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Abstract
We are concerned with finite linear constraint systems in a parametric framework where
the right-hand side is an affine function of the perturbation parameter. Such structured per-
turbations provide a unified framework for different parametric models in the literature, as
block, directional and/or partial perturbations of both inequalities and equalities. We extend
some recent results about calmness of the feasible set mapping and provide an application
to the convergence of a certain path-following algorithmic scheme. We underline the fact
that our formula for the calmness modulus depends only on the nominal data, which makes
it computable in practice.

Keywords Calmness · Linear systems of equalities and inequalities · Primal-dual
path-following algorithm · Linear programming · Feasible set mapping
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1 Introduction and Overview

The present paper deals with parameterized linear inequality systems in R
n of the form

atx ≤ qt + ptb, t ∈ T := {1, . . . , m} , (1)
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where x ∈ R
n is the vector of decision variables regarded as a column vector (i.e. Rn ≡

R
n×1), the prime stands for transposition, at ∈ R

n, pt ∈ R
k and qt ∈ R are given (fixed)

for each index t ∈ T , and b ∈ R
k is the parameter to be perturbed around a nominal (or

reference) element b. Alternatively we could use the following matrix notation

Ax ≤ q + Pb, (2)

where A ∈ R
m×n and P ∈ R

m×k stand for the matrices whose t-th rows are, respec-
tively at and pt , and q = (qt )t∈T ∈ R

T ≡ R
m. The natural numbers n, m, and k remain

fixed throughout the paper. This framework of structured perturbations includes as partic-
ular cases some previously analyzed contexts as the usual right-hand side (RHS for short)
perturbation setting, where q = 0m (the zero vector of R

m) and P = Im (the identity
matrix of order m); see, e.g., [11, 12]. It also allows for block perturbations as in [9] (see
Example 1 below) or unperturbed inequalities as in [6] (see Example 3 including also equal-
ities); moreover, it includes more sophisticated cases as the one of Example 2, dealing with
multiobjective linear programs, traced out from [10].

The presence of q in the model allows the nominal right-hand side q + Pb to be any
vector of Rm, not necessarily in the range of P . Of course we could consider b = 0k , but we
prefer to keep an arbitrarily fixed b in accordance with the notation of the aforementioned
antecedents. The model (1) makes also sense when T is an arbitrary (possible infinite) index
set; in this case we are dealing with linear semi-infinite systems, extensively studied in [15].

The main goal of the paper concerns the calmness modulus (see Section 2 for definitions)
of the feasible set mapping F : Rk ⇒ R

n, given by

F (b) := x ∈ R
n : Ax ≤ q + Pb , for b ∈ R

k . (3)

The continuity properties of F in the context of RHS perturbations (with q = 0m and
P = Im) have been studied, for instance, in [15, Chapter 6], whereas the computation of the
calmness modulus of F in this particular setting has been carried out in [11, Section 4].

At this moment, let us exhibit some of the aforementioned particular cases of our model
(1)-(2). Example 3 will be the basis for our application to the path-following scheme in
Section 4. Accordingly, this example will be analyzed more in detail in relation to calmness
in Section 3.2.

Example 1 (Block perturbations) We consider a partition {T1, ..., Tk} of T and all con-
straints of the same block Tj , for j = 1, ..., k, are perturbed with the same bj . This fits
model (2) if the j -th column of P consists of 1 in those rows t ∈ Tj and 0 otherwise. The
extreme cases are P = Im, when Tj = {j} , commented above, and the case of ‘constant
perturbations’, corresponding to T1 = T . See further comments and references in [9, p.
311].

Example 2 (Epigraphical feasible sets) Paper [10] is concerned with the Lipschitzian
behavior of the so-called Pareto front mapping associated with the multiobjective linear
programming (MLP) problem given by

MLP (b) : minimize c1x, . . . , csx

subject to Ax ≤ b,

(adapted to our current notation) where c1, ..., cs ∈ R
n are fixed. Denoting by F (b) the fea-

sible set of system Ax ≤ b, [10] considers the so-called epigraphical feasible set mapping
EF : Rm⇒ R

n given by
EF (b) := F (b) + {c1, ..., cs}◦ ,
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where Ω◦ := y ∈ R
n : y x ≥ 0 for all x ∈ Ω stands for the (positive) polar cone to the

set Ω ⊂ R
n. Specifically, [10, Section 4] establishes a finite iterative procedure to express

EF (b) as the feasible set of a linear inequality system of the form (2) with q = 0m. This is
illustrated in [10, Example 3].

Example 3 (Including equations and unperturbed constraints) Let us consider the model

A1x ≤ b1, A2x = b2, A3x ≤ b0
3 , (4)

with Ai ∈ R
mi×n for i = 1, 2, 3 and b0

3 ∈ R
m3 being fixed, and parameters bi ∈ R

mi , with
i = 1, 2. This case fits model (2) with k = m1 + m2, m = m1 + 2m2 + m3, and

A =

⎛

⎜⎜
⎝

A1
A2

−A2
A3

⎞

⎟⎟
⎠ , P =

⎛

⎜⎜
⎝

Im1 0m1×m2

0m2×m1 Im2

0m2×m1 −Im2

0m3×m1 0m3×m2

⎞

⎟⎟
⎠ ,

b = b1
b2

,

q = 0m1+2m2

b0
3

,

where 0i×j stands for the zero matrix of size i × j .

The aim of this work is twofold. Firstly, Section 3 is focussed on computing the calmness
modulus of mapping F introduced in (3). This section is divided into two parts dealing,
respectively, with a generic approach via the analysis of local error bounds and outer limit
of subdifferentials (appealing to [24, Theorem 1]), and with a more specific one tackling
the calmness modulus of F from its definition. For some particular choices of matrix P we
succeed to provide point-based expressions (depending exclusively on the nominal data) for
the aimed modulus. This is the case of model (4), which plays a remarkable role in this work
because of its application to Section 4, and we point out that the results of this paper extend
the calmness analysis developed in [6, 11], as far as it includes not only inequalities, but
also equalities. It is worth mentioning that, in general, the stability study of linear systems in
presence of equalities cannot be directly derived from the study of linear inequality systems
by just splitting each equality into two inequalities. This fact has been frequently pointed
out in the literature in different frameworks; see e.g. the classical work of [26, p. 37] or
the more recent one [5]. As a simple example, consider a consistent linear equality in R

n

given by ‘a x = b’, with a = 0n, split as ‘a x ≤ b,−a x ≤ −b’, and observe that the
perturbed equality ‘a x = b − ε’ is consistent for all ε ∈ R, while the perturbed system
‘a x ≤ b − ε, −a x ≤ −b − ε’ is no longer consistent whenever ε > 0. In relation to this
concern, the present work shows that this splitting strategy does work when confined to the
analysis of the calmness property for model (4).

Secondly, Section 4 introduces a certain feasible set mapping N of a parametric con-
straint system of the form (4) whose image at the nominal parameter coincides with the set
of all primal-dual solutions to a linear programming (LP) problem in R

n. Specifically, this
section shows how the calmness modulus of N enables to quantify the speed of convergence
of a path-following scheme devoted to solve such a problem.

