabolic switches to be in place over the course of 28 days of 

osteogenic differentiation (splitting the time into three phases). When looking into broader changes via 

untargeted analysis of intracellular metabolites, a further support for this initial hypothesis was seen. 

A separation between days 3, 9 and 28 (see figure 7) was observed, with a clear distinction between day 

3 and day 28, and day 9 and day 28. The overlap observed between days 3, 6, and 9, despite going 

against our original hypothesis, is in concurrence with other reports of metabolic behavior of MSCs 

during osteogenic differentiation [60]. The clustering of day 16 with the first three time points is 

unexpected given the knowledge gained from literature and suggests possible benefits in taking a more 

detailed look at changes occurring between day 16 and day 28. 

However, elaborating on these results with more detailed labelling experiments, intracellular 

metabolomic analysis enabled us to identify one clear switch following day 9. The labelling results 

confirmed changes in glycolysis and increased mitochondrial activity, with cells diverting more glucose 

into the TCA cycle, indicative of a switch in metabolism. This shift into aerobic metabolism has been 

shown in several other studies [11], however the smaller window of change time identified in this paper 

can help with further focus of more detailed studies and identification of ways to enhance osteogenesis 

of MSCs and specific timepoints where such intervention may proof most beneficial.  

For example, it has been shown that mitochondrial dysfunction impairs osteogenesis, increases the 

activity of osteoclasts and so can accelerate age related bone loss (i.e. osteoporosis)[61]. A similar 

observation has been made regarding osteoarthritic (OA) human articular chondrocytes. There 

mitochondrial mass within OA chondrocytes increased whilst a higher proportion of the cells had de-

energized mitochondria, with reduction in activity of complexes II and III observed when compared to 

normal chondrocytes [62]. Coenzyme Q10 has been observed in research to inhibit aging of MSCs [63], 

[64] and to improve mitochondrial function and so relieve disease symptoms [65], [66]. It might thus 

be relevant follow up to this research to see if by supplementation of Coenzyme Q10 around day 9 

during osteogenic differentiation the differentiation of MSCs could be enhanced via increased 

mitochondrial function. 

 

4.2 Increased glycolysis followed by decreased PPP flux as differentiation progresses 

Another change observed regarding metabolism of MSCs during osteogenic differentiation was 

lowered flux through PPP. This was indicated by labelling experiments, when looking at the temporal 

changes in isotopolouge distribution differences between M+6 and M+11 isotopolouges for 13C-glucose 

labelling for both UDP-glucose (figure 4) and N-acetyl-UDP glucosamine (supplemental figure S4) both 

indicated a similar behaviour. In both instances the label enrichment into the M+6 isotopolouge 

(derived from glycolysis) increased temporally whilst label enrichment into M+11 (which consists of 

glucose from glycolysis and ribose derived from the PPP) decreased in a significant manner during that 

same time period, indicating decreased label enrichment coming from the M+5 isotopolouge and so a 

decreased flux through the PPP. 

It has been shown in at least one other paper that for proliferating cells, activation of glycolysis 

accompanied by high activity of PPP is the preferred metabolic state [67] and as the PPP is responsible 

for generating NADPH that is used in reductive biosynthesis (e.g. fatty acid and ribose synthesis) its 

active flux can be reasoned to be necessary for MSC proliferation. One other research has additionally 

shown that for MSCs undergoing osteogenesis multiple cell layers are formed during the 

differentiation progression [60], reporting a rapid cell proliferation occurring over the course of the first 

week before stopping by the end of week 2. This would indicate a necessity for maintenance of high 
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flux through the PPP at least for the first seven days of differentiation which goes directly against what 

our label incorporation results indicate. There, flux through glycolysis increases (presented by glucose 

label incorporation) whilst, seemingly, flux through the PPP decreases. Despite this decrease the total 

protein amount measured in our BCA assays increased during the differentiation period. Based on 

these findings and the way they seem to contradict results reported in the already mentioned papers it 

suggests that further research into the temporal changes to the PPP and its role in osteogenic 

differentiation and MSC proliferation are necessary.  

 

4.3 Temporal changes in glutaminolysis and TCA-cycle activity 

When metabolic pathway analysis was utilized, a shift in redox balance during differentiation was 

observed with both oxidized and reduced glutathione decreasing over time.  

Glutathione plays an important role when it comes to the ability of cells to manage oxidative stress, is 

important for proper function of oxidative phosphorylation (and thus mitochondrial respiration) and 

is reliant upon glutaminolysis. Glutathione levels are additionally tied into the activity level of the PPP, 

but the PPP provides NADPH that enables the maintenance of the reduced form of glutathione and so 

aids in managing oxidative stress or the redox potential of the cell. It therefore follows that an 

observation of reduced PPP activity is accompanied by observation of reduction of intracellular 

glutathione, specifically the reduced form (GSH).  

When reanalyzing 13C-glucose label incorporation with respect to glutathione, label incorporation 

increased as differentiation went on indicating an increased synthesis of glutathione from glucose 

derived carbons – supportive of the earlier results of an increased glycolytic flux compared to flux 

through the PPP. An increase into the M+5 isotopolouge of glutathione for 13C-glutamine label 

enrichment was also seen, similar as the carbon contribution from glutamine into glutamate observed 

over the course of differentiation. This in conjunction with results for both 13C and 15N labelled 

glutamine label incorporation into glutamate and aspartate suggest altered glytaminolysis and an 

increased flux into the TCA cycle as had been suggested before [11]. All suggests increased involvement 

of mitochondrial respiration which has been reported as essential for successful osteogenesis.  

 

4.4 Unexpected changes in lipolysis suggest next steps 

The metabolic pathway analysis revealed a slightly surprising result in that changes to lipolysis during 

differentiation were observed during untargeted analysis (see figure 8).  

No additional lipidomics were performed as a part of the research for this paper but these results 

suggest it as a tantalizing future direction to take in order to explore other metabolic pathways 

significantly involved in metabolic changes observed during osteogenic differentiation. 

It has been reported that in order for normal skeletal homeostasis to be preserved osteoblasts need to 

be able to utilize lipids for energy and so mitochondrial long chain fatty acid oxidation has to be active 

[68]. Additionally, as has been reported, since during osteogenesis MSCs continue proliferating that 

requires synthesis of new membranes that largely consist of lipids and so changes in lipolytic function 

and utilization or need for fatty acids are a reasonable expectation. Tied together with a seemingly 

increased need for energy as osteogenesis progresses fatty acid oxidation during osteogenic 

differentiation and the temporal changes in lipidomics provide an interesting avenue to look into as a 

next step. 

 

 4.5 Upregulated lipid metabolism and downregulated cell-cycle related anabolic activity observed 

via DEGs.  

The addition of gene expression analysis lent further support to the notion of distinct cell metabotypes 

existing throughout the differentiation period with clear indicator of differentiation progression being 

the major experimental source for the transcriptome variation observed. Furthermore, the upregulation 

observed in the regulation of lipid metabolism (e.g. fatty acid metabolism) on top of the changes in 

lipolysis gained from metabolomic data highlights the apparent importance of fatty acids as a source 

of energy for successful osteogenesis reported in literature [68]. With the indications of lipolytic 
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importance observed from both the data and the literature, addition of lipidomics to the data analysis 

in order to get a more comprehensive view of what metabolic pathways play a vital role in successful 

osteogenesis seems of even greater importance. The apparent mismatch between measured protein 

content (cell mass) throughout the differentiation and the observed downregulation of cell cycle related 

activity and matching decrease in flux through pathways connected to proliferation also requires 

further validation. Linking the DEGs with observed changes in metabolite concentrations and 

metabolic flux to see how coherently gene expression matches enzyme and subsequent 

protein/metabolite activity may help to identify perturbation experiments that may result in an actual 

desired phenotypic change.  

 

The regulatory network shown to exist in this paper both highlights the complexity involved in the 

control of osteogenic differentiation and the importance of accurate identification of master regulators, 

at the same time as it offers a way to predict downstream metabolic and functional effects that can be 

gained from well informed perturbation experiments. 

 

5. Conclusions 

In conclusion, the changes observed in our study support distinct differences between early- and late-

stage osteogenesis on both metabolic and transcriptomic level: there is an initial preparatory and 

proliferation stage, coinciding with high ALP activity, while later there is a plateau stage with lower 

ALP activity and possibly higher calcium accumulation. Our metabolomic analysis further supports 

these two stages, and preliminary results using general differential gene expression analysis indicate 

the possibility of three stages with a transcriptional state flip occurring between initial and last steps. 

Future functional work will be needed to fully define the relationships between transcriptomic, 

metabolic and functional changes. The current experiments also showed a high degree of inter-donor 

variability, with respect to both metabolism and osteogenic outcome. Further work to understand these 

differences will hopefully lead to the identification of metabolic biomarkers or master regulators for 

successful osteogenesis, and possibly to interventions for increasing the success rate. Furthermore, it 

may be interesting to explore the observed lipolytic changes and related mitochondrial activity in a 

continuous manner around suggested time points of interest through such technology as Seahorse [69], 

[70] technique and explore if by impacting the mitochondria in a positive manner can lead to a faster 

progression of osteogenesis. Such experiments would improve our understanding of how metabolism 

impacts the ability of cells to differentiate.  
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Since their initial discovery in 1976, mesenchymal stem cells (MSCs) have been
gathering interest as a possible tool to further the development and enhancement of
various therapeutics within regenerative medicine. However, our current understanding
of both metabolic function and existing differences within the varying cell lineages (e.g.,
cells in either osteogenesis or adipogenesis) is severely lacking making it more difficult to
fully realize the therapeutic potential of MSCs. Here, we reconstruct the MSC metabolic
network to understand the activity of various metabolic pathways and compare their
usage under different conditions and use these models to perform experimental design.
We present three new genome-scale metabolic models (GEMs) each representing a
different MSC lineage (proliferation, osteogenesis, and adipogenesis) that are biologically
feasible and have distinctive cell lineage characteristics that can be used to explore
metabolic function and increase our understanding of these phenotypes. We present
the most distinctive differences between these lineages when it comes to enriched
metabolic subsystems and propose a possible osteogenic enhancer. Taken together, we
hope these mechanistic models will aid in the understanding and therapeutic potential
of MSCs.

Keywords: GEM, MSCs, osteogenesis, metabolic reconstruction, adipogenesis, metabolic differences

INTRODUCTION

Mesenchymal stem cells (MSCs) originate in the mesenchymal germ layer of the embryo and can
be isolated from various adult tissues, including bone marrow, adipose tissue and skeletal tissue
to name a few. In vitro MSCs are a heterogeneous population of cells that can be expanded and
differentiated to chondrocyte, adipocyte and osteocyte lineages (Liu et al., 2006). MSCs have been
used as tissue replacements with mixed results but recent studies suggest that their paracrine effect
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may be of greater clinical importance (Rosenbaum et al., 2008;
Duijvestein et al., 2010; Mohyeddin Bonab et al., 2012; Campana
et al., 2014; Goldberg et al., 2017; Sigmarsdóttir et al., 2020).
The differentiation of MSCs is characterized by chemical and
mechanical signals (such as changes to available metabolites,
Croitoru-Lamoury et al., 2011; Buravkova et al., 2013) and
changing metabolic capabilities (Chen et al., 2008).

This study focuses on MSCs during expansion, early
osteogenesis and early adipogenesis because of the potential
utility of the cells as immune-modulators (Aggarwal and
Pittenger, 2005; Gan et al., 2008; Waterman et al., 2010; Neman
et al., 2012; Valencia et al., 2016; Wang et al., 2018; de Castro
et al., 2019) and the intricate inverse relationship that seems to
exist between adipogenesis and osteogenesis. Osteoporosis is a
common and sometimes a severe age related disease condition
that can go on undiagnosed until a major fracture occurs.
“Malfunctioning” of MSCs in osteoporosis pushes cells toward
adipose accretion in the bone marrow at the expense of osteoblast
formation – indicating that under this condition MSC behavior
is altered and the microenvironment disturbed. A similar shift
has been observed to happen under microgravity conditions, as
are seen during space flights (Zayzafoon et al., 2004; Pino et al.,
2012; Phetfong et al., 2016; Han et al., 2019). Understanding
metabolic aspects of this shift may aid in preventing it. Moreover,
understanding metabolic differences between MSCs in expansion
and in osteogenic differentiation will allow optimization of
in vitro expansion and initial in vitro osteogenic differentiation
of MSCs needed for therapeutic techniques to succeed.

Over the past decade as the rate of biological data
generation has increased, data analysis and interpretation has
become a bottleneck of biological discovery (Yurkovich and
Palsson, 2016), necessitating improved modeling and analysis
approaches to organize and interpret data (Becker et al.,
2007; Thiele and Palsson, 2010; Noronha et al., 2018). By
creating a framework to integrate multiple data types (e.g.,
metabolomics, transcriptomics, proteomics, and genomics),
genome scale metabolic models (GEMs) provide a more nuanced
understanding of how the cell achieves a given metabolic state
(Oberhardt et al., 2009; Thiele and Palsson, 2010; Aurich et al.,
2015, 2016; Yurkovich and Palsson, 2016) that can be further
tailored to specific physiological conditions using a variety of
constraint-based reconstruction and analysis (COBRA) methods
(Becker et al., 2007; Orth et al., 2010; Heirendt et al., 2019).

Genome scale metabolic models have been applied to various
biological problems including drug resistance and biomarker
identification and have been explored using these approaches
(Oberhardt et al., 2009; Motamedian et al., 2015; Väremo et al.,
2015). Previously, a GEM of MSC metabolism (iMSC1255) was
developed (Fouladiha et al., 2015) and used to assess the effects
of metabolic environmental changes on chondrogenesis and
proliferation (Fouladiha et al., 2018). However, iMSC1255 is
limited by only including transcriptomic data from proliferating
MSCs and has not considered osteogenesis or adipogenesis
explicitly. Furthermore iMSC1255 was based on Recon1 (Duarte
et al., 2007), a base human metabolic reconstruction that
has been superseded by Recon3 (Brunk et al., 2018). Recon3
includes greater detail of lipid metabolism and glycan metabolism

that are known to be key to the processes of differentiation
that these models will be used to study. To provide an
improved modeling framework to study MSC osteogenic and
adipogenic differentiation this paper describes a new set
of three models that separately describe the metabolism of
expanding MSCs (iMSC_E_1972), osteogenically differentiating
MSCs (iMSC_O_1900), and adipogenically differentiating MSCs
(iMSC_A_2036). These models provide improved metabolic
coverage by using an updated base model from Recon3
(Brunk et al., 2018). The new models were constructed with
publicly available lineage specific transcriptomic data, and new
metabolomics data produced in house from each lineage. By
creating this set of equivalent but separate models, it is possible
to create an in silico laboratory that helps to design experiments
for the cell culture laboratory with a higher probability of success.

Here, we describe three parallel GEMs of MSC metabolism:
during expansion, iMSC-E-1972; osteogenic differentiation,
iMSC-O-1900; and adipogenic differentiation, iMSC-A-2036.
We have benchmarked these models against generic human
metabolic functions, the existing model of MSC metabolism,
iMSC1255, and known metabolic differences between lineages.
We then used these benchmarked models to propose ideas for
optimizing osteogenic differentiation of MSCs that will hopefully
improve our understanding of the mechanisms underlying
these processes.

MATERIALS AND METHODS

Transcriptomic Data Sets
Transcriptomic data were obtained from ArrayExpress
(Kolesnikov et al., 2015). Data sets were selected based on
their relevance to the experimental conditions described below
for collection of uptake and secretion data. The most important
considerations having been lineage of differentiation and the
length of time since the start of differentiation (7 days). See
Table 1 for details of the data sets.

The selected data sets were processed using MATLAB
(Mathworks, Natick, Massachusetts, United States). First, the data
set IDs were converted to Entrez IDs using either DAVID (Huang
et al., 2009; Agarwala et al., 2018) or the chip data from array
expression in combination with MATLAB. These numbers were
then normalized within each data set and re-scaled so that the
magnitude of the range of expression values was like the starting
range (all the data sets had maximal expression values of around
1000 to begin with and this range was approximately maintained)
allowing the data to be pooled.

