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Abstract  24 

Here we describe the first synthesis of a new type of polysaccharides derived from chitosan. 25 

In these structures, the 2-amino group on the pyranose ring was quantitively replaced by an 26 

aromatic 1,2,3-triazole moiety. The 2-amino group of chitosan and di-TBDMS chitosan was 27 

converted into an azide by diazo transfer reaction. The chitosan azide and TBDMS-chitosan 28 

azide were poorly soluble but could be fully converted to triazoles by “copper-catalysed 29 

Huisgen cycloaddition” in DMF or DMSO. The reaction could be done with different alkynes 30 

but derivatives lacking cationic or anionic groups were poorly soluble or insoluble in tested 31 

aqueous and organic solvents. Derivatives with N,N-dimethylaminomethyl, N,N,N-32 

trimethylammoniummethyl, sulfonmethyl, and phosphomethyl groups linked to the 4-33 

position of the triazole moiety were soluble in water at neutral or basic conditions and could 34 

be analyzed by 1H, 13C APT, COSY, and HSQC NMR. The quaternized cationic 35 

chitotriazolan’s had high activity against S. aureus and E. coli, whereas the anionic 36 

chitotriazolan’s lacked activity. 37 

Graphical abstract 38 

Keywords 40 
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 42 
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1. Introduction 45 

Chitosan is an abundant, renewable polysaccharide derived from chitin that exhibits attractive 46 

biopolymer properties for many biomedical applications such as non-toxicity, 47 

biocompatibility, and biodegradability(Elsabee & Abdou, 2013; Jayakumar, Prabaharan, 48 

Nair, & Tamura, 2010). It has antimicrobial activity(Rabea, Badawy, Stevens, Smagghe, & 49 

Steurbaut, 2003; Zheng & Zhu, 2003), and regenerative properties(Dash, Chiellini, 50 

Ottenbrite, & Chiellini, 2011). Chitosan is also used in drug delivery applications as an 51 

absorption enhancer(Kotzé, Lueßen, de Boer, Verhoef, & Junginger, 1999), mucoadhesive 52 

polymer(He, Davis, & Illum, 1998), to form nanoparticles(Jayakumar, Menon, Manzoor, 53 

Nair, & Tamura, 2010; Qi, Xu, Jiang, Hu, & Zou, 2004), and for gene delivery 54 

applications(Park, Saravanakumar, Kim, & Kwon, 2010). Chemical modification of chitosan 55 

to improve the properties for the intended application or biological activity is also a very 56 

active research field(Harish Prashanth & Tharanathan, 2007). The glucosamine monomer in 57 

chitin has three nucleophilic functional groups, the C-2 amino group, the C-3 hydroxyl group, 58 

and the C-6 hydroxyl groups, which have been targeted for modification. Most commonly, 59 

this is done through either N- or O- alkylation or acylation(Ifuku, 2014; Sahariah & Másson, 60 

2017). The primary C-6 has also been replaced with other functional groups such as Br, 61 

N(CH3)3
+ or N3(Gao, Zhang, Chen, Gu, & Li, 2009; Satoh et al., 2006; Zampano, Bertoldo, & 62 

Ciardelli, 2010). Chitosan is poorly soluble in most organic solvents, which are often required 63 

as the medium for the reactions, and the reported conversion or substitution is only partial 64 

with generally less than 50% conversion of targeted groups on the polymer chain. Lack of 65 

selectivity is also an issue with many reactions, and a mixed N, O modification is common. 66 
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One way to address this issue is to use protecting groups in the synthesis of chitosan 67 

derivatives. The purpose of the protecting groups is to prevent the reaction of the groups that 68 

are not targeted for modification and also to improve the solubility in organic solvents. The 69 

tert-butyl dimethyl silyl (TBDMS or TBS) protection of the hydroxyl groups is especially 70 

useful in this regard. Di-3,6-O-TBDMS chitosan is well soluble in moderately polar organic 71 

solvents, such as dichloromethane and chloroform and has been used for N-selective 72 

synthesis of N,N,N-trialkyl and N-acyl derivatives and conjugates with 100% degree of 73 

substitution(Rathinam, Ólafsdóttir, Jónsdóttir, Hjálmarsdóttir, & Másson, 2020a; Sahariah, 74 

Óskarsson, Hjálmarsdóttir, & Másson, 2015). These derivatives have been investigated as 75 

antimicrobial agents(Rathinam, Ólafsdóttir, et al., 2020a; Rathinam, Solodova, 76 

Kristjánsdóttir, Hjálmarsdóttir, & Másson, 2020; Sahariah, Óskarsson, et al., 2015), 77 

absorption enhancers(Benediktsdóttir, Gudjónsson, Baldursson, & Másson, 2014), and for 78 

photo-activated delivery of genes and cancer drugs(Gaware et al., 2017; Gaware et al., 2013). 79 