The translation of calmness and other Lipschitzian constants into measures of conver-
gence of algorithms has been tackled by different authors; see, e.g., [2, 14, 21–23, 35]. Our
application is inspired by [28] (see also [21, p. 31]). In relation to this point, the original
contribution of this work consists in the fact that the provided constants are computable as
far as they are expressed in terms of the given data.

In summary, the paper is structured as follows: Section 2 provides the necessary notation,
definitions and preliminary results. Section 3 computes or estimates the calmness modulus
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of F in context (1)-(2), paying attention to special cases of P for which a point based
formula of the modulus is obtained, which is the case of (4). The latter is applied in Section 4
to the aforementioned path-following scheme.

2 Preliminaries and First Results

In order to measure the size of point/parameter perturbations, the space of variables, Rn,

is equipped with an arbitrary norm, · , whose corresponding dual norm is given by
u ∗ = max x ≤1 u x . Perturbations of parameter b ∈ R

k are measured by means of the
supremum (Chebyshev) norm, b ∞ := maxj=1,...,k bj , whose dual norm is denoted by

b 1 := k
i=1 bj .

Given X ⊂ R
p, p ∈ N, we denote by convX, coneX, and spanX the convex hull, the

conical convex hull, and the linear subspace generated by X, respectively. It is assumed that
coneX and spanX always contain the zero-vector, 0p, in particular cone(∅) = span(∅) =
{0p}, whereas conv(∅) = ∅. If X is a subset of any topological space, intX, clX and bdX

stand, respectively, for the interior, the closure and the boundary of X. For a nonempty set
S,RS and R

S+ denote the sets of all functions from S to R and R+ := [0, +∞[, respectively.
A set-valued mapping M : Y ⇒ X between metric spaces (with d denoting both dis-

tances) is said to be calm at (y, x) ∈ gphM (the graph of M) if there exist κ ≥ 0 and
neighborhoods W of x and V of y such that

d (x,M (y)) ≤ κd (y, y) (5)

whenever x ∈ M (y) ∩ W and y ∈ V, where, as usual, d (x,X) := inf{d (x, z) : z ∈ X}
for X ⊂ R

n, and d (x,∅) := +∞. We shall refer to any constant κ ≥ 0 verifying (5), for
some associated neighborhoods, as a calmness constant.

It is well-known that the calmness of M is equivalent to the metric subregularity of the
inverse multifunction M−1 : X ⇒ Y, given by M−1 (x) := {y ∈ Y | x ∈ M (y)} (see, for
instance, [13, Section 3H]), which means the existence of κ ≥ 0 and a (possibly smaller)
neighborhood W of x such that

d (x,M (y)) ≤ κd y,M−1 (x) (6)

for all x ∈ W . The infimum of all possible constants κ satisfying (5) (for some associated
W and V ) equals the infimum of those satisfying (6) and is called the calmness modulus of
M at (y, x) , denoted as clmM (y, x) , defined as +∞ if M is not calm at (y, x). More in
detail, later on we will use the following expression, which comes straightforwardly from
the definitions (under the convention 0/0 := 0):

clmM (y, x) = lim sup
(y,x)→(y,x)

x∈M(y)

d (x,M (y))

d (y, y)
= lim sup

x→x

d (x,M (y))

d y,M−1 (x)
. (7)

The calmness property plays a central role in many issues of mathematical programming
(optimality conditions, error bounds, stability of solutions...); the reader is addressed to the
monographs [13, 19, 21, 29, 34] for a comprehensive study of this and other variational
properties. For more specific comments and references we refer to [6, p. 466].
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2.1 Calmness, Error Bounds and Outer Limit of Subdifferentials

Let us recall that an extended real-valued function f : Rn → R ∪ {+∞} is said to admit a
local error bound at x ∈ R

n if

τd (x, [f ≤ 0]) ≤ [f (x)]+ (8)

for a certain τ > 0 and for all x in a certain neighborhood W of x, where [f ≤ 0] :=
{x ∈ R

n : f (x) ≤ 0} and [α]+ := max{α, 0}, α ∈ R. The supremum of those τ > 0
satisfying (8) (for some related neighborhood W ) is called the error bound modulus of f at
x ∈ R

n, denoted by Erf (x) (defined as 0 if f does not have a local error bound at x). The
following result can be traced out from [24, Theorem 1].

Theorem 1 Let f : Rn → R ∪ {+∞} be a proper lower semicontinuous convex function
and x ∈ R

n be a point such that f (x) = 0. Then f admits a local error bound at x if and
only if

lim inf
x→x, f (x)>0

d∗ (0n, ∂f (x)) > 0.

Moreover, under this condition,

Erf (x) = lim inf
x→x, f (x)>0

d∗ (0n, ∂f (x)) ,

where d∗ stands for the distance in R
n associated with · ∗ and ∂ represents the usual

subdifferential of convex analysis.

Taking into account that, for any x ∈ R
n such that f (x) = 0,

lim inf
x→x, f (x)>0

d∗ (0n, ∂f (x)) = d∗ 0n, lim sup
x→x, f (x)>0

∂f (x) , (9)

where the lim sup is understood in the Painlevé-Kuratowski sense (see [29, p. 3] and [34,
Corollary 4.7(b)]), the outer limit of subdifferentials,

∂>f (x) := lim supx→x, f (x)>0 ∂f (x) ,

constitutes a key tool in the computation of error bound moduli.
Let us recall the relationship between local error bounds and calmness moduli for specific

multifunctions. Liking with the notation of [6, Section 3.2] let us consider the feasible set
mapping FI,U : RI ⇒ R

n given by

FI,U (b) := x ∈ R
n : atx ≤ bt , t ∈ I ; atx ≤ b0

t , t ∈ U , (10)

where I (after ‘inequalities’) and U (after ‘unperturbed’) are disjoint finite sets, and b =
(bt )t∈I ∈ R

I . Fix b ∈ R
I and consider the associated supremum function sb : R

n →
R ∪ {+∞} given by

sb (x) := max
t∈I

atx − bt + IC(x), (11)

where C = x ∈ R
n | atx ≤ b0

t , t ∈ U and IC is the indicator function:

IC(x) := 0, if x ∈ C,

+∞, if x ∈ R
n \ C.

Remark 1 Take x ∈ FI,U b and observe that FI,U b = sb ≤ 0 and d b,F−1
I,U (x) =

sb (x) + , x ∈ R
n. Hence the calmness of FI,U at b, x , turns out to be equivalent (recall
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(6)) to the existence of a local error bound for sb at x. Moreover,

clmFI,U (b, x) = Er sb(x)
−1 = d∗ 0n, ∂

>sb (x)
−1 .