Metabolic Data Collection
Mesenchymal stem cells were obtained from 5 to 6 different
donors from LONZA (Basel, Switzerland, donors with National
Bioethics committee number VSN19-189). Cells were stored in
liquid nitrogen, thawed and seeded in 175cm2 flask in basal
medium in an incubator at 5% CO2, 37◦C and 95% humidity. For
experiments cells were seeded in 75cm2 flasks at 6000cells/cm2.
Cells were either grown in basal growth medium or osteogenic
differentiation medium. 5000 IU/ml of heparin (LEO Pharma
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TABLE 1 | List of data sets used to create the computational models.

# of set iMSC-E-1972 iMSC-O-1900 iMSC-A-2036

1 Samples and Data < E-MEXP-3046
< Browse < ArrayExpress <
EMBL-EBI, 2018

Samples and Data < E-MEXP-3046
< Browse < ArrayExpress <
EMBL-EBI, 201830

E-MEXP-858

2 E-MEXP-858 E-TABM-318
(“E-TABM-318 < Experiments
Matching “ ‘Mesenchymal Stem
Cell’
” < ArrayExpress < EMBL-EBI,”
n.d.; Ng et al., 2008)

E-TABM-(“E-TABM-
318 < Experiments Matching “
‘Mesenchymal Stem Cell’
” < ArrayExpress < EMBL-EBI,”
n.d.; Ng et al., 2008)

3 E-TABM-318 NA NA

A/Sm Ballerup, Denmark), 1% Penicillin/Streptomycin (Gibco,
Grand Island, NY, United States), and 10% Platelet lysate
(Platome Reykjavik, Iceland) into DMEM/F12 + Glutamax
growth medium (Gibco, Grand Island, NY, United States). This
mixture will hereby be referred to as the basal growth-medium.
The platelet lysate (PIPL) was centrifuged at 5000rpm/4975g for
ten minutes before the supernatant being added to the medium
to remove platelet debris and coagulation. The differentiation
medium also with the addition of dexamethasone (50 µl,
Sigma, Missouri, SL, United States), BMP-2 (50 µl, Peprotech,
Rocky Hill, United States), β-glycerophosphate (108 mg, Sigma,
Missouri, SL, United States), and ascorbic acid (50 µl, Sigma,
Missouri, SL, United States). Cells were used between passage 2
and 6 and care was taken to ensure that at least 5 of the same
donors were used for each lineage. Medium was changed on
average every 48 h.

Baseline and spent medium samples were assayed
for glucose and lactate concentration using an ABL90
blood gas analyzer (Radiometer Medical ApS, Bronshøj,
Denmark). In addition, medium samples were analyzed by
high pressure liquid chromatography mass spectrometry as
described below.

Cell number was determined by trypan blue exclusion and
counting in a hemocytometer and an approximate doubling
time calculated, this was confirmed with estimates from the
literature (Milo et al., 2010). An estimate of dry cell weight
was obtained from the literature (Milo et al., 2010) and the
changes in metabolite concentration per hour per gram of dry
weight were calculated using linear regression in MATLAB. The
resulting estimates of uptake and secretion rate of the measured
metabolites were applied as constraints to the metabolic model as
described below.

Mass Spectrometry
UPLC-MS Analyses were performed with an UPLC system
(UPLC Acquity, Waters, MA, United Kingdom) coupled in
line with a quadrupole-time of flight hybrid mass spectrometer
(Synapt G2, Waters, MA, United Kingdom) as described in Paglia
et al. (2012).

Model Construction
Model construction was performed using the Constraint-based
reconstruction and analysis (COBRA) Toolbox version 3 in

MATLAB, 2017b (Mathworks, Natick, MA, United States).
The GEM Recon3 (Brunk et al., 2018) was used as a
base reconstruction of the global human metabolic network.
We further modified the model to more closely represent
MSC metabolism (e.g., extracellular bile acid metabolism and
drug metabolism) and to include a greater range of glycan
metabolism and lipid metabolism (see Supplementary Table 1).
The version of Recon3 downloaded from VMH.life (Virtual
Metabolic Human n.d.) had already been constrained to be
thermodynamically feasible. We used standard quality checks
from the COBRA Toolbox (Thiele and Fleming, n.d.) to ensure
that the model remained mathematically and biologically feasible
as transcriptomic data were integrated.

We constrained the base model using known medium
composition, the list of additional metabolites detected by mass
spectrometry in basal medium, and data on cell weight and
growth using the Metabotools suite within the COBRA Toolbox
(Heirendt et al., 2019). This was done separately for proliferating
and osteogenically and adipogenically differentiating MSCs.
These three media-constrained models were further constrained
using the transcriptomic data described above with core
reactions those considered important based on the literature (see
Supplementary Table 2) increased to maximal expression and
the GIMME algorithm implemented in the COBRA Toolbox
(Becker and Palsson, 2008). GIMME was selected as it retains
the model growth function. This was considered appropriate
because during the process of expansion and the initial stages of
differentiation modeled here, MSCs are growing. It was ensured
that these models remained mathematically and biologically
feasible and that core reactions were all included. Those
core reactions that were not included were manually added
along with reactions to link them into the model. These
transcriptomically constrained models then had uptake and
secretion constraints added based on mass spectrometry data
with minimal relaxation of these added constraints to allow
a feasible model (the list of rates can be found in Method
labeled Supplementary Data Sheet, see Rxn_fluxes_for_O_model,
Rxn_fluxes_for_E_model, and Rxn_fluxes_for_A_model). Finally,
these models were pruned to give fully functional condition
specific models. The models were then checked for the inclusion
of core reactions and biological feasibility. We validated the three
new reconstructions against the original Recon3 model using
Memote (Lieven et al., 2020).
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The model iMSC1255 was downloaded (Fouladiha et al.,
2015) and used for comparison, for some comparisons the
constraints on uptake and secretion of metabolites were altered
to create three models; expansion, osteogenic differentiation and
adipogenic differentiation.

Model Comparison
Lethal genes and reactions - those essential to produce flux
through the biomass reaction - were determined for each model
using the relevant functions in the COBRA Toolbox. Random
sampling of the solution space for between 50 and 100% of the
optimal biomass reaction flux using the “gpSampler” function
in the COBRA Toolbox (Schellenberger and Palsson, 2009), in
combination with flux variability analysis (FVA) (Gudmundsson
and Thiele, 2010) and flux balance analysis (FBA) (Orth
et al., 2010) with the biomass function as the objective were
used to determine, the range, probability of distribution, and
optimal fluxes through all the model reactions in each model.
These were all performed in the COBRA Toolbox. To explore
possible reactions needed to optimize osteogenesis the relax
reactions function was used. Intersect models including the
reactions of either osteogenesis and expansion or osteogenesis
and adipogenesis were created, the mean random sampled fluxes
for the osteogenic model (with zeros for reactions not in that
model) were assigned as the target state and the intersect model
with expansion or adipogenic bounds was used as the initial state.
An alpha 0.99 was used except where this gave only over 100
reactions to relax, in which case 0.75 was used to achieve lists
of reactions to relax that were of a length that could be easily
explored. Results from these analyses were assessed by subsystem
and gene rule using flux enrichment analysis in the COBRA
Toolbox in MATLAB.

RESULTS

Three comparable models of MSC metabolism representing
expansion, osteogenesis and adipogenesis were built using
publicly available transcriptomic data and parameterized with
newly generated metabolomic data. It was shown that these
models could recapitulate known metabolic differences among
the three cell subtypes and that has allowed the proposal of
novel interventions to optimize osteogenesis that will guide
future investigations.

Metabolomics Data Analysis Indicates
Functional Difference
In order to parameterize the three models of MSC differentiation
extracellular metabolomic data (UPLC-MS) was generated for
each cell lineage. The estimates of uptake and secretion rate
of the measured metabolites were applied as constraints to the
metabolic model, enabling them to be analyzed in the context
of previously published data on metabolic network structure
as summarized in Recon 3 (add in relevant reference), and
MSC transcripts from cells at the relevant stage and lineage of
differentiation (add in references for the array express data sets).

A total of 59 unique metabolites were detected across the three
cell culture lineages. Of these metabolites, 42 were detected in the
expansion samples, 50 were detected in the osteogenic samples,
and 44 were detected in the adipogenic samples. Interestingly,
some metabolites showed opposite trends in the different cell
lineages. For example, asparagine, folate, and fumarate were
taken up only in expanding cells. Ascorbate, aspartate (measured
only in O), glycerol 2 phosphate, glycl groups, palmitate,
histidine, pantothenate, proline and threonine (only measurable
in O) were taken up only in osteogenic cells. Oxoproline,
acetyl carnitine, adenine, adenosine, biotin, phosphocholine,
guanine, phenylalanine, riboflavin, and spermine were taken
up only in adipogenic cells (rate lists can be found in
Supplementary Material). These data were analyzed by applying
them as constraints to the prior knowledge contained in
metabolic networks based on Recon 3 and previously published
transcriptomics data. This allowed us to leverage prior knowledge
to gain greater insights into the likely metabolic changes to
MSCs during differentiation than would have been obtained by
statistical methods.

Newly Reconstructed Models Expand
Coverage of Metabolic Pathways and
Accurately Represent Core Metabolic
Fluxes
Model reconstruction is an iterative process where multiple
type of -omic data are combined and results from experiments
based on model predictions are used to make future predictions
more accurate (Figure 1). As shown in Table 2 the three
models were of similar size with a mean of 6517 reactions,
3674 metabolites and 1969 genes, an increase in size of almost
3-fold compared iMSC1255 (2288 reactions, 1850 metabolites,
and 1259 genes). The three models had a combined total of
7478 unique reactions, of which 212 reactions were unique
to iMSC-E-1972, 151 reactions were unique to iMSC-O-1900,
and 457 reactions were unique to iMSC-A-2036. The ability to
produce extracellular calcium phosphate—an important function
for osteogenic MSCs—was added to the osteogenic model.

iMSC-O-1900 contained fewer genes, reactions and
metabolites compared to the other two final models, a difference
first apparent after implementing the transcriptomic constraint.

The base model, adapted from Recon3D, and the three new
iMSC models were assessed using the memote tool (Lieven et al.,
2020). The iMSC1255 (Fouladiha et al., 2015) scored 31% overall.
This reflected high scores for model consistency but low scores
on annotation. iMSC-E-1972 scored 37%, iMSC-O-1900 48% and
iMSC-A-2036. Again scores were higher for consistency than
annotation, however, annotation was improved. All of the new
models include around 2100 stoichiometrically balanced cycles,
however, given the size of the models this was unsurprising.
The models do not erroneously produce ATP, NAD, or NADP
(threshold 1e-10) and a fast leak test from the Cobratoolbox
found no leaking metabolites.

None of the newly constructed MSC models showed
biologically infeasible behaviors such as creating ATP from water
alone or leaking metabolites when uptake was prevented (see
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FIGURE 1 | A schematic drawing showing how metabolic modeling can integrate data to contribute to planning future experiments and potential utilization. Stage (i)
Initial metabolomics and transcriptomics data acquisition from in vitro culture. Stage (ii) Statistical analysis of metabolomic and transcriptomic data. Stage (iii)
Reconstruction of the human metabolic network from the literature and previous knowledge. Stage (iv) Application of metabolic and transcriptomic data to the
metabolic network to produce context specific models. Stage (v) Analysis of the differences between the three biological models. Stage (vi) Verification of novel
findings of the models initially through comparison to the results of published experiments (presented in this manuscript) and then through new experiments. Stage
(vii) Improved knowledge of the biological system enabling optimized growth and differentiation that may be applied to improve healthcare or industrial outcomes.

Supplementary Table 1). It should be noted that the previously
published iMSC1255 generally also fulfilled these criteria but does
include some duplicated reactions, possibly due to the treatment
of reversible reactions.

The three new MSC models presented here were all capable of
producing approximately the correct number of ATP molecules
per molecule of both glucose (32 aerobic and 2 anaerobic for
all three models) and glutamine (22.5 aerobic and 1 anaerobic
all three models) under both aerobic and anaerobic conditions.
There were slight differences in theoretical ATP production
in the literature and existing models but around 31 from
aerobic glucose, 2 from anaerobic glucose, 23 from aerobic
glutamine and anaerobic glutamine are common figures obtained
in other models including those specifically curated for central
energy metabolism (Smith et al., 2017; Mazat and Ransac,
2019). However, the estimates of these values for iMSC1255
were often very different (423 glucose aerobic, 400 glucose
anaerobic, 415 glutamine aerobic, and 399 glutamine anaerobic).
These large values for ATP production from glucose and
glutamine in iMSC1255 were explained by increased activity
in the mitochondrial ATPsynthase reaction. The presented new

and updated models therefore better captured the energetics of
central carbon, fatty acid, and amino acid metabolism.

ATP production from other important carbon sources was
also generally close to theoretical values (see Figure 2) in the
three new MSC models. The initial values for medium fatty acid
composition had a large effect on these values and the differences
are likely due to the composition chosen.

The uptake and secretion fluxes of amino acids in the
proliferation model and the original iMSC1255 values were
compared (see Supplementary Table 2 for details). Nine of the
amino acids with uptake/secretion values reported in Fouladiha
et al. (2015) were included in the constraints for our model based
on our own measurements. These were generally in accordance
with the reported constraints. Leucine and lysine fluxes were
not based on mass spectrometry measurements, but the range
of random sampled fluxes falls at least partially within the
same range as the iMSC1255 estimates. Another six amino acids
had fluxes in the same predicted direction as iMSC1255 but
overestimated the magnitude of uptake or secretion. Two amino
acids are predicted as secreted in our random sampling but
taken up by iMSC1255.
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FIGURE 2 | Estimates of optimal fluxes for ATP production from various key carbon sources – (A) Aerobic metabolism of the most energy dense substrates
(B) Aerobic metabolism of the least energy dense substrates (C) Anaerobic metabolism.

Mitochondrial Function Separates
Proliferating and Differentiating MSCs
and Pentose Phosphate Pathway Flux
Differentiates Osteogenesis and
Adipogenesis
To determine the quality of the models, model predictions were
compared to data about MSC metabolism from the literature.
Proliferating, osteogenically and adipogenically differentiating
bone marrow derived MSC models were examined and compared
to the outputs from the re-constrained versions of iMSC1255
(Fouladiha et al., 2015). The newly produced models matched the
data very well for the relative levels of beta hydroxylase activity,
but iMSC1255 does not include beta hydroxylase reactions. The
new models qualitatively predicted differences in flux between

TABLE 2 | Model size at various stages of construction (E) refers to iMSC-E-1972,
(O) refers to iMSC-O-1900, and (A) refers to the iMSC-A-2036.

Model Genes Reactions Metabolites

Recon3D 3697 13543 8399

Base Model 2280 9151 4900

GIMME Models (medium and growth
and transcriptomic)

6693(E)
6061(O)
6933(A)

3792(E)
3472(O)
3884(A)

Corrected Models (GIMME plus
literature)

6741(E)
6134(O)
7006(A)

3830(E)
3526(O)
3939(A)

Final Models (Corrected plus
metabolomics)

1972(E)
1900(O)
2036(A)

6600(E)
5975(O)
6876(A)

3740(E)
3428(O)
3855(A)

iMSC1255 model (used for
comparison)

1259 (E) 2288 (E) 1850 (E)

proliferating MSCs and one or other of the differentiating
lineages but not both in lactate dehydrogenase, creatine kinase,
glyceraldyhyde-3-phosphate dehydrogenase, phosphofructokinase
and glutathione reductase with only a slight mis-estimation
in the other differentiation lineage. iMSC1255 estimated very
similar fluxes across all three models for all of these reactions.
Isocitrate dehydrogenase appeared to be well estimated in the
adipogenic and proliferation models but underestimated in
the osteogenic model, iMSC1255 estimated little difference
in this reaction.

