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Abstract
Direct optimization methods for the calculation of ground and excited electronic states
are presented for both total density and orbital-density-dependent functionals. The
methods have been developed for various types of basis sets including localized atomic
orbitals, plane waves and real space grid. The algorithms have been implemented in
combination with the projector-augmented-wave method to represent inner electrons
of the atoms. The direct optimization method is shown to be more robust and faster
than the conventional self-consistent field approach in calculations of both ground
and excited states. An assessment of the Perdew-Zunger self-interaction correction
(PZ-SIC) to the energy functional has also been made and its performance compared
to the commonly used generalized gradient approximation (GGA). PZ-SIC is found
to systematically improve the description of the atomization and ionization energy as
well as the band gaps of insulators, but needs to be scaled by a half. PZ-SIC can be
especially important for the accurate description of systems containing transition metals
as is illustrated by the excellent results obtained for the Mn dimer, a system where
results of GGA calculations are qualitatively incorrect. However, PZ-SIC does not
substantially improve the excitation energy of small organic molecules as the correction
there tends to cancel out when the energy of ground and excited states is compared. The
efficient and practical implementation of PZ-SIC presented here paves the way for the
development of more accurate orbital-density-dependent functionals.





Útdráttur
Aðferðir til að reikna út grunn og örvuð rafeindaástönd með beinni bestun hafa verið
þróaðar, bæði fyrir felli háð heildarrafeindaþéttni sem og almennari felli háð þéttni
svigrúmanna. Aðferðirnar hafa verið þróaðar fyrir ýmsar gerðir grunna svo sem stað-
bundin atómsvigrúm, planbylgjur og grind í raunrúminu. Þær hafa verið innleiddar
með ’projector-augmented-wave’ aðferðinni til að lýsa áhrifum innri rafeinda atómanna.
Beina bestunin reynist vera áreiðanlegri og hraðvirkari en þær aðferðir sem áður hafa
verið notaðar bæði hvað varðar reikninga á grunnástöndum sem og örvuðum ástöndum.
Áhrif sjálfsvíxverkunarleiðréttingar Perdew og Zunger (PZ-SIC) á útkomu reikninganna
hefur einnig verið könnuð og niðurstöðurnar bornar saman við almennu stigulnálgun-
ina (GGA). PZ-SIC leiðréttingin reynist bæta kerfisbundið útreiknaða sundrunarorku
sameinda sem og jónunarorku og einnig orkugeil einangrara, en þarf að skalast niður
í helming. Reikningar á eiginleikum kerfa með hliðarmálmatóm geta batnað sérlega
mikið með PZ-SIC leiðréttingunni og þar er Mn tvennan sérlega afgerandi tilfelli þar
sem reikningar með PZ-SIC gefa mjög góða niðurstöðu á sama tíma og GGA gefur
verulega rangar niðurstöður. Hins vegar hefur PZ-SIC ekki mikil áhrif á útreiknaða
örvunarorku lítilla lífrænna sameinda þar eð leiðréttingin á grunn og örvaða ástandinu
styttist þar að miklu leiti út. Sú skilvirka innsetning á PZ-SIC sem er framsett hér opnar
leiðina fyrir þróun á nákvæmari fellum háðum svigrúmaþéttni.
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1 Introduction
Quantum chemical calculations have become commonplace in science and industry
thanks to the development of electronic structure algorithms, density functionals, and
software established throughout both the previous and current centuries. Moreover, the
increase in computational performance due to semiconductor miniaturization, exempli-
fied by Moore’s law, has made it possible to perform electronic structure calculations
even on a regular laptop. However, with the foreseeable end of Moore’s law (Waldrop,
2016; Leiserson et al., 2020), algorithm and software engineering will play an even
more crucial role in achieving further growth in computational performance (Leiserson
et al., 2020), not only in quantum chemical simulations, but also in other areas of
computational physics and chemistry. Therefore, the development of new and efficient
approaches in electronic structure calculations are of the upmost importance, particu-
larly due to the increasing usage of computation for the interpretation of sophisticated
experimental data and the subsequent formulation of theory.

Modern advanced computational methods based on wave function formalism and
many-body theory allow for an accurate description of quantum systems. However, the
single-determinant mean-field approach to the electronic structure problem remains
the tool of choice for many calculations, especially those of large systems. This is due
to the fact that such an approach has lower computational complexity as compared to
other electronic structure methods and, at the same time, can either provide an accurate
approximation to the true many-body problem or be used as an initial guess for advanced
quantum chemical calculations.

The two main mean-field ab initio methods are Hartree-Fock theory (HFT) and
density functional theory (DFT) (Hohenberg and Kohn, 1964; Kohn and Sham, 1965).
While DFT has enjoyed considerable success in predicting the total energy and geometry
of many quantum systems, its practical implementations based on electron density and
its gradient do not deliver a sufficiently accurate description of ionization energies, band
gaps, localized electronic states and some magnetic systems (Peng and Perdew, 2017).
Meanwhile, HFT tends to produce errors of opposite sign as schematically shown in
figure 1.1. This has led to the development of an evergrowing number of hybrid energy
functionals where calculations are based on a combination of the two approaches, the
mixture of which is often treated as an empirical parameter.

The solution to the problem outlined above may be achieved through the introduction
of explicit orbital density dependence (ODD) in the energy functional and by carrying
out variational minimization of the total energy with respect to the orbitals. An example
of such a model is the Perdew-Zunger self-interaction correction (Perdew and Zunger,
1981) (PZ-SIC), where the spurious self-interaction error inherent to density functional
approximations is exactly cancelled out in the one-electron limit. Although PZ-SIC
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1 Introduction

Figure 1.1. A schematic representation of the successes and failures of both density
functional theory (DFT) and Hartree-Fock theory (HFT). Semilocal functionals (SLF)
can provide a reliable estimate of atomization energy, while HFT typically underbinds
molecules. SLF favors delocalized states, while HFT often localizes electron wave
functions. Koopman’s theorem states that absolute value of the HOMO energy of HFT
is the first ionization energy of a molecule. However, this does not take into account the
relaxation of ionic orbitals and therefore, this tends to overestimate the ionization
energy. Conversely, SLF underestimates the ionization energy unless Koopman’s
theorem is enforced through the introduction of additional constraints. Finally, some
magnetic systems can be described with SLF, but due to the presence of both localized
(d, f electrons) and delocalized (s, p electrons) states both SLF and HFT struggle to
accurately describe such systems.

was proposed approximately 40 years ago, the accurate variational assessment of this
functional has only recently started to appear in literature (Bylaska et al., 2004, 2006;
Klüpfel et al., 2011; Jonsson, 2011; Klüpfel et al., 2012b; Gudmundsdóttir et al., 2015;
Lehtola et al., 2016). This is due to the fact that the PZ-SIC is an orbital-density-
dependent functional lacking the unitary invariant symmetry and therefore, conventional
SCF algorithms developed for DFT functionals cannot be applied to PZ-SIC without
significant modifications.

While methods for solving KS self-consistent field equations for electronic ground
state are in principle well-established in the literature (Payne et al., 1992; Furthmüller
and Kresse, 1996; Van Voorhis and Head-Gordon, 2002; VandeVondele and Hutter,
2003; Garza and Scuseria, 2012), the development of efficient and robust algorithms for
the calculation of excited states within a time-independent DFT framework is currently
of great interest (Ye et al., 2017; Hait and Head-Gordon, 2020; Levi et al., 2020b,a;
Carter-Fenk and Herbert, 2020; Ivanov et al., 2021c). However, this also poses a
significant challenge as a solution which describes an excited state does not typically
correspond to a local minimum on an electronic energy surface but rather to a saddle
point. As a result, finding such solutions requires a distinctly different approach. Due
to the fact that even conventional KS excited state calculations are hindered by the
limitations of commonly used self-consistent field procedures, a variational assessment
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of the PZ-SIC functional has not yet been carried out.
Thus, an evaluation of PZ-SIC on large molecular systems and solids in its ground

and excited states requires the development of new optimization methods and its effi-
cient implementation in modern software. The development of such algorithms and
the assessment of these myriad approaches is explored throughout the published pa-
pers (Ivanov et al., 2021a,b,c; Levi et al., 2020b) and complementary information is
provided in this thesis.

This thesis is organized as follows. The theoretical background for ground state DFT
as well as the formal justification of orbital-density-dependent non-unitary invariant
functionals are presented in Chapter 2. The direct minimization algorithms for ground
state PZ-SIC as well as for regular DFT calculations are given in Chapter 3. An
extension of the direct minimization method for excited state calculations within both
DFT and PZ-SIC is given in Chapter 4. Finally, conclusions are presented in Chapter 5.
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2 Density and Orbital Density Functional
Theories

The Hamiltonian of electrons interacting with nuclei within the Born-Oppenheimer
approximation is:

Ĥ = ∑
i=1..N

v̂(ri)+ T̂ +V̂ee (1)

where T̂ is the kinetic energy operator:

T̂ =
N

∑
i=1
−1

2
∇

2
i (2)

V̂ee is the Coulomb electron-electron interaction:

V̂ee =
1
2

N

∑
i, j=1;i 6= j

1
|ri− r j|

(3)

and v̂(ri) is the one-body potential which describes the interaction of electrons with
the nuclei and possibly also with an external field. When the external field is zero, this
potential can be written as follows:

v̂(ri) = ∑
a

Za

|ri−Ra|
(4)

where Ra and Za are a position and a charge of a nucleus.
The ground state electronic energy can be found as a minimal expectation value

of the Hamiltonian (1) (hereafter referred to as energy) among all antisymmetric wave
functions Ψ(r1, . . . ,rN) normalized to unity:

ÊGS = min
Ψ
〈Ψ| Ĥ |Ψ〉= 〈ΨGS| Ĥ |ΨGS〉 , (5)

At the minimum of the energy, the gradient must equal zero. Taking into account
the normality constraints 〈Ψ|Ψ〉= 1 through the Lagrange multiplier, one can obtain a
time-independent Schrödinger equation:

Ĥ |Ψ〉= E |Ψ〉 (6)

The lowest eigenvalue of the operator Ĥ corresponds to the ground state energy. Finding
the exact solution of the Schrödinger equation or carrying out the direct minimization
of the energy presents an extremely challenging problem for small systems and such
problems is practically impossible to solve for a large number of electrons even using
modern supercomputers. However, theories which allow one to solve such a challenging
problem in an efficient way are described in sections below.
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2 Density and Orbital Density Functional Theories

2.1 Hohenberg-Kohn Theorem and Constrained
Search Generalization

In 1964, Hohenberg and Kohn proved that in the case of nondegenerate ground state
there exists a unique map between the external potential v(r) and one-electron density:

ρ(r1) = N
∫
· · ·
∫

d3r2 . . . d3rN Ψ
∗(r1, ..,rN)Ψ(r1, ..,rN) (7)