Next we recall a point based formula for ∂>sb (x) , and so for clmFI,U (b, x) in the
nontrivial case sb(x) = 0 (sb (x) < 0 implies clmFI,U (b, x) = 0 and Er sb(x) = +∞).
Consider the subsets of active indices

Ib (x) := t ∈ I | atx = bt and U (x) := t ∈ U | atx = b0
t , (12)

and define the family I (x) formed by all pairs of subsets of indices of the form (I1, U1)

with I1 ⊂ Ib (x) and U1 ⊂ U(x) such that the following system has a solution in d ∈ R
n:

⎧
⎪⎪⎨

⎪⎪⎩

atd = 1, t ∈ I1,

atd < 1, t ∈ Ib (x) \ I1,

atd = 0, t ∈ U1,

atd < 0, t ∈ U(x) \ U1.

(13)

Family I (x) comes from extending [11, Section 4] and adapting (and, roughly speak-
ing, normalizing with 1) its counterpart in [6, Section 3.2] (taking [33, Theorem 23.4] into
account for computing the directional derivatives therein).

Theorem 2 [6, Theorem 3.4] Consider x ∈ FI,U b with sb (x) = 0. Then,

∂>sb (x) =
(I1,U1)∈I(x)

(conv {at , t ∈ I1} + cone {at , t ∈ U1}) . (14)

Consequently,

clmFI,U (b, x) = min
(I1,U1)∈I(x)

d∗ (0n, conv {at , t ∈ I1} + cone {at , t ∈ U1})
−1

.

Remark 2 Observe that in the statement of the previous theorem we could confine ourselves
to those (I1, U1) ∈ I (x) which are maximal with respect to the (coordinatewise) inclusion
order. We do not exclude the possibility I1 = ∅ or U1 = ∅, recalling conv(∅) = ∅ and
cone(∅) = {0n}, under the convention ∅ + X = ∅ for X ⊂ R

n and d∗ (0n,∅) = +∞.

The next remark appeals to the concept of end of a nonempty convex set C ⊂ R
n

introduced in [17] (see also [25]), defined as

end C := {u ∈ cl C : μ > 1 such that μu ∈ cl C} .

Remark 3 The case when U = ∅ was analyzed in [11, Section 4], where a family D (x) of
subsets I1 ⊂ Ib (x) was introduced through the existence of a solution d ∈ R

n of the system
formed by the two first blocks of (13). Hence, in this particular case, (14) reads as

∂>sb (x) =
I1∈D(x)

conv {at , t ∈ I1} = end conv at , t ∈ Ib (x) .

The first equality above was already given in [7, Theorem 3.1].

The following example is intended to illustrate Theorem 2.
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Example 4 Consider the systems in R and R
2 (with the Euclidean norm)

(i)
x ≤ b, t = 1 ∈ I

−x ≤ 0, t = 2 ∈ U
, (ii)

⎧
⎨

⎩

x1 + x2 ≤ b, t = 1 ∈ I

x1 ≤ 0, t = 2 ∈ U

x2 ≤ 0, t = 3 ∈ U

⎫
⎬

⎭
.

Then, in (i) for b, x = (0, 0) we have I (0) = {({1} ,∅) , (∅, {2})} and
clmFI,U (b, x) = 1.

In (ii) for b, x = (0, 02) we have I (02) = {(∅, U1) : U1 ⊂ {1, 2}} and
clmFI,U (b, x) = (+∞)−1 = 0.

Remark 4 Although from a theoretical point of view it is simpler that all constraints with
index t ∈ U in (10) be inequalities (by splitting unperturbed equalities atx = b0

t , if any, into
atx ≤ b0

t and −atx ≤ −b0
t ), we can observe that if t1 and t2 are the new indices associated

with these split inequalities, then from (13) it must be {t1, t2} ⊂ U1 for all (I1, U1) ∈ I (x).
Alternatively, we could leave unperturbed equalities as equalities by replacing the corre-
sponding cone {±at } with span {at } in Theorem 2. This remark will be useful in Example
6 at the end of Section 4.

3 Calmness Modulus of Constraint Systems under Structured
Perturbations

This section is devoted to computation of the calmness modulus of the feasible set mapping
F introduced in (3) at b, x ∈ gphF , clmF(b, x). This is tackled through two different
approaches gathered into two subsections. Firstly, we define an appropriate function whose
error bound modulus (its inverse, in fact) provides the aimed clmF(b, x). Hence, we apply
Theorem 1. By following this theoretical approach, Section 3.1 finishes with a particular
case of matrix P for which an implementable point based formula is obtained. Section 3.2
approaches the computation of clmF(b, x) through its definition and is focussed on the
relationship between this modulus and the one of the feasible mapping in the framework of
RHS perturbations introduced in (10), which was previously studied in [6] (see Theorem
2). Special attention is paid to the models of Examples 1 and 3, where the exact formula for
clmF(b, x) is derived by using Theorem 2.

3.1 A Generic Approach via Outer Limits of Subdifferentials

Along this subsection we assume P = 0m×k; otherwise F is constant and, trivially,
clmF(b, x) = 0. Define mb : Rn → R+ ∪ {+∞} by:

mb (x) := sup
λ∈

−Pb − q + Ax λ

P λ 1
, x ∈ R

n, (15)

where := λ = (λi)
m
i=1 ∈ R

m+ | m
i=1 λi = 1 is the standard (m − 1)-simplex in R

m;
the possibilities −∞ and +∞ are not excluded for some ratios appearing in (15) (they
correspond to α

0 with α < 0 and α > 0, respectively; recall 0
0 = 0). It is clear that

mb (x) > −∞ for all x ∈ R
n,

since P = 0m×k entails the existence of λ0 ∈ , such that P λ0 1 > 0 and then mb (x) ≥
P λ0

−1
1 Ax − Pb − q λ0 > −∞.
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The following lemma gathers some properties of mb. Recall that the domain of a
multifunction M : Y ⇒ X is defined as domM := {y ∈ Y : M (y) = ∅}.

Lemma 1 If x ∈ domF−1, then:

(i) mb (x) + = d b,F−1 (x) ;

(ii) mb (x) = maxλ∈
−Pb − q + Ax λ

P λ 1
, i.e., the supremum in (15) is attained.

Proof (i) Fix x ∈ domF−1. Since F−1 (x) = b ∈ R
k : −Pb ≤ q − Ax = ∅, applying

[12, Lemma 1], we have

d b,F−1 (x) = max
λ∈Rm+

−Pb − q + Ax λ +
P λ 1

. (16)

Then, we only have to check that ‘λ ∈ R
m+’ in (16) may be replaced with ‘λ ∈ ’. In

fact, if d b,F−1 (x) = 0, one has −Pb − q + Ax ≤ 0m and it is clear that the maximum
in (16) is attained at any λ ∈ . On the other hand, if d b,F−1 (x) > 0 and the maximum
in (16) is attained at λ ∈ R

m+, then λ = 0m and the same maximum is also attained at
m
i=1 λi

−1
λ ∈ .

(ii) If mb (x) > 0 the results follows as (i). If mb (x) ≤ 0, write:

mb (x) = lim
r

−Pb − q + Ax λr

P λr
1

,

for some sequence {λr } ⊂ which is assumed to converge to certain λ (by the compactness
of . Then, one has

lim
r

−Pb − q + Ax λr = −Pb − q + Ax λ ≤ 0,

and we distinguish two cases: if −Pb − q + Ax λ = 0, it is clear that mb (x) = 0 and

the supremum (15) is attained at λ. If −Pb − q + Ax λ < 0, then P λ = 0k (otherwise
mb (x) = −∞, which is impossible)̇ and

mb (x) = −Pb − q + Ax λ

P λ 1

.