Various studies have analyzed metabolism in osteogenic
and adipogenic differentiation of cells, sometimes in MSCs
and sometimes in other cell types (Pattappa et al., 2011;
Meleshina et al., 2016; Shum et al., 2016). The new models
were compared to several of these studies. Random sampling
of the new models with a flux of between 50 and 100% of the
biomass function showed that both iMSC-O-1900 and iMSC-A-
2036 show increased flux through mitochondrial ATPsynthase,
marked as highly significant using the Wilcoxon statistic in
MATLAB (ranksum, p-Values ∼0 for O vs. E and 5.40 e-81 for
E vs. A). Both differentiating models had mean predicted values
twice as high as the proliferating model. The minimum values
for the iMSC-A and –O were around ten times than in iMSC-
E. However, the maximum value in iMSC-E was approximately
10% higher than either differentiating model, indicating that
differentiating models showed increased mitochondrial function
(Figure 3A). It has also been reported that suppression of
ornithine decarboxylase activity increases osteogenesis in human
bone marrow MSCs (Tsai et al., 2015). This is supported by the
mean flux from random sampling iMSC-E-1972 for ORNDC
being greater over 10 times greater than the value of that in
iMSC-O-1900 (Figure 3B, p∼ 0 Wilcoxon rank test).
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FIGURE 3 | Relative mean fluxes (compared to expansion model) from various reactions – (A) ATPsynthase (B) Ornithine decarboxylase (C) Mitochondrial
glutaminase (D) NAD dependent glutamate dehydrogenase (E) NADP dependent glutamate dehydrogenase.

Conversely, it has been shown that suppressing glutaminase
activity and the contribution of glutamine to the TCA
cycle prevents osteogenesis (Huang et al., 2017; Chen et al.,
2019). iMSC-O-1900 showed lower mitochondrial glutaminase
(Figure 3C) but higher cytoplasmic glutaminase (not seen in
iMSC-E-1972) and overall glutaminase activity more than twice
as high as the proliferation model. However, the contribution
of glutamine to the TCA cycle via glutamate dehydrogenase

(anaplerosis) was slightly higher in the proliferation than the
osteogenic model (Figures 3D,E). Other uses of glutamate
account for the rest of the osteogenic model’s glutaminase
activity. This result indicates that this central area of metabolism
may be lacking in sub-cellular location specificity in the
models, however, it substantially agrees with the literature
on a whole cell basis. Furthermore, it has been shown that
the production of kyneurine via indoalamine dioxygenase

Frontiers in Cell and Developmental Biology | www.frontiersin.org 7 June 2021 | Volume 9 | Article 642681

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-642681 May 31, 2021 Time: 18:23 # 8

Sigmarsdottir et al. Metabolic Reconstruction in MSC Differentiation

is increased in osteogenesis compared to proliferation of
MSCs (Vidal et al., 2015). A key enzyme in this pathway
L-Tryptophan:Oxygen 2, 3-Oxidoreductase (Decyclizing), that
produces L formyl-kyneurine is absent from iMSC-E-1972 but
present in iMSC-O-1900 (and iMSC-A-2036).

A key feature of adipogenesis is the upregulation of
glucose 6 phosphate dehydrogenase activity. G6PDH forms
6-Phosphonoglucono-D-lactone (6PGL) and NADPH. 6PGL
contributes to the pentose phosphate pathway and therefore the
production of nucleotides and reducing potential via NAPDH.
NADPH contributes to the synthesis of fatty acids by supplying a
reducing agent. This is a key metabolic coupling between glucose
and fatty acid utilization and storage (Park et al., 2005). Overall,
the formation of NADPH by this reaction was much higher in

iMSC-A-2036, around ten times higher than iMSC-E and almost
twice that of iMSC-O (Figure 4D). This was partially due to the
higher endoplasmic reticulum G6PDH forward activity in iMSC-
A-2036 but also due to the presence of some reverse activity being
predicted in iMSC-O-1900 and -E-1972.

To assess metabolic differences between MSCs undergoing
expansion, osteogenic differentiation, and adipogenic
differentiation, Markov chain Monte Carlo (MCMC,
Schellenberg et al., 1992) sampling was used to generate a
uniform random sampling of the solution space of each of the
three the models. A set of predictions for each reaction was
obtained and these sets of predictions compared across the
three models. Specifically, the fold changes in the means for
each reaction were compared, 5-fold change being considered

FIGURE 4 | Comparison of relative magnitude of metabolic fluxes found at day 7 of expansion, osteogenic and adipogenic differentiation in Meyer et al. (2018),
iMSC1255 er-constrained with MS data collected in Iceland and the new models (A) Phosphofructokinase (B) Glyceraldyhyde 3 phosphate dehydrogenase
(C) Lactate dehydrogenase (D) Glucose 6 phosphate dehydrogenase (E) Isocitrate dehydrogenase (F) Glutathione reductase (G) Creatine kinase (H) Beta hydroxyl
acyl dehydrogenase. E, Expansion; O, Osteogenesis; A, Adipogenesis.
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of interest, and a two tailed t-test was performed using 1e-12
as a p-Value cut-off; see Metabolic_difference_rxn_pred in
Supplementary Data Sheet for a full list of these reactions.

Reactions in the model were grouped by metabolic subsystem
enabling an enrichment analysis to be performed on lists of up
regulated reactions (predicted to carry more flux) in each cell type
compared to each of the others, shown in Table 3. Enrichment
analysis compares which subsytems (areas of metabolism) show
more reactions that are up regulated compared to the expected
distribution of changes if all changes occurred by chance across
the whole of metabolism. This demonstrates those areas of
metabolism that are more important to one lineage than another.
This enrichment analysis showed that the areas of metabolism
that are significantly more active in proliferating cells than in
either of the differentiating cell types include biotin metabolism,
vitamin A metabolism, sphingolipid metabolism, fatty acid
oxidation and fatty acid synthesis as well as mitochondrial
transport and exchange/demand reactions. This upregulation
showed higher activity in areas of metabolism related to fatty
acid signaling (vitamin A and sphingolipids). Sphingolipid
metabolism may also indicate the need for new cell membranes.
In adipogenic differentiation, fatty acid oxidation and as would be
expected fatty acid synthesis were over represented in increased
activity along with exchange/demand reactions. Fatty acid
oxidation and exchange demand reactions were over represented
in increased activity reactions in osteogenesis compared to the
other pathways studied, see Figure 5.

Model-Driven Experimental Design for
Engineering Osteogenesis
Metabolic modeling allows the generation of hypotheses
about means of optimizing one cell lineage over another.
To propose means of improving osteogenesis desirable for
regenerative medicine, combined models of either expansion-
and-osteogenesis or adipogenesis-and-osteogenesis were created.
Two of each of these models were produced, one representing the
constraints on reactions from each lineage with other reactions
blocked. These models were then subjected to relaxation analyses.

The results of relaxing the model to find a solution
intermediate between either the expansion model or the
adipogenic model and the osteogenic model produced lists
of key reactions to modify to move towards osteogenesis (see
Relaxed_rxn_lists, Supplementary Data Sheet, for the more
extensive lists required for full transition). The transport
reactions to relax to move from expansion to osteogenesis
were transport from extracellular to cytosol of serotonin,
urea and 13-Docosenoic Acid, in all case the changes moved
these metabolites from being taken up to being either not
active or in the case of 13-Docosenoic Acid to being secreted.
To transform from adipogenic to osteogenic by modifying
transport reactions Bilirubin Beta-Diglucuronide uptake
should be prevented along with the blocking of leukotriene
C4 reduced glutathione transport, thromboxane B2 transport,
leukotriene E4 transport and Mono (Glucosyluronic Acid)
Bilirubin transport while inward transport of citrate and
ribosomal transport of bilirubin should be encouraged. The

TABLE 3 | Showing subsystems that have a significantly overrepresented
(adjusted p-value < 0.05) number of more active reactions in the relevant model
compared to the other differentiation lineage in the case of
osteogenesis/adipogenesis or compared to the two differentiation models in the
case of expansion.

Expansion

Adjusted p-Value Enriched
set size

Total set
size

Groups Increased

0.000254 98 1368 Exchange/demand reaction

0.001831 65 961 Fatty acid oxidation

0.003348 9 242 Cholesterol metabolism

0.003348 9 240 Fatty acid synthesis

0.003348 1 105 Transport, lysosomal

0.003348 25 453 Transport, mitochondrial

0.006098 3 133 Sphingolipid, metabolism

0.011893 7 185 Bile acid synthesis

0.017589 11 47 Vitamin A metabolism

0.019096 5 12 Biotin metabolism

Osteogenesis

Adjusted p-Value Enriched
set size

Total set
size

Groups Increased

7.09E-07 12 961 Fatty acid oxidation

8.6E-06 28 1368 Exchange/demand reaction

Adipogenesis

Adjusted p-Value Enriched
set size

Total set
size

Groups Increased

1.64E-05 26 1368 Exchange/demand reaction

0.000253 16 961 Fatty acid oxidation

0.012651 1 240 Fatty acid synthesis

non-transport reactions (including demand and exchange
reactions) to alter to encourage osteogenesis from expansion
are: ’EX_cspg_e[e],’ ’KAS8,’ ’r0797,’ ’RE0344C,’ ’RE0577C,’
’RE0578C,’ ’RE1845C,’ ’EX_aicar[e],’ ’EX_gudac[e],’ ’EX_stcrn[e],’
’EX_Lhcystin[e],’ ’EX_mal_L[e],’ ’MYELIN_HSSYN,’ and
’DM_myelin_hs[c].’ These reactions include amino acid
uptake and formation of lipid and glyco lipids. The equivalent
reactions for encouraging osteogenesis from adipogenesis are:
’EX_retfa[e],’ ’EX_mal_L[e],’ ’EX_taur[e],’ and ’DM_na1[r].’
Again, this includes alterations to the necessary amino acids as
well as fatty acid retinol involved in developmental signaling.
The relaxation required of truly non-transport reactions to bring
the expansion model close to the osteogenic model are ’KAS8,’
’r0797,’ ’RE0344C,’ ’RE0577C,’ ’RE0578C,’ and ’RE1845C.’ These
reactions are all involved in fatty acid and CoA metabolism
and are generally moving from being active (sometimes in the
reverse direction) to being less active or inactive. The equivalent
relaxation (with an alpha value of 0.75) produced no necessary
changes from adipogensis to osteogenesis however with and
alpha of 0.9 ’3SALACBOXL,’ ’CBPPer,’ ’GGNG,’ ’GLBRAN,’
’GLGNS1,’ ’KAS8,’ ’LCYSTCBOXL,’ ’r0060,’ ’IDL_HSSYN,’
’IDL_HSDEG,’ ’HMR_3422,’ and ’HMR_6647.’ These reactions
become more active or move from a negative to a positive
direction while ’LPS3e,’ ’NDP7er,’ ’PCHOL2LINL_HSPLA2,’
and ’PE203_HSPLA2’ more from the reverse direction to
inactivity. Many of these reactions are glycosylating enzymes
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FIGURE 5 | Graphical representation of the enriched subsystems between the cell lineages based on the new reconstructed models – The three figures show in a
graphical manner the subsystems (a group of related metabolic reactions representing a specific aspect of metabolism) in each model that were found to contain
significantly more changed reactions than other subsystems of the model. Shown is – (A) Proliferation of MSCs, with various subsystems identified as enriched. This
mirrors expectations as expansion requires energy and synthesis of new material (e.g., cell wall and DNA). (B) Adipogenesis of MSCs, with subsystems related to
synthesis and breakdown of fatty acids identified as enriched as well as exchange/demand reactions (C) Osteogenesis of MSCs, with subsystems related to fatty
acid breakdown and TCA-cycle activity identified as enriched as well as exchange/demand reactions. For detailed list with included p-Values for each listed
subsystem see Table 3. Green arrows and labels indicate enriched pathways.

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 June 2021 | Volume 9 | Article 642681

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-642681 May 31, 2021 Time: 18:23 # 11

Sigmarsdottir et al. Metabolic Reconstruction in MSC Differentiation

likely accounting for the alterations in the cells’ outer glycan
layer between these two states.

DISCUSSION

The driving factor behind this study was to improve
understanding of the metabolic underpinnings of MSC
differentiation with hopes that that will enable further
application of them in regenerative medicine. To achieve that
three metabolic networks were reconstructed from varied -omics
and experimental data and compared. The models achieved to
recapitulate key metabolic phenotypic features characteristic for
each cell state, to showcase the major metabolic differences and
to propose a possible way to improve osteogenesis.

Measurements of Metabolism
The metabolomic data used in the reconstruction of the
presented models was specifically generated and analyzed in
order to parametrize the models in accordance to very specific
experimental conditions known to the authors to influence
the cells in a specific desired manner. The mass spectrometry
data shows differences in metabolism between the 3 lineages
of cells. These changes in the extracellular milieu support
different metabolism during cell growth and differentiation of
MSCs. In order to better understand how these extracellular
changes reflected intracellular metabolic changes during MSC
expansion and differentiation, these data were analyzed in the
context of changes in gene transcription within their respective
metabolic models.

Reconstruction of Metabolic Models for
Three States of MSCs
Three constraint-based models of MSC metabolism (iMSC-E-
1972, iMSC-O-1900, and iMSC-A-2036 describing expansion,
osteogenesis, and adipogenesis, respectively) were reconstructed,
from the global human metabolic network (Recon3), publicly
available transcriptomic data and metabolomic data generated
here. These models largely share reactions (2.0 - 6.1% of
total reaction number are unique to a model), an expected
result considering the transcriptomic data seem to have
had the strongest effect on inclusion/exclusion of reactions
as demonstrated by showing the biggest change in the
number of reactions included in each model (Table 2). These
transcriptomics data, and the metabolomics data, represent
MSCs at day 7 after first exposure to differentiation medium. Day
7 is still considered as an early stage of the two differentiation
processes that take between 21 and 28 days, respectively, and
increased lineage differences are expected to be seen at later
time points, however, there was insufficient data available for
those later time points in a suitable format at the time that this
project began. The publicly available transcriptomic data used to
generated these models had lower coverage of metabolic genes for
the osteogenic state, resulting in a smaller number of reactions
included in this model (iMSC-O-1900) when compared to the
other two (iMSC-E-1972 and iMSC-A-2036). The osteogenic
transcript was missing any call, present or absent for 5.19%

of base model genes whilst proliferation and adipogenesis were
missing information for only 2.35 and 2.38%, respectively.
These models can be continually upgraded and expanded using
specifically generated RNAseq data from cells collected at later
stages of osteogenesis and adipogenesis in order to further
improve the predictive capabilities of the models. The use of
RNAseq data in the place of microarray-based data is also likely
to improve the coverage of enzyme expression data.

Verification of Metabolic Function in Comparison to
iMSC1255
This comparison is in some ways limited to broad comments
as the enzyme activity assays in the paper presented by
Fouladiha et al. (2015) were performed to determine maximal
activity in cell extracts, not fluxes in living cell situations as
simulated by the models.

The new MSC models all pass key metabolic sanity checks
and manage an almost 3-fold increase in metabolic coverage
compared to iMSC1255, roughly a proportional increase to
that between the base model and Recon1. This similarity
suggests retention of similar level of cell specificity compared
to iMSC1255 despite the great increase in metabolic coverage.
However, the models reported here are able to more correctly
capture the production of ATP from various substances and are
additionally able to perform more metabolic functions compared
to the previously existing MSC model, iMSC1255 (originally
reconstructed for cells exclusively in the state of proliferation).
One of the areas of metabolic function that the models presented
in this paper are more adept at in comparison to iMSC1255
is fatty acid metabolism. This is illustrated by the example of
iMSC1255 lacking beta hydroxylase activity (Figure 4), but the
activity of beta hydroxylase has been shown to be present in
MSCs, as well as its much smaller number of human functions
assessed by the COBRA Toolbox (Supplementary Table 1).