Therefore, the ground state energy is in fact a functional of the one-electron density (Ho-
henberg and Kohn, 1964). Rather than carrying out the minimization with respect to
many-body wave functions, one can search for the energy minimum in the space of
one-electron densities:

EGS = min
ρ

Ev[ρ] = min
ρ

{∫
v(r)ρ(r)d3r+FHK [ρ]

}
(8)

where FHK [ρ] is the universal Hohenberg-Kohn functional which does not depend on
the external potential:

FHK [ρ] = 〈ΨHK
ρ | T̂ +V̂ee |ΨHK

ρ 〉 . (9)

Generally speaking, there is an infinite number of wave functions which correspond
to the same density ρ . However, there can only be one ground state wave function
ΨHK

ρ of a Hamiltonian H ′ which corresponds to the density ρ . In order to define this
wave function, one needs to find the potential v′ of the Hamiltonian H ′ for which such a
solution exists. Therefore, in Hohenberg-Kohn theory, it is assumed that the density ρ

is v-representable.
Levy (1979) expanded Hohenberg-Kohn theory and conducted a constrained-search

generalization of the universal density functional for a large class of densities (N-
representable densities) as well as for degenerate ground states. In this approach, the
minimization (5) is carried out in two steps: firstly, searching for the optimal wave
function for a given density and secondly, performing the minimization of the obtained
functional with respect to the density:

EGS = min
ρ

min
Ψ→ρ
〈Ψ| ∑

i=1..N
v̂(ri)+ T̂ +V̂ee |Ψ〉 (10)

EGS = min
ρ

{∫
v(r)ρ(r)d3r+F [ρ]

}
(11)

where F [ρ] is the universal functional:

F [ρ] = min
Ψ→ρ
〈Ψ| T̂ +V̂ee |Ψ〉= 〈Ψρ | T̂ +V̂ee |Ψρ〉 . (12)

F [ρ] = FHK [ρ] when the density is v-representable. It can be shown that for the
ground state density, the wave function ΨρGS from Eq. (12) is the ground state wave
function ΨGS (Levy, 1979). The number of electrons is a simple functional of the
density, N =

∫
ρ(r)d3r, and therefore, the operators T̂ , V̂ee are also functionals of the

density. Since T̂ , V̂ee and ΨGS are defined, the external potential can be found from

6



2.2 Kohn-Sham Density Functional Theory

the Schrödinger equation, and given that this potential decays to zero at infinity, the
ground state energy can be determined as well. Thus, the ground state density defines
all properties of the many-body electron system.

The constrained-search generalization provides not only the formal justification of
the universal density functional on N-representable densities, but it also presents an exact
and explicit equation for this functional through Eq. (12). This explicit equation can
be used for deriving constraints which the exact functional must satisfy and therefore,
Eq. (12) is of great value when developing approximate density functionals.

2.2 Kohn-Sham Density Functional Theory

In Kohn-Sham density functional theory (Kohn and Sham, 1965), the energy is separated
into the following terms:

E[ρ] = Ts[ρ]+
∫

d3rρ(r)v(r)+U [ρ]+Exc[ρ] (13)

where Ts is the kinetic energy of independent electrons which have the same density ρ

as the interacting electrons. U is the Hartree energy:

U [ρ] =
1
2

∫∫
d3rd3r′

ρ(r)ρ(r′)
|r− r′| (14)

and the exchange-correlation energy, Exc, is defined as follows:

Exc = F−U−Ts (15)

The Euler-Lagrange equation for such partitioning of the functional (13) is:

δTs[ρ]

δρ
+ vH + vxc + v = 0, (16)

Since the Hohenberg-Kohn theorem is also valid for non-interacting electrons moving
in an external potential vs, the energy of the non-interacting electrons is a functional of
density and the Euler-Lagrange equation for such a system can be written as follows:

δTs[ρ]

δρ
+ vs = 0, (17)

In order to ensure that the ground state density of the non-interacting electrons is the
same as that of the true electron system, one can choose vs = vH + vxc + v so that the
solutions of Eq. (16) and Eq. (17) coincide. In order to obtain single-particle equations,
which are easier to solve than the true many-body problem, it is assumed that the ground
state density can be further obtained from orbitals which satisfy the single-particle
Schrödinger equations with local multiplicative potential. Such equations also describe
the non-interacting electrons and therefore, the self-consistent equations are:

{
−1

2
∆+ vs

}
φi = εiφi, with vs = vH + vxc + v. (18)

7



2 Density and Orbital Density Functional Theories

The kinetic energy of the free electrons and the total ground state density can be
calculated using orbitals (18):

Ts =
∞

∑
i=1

fi

∫
d3r
|∇φi|2

2
(19)

and:

ρ(r) =
∞

∑
i=1

fi|φi|2, (20)

where fi are occupation numbers 0≤ fi ≤ 2 and ∑i fi = N. We should note here that
the solution of Eq. (18) does not correspond to the stationary point of the ground state
functional for any distribution of occupation numbers (Perdew and Levy, 1985). Some
stationary points of Eq. (18) can represent excited states when occupation numbers
are not distributed according to aufbau principle as will be discussed in Chapter 4. In
this case, an excited state density may not be a stationary density of the ground state
functional (Perdew and Levy, 1985).

2.3 Generalized Kohn-Sham Density
Functional Theory

The central part of Kohn-Sham theory is the mapping of the true many-body electron
system described by the wave function Ψ into an auxiliary system of non-interacting
electrons moving in a local potential and described by a single Slater determinant
Φ = |φ1,φ2, . . . ,φN | which gives the same density as Ψ. However, one can also map the
true electron system into an auxiliary system where the electron interaction is partially
and explicitly taken into account but the system is still described by a single Slater
determinant Φ. Such a generalization of the Kohn-Sham scheme is called generalized
Kohn-Sham (GKS) density functional theory as was proposed by Seidl et al. (1996).

Let us define the functional of the auxiliary electron system moving in local potential
vs(r):

Es = Fs[ρ]+
∫

drvs(r)ρ(r) (21)

and:
Fs[ρ] = min

Φ→ρ
S[Φ] (22)

where the functional S[Φ] depends on a single Slater determinant and may include part
of the electron interaction. For example:

S[Φ] = 〈Φ|T̂ +V̂ee|Φ〉= Ts[Φ]+U [Φ]+Ex[Φ] (23)

Now let us define R[ρ] as the functional which describes the ’missing’ interaction in
Fs[ρ] that is:

R[ρ] = F [ρ]−Fs[ρ] (24)
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2.4 Orbital-Density-Dependent Functional Theory

Given the definition of the ground state energy (11), one can obtain:

EGS =min
ρ

{∫
v(r)ρ(r)dr+F [ρ]

}
=

min
ρ

{∫
v(r)ρ(r)dr+Fs[ρ]+R[ρ]

}
=

min
ρ

{∫
v(r)ρ(r)dr+ min

Φ→ρ
S[Φ]+R[ρ]

}
=

min
ρ

min
Φ→ρ

{∫
v(r)ρ(r)dr+S[Φ]+R[ρ]

}
=

min
Φ

{∫
v(r)ρ[Φ](r)dr+S[Φ]+R[ρ[Φ]]

}

(25)

Thus, the ground state energy can be obtained through minimization with respect to the
single Slater determinant Φ:

EGS = min
Φ

{∫
v(r)ρ[Φ](r)dr+S[Φ]+R[ρ[Φ]]

}
(26)

Setting the first variational derivative to zero and taking the orthonormality constraint
of orbitals through Lagrange multipliers into account, one can obtain self-consistent
equations in canonical representation given that the functional is unitary invariant:

{
Ô[{φi}]+ vR(r)+ v(r)

}
φi(r) = εiφ(r) (27)

where Ô[{φi}] is a non-local operator which depends on orbitals {φi} and is defined as:

δS
δφ ∗i (r)

= Ô[{φi}]φi(r) (28)

vR(r) = δR/δρ – local operator. Thus, the external potential from Eq. (21) equals:

vs = vR(r)+ v(r) (29)

The generalized Kohn-Sham scheme provides the theoretical background for hy-
brid functionals where part of exchange energy is treated through exact exchange in
functional S and the rest of the exchange energy is approximated with the semi-local
functional of total density ρ in R.

2.4 Orbital-Density-Dependent Functional Theory

One of the reasons for the failures of approximate density functionals is often attributed
to the self-interaction error. Perdew and Zunger proposed orbital-by-orbital corrections
to the Hartree and the exchange correlation energies which make any approximate
functional self-interaction free in the one electron limit (Perdew and Zunger, 1981). As
a result of this procedure, the functional becomes orbital-density-dependent lacking

9



2 Density and Orbital Density Functional Theories

unitary invariance and such a formulation does not fall into either Kohn-Sham or
generalized Kohn-Sham theories. Here we propose a scheme similar to generalized
Kohn-Sham theory in order to provide a more rigorous theoretical basis for such an
approach.

In Hartree theory, the electrons interact with each other only through classical
electrostatic potential and in such a theory they do not interact with themselves. The
Hartree functional can be written as:

EH =
∫

d3rv(r)ρ(r)− 1
2 ∑

i

∫
d3rξ

∗
i (r)∆ξi(r)+

1
2 ∑

i6= j

∫∫
d3rd3r′

ρi(r)ρ j(r′)
|r− r′| (30)

or:
EH = 〈Ξ| ∑

i=1..N
v̂(ri)+ T̂ +V̂ee|Ξ〉 (31)

where |Ξ〉 is a Hartree wave function:

Ξ(r1,r2, . . . ,rN) = ξ1(r1)ξ2(r2) . . .ξN(rN) (32)

and ρi(r) = |ξi(r)|2. Note that the electron interaction in Eqs. (30) can be written as:

∑
i 6= j

∫∫
d3rd3r′

ρi(r)ρ j(r′)
|r− r′| =

∫∫
d3rd3r′

ρ(r)ρ(r′)
|r− r′| − ∑

i=1..N

∫∫
d3rd3r′

ρi(r)ρi(r′)
|r− r′|

(33)
and therefore, in Eqs. (30) and (31) the electrostatic interaction U is self-interaction
corrected by subtraction of orbital self-interaction.

We can define a functional L[Ξ] which depends not on a single Slater determinant of
orbitals but rather on Hartree wave function and one can further map the true many-body
problem into an auxiliary partially interacting electron system described by the Hartree
wave function with the same density as the true ground state density. Here, we assume
similar to the KS or GKS schemes that such mapping exists. Let us define the functional:

FH [ρ] = min
Ξ→ρ

L[Ξ] (34)

and:
J[ρ] = F [ρ]−FH [ρ] (35)

Similar to GKS we can express the ground state energy as:

EGS = min
Ξ

{∫
v(r)ρ[Ξ](r)d3r+L[Ξ]+ J[ρ[Ξ]]

}
(36)

Now if L = EH from Eq. (31), we obtain:

E[{ρi}] =
∫

v(r)ρ(r)d3r− 1
2 ∑

i

∫
d3rξ

∗
i (r)∆ξi(r)+

1
2

∫∫
d3rd3r′

ρ(r)ρ(r′)
|r− r′| −

1
2 ∑

i=1..N

∫∫
d3rd3r′

ρi(r)ρi(r′)
|r− r′| + J[ρ]

(37)
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2.4 Orbital-Density-Dependent Functional Theory

Note that the Hartree term in energy (37) is already self-interaction free. The func-
tional (37) is not unitary invariant due to its explicit dependence on orbital densities.
This is an artefact due to the Hartree wave function which is not always anti-symmetric.