The next proposition provides the function whose error bound modulus does allow us to
compute clmF(b, x).

Proposition 1 Let fb : Rn → R+ ∪ {+∞} be given by
fb := mb + IdomF−1 . (17)

We have:

(i) fb is a proper lower semicontinuous convex function;
(ii) fb (x) + = d b,F−1 (x) , for all x ∈ R

n,

(iii) clmF(b, x) = Er fb(x)
−1 = d∗ 0n, ∂

>fb (x)
−1

.
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Proof (i) It is clear that fb is a proper function since mb (x) > −∞ for all x ∈ R
n. We have

fb (x) = mb (x) = max
λ∈

−Pb − q + Ax λ

P λ 1
, provided that x ∈ domF−1.

Hence fb is finite valued and convex on the closed and convex set domF−1. In fact,
since gphF−1 = (x, b) ∈ R

m × R
k | Ax − Pb ≤ q is polyhedron, domF−1 also is [33,

Theorem 19.3]. Therefore, fb is a lower semicontinuous convex function.

(i) comes from the definition of fb taking the previous lemma into account.
(ii) By Theorem 1 and (9), it remains to check that

fb ≤ 0 = F b ,

which comes from the fact that, for any x ∈ R
n, fb (x) ≤ 0 if and only if

−Pb − q + Ax λ ≤ 0 for all λ ∈ which is equivalent to −Pb − q + Ax ≤ 0; i.e.,
x ∈ F b .

Remark 5 According to the previous proposition, to solve the problem of deriving an
explicit formula for ∂>fb (x) for an arbitrary matrix P = 0m×k constitutes a decisive step
in the computation of clmF(b, x). The rest of this subsection deals with a particular P for
which fb is polyhedral, and hence ∂>fb (x) is obtained as in Remark 3. A key step here
consists in replacing by a finite subset in the definition of mb. Outside this case, the
computation of ∂>fb (x) through a point based formula remains as an open problem.

Proposition 2 Assume that P λ = 0k for all λ ∈ ; in other words 0k /∈ conv {pt , t ∈ T }.
Then, there exists a finite subset ⊂ such that

fb (x) = max
λ∈

−Pb − q + Ax λ

P λ 1
, for all x ∈ R

n.

If fb (x) = 0, then

∂>fb (x) = end conv
A λ

P λ 1
: λ ∈ −Pb − q + Ax λ = 0 .

Proof First, observe that under the current assumption, domF−1 = R
n [15, Theorem 4.4].

Hence fb (x) = mb (x) , for all x ∈ R
n.

For any ξ = (ξi)
k
i=1 ∈ {−1, 1}k, let

ξ = λ ∈ | ξi (P ei) λ ≥ 0, i = 1, ..., k ,

where {e1, ..., ek} is the canonical basis of Rk . Then, one easily checks that

=
ξ∈{−1,1}k

ξ . (18)

In fact, observe that, for any λ ∈ if we take ξλ ∈ {−1, 1}k such that ξλ
i coincides with

the sign of the i-th coordinate of P λ if such a coordinate is nonzero, we have that λ ∈ ξλ .
Now, for each ξ ∈ {−1, 1}k such that ξ = ∅, define,

m
ξ

b
(x) := sup

λ∈ ξ

−Pb − q + Ax λ

P λ 1
, for each x ∈ R

n. (19)
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From (18), we have

mb (x) = max
ξ∈{−1,1}k ξ =∅

m
ξ

b
(x) , for all x ∈ R

n. (20)

Since

P λ 1 = (P ξ) λ, provided that λ ∈ ξ , (21)

for any x ∈ R
n and ξ ∈ {−1, 1}k with ξ = ∅, m

ξ

b
(x) coincides with the optimal value of

a linear fractional problem in the variable λ over the polyhedron ξ ; i.e.,

m
ξ

b
(x) = sup

λ∈ ξ

−Pb − q + Ax λ

(P ξ) λ
; (22)

in fact, one easily checks that the supremum in (22) is attained, as a consequence of the
compactness of each ξ and the assumption that the denominator in (22) is always non
zero. Hence, it is known that this optimal value is always attained at some extreme point of

ξ (see,e.g.,[3]). Denoting by extr ξ the set of such extreme points, we have

m
ξ

b
(x) = max

λ∈extr ξ

−Pb − q + Ax λ

(P ξ) λ
, ξ ∈ {−1, 1}k ξ = ∅, x ∈ R

n. (23)

Hence, just take

=
ξ∈{−1,1}k ξ =∅

extr ξ ,

and from (20), (21) and (23) we conclude

fb (x) = max
λ∈

−Pb − q + Ax λ

P λ 1
, x ∈ R

n.

Finally, the second part of the statement comes from Remark 3.

Remark 6 The procedure for finding the finite subset ⊂ used in the representation
of mb as a polyhedral function is implicit in the proof of the previous proposition. The
following example is intended to illustrate this procedure.

Example 5 Consider the system in R (endowed with the absolute value)

x ≤ b1 + b2, t = 1,

−x ≤ −b1 + b2, t = 2
,

In this case Pe1 = (1,−1) , P e2 = (1, 1) = λ ∈ R
2+ | λ1 + λ2 = 1 , and

extr (1,1) = extr {λ ∈ | λ1 − λ2 ≥ 0, λ1 + λ2 ≥ 0} = 1
2 , 1

2 , (1, 0) ,

extr (−1,1) = extr {λ ∈ | −λ1 + λ2 ≥ 0, λ1 + λ2 ≥ 0} = 1
2 , 1

2 , (0, 1) ,

extr (1,−1) = extr (−1,−1) = ∅.
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Hence = (1, 0) , 1
2 , 1

2 , (0, 1) . Take b = 02. Then

fb (x) = max

⎧
⎪⎨

⎪⎩

−x
x

1
0

1
1 1

,

−x
x

1/2
1/2

0
1 1

,

−x
x

0
1

−1
1 1

⎫
⎪⎬

⎪⎭

= max
−x

2
, 0,

x

2
= 1

2
|x| , x ∈ R.

Therefore, taking x = 0, ∂>fb (x) = − 1
2 , 1

2 and

clmF(b, x) = d 0, ∂>fb (x)
−1 = 2.

3.2 Structured vs Arbitrary RHS Perturbations

Given b, x ∈ gphF , we define the set of active indices and its subsets of unper-
turbable/perturbable active indices (for b) at x as, respectively,

Tb (x) := t ∈ T : atx = qt + ptb ,

T 0
b

(x) := t ∈ Tb (x) : pt = 0k ,

T 1
b

(x) := Tb (x) \T 0
b

(x) . (24)

In order to compare the following proposition with the result of Lemma 1, we consider
the submatrices of A, denoted by A, A0 and A1, formed by the rows of A which are indexed
by Tb (x) , T 0

b
(x) and T 1

b
(x) ; i.e.,

A := at t∈Tb(x)
, A0 = at t∈T 0

b
(x)

and A1 = at t∈T 1
b
(x)

.

