
This is a post-peer-review, pre-copyedit version of an article published in Bulletin of Volcanology. The 
final authenticated version is available online at: https://doi.org/10.1007/s00445-021-01500-0 

A review of statistical tools for morphometric 1 

analysis of juvenile pyroclasts 2 

Tobias Dürig1, Pierre-Simon Ross2, Pierfrancesco Dellino3, James D. L. White4, Daniela Mele3, Pier 3 

Paolo Comida2 4 

 5 

1. Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland 6 

tobi@hi.is 7 

2. Institut national de la recherche scientifique, 490 rue de la Couronne, Québec (Qc), G1K 9A9, 8 

Canada, rossps@ete.inrs.ca, pier_paolo.comida@ete.inrs.ca 9 

3. Dipartimento di Scienze della Terra e Geoambientali, University of Bari, Via Edoardo Orabona, 4, 10 

70125 Bari, Italy, pierfrancesco.dellino@uniba.it, daniela.mele@uniba.it    11 

4. Department of Geology, University of Otago, 360 Leith Street, Dunedin 9016, New Zealand, 12 

james.white@otago.ac.nz 13 

 14 

* Corresponding author, tobi@hi.is 15 

_____________________________ 16 

 17 

Abstract 18 

Morphometric analyses are based on multiparametric datasets that describe quantitatively 19 

the shapes of objects. The stochastic nature of fracture-formation processes that break up 20 

magma during explosive eruptions yields mixtures of particles that have highly varied 21 

shapes. In volcanology morphometric analysis is applied to these mixtures of particles with 22 

diverse shapes for two purposes: (1) to fingerprint tephra from individual eruptions and use 23 

the fingerprints to distinguish among tephra layers and determine their extents, and (2) to 24 

reconstruct eruption processes, by linking particles formed by known fragmentation 25 

processes in experiments with particles from natural pyroclastic deposits. Here we review the 26 

most commonly adopted statistical techniques for morphometric analysis of pyroclasts. We 27 

provide sets of objects with different shapes, along with their morphometric data, in order to 28 

demonstrate and illustrate the methods. They can be used not only for addressing the 29 

processes of fragmentation during explosive eruptions, but also for the characterization of 30 

other types of solid particles with complex morphologies.  31 
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Introduction 32 

The use of shape descriptors in the analysis of juvenile pyroclasts offers many options for 33 

quantitative analyses and interpretation of magma-fragmentation processes. The shapes of 34 

juvenile pyroclasts are highly varied, reflecting varied pre-fragmentation magma textures and 35 

the stochastic nature of magma fragmentation and fracture processes (Lawn 1993; Dürig and 36 

Zimanowski 2012; Dürig et al. 2012b; Taddeucci et al. 2021). Data analysis and 37 

interpretation thus requires the use of sophisticated statistical techniques. This article offers a 38 

review of such methods, as developed in the last 25 years, and intends to provide a 39 

morphometric “toolbox” that includes the most commonly used analytical and statistical 40 

techniques. To help readers fully exploit their morphometric data, we describe how to apply 41 

morphometry, and discuss the mathematical pre-conditions and caveats associated with the 42 

statistical techniques presented. Along with the recommendations on data acquisition 43 

provided by Ross et al. (2021) and Comida et al. (2021), this paper intends to serve the 44 

volcanological community as a basis for a discussion on standardized protocols for the 45 

analysis of juvenile pyroclasts. The techniques presented here are, however, not limited to 46 

use with pyroclasts – they can be applied to any particles, and indeed to any set of 47 

morphometric data. 48 

The morphological (and possibly also textural) information for one grain is specified by a set 49 

of M variables (i.e., shape parameters), which might or might not be statistically independent 50 

from one another. Two-dimensional shape parameters can range from descriptors of basic 51 

geometrical characteristics (e.g., Dellino and La Volpe 1996; Cioni et al. 2014; Leibrandt and 52 

Le Pennec 2015; Liu et al. 2015) to more complex parameters that are the result of fractal 53 

analysis (Dellino and Liotino 2002; Maria and Carey 2002) and curvature plots (Tunwal et al. 54 

2020) or extracted from Fourier shape analysis (Barrett 1980; Suzuki et al. 2015; Chávez et 55 

al. 2020). In recent years, novel scanning techniques have allowed the retrieval of 3-56 

dimensional shape parameters, such as, e.g., fractal dimension (Rausch et al. 2015; 57 

Vonlanthen et al. 2015; Dioguardi et al. 2017), aspect ratio of the best fit ellipsoid 58 

(Vonlanthen et al. 2015) or 3D-sphericity (Mele et al. 2011; Vonlanthen et al. 2015; Dioguardi 59 
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et al. 2017). An N x M matrix of M variables describing N particles is defined as a 60 

“morphometric data set” (Dürig et al. 2020c). An example of a morphometric data set is a 61 

table with shape parameters for randomly collected tephra grains at a certain location, or for 62 

juvenile particles extracted from a specific size fraction of a certain pyroclastic bulk sample. 63 

To compare two morphometric data sets, each set should ideally be of equal size, allowing 64 

comparison of N x M values. A typical analysis for 50 grains per sample or size fraction (e.g., 65 

Dürig et al. 2018; Comida et al. 2021; Ross et al. 2021) and four shape parameters per grain 66 

(Dellino and La Volpe 1996; Dürig et al. 2012a) requires cross-comparisons among 200 67 

individual values in the data set. This is what multivariate statistical methods are designed to 68 

accomplish.  69 

The typical goals of morphometric data analysis are: 70 

• to provide a quantitative summary of particle shape descriptors that complements 71 

other data (such as grain size, componentry or stratigraphic information); 72 

• to compare two or more data sets with one another, in order to investigate whether 73 

they are statistically equivalent or instead show significant differences;  74 

• to determine the fragmentation mechanism(s) that generated the pyroclasts and help 75 

reconstruct eruption processes. 76 

The data-analysis representations and the statistical techniques to be used for reaching the 77 

three aforementioned goals are described in the following sections. They are intended as 78 

step-by-step guides and recommendations for the statistical tests and techniques to be used. 79 

To demonstrate them we provide a set of artificial 2D silhouettes (see Fig. 1 and Fig. 2). 80 

Supplementary data (Online Resource 1) includes all the binary images and their 81 

morphometric descriptors. Furthermore, we use silhouettes of 88-63 µm (narrow +4ϕ) sized 82 

ash particles sampled from the 1959 Kīlauea Iki eruption (Hawaii), and the 2012 Havre 83 

eruption (Kermadec arc) to illustrate the use of discriminatory diagrams. These silhouettes 84 

and the obtained shape parameters can be retrieved from Online Resource 2. 85 
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We note that all statistical analysis described below can be applied to any shape parameters. 86 

For demonstration we use the parameters suggested by Dellino and La Volpe (1996), 87 

consisting of circularity Circ_DL, elongation Elo_DL, rectangularity Rec_DL and 88 

compactness Com_DL, defined by: 89 

         (1) 90 

where A is the projected area of the particle’s silhouette, and p its perimeter. 91 

           (2) 92 

with a being the longest segment inside the particle parallel to the long side of the minimum 93 

area bounding rectangle, and m being the mean intercept perpendicular to a. 94 

         (3) 95 

where b and w are the long and short side of the minimum area bounding rectangle, 96 

respectively. The compactness is defined by: 97 

          (4) 98 

 99 

Descriptive morphometry 100 

Summarising statistical reports 101 

The underlying data for morphometric analyses consist of morphometric data sets and 102 

images of particles or particle silhouettes. It is best practice to append these raw data to a 103 

publication (Ross et al. 2021), or to lodge them in an open-access data archive, linked from 104 

the publication. For each data set, at least the sample size (N) and both mean and standard 105 

deviation for each of the measured parameters should also be presented in a data table. In 106 

addition, providing the minimum and maximum value, or the median (50% percentile) can 107 

support additional interpretations. For example, a median that differs considerably from the 108 
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mean indicates the presence of outliers that might deserve further exploration. Since some of 109 

the multivariate statistical tests require that samples are normally distributed, it is also useful 110 

to calculate the kurtosis and skewness for each parameter (indicating the distribution’s 111 

“tailedness” and its asymmetry, compared to its mean). A “perfectly” normal distribution is 112 

characterized by a value of 0 for both kurtosis and skewness (Davis 2002).  113 

Table 1 shows how such basic statistics can be presented. 114 

Binary diagrams 115 

The distribution of each parameter can be presented in frequency plots (i.e., histograms, see 116 