As fatty acid metabolism is key to adipogenesis, the additional
detail of beta hydroxylase inclusion in the new presented models
will likely prove important to the utility of their predictions. The
increased coverage of fatty acid and lipid metabolism that is seen
in them is in large part due to the updated base reconstruction
used for the model’s reconstruction (i.e., using Recon 3 instead
of Recon 1). Additionally, when the iMSC1255 model was
constrained using the same metabolomic data sets as were used
to reconstruct the presented three new MSC models, the new
models (iMSC-E-1972, iMSC-O-1900 and iMSC-A-1972) were
better able to match the results of Meyer et al. (2018) compared
to iMSC1255 (Figure 4). This indicates that by specifically
constraining the models with transcriptomics data from various
differentiation lineages the models created are better able to show
the differences in metabolism between the different lineages.

Verification of Lineage Specific
Metabolic Functions
A good qualitative fit between known metabolic differences
between the three lineages studied and the relationships between
the predicted fluxes in the three new models was observed. Key
metabolic features, such as the production of ATP changing
in osteogenesis, are reflected in the differences between the
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models, indicative of a realistic reconstruction reflecting expected
biological behavior. Differences in amino acid metabolism,
ornithine and to a lesser extent glutamine and tryptophan,
are shown between osteogenesis and expansion in ways that
reflect known differences in metabolism during osteogenic
differentiation.

G6PDH expression is known to be key to producing NADPH
for fatty acid synthesis and overall activity of this enzyme is
greater in the adipogenic model than the other two cell lineage
models, an observation suggesting that these models reflect this
aspect of metabolism well. However, comments on the activity
of G6PDH in relation to this paper are complicated by the
reversibility of this reaction and the presence in the models of
multiple forms of this enzyme. In iMSC1255, the flux is only
predicted to be in the reverse direction, creating NADP not
NADPH. This does not agree with the previous consensus, our
models suggest a mix, specifically our adipogenic model favors
NADPH production in accordance with the literature (Park
et al., 2005; Melis et al., 2013; Lee et al., 2017; Meyer et al.,
2018). These contradictions might suggest that this may be either
premature or reflective of the limitations of measuring activity in
an isolated enzyme.

Overall, these results demonstrate that this key area of
metabolism is well reflected in the models which gives a
good ground for building the iMSC-O-1900 model into the
later and potentially more metabolically diverse later stages
of osteogenesis.

Observation of Main Metabolic
Differences Between the Models
The groups of metabolic reactions that are upregulated in
each of the lineages reflect the changes in function of cells
during expansion and differentiation. The metabolic subsystems
upregulated in expansion are varied, reflecting the necessity of
the cells for varied reaction activity to be able to produce cell
biomass, membranes, and nucleic acids in order to grow. On the
other hand, the changes in adipogenesis are more concentrated
around fatty acids and fatty acid synthesis. This is to be expected,
especially the increased activity of fatty acid synthesis, which
is a key feature of adipocytes. The areas of metabolism with
the most concentrated changes in osteogenesis is fatty acid
oxidation, which reflects increased oxidative metabolism in
the differentiating cells – a phenomenon previously reported
by multiple studies (Chen et al., 2008; Pattappa et al., 2011;
Buravkova et al., 2013; Shum et al., 2016). All of the cell lines show
changes to the exchange reaction activity, which may partially
be due to exchange reaction alterations that happen during the
model reconstruction process but since many of these observed
differences reflect actual measured differences this is unlikely
to be problematic.

Proposed Method to Increase
Osteogenesis
The results of the relaxation of reactions between adipogensis
or expansion and osteogenesis suggest that alterations in the
need for malate are changed, with either reduced uptake or

a switch to secretion being observed in both cases. Fatty acid
and lipids, particularly those involved in signaling (i.e., retinoic
acids and fatty acids) and those involved in cell membranes and
glycosylation (i.e., myelin_HS) are altered as well. These are key
metabolites for the rearrangement of cell membranes and trans-
membrane glycoproteins as well as cell signaling and therefore
seem plausible as metabolic markers of differentiation. One of the
reactions highlighted is the need to increase transport of citrate
from the extracellular space to the cytosol. It has been shown that
growing cells on citrate rich materials encourages osteogenesis
(Wang et al., 2013; Irizarry et al., 2017), this match with
the literature is encouraging. This discovery regarding citrate
in combination with the enrichment of the exchange/demand
reactions subsystem also suggests that other transporters may
be interesting targets for future investigation when it comes to
searching for new ways to increase osteogenesis of MSCs.

CONCLUSION

We present three new genome-scale metabolic models of
MSC metabolism, representing expansion, osteogenesis and
adipogenesis differentiation. These newly reconstructed models
are increased in scope compared to previous models of this
cell type both in terms of the coverage of multiple lineages
in models produced specifically for two new lineages and with
the models due to usage of a new and much improved base
human metabolic reconstruction (Recon3). We computed a
variety of metabolic phenotypes, demonstrating that the models
presented here accurately represent qualitative and quantitative
cellular characteristics and important differences between the cell
types. Having validated these models, we used them for model-
driven experimental design with the goal to optimize in vitro
osteogenesis. One of predicted solutions, the citrate transporter,
concurs with a previously identified target which encourages
further possibilities of similar predictions. Through the use of
mechanistic models such as are presented here, we provide a
blueprint for the application and engineering of regenerative
medicine therapies where promising therapeutics like MSCs can
be made more efficient and attainable.
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Mesenchymal stem cells are a promising source for externally grown tissue
replacements and patient-specific immunomodulatory treatments. This promise has not
yet been fulfilled in part due to production scaling issues and the need to maintain
the correct phenotype after re-implantation. One aspect of extracorporeal growth
that may be manipulated to optimize cell growth and differentiation is metabolism.
The metabolism of MSCs changes during and in response to differentiation and
immunomodulatory changes. MSC metabolism may be linked to functional differences
but how this occurs and influences MSC function remains unclear. Understanding how
MSC metabolism relates to cell function is however important as metabolite availability
and environmental circumstances in the body may affect the success of implantation.
Genome-scale constraint based metabolic modeling can be used as a tool to fill gaps
in knowledge of MSC metabolism, acting as a framework to integrate and understand
various data types (e.g., genomic, transcriptomic and metabolomic). These approaches
have long been used to optimize the growth and productivity of bacterial production
systems and are being increasingly used to provide insights into human health research.
Production of tissue for implantation using MSCs requires both optimized production
of cell mass and the understanding of the patient and phenotype specific metabolic
situation. This review considers the current knowledge of MSC metabolism and how it
may be optimized along with the current and future uses of genome scale constraint
based metabolic modeling to further this aim.

Keywords: MSCs, metabolism, personalized/precision medicine, metabolomics, metabolic modeling, tissue
engineering

INTRODUCTION

In recent years, there has been increasing interest in the possibilities offered by regenerative
medicine (Maienschein, 2011; Sampogna et al., 2015), a field which seeks solutions for the
restoration of the structure and functions of organs and tissues that have become permanently
damaged. While regenerative medicine has enjoyed success in some areas, treatment can result in
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danger to patients or in therapeutic inefficiency (Neman et al.,
2012; Campana et al., 2014; Goldberg et al., 2017; Moreira et al.,
2017; Cunningham et al., 2018; Solarte et al., 2018) that have
pushed researchers to continuously search for novel approaches
to address limitations.

One important area of regenerative medicine is the use of
stem cells to enhance available therapeutic applications and
to further the development of new ones (Mahla, 2016). In
particular, mesenchymal stem cells, or mesenchymal stromal
cells (MSCs) (Rosenbaum et al., 2008; Ullah et al., 2015;
Fitzsimmons et al., 2018), are of interest. MSCs are multipotent
cell types with stem cell-like abilities that can be isolated from
various adult and neonatal tissues (Nombela-Arrieta et al.,
2011; Alberts et al., 2014). MSCs maintain proliferation abilities
while possessing the ability to undergo trilineage differentiation
(adipogenic, chondrogenic, and osteogenic differentiation) and
remarkable immunomodulatory capabilities (Rosenbaum et al.,
2008; Lin et al., 2013). These properties offer the possibility
of furthering treatment options for various ailments, such
as metabolic and autoimmune diseases like multiple sclerosis
(Bonab et al., 2012), Alzheimer’s disease (Rosenbaum et al., 2008;
Mahla, 2016), diabetes (Ullah et al., 2015; Fitzsimmons et al.,
2018), Crohn’s disease (Duijvestein et al., 2010), and cancer
(Qin et al., 2016).

For the past decade, MSCs metabolism has received
growing interest due to mounting evidence suggesting that the
manipulation of metabolism allows enhanced therapeutic uses of
these cells (e.g., cell retention, cell survival, immunoregulation,
differentiation) in cell-based medicine and tissue engineering
(Chen et al., 2008; Croitoru-Lamoury et al., 2011; Pattappa
et al., 2011; Buravkova et al., 2013; Beegle et al., 2015; Shum
et al., 2016; Li et al., 2017; Meyer et al., 2018; Vigo et al.,
2019; Zhu and Thompson, 2019). Cellular metabolism is an
intricate and complex network of pathways, enzymatic reactions,
metabolites, and co-factors with numerous effects on the cell
and its immediate surroundings. Due to the complexity of
metabolism and its effects, research into the possibilities of
manipulating metabolism in these cells has been slow.

The advent of high-throughput -omic technologies (Henry
et al., 2010; Resendis-Antonio, 2013) has allowed for the detailing
of genome-scale metabolic networks (Yurkovich and Palsson,
2016). This holistic systems biology approach acknowledges
that biological systems are made up of a network of networks
(Reed and Palsson, 2003; Resendis-Antonio, 2013; Bordbar et al.,
2014). Genome-scale models (GEMs) of metabolism (Rocha
et al., 2008) provide a framework for the computation of the
genotype-phenotype relationship in which various types of -
omics data can be integrated along with organism-specific
network reconstructions to generate tissue, cell, or organism
specific in silico models (Feist et al., 2009; Chang et al., 2010;
Agren et al., 2014; Fouladiha et al., 2015). These models
can then be constrained by experimental measurements and
computed in order to explore possible therapeutic applications,
making use of the newest RNA sequencing and metabolomic
data or in vitro experimentation. Such models will aid further
understanding of MSCs metabolism under various external
or internal conditions. Thus far, metabolic modeling has not

been applied to the study of MSCs, but this area offers
great possibilities for enhancing both research and therapeutic
application of these cells.

In this review, we describe how the study of human MSC
(hMSC) metabolism can be used to answer the fundamental
question: “How can GEMs be used to optimize MSC
therapeutics?” First, we describe the biology of MSCs, their
differentiation and immunomodulation properties and their
applications and limitations in regenerative medicine. Next,
we detail how metabolism affects or can be used to manipulate
these functions. We then discuss how mathematical modeling
of hMSC metabolism can aid in developing pre-clinical and
clinical experiments. Finally, we give our vision for the future
of using metabolic modeling to study hMSCs and how the
resulting insights could prove transformative for the field of
regenerative medicine.

BIOLOGY OF MESENCHYMAL STEM
CELLS (MSCs)

Mesenchymal stromal cells comprise non-hematopoietic cells
originating from the mesodermal germ layer and are capable of
both self-renewal and multilineage differentiation into various
tissues of mesodermal origin (Gazit et al., 2014). These
multipotent cells can be isolated both from various adult
tissues (e.g., skin, peripheral blood, bone marrow) and neonatal
tissues (e.g., Wharton’s jelly, umbilical cord blood) (Nombela-
Arrieta et al., 2011; Alberts et al., 2014). Despite the historical
lack of consensus on methods for isolation, expansion, and
characterization of hMSCs, the International Society for Cellular
Therapy (ISCT) has produced minimal criteria to define hMSCs
(Rosenbaum et al., 2008; Lin et al., 2013). The cells must be
able to:

• Adhere to plastic and develop as fibroblast colony-forming
units and differentiate into cells of mesodermal origin (i.e.,
osteocytes, chondrocytes, and adipocytes). See Figure 1.
• Express the surface markers CD73, CD90, and CD105 during

in vitro culture expansion
• Lack expression of CD11b, CD14, CD34, CD45, CD19, and

HLA-DR surface markers during in vitro culture expansion

It is likely that this definition will continue to evolve to account
for new findings.

Differentiation of MSCs
One of the identifying characteristics of MSCs is their ability
to differentiate into cells of mesodermal origin (Nombela-
Arrieta et al., 2011; Gazit et al., 2014). In addition to this
hallmark trilineage differentiation, there have also been reports
of differentiation toward other cell types of the ectodermal
and endodermal origins, including tenocytes, cardiomyocytes,
skeletal myocytes, smooth muscle cells, and neurons (Tatard
et al., 2007; Galli et al., 2014; Ullah et al., 2015; Youngstrom
et al., 2016). The actual functionality of the end product in this
transdifferentiation is still debated.
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FIGURE 1 | Tri-lineage encompasses differentiation of MSCs. Mesenchymal stem cells are identified by their ability to differentiate into chondrocytes, adipocytes,
and osteoblasts that in turn develop into cartilage, fat tissue and bone. PPARγ is the master regulator of adipogenesis, Runx2 for osteogenesis and Sox9 for
chondrogenesis. Various expression markers are used as indicators of successful differentiation.

Differentiation of MSCs is primarily induced through
media supplementation (and, in some instances, mechanical
stimulation), with different supplements being required for the
various differentiations. Adipogenesis, for example, is induced
through supplementation with dexamethasone, indomethacin,
insulin, and isobutyl methyl xanthine. Osteogenic differentiation
is induced by dexamethasone, ascorbic acid, β-glycerophosphate,
and sometimes bone morphogenic protein 2 (BMP-2) (Ullah
et al., 2015). The completion of differentiation is verified by
checking the expression of characteristic cell type markers,
such as lipoprotein lipase (LPL) for adipogenesis and alkaline
phosphatase (ALP) activity for osteogenesis (Ullah et al., 2015).
More detailed lists of differentiation-promoting components
and the most characteristic markers used to measure level of
differentiation are shown in Table 1.

Differentiation is controlled by an interlinked set of regulatory
molecules forming complex signaling pathways. These pathways
are somewhat distinct between differentiation lineages, although
there are important areas of overlap. This phenomenon is
demonstrated by the inverse relationship that exists between
pathways relating to adipogenic and osteogenic differentiation
(Figure 2). Most differentiation pathways revolve around
regulation of peroxisome proliferator-activated receptor (PPAR),
which is the master regulator of adipogenesis, and runt-related
transcription factor 2 (RUNX2), which is the master regulator
of osteogenesis (Muruganandan et al., 2009; Neve et al., 2011;
James, 2013; Hu et al., 2018). Further details on the most relevant

reported signaling pathways and molecules for each type of
differentiation are provided in Table 1.

Immunomodulation of MSCs
Beyond their potential for differentiation, hMSCs have
remarkable immunomodulatory properties; they possess
the ability to inhibit or promote the immune response of
the host’s body though mediated immunosuppression. These
mechanisms include direct inhibitory effects and other indirect
regulatory effects. This regulatory response involves inhibition
of B and T cell proliferation, cytokine production inhibition,
decreased natural killer (NK) cell activation, and dendritic cell
maturation (Figure 3; Deng et al., 2005; Ma and Chan, 2016;
Cunningham et al., 2018; Wang et al., 2018).

The immunomodulatory response of hMSCs is activated by
inflammatory cytokines (e.g., IFN-γ, IL-1α, IL-1β, and TNF-
α) that are secreted by T cells and other antigen-presenting
cells (Ren et al., 2008; Németh et al., 2009). In response to
their activation, MSCs secrete soluble immune factors capable
of affecting both the innate and adaptive immune systems
by mediating the subsequent regulatory responses of target
cells (Figure 4; Kaundal et al., 2018; Wang et al., 2018).
The immunoregulatory effects mediated in each instance are
dependent on one or more of these secreted factors.

Indoleamine 2,3-dioxygenase (IDO) is one of the well-known
paracrine factors released by hMSCs and has been shown
to promote kidney allograft tolerance (Lan et al., 2010). It
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TABLE 1 | Summary of various inducing components, expression markers, and signaling pathways related to differentiation.