In the same way, P := pt t∈Tb(x)
, P1 := pt t∈T 1

b
(x)

, and

:= λ ∈ R
|Tb(x)|
+ : |Tb(x)|

t=1 λt = 1 1 := λ ∈ R

T 1
b
(x)

+ : T 1
b
(x)

t=1 λt = 1 .

where |E| stands for the cardinality of the finite set E.

Proposition 3 Given b, x ∈ gphF , there exists a neighborhood W of x such that

d b,F−1 (x) = max
λ∈ 1

(A1 (x − x)) λ +
P1λ 1

, (25)

whenever x ∈ W ∩ domF−1, under the convention that the maximum over the empty set
equals zero.

Proof First, let us prove the existence of a neighborhood W of x such that

d b,F−1 (x) = d b, b ∈ R
k : −ptb ≤ qt − atx, for all t ∈ Tb (x) , (26)

for all x ∈ W ∩ domF−1. To do this, by continuity, take ε > 0 such that

− ptb < qt − atx, for all t /∈ Tb (x) , (27)
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whenever x − x < ε and b − b ∞ < ε. From a classical result by Hoffman [18], we
derive the (Berge) lower semicontinuity –indeed the Lipschitz continuity– of the mapping
G : RTb(x) ⇒ R

k given by

G (d) := b ∈ R
k : −ptb ≤ dt , t ∈ Tb (x) ,

relative to its domain, at d := qt − atx t∈Tb(x)
. Accordingly, since b ∈ G d , there exists

δ ∈ ]0, ε[ such that

x − x < δ ⇒ G qt − atx t∈Tb(x)
∩ b ∈ R

k : b − b ∞ < ε = ∅, (28)

provided that G qt − atx t∈Tb(x)
= ∅; in particular when x ∈ domF−1.

Define W := {x ∈ R
n : x − x < δ} , pick any x ∈ W ∩ domF−1 and let b ∈ R

k be
such that

b − b ∞ = d b,G qt − atx t∈Tb(x)
.

Then, (28) entails b − b ∞ < ε, and therefore, −ptb < qt − atx, for all t /∈ Tb (x)

because of (27). Hence, b ∈ F−1 (x) ⊂ G qt − atx t∈Tb(x)
, which implies that

d b,F−1 (x) = b − b ∞ .

In other words, (26) holds for all x ∈ W ∩ domF−1. Now, in a similar way to the proof
of Lemma 1 (i.e., appealing to [12, Lemma 1]), given x ∈ W ∩ domF−1, we can write

d b,F−1 (x) = max
λ∈

A (x − x) λ +
P λ

1

. (29)

If for any λ ∈ we denote λi := (λt )t∈T i

b
(x) , i = 0, 1, it is obvious that P λ = P1λ

1.

Moreover,

A (x − x) λ +
P λ

1

= (A1 (x − x)) λ1 + (A0 (x − x)) λ0
+

P1λ
1

1

≤ (A1 (x − x)) λ1
+

P1λ
1

1

= (A1 (x − x)) λ1
+

P1λ
1

1

,

where λ1 := t∈T 1
b
(x) λ1

t

−1
λ1 and we used the inequality (A0 (x − x)) λ0 ≤ 0 which

comes from x ∈ domF−1. Therefore, one immediately derives (25).

Now we are ready to provide lower and upper estimates of clmF(b, x). Our estimates
are in terms of the calmness modulus of the feasible set mapping FT 1,T 0 : RT 1 ⇒ R

n given
by –see (10)–

FT 1,T 0 (ξ) := x ∈ R
n : atx ≤ ξt , t ∈ T 1; atx ≤ qt , if t ∈ T 0 , (30)

where ξ = (ξt )t∈T 1 ∈ R
T 1

and, similarly to (24), we use the notation

T 1 := {t ∈ T : pt = 0k} , T 0 := T \T 1.
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Specifically, given b, x ∈ gphF , the following theorem estimates clmF(b, x) in terms
of clmFT 1,T 0(b1, x), where

b1 := qt + ptb t∈T 1 ∈ R
T 1

.

In this way, the theorem estimates the calmness modulus of the feasible set mapping in
the context of linear systems under structured perturbations in terms of the naturally arising
mapping in the setting of non-structured perturbations, for which the reader can find a vast
literature.

At this moment we point out the fact that clmFT 1,T 0(b1, x) was analyzed in previous
works; indeed, it may be directly computed from Theorem 2 with the roles of Ib (x) and
U (x) being respectively played by T 1

b
(x) and T 0

b
(x).

Theorem 3 Let b, x ∈ gphF . We have

(i) If T 1
b

(x) = ∅, then clmF(b, x) = 0;
(ii) If T 1

b
(x) = ∅, then

α clmFT 1,T 0(b
1, x) ≤ clmF(b, x) ≤ β clmFT 1,T 0(b

1, x), (31)

where α and β stand respectively for the minimum and the maximum of

v 1 : v ∈ conv pt : t ∈ T 1
b

(x) .

If, in addition, P1λ = 0k implies A1λ = 0n (λ ∈ R
T 1

b
(x)

), then α in (31) may be

replaced with min v 1 : v ∈ end conv pt : t ∈ T 1
b

(x) .

Proof (i) The reader can easily check by continuity arguments that Tb (x) = T 0
b

(x)

implies that F (b) ∩ W0 = F b ∩ W0 for a certain neighborhood W0 of x and all b

in a certain neighborhood V0 of b, and in this situation clearly clmF(b, x) = 0.
(ii) Assume the nontrivial case α > 0. From (7) we can write

clmF(b, x) = lim sup
x→x, x∈domF−1

d x,F b

d b,F−1 (x)
,

since the lim sup may be confined to those x ∈ R
n such that d b,F−1 (x) < +∞, i.e.

x ∈ domF−1.
First, observe that, from (30),

F b = FT 1,T 0(b
1). (32)

Next, let us estimate d b,F−1 (x) in terms of d b1,F−1
T 1,T 0 (x) , provided that x ∈

domF−1 is close enough to x. Note that domF−1 ⊂ domF−1
T 1,T 0 since b ∈ F−1 (x) entails

qt + ptb t∈T 1 ∈ F−1
T 1,T 0 (x).