In order to obtain a Perdew-Zunger self-interaction corrected functional, let us
choose:

L̂ = V̂ee− ∑
i=1..N

Êxc(ri) (38)

where Êxc(ri) is a one-body non-linear exchange-correlation operator. For example, if
the exchange-correlation energy is approximated using a semi-local functional:

Exc[ρ] =
∫

d3rρ(r)ε(ρ(r)) (39)

where ε is the energy density, then the action of Êxc can be defined as

〈r|Êxc|ξi〉= ε(ρi(r))ξi(r) (40)

so that
〈ξi|Êxc|ξi〉= Exc[ρi] (41)

For the exact Êxc and the Hartree wave function, the one-body contributions from
∑i=1..N Êxc(ri) should exactly be cancelled by self-Hartree energy and therefore, J[ρ] =
Exc[ρ]. Finally, substituting L, J and Ξ into Eq. (36), we arrive at the PZ-SIC functional:

EPZ−SIC[ρ1, . . . ,ρN ] =
∫

v(r)ρ(r)d3r− 1
2 ∑

i

∫
d3rξ

∗
i (r)∆ξi(r)+

1
2

∫∫
d3rd3r′

ρ(r)ρ(r′)
|r− r′| − ∑

i=1..N

(
1
2

∫∫
d3rd3r′

ρi(r)ρi(r′)
|r− r′| +Exc[ρi]

)
+Exc[ρ]

(42)
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3 Ground-State SIC-DFT Calculations: Di-
rect Minimization Approach

In order to find the orbitals that provide the ground state density of the exact func-
tional, one has to find the solution of the KS self-consistent equations (18). To solve
these equations, one can use iterative algorithms which are usually separated into two
steps. In the first step, for a fixed density and for a fixed KS potential, one finds the
canonical orbitals and the eigenvalues using an iterative algorithm such as the Davidson
algorithm (Davidson, 1975) or using the direct diagonalization of the Hamiltonian
matrix when the size of the basis set representing the orbitals is not too large as in
the case of linear combination of atomic orbitals (LCAO) basis sets. In the second
step, one uses extrapolation techniques such as Pulay mixing (Pulay, 1980; Garza and
Scuseria, 2012) - which is also known as direct inversion in iterative subspace (DIIS)
algorithm - or Broyden mixing (Furthmüller and Kresse, 1996) in order to increase
robustness and accelerate convergence towards the solution. These methods give the
optimal density (or Hamiltonian matrix) which is spanned in a subspace of densities (or
Hamiltonian matrices) that can be obtained from the orbitals obtained in the previous
steps. While such an approach is the one most commonly used today, it often suffers
from convergence issues, for example, for systems with degenerate HOMO-LUMO
orbitals or systems containing transition metal atoms. Furthermore, the user of software
developed for KS-DFT calculations is often presented with a large choice of density-
mixing parameters which cannot be used universally in all systems. These algorithms
cannot be applied to non-unitary invariant functionals as the canonical orbitals that
diagonalize the Hamiltonian matrix are not necessarily optimal orbitals, i.e. providing
the minimum of the energy. Then, a different approach is required.

An alternative method for solving self-consistent equations (18) is to find the
minimum of the KS or PZ-SIC energy functional taking into account the orthonormality
constraints of the orbitals using a direct minimization technique with efficient quasi-
Newton algorithms (Nocedal and Wright, 2006). This approach will be described below
for both the KS and PZ-SIC functionals.

3.1 General considerations for the minimization of
energy functionals

Let E be the functional of interest which depends on a set of orthonormal orbitals {|ψi〉}.
Optimal orbitals corresponding to the minimum of the energy functional E must satisfy
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3 Ground-State SIC-DFT Calculations: Direct Minimization Approach

the Euler-Lagrange equations that can be written as follows:

ĥi |ψi〉= ∑
j
|ψ j〉λ ji, (43)

where ĥi is a single-particle Hamiltonian defined from the equation:

ĥi |ψi〉=
∂E

∂ 〈ψi|
(44)

For example, for KS-DFT, the single-particle Hamiltonian is:

ĥi = fi

[
−1

2
∇

2 + v̂ext(ρ)+ v̂H(ρ)+ v̂xc(ρ)

]
= fiĥ (45)

and for PZ-SIC it is:

ĥi = fi

[
−1

2
∇

2 + v̂ext(ρ)+ v̂H(ρ)+ v̂xc(ρ)− v̂H(ρi)− v̂xc(ρi)

]
= fi(ĥ+ v̂i) (46)

When the optimal orbitals are found, the Lagrange matrix {λi j}may not be diagonal
in equation (43) which is unlike the canonical representation of Eq. (18). For density
functionals, the canonical and optimal representations are equivalent – that is, they both
correspond to the same density and energy. Conversely, the canonical orbitals may
not correspond to an extremum at all in the case of the PZ-SIC functional. In order to
demonstrate this, let us consider the infinitesimal rotation of orbitals in the vicinity of
the energy minimum:

|φi〉= ∑
j

(
e−A)

i j |ψ j〉 , (47)

where A is a skew-hermitian matrix, A† =−A. The derivative of energy with respect to
the matrix elements ai j = (A)i j at A = 0 is (see Appendix A for details)

∂E
∂ai j

∣∣∣∣
A=0

= 〈ψi|ĥ j|ψ j〉−〈ψi|ĥi|ψ j〉= λi j−λ
∗
ji = 0 (48)

From equation (48) follows that the Lagrange matrix must be Hermitian. By substituting
Eq. (45) into Eq. (48) one obtains:

( f j− fi)〈ψi|ĥ|ψ j〉= 0 (49)

Thus, for KS-DFT calculations, a matrix element of Hamiltonian must be zero if it
corresponds to overlap between orbitals with different occupation numbers f j 6= fi ,

〈ψi|ĥ|ψ j〉= 0, when f j 6= fi (50)

For a subspace of equally occupied orbitals, one can consider any linear combination
of orbitals spanned in this subspace and, as a result, they can be chosen as those
which diagonalize this part of the Hamiltonian. Therefore, the solution for Eq. (43) is
equivalent to the solution for Eq. (18) for KS-DFT.
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3.2 Minimization Algorithm for a Linear Combination
of Atomic Orbitals (LCAO) Basis Set

This is not the case, however, for PZ-SIC due to the orbital-density dependence in
the one-electron Hamiltonian. Indeed, by substituting Eq. (46) into Eq. (48), one can
obtain:

( f j− fi)〈ψi|ĥ|ψ j〉+ 〈ψi| f j v̂ j− fiv̂i|ψ j〉= 0 (51)

Thus, even orbitals with the same occupancies have a uniquely defined amplitudes (|ψi|)
and must satisfy the localization (Pederson) equation (Pederson et al., 1985):

〈ψi|v̂ j− v̂i|ψ j〉= 0 (52)

and, as a result, optimal orbitals cannot be chosen as canonical orbitals.
Further details of the implementation of direct minimization depends on the repre-

sentation of the wave-function and are briefly outlined below.

3.2 Minimization Algorithm for a Linear Combination
of Atomic Orbitals (LCAO) Basis Set

The wave functions are expanded in a series of M non-orthogonal atomic basis functions:

|ψi〉= ∑
µ=1..M

Oµi |χµ〉 . (53)

The orthonormal condition of wave functions leads to the generalized orthonormality
constraints imposed on the expansion coefficients:

O†SO = I (54)

where:
Sµν = 〈χµ |χν〉 (55)

In order to avoid a constrained energy minimization with respect to the coefficients O,
they can be parametrized in the following way:

O =CeA (56)

where C is a coefficient matrix of auxiliary orbitals which represent an initial guess
for the wave function and A is a skew-hermitian matrix, A =−A†. When the reference
orbitals are fixed, the energy can be considered as a function defined on a linear
space of skew-hermitian matrices. This is a major simplification of the problem as
the minimization of a function defined in a linear space is easier, and efficient quasi-
Newton algorithms with an inexact line search have already been developed for such
problems (Nocedal and Wright, 2006). In order to perform the minimization efficiently,
one needs to calculate the gradient of the energy with respect to A (see Appendix A):

∂E
∂a ji

=

(∫ 1

0
etALe−tA dt

)

i j
= L ji +o(A) (57)

where:
Li j =−( f j− fi)Hi j− ( f jVi j− fiV ∗ji), (58)
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3 Ground-State SIC-DFT Calculations: Direct Minimization Approach

Hi j = ∑
µν

O∗µiHµν Oν j, (59)

Vi j = ∑
µν

O∗µiV
j

µν Oν j, (60)

Hµν = 〈χµ |−
1
2

∇
2 + vs|χν〉 (61)

V j
µν = 〈χµ |vH(ρ j)+ vxc(ρ j)|χν〉 (62)

This gradient expression is used in combination with the limited-memory Broyden-
Fletcher-Goldfarb-Shanno algorithm with the following preconditioning (Ivanov et al.,
2021b):

P(k)
i j =

1

−2(1− γ)(εi− ε j)( fi− f j)+ γβ
(k)
i j

, (63)

where k is the iteration number, the parameter β
(k)
i j is a scaling factor recommended

when using an approximate initial Hessian in the L-BFGS algorithm (Nocedal and
Wright, 2006):

β
(k)
i j =

‖∇~aE(~a (k))−∇~aE(~a (k−1))‖2

(~a (k)−~a (k−1)) · (∇~aE(~a (k))−∇~aE(~a (k−1)))
(64)

and γ = 0.25. For γ = 0, this preconditioner can be obtained by taking the derivative of a
linear expansion of the energy gradient with respect to the skew-hermitian matrix, and by
neglecting the derivative of the KS potential with respect to density (Appendix B). The
details of the implementation and its application to KS-DFT are given in Ref. (Ivanov
et al., 2021b). It was shown that the proposed direct minimization method has the
ability to outperform the conventional SCF procedure based on the DIIS algorithm and,
at the same time, provides more robust convergence. Application of the developed
methodology to PZ-SIC calculations of Mn dimer are presented in Ref. (Ivanov et al.,
2021a) and shortly described in section 3.5.

3.3 Minimization Algorithm for Real Space and
Plane Wave Representations

The transformation of orbitals according to equation (56) requires calculating the M×M
exponential matrix, where M is the number of basis functions. For finite-difference
(FD) real space grid (RSG) or plane wave (PW) representations, the number of basis
functions can easily reach 106 and the algorithm presented for LCAO calculations in
the previous section is, therefore, not applicable here. A different approach is required
which is described below.