Cell type resulting
from differentiation

Differentiation-inducing
components

Culturing time Relevant expression
markers

Most relevant reported
signaling pathways and
molecules

References

Adipocytes Dexamethasone
Indomethacin Insulin
Isobutylmethyl xanthine

14–21 days, with 2
phases (determination
and terminal
differentiation)

ap2 LPL PPARγ β-catenin dependent Wnt
(anti) Hedgehog (anti)
NELL-1 (anti) BMP (pro)

James, 2013

Cardiomyocytes 5-azacytidine 28 days α-MHC α-cardiac actin
ANP cTnT Desmin

miR1-2 + Wnt/β-catening
(pro) HDAC TGF-β VR-1
5-aza

Solchaga et al., 2011;
Guo et al., 2018

Chondrocytes Ascorbate 2-phosphate
Dexamethasone Insulin
Linoleic acid Selenious
pyruvate Selenium TGF-βIII
Transferrin

21 days, with 2 phases
(pre – induction and
terminal differentiation)

Phase 1: Collagen
types I and II Phase 2:
L-Sox5 Sox6 Sox9

Phase 1 expression
dependent upon: TGF-β1,2
and 3 Phase 2 expression
dependent upon: BMP2
IGF-I TGF-β1 Wnt/β-catenin
(pro) PTHrp (anti)

Mackay et al., 1998;
Antonitsis et al., 2008;
Li and Dong, 2016

Hepatocytes Phase 1: bFGF EGF
Nicotinamide Phase 2:
Dexamethasone Insulin
Oncostatin M Selenium
Transferrin

2 phases: differentiation
(7 days) and maturation

Ullah et al., 2015

Neuronal cells bFGF BME EGF FGF HGF
Insulin LMX1A* NGF
Retinoic acid Valproic acid

Ullah et al., 2015

Osteocytes β-glycerophosphate
Ascorbic acid BMP-2
Dexamethasone

21–35 days ALP COL1 OC ON OP
RUNX2

β-catenin dependent Wnt
(pro) BMP (pro) Hedgehog
(pro) NELL-1 (pro)
TGF-β1 + Wnt/β-catening
(anti)

Neve et al., 2011;
James, 2013

Pancreocytes Actavin A Nicotinaminde
Sodium butyrate Taurine

Ullah et al., 2015

Skeletal/smooth
muscle

NICD TGF-β Ullah et al., 2015

Note that this is not an exhaustive list.

suppresses proliferation and activity of NK and T cells by its
metabolic activity – converting tryptophan into kynurenine.
In humans, IDO synthesis has been reported as a response
of MSCs to pro-inflammatory cytokine production that
suppresses the inflammatory response (Bernardo and Fibbe,
2013; Mbongue et al., 2015; Gao et al., 2016; Kaundal et al., 2018;
Wang et al., 2018).

Another reported soluble factor with immunoregulatory
effects is the unstable oxidative molecule nitric oxide (NO), which
is generated by NO synthase. Inducible NO synthase (iNOS) is
responsible for the immunomodulatory effect of NO. Increased
secretion of NO results in modulation of both the proliferation
and function of T cells. At very high concentrations, it can lead to
the apoptosis of immune cells (Bernardo and Fibbe, 2013; Gao
et al., 2016; Kaundal et al., 2018; Wang et al., 2018). A list of
the known soluble paracrine factors secreted by hMSCs that are
involved in immunoregulation is provided in Table 2, along with
their related effects.

Homing Effects of MSCs
Mesenchymal stromal cells secrete paracrine factors that promote
tissue repair. In response to physical tissue damage, MSCs
secrete factors that allow them to navigate to the site of injury,

referred to as homing (Ullah et al., 2015). An example of a
homing molecules used by MSCs are the chemokine receptors
CXCR4 and CXCR7, which both bind to stromal cell-derived
factor (SDF-1) on endothelial cells; this is a critical step in
facilitating homing of MSCs to various tissues (Ullah et al.,
2019). Homing is generally considered to be beneficial for
tissue repair (Ullah et al., 2015) due to the interaction of
the cells with the host tissue via secretion of trophic and
paracrine factors (Ullah et al., 2015; Moreira et al., 2017).
Engrafting or migration of hMSCs in experimental settings relies
in part on this phenomenon in combination with the direct
delivery of cells.

The homing effect and subsequent migration of hMSCs has
been observed. However, the mechanisms behind it are not well
understood. Only a small percentage of systemically administered
cells manage to reach target tissue and remain there (De Becker
and Riet, 2016; Moreira et al., 2017). For the most part, this
low success rate has been ascribed to low expression levels
of homing molecules, loss of expression of homing molecules
during in vitro expansion, and cultural heterogeneity of the
hMSCs. Cells derived from different sources seem to express
different profiles of the homing molecules (De Becker and Riet,
2016; Moreira et al., 2017).
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FIGURE 2 | The inverse relationship of the main metabolic pathways in OD and AD. Differentiation toward one lineage can inhibit differentiation toward the other.

MSCs as a Novel Tool in Regenerative
Medicine
Regenerative medicine is considered a novel frontier in
medical research (Maienschein, 2011; Sampogna et al., 2015).
It combines the knowledge and application of various fields
such as tissue engineering, cell transplantation, stem cell biology,
biomechanics, prosthetics, nanotechnology, and biochemistry
to replace or restore human cells, tissues, or organs to
their normal functions (Sampogna et al., 2015). A variety
of regenerative medicine therapies are available (see Lonner
et al., 2000; Blais et al., 2013; Zhang X. et al., 2013;
Trushina and Mielke, 2014; Björnson et al., 2016; Moreira
et al., 2017), but their success has been limited by functional
obstacles that increase the risk of harm to patients and
reduce their efficacy as a therapeutic (Neman et al., 2012;
Campana et al., 2014; Goldberg et al., 2017; Cunningham
et al., 2018; Solarte et al., 2018). Despite recent progress, there
is obvious room for improvements regarding both the safety
and efficacy of therapies for patients. The multipotency, high
proliferation potential, paracrine effect, and immunomodulatory
activity of hMSCs (Rosenbaum et al., 2008; Ullah et al., 2015;

Fitzsimmons et al., 2018) have led to development of MSCs as a
tool for use in regenerative medicine. Thus, MSCs are considered
ideal candidates for immunotherapy and tissue engineering.

Recent advancements have allowed researchers to
overcome initial obstacles in the use of MSCs. Numerous
clinical trials have assessed their safety and found that
transfusions using these cells are safe (Neman et al.,
2012; Zhao et al., 2016). Various studies have developed
isolation and culture approaches along with various possible
mechanisms of delivery. These studies have shown that
long-term culture of MSCs is possible without losing the
cells functional, phenotypical, or morphological features
(Bernardo et al., 2007).

Further, MSCs are becoming readily available for biomedical
research. There is growing interest in the use of placental-
and umbilical cord-derived hMSCs due to the relatively high
availability of discarded tissue associated with births (Moreira
et al., 2017); however, the variance in phenotypic properties
(if any) between hMSCs derived from different sources is an
important open question. Bone marrow- (BM-) and adipose
tissue-derived (Ad-) hMSCs are the most favored stem cell
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FIGURE 3 | The immunoregulatory effects of hMSCs on immune cells.

types in both tissue engineering and cell-based medicine
for a variety of reasons, despite the invasive procedures
required for tissue collection (Fitzsimmons et al., 2018): (1)
the total cell number that can be harvested each time is
higher than with other stem cells; (2) the frequency of
cells of interest is higher than with other stem cells; and
(3) Ad-hMSC harvesting can be performed as part of some
elective cosmetic surgeries (e.g., liposuction) (Fitzsimmons
et al., 2018). Ad-hMSCs have been shown to have increased
capacity for adipogenic differentiation in vitro, while BM-
hMSCs have increased capacity for osteogenic and chondrogenic
differentiation (Liu et al., 2007). Through a comparative study
on the immunomodulatory abilities of cells derived from
the same donor bit different tissues, Valencia et al. (2016)
determined that Ad-hMSCs have a higher capacity for inhibiting
dendritic cell differentiation than do BM-hMSCs, while BM-
hMSCs displayed a higher capacity for inhibition of NK cell
cytotoxic activity; these results have been corroborated by several
independent groups (Ivanova-Todorova et al., 2009; Blanco et al.,
2016). These observations—whether relating to proliferation
potential or direct therapeutic application abilities—highlight the

importance of choosing the optimal cell source for a particular
clinical circumstance.

Efficacy of Cell Engraftment vs. Paracrine Factors
For the last several decades, the therapeutic potential of hMSCs
has been focused on cell transplantation, adding hMSCs to a
recipient donor site for repair via regeneration, differentiation,
and immunomodulation (Lukomska et al., 2019). Co-culturing
in animal studies has shown that hMSCs can induce tissue
regeneration to some extent in the heart (Rose et al., 2008),
kidneys (Qian et al., 2008), and liver (Cho et al., 2009)
through infiltration and replacement in damaged or injured
tissue by multipotent hMSCs (see Figure 5). Increasing attention,
however, has lately been given to the immunomodulatory and
suppressive capabilities of hMSCs, especially with regards to
their paracrine factors (Németh et al., 2009; Cunningham et al.,
2018; Kaundal et al., 2018). Currently, approximately 10% of the
clinical trials registered in the United States are using MSCs to
study immunological disease. Through their ability to decrease
inflammation and general inhibitory functions, hMSCs have been
utilized as contributing factors for various immune disorders for
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TABLE 2 | A list of inflammatory cytokines that activate immunoregulatory state of
hMSCs, major known soluble paracrine factors secreted by hMSCs, and a
summary of their biological functions.

Immunosuppressive
factors secreted by
MSCs

Summary of biological
function

Activating
inflammatory
cytokines

CCL2 Promotion of monocyte
migration. Suppression of
activation and mitigation of
TH17 cells.

IFN-γ, IL-1α, IL-1β,
TNF-α

Galectins Suppression of the
immunomodulatory effects of T
cells.

IDO Suppression of the effects and
proliferation of immune cells.

IL-10 Suppression of immune cell
apoptosis.

NO Promotion of immune cell
apoptosis. Suppression of
proliferation and modulation of
T cells.

PGE2 Suppression of NK cell cytolytic
activity and T cell proliferation.

TSG6 Overall anti-inflammatory effect.

TGF-β Inhibition of mast cell
degranulation, NK cell
activation and proliferation, and
Treg induction.

symptom relief. Such disorders include type 1 and type 2 diabetes
(Moreira et al., 2017), acute graft versus host disease (GvHD)
(Gao et al., 2016), arthritis (Burke et al., 2016), allograft rejection
(Munir and McGettrick, 2015), and Crohn’s disease (Ibraheim
et al., 2018). The possible immunomodulatory effects of hMSCs
have been found to be dependent upon the source of the hMSCs
as well as their immediate microenvironment (Bortolotti et al.,
2015). The microenvironment is dependent upon the individual
inflammatory profile of the host, which is potentially related to
any disease pathogenesis present. This variability leads to varied
cytokine profiles that are, at least in part, responsible for the
difficulties of using MSC therapy effectively in both preclinical
and clinical situations (Kaundal et al., 2018). Some of these
challenges may be overcome by personalizing each case (i.e.,
tailoring each therapy to the inflammatory environment of the
recipient patient).

There has been a recent paradigm shift away from the
primary aim of hMSC transplantation being tissue repair by
engraftment toward the use of hMSCs to promote healing
via their secretion of paracrine factors. In many therapeutic
contexts, it is now recognized that MSCs exert their healing
effects through paracrine signaling and cell-to-cell contact, not
by replacing cells (Fitzsimmons et al., 2018). There are a few
notable examples using hSMCs as paracrine-mediated treatment
currently in development (Amorin et al., 2014; Hofer and
Tuan, 2016; Archambault et al., 2017; Moreira et al., 2017;
Cunningham et al., 2018; Ibraheim et al., 2018; Solarte et al.,
2018). The reported success of these studies indicates that the

FIGURE 4 | The immunoregulatory secretome of hMSCs. Known soluble
factors secreted by MSCs upon activation by T cells and other antigen
presenting cells are shown.

MSC secretome exerts beneficial effects that may be exploited by
therapeutic applications.

Existing Challenges and Problems
Despite the initial successes demonstrated in animal and early
clinical trials regarding the safety and efficacy of hMSCs, a
number of challenges, problems, and unanswered questions
remain. In order for in vitro cultured MSCs to engraft after
implantation or to secrete their beneficial factors, they must
be able to survive. The transplantation procedure itself exerts
various direct mechanical and chemical stresses on the cells,
and the treated tissue offers a comparatively much harsher
environment than the standard culture surroundings that cells
experience in vitro. In tissues in vivo, there are various negatively
impacting stressors, such as hypoxia, inflammation, decreased
energy/nutritional availability, and high acidity. Various
strategies to enhance survival and overcome these adverse
conditions have been developed, including preconditioning,
genetic modification, and supportive biomaterials as a delivery
device (Baldari et al., 2017; Moreira et al., 2017).

It is possible that donor variability and differences in isolation
site have an effect on experimental outcomes, though the extent
of these effects is not yet well understood. This uncertainty may
be exacerbated by heterogeneity in the origins of MSCs used
in tests (Bortolotti et al., 2015; Lukomska et al., 2019). Further,
there is a lack of knowledge of the optimal dose and frequency
required for hMSC transplantation (Lee, 2018; Lukomska et al.,
2019). In addition, generating high doses of hMSCs requires
cellular expansion on a large scale. Despite being proven to
retain their characteristics over long term expansion (Bernardo
et al., 2007), MSCs eventually become senescent (Turinetto et al.,
2016). Senescent cells have undergone functional changes. Firstly,
differentiation potential usually decreases due to accumulation
of oxidative stress and dysregulation of key differentiation
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FIGURE 5 | Examples of therapeutic applications for hMSCs, including organs where cell transplants have been used for engraftment, some autoimmune disorders
where the immunoregulatory and differentiation abilities of hMSCs have been utilized, and some of the paracrine factor-mediated influences that can be used in a
therapeutic setting.

regulatory factors. Secondly, both migratory- and homing-related
abilities of hMSCs are reduced as they move into senescence.
Finally, the secretome of hMSCs becomes compromised in
senescence. Many of the factors that are present in the senescent
MSC secretome can exacerbate an inflammatory response at a
systemic level and so promote either migration or proliferation
of cancer cells (Turinetto et al., 2016).

In many cases of MSC transplantation, there is little to no
integration of the transplanted cells, and cells that are retained
are observed to have a short survival time in some cases (Li
et al., 2016; Lukomska et al., 2019). Even though more than
two thousand patients have received either autologous or culture
expanded allogeneic MSCs, long-lasting observations are lacking
in many cases (Lukomska et al., 2019). This lack of data indicates
that more progress is difficult. Tumor support due to the
immunosuppressive effects of MSCs and the related possibility
of tumorigenicity of such a therapy has been reported (Barkholt
et al., 2013). There have also been reports of BM-hMSC-induced
liver fibrosis (Russo et al., 2006). These issues must be addressed
by long-term studies regarding safety of use.

While the use of hMSCs holds great promise in regenerative
medicine, the hurdles and unanswered questions outlined in
this section still linger. perhaps the greatest barrier preventing
widespread and successful implementation of hMSCs as tools

to enhance and develop therapeutics is the critical gap in
knowledge of hMSC metabolism. During differentiation, we can
observe a metabolic shift in hMSCs from using only glycolysis
to a mix of glycolysis, oxidative phosphorylation, and beta
fatty acid oxidation to produce energy. However, in order to
have immunomodulatory effects (via paracrine factors) on a
host‘s immune system, hMSCs must be mainly in a glycolytic
state. Further, it is not well understood to what extent energy
metabolism is mixed at different stages of differentiation (early
versus late) or whether it is dependant upon the type of
differentiation the cells are undergoing. An understanding of how
cell source and age affects differentiation and if different states
affect the survival and function and, therefore, usability of cells
in vivo. In the following section, we delve into some of these gaps
and discuss how acquiring a deep understanding of underlying
mechanisms can help unlock the therapeutic potential of hMSCs
in regenerative medicine.