Take W as in Proposition 3 and consider α and β as in (ii). Then, for each x ∈ W ∩
domF−1, from (25) we deduce

β−1 max
λ∈ 1

(A1 (x − x)) λ + ≤ d b,F−1 (x) ≤ α−1 max
λ∈ 1

(A1 (x − x)) λ + .
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Moreover, since atx = qt + ptb = b1
t for t ∈ T 1

b
(x) , one easily sees that

max
λ∈ 1

(A1 (x − x)) λ + = max
t∈T 1

b
(x)

at (x − x) + = max
t∈T 1

b
(x)

atx − b1
t +

= d b1,F−1
T 1,T 0 (x) ,

whenever x ∈ domF−1
T 1,T 0 is close enough to x (to guarantee atx < b1

t , for t ∈ T 1\T 1
b

(x)),

say x ∈ W1 for a certain neighborhood W1 ⊂ W of x. Consequently, for x ∈ W1∩domF−1,

β−1d b1,F−1
T 1,T 0 (x) ≤ d b,F−1 (x) ≤ α−1d b1,F−1

T 1,T 0 (x) . (33)

Thus, (32) and (33) yield

d x,FT 1,T 0(b1)

α−1d b1,F−1
T 1,T 0 (x)

≤ d x,F b

d b,F−1 (x)
≤ d x,FT 1,T 0(b1)

β−1d b1,F−1
T 1,T 0 (x)

,

whenever x ∈ W1 ∩ domF−1. Finally, letting x → x we obtain (31).
In order to improve the choice of α under the additional hypothesis, it is enough to see

that, for x ∈ W ∩ domF−1, the maximum in (25), assumed to be attained at a certain

λ ∈ 1, is also attained at some λ ∈ 1 such that P1λ ∈ end conv pt , t ∈ T 1
b

(x) .

Let μ ≥ 1 be such that μP1λ ∈ end conv pt , t ∈ T 1
b

(x) . By the compactness of

conv pt , t ∈ T 1
b

(x) , take λ ∈ 1 such that μP1λ = P1λ; i.e., P1 μλ − λ = 0k .

Hence, our assumption entails A1 μλ − λ = 0n, yielding

(A1 (x − x)) λ +
P1λ 1

= (A1 (x − x)) μλ +
P1 μλ 1

= (A1 (x − x)) λ +
P1λ 1

.

Remark 7 Obviously, both inequalities in (31) become equalities when α = β. Other-
wise, any of them may either be attained or be strict. On the one hand, in Example 5
clmF(b, x) = 2 while one easily checks that clmFT 1,T 0(b1, x) = 1 (in that case, x = 0,

b = b1 = 02). Moreover, {pt : t ∈ T 1
b

(x)} = {(1, 1) , (−1, 1) } and then α = 1 (for both
possible choices) and β = 2. So, in that example, the first inequality in (31) is strict while
the second holds as an equality.

On the other hand, if we consider the parametrized system in R {x ≤ b1, x ≤ 2b2}, one
easily sees that, taking x = 0, b = b1 = 02, we have clmFT 1,T 0(b1, x) = clmF(b, x) = 1.
Moreover α = 1 (again for both choices) and β = 2. So, here, the first inequality in (31)
holds as equality and the second is strict.

Corollary 1 In the cases of Examples 1 and 3, for any b, x ∈ gphF with T 1
b

(x) = ∅ we
have

clmF(b, x) = clmFT 1,T 0(b
1, x).

Proof First, it can be immediately checked that the additional hypothesis of Theorem
3(ii) is fulfilled for Examples 1 and 3. So, we only have to prove that in the referred
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cases one has α = β = 1, where α is chosen as the minimum of v 1 with v ∈
end conv pt : t ∈ T 1

b
(x) .

In the case of Example 1 all rows of P have exactly one 1 with the remaining entries
being 0. In other words, for all t ∈ T = {1, ...,m} we have that each pt is an extreme point
of the standard simplex of Rk (some of them possibly repeated). In this case it is clear that
v 1 = 1 for all v ∈ conv pt , t ∈ Tb (x) , and we are done.

In the case of Example 3 we immediately see by looking at matrix P that, for all
t ∈ T = {1, ...,m} , each pt is either an extreme point of the l1 ball of R

k (some
of them possibly repeated) or the origin, 0k . In this case it is clear that v 1 ≤ 1
for all v ∈ conv pt , t ∈ Tb (x) , but we can easily conclude that v 1 = 1 for all
v ∈ end conv pt , t ∈ Tb (x) .

Now we are ready to compute the calmness modulus of the feasible set mapping for
systems of equalities and inequalities given in Example 3. From the notational point of view,
according to the notation in (10), it is convenient to make explicit a partition {I, E,U} of
the index set T = {1, ...,m} and to define F : RI∪E ⇒ R

n by

F (b) := atx ≤ bt , t ∈ I ; atx = bt , t ∈ E; atx ≤ b0
t , t ∈ U , (34)

where I , E (after ‘equalities’), and U are disjoint finite sets, b := (bt )t∈I∪E ∈ R
I∪E is the

parameter to be perturbed around a nominal value b := bt t∈I∪E
, and b0

t t∈U
remains

fixed. Note that this framework also allows for unperturbed equalities by just splitting each
of them into two inequalities (see Remark 4).

For x ∈ F b , and recalling the notation (12), let D (x) stand for the family of all
D1,D

+
2 ,D−

2 ,D3 with D1 ⊂ Ib (x) ; D+
2 ,D−

2 ⊂ E with D+
2 ∩D−

2 = ∅; and D3 ⊂ U (x)

such that the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

atd = 1, t ∈ D1,

atd < 1, t ∈ Ib (x) \ D1,

atd = 1, t ∈ D+
2 ,

atd = −1, t ∈ D−
2 ,

atd < 1, t ∈ E \ D+
2 ∪ D−

2 ,

atd = 0, t ∈ D3,

atd < 0, t ∈ U (x) \D3,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

is consistent (in the variable d ∈ R
n).

The following result comes directly from Corollary 1 and extends the last part of
Theorem 2 (see also [11, Formula (16) and Theorem 4]).

Corollary 2 Let F be as in (34). For b, x ∈ gphF we have

clmF(b, x) = min
D1,D

+
2 ,D−

2 ,D3 ∈D(x)

δ D1, D
+
2 , D−

2 ,D3

−1

,

where δ D1, D
+
2 , D−

2 , D3 is defined as

d∗ 0n, conv at , t ∈ D1 ∪ D+
2 ; − at , t ∈ D−

2 + cone {at , t ∈ D3} .
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4 Application to the Convergence of the Primal-Dual Path-Following
Method

Let us consider to the primal-dual pair of LP problems:

(P ) min c x (D) max b y

s.t. Ax = b, s.t. A y + z = c, (35)

x ≥ 0n, z ≥ 0n,

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m are given data, and x ∈ R

n and (y, z) ∈ R
m × R

n

represent, respectively, the vectors of primal and dual variables. In the sequel S (P ) ⊂ R
n

and S (D) ⊂ R
m × R

n stand for the optimal sets of (P ) and (D) , respectively.
Associated with problem (P ), for each scalar μ > 0 we consider the well-known

logarithmic barrier problem,

Pμ min c x − μ

n

i=1

log xi

s.t. Ax = b,

x > 0n.

The set of optimal solutions of Pμ is known to coincide with the set of x ∈ R
n such

that there exists (y, z) ∈ R
m × R

n verifying the following nonlinear system coming from
the Karush-Kuhn-Tucker optimality conditions:

Fμ (x, y, z) = 02n+m,

x, z ≥ 0n,
(36)

where Fμ : Rn × R
m × R

n → R
n × R

m × R
n is given by

Fμ (x, y, z) = A y + z − c, Ax − b, (xizi − μ)i=1,...,n .