Let ΨΨΨ = (|ψ1〉 , .., |ψM〉)T , and M be the number of orbitals, and

M = {ΨΨΨ : 〈ψi|ψ j〉= δi j, i 6= j = 1 . . .M} (65)
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3.3 Minimization Algorithm for Real Space and
Plane Wave Representations

be a manifold spanned by a set of orthonormal wave functions ΨΨΨ. Let R̂ be an operator
which transforms any wave functions to a set of orthonormal wave functions. Then the
tangent space to M at ΨΨΨ is defined as:

VVV ΨΨΨ(GGG) = lim
ε→0

R̂[ΨΨΨ+ εGGG]−ΨΨΨ

ε
= R̂′ε [ΨΨΨ+ εGGG]

∣∣
ε=0 (66)

The operator R̂ can be chosen so that the orthonormalization procedure corresponds to
the symmetric Löwdin transformation. Let SXXX ,YYY be the overlap matrix between the two
vectors XXX ,YYY in the Hilbert space. Then:

SΨΨΨ+εGGG,ΨΨΨ+εGGG =
∫

dr(ΨΨΨ+ εGGG)(ΨΨΨ+ εGGG)† =
∫

dr
[
ΨΨΨΨΨΨ

† + ε

(
ΨΨΨGGG† +GGGΨΨΨ

†
)
+ ε

2GGGGGG†
]
=

I + ε
(
SΨΨΨ,GGG +SGGG,ΨΨΨ

)
+ ε

2SGGG,GGG = I + ε WΨΨΨ,GGG + ε
2SGGG,GGG

(67)

where WΨΨΨ,GGG = SΨΨΨ,GGG +SGGG,ΨΨΨ. Therefore, S−1/2 can be approximated as:

S−1/2
ΨΨΨ+εGGG,ΨΨΨ+εGGG = I− ε

2
WΨΨΨ,GGG +o(ε) (68)

If R̂[ΨΨΨ+ εGGG] = S−1/2
ΨΨΨ+εGGG,ΨΨΨ+εGGG(ΨΨΨ+ εGGG) and then the tangent space is defined as follows:

VVV ΨΨΨ(GGG) = GGG− 1
2

WΨΨΨ,GGGΨΨΨ (69)

Note that for wave functions which belong to the tangent space, the hermitian part of the
overlap matrix is zero, WΨΨΨ,VVV = 0, and therefore, the equation WΨΨΨ,VVV = 0 is a constraint
on the tangent vectors. When the displacement of Ψ belongs to the tangent space, the
S−1/2 can further be approximated with higher-order terms as:

S−1/2
ΦΦΦ+εVVV ,ΦΦΦ+εVVV = I− ε2

2
SVVV ,VVV +o(ε2) (70)

and therefore:

ΦΦΦ := R̂[ΨΨΨ+ εVVV ] = ΨΨΨ+ εVVV − ε2

2
SVVV ,VVV ΨΨΨ+o(ε2) (71)

Thus, when the gradient of energy, GGG, is calculated, it should be projected on the
tangent space to ΨΨΨ using the equation (69). Then, the wave functions, ΨΨΨ, are modified
according to (71) with ε < 0 in the opposite direction to the energy gradient. This
procedure constitutes the steepest descent algorithm (SDA). However, SDA exhibits
slow convergence especially near the energy minimum when the gradient is small
and, as a result, it requires many evaluations of the energy. A more efficient approach
can be emplyoed in which the energy is approximated with a quadratic function in
the tangent space at each minimization step. This approach is known as the Newton-
Raphson algorithm. In order to simplify the analysis and demonstrate how a quadratic
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3 Ground-State SIC-DFT Calculations: Direct Minimization Approach

approximation to the energy in curved space can be constructed, let us consider free
electrons as a model system:

Es =
∫

drΦΦΦ
† (T̂TT + v̂vvs(r)

)
ΦΦΦ, (72)

where:
(T̂TT + v̂vvs)i j =

(
T̂ + vs(r)

)
δi j (73)

Using Eq. (71) with ε = 1, one can obtain:

Es =
∫

drΦΦΦ
† (T̂TT + v̂vvs

)
ΦΦΦ≈

∫
drΨΨΨ

† (T̂TT + v̂vvs
)

ΨΨΨ+
∫

drVVV † (T̂TT + v̂vvs
)

ΨΨΨ+
∫

drΨΨΨ
† (T̂TT + v̂vvs

)
VVV+

+
∫

drVVV † (T̂TT + v̂vvs
)

VVV−
1
2

∫
drΨΨΨ

† (T̂TT + v̂vvs
)

SVVV ,VVV ΨΨΨ+ΨΨΨ
†S†

VVV ,VVV

(
T̂TT + v̂vvs

)
ΨΨΨ+o(ε2)

(74)

The last term can be rewritten as:

1
2

∫
drΨΨΨ

† (T̂TT + v̂vvs
)

SVVV ,VVV ΨΨΨ+ΨΨΨ
†S†

VVV ,VVV

(
T̂TT + v̂vvs

)
ΨΨΨ =−

∫
drVVV †BsVVV (75)

with Bs being:

Bs =−
1
2

W(T̂TT+v̂vvs)ΨΨΨ,ΨΨΨ (76)

Thus we obtain a quadratic approximation to the energy at ΨΨΨ
†:

Es[VVV ]≈ Es[ΨΨΨ]+
∫

drVVV † δEs[ΨΨΨ]

δΨΨΨ
† +

∫
dr

δEs[ΨΨΨ]

δΨΨΨ
VVV +

∫
drVVV †ĤHHVVV (77)

with:
ĤHHs = T̂TT + v̂vvs +Bs (78)

ĤHHs is the Hessian of energy and the matrix Bs takes into account the curvature of the
manifold. At first glance, the approximation of the energy in the tangent space did not
simplify the problem. However, the advantage is that the constraints imposed on the
tangent vectors are linear constraints:

WΨΨΨ,VVV = 0 (79)

and because of this, the Lagrange multipliers can be found exactly through:

Λ =−1
2

∫
dr

δEs

δVVV † ΨΨΨ
†− 1

2

∫
drΨΨΨ

δEs

δVVV
=−1

2
W

ΨΨΨ, δEs
δΨΨΨ

+ĤHHVVV (80)

Now, taking the derivative of

Ls = Es +Tr[ΛWΨΨΨ,VVV ] (81)
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with respect to VVV † and setting it to zero, one obtains:

δEs[ΨΨΨ]

δΨΨΨ
† + ĤHHsVVV +ΛΨΨΨ = 0 (82)

From Eq. (82), it follows that the search direction for new wave functions is:

VVV =−ĤHH
−1
s

(
δEs[ΨΨΨ]

δΨΨΨ
† +ΛΨΨΨ

)
(83)

For interacting electrons, the above consideration is also valid but ĤHHs should be replaced
with the projected Hessian of the interacting electrons and Es should be replaced with
the KS energy functional. A calculation of the Hessian matrix usually requires large
computational effort and an approximation to the Hessian matrix is instead constructed
iteratively at each step (quasi-Newton algorithms). There, the energy gradient and wave
functions from previous steps are used and ĤHHs is employed as an initial approximation to
the true Hessian. Alternatively, one can employ ĤHHs as a preconditioner to the conjugate
gradients and steepest descent algorithms. In practice, ĤHHs is usually approximated as
the kinetic energy operator (Briggs et al., 1995; Kresse and Furthmüller, 1996). Thus,
the iterative process in wave function minimization using quasi-Newton methods is:

VVV (k) =−ĤHH
−1(k)

(
δE[ΨΨΨ(k)]

δΨΨΨ
(k)† +Λ

(k)
ΨΨΨ

(k)

)
(84)

ΨΨΨ
(k+1) = ΨΨΨ

(k)+αVVV (k) (85)

Further practical simplification is made for Lagrange multipliers: they are calculated
using Eq. (80) at VVV = 0. In this case, the energy gradient is simply projected on to the
tangent space at ΨΨΨ using Eq. (69):

δE[ΨΨΨ(k)]

δΨΨΨ
(k)† +Λ

(k)
ΨΨΨ

(k) =VVV
ΨΨΨ

(k)

(
δE[ΨΨΨ(k)]

δΨΨΨ
(k)†

)
(86)

This simplification leads to the fact that the wave functions will not be orthonormal after
each step of the minimization algorithm and therefore, one needs to employ an explicit
orthonormalization procedure. One can also add higher order terms to the iteration
process using the following equation:

ΨΨΨ
(k+1) = ΨΨΨ

(k)+αVVV (k)− α2

2
S[VVV (k),VVV (k)]ΨΨΨ(k) (87)

which violates the orthonormality constraints less than Eq. (85) for sufficiently small
α(k). However, we found that even usage of the first order term in α with a following
application of the orthonormalization procedure provides a robust convergence.

The energy gradient for Kohn-Sham energy functionals and PZ-SIC are defined
from equations (44), (45) and (46).
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3.4 Preconditioning for the Perdew-Zunger
Self-Interaction Correction

The PZ-SIC functional includes terms that depend on the orbital densities and the func-
tional is, therefore, not invariant with respect to unitary transformations among equally
occupied orbitals. As a result, it depends on a larger number of degrees of freedom
as compared to Kohn-Sham functionals and this, in turn, leads to a larger number of
iterations needed to achieve convergence. In order to improve the convergence, an
additional inner loop among occupied orbitals is included in the minimization of the
PZ-SIC functional (Klüpfel et al., 2012a; Lehtola and Jónsson, 2014; Borghi et al.,
2015). This is achieved by an explicit unitary transformation that applies to occupied
orbitals only:

|φi〉= ∑
i j

Ui j |ψ j〉 (88)

In this case, the PZ-SIC functional can be considered to be a functional of both the
unitary matrix U and the orbitals |ψ j〉:

ESIC = ESIC[U,ΨΨΨ] (89)

Minimization with respect to the unitary matrix leads to a new unitary invariant func-
tional (Stengel and Spaldin, 2008; Lehtola and Jónsson, 2014; Borghi et al., 2015):

FSIC[ΨΨΨ] = min
U :U†U=I

ESIC[U,ΨΨΨ] (90)

Minimization among unitary matrices can be achieved by employing the exponential
transformation described in Sec. 3.2, U = exp(−A), which leads to the energy gradient
as shown in equation (48). Thus, the minimization of the PZ-SIC functional consists of
a double loop minimization: the inner loop representing a minimization with respect
to U , and and the outer loops representing the minimization with respect to the wave
function ΨΨΨ as described in section 3.3.