METABOLISM OF MSCs

MSC Function Is Linked to Metabolism
The proliferation, differentiation, and immunomodulatory
functions of hMSCs are linked to cellular metabolism
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(dos Santos et al., 2010; Estrada et al., 2012; Beegle et al.,
2015). Emerging evidence suggests that hMSCs are metabolically
heterogeneous and that these differing metabolic states impact
both differentiation ability and capacity for immunomodulation
(Agathocleous and Harris, 2013; Liu et al., 2019). To date, studies
have focused primarily on BM-hMSCs and Ad-hMSCs.

There is strong evidence suggesting that, in their
undifferentiated state (while undergoing proliferation),
hMSCs rely primarily on glycolysis for energy production.
This phenotype has been demonstrated in BM-hMSCs, which
show a preference for glycolysis during proliferation (Pattappa
et al., 2011; Buravkova et al., 2013; Shum et al., 2016; Zhu and
Thompson, 2019) but shift to a more oxidative phosphorylation
(OxPhos)-dependent metabolism during osteogenic and
adipogenic differentiation (OD, AD) (Meleshina et al., 2016;
Shum et al., 2016). Similar findings have been reported for Ad-
hMSCs (Meleshina et al., 2016; Meyer et al., 2018). Proliferating
Ad-hMSCs were found to have a preference for glycolysis even
under aerobic conditions, while during OD the cells increased
both glycolysis and mitochondrial metabolism, including the
processes of OxPhos and fatty acid β-oxidation. However,
when Ad-hMSCs underwent AD, they showed a decreased
capacity for the pentose phosphate pathway (PPP) and glycolysis,
while mitochondrial enzyme activities increased, indicating an
increased capacity for oxidative phosphorylation and β-oxidation
(Meleshina et al., 2016; Meyer et al., 2018).

The ability of BM-hMSCs to differentiate has also been shown
to be affected by mitochondrial functions (Zhang Y. et al., 2013;
Li et al., 2017). Consistent with reports that proliferating hMSCs
have a glycolytic phenotype, undifferentiated cells have high
levels of hypoxia-inducible factor 1 (HIF-1), a transcriptional
regulator central to regulation of genes that are involved in
hypoxic responses. It is also a crucial physiological regulator
of anaerobic metabolism (Gaspar and Velloso, 2018). Cells
undergoing OD downregulate HIF-1. Downregulation of HIF-1
seems to be required for the activation of mitochondrial OxPhos,
an oxygen-dependent pathway (Shum et al., 2016).

The mitochondria of hMSCs seem to be primarily inactive
while cells remain in their proliferation stage, during which
metabolic pathways related to glycolysis and its associated
signaling pathways required for adenosine triphosphate (ATP)
generation and general anabolitic activity are most active (see
Table 3). Glycolytic metabolism also seems to be a requirement
for hMSCs to be able to sustain immunosuppressive factor
secretion (Liu et al., 2019). Secretion of immunomodulatory
factors is only possible when hMSCs have been activated,
such as by IFN-γ (Waterman et al., 2010). Liu et al. (2019)
utilized IFN-γ treatment to cause immune polarization in hMSCs
leading to remodeling of metabolic pathways toward glycolysis
(reducing TCA cycle metabolism), a requirement for sustained
immunosuppressive factor secretion. The activated cells were
measured to have increased lactate levels, glucose consumption,
and acidification rate. Increased expression of glucose transporter
1 and hexokinase isoform 2 (key enzymes in glycolysis), along
with reduced electron transport and OxPhos, was also observed.
These are all indicators of increased glycolytic activity (Liu et al.,
2019). MSCs with a glycolytic phenotype are also able to sustain

TABLE 3 | List of common signals in metabolism and the major metabolic
pathways effected.

Signal Metabolic pathways regulated by the signal

AMPK Inhibition of glycolysis and fatty acid synthesis. Promotion of
fatty acid oxidation.

Hedgehog Stimulation of glycolysis.

HIF Redirection of energy metabolism from OXPhos to glycolysis.

mTOR Stimulation of glycolysis, lipid synthesis, protein synthesis, and
pyrimidine synthesis.

Myc Stimulation of glycolysis, glutaminolysis, and nucleotide
synthesis.

PI3K Stimulation of glucose uptake, fatty acid synthesis, and
glycolysis.

Ras Stimulation of glucose uptake and PPP. Regulation of
glutaminolysis.

Sirtuins Regulation of TCA cycle, glycolysis, and fatty acid oxidation.

IDO production and the exposure to IFN-γ inhibited activity of
the mitochondrial electron transport chain (complexes I or III),
blocking OxPhos and reducing mitochondria-related reactive
oxygen species (mROS). This reduces the effects of mROS that are
key to metabolic remodeling in differentiation. Liu et al. (2019)
further showed that Akt/mTOR signaling pathway activation is
required to induce metabolic reconfiguration, specifically IDO
and Prostaglandin E2 (PGE2) production. PGE2 increases in
response to increased aerobic glycolysis. The immune response
of hMSCs treated with IFN-γ is altered if the metabolic
reconfiguration induced by Akt/mTOR is disrupted.

The effect of interferon regulation on hMSC metabolism can
be varied. IFN-γ has also been used to inhibit proliferation and
alter AD, OD, and neural differentiation (ND) by activating
IDO (Croitoru-Lamoury et al., 2011). The kynurenine pathway
(KP), along with IDO1 and IDO2, is expressed in hMSCs and
highly regulated by both IFN-γ and IFN-β. IFN-γ licensing
of hMSCs results in inhibited proliferation via activation of
the KP and subsequently IDO, and inhibits the cell potential
for OD and AD. In contrast to IFN-γ licensing, IFN-β
treatment managed to increase expression of adipogenic markers
(Croitoru-Lamoury et al., 2011).

IFN-β has been shown to enhance immunomodulatory
functions of hMSCs in other reports. Vigo et al. (2019)
demonstrated IFN-γ induced expression of secretory leukocyte
protease inhibitor (SLPI) and hepatocyte growth factor (HGF),
soluble mediators that are involved in both immune and
regenerative functions of hMSCs. Simultaneously, IFN-β induced
the activity of mTOR, increasing the glycolytic capacity of the
cells. This energy metabolic modification improved the cells’
ability to control T cell proliferation, yet another indication of
a link between high glycolytic capacity and immunomodulatory
capabilities (Vigo et al., 2019).

Overall reports discussing hMSC metabolism seem to, for
the most part, agree that during proliferation the cells primarily
generate ATP through glycolysis. However, upon initiation
of differentiation, cells seem to turn toward mitochondrial
metabolism, with reported increases in metabolism and
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biogenesis indicating the importance of mitochondrial activity
when it comes to hMSC functionality (Shum et al., 2016).

There is not much known about whether amino acid
metabolism is affected during functional progression of hMSCs
or what effects they induce if modified through metabolic
changes. For example, El Refaey et al. (2015) studied the aromatic
amino acids tryptophan and tyrosine, finding that oxidation
(via cell senescence) disrupted their anabolic effects on BM-
MSCs. By using mouse BM-MSCs, they were able to examine
effects of oxidized dityrosine and kynurenine of proliferation
and differentiation and found that these oxides inhibited BM-
MSC proliferation, ALP expression and activity and expression
of osteogenic markers. Yue et al. (2018) studied fatty acid
related gene expression and compositions of fatty acids during
adipogenesis of bovine Ad-MSCs and found that lipid-related
gene expression and fatty acid composition changed noticeably
during the early stages of differentiation (e.g., there was increased
expression of de novo lipogenesis-related genes, and thus de novo
lipogenesis produced fatty acid elongation and desaturation)
before returning to normal (e.g., proportions of saturated fatty
acids, monounsaturated fatty acids, and polyunsaturated fatty
acids returned to initial levels in later stages). Their conclusion
was that de novo lipogenesis and desaturation comprised
the major fatty acid flux during adipogenic differentiation
of bovine Ad-MSCs.

Ornithine decarboxylase (ODC) and polyamine biosynthesis
are important in the proliferation of stem cells (Tsai et al.,
2015). The role of ODC regarding differentiation has not been
fully explored but is considered to be diverse. Through
the study of inhibition of ODC’s irreversible inhibitor,
α-difluoromethylornithine, Tsai et al. (2015) hypothesized
that inhibition of ODC and the accompanying depletion of
exogenous polyamines might be correlated with the osteogenic
induction of BM-hMSCs, and demonstrated (in BM-hMSCs)
that decreases in the expression of PPAR- γ and ODC along with
an accompanying reduction in polyamines, are responsible for
enhanced osteogenesis.

MSC Functionality Is Greatly Impacted
by Mitochondrial Activity
As suggested in section “MSC Function Is Linked to Metabolism,”
active mitochondria are necessary for successful differentiation.
Accumulating evidence indicates that mitochondrial enzymes
and regulatory pathways are of great importance for MSCs
in proliferative and differentiating states (Chen et al., 2008;
Buravkova et al., 2013; Li et al., 2017). Mitochondria have
been found to be crucial for sufficient ATP production
to support OD, in addition to other mechanisms. Active
mitochondria support OD by promoting β-catenin acetylation
and, therefore, its activity. β-catenin is an important signaling
pathway in osteogenesis (Shares et al., 2018). In osteogenesis,
a mechanism of OD induction is to induce mitochondrial
OxPhos by replacing glucose with galactose. This switch
also stimulates β-catenin signaling and β-catenin acetylation.
Increased β-catenin acetylation is the mechanism of osteogenesis
driven by mitochondrial OxPhos (Shares et al., 2018). This

acetylation increases during osteogenesis (BM-hMSCs). Active
mitochondria may also support other osteogenic pathways by
providing acetyl groups.

Other enzymatic activity has been confirmed that further
supports the importance of mitochondrial activation for MSC
functionality. Creatine kinase (CK) activity, which is involved
in buffering and recovery of ATP, has been reported in Ad-
hMSCs. It stimulates glycogenolysis by increasing cytoplasmic
concentration of inorganic phosphate. Activity of CK was found
in both differentiated and proliferating Ad-hMSCs, with more
mitochondrial CK activity in AD cells. This further supports
the theory of a shift toward oxidative metabolism/mitochondrial
metabolism during differentiation of MSCs (Meyer et al., 2018).

Through the reversible mitochondrial nicotinamide adenine
dinucleotide phosphate (NADP)-dependent reaction of isocitrate
dehydrogenase (NADP-IDH), an anaplerotic pathway exists
that forms isocitrate from glutamine through a process
called glutaminolysis. Through this pathway, glutamine can
compensate for the lack of glucose for both ATP production
and anabolic precursor supply (Smolková and Ježek, 2012). This
pathway is active in MSCs during OD, indicating yet another
important role that mitochondria play when it comes to provision
of sufficient ATP to ensure successful differentiation.

Reactive oxygen species (ROS) are known to serve as signaling
molecules capable of regulating biochemical pathways that are a
part of normal cell function. They are particularly important in
metabolism and inflammatory signaling (Forrester et al., 2018).
Regulation of mROS levels also contributes to determination of
differentiation outcome. For a long time, these molecules were
considered to be harmful to cells, inducing organismal death and
dysfunction, but more recent reports suggest that excess mROS
impair OD and promote AD by inhibiting Hedgehog signaling
(a pathway essential for bone development and maintenance)
(Li et al., 2017).

Possible Ways to Achieve Metabolic
Manipulation
Since functionality and survival of hMSCs is affected by changes
in their metabolism, there is the potential to enhance the
efficacy of hMSC therapies through manipulation of metabolism.
hMSCs can effectively reconfigure metabolism to respond to
the biochemical demands of tissue repair, be it secretion of
immunomodulatory factors or integration and differentiation
toward tissue specific cell types (Mylotte et al., 2008; Zhu et al.,
2014; Yuan et al., 2019). Currently, the most extensively studied
subtypes are BM-hMSCs and Ad-hMSCs, but even these subtypes
have not been exhaustively studied. Evidence indicating the
importance of both the enzymes and mitochondrial pathways
support its significance for proliferation and differentiation of
hMSCs (Chen et al., 2008; Buravkova et al., 2013; Li et al.,
2017). In addition, several critical MSC functions are not only
influenced by internal cellular mechanisms, but also by external
ones (mechanical and biochemical) such as the composition of its
microenvironment (Bloom and Zaman, 2014). Previous work has
explored various ways of affecting the mechanisms controlling
MSC metabolic function (see Figure 6).
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FIGURE 6 | Possible ways to achieve metabolic manipulation of hMSCs. The resulting effects may vary depending on the original cell source.

One such approach is to alter the functional capacity of
MSCs through oxygen manipulation, due to the importance
of mitochondria and mROS discussed above. Muñoz et al.
(2014) investigated the effect of oxygen levels on metabolic
phenotypes of hMSCs. Oxygen is a ubiquitous regulator of
cellular metabolic activity and of the survival, function, and
differentiation of hMSCs. Using both normoxic and hypoxic
conditions, they found contrasting metabolic profiles for hMSCs
during proliferation versus OD. The key difference was found
in the coupling of glycolysis to the TCA cycle, glutaminolysis,
and malate-aspartate shuttle. In response to low oxygen
levels, undifferentiated hMSCs showed increased consumption
of both glucose and glutamine that activated the malate-
aspartate shuttle in order to accommodate increased cytosolic
production of nicotinamide adenine dinucleotide + hydrogen
(NADH) and transport glutamate and reducing equivalents
into the mitochondrial matrix for oxidation (Muñoz et al.,
2014). Low oxygen also activates HIF-1, reducing pyruvate
dehydrogenase activity so that transport of glucose derived
carbons into the TCA cycle decreases (Estrada et al., 2012).
These metabolic characteristics allow increased proliferation

under hypoxic circumstances, allowing cells to survive in an
ischemic environment.

Similar findings were reported for proliferation of cells grown
under hypoxia (dos Santos et al., 2010). For cells in OD, hypoxia
induces a more significant block of carbon flow from glycolysis
into the TCA cycle, compared to undifferentiated cells. This is
demonstrated by a greater rise in lactate levels. The carbon flow
blockage results in lower citrate levels and less production of
reduced cofactors [e.g., NADH and flavin adenine dinucleotide
(FADH2)] involved in OxPhos. The lower citrate levels indicate
a more pronounced metabolic uncoupling of glycolysis and
TCA cycle for cells in OD compared to undifferentiated cells
(Muñoz et al., 2014). This observation of a tight coupling of
glycolysis and TCA cycle in cells undergoing OD compared
to proliferating hMSCs suggests a stronger dependence on
oxygen during OD (Muñoz et al., 2014). This dependency has
been shown independently (Buravkova et al., 2013). Permanent
oxygen deprivation resulted in the attenuation of cellular ATP
levels, leading to diminished mitochondrial ATP production and
stimulation of glycolytic ATP production. The attenuated cellular
ATP levels stimulated a proliferation state of the hMSCs and
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reduced the differentiation capacity, indicating that low ATP
levels (arising from glycolysis only) are sufficient to maintain the
cells’ uncommitted state (Buravkova et al., 2013). Hypoxia has
also been used to precondition MSCs to enhance their survival
and cell retention in vivo via induction of metabolic changes
(Beegle et al., 2015).

Reactive oxygen species are known to play a role in the
mediation of both pathophysiological and physiological signal
transduction (Forrester et al., 2018). The subcompartments in
cells (e.g., peroxisome and mitochondria) that produce ROS
are often associated with metabolism. Mitochondria-related ROS
are able to influence metabolic processes on their own, and
so have an effect on differentiation and immunomodulation
of hMSCs. Studies have shown that by using mitochondrial-
targeted antioxidants, AD may be inhibited; however, as
mentioned in section “MSC Functionality Is Greatly Impacted by
Mitochondrial Activity,” excess mROS impair OD and promote
AD by inhibiting Hedgehog signaling (Li et al., 2017). The
role of mROS in chondrogenic differentiation (CD) is less well
known (Li et al., 2017). Takarada-Iemata et al. (2011) found
that through sustained exposure to glutamate, a significant
decrease in osteoblastic marker expression could be induced.
This happened in association with a reduction of intracellular
glutathione (GSH) levels, but without affecting adipogenic
marker expression. This finding suggests that extracellular
glutamate preferentially suppresses osteoblastogenesis over
adipogenesis in MSCs through the cysteine/glutamate antiporter
(Takarada-Iemata et al., 2011).