Remark 8 If we denote by the set of solutions of system (36) in the case when μ = 0, a
standard argument of LP yields

= S (P ) × D (P ) ;
i.e., is nothing else but the set of primal-dual solutions of (35).

For completeness purposes, and in order to integrate the current application in the litera-
ture, we recall that [27, Proposition 8.1] establishes that problem Pμ is either unbounded
for every μ > 0 or has a unique optimal solution, denoted by x (μ) , for every μ > 0. In
this way, if Pμ is solvable for some positive value μ, then x (·) : μ → x (μ) determines a
unique path, yielding an interior point method with x (μ) > 0n for all μ > 0. Assumptions
2.1(a, b, and c) in [28], which are equivalent to the simultaneous fulfilment of the Slater
constraint qualification and the fact that S (P ) is non-empty and bounded (see [6, Sec. 4]
for details), ensure the existence of such x (μ) for each μ > 0. Moreover, [27, Proposition
8.2] establishes the continuity of x (·) and the existence of x0 := limμ→0 x (μ) , which is
an optimal solution of our LP problem (P ). The reader is addressed to [4, Chapter 9] for
details and additional references on this subject. See also [20] for the first interior point
algorithm. If we denote by (x (μ) , y (μ) , z (μ)) the complete solution of the KKT system
(36), the path {(x (μ) , y (μ) , z (μ)) ; μ > 0} is usually referred to as the central path asso-
ciated with LP problem (P ) (see the complete description in [28, Section 2]). The reader is
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addressed to [6, Section 4] for an application of calmness constants in the context of linear
inequality systems to the computation of constants κ ≥ 0 satisfying

d ((x (μ) , y (μ) , z (μ)) )) ≤ κμ for μ > 0 sufficiently small.

Now we are going to apply the classical Newton method to approach possible solutions
of the KKT system (36). In this way, we are dealing with the so-called primal-dual path-
following method. One can find in the literature particular implementations of this generic
scheme, such as the pioneering works [28, 32]. See also [1] for a different implementa-
tion, coming from a specific reduced KKT system. The reader is addressed to [16, 30] for
comprehensive surveys on the field of interior point methods.

Here we consider a particular version of the primal-dual path-following method. Specifi-
cally, at each iteration r ∈ N we consider a nonnegative scalar μr in such a way that μr → 0
as r → ∞. Starting from any initial element w1 = x1, y1, z1 ∈ R

n+ ×R
m ×R

n+, we gen-
erate a sequence {wr := (xr , yr , zr )}r∈N ⊂ R

n ×R
m ×R

n through the following recursive
scheme:

Iteration r: Take wr+1 := (xr+1, yr+1, zr+1) as a solution value of the variable w =
(x, y, z) ∈ R

n ×R
m ×R

n for the linear system (coming from applying one iteration of the
Newton method to system (36) and adding a nonnegativity condition) with μ = μr :

DFμr (wr) w = DFμr (wr)wr − Fμr (wr) ,

x, z ≥ 0n,
(37)

where, one easily checks that

DFμr wr =
⎛

⎝
0n×n A In

A 0m×m 0m×n

Zr 0n×m Xr

⎞

⎠ ,

Fμr wr = A yr + zr − c,Axr − b,XrZre − μre

where Xr and Zr are the diagonal matrices whose diagonal elements are the coordinates
of xr = (xr

1, ..., xr
n) and zr = (zr

1, ..., zr
n) , respectively, and e := (1, ..., 1) . The previous

system of equalities can be written in the alternative form

Zrx + Xrz = XrZre + μre,

Ax = b, (38)

A y + z = c.

Adopting this notation, assume that {wr } converges to certain w = (x, y, z). Note that
(x, y, z) satisfies

Z X = 0n×n,

Ax = b,

A y + z = c,

x, z ≥ 0n,

where X and Z denote the diagonal n × n matrices whose diagonal elements are the
coordinates of x and z (recall μr → 0). So,

(x, y, z) ∈ .

From now on, for the sake of simplicity, · denotes the Euclidean norm in any R
l ,

l ∈ N. Now we define the feasible set mapping N : (Rn, · ∞) ⇒ (Rn × R
m × R

n, · )
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assigning to each parameter η ∈ R
n the set

N (η) :=

⎧
⎪⎪⎨

⎪⎪⎩
(x, y, z) ∈ R

n × R
m × R

n

Zx + Xz = η,

Ax = b,

A y + z = c,

x, z ≥ 0n,

⎫
⎪⎪⎬

⎪⎪⎭
. (39)

Remark 9 Under the current notation and assumptions, we have that

N (0n) = .

In fact, if (x, y, z) ∈ N (0n), then Zx + Xz = 0n, which implies that Zx = Xz = 0n.
So, x ∈ S (P ) as consequence of the fact that (x, y, z) ∈ and (y, z) ∈ S (D) because
(x, y, z) ∈ . Conversely, if x ∈ S (P ) and (y, z) ∈ S (D) , then both (x, y, z) and (x, y, z)

belong to entailing Zx + Xz = 0n.

In the sequel, for simplicity in the notation, let us assume that xi > 0 for i = 1, ..., s,
and xi = 0 for i = s + 1, ..., n. According to the complementarity condition (xizi = 0,

for all i), we have zi = 0, i = 1, ..., s. Let us write S := {1, ..., s}, N := {s + 1, ..., n},
and accordingly, for any x ∈ R

n, xS := (x1, ..., xs) and xN := (xs+1, ..., xn) . In the cases
when S = ∅ and N = ∅, we understand xN = x and xS = x, respectively. By using this
notation, all coordinates of xS are positive, while zS = 0s and xN = 0n−s .

Theorem 4 Let {(xr , yr , zr )}r∈N be a sequence generated by the previous primal-dual
path-following method associated with a sequence of nonnegative scalars {μr }r∈N converg-
ing to zero (where each μr may be defined in terms of xj , yj , zj r

j=1); i.e., such that

xr+1, yr+1, zr+1 is a solution of (37). Assume that {(xr , yr , zr )}r converges to a certain
(x, y, z). Then, setting

κ := clmN (0n, (x, y, z)),

for every ε > 0 there exists r0 ∈ N such that for all r ≥ r0 we have

d xr+1, yr+1, zr+1 ≤ (κ + ε) δr , (40)

where

δr := zr
N − zN xr+1

N + zr
N − zr+1

N xr
N

+ xr
S − xS zr+1

S + xr
S − xr+1

S zr
S + 2μr

√
n,

with all norms being the Euclidean ones in the respective spaces.

Proof For each r,

xr+1, yr+1, zr+1 ∈ N Zxr+1 + Xzr+1 .

Since κ + ε is a calmness constant for N at (0n, (x, y, z)) and Zxr+1 + Xzr+1 → 0n,

for r large enough (say r ≥ r0) we have

d xr+1, yr+1, zr+1 ≤ (κ + ε) Zxr+1 + Xzr+1

∞ for all r ≥ r0.