Fig. 3a). These can be arranged as matrices, sorted by parameter (columns) and 117 

stratigraphic sampling location (rows) (see Dellino and La Volpe 1996; Coltelli et al. 2008). A 118 

more compact presentation of data uses range plots, which display the total span of the 119 

respective parameters as horizontal bars along a stratigraphic axis. Outliers may be 120 

overemphasized in range plots, and this can be overcome by using “boxplots”, which indicate 121 

the distribution’s quartiles (Fig. 3b). The morphometric range plots or boxplots can be 122 

arranged together with other parameters of interest, such as grain size or chemical 123 

composition (see e.g., Verolino et al. 2019).   124 

A quick way to visualize data sets is to prepare binary diagrams, using one parameter per 125 

axis (e.g., Fig. 3c and 3d). For M parameters, this approach results in  diagrams. For 126 

example, if using four shape parameters, six unique pairs need to be prepared. Depending 127 

on one’s objective this may work well initially, with a relatively small database. Some of the 128 

examples listed in Table 2 are binary diagrams that have been used in morphological studies 129 

for interpretation of underlying ash generation processes. We anticipate, however, that binary 130 

plots will become confusing when data from different volcanoes and different eruptive styles 131 

are brought together. More sophisticated methods of data analysis and presentation are thus 132 

needed.  133 
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Comparison of morphometric data sets 134 

Morphometric data analysis is useful for comparing tephra from different eruptions or 135 

eruptive phases (e.g., Dellino and La Volpe 1996; Taddeucci et al. 2002; Cioni et al. 2008; 136 

Iverson et al. 2014; Verolino et al. 2019) and for linking characteristics of particles from 137 

experiments with those coming directly from a pyroclastic deposit (e.g., Büttner et al. 2002; 138 

Dürig et al. 2012a, 2020b; Schipper et al. 2013; Jordan et al. 2014).  139 

Testing for equality of variances 140 

Before comparing two or more data sets with one another one must test their levels of 141 

variance, because the best approach to subsequent analysis depends on whether the 142 

variances of the data sets are equal within an acceptable range. Thus, when planning a 143 

comparative morphometric analysis, the first step is to test the equality of variances (Mele et 144 

al. 2011). A common test tailored for such a task is the F-test, named after the Fisher-145 

Snedecor probability or “F” -distribution. The F-test evaluates two data sets against the null 146 

hypothesis H0 that their variances are equal, by comparing the ratio of their variances (“F-147 

scores”) with a critical threshold that is specified by the selected level of significance α (Davis 148 

2002). Typically, 5% is selected for α. Using the F-distribution and a lookup table, the F-score 149 

is translated to a “p-value”, which gives the error likelihood of incorrectly rejecting the null 150 

hypothesis. If the p-value is smaller than α, H0 can be rejected. In this case the F-test has 151 

shown that the variances of the two tested data sets are heterogeneous.  152 

The “Levene test” expands the F-statistic to allow also the comparison of variances of more 153 

than two data sets (Levene 1960). Other than that, this type of test is equivalent to the F-test 154 

and serves the same purpose (Dürig et al. 2012a).  155 

The Levene test was explicitly designed to be robust against violation of normality, whereas 156 

F-tests assume data sets with normal distributions. In practice, however, F-tests have also 157 

been shown to be very robust even when used with non-normally distributed data 158 

(Donaldson 1968). 159 
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For reporting the outcome of F-tests or Levene-tests (Fig. 4a and Table 3) we recommend 160 

that the analyst provides the p-values along with α. Note that choosing any level of 161 

significance, α, other than 5% requires explicit justification. 162 

Two-tailed t-tests 163 

A common task in morphometry is to verify that differences in the means of two data sets are 164 

statistically significant, given the sizes of the data sets and their standard deviations. A two-165 

tailed t-test is commonly used in such cases (e.g., Dellino et al. 2001; Büttner et al. 2002; 166 

Mele et al. 2011; Dürig et al. 2012a, 2020b, a; Schipper et al. 2013; Jordan et al. 2014; 167 

Schmith et al. 2017). The test begins with the null hypothesis H0 stating that both groups (the 168 

two pyroclastic samples being compared) are extracted from the same population.  169 

Two different types of t-tests exist, depending on the data sets’ homogeneity of variances. 170 

When the variances of the two data sets can be inferred to be equal, a pooled variance 171 

“Student’s t-test” (Student 1908; Davis 2002) is used. With 1, 2 being the means, s1 = s2 172 

the standard deviations, and N1, N2 being the sample sizes of the two data sets, the t-value is 173 

computed according to: 174 

         (5) 175 

using the pooled standard deviation sp, defined as: 176 

       (6) 177 

If, instead, the variances of the two data sets are different (e.g., as indicated by a Levene 178 

test), it is better to apply a separate variance or “Welch’s t-test” (Welch 1947), in which the t-179 

value is computed by: 180 

         (7)  181 
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In both cases the t-values follow the Student’s t-distribution curve, with which they can be 182 

translated into a “p-value”. This parameter expresses the probability that test results under 183 

the assumption of H0 are at least as extreme as the observed outcomes. A very low p-value 184 

therefore represents a very low probability that H0 is true. If p is below a pre-defined level of 185 

significance α, the null hypothesis can be rejected: the data sets are therefore “significantly 186 

different” under the tested hypothesis (Davis 2002). Usually, a level of significance of 5% is 187 

used, although sometimes 10% has been chosen for morphometric studies (Büttner et al. 188 

2002). We recommend that researchers report the results of each t-test by providing the type 189 

of t-test conducted (or, alternatively the p-value of the previously conducted test for equality 190 

of variance), the p-value, the sample sizes N1, N2 and the selected level of significance (see 191 

Table 3 and Fig. 4b).  192 

We note that t-tests are parametric; they assume random sampling and that the tested data 193 

sets are normally distributed. These conditions may not be met, but t-tests are popular 194 

because they show a certain degree of robustness against violations of the assumption of 195 

normality. For example when using t-tests, Type I errors (i.e. indicating a significant 196 

difference, when in reality there is none) are relatively low, when:  197 

• comparing data sets with samples from two different shape of distributions and 198 

unequal sizes, but equal variances (Havlicek and Peterson 1974); 199 

• comparing data sets with samples from non-normal distributions and unequal 200 

variances, but comparable sizes (Ahad and Yahaya 2014). 201 

Type I errors are, however, significantly increased when multiple types of inhomogeneities 202 

coincide, e.g. unequal variances, non-normal distributions and unequal sample sizes (Ahad 203 

and Yahaya 2014). 204 

To avoid these Type I errors, analysts should apply t-tests to data sets with sample sizes N 205 

that are not too different from one another. Testing the normality of the data sets with 206 

Shapiro-Wilk or Kruskal-Wallis tests (Davis 2002) and listing their possible kurtosis could 207 

further help demonstrate the validity of t-test results, but it is not strictly mandatory.  208 
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When the condition of random sample selection is not fulfilled (which is common in 209 

geological investigations), the reliability of a t-test is considerably reduced, especially if the 210 

same data set is repeatedly used for different comparisons (Bender and Lange 2001). As an 211 

example, think of three data sets (“A”, “B”, “C") which should be compared with each other. 212 

After having tested “A” with “B”, a subsequent t-test comparing “A” with “C” would use the 213 

sample “A” for a second time and therefore violate the “random selection” condition. This 214 

leads to an increase in the likelihood of a Type I error. To counter this effect, a so called 215 

“post-hoc correction” has to be applied, for example using a Bonferroni correction (Bonferroni 216 

1936). Such corrections, however, increase the likelihood of Type II errors (genuine 217 

differences are no longer detected) and reduces the t-test’s statistical power (Perneger 1998; 218 

Bender and Lange 2001). 219 

As a general guideline, when planning to repeatedly apply t-tests, the use of different 220 

randomly selected subsets of data sets is advised. If this is not feasible, a post-hoc 221 

correction should be applied. Alternatively, applying a one-way analysis of variances 222 

(ANOVA) or Dendrogrammatic Analysis of Particle Morphometry (DAPM) might be a better 223 

option. 224 

One-way Analysis of Variances (ANOVA) 225 

The term “ANOVA” refers to statistical procedures that serve to verify the differences of 226 

means across multiple data sets, based on tests that follow the F-distribution. In contrast to t-227 

tests, ANOVA is designed to simultaneously test more than two data sets for significant 228 

differences (Davis 2002). The ANOVA’s null hypothesis is: H0: µ1 = µ2 = µ3 =…= µn with µi 229 

being the mean of the i-th compared data set out of n. The alternative hypothesis H1 is that at 230 

least one of the means is significantly different. As with F-tests, the F-values are computed 231 

and translated into an error likelihood p of improperly rejecting H0. H1 is verified if p < α (the 232 

level of significance). When reporting results of ANOVA, we recommend reporting both α and 233 

resulting p -values (see Table 4).  234 

ANOVA assumes that data sets (Davis 2002):  235 



This is a post-peer-review, pre-copyedit version of an article published in Bulletin of Volcanology. The 
final authenticated version is available online at: https://doi.org/10.1007/s00445-021-01500-0 

a) are composed of randomly selected samples; 236 

b) contain normally distributed samples; 237 

c) have homogeneous variances. 238 

These tests have been shown to be robust against violations of condition b) and c), 239 

particularly in cases where sample sizes are not too dissimilar (Ersoy et al. 2006; Blanca et 240 

al. 2017). We recommend to always use ANOVA analyses with similar-sized data sets. 241 