“Click chemistry” is a term that was first introduced by K. B. Sharpless to describe selective 80 

reactions that afford carbon-heteroatom bonds in high yield(Kolb, Finn, & Sharpless, 2001). 81 

The copper (I) catalyzed azide-alkyne cycloaddition (CuAAC) was proposed to fit these 82 

criteria. The “click chemistry” approach is now commonly used to synthesize bio-conjugates, 83 

especially for functionalizing peptides and proteins with different moieties(El-Sagheer & 84 

Brown, 2010; Elchinger et al., 2011; Hein, Liu, & Wang, 2008) or conjugating them and 85 

other functional moieties to nanoparticles(Lu, Shi, & Shoichet, 2009), liposomes(Fritz et al., 86 

2014), solid surfaces(Sun, Stabler, Cazalis, & Chaikof, 2006), and carbohydrates(Nielsen, 87 

Wintgens, Amiel, Wimmer, & Larsen, 2010). Thus, a substituent containing a terminal 88 

alkyne or azide group is first introduced by acylation or alkylation, and then the functional 89 

moieties are introduced by reaction with a corresponding azide or alkyne. 90 
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CuAAC modifications of chitosan have been mainly focused on reactions with the azide 91 

introduced at the C-6 position and with the C-2 amine protected with phthaloyl groups(Gao et 92 

al., 2009; Luan et al., 2018). The 2-amino group has also been modified with acyl moieties 93 

carrying terminal alkyne or azide groups that can subsequently be converted to triazole by the 94 

CuAAC reaction. This approach has been used for grafting peptides(Barbosa, Vale, Costa, 95 

Martins, & Gomes, 2017; Sahariah, Sørensen, et al., 2015), poly(ethylene 96 

glycols)(Kulbokaite, Ciuta, Netopilik, & Makuska, 2009), drug conjugates, and 97 

nanoparticles(Q. Li, Sun, Gu, & Guo, 2018; Qing Li, Tan, Zhang, Gu, & Guo, 2015; Sarwar, 98 

Katas, Samsudin, & Zin, 2015). 99 

Primary amines, like the 2-amino group of chitosan, can be converted to azide by Cu(II) 100 

catalyzed diazo transfer reaction with imidazole-1-sulfonyl azide hydrochloride(Goddard-101 

Borger & Stick, 2007). This approach has been used to convert chitosan prior to CuAAC to 102 

introduce PEG moieties(Kulbokaite et al., 2009), or to modify chitosan antimicrobial 103 

coatings(Barbosa et al., 2019). This procedure has also been used for the synthesis of 104 

insoluble chitosan derivatives(Zhang et al., 2008). The reported grafting ratio for water-105 

soluble derivatives has not been high. For example, a peptide was grafted at a 2 mg/g ratio 106 

corresponding to 0.2% degree of substitution (DS)(Barbosa et al., 2017). A previous study 107 

found that chitosan could not be converted in more than 40% from amines to triazole via N-108 

azidated chitosan(Kulbokaite et al., 2009). In the present work, we aimed to use the CuAAC 109 

reaction to synthesize new types of water-soluble carbohydrate polymers starting from 110 

chitosan. In these structures, all C-2 primary amino groups of chitosan are to be converted to 111 

aromatic 1,2,3-triazole, and thus chitotriazolan is the suggested name for these new 112 

structures. Herein, the chitotriazolans were synthesized by two different pathways, starting 113 

from di-TBDMS protected chitosan or unmodified chitosan. Six of the derivatives could be 114 

solubilized in water and were characterized by FT-IR, NMR, and SEC-MALS. Five 115 
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derivatives were insoluble and therefore only analyzed by FT-IR. Antibacterial activity of 116 

soluble derivatives was evaluated against S. aureus and E. coli at pH 7.2. 117 

2. Materials and Methods  118 

2.1. Material  119 

Chitosan (S160302-1-2-3-4, DA of 17%, and MW 108 kDa) was obtained from Primex ehf 120 

Siglufjördur, Iceland. All reagent grade chemicals were purchased from Sigma Aldrich 121 