The effects of other chemical stimuli have also been reported.
In contrast to the inhibiting effects of extracellular glutamate
on OD, it was reported that by inducing overexpression of
heme oxygenase-1 (HO-1) OD of BM-hMSCs may be enhanced
and adipogenesis decreased (although no mechanism was
determined) (Barbagallo et al., 2010). HO-1 is a nuclear factor
erythroid 2-related factor 2 (Nrf2)-regulated gene that plays a
critical role in preventing vascular inflammation. It also has
important antioxidant, anti-inflammatory, antiproliferative, and
antiapoptotic effects in vascular cells (Araujo et al., 2012).
Recent reports suggest that frozen or cryopreserved hMSCs
are therapeutically less effective than freshly harvested MSCs
(François et al., 2012). It seems that dimethyl sulfoxide (DMSO),
a commonly used cryopreservative solution, decreases metabolic
and immunosuppressive properties of hMSCs, while valproic
acid (VPA) pre-treatment enhances both (François et al., 2012).
Moreover, the T cell suppressive capacity of hMSCs in vivo is
related to the cells’ glycolytic and respiratory capacity, in contrast
to their IDO dependence in vitro. This observation, therefore,
leads to speculation that hMSCs may only be able to induce
immunoregulatory effects when undifferentiated.

Metabolism in MSCs is a complex and dynamic system. We
have outlined several gaps in the collective knowledge of MSC
metabolism that are actively being addressed by the community.
As we gain insights into questions regarding the primary energy-
generating pathway(s) utilized during differentiation, we will
move closer to manipulating these systems. However, we will
need a holistic perspective that integrates knowledge at the
various biological levels of MSC differentiation.

MATHEMATICAL MODELING OF HUMAN
METABOLISM

A bottom-up systems biology approach allows for a mechanistic
understanding of a system (Westerhoff and Palsson, 2004). Such
mathematical models can predict potential interventions,
potentially providing insights into how to successfully
manipulate MSCs for therapeutic applications. Over the
last few decades, many individual components of MSC
biology have been studied in detail. However, to predict
a cell’s phenotype, it is necessary to understand all of the
systemic interactions of environmental and cellular components
that contribute to that phenotype (Bordbar et al., 2014).
A combination of high-throughput -omics technologies,
enabling the collection of large data sets, and improved
computational modeling methods to holistically analyze that
data have made systems biology possible (Henry et al., 2010;
Resendis-Antonio, 2013).

The first step in modeling metabolism at the genome-
scale is to reverse engineer the network structure (Reed and
Palsson, 2003; Resendis-Antonio, 2013; Bordbar et al., 2014;
Yurkovich and Palsson, 2016). This reconstruction process starts
with collecting all annotated components of the genome and
experimental evidence of biochemical reactions for the organism
of interest (Thiele and Palsson, 2010). Further constraints are
placed on the network based on biochemical knowledge—
including stoichiometric constraints (e.g., mass and charge
balance of reactions), thermodynamic constraints, and enzymatic
capacity constraints (Reed and Palsson, 2003; Rocha et al., 2008;
Oberhardt et al., 2009; Thiele and Palsson, 2010)—eventually
resulting in a genome-scale model (GEM) of metabolism
(see Figure 7). Transcriptomic and proteomic data is then
used to select which of these reactions are active in a given
phenotype, based on the presence of the enzyme that catalyzes
the reaction. Metabolomic data may be used to constrain
which metabolites should be produced or consumed by the
cell being modeled (Bordbar et al., 2017). The resulting GEM
can then be used with a variety of computational approaches,
such as flux balance analysis (FBA), to determine the flux
state (i.e., pathway usage) of the entire metabolic network (see
Figure 8).

This ability to integrate information from multiple types
of -omic data with previously acquired detailed biochemical
data makes metabolic modeling a powerful technique to answer
biological questions regarding how phenotypes occur due to
genetic mutation or environmental perturbations (Thiele and
Palsson, 2010). As further data is obtained, the model will
more closely represent the intended physiological conditions.
An updated model may produce novel hypotheses which can
suggest new experimental directions. Establishing this feedback
between experimental design and computational evaluation is
valuable and enables a better understanding of how cells—
including MSCs—organize their metabolic system in response
to shifts in environment and functional demands (Reed and
Palsson, 2003; Resendis-Antonio, 2013). Furthermore, the ability
to contextualize models based on information at various levels
from genomic to environmental has the potential to allow models
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FIGURE 7 | The process of reconstructing a genome-scale metabolic model (GEM). Using a base human metabolic reconstruction along with experimental data and
biochemical databases (e.g., KEGG or BiGG), a constraint-based model can be created. From this model, a GEM is derived, from which cellular functions can be
studied. Newly acquired knowledge from the GEM can be used to create cell experiments to further validate or improve the model. The validated GEMs can then be
used to further study cells for use in regenerative medicine.

to inform personalization of medicine, for example by predicting
potential genetic markers of a successful MSC donor.

Existing Human Models
Genome Annotation Efforts Led to the First Human
Metabolic Reconstructions
Various community-driven efforts have led to several
reconstructions of the global human metabolic network
(Romero et al., 2004; Duarte et al., 2007; Ma et al., 2007;
Agren et al., 2012; Thiele et al., 2013; Mardinoglu et al., 2014).
Compiling data on all reactions that have been linked to genes
annotated in the human genome from various databasesas
having metabolic activity is a substantial task, and important to
the quality of subsequent work (Kanehisa et al., 2016; Norsigian
et al., 2020). This production of annotated human genomes
allowed, for the first time, metabolic networks that cover the
entire human metabolic repertoire to be produced. Between 2005
and 2012, the first four human metabolic reconstructions were

produced; humanCyc (Romero et al., 2004), Recon1 (Duarte
et al., 2007), Edinburgh Human Metabolic Network (EHMN)
(Ma et al., 2007), and Human Metabolic Reconstruction (HMR)
(Agren et al., 2012). Each of these networks expanded on
the previous work, including more reactions and better links
between reactions and genes, allowing for improved analysis of
expression data. Further improvements were made in Recon2
(Thiele et al., 2013) and HMR2 (Mardinoglu et al., 2014) and
their updates (Smallbone et al., 2013; Quek et al., 2014; Sahoo
et al., 2014, 2015; Swainston et al., 2016). By expanding the
extent of the reaction coverage, increasing the detail of the
available gene-to-reaction links, and placing more emphasis
on the inclusion of good thermodynamic and stoichiometric
information, better possibilities for accurate simulations were
afforded; thus, these models represent significant steps forward.
In addition, tools such as PathwayBooster and Path2Models
have allowed the utilization of data bases such as KEGG in the
automated reconstruction of new or custom built networks.
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FIGURE 8 | Going from a large base model to a cell specific GEM. (A) Genome scale metabolic models build on the gene-protein reaction association and represent
a set of reactions as a matrix with linked genes. Synthesis of metabolites is designated by a positive number and breakdown with a negative number. (B) Going from
a large base model to a cell/condition specific model. (1) A relevant base model is chosen. This model is a summary of known metabolic reactions and forms a
species specific metabolic reconstruction. This base model usually has the highest count of genes, reactions and metabolites. (2) A process aiming at reducing the
size of the model starts. By considering biochemical and biophysical constraints, e.g., thermodynamic feasibility, some reactions stop being reversable and the
reconstruction becomes a model. Other constraints applied at this stage relate to stoiciometricity and enzyme capacity. The number of genes, reactions and
metabolites is reduced. (3) Data about transcripts and proteins present in a cell type and the availability of nutrients in medium lead to the removal of yet more
reactions. A cell specific model is created. (4) Metabolomic data specific to the condition the cell is supposed to represent allows the magnitude of reactions to be
predicted. Some will have higher flux rates than others. More reactions may be removed at this stage. The model now becomes condition specific.

The Latest Human Metabolic Reconstructions
Contain New Dimensions of Information
Recon3D is the latest update of the Recon family of human
metabolic network reconstructions (Brunk et al., 2018). The
key novel attribute of this reconstruction is that it includes
information regarding protein and metabolite structures. In
addition, the number of reactions included in the reconstruction
has almost doubled from the previous version, to 13,453 total
reactions. The inclusion of three-dimensional (3D) structural
information has allowed Recon3D to be used to show that
deleterious mutations map to specific areas of the genome.
By using this information, improved predictions of cancer-
related mutations may be made compared to previous Recon
models, which include a less detailed mapping of genes. The 3D
aspect of the protein and metabolite information in Recon3D
has also been used to investigate the metabolic effects of
various drugs; this analysis revealed that drug effect signatures
often contained disparate functional domains and metabolites,
indicating that many drug effects are due to compensatory
downstream metabolic effects (Brunk et al., 2018). Recon3D
has been constructed in such a way as to allow for integration
with the AGORA platform for modeling the gut microbiome
by using a consistent set of identifiers (Magúsdóttir et al.,
2017). As it becomes increasingly clear that the microbiome
plays an important part in human health, being able to
include cometabolism by human and microbial cells is a very

useful feature (Magúsdóttir et al., 2017). A global network
reconstruction can then provide the starting point for the
production of tissue-, cell-, or condition-specific GEMs.

Current State-of-the-Art Applications
Generic Human Metabolic Reconstructions Can Be
Analyzed to Gain General Metabolic Insights
A base GEM may be utilized to produce general predictions
about whole human metabolism, providing useful insights into
both human health and predictions of currently unknown human
metabolic functions.

The various human models have been used to predict
biomarkers for inborn errors of metabolism (the accuracy of
previous predictions feeds into improving these models) (Kell
and Goodacre, 2014). Inborn errors of metabolism (IEMs) are
a collection of hereditary metabolic defects found in most of
the main human metabolic pathways. These defects are usually
screened for in infants by way of biofluid metabolomics (i.e.,
metabolomics analysis of either dried blood samples or urine).
Early recognition and treatment of IEMs is very important. The
current method detects specific biomarkers that have altered
concentrations due to known genomic mutations. Identifying
good biomarkers is key to successful early diagnosis. With
the advent of the human metabolism genome-scale network
model, a novel computational approach was developed that could
systematically predict altered or affected metabolic biomarkers.
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This possible use of GEMs has the potential to extend the
information that can be inferred from the data, enabling accurate
diagnosis for each individual patient, further insight of hot
spots in human metabolism with respect to IEMs, and discovery
of novel IEMs (expanding the range of disease-associated
metabolites). By making use of the GEM, gene-protein-reaction
(GPR) metabolic pathways relevant to a specific genotype-
phenotype pair can become more feasible, meaning that disease-
specific biological insights can be derived (Shlomi et al., 2009;
Sahoo et al., 2012; Mandal et al., 2018; Mussap et al., 2018).

By analyzing reactions in Recon1 that were defined as being
present due to genome annotation or literature data, but that
were not predicted to be active, and then adding surrounding
reactions to activate them, predictions have been made about
previously unknown human metabolic functions such as that of
iduronic acid following glycan degradation, N-acetylglutamate in
amino acid metabolism, and the human activity of gluconokinase
(Rolfsson et al., 2011; Paglia et al., 2016). Such information
will improve future metabolic studies both computationally and
in the laboratory.

Reconstructions can be made specific by integrating -omics
data
Once a base GEM has been selected, there are a variety of
methods available to make the model specific to a particular cell
type and circumstance by integrating transcriptomic, proteomic,
and metabolomics data. These context-specific models are able
to provide more detailed insights into human metabolism in a
particular cell type, and comparison of models is particularly
useful. Previous context-specific human models have produced
useful insights into healthy and diseased metabolism.

A cell’s metabolic capabilities are defined by which enzymes
it expresses. Transcriptomic and proteomic data provide
information about the enzymes expressed under certain
circumstances. Both of these data types correlate to enzyme
activity, although not perfectly (Munir and McGettrick, 2015;
Ibraheim et al., 2018). Several methods to prune a GEM based on
expression data, mostly transcriptomics, have been developed.
Although there are numerous technical differences, all seek to
balance the retention of reactions known to be or likely to be
present in a particular cell type, based on expression data or
prior knowledge, while removing extraneous reactions. GIMME
(Moreira et al., 2017), iMAT and INIT (Antonitsis et al., 2008;
Vigo et al., 2019), and MBA, Fastcore, and mCADRE (Ullah et al.,
2015; Archambault et al., 2017; Fitzsimmons et al., 2018) are all
commonly used (Rosenbaum et al., 2008; Neman et al., 2012).

Another way to make models more context specific is to use
metabolomic data collected by mass spectrometry or NMR to
constrain what the model takes up or secretes to realistic values.
By either measuring changes in the concentration of various
metabolites in the medium over time or by comparing the relative
values of metabolites at different times, the rate of uptake or
secretion of a range of metabolites is determined. These rates can
be applied to the model as additional constraints that will restrict
the model predictions to those consistent with the metabolic
dataset (Bordbar et al., 2017). These additional constraints help
to predict different sets of active and inactive intracellular

reactions based on extracellular data. This process may follow
a protocol such as Metabotools. This protocol has been used to
obtain metabolic insights into the metabolic differences between
different leukemic cell lines (Aurich et al., 2015, 2016; von
Bomhard et al., 2016).

Models can also be used to analyze isotope labeling data and
this data can, in turn, contribute better constraints to improve
the model. Cells may be fed on medium containing glucose or
glutamine labeled with heavy isotopes of carbon or nitrogen.
The proportions of various metabolites labeled with these heavy
isotopes in cells that are sampled and analyzed at different time
points after this treatment allows inferences to be made about
the production of the labeled metabolites. Sholmi et al. used this
technique to elucidate the differences in the TCA cycle during
the cell cycle. Further information may be obtained if the cells are
fractionated into different organelles before analysis (Ahn et al.,
2017). For example, the subcellular localization of glutamine
metabolism in cancer has been elucidated using this technique
(Lee et al., 2019).

Using the model building algorithm (MBA) (Jerby et al.,
2010), which generates tissue-specific models, a focused model
for cancer metabolism has been created containing a core set
of reactions known to be common for 60 variant cancer cell
lines. Using this model and the knowledge that uncontrolled cell
growth and altered metabolism are characterizing hallmarks for
cancer cells, it was possible to identify two different types of
drug targets (Hanahan and Weinberg, 2011; Dougherty et al.,
2017). The first target type was growth-supporting genes (found
via in silico gene deletion screens) that resulted in identification
of 52 metabolic drug targets; 8 of these currently correspond to
cancer therapeutics. In addition, a set of genes were identified in
the healthy cell model network that were downregulated in the
cancer model. By inhibiting the genes more highly expressed in
cancer cells, targeting could be achieved (Dougherty et al., 2017).

More specific cancer models have also been produced. For
example, a model has been created for hepatocellular carcinoma
by Agren et al. (2014). They evaluated the presence of proteins in
27 patients and from that reconstructed personalized GEMs for
six. These reconstructions were then used to identify anticancer
drugs by observing the inhibition of reactions around each
metabolite in a network and the subsequent effects on cellular
growth within the models. By conceptualizing drugs as structural
analogs to metabolites, and so capable of interfering with
target enzymes and enzymatic activity, 101 antimetabolites were
predicted as possible drug targets (Agren et al., 2014). Similar
approaches have been applied to breast cancer undergoing
epithelial-to-mesenchymal transition in order to identify targets
to reduce this pro-metastatic process (Halldorsson et al., 2017).