In analogy to t-tests, Type I errors increase when using a data set for several repeated tests 242 

with ANOVA. To reduce Type I errors, post-hoc corrections can be applied. The most 243 

appropriate correction method depends on the validity of condition c). Examples of post-hoc 244 

corrections are:  245 

• the Tukey’s range test (also known as Tukey honestly significant difference) for data 246 

sets of homogeneous variances (Tukey 1949) 247 

• the Games-Howell post-hoc adjustment (Games et al. 1979) which is a good option 248 

for testing data sets of heterogeneous variances.   249 

Instead of just reporting whether H1 is verified, post-hoc correction methods provide n x n 250 

matrices with adjusted p-values for all n tested data sets. However, like post-hoc corrections 251 

for t-tests, these adjustment procedures come with the cost of decreased statistical power, 252 

which becomes evident when comparing large numbers of data sets (Dürig et al. 2020c). 253 

Equivalence tests (e-tests) 254 

The failure of a two-tailed t-test or ANOVA to demonstrate a difference between data sets is 255 

not sufficient to mathematically prove similarity of two data sets (Walker and Nowacki 2011). 256 

For example, let us assume we are comparing the mean circularity of +1 phi juvenile clasts 257 

extracted from two pyroclastic samples, using a two-tailed t-test as described above. Thus, 258 

the null hypothesis H0 is that both groups are extracted from the same population, because 259 

with the two-tailed t-test, we are hoping to reject H0 by getting a p-value below α. That would 260 

demonstrate statistically – with a certain confidence level (1-α) – that there is a significant 261 
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difference in the means. If instead the p-value is greater than α, we fail to reject H0, but that 262 

does not imply that we can automatically accept H0. To actually conclude that our +1 phi 263 

juvenile clasts are all likely to be derived from the same population, a different statistical test 264 

is needed, with different hypotheses. 265 

A statistical method introduced to verify the equivalence of morphometric data sets is the 266 

equivalence test, or “e-tests” (Dürig et al. 2012a). An e-test checks whether the mean µ and 267 

the confidence interval Δ = [-C;C] of a data set lie within an acceptable range, specified by an 268 

equivalence margin Dmax, so that (Rasch and Guiard 2004; Wellek 2010):  269 

      (8) 270 

For verification, an e-test uses one-tailed t-tests for each side of the equivalence margin, 271 

testing the composed null hypotheses H01:  - C <  - Dmax and H02:  + C >  + Dmax. If the 272 

one-tailed t-test results lead to a rejection of both null hypotheses, relationship (8) is valid 273 

and statistical equivalence is verified (Rasch and Guiard 2004; Wellek 2010; Dürig et al. 274 

2012a). 275 

The ‘classic’ e-tests used exclusively Student’s t-tests and could therefore only provide 276 

reliable results for data sets with homogeneous variances (e.g., Dürig et al. 2012a). With the 277 

recently published free and open software DendroScan (Dürig et al. 2020a), the range of 278 

application has been extended for cases of inhomogeneous variances by also including 279 

Welch’s t-tests to the e-test procedures. Since e-tests are based on t-tests, the same 280 

conditions and assumptions apply. 281 

The validity of e-tests depends on the quality of the pre-defined equivalence margin. An 282 

underestimation of Dmax would result in a corridor that is too small, and therefore in Type II 283 

errors, where equivalences remain undetected. Conversely, overly large values would lead to 284 

Type I errors. It is therefore crucial to provide, along with p-values and α, also the Dmax values 285 

when reporting the results of e-tests.  286 
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Since equivalence margins are specific to each shape parameter and each case (i.e., 287 

eruption or eruptive phase) (Dürig et al. 2012a, 2020b), a common strategy to find the 288 

appropriate Dmax values is to use tailored calibration tests on so called “standards”, i.e. 289 

subsamples of grains coming from the same population as the one to be tested. For 290 

calibration, e-tests are reiteratively computed for each shape parameter, by increasing the 291 

Dmax values stepwise (e.g., by 0.01, with an initial value of 0.01), until the e-tests indicate 292 

statistical equivalence in all shape parameters (Dürig et al. 2020c, a). 293 

For demonstration, the morphometric data set “d” (Fig. 2) is statistically tested for 294 

equivalency with data set “a” (Fig. 1). With this aim, e-tests are computed with DendroScan 295 

by using the data sets “AA”, ”AB” and “AC” (see Online Resource 1) as standards. According 296 

to the results (see Fig. 5), “a” and “d” can be treated as statistically equivalent.  297 

Principal component analysis (PCA) 298 

The statistical tests described thus far must be applied separately for each shape parameter. 299 

A morphometric comparison of M parameters requires the execution of at least 2 x M tests 300 

(for example, in the combination of F-tests and two-tailed t-tests). The number of results 301 

quickly becomes large and difficult to present, in the same way as does the presentation of 302 

multiple binary diagrams (see previous section).  303 

In mathematical terms, each pyroclast can be represented by a data point in an M-304 

dimensional vector space. Principal component analysis (“PCA”) is a multivariate method 305 

that can be used to reduce the dimensions of this vector space (Maria and Carey 2002; 306 

Scasso and Carey 2005; Cioni et al. 2008; Suzuki et al. 2015; Schmith et al. 2017; Nurfiani 307 

and de Maisonneuve 2018; Pardo et al. 2020). In other words, PCA can reduce the number 308 

of variables in a way that retains as much of the original information as possible. It can also 309 

be used to explore the relationships among the original variables. PCA initially extracts M 310 

factors (denoted “principal components”) by finding linear combinations of the original 311 

variables in the M-dimensional space. The principal components are constructed to be 312 

orthogonal to one another (so as to be statistically independent), and their length is 313 



This is a post-peer-review, pre-copyedit version of an article published in Bulletin of Volcanology. The 
final authenticated version is available online at: https://doi.org/10.1007/s00445-021-01500-0 

proportional to the total variance of the original data set. Next, the M principal components 314 

are sorted by their total variances (e.g., see Table 5). These total variances quantify the 315 

variance that can be explained by the principal components alone and are also denoted 316 

“Eigenvalues”. The number of components extracted is based on a compromise between 317 

analytical tractability and loss of information. A typical decision criterion is the Kaiser 318 

normalization criterion (Kaiser 1958; Davis 2002), which suggests that only principal 319 

components with an Eigenvalue of 1 or larger be considered. PCA is particularly useful in 320 

complex multivariate analysis, when dealing with a multitude of different parameters, e.g., 321 

from different morphometric systems, to reveal redundancies (i.e., variables that actually do 322 

not add additional information) and to help find the most meaningful parameters. 323 

In a simple example shown by Table 5, we applied PCA to four shape parameters. This 324 

approach would lead to the use of principal components 1 and 2 and therefore a dimensional 325 

reduction from four to two.  326 

Table 6 (left) shows the Pearson correlation coefficients for each variable and component, 327 

denoted “factor loadings”. Often, it is useful to redistribute the factor loadings in a way that 328 

facilitates interpretation of a component’s meaning. A typical approach for achieving this goal 329 

uses the “varimax rotation” (Davis 2002), which rotates the components (and with them the 330 

coordinate axes), but keeps the components orthogonal. Table 6 (right) provides an example 331 

of the resulting component matrix after such a rotation: now component 1 can be seen as a 332 

measure of Circ_DL and Rec_DL, while component 2 is mainly measuring Com_DL and 333 

Elo_DL.  334 

For each of our demonstration data sets (Fig. 1, Fig. 2) the resulting component scores are 335 

listed (see Online Resource 3). For four data sets, Figure 3e shows the (unrotated) principal 336 

components. Data points of four objects were individually tagged in Figures 3c through 3f to 337 