(Germany): Methanesulfonic acid, acetic acid, tert-butyldimethylsilyl chloride (TBDMS-Cl), 122 

imidazole, sodium azide, sulfuryl chloride, trimethylamine, copper sulfate, sodium ascorbate, 123 

acetyl chloride, hydrochloric acid, propargyl bromide, N-methylpropargylamine, N,N-124 

dimethylpropargylamine, 3-butynoic acid, 3-methyl-1-pentyn-3-ol, 2-methyl-3-butyn-2-ol, 3-125 

butyn-2-ol, sodium sulfite, N,O-bis(trimethylsilyl)acetamide, tris(trimethylsilyl) phosphite, 126 

and 4-bromo-1-butyne. All solvents, including dimethyl sulfoxide (DMSO), N,N-127 

dimethylformamide (DMF), dichloromethane (DCM), acetone, methanol, ethanol, and 128 

acetonitrile, were also obtained from Sigma Aldrich. De-ionized water was treated using a 129 

Milli-Q™ filtration system. Dialysis membranes (RC, Spectra/Por, MW cutoff 3500 Da 45 130 

mm) were purchased from Spectrum® Laboratories Inc. (Rancho Dominguez, USA). 131 

2.2. Methods and preparations 132 

2.2.1. Preparation of imidazole sulfonyl azide hydrochloride salt 133 

The imidazole sulfonyl azide hydrochloride salt was prepared following a previously 134 

published procedure(Goddard-Borger & Stick, 2007). Briefly, sulfuryl chloride (2.48 mL, 135 

30.77 mmol) was added dropwise at 0 °C to the suspension of sodium azide (2.0 g, 30.77 136 

mmol) in anhydrous acetonitrile (40 mL) under nitrogen, and the reaction mixture was stirred 137 

at room temperature overnight. Then imidazole (4.19 g, 61.54 mmol) was added portion-wise 138 
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to the reaction mixture at an ice-cooled condition, and the reaction mixture was stirred at 139 

room temperature for 3 hours. After that, the reaction mixture was diluted with ethyl acetate 140 

(100 mL) and washed with water (3 × 100 mL), and saturated aqueous NaHCO3 solution (2 × 141 

100 mL) in a separatory funnel. The organic phase was dried over Na2SO4 and filtered. A 142 

solution of HCl in ethanol [50 mL, dropwise addition of acetyl chloride (12 mL) to ice-cooled 143 

ethanol (40 mL)] was added to the filtrate, and the mixture stirred at 0 °C to get a white 144 

precipitate. The solids were filtered and washed with ethyl acetate to obtained small white 145 

needle crystals as a product. The mother liquors were discarded - HAZARD statement: 146 

Concentration of mother liquors at this step may result in an explosion(Goddard-Borger & 147 

Stick, 2007). 148 

2.2.2. Synthesis of N-propargyl N,N,N-trimethylammonium bromide salt 149 

The title compound was synthesized according to a reported procedure(Nguyen, Fournier, 150 

Asseline, Thuong, & Dupret, 1999). Briefly, trimethylamine (1.48 mL, 16.81 mmol) was 151 

dissolved in acetonitrile (100 mL) at ˗20 °C. Then propargyl bromide (1.27 mL, 16.81 mmol) 152 

was added slowly at ˗20 °C. The reaction mixture was warmed to room temperature and 153 

stirred for 24 h, and then the solvent was removed using rotary evaporation and dried under 154 

reduced pressure to provide a white solid as a product. Procedures for the synthesis of 155 

propargyl sulfonate and butynyl phosphonate are reported in the supplementary information. 156 

2.2.3. OTBDMS-Chitosan amine to azide conversion (A2) 157 

Chitosan OTBDMS(Rathinam, Ólafsdóttir, Jónsdóttir, Hjálmarsdóttir, & Másson, 2020b) 158 

(500 mg, 1.26 mmol) was dissolved in 15 mL of DCM and 15 mL of MeOH. After that, 159 

imidazole sulfonyl azide hydrochloride (0.395 g, 1.89 mmol) and Et3N (0.26 mL, 1.89 mmol) 160 

were added to the solution. A solution of CuSO4 5H2O (31 mg, 0.125 mmol dissolved in 1 161 

mL water) was added to the reaction mixture. The color of the reaction mixture changed to a 162 
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blue tinge, and the product started to precipitate. The reaction was further stirred at room 163 

temperature for 60 h under an N2 atmosphere. The material was concentrated under reduced 164 

pressure. A precipitate was formed, and this was filtered and washed with ethanol and dried 165 

for more than one hour by suction. The resulting material had a light bluish color, and the 166 

product could be confirmed by IR spectroscopy. 167 

2.2.4. OTBDMS-Chitosan azide to triazole conversion (A3) 168 

OTBDMS-Chitosan azide (700 mg, (1.75 mmol) was dissolved in DMF (20 mL). Then 169 

CuSO4 (56 mg, 0.23 mmol in 2.5 mL water) and sodium ascorbate (174 mg, 0.87 mmol in 2.5 170 

mL water) were added to the reaction mixture, followed by N,N-dimethylamino-1-propyne 171 