3.5 Performance of the Scaled Perdew-Zunger
Self-interaction Correction

The PZ-SIC is shown to improve the energy of atoms and molecules when a complex
domain of wave functions is used (Klüpfel et al., 2011, 2012b; Lehtola et al., 2016).
However, PZ-SIC tends to overcorrect the energetics of the base functional, and scaling
down the correction is necessary for a more accurate estimate of orbital energies in
both molecules and solids (Bylaska et al., 2004, 2006; Vydrov et al., 2006; Dabo et al.,
2010; Jonsson, 2011; Klüpfel et al., 2012b; Gudmundsdóttir et al., 2015; Colonna et al.,
2018; Nguyen et al., 2018). Here, we will use the scaling factor of 1/2 which has been
shown to work well for different types of systems (Jonsson, 2011; Klüpfel et al., 2012b;
Gudmundsdóttir et al., 2015):

EPZ−SIC/2 = E− 1
2 ∑

i=1..N

(
1
2

∫∫
d3rd3r′

ρi(r)ρi(r′)
|r− r′| +Exc[ρi]

)
(91)
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This will be referred to as PZ-SIC/2 calculations. The direct minimization algorithm
has been implemented in combination with SIC in the GPAW software (Mortensen
et al., 2005; Enkovaara et al., 2010; Larsen et al., 2017). The implementation works for
the three available representations implemented in GPAW: an LCAO basis set (Larsen
et al., 2009), a PW basis set and FD RSG representation (Mortensen et al., 2005). The
calculations are carried out using the frozen core approximation and the projector-
augmented-wave method (Blöchl, 1994).

The test sets presented here include both molecular and solid state systems. All the
molecules were placed in a rectangular box with boundaries at least 7 Å vacuum away
from any nucleus in the molecule. The calculations of solids were performed using
periodic boundary conditions with k-point sampling at Γ-point only. The grid mesh
spacing was at most 0.15 Å.

The GPAW software uses two real space (or k-space) grids, one of which has
twice as small grid mesh spacing as the other. The finer grid is used for representing
the pseudo-density and calculating the exchange-correlation and Hartree energies and
potentials. For PZ-SIC, one needs to estimate the one-electron density, Hartree and
exchange correlation energies N times, where N is the number of occupied bands.
However, the overall computational effort still scales as N3, as for KS functionals. In
order to reduce the cost of PZ-SIC calculations, one can use the coarse grid instead
of the fine grid for calculating one-electron density, energies and potentials. Such an
approach reduces the computational time by a factor of 8 and, at the same time, does
not significantly downgrade the accuracy of the calculations. In order to validate this
statement, we have calculated the atomization energy of 55 small molecules from the
G2 set (Curtiss et al., 1997) using both coarse and fine grid meshes for the SIC term,
and the results are presented in Fig. 3.2. The mean absolute error (MAE) for both
calculations is 0.238 eV with a maximum energy deviation between the two calculations
of 0.006 eV.

Atomization Energy and Ionization Potentials

Fig. 3.3 shows the performance of the PZ-SIC/2 employed with PBE functional (PBE-
SIC/2). For reference atomization energies, we have used the experimental energies
collected in the work of Paier et al. (2005), while for ionization potentials (−εHOMO),
the self-consistent GW estimation from the work of Rostgaard et al. (2010) has been
used as reference. The PBE-SIC/2 functional improves the atomization energy by a
factor of 1.6. Since the SIC improves the energy of atoms (Klüpfel et al., 2011) as well
as the atomization energy, the total energy of molecules is also improved. This result
is in agreement with previous calculations (Klüpfel et al., 2012b; Lehtola et al., 2016)
and, thus, validates our implementation of SIC. For the ionization potentials, there is an
even larger improvement (by a factor of 2.5) than for the atomization energy, but the
root mean square error (RMSE) is still large: 1.78 eV for the PBE-SIC/2.

Band gaps

The effect of SIC on the band gaps of solids is presented in Fig. 3.4. For small band
gap semiconductors, the PBE-SIC/2 provides an error of opposite sign as compared
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Figure 3.2. The atomization energy error obtained from the PZ-SIC functional for
molecules in the G2-1 (Curtiss et al., 1997) set. The red line represents the PZ-SIC
calculations when the SIC term is estimated on a coarse grid of 0.15 Å. The blue line
represents the PZ-SIC calculations when the SIC term is estimated on a fine grid (0.075
Å). The PBE functional has been used as the base functional. The error is calculated
with respect to the experimental atomization energies collected in the work of Paier
et al. (2005).
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to the PBE. This means that the SIC, even with a scaling of 1/2, ’overcorrects’ the
HOMO-LUMO gap. For example, for GaAs, the PBE predicts too low a band gap of 0.6
eV while the band gap estimated from the PBE-SIC/2 is 2.19 eV, and the experimental
band gap is 1.52 eV(Kittel, 2005, p.190). At the same time, for large band gap materials
such as Ar, half SIC is not enough to sufficiently open the band gap and a large scaling
factor for SIC would be required. Thus, the PBE functional always underestimates the
HOMO-LUMO gap while SIC/2 overestimates the gap for small band-gap materials
and underestimates the gap for large band-gap materials. The PBE-SIC/2 functional
still greatly improves performance as compared to the PBE functional in calculating the
HOMO-LUMO gaps of solids, especially of those with a band gap larger than 4 eV as
can be seen in Fig. 3.4.
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Figure 3.4. Band gaps calculated as HOMO-LUMO gaps for various levels of theory.
a The QSGW calculations are taken from the works of Shishkin et al. (2007), and Chen
and Pasquarello (2015). For the experimental values, see references therein.

Mn Dimer

The manganese dimer exhibits intricate chemical bonding in the ground state. Experi-
mental measurements reveal a weak antiferromagnetic bonding interaction (1Σ+

u ), as is
reflected in the relatively long bond length of 3.4 Å (Baumann et al., 1982; Cheeseman
et al., 1990) and a small binding energy of 0.13±0.1 eV (Kant et al., 1968). Similar
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results are predicted by CASPT2 (Wang and Chen, 2004) and MCQDPT2 (Yamamoto
et al., 2006) theories. Even though these theories predict a similar binding energy of
0.12eV and 0.14eV, respectively, their estimate of a bond distance differs by 0.35 Å
(3.64 Å and 3.29 Å, respectively). DFT calculations with semilocal functionals provide
a qualitatively incorrect ground state. The most recent all-electron calculations at the
generalized gradient approximation (GGA) level of theory predict a ferromagnetic
ground state (11Πu) with a bond length of 2.57-2.61Å and a binding energy of around
0.9 eV (Barborini, 2016). The description of this system, however, tends to show
improvement when a large percentage of exact exchange is included in calculations
using hybrid functionals (Yamanaka et al., 2007; Barborini, 2016).

The PBE and PBE-SIC/2 calculations of the potential energy curves for 1Σg, 11Σ+
u

and 11Πu states are presented in Fig. 3.5. The calculations have been performed using
an LCAO basis set which includes primitive Gaussians from the def2-TZVPD basis
set (Weigend and Ahlrichs, 2005; Rappoport and Furche, 2010; Feller, 1996; Schuchardt
et al., 2007; Pritchard et al., 2019) augmented with a single-zeta basis set of the GPAW
software. As can be seen, the PBE-SIC/2 functional gives the correct ground state
of the manganese dimer with a bond distance 3.32 Å and a binding energy 0.184 eV
close to both experimental results and high-level quantum chemistry calculations. The
11Πu state is dominated by bonding between d-d electrons at a short distance. The
PBE over-stabilises this orbital due to over-compensation of the classical self-Coulomb
interaction by the exchange-correlation term (Ivanov et al., 2021a) and, as a result,
predicts that 11Πu is the ground state. Removing this error by using the PBE-SIC/2
functional leads to a significant increase in the energy of this electronic state by around
1.0 eV. A much smaller self-interaction error is obtained for 1Σg, 11Σ+

u states which,
instead of a bonding HOMO π molecular orbital formed by 3d atomic orbitals, have
an anti-bonding HOMO σ∗ state formed by 4s electrons. This result demonstrates that
SIC accurately describes the magnetic configurations, and predicts a bond distance
and a binding energy of the manganese dimer in agreement with the experimental
measurements and high-level quantum chemistry calculations. A more detailed analysis
is presented in article (Ivanov et al., 2021a) in this thesis.
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Figure 3.5. Binding curves of the Mn dimer. The filled diamonds and circles are the
PBE and PBE-SIC/2 calculations, respectively. The red curve is the anti-ferromagnetic
state, 1Σg, while the green and blue curves are the ferromagnetic states, 11Σ+

u and 11Πu,
respectively. The filled and open triangles are the MCQDPT2 (Yamamoto et al., 2006)
and CASPT2 (Wang and Chen, 2004) results, respectively. The shaded gray area
depicts the experimental binding energy, while the vertical dashed line represents the
experimental bond length (Kant et al., 1968; Baumann et al., 1982; Cheeseman et al.,
1990).
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4 Direct Optimization Approach for Calcu-
lating Excited States

A commonly used method for calculating the excited-state properties of a quantum
system is time-dependent DFT (TDDFT) (Runge and Gross, 1984; Casida, 1995; Dreuw
and Head-Gordon, 2005). TDDFT is an exact method for describing electronic excita-
tions in theory, but in practice, it requires several approximations. TDDFT is usually
employed with linear-response theory and the adiabatic approximation which neglects
the time dependence of the exchange-correlation kernel. Within these approximations,
TDDFT provides quite an accurate description of low-lying valence excitations (Dreuw
and Head-Gordon, 2005), but fails to describe double excitations (Tozer and Handy,
2000; Maitra et al., 2004; Levine et al., 2006), conical intersections (Levine et al.,
2006) and Rydberg states (Cheng et al., 2008; Van Meer et al., 2014; Seidu et al.,
2015). TDDFT equations depend on the exchange-correlation kernel and, in practice,
this kernel is approximated using the ground-state energy functional. When semilocal
functionals are used, the TDDFT equations lack coupling between spatially separated
orbitals which leads to a catastrophic underestimation of the excitation energy of the
long-range charge transfer reaction (Dreuw et al., 2003). This flaw can be remedied by
using hybrid functionals which have a non-local exchange-correlation kernel. However,
the amount of the exact exchange in hybrid functionals is an empirical parameter and
therefore, it is not clear how accurately this approach would perform for excitations
outside the set of molecules for which they were designed. Charge transfer excitations
are of the upmost importance for example in the context of solar-energy conversion (Yeh
et al., 2000; Bakulin et al., 2012; Harlang et al., 2015) and therefore, other efficient
methods for simulating charge transfer processes are required.

An alternative method for calculating excited states is based on a time-independent
density functional framework. In this approach, the electronic configuration of the
excited state is calculated as a solution of the Kohn-Sham equations (18) for non-aufbau
occupation numbers using a ground-state exchange-correlation functional. Perdew
and Levy (1985) demonstrated that the stationary points of the exact ground-state
density functional represent excited states, and the exact functional applied to all other
excited-state densities, which are not extrema of the functional, provides the lower
bound of the excited-state energy. At the same time, the KS energy functional can
have more stationary points than a functional which depends on density only, and,
at least in practice, a large number of excited states can be found as its extrema. It
has been shown that such an approach provides a useful approximation for excited
states and delivers accurate potential energy surfaces (Barca et al., 2018; Levi et al.,
2018) including regions around conical intersections (Barca et al., 2018; Pradhan et al.,
2018; Mališ and Luber, 2020). Furthermore, this method can accurately describe the
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charge-transfer excitations (Zhekova et al., 2014) as well as double excitations (Hait
and Head-Gordon, 2020) already at a semilocal level of approximation to the exchange-
correlation functionals.