‘track’ them. For example, Figures 3c and 3d show that “b50” (black triangle within a black 338 

circle) is characterized by high circularity and rectangularity, medium compactness and low 339 

elongation. Although the (unrotated) components contain this information, it is difficult to 340 
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reconstruct it from Figure 3e. Only after the “varimax” rotation (Fig. 3f) does it become 341 

apparent that “b50” is characterized by a large value for rotated component 1 and a low 342 

value for rotated component 2. According to the resulting rotated-component matrices (Table 343 

6), we know that the first rotated component is strongly correlated with circularity and 344 

rectangularity, whereas the second one shows a positive correlation mostly with elongation 345 

and is negatively correlated with compactness. It is hence possible to infer the original shape 346 

parameters from Figure 3f. Although this example only includes four original variables, PCA 347 

would become even more useful if 10 or 20 morphometric parameters were involved. 348 

When presenting PCA results, it is mandatory to specify the decision criterion used to choose 349 

the level of dimensional reduction (in our example: “Kaiser normalization criterion”) and type 350 

of rotation (here: “varimax”) applied. Along with the total variances (Table 5) and the resulting 351 

component scores for each sample, it is also recommended that resulting component score 352 

coefficients be reported. Such a table is also known as a “Component Score Coefficient 353 

Matrix” (e.g., Table 7).  354 

The resulting principal components are statistically independent variables. PCA can therefore 355 

be used as a first step for the subsequent application of statistical methods that require 356 

independent variables, such as discriminant function analysis (see next section). 357 

Factor analysis 358 

Being closely related to PCA, factor analysis methods, such as the R-mode type factor 359 

analysis (Dellino and La Volpe 1996; Davis 2002; Dellino and Liotino 2002) are used to 360 

reduce the number of explanatory variables (i.e., morphometric parameters) without losing 361 

relevant information. As for PCA, the original variables are linearly combined to construct the 362 

equivalent to principal components, which are (unsurprisingly) named “factors”. In contrast to 363 

PCA, however, factors are not orthogonal, and therefore not independent variables. Instead, 364 

the new axes are orientated in a way that optimally describes the original data variances. 365 

Factor analysis can be used (1) as a data reduction method, although PCA may be better 366 

suited for this, (2) as an “exploratory” tool, in order to find hidden and not directly measurable 367 



This is a post-peer-review, pre-copyedit version of an article published in Bulletin of Volcanology. The 
final authenticated version is available online at: https://doi.org/10.1007/s00445-021-01500-0 

(“latent”) dependencies between variables that explain the distribution of factor scores, or (3)  368 

to test the validity of an a priori model (“confirmatory factor analysis”). In the context of 369 

morphometry, to our knowledge, only the first usage has been applied so far (Dellino and La 370 

Volpe 1996; Dellino and Liotino 2002). We strongly recommend that researchers report 371 

factor scores along with the factor loadings, eigenvectors and score weights, since all of 372 

these parameters are required for a full analysis and interpretation of the data (Dellino and 373 

La Volpe 1996; Davis 2002; Dellino and Liotino 2002).  374 

Cluster analysis 375 

Cluster analysis is the collective term for a suite of exploratory statistical techniques to sort 376 

observations (here: particles) according to their relatedness and assign them to relatively 377 

homogeneous groups (“clusters”). When applied to morphometric data sets, the members of 378 

such clusters are characterized by sharing a set of features, while simultaneously being 379 

distinct from members of the other clusters (Dellino et al. 2001; Davis 2002). Analysing these 380 

groupings and investigating common links that connect the members of a cluster play an 381 

important role in morphometric analysis and are used to infer the influences of eruptive 382 

processes on particle formation (Dürig et al. 2020c). The implementations of cluster analysis 383 

are many. In the following we concentrate only on those most commonly used in 384 

morphometry: hierarchical cluster analysis and the k-means procedure.  385 

Hierarchical cluster analysis 386 

Hierarchical cluster analysis can be further differentiated into “agglomerative” and “divisive” 387 

analyses. 388 

An agglomerative hierarchical cluster analysis starts with a single observation (i.e., 389 

pyroclast), treating it as a preliminary cluster. From the remaining particles, the one identified 390 

as “most similar” to the first one is joined. This procedure is repeated until all pyroclasts are 391 

included.  392 
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The “divisive” hierarchical cluster analysis works in reverse (“top-down”): starting with all 393 

particles as one cluster, the algorithm partitions it into two least-similar sub-groups. This 394 

procedure is reiterated for each sub-group, then repeated to the next cluster level and so on.  395 

The algorithm’s decision on which particle to add (or, in the divisive class of cluster analysis, 396 

where to divide the original cluster) depends on:  397 

• what is used as a measure of dissimilarity;  398 

• which points within the clusters are used as references for measuring the group’s 399 

distance (known as linkage in the context of cluster analysis).  400 

In morphometric cluster analysis, common measures of dissimilarity are the normalized 401 

Euclidian distance (Dellino et al. 2001; Maria and Carey 2002; Cioni et al. 2008) or the 402 

squared Euclidian distance (Rausch et al. 2015). A specially defined distance is used in 403 

DAPM (see below). 404 

Linkages commonly used in morphometric cluster analyses are: “single linkage” (Dellino et 405 

al. 2001), where the clustering algorithm computes the distances between the nearest 406 

neighbours, or “complete linkage“ (Maria and Carey 2002; Dürig et al. 2020c), which uses 407 

the farthest neighbours of each group. Other examples include “average” or “median” linkage 408 

(Davis 2002). With the plethora of implementations of this method, it is critical that 409 

researchers provide sub-type, measure of dissimilarity and linkage method used when 410 

publishing results obtained by a hierarchical cluster analysis. 411 

In morphometric studies, hierarchical cluster analyses has often been applied at the level of 412 

individual pyroclasts (Maria and Carey 2002; Rausch et al. 2015), in order to group clasts of 413 

similar origin. Occasionally the means of measured shape parameters for groups of 414 

pyroclasts have been used instead (e.g., Dellino et al. 2001), and in this case it is critical to 415 

clearly explain the contents of the groups, and how particles were assigned to each group. 416 

Any in-built correlation between shape parameters would result in a bias in the actual 417 

groupings based on the Euclidean distances. In order to reduce this effect, hierarchical 418 
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cluster analyses are often combined with principal component analyses, and applied to the 419 

statistically independent principal components found (Maria and Carey 2002; Cioni et al. 420 

2008).   421 

The output of a hierarchical cluster analysis is a tree diagram, or “dendrogram”, that displays 422 

the dissimilarities among the tested shapes. An example of a dendrogram is shown in Fig. 6. 423 

It is the result of an agglomerative hierarchical cluster analysis, constructed on data sets “a”, 424 

“b”, “c” and “d”, using the squared Euclidean distance with complete linkage. From the 425 

example, it is evident that interpretation of the groupings illustrated in the dendrogram is not 426 

trivial; this is because differences among individual particles within data sets causes the 427 

particles to be grouped into different clusters. For example, from Figure 6 it is not 428 

immediately clear that data sets “a” and “d” are, in fact, statistically equivalent.  429 

k-means procedure 430 

The k-means procedure, introduced by MacQueen (1967), is a special type of cluster 431 

analysis. In contrast to a hierarchical cluster analysis, where the number of clusters k is 432 

provided as output, the k-means procedure works with a user-defined fixed value for k. It 433 

classifies the data by assigning it to the k clusters and computes their centroids. The 434 

algorithm begins by randomly selecting k data points as initial seeds (Davis 2002). It then 435 

assigns the N observations to the “most similar” seeding points, by using the minimum 436 

increase of variance as decision criteria. Using the centroids of each of the k clusters as the 437 

next seed, this procedure is reiterated, until stable centroids of the clusters (k-means) are 438 

obtained (Davis 2002).  439 

The k-means procedure can be used when the user can guess the number of clusters into 440 

which the data will/should cluster. A possible field of application is data reduction, by 441 

replacing the individual data points with data from the k centroids. Another use of the k-442 

means procedure is to explore similarities among morphometric data sets with varying k. For 443 

example, using k = 3 and k = 2 in a comparison of volcanic ash samples from three different 444 
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volcanoes, researchers provided information about the degree to which each volcano has 445 

tephra that can be distinguished from those of other volcanoes (Avery et al. 2017).  446 

For demonstration, let us assume our aim is to find out which of the three sets of objects “a”, 447 

“d” and “e” (see Figs. 1-2) show the highest morphometric similarity, based on the four shape 448 

parameters by Dellino and La Volpe (1996). We start by applying the k-means procedure 449 

using k = 3 and compare the outcome with the results for k = 2 (see Fig. 7 and Online 450 