(0.94 mL, 8.76 mmol) under nitrogen atmosphere. The reaction mixture was stirred at 50 °C 172 

for 48 h. Then, the resulting material was dialyzed against water for three days and freeze-173 

dried. Full conversion of starting material to the product was confirmed by the absence of the 174 

azide peak in the FT-IR. 175 

2.2.5. OTBDMS-Chitosan deprotection (1) 176 

O-TBDMS -Chitosan triazole (A3) (600 mg) was dissolved in methanol (30 mL) and conc. 177 

HCl (5 mL was diluted with 10 mL of methanol) was added slowly. The reaction mixture was 178 

then stirred at room temperature for 24 h. After that, the reaction mixture was dialyzed 179 

against water for three days (first day 5% NaCl, next two days water) and then freeze-dried. 180 

Yield: 325 mg, 1H NMR (400 MHz, D2O): δ 2.08 (N-COCH3), 2.81 (H6’), 2.95 [N-(CH3)2], 181 

3.14 (H6), 3.52 (H5), 3.77 (H4), 3.94 (H3) 4.40 (H2), 4.56 (triazole CH2), 5.17 (H1), 8.46 182 

(triazole CH). 183 

2.2.6. Chitosan amine to azide conversion (A5) 184 
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Chitosan (500 mg, 2.958 mmol) was dissolved in 40 mL of 0.1 M HCl solution, then 185 

NaHCO3 (0.248 g, 1.0 equiv) was added to the solution, and the mixture was stirred 186 

vigorously for 30 mins. After that, imidazole sulfonyl azide hydrochloride (0.93 g, 4.437 187 

mmol) and NaHCO3 (2.48 g 10.0 equiv) were added slowly in small portions. Then a solution 188 

of CuSO4 5H2O (95 mg, 0.384 mmol) in 1 mL of water and 10 mL of methanol solution was 189 

added to the reaction mixture. The reaction mixture was turned to bluish color and was stirred 190 

at room temperature for 24 h. Finally, the material was precipitated out using acetone. The 191 

precipitate was filtered and washed with water five times and acetone. The product was dried, 192 

and the presence of the azide group was confirmed by IR spectroscopy. 193 

2.2.7. General procedure for chitosan azide to triazole conversion (derivatives 3-11) 194 

Chitosan azide (1 equiv.) was dissolved in DMSO (15 mL) at 50 °C. Then CuSO4 (0.13 195 

equiv. in 2.5 mL water) and sodium ascorbate (0.5 equiv. in 2.5 mL water) were added to the 196 

reaction mixture followed by alkyne (5.0 equiv.) under nitrogen atmosphere. The reaction 197 

mixture was stirred at 50 °C for 48 h. Then, the resulting material was dialyzed against water 198 

for three days (first day 5% NaCl, next two days water) and freeze-dried. The products were 199 

confirmed by FT-IR to show that the azide peak (at 2109 cm-1) had completely disappeared 200 

and by 1H NMR when solutions in D2O could be prepared.  201 

2.2.8. Synthesis of derivative 3  202 

Chitosan azide (200 mg, 1.07 mmol) was dissolved in DMSO (15 mL) at 50 °C. Then CuSO4 203 

(34 mg, 0.139 mmol in 2.5 mL water) and sodium ascorbate (106 mg, 0.534 mmol in 2.5 mL 204 

water) were added to the reaction mixture, followed by N-propargyl-N,N,N-205 

trimethylammonium bromide (523 mg, 5.34 mmol). 1H NMR. Yield: 270 mg for 3, 1H NMR 206 

(400 MHz, D2O): δ 2.08 (N-COCH3), 2.90 (H6’), 3.20 [H6, N(CH3)3], 3.52 (H5), 3.78 (H4), 207 
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4.44 (H3), 4.58 (H2), 4.77 (triazole CH2 was merging with D2O peak), 5.18 (H1) 8.59 208 

(triazole CH). The procedure for derivatives (4-11) is reported in supporting information.  209 

2.3. Characterization 210 

2.3.1. NMR and FTIR spectroscopy 211 

The chitotriazolan derivatives were characterized by using 1H NMR and 13C NMR 212 

spectroscopy. 1H and COSY NMR spectra were recorded on a Bruker Avance 400 213 

spectrophotometer operating at 400 MHz. The 13C NMR and HSQC spectra were recorded on 214 

a Bruker 500 MHz spectrometer equipped with a cryoprobe. NMR samples were prepared in 215 

CDCl3, D2O, or D2O/DCl in concentrations of 7 – 15 mg/mL. The N-acetyl peak at 2.08 ppm 216 

was used as an internal reference in all proton NMR spectra. The FT-IR spectra of the 217 

chitosan (CS) and chitotriazolan derivatives were measured using a Thermo Scientific™ 218 