While DFT is a ground-state theory, there are also several generalizations of DFT
for excited states (Görling, 1999; Levy and Nagy, 1999; Ayers et al., 2012, 2015,
2018). Due to the fact that several external potentials can provide the same excited-state
density (Gaudoin and Burke, 2004), the energy functional cannot be a functional of the
density only for an arbitrary external potential. In this case, the energy functional can be
formulated as a bifunctional (Görling, 1999; Levy and Nagy, 1999) which, for example,
can depend on both the excited-state density and the ground-state density (Levy and
Nagy, 1999). However, in practice, the most commonly used external potential is the
Coulomb potential which describes the electrostatic interaction of nuclei with electrons.
The Coulomb systems have several important properties: the cusps of the density define
the position of nuclei, and the derivative of spherically averaged density at the position
of nuclei provides the nuclei’s charges (Ayers et al., 2018), which is known as Kato’s
theorem (Kato, 1957). Therefore, the external Coulomb potential can be determined
from the density only, which is Bright Wilson’s argument for Coulomb ground-state
DFT (Bicout and Field, 1996, p.2)). Furthermore, for finite systems, two different
excited-state wave functions cannot have the same density because the asymptotic
region of the density is defined by the ionization potential which differs for different
excited states (Ayers et al., 2012). Based on these properties, it was shown that the
energy functional of the density exists (Ayers et al., 2012, 2018) which is exact for both
excited and ground states, and, as with the ground-state DFT, the Kohn-Sham equations
can also be introduced (Ayers et al., 2015). The approximation made in practice is then
the choice of the exchange-correlation functional, which is often set to the ground-state
energy functional approximation.

The variational calculations typically used in DFT are problematic when calculating
excited states due to the fact that the solution of the KS equations for excited states
in many cases corresponds to a saddle point on the electronic energy surface. Con-
ventional SCF algorithms based on interpolation techniques (Pulay, 1980; Kresse and
Furthmüller, 1996; Garza and Scuseria, 2012) often collapse to the ground state (Gilbert
et al., 2008; Barca et al., 2018) or exhibit oscillatory behaviour around the targeted
solution (Mewes et al., 2014; Hait and Head-Gordon, 2020; Carter-Fenk and Herbert,
2020; Levi et al., 2020a,b). An alternative method to SCF algorithms is the direct
minimization (DM) which often shows a more robust convergence in the case of ground-
state calculations (Head-Gordon and Pople, 1988; Gillan, 1989; Payne et al., 1992;
Hutter et al., 1994; Ismail-Beigi and Arias, 2000; Van Voorhis and Head-Gordon, 2002;
VandeVondele and Hutter, 2003; Weber et al., 2008; Freysoldt et al., 2009; Ivanov
et al., 2021b). This approach can be extended to calculations of excited states as is
demonstrated below both for KS and PZ-SIC functionals.
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4.1 LCAO Excited-State Algorithm

In order to use DM for calculating excited states, several changes need to be made. First,
the minimization line search cannot be used because the system may need to climb up in
energy to the saddle point. Instead, one needs to use a trust region optimization which, in
its simple implementation, just restricts the step size along the search direction by some
threshold value. Secondly, the curvature of an electronic energy surface at the saddle
point is convex along some degrees of freedom and concave along others. Thus, the
optimization algorithm has to be able to identify those degrees of freedom along which
the energy must be maximized. This can be achieved using quasi-Newton methods that
can build a non-positive definite matrix approximation to the true Hessian. Examples of
such quasi-Newton methods are the symmetric rank-one (SR1) method (Nocedal and
Wright, 2006, p.144) and the Powell algorithm (Anglada et al., 1999). The L-BFGS
algorithm used for direct minimization in Sec. 3 usually provides a positive definite
approximations to the Hessian (Nocedal and Wright, 2006, p.135) and cannot, therefore,
be applied to saddle-point searches unless a special preconditioner is used.

In LCAO calculations, when the rotation matrix mixes orbitals between occupied
and virtual states, the preconditioner which can estimate unstable modes of the Hessian
is given in Eq. (63) with γ = 0:

Pi j =
1

−2(εi− ε j)( fi− f j)
, (92)

Indeed, when an electron is promoted from the ith orbital to the jth orbital and εi < ε j,
then −(εi− ε j)( fi− f j) < 0 since fi = 0 and f j = 1. Therefore, the matrix element
of the preconditioner for a rotation of the i j orbital pair is negative indicating that the
energy for this rotation needs to be maximized.

The changes that need to be made in order to use the direct minimization algorithm
proposed in Sec. 3.2 for excited-state calculations are:

1. Instead of an inexact line search, use constrained step length update algorithm.
Namely, calculate a search direction D and if

‖D‖> αmax (93)

then:
D← D

‖D‖αmax (94)

where αmax is an empirical parameter defined by the user. Using this method, it
was found that α = 0.2−0.25 provides good performance.

2. Instead of the L-BFGS algorithm, use the limited-memory SR1 (L-SR1) algorithm
which has the ability to develop negative eigenvalues in the approximated Hessian
matrix.

3. Use the preconditioner (92).

4. In order to prevent a variational collapse to the ground state, use the maximum
overlap method (MOM) (Gilbert et al., 2008; Barca et al., 2018) which occupies
the orbitals of the excited states.
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This approach has been described in detail in the work of Levi et al. (2020b) and will
hereafter be referred to as the direct optimization (DO-MOM) method. The performance
of DO-MOM within KS-DFT was compared to that of the direct diagonalization SCF
algorithm employed with MOM (SCF-MOM) on molecular set including 88 excitations.
The proposed L-SR1 algorithm was able to reach the convergence for all excitations
while the conventional SCF algorithm based on the DIIS method failed in 27 cases.
Furthermore, the average number of energy and gradient evaluations in the L-SR1
algorithm was lower by a factor of 2 than that in the SCF. This demonstrates that not
only is the proposed methodology more robust, but it is also faster than the method
commonly used today.

While the developed DO is useful for LCAO calculations, the large size of virtual
space and the large amount of memory used in the L-SR1 algorithm (20 previous
optimization steps) prevent its usage for a RS or PW basis set. For the latter, a different
approach can be developed which combines both the efficient saddle-point search
discussed here and the direct minimization algorithm from Sec 3.3.

4.2 Real Space Grid and Plane Wave Excited-State
Algorithm

Let E[ΨΨΨ] be the KS or preconditioned PZ-SIC functional as defined in Sec. 3.4. Both
functionals are unitary invariant with respect to a rotation of occupied orbitals. Let ΦΦΦ

be some auxiliary orthonormal orbitals. Then the optimal orbitals, ΨΨΨ, can be obtained
by applying a unitary transformation to ΦΦΦ:

ΨΨΨ =UΦΦΦ (95)

In this case, the energy functional E[ΨΨΨ] can be considered as the functional of both the
matrix U and orbitals ΦΦΦ. Therefore, the stationary point of E can be found through
iterations involving extremization with respect to the matrix U followed by minimization
with respect to the auxiliary orbitals ΦΦΦ:

stat
ΨΨΨ

E[ΨΨΨ] = min
ΦΦΦ

stat
U

E[UΦΦΦ] (96)

The auxiliary orbitals can be chosen to be the ground-state KS orbitals or to any other
initial guess for an excited state. They can also be thought of as the basis functions
and the matrix U as the expansion coefficients of the optimal orbitals. If ΦΦΦ represents
the complete basis set, then U is the identity matrix because the stationary point is
found with respect to all degrees of freedom. In practice, ΦΦΦ consists of occupied and
only a few virtual orbitals and a second step is, therefore, necessary which changes
the basis set so as to minimize the total energy. This is contrary to LCAO calculations,
where the basis set is always fixed and the full basis-set limit can only be reached by
systematically increasing the size of ΦΦΦ.

Thus, the DO algorithm for PW and RSG representations consists of two nested
loops. The inner loop is based on the LCAO method from Sec. 4.1 and is used to find the
unitary matrix U for a fixed ΦΦΦ. The outer loop is a minimization of L[ΦΦΦ] = stat

U
E[UΦΦΦ]
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with respect to ΦΦΦ using an algorithm from Sec. 3.3. A combination of both loops is
described in detail in the article (Ivanov et al., 2021c) in this thesis.

4.3 Performance of the Scaled PZ-SIC for Excited
States

The performance of the scaled PZ-SIC for excited states has been assessed using
9 valence and 9 Rydberg excitations in 13 molecules for both singlet and triplet
states. These molecules are acetaldehyde, acetylene, ammonia, carbon-monoxide,
diazomethane, ethylene, formaldehyde, formamide, hydrogensulfide, ketene, metha-
nimine, thioformaldehyde, and water. We have used reference energies and geometries
from the work of Loos et al. (2018) in order to assess the PBE, PBE-SIC/2. Since it
is known that complex orbitals are needed to calculate the ground state properties we
have also performed calculations using real orbitals (the PBE-RSIC/2 functional) in
order to see what effect they have on the excitation energies. Due to the fact that the
singlet determinant has been used in calculations, the open shell singlet states are spin
contaminated (mixed spin states). Therefore, a spin purification formula (Ziegler et al.,
1977) has been applied in order to estimate the excitation energy of a singlet state:

E = 2E(↑↓)−E(↑↑), (97)

where E(↑↓) is the energy of the mixed spin state and E(↑↑) is the energy of the triplet
state. The energy of the mixed spin state is compared here with that of the singlet
reference state.

Table 4.1. A summary of the performance of the PBE, scaled self-interaction correction
restricted to real orbitals (PBE-RSIC/2) and scaled self-interaction correction
(PBE-SIC/2).