Resource 4). For illustration purposes, after application of the k-means procedure, we 451 

applied PCA with varimax rotation and plotted the two principal components to illustrate the 452 

clusters. 453 

For k = 3 (Fig. 7a), all objects of group “e” were assigned to cluster 1 (red), whereas the bulk 454 

of “a” and “d” objects were grouped into cluster 2 (blue). Cluster 3 (green) comprises only 455 

two objects (one from sample “a” and one from “d”). For k = 2 (Fig. 7b), all objects of “e” are 456 

members of cluster 1 (blue), whereas most members of “a” and “d” were assigned to cluster 457 

2 (red). We can infer from these results that the shapes of “a” and “d” objects are overall 458 

more similar to each other than to those from sample “e”. 459 

Although data clustering is a useful method for data exploration, interpretation of the cluster 460 

assignments may become complex and is somewhat user-dependent. Also, the k-means 461 

procedure requires normality of input data (implying large sample sizes) and is less robust 462 

than, e.g., the e-test. When publishing results of the k-means procedure, the initial 463 

conditions, along with the coordinates of the k centroids, need to be reported to facilitate 464 

interpretation of groupings. 465 

Dendrogrammatic Analysis of Particle Morphology (DAPM) 466 

DAPM is a recently published technique designed for comparative analysis of multiple data 467 

sets (Dürig et al. 2020c). Technically, it can be seen as a special variant of hierarchical 468 

cluster analysis which combines all the aforementioned statistical tests (F-tests, ANOVA, 469 

two-tailed t-tests and e-tests) in order to produce dendrograms displaying degrees of 470 

dissimilarity among data sets. In contrast to the other types of cluster analyses, which are 471 
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usually applied to individual particles (Maria and Carey 2002; Cioni et al. 2008; Rausch et al. 472 

2015), DAPM is tailored for analysis of dissimilarities and similarities among different data 473 

sets, each representing many particles, by means of their variances. 474 

When analysing Q data sets, the DAPM’s initial step is to compare all data sets with M shape 475 

parameters by F-tests, followed by ANOVA with the appropriate post-hoc correction (Tukey’s 476 

range test or Games-Howell post-hoc adjustment). Starting from these results, the elements 477 

of a distance matrix X are computed by: 478 

             (9) 479 

where Yijk is calculated according to: 480 

             (10) 481 

and pijk is the ANOVA’s p-value of data set i tested with the one from data set j in the k-th 482 

shape parameter. 483 

The use of the entries of X as measures of dissimilarity, along with the complete linkage 484 

method, allows the construction of a “level 1” dendrogram, which groups the Q data sets 485 

according to their relative morphometric differences (Dürig et al. 2020c). 486 

If the number of data sets is relatively large (Q > 7 (Dürig et al. 2020a)), this initial sorting is 487 

to be treated as preliminary because, according to the considerations above, the statistical 488 

power of ANOVA is expected to be low. Still, the level 1 diagram can be used to identify the 489 

main morphometric clusters and to split the Q data sets into sub-sets, for which the 490 

computation procedure of X is repeated, resulting in several “level 2” dendrograms. By 491 

increasing stepwise the “levels”, this procedure is reiterated for each of the new sub-clusters, 492 

until no further cluster separation is possible.  493 

Data sets grouped with a dissimilarity of 0 represent the highest level dendrograms. They are 494 

tested, by using the M shape parameters, with two-tailed t-tests.  495 
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The data sets that “fail” the t-tests (i.e., no significant differences indicated for any of the M 496 

shape parameters), are submitted to e-tests, using pre-defined equivalent margins.  497 

With this procedure, it is not only possible to sort multiple data sets according to their 498 

ANOVA-verified dissimilarity, but also to identify those data sets among them that are 499 

statistically equivalent according to a clear set of rules. This is useful, for example, in linking 500 

pyroclasts obtained from experiments with natural ones.  501 

Recently released freeware, which allows the analyst to perform a DAPM automatically, is 502 

DendroScan (Dürig et al. 2020a). An example of a DAPM-based dendrogram is provided in 503 

Figure 8.   504 

The use of eq. (9) in the construction of the distances X could lead to an overestimation of 505 

some morphologic features, especially when there is an underlying correlation between 506 

some of the shape parameters. The decision about which parameters to select for DAPM 507 

should therefore be based on the final aim of the analysis. If the aim is to identify the most 508 

significantly different data sets, and separate them from those which are statistically 509 

equivalent, it is recommended to use all the shape parameters. This approach ensures 510 

completeness of the morphological features in DAPM. If the aim is, instead, to interpret the 511 

degree of dissimilarities between significantly different data sets, it is advisable to use a 512 

reduced set of statistically independent parameters (Dürig et al. 2020a), possibly by using 513 

binary diagrams to ensure the absence of correlation. 514 

When publishing results from DAPM, researchers should include the shape parameters, Dmax 515 

values and level of significance α used, along with the dendrograms produced at the highest 516 

data levels. In addition, the distance matrices X might be provided. Researchers must state 517 

the linkage used for computing the dendrograms. 518 

Determination of fragmentation mechanism and eruptive style 519 

Discriminative and interpretive diagrams 520 
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An important application of morphometric analysis is in the classification of tephras according 521 

to their genesis, for example the distinction of ash produced by phreatomagmatic versus 522 

magmatic fragmentation processes. Qualitative schemes of tephra classification by particle 523 

morphology have a decades-long history (Heiken 1974; Wohletz 1983; Büttner et al. 1999; 524 

Taddeucci et al. 2002; White and Valentine 2016; Németh and Kósik 2020). Some attempts 525 

have also been made to develop user-independent methods for quantitative and reproducible 526 

classification (e.g., Büttner et al. 2002; Murtagh and White 2013; Schmith et al. 2017). The 527 

most common method for discriminating among eruption mechanisms is to plot samples in 528 

classification diagrams (for examples, see Table 2) that distinguish fields of different eruptive 529 

conditions. Plots used for discriminative interpretation range from simple binary diagrams 530 

(e.g., Cioni et al. 2014; Leibrandt and Le Pennec 2015; Liu et al. 2015), to diagrams plotting 531 

combinations of shape parameters (Büttner et al. 2002; Murtagh and White 2013; Iverson et 532 

al. 2014; Alvarado et al. 2016), to more complex approaches, in which interim parameters 533 

are derived from linear interpolation based on binary plots (Schmith et al. 2017). 534 

To demonstrate the use of two of these classification diagrams, we compare two 535 

morphometric data sets obtained from silhouettes of ash particles from the narrow +4ϕ (88-536 

63 µm) grain size fraction (see Online Resource 2). The first data set, denoted “Iki”, 537 

describes the shape of grains produced during continuous lava fountaining episodes of the 538 

1959 Kīlauea Iki eruption (Richter et al. 1970; Mueller et al. 2018, 2019). The second data 539 

set was obtained from ash particles produced in significant amounts during the 2012 eruption 540 

of Havre, a silicic deep-sea volcano (Carey et al. 2018). Based on morphometric 541 

comparisons with samples from lab experiments, it was found that a phreatomagmatic 542 

mechanism played a key role in the ash generating episode(s) of this eruption (Dürig et al. 543 

2020b, c). Table 8 presents an overview of the resulting shape parameters Circ_DL, Elo_DL, 544 

Rec_DL and Com_DL. 545 

Figure 9a shows the classification diagram by Büttner et al. (2002) plotted with data from the 546 

two demonstration sets. This plot has been designed to distinguish grains that were the 547 

product of brittle fragmentation from those generated under ductile fragmentation conditions. 548 
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While the authors originally identified a threshold of approximately 0.88 on the y-axis for 549 

shoshonite clasts (Büttner et al. 2002), a revised value of 0.71 was suggested in a later study 550 

for Havre ash (Dürig et al. 2018). Both thresholds are displayed in Figure 9a as dashed 551 

horizontal lines. When using the threshold suggested by Dürig et al. (2018), the majority of 552 

the Iki samples fall into the ductile field, while the bulk of Havre samples plot in the brittle 553 

field. There are, however, also outliers in both data sets, which demonstrate the necessity of 554 

using sufficiently large numbers of pyroclasts to extract useful information from these types 555 

of diagrams. Note also that the morphometric variance among the Iki grains is larger than 556 

that of Havre particles, reflecting the considerably larger standard deviations of the 557 

underlying shape parameters (see Table 8).  558 

Figure 9b presents an alternative classification diagram, following the suggestion of Murtagh 559 

and White (2013). Here, the suggested boundary is an ascending line (illustrated as a 560 

dashed line in Fig. 9b), that separates morphometric data points from particles of 561 

phreatomagmatic origin (left side) from those of magmatic origin (right side). For our test 562 

samples, the diagram is fairly successful in sorting the two populations by their eruptive 563 

mechanism, especially when focussing on the mean values of both data sets. However, 564 

rather large minorities of 14 (27.5%) and 12 (25%) grains from the Iki and Havre samples, 565 

respectively, are sorted into the ‘wrong’ sector. We also note that there is a substantial 566 

overlap between the two samples when taking their standard deviations into account. In our 567 

demonstration this does not affect the overall outcome, because the samples studied here 568 

are representing end members on the scale of eruptive styles. For other samples, the results 569 

might be far less clear, rendering the method unreliable (Schmith et al. 2017). The same 570 

applies to the discrimination diagram by Büttner et al. (2002). Although it has been widely 571 

used for distinguishing between phreatomagmatic and magmatic grains (e.g., Németh and 572 