Nicolet™ iS10 FTIR spectrometer in the 500 – 4000 cm˗1 wavelength region. The set number 219 

of scans was 64, and the resolution was 4.0 cm˗1. Few milligrams of the material were used 220 

for each IR spectra and all compounds were measured against a blank background. 221 

2.3.2. Gel permeation chromatography 222 

Average Molecular weight (MW) determination was carried out using gel permeation 223 

chromatography (GPC). GPC measurements were done using the Polymer Standards Service 224 

(PSS) (GmbH, Mainz, Germany), Dionex Ultimate 3000 HPLC system (Thermo Scientific-225 

Dionex Softron GmbH, Germering, Germany), Dionex Ultimate 3000 HPLC pump, and 226 

Dionex Ultimate 3000 autosampler (Thermo Scientific-Dionex Softron GmbH, Germering, 227 

Germany), Shodex RI-101 refractive index detector (Shodex/Showa Denko Europe GmbH, 228 

Munich, Germany), PSS’s ETA-2010 viscometer and MALS detector (PPC SLD 7100). 229 

WINGPC Unity 7.4 software (PSS GmbH, Mainz, Germany) was used for data collection and 230 
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processing. A series of three columns [PSS Novema 10 µ guard (50 x 8 mm), PSS Novema 231 

10 µ 30 Å (150 x 8 mm) and PSS Novema 10 µ 1000 Å (300 x 8 mm)] (PSS GmbH, Mainz, 232 

Germany) were used in the HPLC system. Ready Cal-Kit Pullulan standards with Mp (180 – 233 

708000 Da) from PSS (GmbH, Mainz, Germany) were used for calibration. The eluent used 234 

was 0.1 M NaCl/0.1% TFA solution. Each sample was dissolved in the same eluent as 235 

mentioned above at a concentration of 1 mg/mL at 25 °C using a flow rate of 1 mL/min. Each 236 

sample had an injection volume of 100 µL, and the time between injections was 30 min. 237 

2.4. Antibacterial Assay of the Chitosan derivatives 238 

Minimal inhibition concentration (MIC) was measured according to the CLSI standard(CLSI, 239 

2009). The antibacterial activity was tested against two different bacterial species, Gram-240 

positive bacteria Staphylococcus aureus (S. aureus, ATCC 29213) and Gram-negative 241 

bacteria Escherichia coli (E. coli, ATCC 25922). Before MIC testing, the bacterial strains 242 

were cultured on blood agar at 37 °C for 12-18 hours. The bacterial colonies were suspended 243 

in saline water and adjusted to 0.5 McFarland and further diluted in Mueller-Hinton broth 244 

(MHB) to reach the final concentration of 5 × 105 colony forming units (CFU)/mL in the test 245 

wells. The MHB was used for MIC measurement at pH 7.2. Gentamicin, a well-known 246 

antibiotic was used as a performance control, MHB without chitosan derivatives or the 247 

bacterial solution as a sterility control, and MHB with only the bacterial solution as growth 248 

control. The stock solution of compounds was prepared in sterile water at a concentration of 249 

8192 µg/mL, 50 µg/ml of the compounds were added to a microtiter 96-well plate, and two-250 

fold dilutions were done in MHB for concentrations 16 – 8192 µg/ml. Later 50 µL of 251 

bacterial 5 × 105 (CFU)/mL suspension was added to each well. The microtiter plates were 252 

incubated at 37 °C for 20 to 24 h. The MIC values were observed by the naked eye and 253 

determined as the lowest concentrations of the antibacterial agent to completely inhibit the 254 

visible growth of microorganisms in the microtiter 96-well plate. 255 
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3. Results and Discussion 256 

The main aim of the research work was to develop a procedure to quantitatively convert the 257 

primary amino groups of chitosan first to azide groups and then to 1,2,3-triazole moieties to 258 

enhance solubility in water. Previous investigations have shown that chitosan azides are 259 

insoluble in aqueous solutions and organic solvents(Kulbokaite et al., 2009), limiting the 260 

conversion of the amino groups(Zhang et al., 2008). We have used di-OTBDMS protected 261 

chitosan to address potential issue with the solubility of the product derivatives(Rathinam, 262 

Ólafsdóttir, et al., 2020b). It has been shown that O-TBDMS-chitosan and its derivative is 263 

soluble, in most cases, in solvents such as dichloromethane and chloroform(Rúnarsson, 264 