Clearly we also have (recalling that · denotes the Euclidean norm)

Zxr+1 + Xzr+1

∞ ≤ ZNxr+1
N + XSzr+1

S , for all r ∈ N.
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Since Xr
Szr

S = Zr
Sxr

S and Xr
Szr

S = Zr
Sxr+1

S + Xr
Szr+1

S − μreS , see (38),

XSzr+1
S = XSzr+1

S − Xr
Szr

S + Xr
Szr

S

= XSzr+1
S − Zr

Sxr+1
S − Xr

Szr+1
S + μreS + Xr

Szr
S

= XS − Xr
S zr+1

S − Zr
Sxr+1

S + μreS + Zr
Sxr

S

= XS − Xr
S zr+1

S + Zr
S xr

S − xr+1
S + μreS

≤ xS − xr
S zr+1

S + zr
S xr

S − xr+1
S + μr

√
n.

By switching x and z, and replacing subscript S with N we obtain

ZNxr+1
N ≤ zr

N − zN xr+1
N + zr

N − zr+1
N xr

N + μr

√
n.

The last result of the section quantifies the superlinear convergence of the method, under
uniqueness of primal-dual solution, in terms of the calmness modulus of N for an appro-
priate choice of {μr }r∈N. In order to integrate these results into the literature, the reader is
addressed, for instance, to [31] and [36]. Paper [31] establishes the superlinear convergence
of the iterates produced by a certain primal-dual interior-point method under some assump-
tions imposed to the sequence of differences { xr+1, zr+1 −(xr , zr )}, while [36] deals with
the speed of convergence of the sequence of the so-called duality gaps { (xr ) zr }. Specifi-
cally, the superlinear convergence of such a sequence is established under some assumptions
which include the strict complementarity of solution (x, y, z) ; i.e., min1≤i≤n {xi + zi} > 0;
adding the hypothesis that x is a non-degenerate vertex (i.e., the rank of A is m and x has m

positive coordinates), the authors derive the quadratic convergence of { (xr ) zr }. Recall that
it is well-known that strict complementarity together with non-degeneracy implies unique-
ness of primal-dual solutions in linear programming, which connects with the following
corollary. For completeness, let us also point out that the uniqueness of primal optimal
solution also appears in different studies of the stability (e.g., continuity or Lipschitzian
properties) of the linear optimization problem under perturbations of the data; see, e.g.,
[8, Theorem 16] and references therein.

Corollary 3 With the notation of the previous theorem, let

μr := n−1/2 max
1≤i≤n

xr
i z

r
i

2

for all r ∈ N.

If μr = 0 for some r, then the algorithm attains at step r . Otherwise, assume
= {(x, y, z)} , fix any ε > 0 with 2 (κ + ε) ε < 1, and let r0 ∈ N be such that

max xr
N , zr

S < ε, xr
S ≤ xS + ε, zr

N ≤ zN + ε and (40) hold for all r ≥ r0.
Then, for all r ≥ r0 we have

xr+1, yr+1, zr+1 − (x, y, z) ≤ ε xr , yr , zr − (x, y, z) , (41)

where

ε := 4 + 2 max ( xS + ε)2 , ( zN + ε)2 (κ + ε) ε

1 − 2 (κ + ε) ε
.
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Proof If μr = 0, for some r, then (xr , yr , zr ) is a solution of (36), and then (xr , yr , zr ) ∈
; see Remark 8. Otherwise, under our current assumptions, recalling that zS = 0s , xN =

0n−s , and that all norms below are the Euclidean (although the number of coordinates is not
always the same), we have from (40) and our choice of μr that

xr+1, yr+1, zr+1 − (x, y, z)

≤ (κ + ε) ε 2 zr
N − zN + zN − zr+1

N + (κ + ε) ε 2 xr
S − xS + xS − xr+1

S

+2 (κ + ε) max zr
S − zS

2 max
1≤i≤s

xr
i

2

, xr
N − xN

2 max
s+1≤i≤n

zr
i

2

≤ (κ + ε) ε 2 zr − z + 2 xr − x + z − zr+1 + x − xr+1

+2 (κ + ε) max ε zr
S − zS xr

S
2
, ε xr

N − xN zr
N

2

≤ 4 (κ + ε) ε xr , yr , zr − (x, y, z) + 2 (κ + ε) ε xr+1, yr+1, zr+1 − (x, y, z)

+2 (κ + ε) ε max ( xS + ε)2 , ( zN + ε)2 xr , yr , zr − (x, y, z) ,

for all r ≥ r0. Then (41) follows immediately.

We finish this section with an illustrative example focussed on the computation of κ .
Observe that the constraint system in (39) fits the model (34) with I = ∅; although, for
simplicity, in this example we do not split into two inequalities each of the unperturbed
equalities in the second and third row blocks of (39), namely, Ax = b and A y + z = c; see
Remark 4.

Example 6 Let us consider the primal-dual problem (35) with

A = 2 1 , b = 4, c = 2

2
.

The reader can easily check that there is a unique primal-dual solution (x, y, z) , with
x = 2

0 , y = 1, z = 0
1 . The constraint system defining N (02) in (39) is

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 2 0
0 1 0 0 0
2 1 0 0 0
0 0 2 1 0
0 0 1 0 1

−1 0 0 0 0
0 −1 0 0 0
0 0 0 −1 0
0 0 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜⎜⎜⎜
⎝

x1
x2
y

z1
z2

⎞

⎟⎟⎟⎟
⎠

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

= 0, t = 1 ∈ E,

= 0, t = 2 ∈ E,

= 4, t = 3 ∈ U,

= 2, t = 4 ∈ U,

= 2, t = 5 ∈ U,

≤ 0, t = 6 ∈ U,

≤ 0, t = 7 ∈ U,

≤ 0, t = 8 ∈ U,

≤ 0, t = 9 ∈ U .

(42)

Here we have left the unperturbed equalities associated with t ∈ {3, 4, 5} as equalities
according to Remark 4. Then I = ∅, E = {1, 2} , U (x, y, z) = {3, 4, 5, 7, 8}. The set
D (x, y, z) consists of nine elements, but only four of them are maximal with respect to the
(coordinatewise) inclusion order –see Remark 2–, namely the maximal D1,D

+
2 ,D−

2 ,D3
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are:

(∅,∅,∅, {3, 4, 5, 7, 8}) , (∅, {1} ,∅, {3, 4, 5, 7}) ,

(∅, {2} ,∅, {3, 4, 5, 8}) , (∅, {1, 2} ,∅, {3, 4, 5}) .

Moreover, min D1,D
+
2 ,D−

2 ,D3 ∈D(x) δ D1, D
+
2 , D−

2 , D3 in Corollary 2 is attained at
(∅, {1, 2} ,∅, {3, 4, 5}) and equals, looking at the rows of the coefficient matrix in (42) and
recalling that R5 is considered to be endowed with the Euclidean norm,

d∗ (0n, conv {a1, a2} + span {a3, a4, a5}) = 2
√

2√
13

,

so that κ = √
13/ 2

√
2 .
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