Cronin 2011; Murtagh and White 2013; Iverson et al. 2014; Alvarado et al. 2016), a number 573 

of studies found that it is difficult to identify a universal threshold that defines a clear 574 

distinction between fields. This probably reflects the roles of magma chemical composition 575 

and physical magma components (melts, bubbles and crystals) on the mechanical behaviour 576 
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of magma under stress, which is the direct control on shapes of pyroclasts (Murtagh and 577 

White 2013; Schmith et al. 2017; Dürig et al. 2018). Morphometric analyses can therefore 578 

only provide a piece of the puzzle, to be considered along with whole-deposit componentry 579 

and granulometry (Mele et al. 2020), and analysis of particles' microtextures and surface 580 

features (White and Valentine 2016; Ross et al. 2021). 581 

Discriminant function analysis (DFA) 582 

As a multivariate statistical method that classifies data sets and provides error likelihoods of 583 

classification, discriminant function analysis (DFA) has potential to establish relationships 584 

between particle morphology and fragmentation processes or eruption styles. DFA requires 585 

data sets with known group membership (e.g., data sets from known purely single-process 586 

magmatic or single-process phreatomagmatic fragmentation processes). 587 

Similar to PCA and factor analysis, as a first step, the discriminant function analysis seeks to 588 

reduce the number of variables by combining the original variables in a way that maximizes 589 

the differences between groups and minimizes the variance within each group (Davis 2002). 590 

Next, the algorithm finds a discriminant function, which is tailored to separate the data into 591 

the previously defined groups, i.e. to discriminate between them. The predictive quality of this 592 

function can be tested by computing the percentage of known data sets that are correctly 593 

classified, and this success percentage is then listed in classification matrices. Based on the 594 

discriminant function, the DFA is subsequently able to predict the group-membership of 595 

unclassified data sets. Furthermore, the structure of the separation function provides insights 596 

into which of the variables (i.e. parameters) has the most discriminatory power (Avery et al. 597 

2017). 598 

A caveat, additional to starting with data sets of known origin, is that DFA requires normally 599 

distributed data and independent variables for both the initial data sets and those 600 

subsequently investigated. A way to obtain independent variables is to first apply a PCA then 601 

use the resulting principal components as input. When reporting results from a DFA, 602 

researchers should provide comprehensive information, including the definition of grouping 603 
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variables, normality of data, equality of co-variance matrix, missing data and outliers, 604 

variables used, correlation matrices, software and version used, classification matrices, 605 

discriminant function and classification function weights (for details, see e.g., Huberty and 606 

Hussein 2003).  607 

Supervised machine learning 608 

Supervised machine learning methods can be somewhat similar in aim to what has been 609 

described for DFA in which the algorithms are trained to recognize membership in a group. 610 

Machine learning approaches that have been used for classification of particle shapes are, 611 

e.g., decision-trees, random forest (Tunwal et al. 2018) and convolutional neural networks 612 

(Shoji et al. 2018). In the first method, a Classification And Regression Trees (CART) 613 

algorithm uses the training data to build a decision tree, which then is applied as a predictive 614 

model to classify the unknown data set (Loh 2011). A fixed decision tree might fit too exactly 615 

to the noise-affected training data and not take stochastic variations of the test data into 616 

account (“overfitting”). To counter this effect, a random forest algorithm can be used, which 617 

builds and combines large numbers of decision trees based on random selection of shape 618 

parameters and sampling of training data (Breiman 2001). Convolutional neural networks 619 

(CNN) take an alternative path and are specifically designed for image recognition. CNN 620 

algorithms process pixel intensities in several layers, where the early layers focus on simple 621 

features and later layers recognize patterns of increased complexities. By using large 622 

numbers of particle images as training data, CNN can classify new particles according to the 623 

acquired model. Potentially we could teach an algorithm to distinguish magmatic from 624 

phreatomagmatic particles (Shoji et al. 2018). Future applications might combine machine 625 

learning with some of the previously discussed statistical techniques. For example, PCA and 626 

the k-means procedure might be used as a first step to obtain training data, before applying 627 

CNN. Similar approaches have already been successfully applied in other fields of research 628 

(e.g., Tang et al. 2017; Rustam et al. 2020). A disadvantage of machine learning approaches 629 

is, however, that the algorithms are somewhat like “black boxes” and as such might lead to 630 

misinterpretation by the user.  631 
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Conclusions and Outlook 632 

We have provided an overview of the statistical methods commonly used to analyse 633 

morphometric data sets. Table 9 summarizes the purpose, mathematical pre-conditions and 634 

output of each of the previously discussed tests and algorithms. Our aim is to explain these 635 

techniques in a way accessible to geologists, and we have illustrated the methods using 636 

simple particle shapes. With this statistical toolkit at hand, morphometric data sets can be 637 

explored while simultaneously understanding the mathematical limitations that attach to each 638 

of the methods applied. 639 

Although we present a broad overview for volcanology, the presented analytical tools 640 

represent only a small selection of all techniques available. With ever-increasing 641 

computational capabilities, machine learning techniques may become more and more 642 

important as complementary analytical tools, leading to more-complex routines for shape 643 

analysis. Together with the ongoing development of 3D scanning technologies, the near 644 

future promises new advances in the quest to decode the volcanological information 645 

ingrained in the shapes of volcanic particles.  646 

647 
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 648 

Tables 649 

Table 1 Example for basic descriptive statistics of the morphometric data sets, based on N 650 
samples. The particles are shown in Figure 1 and 2. Note that this data serves only for 651 
demonstration purposes. For representativity of “real” volcanic ash analyses, more particles 652 
(i.e., larger sample sizes N) would be required. 653 

data set 

N Minimum Maximum Mean 
Std. 