Malainer, Holappa, Sigurdsson, & Másson, 2008) (Sahariah, Másson, & Meyer, 2018). Thus, 265 

the synthesis was initially attempted starting from O-TBDMS chitosan (Scheme. 1A). The 266 

conversion to the corresponding azide (A2) could be confirmed by FT-IR (Fig.1), but to our 267 

surprise, it turned out that the O-TBDMS chitosan azide had low solubility in organic 268 

solvents and thus could not be fully characterized by NMR. The O-TBDMS chitosan azide 269 

did not dissolve in aqueous and instead of organic solvents such as water, aqueous 0.1 M 270 

HCl, 0.1 M NaOH, MeOH, acetonitrile, chloroform, dichloromethane, and NMP. Mixed 271 

solvents like 1:1 ratio of MeOH:0.1 M HCl solution and acetonitrile:0.1 M HCl solution 272 

could neither be used to solubilize this polymer. The material was partially soluble in DMF, 273 

and DMSO (this required the material to be stirred for 1 ̶ 2 h at room temperature or 50 °C). 274 

Thus the subsequent CuAAC was carried out in DMF to obtain 4-(N,N-275 

dimethylaminomethyl)chitotriazolan 1 and 4-(N,N,N-trimethylammoniumethyl)chitotriazolan 276 

2 following the deprotection step. 277 
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Scheme 1A. Synthesis of chitotriazolan via TBDMS (TBS) protection routes and conditions: 279 
(i) methane sulfonic acid, deionized water, 10 °C; (ii) imidazole, TBDMS-Cl, DMSO, RT; 280 
(iii) imidazole sulfonyl azide HCl salt, triethylamine, CuSO4 5H2O, DCM, methanol, RT; (iv) 281 
CuSO4 5H2O, sodium ascorbate, terminal alkyne, DMF 50 °C; (v) Conc. HCl, methanol RT. 282 
B. Synthesis of chitotriazolan via without TBDMS protection synthetic routes and conditions: 283 
(i) 0.1 M HCl solution, sodium bicarbonate, imidazole sulfonyl azide HCl salt, CuSO4 5H2O, 284 
water, methanol, RT; (ii) CuSO4 5H2O, sodium ascorbate, terminal alkyne, DMSO, 50 °C. 285 
 286 
In parallel, an alternative route where chitosan was directly converted to azide without the 287 

use of protecting groups, was investigated. The conversation to azide could be confirmed 288 

with FT-IR, and the aromatic triazole conversion was achieved in near quantitative, which 289 

was similar to previous work(Kulbokaite et al., 2009). We found that the material was 290 

insoluble in an aqueous solution and organic solvents. However, CuAAC reaction with N-291 

propargyl-N,N,N-trimethylammonium bromide in DMSO proved to be successful, and the 292 

resulting product was soluble in H2O and could be purified by dialysis, and the product was 293 

freeze-dried. Full conversion to the chitotriazolan product was confirmed by the 294 

disappearance of the azide peak in the IR spectra and the appearance of a triazole peak at 8.5 295 

ppm in 1H NMR, corresponding to a 90% degree of substitution for the triazole group. 296 
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This procedure was also used to synthesize 4-substituted chitotriazolan derivatives with N-297 

methylaminomethyl, carboxymethyl, 2-hydroxybut-2-yl, 2-hydroxyprop-2-yl, and 1-298 

hydroxyethyl side groups. Propargyl sulfonate and propargyl phosphonates were synthesized 299 

(see in the supporting information) according to reported procedures(Ouadahi, Allard, 300 

Oberleitner, & Larpent, 2012; Wanat et al., 2015) and used to synthesize 4-substituted 301 

sulfomethyl, phosphomethyl, and phosphoethyl chitotriazolan derivatives (Scheme 1B). 302 

3.1. Characterization by FT-IR spectroscopy 303 

The FT-IR spectra of chitosan, chitosan O-TBDMS azide (A2), chitosan azide (A5), and 304 

chitotriazolans 3, 5, and 7-10 are shown in Fig. 1. The characteristic C=O stretching vibration 305 

band at 1652 cm˗1 for the N-acetyl group (DA of 17% present in chitosan starting material) 306 

was observed in all spectra. New N3 bands appeared at 2109 cm˗1 when the amino group was 307 

converted to azide (Fig. 1 B and C). The azide band disappeared after the CuAAC reaction to 308 

form the 1,2,3-triazole on the chitosan backbone at the C-2 position. In Fig.1 C strong bands 309 

at 775 cm˗1 and 831 cm˗1 correspond to Si-C stretching vibrations. A new band at 1475 cm˗1 310 

can be observed in Fig. 1 D, which could be assigned to the weak N-CH3 absorbance, and a 311 

new band appeared at 795 cm˗1, confirming the P-O bond for the phosphonate group (Fig 1. 312 