Comparing Models of Cells in Different
Circumstances Can Produce Useful Insights Into
Metabolism
Many constraint-based metabolic analyses have historically relied
upon an objective function, which is defined as a metabolic
objective of a cell; flux through this reaction is either maximized
or minimized to compute the flux state (i.e., pathway usage)
across the entire network. For metabolic states that do not

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 15 March 2020 | Volume 8 | Article 239

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-08-00239 March 28, 2020 Time: 19:28 # 16

Sigmarsdóttir et al. Metabolic Models in Regenerative Medicine

have as well-defined objective functions as cancer does (i.e.,
gross cellular growth), algorithms that are able to create tissue-
or cell-specific models without a specific objective function
are needed. An algorithm often used for this purpose is the
metabolic transformation algorithm (MTA) (Yizhak et al., 2013),
an algorithm that uses GEMs to predict genetic perturbations
that are able to shift a diseased metabolic state toward a healthy
one. This algorithm has been used to determine reactions
capable of shifting “old” muscle into “young” (providing potential
targets that can help reducing metabolic shifts related to aging)
and to determine key reactions that, when removed from
a GEM modeling Alzheimer’s disease, resulted in a network
reconstruction more similar to that of a healthy state (Stempler
et al., 2014; Wone et al., 2018).

Obesity has been addressed through the use of the human
metabolic reconstruction by identifying pathways implicated
in the disease process. As with many diseases, pinpointing a
specific genetic or environmental marker as a cause for obesity,
making the determination of progression, and deciding on a
“treatment” a difficult task. Using the HMR and transcriptomic
data from both healthy and obese individuals, a GEM with
the objective function defined as acetyl-CoA production and
formation of lipid droplets was produced. Through this analysis,
two possible drug targets were identified by considering reactions
with significantly changed flux values, and a potential biomarker
for obesity was identified through reporter metabolites, which is
an algorithm allowing the analysis of transcriptomic data in the
light of the metabolic network structure to predict highly affected
metabolites (Bordbar et al., 2011; Väremo et al., 2013; Levian
et al., 2014; Dougherty et al., 2017).

Drug toxicity levels and side effects over both short and
long periods of usage can also be identified in an easier
and more cost-efficient manner using GEMs. It is possible to
make predictions on system-wide perturbations using previously
determined information on how protein structural analysis can
be used to determine off-target binding of drugs, in combination
with metabolic networks, as was done by Chang et al. (2010).

Metabolic Models Can Be Used to Uncover Changes
Over Time
Biological systems often change dynamically over time.
Analyzing how these changes occur can be challenging but
is being addressed through the integration of time-course
experimental data. One approach, dynamic flux balance analysis
(dFBA) {ref 10.1016/j.celrep.2017.07.04}, integrates time-course
measurements of the major inputs and outputs of the system
to provide more accurate flux predictions. dFBA provides a
continuous prediction based on these changing inputs and
outputs (e.g., end products of pathways). This method has been
applied to murine embryonic stem cells and revealed changes to
mitochondrial metabolism and one carbon metabolism during
priming (Shen et al., 2019). more recently, time-course -omic
measurements have been integrated with metabolic models.
One such method, unsteady-state flux balance analysis (uFBA),
integrates absolutely quantified time-course metabolomic data
to model cellular dynamics. uFBA was used to explore how
temporal dynamics impact the cellular metabolism of stored red

blood cells, which led to the proposal of better storage solutions
that could potentially increase the storage time and quality of
this key medical product. Such methods may be applied to other
cell types and phenotypes in the future where dynamics play a
key role. In MSCs, for example, key metabolic shifts that occur
during trilineage differentiation may be examined and compared
as a function of time.

A Metabolic Model of MSCs Has Already Predicted
Better Ways to Expand MSC Cultures
A GEM of MSCs, iMSC1255, was recently created to improve
understanding of the function of MSC metabolism. This model
is based upon publicly available transcriptomic data sets from
proliferating, early passage bone marrow MSCs. The data was
used with the mCADRE algorithm to generate a tissue-specific
version of the global human model Recon1, which was then
manually curated by comparison to proteomic data and the
literature to ensure that all desirable reactions were included
to account for known MSC metabolic functions (Wang et al.,
2012). Further metabolic constraints were added based on the
composition of the commonly used medium alpha MEM, which
meant that the modeled cells were able to take up metabolites
known to be available in alpha MEM. This model was compared
to previous models created with the same algorithm for adipose,
bone marrow, and blood (using tissue-based, rather than cell-
based, models). These previous models were shown to be
less specific than iMSC1255. iMSC1255 was also shown to be
able to produce amino acid uptake and secretion and growth
rate predictions consistent with data available in the literature
(Fouladiha et al., 2015).

iMSC1255 has subsequently been used to computationally
predict metabolic interventions to optimize proliferation
and chondrogenic differentiation of MSCs. By analyzing
the maximum growth rate predicted FBA with and without
allowing the uptake of a range of nutrients, it was proposed
that supplementing the MSC medium with the phospholipids
phosphoethanolamine and phosphoserine would improve
proliferation. This was confirmed experimentally (Fouladiha
et al., 2018). This paper also describes how MTA was used along
with transcriptomic data from chondrocytes to determine likely
metabolic changes during chondrocyte differentiation. This
analysis suggested that mitochondrial transport reactions are
key to chondrocyte differentiation, a finding that has yet to be
experimentally confirmed. Further, the authors also examined
the effects of hypoxia on proliferating MSCs by assessing the
range of possible metabolic activities when the models use
different levels of oxygen and glucose availability. The predicted
metabolic changes to lactate and glucose uptake and secretion,
G6P isomerase, and pyruvate transport were generally correct,
with the exception of superoxide dismutase, according to the
literature (Fouladiha et al., 2018). This study showed that a
model of MSC metabolism can provide useful insights into their
proliferation under different circumstances. This will allow the
optimization of MSC growth that may be useful for large scale
production of MSC-based therapeutics. Follow-up work has
begun to examine the potential of GEMs to predict changes
necessary for successful differentiation (Fouladiha et al., 2018).
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By expanding upon such techniques, including by using models
constrained with metabolic data from differentiating cells, this
can be built upon.

LOOKING AHEAD

Since 2007, when the very first global GEM for humans
was reconstructed (Duarte et al., 2007), researchers have been
exploring the clinical application possibilities of GEMs. Some of
the possible ways GEMs can be of use in furthering the clinical
application of cell-based medicine include: (1) trials with in silico
metabolic engineering (gene knock-outs and knock-ins); (2)
identifying biomarkers of diseases; (3) predicting drug targets and
therapeutic windows; and (4) optimization of cellular functions
without the cost of wet lab experimentation. Some success has
already been reported, as mentioned in section “Current State-
of-the-Art Applications.”

Manipulation of the Metabolic State
Building on the various uses of existing cell- or tissue-specific
human GEMs and the most up-to-date version of the human
reconstruction (Brunk et al., 2018), the potential use of GEMs to
explore methods to maintain or manipulate a desired metabolic
state for hMSCs (in order to provide a specific function or
desired effect) has been the subject of work done by Fouladiha
et al. They demonstrated the potential of GEMs to gain insight
into how MSCs may be manipulated by means of nutrient
supplementation (Fouladiha et al., 2018). By adding nutrients
into the growth medium or manipulating oxygen concentration
in silico, the number of experiments needed to optimize growth
conditions may be reduced. This may be an interesting avenue to
explore for each cell type and cell state, since different responses
may be observed. Such testing is more feasible to explore in silico
than in vitro. Even though time and money will have to be
spent on reconstruction of the GEMs themselves, the savings
in experimental time and material costs afforded by the use
of validated reconstructions will likely outweigh these costs.
Promising in silico outcomes can then be taken further, being
validated or explored in vitro and later in vivo. Positive results
would further validate the models and perhaps further that
particular avenue of cell-based medicine or that particular use of
the cells in regenerative medicine.

Exploration of Metabolic Differences
One potential use for GEMs would be to explore the different
metabolic capacities of hMSCs from different sources. There have
been some reports, albeit limited, explaining possible differences
in the proliferative, differentiation, and immunomodulatory
abilities of hMSCs isolated from various tissues (Liu et al.,
2007; Hass et al., 2011; Secunda et al., 2015; Tachida et al.,
2015). As hMSCs are isolated from disparate microenvironments,
some with large differences in their surroundings, their optimal
survival conditions and, possibly, utilization potential may differ.
For example, by comparing models created using transcriptomics
data from a study of MSCs from various sources such as
ArrayExpress (EMBL-EBI, 2014; Athar et al., 2019) and then

subjecting them to comparative flux analysis, different metabolic
patterns may be discovered and linked to previously reported
functional differences, such as the ability to form hematopoietic
cells. Results could be verified or supplemented with data from
independent proteomics experiments such as can be found via
PRIDE Archive (Billing et al., 2016).

The creation and study of GEMs of MSCs undergoing
each of the three classical differentiation (adipo-, osteo- and
chondrogenic) could be approached in various ways. uFBA could
be used as a framework to examine MSC metabolomics data
collected at different timepoints during each of the differentiation
lineages (Bordbar et al., 2017). The study of other stem cell
types over time has already provided useful insights into
differentiation from a transcriptional viewpoint. uFBA would
allow a better understanding of the metabolic changes to be
reached (Bordbar et al., 2017).

Experimental Cost Reduction via in silico
Result Prediction
As expansion and differentiation of MSCs is a time-consuming
and potentially expensive process, it would be desirable to be
able to predict in advance the success of cells from a particular
donor. For example, a signature pattern of gene features could
be tested before donation. To this end, a model of successful and
unsuccessful cells created with Recon3D could be used to analyze
the genes relevant to an ideally differentiated model in silico
(Strober et al., 2019). Single and combined gene deletion to find
genes essential to each form of differentiation would be useful
as a secondary way of finding a genetic signature for successful
differentiation. This process could provide a means of reducing
the necessary number of in vitro analyses.

It would also be desirable to confirm adequate differentiation
by measuring a few metabolites before attempting implantation.
The reporter metabolites algorithm (Çakır, 2015; Schultz and
Qutub, 2016) applied to a model of well- differentiated MSCs
would determine exometabolomic biomarkers that are indicative
of successful levels of differentiation.

Multi-Cell Models
Community models or multi-cell models are another avenue to
be explored as a potential use for GEMs to enhance the use
of hMSCs in regenerative medicine. These models can provide
insight into the metabolic functions of possible interacting
organisms or the various cell types residing within the same
organism (Levy and Borenstein, 2013; Dougherty et al., 2017).
Given that hMSCs are intended to be integrated into a host
system for clinical application (Han et al., 2012; Levy and
Borenstein, 2013; Burke et al., 2016; Archambault et al., 2017;
Goldberg et al., 2017; Moreira et al., 2017; Cunningham et al.,
2018; Hu et al., 2018; Ibraheim et al., 2018; Solarte et al., 2018),
this could provide useful insights.

Recently, more attention has been given to the hMSC
secretome and its possible therapeutic effect; this might be well
explored through the use of multi-cellular GEMs. The secretome
of hMSCs might be manipulated via some of the previously
mentioned methods, and the effect of composition changes on
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the targeted organism, cell, and/or environment observed. This
could help to find novel directions in which to expand the use of
hMSCs in regenerative medicine.

Age Related Exploration
Yet another aspect that could more easily be explored through
the use of GEMs covering hMSCs is the effect of donor
age. This is not the same as cell senescence, but effects
due to age have been observed in hMSCs lines through
in vitro experiments (Choudhery et al., 2014; Narbonne, 2018).
This appears in the way that cells are able to perform
with regard to proliferation speed, differentiation ability, and
immunomodulation. There have been numerous attempts to
return functionality to stem cells from aged donors, with some
degree of success (Neves et al., 2017). However, with the
application of GEMs, the significant changes and the reasons
behind them may be more systematically documented and
attempts to return function performed in a more cost-effective
and time-saving manner.

Overall, the use of GEMs to further the use of hMSCs in
regenerative medicine is increasing, but, as of yet, is a relatively
unexplored avenue that holds a lot of promise. We anticipate
that in silico metabolic modeling will help to elucidate the
differentiation process of hMSCs, ultimately providing crucial
insights into novel therapies in the field of regenerative medicine.
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6. Appendix 
 

6.1. Appendix A. 
 

Table A1. Summary of various methods of inducing varying differentiations, expression marker and signalling 

pathways related to differentiation. Adapted from [73]. Not an exhaustive list 

 

Table A2. Akaike Information Criteria from models fitted with the gamm4 function in R, all models are for 

each metabolite varying by day with the combinations of random effects considered below. 
  Donor + Analysis 

Batch 
PIPL/Donor + 

Analysis Batch 
Passage/Donor + 

Analysis Batch 
PIPL/Passage/Donor 

+ Analysis Batch 
Donor + Media + 

Analysis Batch 
Donor 

Glucose 1543.795 1545.795 1545.795 1547.795 1545.795 1558.992 

Lactate 1168.993 1170.993 1170.993 1172.993 1167.776 1227.897 

Glutamine 587.1644 589.1644 588.3329 591.1644 595.5849 591.5849 

Glutamate 292.9485 294.9485 293.2039 296.9485 381.4727 377.9853 

Ammonia 757.6984 759.3254 758.5992 761.3254 820.5771 816.5771 

 

Cell type 

resulting from 

differentiation 

Differentiation via 

media additives 

Differentiation 

via mechanical 

stimulation 

Differentiation 

via 

scaffold/culture 

surface 

modification 

Culturing 

time 

Relevant 

expression 

markers 

Most relevant reported 

pathways and molecules 

References 

Adipocytes Dexamethasone, 

Indomethacin, 

Insulin, 

Isobutilmethyl 

xanthine 

 Nanopatterning 

of bulk metallic 

glass, soft 

scaffold (pro) 

14-21 days, 

with 2 phases 

(determination 

and terminal 

differentiation) 

Ap2, LPL, 

PPARγ 

Β-catenin dependent Wnt 

(anti), Hedgehog, (anti), 

NELL-1 (anti), BMP (pro) 

[76], [81] 

Cardiomyocytes 5-azacytidine Equiaxial cyclic 

strain 

 28 days ⍺-MHC, ⍺-

cardiac 

actin, ANP, 

cTnT, 

Desmin  

miR1-2 + Wnt/β-catenin (pro) 

HDAC, TGF-β, VR-1, 5-aza 

[279]–[281] 

Chondrocytes Ascorbate-2-

phosphate, 

Dexamethasone, 

Insulin, Linoleic 

Acid, Selenious 

pyruvate, Selenium, 

TGF-βIII, 

Transferrin 

 Soft scaffold 

(pro) 

21 days, with 2 

phases (pre-

induction and 

terminal 

differentiation) 

Phase I: 

Collagen 

types I and 

II Phase II: 

L-Sox5 

Sox6 Sox9 

Phase 1 expression dependent 

upon: TGF-β1, 2 and 3 Phase 

2 expression dependent upon: 

BMP2, IGF-I, TGF-β1, 

Wnt/β-catenin (pro), 

PTHrp(anti) 

[75], [77]–

[79] 

Hepatocytes Phase I: bFGF, 

EGF, Nicotinamide 

Phase II: 

Dexamethasone, 

Insulin, Oncostatin, 

M-Selenium, 

Transferrin 

 3D environment 

sustains 

differentiation 

functions better 

2 phases: 

differentiation 

(7 days) and 

maturation 

  [18], [282] 

Neuronal cells bFGF, BME, EGF, 

FGF, HGF, Insulin, 

LMX1A, NGF, 

Retinoic acid, 

Valproic acid 

     [18] 

Osteocytes Β-

glycerolphosphate, 

Ascorbic acid, 

BMP-2, 

Dexamethasone 

Cyclic 

stretching 

(tensile loading), 

hydrostatic 

pressure 

(compressive 

loading), fluid 

flow (shear 

stress) 

Nanopatterning 

of bulk metallic 

glass, stiff 

scaffold (pro) 

21-35 days ALP, 

COL1, OC, 

ON, OP, 

RUNX2 

Β-catenin dependent Wnt 

(pro), BMP (pro), Hedgehog 

(pro), NELL-1 (pro), TGF-β1 

+ Wnt/β-catenin (anti) 

[74], [75], 

[81], [283] 

Pancreocytes Actavin A, 

Nicotnamide, 

Sodium butyrate, 

Taurine 

     [18] 

Skeletal/smooth 

muscle 

NICD, TGF-β Cyclic 

stretching 

(tensile loading) 

    [18], [74] 
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