Deviation Skewness Kurtosis 

     Statistic Std. Error Statistic Std. Error 

a Circ_DL 12 1.07 1.35 1.13 0.07 2.71 0.64 8.21 1.23 

Rec_DL 12 0.83 1.03 0.86 0.06 3.07 0.64 9.77 1.23 

Com_DL 12 0.51 0.99 0.74 0.11 0.21 0.64 3.76 1.23 

Elo_DL 12 1.06 2.41 1.50 0.32 2.18 0.64 6.90 1.23 

b Circ_DL 4 1.63 3.19 2.39 0.67 0.12 1.01 -1.20 2.62 

Rec_DL 4 1.18 2.30 1.73 0.48 0.14 1.01 -1.24 2.62 

Com_DL 4 0.66 0.67 0.66 0.00 1.83 1.01 3.43 2.62 

Elo_DL 4 1.31 1.44 1.39 0.06 -1.23 1.01 0.77 2.62 

c Circ_DL 8 1.05 1.81 1.37 0.29 0.41 0.75 -1.57 1.48 

Rec_DL 8 0.83 1.26 1.02 0.17 0.32 0.75 -1.70 1.48 

Com_DL 8 0.62 0.79 0.72 0.07 -0.33 0.75 -1.74 1.48 

Elo_DL 8 1.29 1.50 1.40 0.07 -0.04 0.75 -0.58 1.48 

d Circ_DL 12 1.07 1.35 1.13 0.08 2.35 0.64 5.91 1.23 

Rec_DL 12 0.83 1.07 0.86 0.07 3.38 0.64 11.59 1.23 

Com_DL 12 0.50 1.00 0.74 0.11 0.20 0.64 4.56 1.23 

Elo_DL 12 1.00 2.29 1.48 0.30 1.78 0.64 6.07 1.23 

e Circ_DL 8 1.10 1.55 1.32 0.15 0.06 0.75 -0.78 1.48 

Rec_DL 8 0.84 1.12 0.98 0.09 -0.01 0.75 -0.79 1.48 

Com_DL 8 0.70 0.79 0.75 0.03 -0.02 0.75 -0.83 1.48 

Elo_DL 8 2.05 2.26 2.15 0.07 0.27 0.75 -1.09 1.48 

h Circ_DL 12 1.33 4.61 2.43 0.98 1.14 0.64 0.98 1.23 

Rec_DL 12 0.84 2.64 1.43 0.53 1.27 0.64 1.30 1.23 

Com_DL 12 0.41 0.73 0.46 0.09 2.94 0.64 9.10 1.23 

Elo_DL 12 1.08 2.46 1.92 0.37 -0.89 0.64 1.60 1.23 

r Circ_DL 7 1.14 1.73 1.44 0.21 -0.10 0.79 -1.19 1.59 

Rec_DL 7 1.00 1.41 1.21 0.15 -0.18 0.79 -1.20 1.59 

Com_DL 7 0.87 1.00 0.93 0.05 0.15 0.79 -1.02 1.59 

Elo_DL 7 1.31 1.40 1.35 0.03 -0.18 0.79 0.72 1.59 

s Circ_DL 8 1.27 2.98 2.12 0.67 -0.13 0.75 -1.58 1.48 

Rec_DL 8 0.86 1.23 1.05 0.15 -0.33 0.75 -1.79 1.48 

Com_DL 8 0.20 0.58 0.36 0.15 0.67 0.75 -0.94 1.48 

Elo_DL 8 1.61 2.86 2.15 0.43 0.18 0.75 -0.32 1.48 

 654 
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 655 

Table 2: List with examples of interpretative diagrams and diagrams used to discriminate 656 

between particles formed by phreatomagmatic vs. magmatic fragmentation. Morphometric 657 

parameters are those used in the presenting publication (fourth column). In addition, the 658 

terms applied to the shape parameters used in the open freeware PARTISAN (Dürig et al. 659 

2018) are provided in the fifth column. 660 

Introduced by Purpose Plot (y-axis; x-axis) Morphometric 
system 

PARTISAN 
output variables 

Büttner et al. 
(2002) 

Brittle vs ductile 
(phreatomagmatic 
vs magmatic) 

Rectangularity x Compactness;  
Elongation x Circularity 

Dellino and La Volpe 
(1996) 

Rec_DL x 
Com_DL; 
Elo_DL x 
Circ_DL 

Murtagh and 
White (2013) 

Phreatomagmatic 
vs magmatic 

Elongation x Compactness;  
Rectangularity x Circularity 

Dellino and La Volpe 
(1996) 

Elo_DL x 
Com_DL; 
Rec_DL x 
Circ_DL 

Cioni et  al. 
(2014) 

Interpretative 
binary diagram 

Ellipse Aspect Ratio; Solidity Cioni et  al. (2014) AR_CI; Sol_CI 

Leibrandt and 
Le Pennec 
(2015) 

Interpretative 
binary diagram 

Convexity; Circularity Leibrandt and Le 
Pennec (2015) 

Con_LL;Circ_LL 

Liu et al. (2015) Interpretative 
binary diagram 

Convexity; Solidity Liu et al. (2015) Con_LI; Sol_LI 

Schmith et al. 
(2017) 

Elongated vs 
non-elongated 
grains; slope of 
linear 
interpolation 
defines “regularity 
index” 

Regularity; Feret Aspect Ratio Schmith et al. (2017) Reg_SC; 
AR_SC 

Schmith et al. 
(2017) 

Phreatomagmatic 
vs magmatic 

regularity index; percentage of 
elongated grains 

Schmith et al. (2017)  
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 662 

Table 3: Results for Levene tests and t-tests used to compare the morphometric data sets “a” 663 
with “c”. Numbers are p-values in percent. When the p-value is below the level of significance 664 
α (often 5%), the tested variances (in case of Levene-test) or means (in case of a t-test) can 665 
be inferred to be significantly different. A graphic form of displaying these results is presented 666 
on Figure 4.  667 

α = 5% Circ_DL Rec_DL Com_DL Elo_DL 

Levene test 0.13 0.23 54.41 6.88 

t-test 6.03 4.13 46.16 71.50 
668 
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Table 4: Example for ANOVA results. Resulting F- and p-values are displayed. A p-value 669 
below the level of significance (here 5%) indicates a significant difference. For example, 670 
when comparing the morphometric data sets “a”, “b”, “c”, and “e” (two centre columns), 671 
ANOVA reveals significant differences in circularity (Circ_DL), rectangularity (Rec_DL) and 672 
elongation (Elo_DL). This result implies that at least two of the four samples are different in 673 
these parameters.  674 
morphometric 

data sets 
a,b,c a, b, c, e a, b, c, e, h, r, s 

α = 5% F p (%) F p (%) F p (%) 

Circ_DL 25.151 <0.05 20.954 <0.05 8.72 <0.05 

Rec_DL 26.039 <0.05 22.021 <0.05 7.626 <0.05 

Com_DL 1.144 33.8 1.196 32.9 37.514 <0.05 

Elo_DL 0.545 58.8 22.988 <0.05 13.574 <0.05 

675 
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 676 

Table 5: Dimensional reduction by principal component analysis (PCA) with “varimax” 677 
rotation: In this example, PCA was conducted via software SPSS®, based on 8 data sets (“a, 678 
b, c, d, e, h, r, s”) and using the four shape parameters employed by Dellino and La Volpe 679 
(1996) as variables. Thus, PCA initially extracted four principal components from the four 680 
original shape parameters Circ_DL, Rec_DL, Com_DL and Elo_DL. The total variances of 681 
the principal components are denoted “Eigenvalues”. In order to reduce the number of 682 
explaining parameters one could follow the Kaiser normalization criterion (Kaiser 1958; Davis 683 
2002), which suggests consideration of only principal components with eigenvalue 1 or 684 
larger. Using the first two components instead of the original four shape parameters would 685 
reduce the dimension by two, but still be sufficient to explain ~93.6% of the total variance. 686 

Component 

Initial Eigenvalues 

Total 
% of 

Variance 
Cumulative 

% 

1 2.471 61.77 61.77 

2 1.273 31.81 93.59 

3 0.240 6.009 99.59 

4 0.017 0.41 100.00 
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Table 6: Components and rotated-component matrices: values represent the Pearson 688 
correlation between variables and components, denoted “factor loadings”. The original 689 
components show cross-correlations, which complicate interpretations. On the right, the 690 
redistributed factor loadings after a so called “varimax” rotation (Davis 2002) are shown. Now 691 
Component 1 is dominantly measuring circularity (Circ_DL) and rectangularity (Rec_DL), 692 
while Component 2 can be seen as mainly a measure of compactness (Com_DL) and 693 
elongation (Elo_DL).    694 

 Components Rotated components 

 1 2 1 2 

Circ_DL 0.940 0.328 0.932 0.348 

Rec_DL 0.740 0.649 0.984 -0.026 

Com_DL -0.842 0.420 -0.379 -0.861 

Elo_DL 0.576 -0.754 -0.039 0.948 
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 696 

Table 7: Component score coefficient matrix resulting from PCA, using four shape 697 
parameters as input variables and the “varimax” rotation (see also Table 5). The principal 698 
component score of a sample is calculated by linearly combining the sample-specific shape 699 
parameter values, weighted with the according component score coefficients.  700 

 701 

Component Score Coefficient Matrix  
Component 

1 2 

Circ_DL 0.457 0.045 

Rec_DL 0.556 -0.201 

Com_DL -0.051 -0.472 

Elo_DL -0.199 0.604 

702 
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 703 

Table 8: Basic descriptive statistics of the morphometric data sets used to plot the 704 
discrimination diagrams shown in Figure 9. The shape parameters were obtained from 705 
silhouettes of ash particles sampled from the 1959 Kīlauea Iki (“Iki”) and the 2012 Havre 706 
eruption. 707 

Data set 

N Minimum Maximum Mean 
Std. 