E). The conversion for insoluble chitotriazolan derivatives were confirmed by the 313 

disappearance of the sharp azide peaks (Fig 1. F, G, H, I). 314 
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Fig. 1. FT-IR spectra for chitosan and chitotriazolan derivatives: CS (A), derivative A5 (B), 316 
derivative A2 (C), derivative 3 (D), derivative 5 (E). FT-IR spectra for insoluble 317 
chitotriazolan derivative 7 (F), derivative 8 (G), derivative 9 (H), derivative 10 (I). 318 

3.2. Characterization by NMR spectroscopy 319 

The 1H NMR spectra of the water-soluble 4-(N,N,N-trimethylammoniummethyl)-320 

chitotriazolan and 4-sulfomethylchitotriazolan are shown in Fig. 2. For derivative 3, the 321 

1,2,3-triazole structure could be confirmed by the aromatic proton peak at 8.59 ppm. The 322 

quarternary trimethylammonium group for derivative 3 appeared at 3.2 ppm, and the 323 

methylene (CH2) group at 4.8 ppm merged with the HDO peak; however, it was clearly 324 

visible in the HSQC spectrum (Fig. 3C). The conversion of the free amino group in the C-2 325 

position on chitosan to the 1,2,3 triazole leads to a dramatic shift in the C-2 proton peak from 326 

around 2.8 ppm to 4.58 ppm. Other protons of the chitosan backbone are also shifted 327 

significantly. The C-6 protons could be observed at 2.90 ppm and 3.2 ppm (merged with the 328 

N(CH3)3 peak) and the C-5, C-4, and C-3 protons at 3.52, 3.78, and 4.44 ppm, respectively. 329 

The aromatic triazole proton of derivative 4 was broadened and appeared in a slightly up field 330 

position (8.13 – 8.43 ppm) relative to that of derivative 3. The C-6, C-5, C-4, C-3, and C-2 331 
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protons were observed at similar shift values in the two derivatives. The peak for the CH2 332 

adjacent to the sulfonate groups was observed at 4.27 – 4.42 ppm, merged with the C-3 and 333 

C-2 proton peaks. 334 

Fig. 2. 1H NMR spectra for derivative 3 (A) and derivative 4 (B). 336 

The aromatic signal for C-4 in the 1,2,3-triazole ring was observed at 137 ppm in the 13C 337 

APT NMR spectrum of derivative 1 (Fig. 3A). The chitosan carbon signals for C-2 to C-6 338 

appeared between 60 – 80 ppm and C-1 at 100 ppm. The correlation between 1H NMR and 339 

the COSY spectra further confirmed the assignment of the 1,2,3-triazole peak at 8.59 ppm, 340 

and the N-acetyl peak at 2.08 ppm (Fig. 3B). The HSQC spectra for derivatives 3 and 4 could 341 

be used to confirm the assignment of the proton peaks (Fig. 3C and Fig. 3D). The complete 342 

assignment of all peaks also confirmed that the azide had been fully converted to the new 343 

structure. The HSQC spectrum clearly shows the trimethylammonium protons at 3.2 ppm for 344 

cationic 4-(N,N,N-trimethylammonium methyl) chitotriazolan, whereas this peak was not 345 

present in the anionic 4-sulfomethyl chitotriazolan spectrum. 346 
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Fig. 3. 13C NMR for derivative 1 (A), COSY NMR for derivative 3 (B), HSQC NMR for 348 
derivative 3 (C), and derivative 4 (D). 349 

The degree of substitution (DS), degree of acetylation (DA), and molecular weight (MW) of 350 

derivatives 1-6, are shown in table 1. The integration of the NMR peaks in the cationic 351 

chitotriazolan derivatives indicated more than 90% conversion from the free amino group in 352 

chitosan to the 1,2,3-triazole. However, the peaks were broad, and this could influence the 353 

accuracy. Only one peak could be observed for each monomer proton of the chitotriazolan 354 

backbone, and this was consistent with 100% conversion. The average molecular weights of 355 

derivatives 1 and 2 were more than four times less than the MW of the starting material. This 356 

reduction in MW was caused by acid hydrolysis of the polymer chain, which occurs when the 357 

chitosan mesylate salt is prepared and in the deprotection reaction to remove 358 

TBDMS(Sahariah et al., 2014). The average MW of materials 3 and 5, synthesized without 359 

the use of protection groups had about twice the MW of the starting material, which was 360 

consistent with the increase in the MW of the monomer units when chitosan was converted to 361 

chitotriazolan derivatives. The MW of 4-sulfomethyl chitotriazolan 4 and 4-phosphoethyl 362 

chitotriazolan 6 were found to be around 6 KD which was much less than expected (see SI. 363 
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MW. chromatogram profile and S.Table 1). This was probably due to low solubility in the 364 

mobile phase and that the higher MW material was removed in the filtration of the samples. 365 