Multiplicity Functional ME MAE RMSE Max Abs Error
Triplet State

PBE -0.27 0.27 0.31 0.55
PBE-RSIC/2 -0.38 0.39 0.44 0.8
PBE-SIC/2 -0.25 0.26 0.29 0.51

Mixed Spin State
PBE -0.73 0.73 0.95 2.33

PBE-RSIC/2 -0.76 0.76 0.89 2.02
PBE-SIC/2 -0.66 0.66 0.83 2.02

Purified
Singlet State

PBE -0.46 0.46 0.54 1.20
PBE-RSIC/2 -0.40 0.46 0.50 0.76
PBE-SIC/2 -0.33 -0.40 0.43 0.75

31



4 Direct Optimization Approach for Calculating Excited States

2 1 0 1 2
0

1

2

3

4

5

6

7

8
Tr

ip
le

t
PBE

2 1 0 1 2
0

1

2

3

4

5

6

7

8
RSIC/2

2 1 0 1 2
0

1

2

3

4

5

6

7

8
SIC/2

2 1 0 1 2
0

1

2

3

4

5

6

7

8

M
ix

ed
 S

pi
n 

St
at

e

2 1 0 1 2
0

1

2

3

4

5

6

7

8

2 1 0 1 2
0

1

2

3

4

5

6

7

8

2 1 0 1 2
Error (eV)

0

1

2

3

4

5

6

7

8

Pu
rif

ie
d 

Si
ng

le
t

2 1 0 1 2
Error (eV)

0

1

2

3

4

5

6

7

8

2 1 0 1 2
Error (eV)

0

1

2

3

4

5

6

7

8

Figure 4.6. Histograms of errors obtained with different functionals for triplet, mixed
spin and purified singlet excitations. Left column: PBE, Middle column: PBE-RSIC/2.
Right column: PBE-SIC/2.

The results of the calculations are summarised in Table 4.1 and Fig. 4.6. As can
be seen from Fig. 4.6 the PBE functional always underestimates the excitation energy.
It performs better for triplet excitations than for mixed spin excitations with the root
mean square error (RMSE) of 0.31 eV and 0.95 eV, respectively. The maximum error
is for mixed spin excitations, as large as 2.33 eV. As anticipated, the spin purification
formula (97) provides a better estimation of a singlet energy than the mixed spin
determinant reducing the RMSE to 0.54 eV and the maximum error to 1.20 eV.

When SIC/2 is applied to the PBE functional and optimization is restricted to real
valued orbitals, the error in the triplet excitation energy increases RMSE by 0.13 eV. At
the same time, the PBE-RSIC/2 performs better for the mixed spin state and purified
singlet states by around 0.05 eV according to the RMSE. The maximum error is also
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smaller than in the PBE functional and it equals 2.02 eV and 0.76 eV for mixed spin
states and purified singlets, respectively.

The PBE-SIC/2 functional performs better than the PBE and PBE-RSIC/2 func-
tionals for both triplet and singlet states. For triplet excitations the improvement is
marginal and the RMSE equals 0.29 eV which is close to the PBE results. The RMSE
for mixed-spin and purified singlet excitation is smaller by around 0.1 eV as compared
to PBE.

In conclusion, fully variational algorithms for the calculation of excited states within
the KS-DFT and PZ-SIC formalisms have been developed and, for the first time, a
variational assessment of the PZ-SIC functional has been performed on excited states.
PZ-SIC using complex-valued orbitals performs better than in the case of real-valued
orbitals. This result is on par with calculations of the total energy of atoms (Klüpfel
et al., 2011), and geometric and energetic properties of molecules (Klüpfel et al., 2012b).
The effect of PZ-SIC on the excitation energy of both valence and Rydberg states is
small on the order of 0.01 - 0.1 eV. This can be attributed to the fact that PZ-SIC is a
one-electron self-interaction correction (Ivanov et al., 2021c). However, it is expected
that PZ-SIC will have a larger effect on excitations with charge localization as in the
example of the diamine molecule (N,N’ -Dimethylpiperazine) where semilocal and
commonly used hybrid functionals fail to stabilise the localized state (Cheng et al.,
2016).
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5 Conclusion
Optimization methods for calculating both ground and excited states have been devel-
oped for the PZ-SIC functional and implemented. The implementation can make use of
three choices of basis sets: LCAO, PW and the FD RSG. PZ-SIC provides an efficient
alternative to hybrid functionals (Ivanov et al., 2021a) in PW and finite-difference RSG
representations. The methods presented here are fully variational and, as a result, atomic
forces are available through the Hellmann-Feynman theorem, which, in turn, makes it
possible to explore both ground- and excited-state atomic energy surfaces in an efficient
way.

The assessment of the scaled PZ-SIC showed that it performs systematically better
than the PBE functional in calculating the atomization and ionization energies as well as
band gaps. Furthermore, it can accurately describe systems with transition metals, such
as the Mn dimer for which semilocal functionals fail dismally even for the ground state.
For excited states, the scaled PZ-SIC does not significantly reduce the excitation-energy
error of the PBE functional in the Franck-Condon region. However, scaled PZ-SIC
reproduces the shape of the potential energy surface for excited states more accurately
than the PBE functional (Ivanov et al., 2021c). These findings indicate that a further
improvement in excited-state energy calculations require the development of a new SIC
approach which goes beyond one-electron corrections.

As often occurs in research, an investigation into a new problem can have a positive
impact on previous works and other related areas. Not only are the direct optimization
algorithms applicable for variational calculations using the PZ-SIC functional, they
can also be applied to regular DFT calculations. The direct minimization approach for
KS-DFT based on the exponential transformation of molecular orbitals can outperform
the conventional SCF algorithm based on the DIIS method by a factor of up to 2 in
some cases and, moreover, it gives a more robust convergence (Ivanov et al., 2021b).
A modification of this method for calculating excited states also produces a superior
performance (Levi et al., 2020b; Ivanov et al., 2021c) and thus, provides an appealing
approach for studying complex processes in ultrafast experiments (Ge et al., 1998; Yeh
et al., 2000; Bakulin et al., 2012).
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6 Appendix A: Derivative of the Matrix Ex-
ponential

Let A be an M×M skew-hermitian matrix, that is A† =−A, and ai j are matrix elements
of A. Let us define the derivative of the matrix exponential with respect to the real part
of the complex non-diagonal elements of A as:

∂eA

∂Re(ai j)
= lim

h→0

eA+h(Ei j−E ji)− eA

h
(98)

and with respect to the imaginary part as:

∂eA

∂ Im(ai j)
= i lim

h→0

eA+ih(Ei j+E ji)− eA

ih
(99)

where the matrix Ei j is such that (Ei j)mn = δimδ jn
The last two formulae equal [see Eq.(2) from Ref.(Najfeld and Havel, 1995)]:

∂eA

∂Re(ai j)
=
∫ 1

0
etA (Ei j−E ji)e(1−t)A dt (100)

∂eA

∂ Im(ai j)
= i
∫ 1

0
etA (Ei j +E ji)e(1−t)A dt, (101)

Using:
∂eA

∂ai j
=

1
2

(
∂eA

∂Re(ai j)
− i

∂eA

∂ Im(ai j)

)
(102)

one can obtain:
∂eA

∂ai j
=
∫ 1

0
etA Ei j e(1−t)A dt (103)

For the diagonal elements of the skew-symmetric matrix, the gradient with respect to
the real part equals zero and therefore, let us define the derivative with respect to the
imaginary part only:

∂eA

∂ Im(aii)
= i lim

h→0

eA+ihEii − eA

ih
(104)

∂eA

∂aii
=

∂eA

∂ Im(aii)
=
∫ 1

0
etA Eii e(1−t)A dt (105)
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Thus, the equation for the derivative with respect to the matrix element is:

∂eA

∂ai j
=
∫ 1

0
etA Ei j e(1−t)A dt (106)

and:
∂eA

∂ai j
= Ei j +o(A) (107)

Similarly, one can obtain:

∂e−A

∂ai j
=−

∫ 1

0
e−tA Ei j e(−1−t)A dt (108)

and:
∂e−A

∂ai j
=−Ei j +o(A) (109)
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ponential Transformation

Let us denote: (
∂E
∂a

)

i j
=

∂E
∂ai j

=
2−δi j

2

(∫ 1

0
etALe−t dt

)

ji
(110)

and consider only a real-valued case. Expanding the integral into a series, one obtains:
(

∂E
∂a

)T

= 2L+[A,L]+O(A2) (111)

Simplifying:

L = FOT HO−OT HOF (112)

O =C exp(A), let H0 =CT HC→ (113)

L = [F,e−AH0eA], (114)

e−AH0eA = H0− [A,H0]+O(A2) (115)

L = [F,H0]− [F, [A,H0]], (116)

one can obtain:
(

∂E
∂a

)T

= 2
[
F,H0]−2

[
F, [A,H0]

]
+
[
A, [F,H0]

]
+O(A2) (117)

[
A, [F,H0]

]
=−

[
F, [H0,A]

]
−
[
H0, [A,F ]

]
(118)

(
∂E
∂a

)T

= 2
[
F,H0]−

[
F, [A,H0]

]
+
[
H0, [F,A]

]
+O(A2) (119)

∂E
∂a

=−2
[
F,H0]+

[
F, [A,H0]

]
−
[
H0, [F,A]

]
+O(A2) (120)

Let us consider the first derivative of the second term,
[
F, [A,H0]

]
from Eq. (120):

∂ 2E(2)

∂alm∂ai j
=
[
F,
[
Elm−Eml ,H0]]

i j = ( f i− f j)
[
Elm−Eml ,H0]

i j = (121)

= ( f i− f j)∑
k
(δilδmk−δimδlk)H0

k j−
(
δklδm j−δkmδl j

)
H0

ik (122)

= ( f i− f j)
(

δliH0
m j−δmiH0

l j−δm jH0
il +δl jH0

im

)
(123)

39



7 Appendix B: Preconditioning for the Exponential Transformation

Now, let us have a look at the first derivative of the third term in Eq. (120):

[F,Elm−Eml ]xy = ( f x− f y)
(
Exy

lm−Exy
ml

)
= ( f x− f y)

(
δlxδmy−δmxδly

)
(124)

∑
x

H0
ix[F,Elm−Eml ]x j = ∑

x
H0

ix( f x− f j)
(
δlxδm j−δmxδl j

)
= (125)

= H0
im( f j− f m)δl j−H0

il( f j− f l)δm j (126)

∑
y
[F,Elm−Elm]iyH0

y j = ∑
y
( f i− f y)

(
δliδmy−δmiδly

)
H0

y j = (127)

= H0
m j( f i− f m)δli−H0

l j( f i− f l)δmi (128)

∂ 2E(3)

∂alm∂ai j
=−

[
H0, [F,Elm−Eml ]

]
i j = (129)

H0
il( f j− f l)δm j−H0

im( f j− f m)δl j +H0
m j( f i− f m)δli−H0

l j( f i− f l)δmi (130)

Thus, the total contribution:

∂ 2E
∂alm∂ai j

= δliH0
m j( f i− f j)−δmiH0

l j( f i− f j)−δm jH0
il( f i− f j)+δl jH0

im( f i− f j)+

(131)

+δm jH0
il( f j− f l)−δl jH0

im( f j− f m)+δliH0
m j( f i− f m)−δmiH0

l j( f i− f l) (132)

or:

∂ 2E
∂ai j∂alm

=δilH0
jm( f l + f i− f j− f m) (133)

+δ jlH0
im( f m + f i− f l− f j) (134)

+δ jmH0
li( f m− f i− f l + f j) (135)

+δimH0
l j( f l− f m− f i + f j) (136)

If one chooses canonical orbitals, then only the elements with i = l, j = m are not zeros:

∂ 2E
∂ 2ai j

=−2(H0
ii −H0

j j)( fi− f j) (137)
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Abstract

The energy minimization involved in density functional calculations of electronic
systems can be carried out using an exponential transformation that preserves
the orthonormality of the orbitals. The energy of the system is then repre-
sented as a function of the elements of a skew-Hermitian matrix that can be
optimized directly using unconstrained minimization methods. An implementa-
tion based on the limited memory Broyden-Fletcher-Goldfarb-Shanno approach
with inexact line search and a preconditioner is presented and the performance
compared with that of the commonly used self-consistent field approach. Re-
sults are presented for the G2 set of 148 molecules, liquid water configurations
with up to 576 molecules and some insulating crystals. A general preconditioner
is presented that is applicable to systems with fractional orbital occupation as
is, for example, needed in the k-point sampling for periodic systems. This ex-
ponential transformation direct minimization approach is found to outperform
the standard implementation of the self-consistent field approach in that all the
calculations converge with the same set of parameter values and it requires less
computational effort on average. The formulation of the exponential transfor-
mation and the gradients of the energy presented here are quite general and
can be applied to energy functionals that are not unitary invariant such as
self-interaction corrected functionals.