Deviation Skewness Kurtosis 

     Statistic Std. Error Statistic Std. Error 

Iki Circ_DL 51 1.05 2.69 1.74 0.39 0.26 0.33 0.06 0.66 

Rec_DL 51 0.83 1.31 1.03 0.12 0.43 0.33 -0.43 0.66 

Com_DL 51 0.33 0.83 0.57 0.14 0.38 0.33 -0.82 0.66 

Elo_DL 51 1.14 18.39 3.69 3.32 2.83 0.33 8.83 0.66 

Havre Circ_DL 48 1.13 1.70 1.33 0.14 0.90 0.34 0.33 0.67 

Rec_DL 48 0.90 1.23 0.98 0.07 1.58 0.34 3.00 0.67 

Com_DL 48 0.55 0.86 0.76 0.06 -1.33 0.34 2.86 0.67 

Elo_DL 48 1.24 5.13 2.19 0.84 1.75 0.34 3.15 0.67 

 708 
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 710 

Table 9: List of methods, fields of application, necessary condition(s) and main output. 711 
Brackets indicate that a method remains fairly robust if conditions are violated. 712 

Method Purpose Condition Output Additional information to 
be disclosed 

F-test Testing if variances of two 
data sets are equal 

(Normal distribution) p-value α, sample sizes (N) 

Levene test Testing if variances of 
multiple data sets are equal 

 p-value α, N 

Student’s t-test Testing 2 data sets of equal 
variances for significant 
differences 

(Normal distribution) p-value α, N 

Welch’s t-test  Testing 2 data sets of 
unequal variances for 
significant differences 

(Normal distribution) p-value α, N 

ANOVA Testing 3 or more data sets 
for significant differences  

(Normal distribution) p-value α, N, post-hoc correction 
(if applied) 

Equivalence 
test 

Testing 2 data sets for 
statistical similarities 

(Normal distribution) Yes/no, D-
value 

α, Dmax values,  standards 
used for calibration 

Factor analysis Dimensionality reduction, 
revealing underlying 
“latent” variables 

Normal distribution; 
otherwise correction 
for non-normality 
needed, e. g., 
adjustment by  
Satorra-Bentler (1994) 

Factor scores Type of factor analysis, 
factor loadings, 
eigenvectors, score 
weights 

Principal 
component 
analysis 

Dimensionality reduction (Normal distribution) Principal 
components 
PC1, PC2 

Decision criterion, type of 
rotation, Eigenvalues, 
component score 
coefficients 

Hierarchical 
cluster analysis 

Sorting of individual grains 
based on their Euclidian 
distance 

 Dendrogram 
(dissimilarity 
axis) 

Type of cluster analysis, 
measure of dissimilarity, 
linkage 

K-means 
procedure 

Sorting of individual grains, 
based on their distance 
from k centroids, where 
number k is pre-defined; 
data reduction: resulting 
cluster centroids can be 
used instead of individual 
data points. 

Normal distribution Sorting of 
grains into 
the k 
clusters; 
coordinates 
of the k 
cluster 
centroids  

Number of clusters k; 
coordinates of the initial 
seeding points 

DAPM Sorting of data sets, based 
on the outcome of 
sequential ANOVA, t-tests 
and equivalence tests 

(Normal distribution) Dendrogram 
(dissimilarity 
axis), 
distance 
matrices X 

Used shape parameters, 
α, Dmax values, standards 
used for calibration, type 
of linkage 

Discriminant 
analysis 

Discriminating data sets Normal distribution, 
independent variables 

Classification 
matrix 

Definition of grouping 
variables, variables used, 
co-variance matrix, 
missing data, outliers, 
correlation matrices, 
software, discriminant 
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function, classification 
function weights 

 713 

Figures 714 

Figure 1 715 

 716 
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Fig. 1 Binary images (silhouettes) of “artificial” objects used for demonstration. The names of 717 
particles are indicated. The compiled morphometric data sets are labelled “a”, “b”, ”c”, ”e”, 718 
”h”, ”r” and “s”.719 
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 720 

Figure 2 721 

 722 

Fig. 2 Binary images of data set “d”. Using e-tests and DAPM we test whether “d” is 723 
statistically equivalent with “a” from Figure 1. 724 

725 
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 726 

 727 

Figure 3 728 

 729 

Fig. 3 Typical plots for presenting statistical results. a) Histogram showing the frequency 730 
distribution of elongation for data set “h”. b) The data set-specific ranges of elongation are 731 
displayed as boxplots. The median is marked as a red central bar, and the 25th and 75th 732 
percentiles are indicated by the bottom and top edges of the blue boxes, respectively. The 733 
whiskers show the overall range covering all data points not considered outliers, while the 734 
latter are presented by red cross symbols. In c) and d) two examples of binary plots are 735 
shown. For four shape parameters, there are six combinations of binary plots. Data points for 736 
four objects are marked in the diagrams c) through f). e) With principal component analysis, 737 
the information of four shape parameters can be visualized in condensed form. The factor 738 
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loadings are illustrated by green vectors. They illustrate how the original variables influence 739 
the principal components. f) After “varimax” rotation, the data can be easier interpreted as 740 
products of the original shape parameters. While rotated component 1 is almost entirely 741 
depending on Circ_DL and Elo_DL, rotated component 2 is dominantly influenced by 742 
Com_DL and Rec_DL.  743 
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 745 

Figure 4 746 

 747 

Fig. 4 Levene test (a) and two-tailed t-test (b) results plotted for data sets “a” and “c” in four 748 
shape parameters and a significance level  of 5%. The figure is a screenshot from 749 
DendroScan. a) For Levene tests, the null hypothesis H0 is that the variances of the tested 750 
data sets are equal. If the p-value is smaller than , then H0 can be rejected. Here, the 751 
variances for the tested morphometric data sets are homogeneous in elongation (Elo_DL) 752 
and compactness (Com_DL), but heterogeneous for rectangularity (Rec_DL) and circularity 753 
(Circ_DL). b) The two-tailed t-tests works with the null hypothesis H0 that the tested data are 754 
from the same population. Differences between the data sets are proven to be significant, if 755 
the p-value is smaller than  and H0 is rejected. Here, the data sets “a” and “c” are 756 
significantly different in Rec_DL.  757 
 758 
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 760 

Figure 5 761 

 762 

Fig. 5 DendroScan screenshot presenting results of e-tests. Here, the morphometric data 763 
sets “AA”, “AB” and “AC” (see Online Resource 1) are used as standards. The computed 764 
Dmax values lie within the equivalence margins (indicated in the right diagram by a black line). 765 
Therefore, the e-tests show that the data sets “d” (Fig. 2) and “a” (Fig. 1) are statistically 766 
equivalent in all four tested shape parameters. 767 

768 
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 769 

Figure 6  770 

 771 

Fig. 6 Dendrogram illustrating the results of an agglomerative cluster analysis on the data 772 
sets “a, b, c, d”, conducted with the statistical program SPSS®. Squared Euclidean distance 773 
with complete linkage is used as measure of distance. Note that in this case the statistical 774 
equivalence of data sets “a” and “d” (which can be verified by e-tests), is not easy to identify 775 
by hierarchical cluster analysis. 776 
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 778 

Figure 7 779 

 780 

 781 

Fig. 7 Demonstration of k-means procedure, applied to data sets “a” (squares), “d” (triangles) 782 
and “e” (circles). Colour indicates membership of a certain cluster. The crosses represent the 783 
clusters’ centroids. a) For k = 3, most data points from “e” were assigned to cluster 1 (red), 784 
while the bulk of “a” and “d” was classified as cluster 2 (blue). Only two data points were 785 
assigned to cluster 3 (green). b) For k=2 , the bulk of data grouped together is the objects 786 
from “e” as cluster 1 (blue), whereas cluster 2 is exclusively composed of “a” and “d” objects. 787 
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 788 

Figure 8 789 

 790 

Fig. 8 Results of DAPM for the morphometric data sets “a”, “b” , “c”, “d”, “e”, “h”, “r”, “s” (see 791 
also Fig. 1 and Fig. 2), when using the four shape parameters Circ_DL, Rec_DL, Com_DL 792 
and Elo_DL and a level of significance of 5%. For computation of Dmax, the data sets “AA”, 793 
“AB” and “AC” were used. The DAPM-based dendrogram shows data sets “a” and “d” to be 794 
equivalent and identifies 4 main clusters. Output was produced by the freeware DendroScan. 795 
The green bar on the left side indicates the “statistical reliability index” (SRI). With 85, this 796 
DAPM output can be seen as very reliable (Dürig et al. 2020a). The corresponding files with 797 
X-matrix and Dmax values can be found in Online Resource 1.  798 
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 800 

Figure 9 801 

 802 

Fig. 9 Two examples of classification diagrams used to identify the eruption style by means 803 
of particle shape analysis. a) Discrimination plot by Büttner et al. (2002). Both thresholds 804 
suggested by Büttner et al. (2002) and Dürig et al. (2018) are shown as dashed horizontal 805 
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lines, dividing the plot in an upper and a lower sector, respectively. Data points in the upper 806 
sector indicate that particles have been generated by brittle fragmentation, while particles 807 
produced by ductile fragmentation mechanisms are characterized by shape parameters that 808 
fall in the lower sector. b) The diagram suggested by Murtagh and White (2013) uses the 809 
dashed line as threshold to discriminate between phreatomagmatic (left side) and magmatic 810 
grain shapes (right side). In both diagrams, the standard deviations for both populations are 811 
indicated by error bars, with centres indicating their mean values. 812 
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