Table 1. The degree of substitution (DS), degree of acetylation (DA), and molecular weight 366 
analysis for chitotriazolan derivatives.  367 

Derivatives DS-TM a b DA a DS-Triazole a MW (kDa) Polydispersity 
Index (D) 

1 0.98 0.08 0.86 28.94 1.76 
2 0.73 0.09 0.68 17.05 1.72 
3 0.98 0.18 0.9 214.59 1.97 
4 NA c 0.17 0.8 (6.26) d (1.69) d 
5 NA ND e ND 220.02 2.69 
6 NA ND ND (5.58) d (1.04) d 

a Degree of substitution (DS), degree of acetylation (DA), and DS-triazole were calculated 368 
based on 1H NMR spectroscopy. b TM-Trimethylation, c Not available, d These samples were 369 
poorly soluble in the mobile phase but could be analyzed after the insoluble material (about 370 
80%) had been removed by filtration.  e Not determined.  371 

3.3. Solubility Analysis 372 

Cationic derivatives 1, 2, 3, and sulfonated anionic derivative 4 was completely soluble in 373 

water at neutral pH. 4-Phosphoethyl-chitotriazolan 6 was soluble in 0.1 M sodium hydroxide 374 

solution, and 4-phosphomethyl-chitotriazolan 5 was partially soluble. The 4-(N-375 

methylaminomethyl)-chitotriazolan 7, 4-carboxymethyl-chitotriazolan 8, and the 4-376 

(hydroxyalkyl)-chitotriazolan derivatives 9-11 (marked in blue color in the scheme. 1B) were 377 

insoluble in all solvents and solvent mixtures tested. Derivatives 2-6 had fully ionized side 378 

groups, and this may contribute to better solubility. The low MW of derivative 1 may explain 379 

why it had better solubility than derivative 7, which has a similar structure with one less N-380 

methyl group. 381 

3.4. Antibacterial properties for chitotriazolan derivatives 382 

The antibacterial activity of chitosan and chitosan derivatives is influenced by several factors, 383 

including the degree of substitution (DS), molecular weight, ionic interactions, and the 384 

structure of the substitutents(Kong, Chen, Xing, & Park, 2010; Sahariah & Másson, 2017). 385 
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The water-soluble chitotriazolan derivatives were studied for antibacterial activity against S. 386 

aureus and E. coli bacteria at pH 7.2 (Table 2). The cationic chitotriazolan derivative 3 was 387 

most active against the bacteria with MIC equal to 64 ug/mL, whereas the anionic derivative 388 

4 was inactive. The monomer structure of derivative 2 was identical to derivative 3 but the 389 

former was more than 30 times less active against the bacteria. Derivative 2 had a markedly 390 

lower molecular weight than 3, and there were some residual TBDMS groups (< 3% for 1 391 

and < 0.4% for 2) left from the deprotection step, which could explain this difference. This is 392 

also a consideration for derivative 1, which was inactive and had a similar structure with one 393 

less N-methyl group than derivatives 2 and 3. The most active derivative 3 was also tested 394 

against E. faecalis (ATCC 29212) and P. aeruginosa (ATCC 27853) and the MIC values 395 

found to be 1024 µg/mL and 128 µg/mL, respectively. 396 

Table 2. Antibacterial activity of water-soluble chitotriazolan derivatives  397 

Derivatives Structure MIC (µg/mL) 
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4. Conclusion 401 

In the current work, we were successful in obtaining a near-complete conversion of the 2-402 

amino group of chitosan to 1,2,3-triazole and obtain the first water-soluble chitotriazolan 403 

derivatives. Eleven chitotriazolan derivatives were synthesized through two routes, and four 404 

of the structures had good water solubility. The derivatives were characterized by FT-IR, 1H, 405 

and 2D NMR techniques as well as SEC-MALS to determine the structure and molecular 406 

weight. The antibacterial activity was evaluated against S. aureus and E. coli at pH 7.2. The 407 

cationic chitotriazolan derivatives had significant antibacterial activity, whereas the anionic 408 

chitotriazolans were inactive. 409 

Chitoriazolans represent a new class of biopolymers with an aromatic 1,2,3-triazole side 410 

group on the 2-deoxyglucopyranose monomer unit. Ionic chitotriazolan derivatives can be 411 

water-soluble and the N,N,N-trimethylammoniummethyl derivatives 2 and 3 were active 412 

against bacteria. The ease of synthesis and structural modification of this new class of 413 

biopolymers should stimulate further research into the biological and other properties and 414 

utility for diverse applications. 415 
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