1. Introduction

There are several different approaches for finding optimal orbitals corre-
sponding to the minimum of an energy functional in the context of Kohn–Sham
density functional theory (KS-DFT) [1, 2]. The most commonly used method
is based on a self-consistent field (SCF) algorithm consisting of two steps. In
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the first step and for a given density, one finds eigenvalues and eigenfunctions
using an iterative algorithm such as the Davidson algorithm [3] or even direct
diagonalization of the full Hamiltonian matrix when the size of the basis set is
not too large. In the second step, the electron density or Hamiltonian matrix
is updated using, for example, direct inversion in the iterative subspace (DIIS)
method [4, 5]. The SCF approach is widely used and has proven to be efficient
for both finite (molecules/clusters) and extended systems, but can, neverthe-
less, suffer from convergence problems. Various density and Hamiltonian mixing
schemes have been introduced to address such cases [6, 7]. As a result, the user
of typical software developed for KS-DFT calculations is often presented with
the task of choosing values of various parameters and select between various
types of eigensolvers. Systems with similar chemical and physical properties
may even call for different choices. A further problem of the SCF method in
calculations of ground electronic states is that it may converge on a saddle point
of the energy surface rather than a minimum [8].

Another approach to this optimization problem is based on direct minimiza-
tion of the energy with respect to the electronic degrees of freedom [9, 10, 11,
12, 13, 14, 15, 16, 17, 18]. The challenge then is to incorporate the constraint
of orthonormality of the orbitals (the single electron wave functions). One way
to approach this is to follow the energy gradient projected on the subspace tan-
gent to the orbitals [10, 11]. After such an adjustment of the orbitals within
this tangent space, the orthonormality constraints will be violated and, there-
fore, an explicit orthonormalization of the orbitals needs to be applied after
each iteration. This approach is often used in calculations with a plane wave
basis set. Alternatively, when the basis set is compact, as in calculations using
linear combination of atomic orbitals, a unitary transformation can be applied
to a set of orthonormal reference orbitals that includes all occupied and virtual
orbitals, and the energy is then minimized by optimizing the elements of the
transformation matrix. The orthonormality constraints will then be satisfied,
but, due to the constraints imposed by the unitary matrix, the energy is defined
on a curved space. As a result, minimization algorithms need to be modified
to take the curvature into account. This can be achieved by performing a line
search along geodesics [19]. Alternatively, the unitary matrix can be parame-
terized using an exponential transformation [9, 12, 14] in which case the energy
becomes a function of the elements of a skew-Hermitian matrix in linear space.
Well-established, unconstrained minimization strategies can then be applied in-
cluding inexact line searches that can give robust convergence. We will refer
to this approach as exponential transformation direct minimization (ETDM).
Furthermore, it has been used in calculations of molecules using KS-DFT [15]
and previously in the context of Hartree-Fock theory [9, 20, 21, 22]. There, the
occupation numbers for the orbitals have been restricted to integers so that uni-
tary invariance with respect to rotation within the space of occupied orbitals is
ensured. Preconditioners to accelerate convergence have been presented for such
systems and found to be important in order to achieve good performance [9, 15].

In this article, a generalization and efficient implementation of the ETDM
approach is presented as well as applications to both finite and extended sys-
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tems. The method can be applied to systems with fractional occupation, for
example, where k-point sampling of the Brillouine zone (BZ) is carried out. The
formulation presented here is also applicable to energy functionals that are not
unitary invariant, such as self-interaction corrected functionals [23]. Tests of
the performance of this ETDM implementation and comparison with the SCF
method including density mixing are carried out for the G2 set (a total of 148
molecules), liquid configurations consisting of up to 576 water molecules and
several insulating crystals.

The article is organised as follows. In section 2, the ETDM method is for-
mulated in a general way and equations provided for the derivative of the en-
ergy with respect to the matrix elements in the exponential transformation. In
section 3, an efficient preconditioner is presented, applicable to systems with
non-integer occupation numbers, as well as methods for evaluating the gradient
of the energy and ways to choose the search direction as well as step-length
in an inexact line-search procedure. In section 4, performance tests are pre-
sented with comparison to conventional SCF calculations. Finally, discussion
and conclusions are presented in section 5.

2. General formulation

In KS-DFT, the energy functional is

E =
∑
i,k

fi(k)

∫
d3r
|∇φik(r)|2

2
+

∫
d3rρ(r)vext(r)+ (1)

+
1

2

∫∫
d3r d3r′

ρ(r)ρ(r′)

|r− r′|
+ Exc[ρ(r)]. (2)

where the φ are orbitals of the non-interacting electron system that has total
electron density

ρ(r) =
∑
i,k

fi(k)|φik(r)|2, (3)

equal to that of the interacting electron system, the fi(k) are orbital occupa-
tion numbers for the k-th point of the BZ with 0 ≤ fi(k) ≤ 1, vext(r) is the
external potential corresponding to electron-nuclei interaction, and Exc is the
exchange-correlation energy. The orbitals are expanded in terms of a possibly
non-orthogonal basis set consisting of M basis functions

φik(r) =

M∑
µ=1

Oµi(k)χµk(r), (4)

and the task is to find optimal values of the coefficients Oµi(k) that minimize
the energy E[{O(k)}k] subject to the orthonormality constraints:

O†(k)S(k)O(k) = I k ∈ BZ, (5)
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with Sµν(k) =
∫
χ∗µk(r)χνk(r) dr being the overlap matrix.

The basis functions for periodic systems are Bloch states and in a localised
basis set approach they can be written as

χµk(r) =
1√
N

∑
R

exp(ik ·R)ηµ(r−R− dµ) (6)

where ηµ(r−R−dµ) is an atomic orbital centered on an atom in the simulated
cell. The subscript µ enumerates the atomic orbitals and R belongs to the Bra-
vais lattice. An initial guess for the orbitals is expressed as a linear combination
of the basis functions

ψmk(r) =
∑

µ=1..M

Cµm(k)χµk(r). (7)

Given an initial guess for the orbitals, Cµm(k), which we will refer to as the
reference orbitals, the optimal orbital coefficients Oµm(k) that provide minimal
energy can be found through a unitary transformation as

O(k) = C(k)eA(k) (8)

where A(k) is a skew-Hermitian matrix, A(k)† = −A(k). For a set of Nk vectors
used to represent the BZ, a set of matrices {A(k)}k is needed. For a given set
of reference orbitals, a set of unitary matrices, U(k) = exp(A(k)), exists so
that the reference orbitals are transformed to the optimal orbitals. Thus, the
ground-state energy of the system is a function of the upper triangular elements
of a set of matrices A(k),

E[n] = E[{a11, . . . , a1M , a22, . . . , a2M , . . . , aMM}k] (9)

where aij = (A)ij and k denotes the set of Nk vectors. The real part of the
diagonal elements of the matrices are zeros and therefore the energy is a function
of NkM

2 variables. There are M(M − 1)/2 real elements and M(M + 1)/2
imaginary elements for every k-point. The energy needs to be minimized with
respect to the real and imaginary parts of the matrix elements {aij(k)}i≤j .
Introducing the derivative

∂

∂aij(k)
=

1

2

(
∂

∂Re(aij(k))
− i ∂

∂Im(aij(k))

)
(10)

the gradient of the energy can be evaluated as

∂E

∂aij(k)
=
∑
µν

Hµν(k)
∂ρµν(k)

∂aij(k)
(11)

where the Hamiltonian matrix is

Hµν(k) =

∫
drχ∗µk(r)

(
−1

2
∇+ v(r)

)
χνk(r). (12)
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Here, v(r) is the single electron Kohn-Sham potential, and the density matrix
is given in terms of the optimal coefficient matrix as

ρµν(k) =
∑
m

fm(k)Oµm(k)Oνm(k). (13)

By defining the commutator

Lmk(k) = [F (k), H(k)]mk , (14)

where H(k) is the Hamiltonian matrix represented in terms of the optimal
orbitals

H(k)mk =
∑
µν

Oµm(k)Hµν(k)Oνk(k),

and F (k) is a diagonal matrix with occupation numbers fm(k) as diagonal
elements, the derivatives in Eq. (11) can be written as

∂E

∂aij(k)
=

2− δij
2

(∫ 1

0

etA(k)L(k)e−tA(k) dt

)
ji

. (15)

For the optimal orbitals, the gradient ∂E/∂aij(k) must be zero so∫ 1

0

etA(k)L(k)e−tA(k) dt = 0, k ∈ BZ. (16)

These non-linear equations can be used to find the skew-Hermitian matrix that
provides the energy minimum. For the remainder of this article, the k-point
index k is omitted for simplicity.

Eq. (15) is general and can be applied to an objective function that depends
explicitly on the orbitals as well as the total density, but then the definition of
L needs to be be changed accordingly. For example, for the Perdew-Zunger self-
interaction correction (PZ-SIC) [23], the matrix L for a single k-point calculation
is

Lmk = [F,H]mk + fkV km − fmVmk, (17)

where Vkm is a matrix element of the SIC potential§

Vmk =
∑
µν

OµmV
k
µνOνk, (18)

V kµν =

∫
χ∗µ(r)

[∫
d3r′

ρk(r′)

|r− r′|
+ vxc(ρk(r))

]
χν(r)dr. (19)

Equation (16) can be expanded in a series as∫ 1

0

etALe−tA dt = L+
1

2!
[A,L] +

1

3!
[A, [A,L]] + . . . (20)

If ‖L‖ � 1
2‖ [A,L] ‖, which corresponds to ‖A‖ � 1 since 1

2‖ [A,L] ‖ ≥ ‖A‖‖L‖,
then the first term on the right hand side can be used to estimate the gradient.
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This limit of ‘small rotations’ corresponds to the geometric approach used by
Van Voorhis and Head-Gordon [15] and has also been used in the context of
orbital-density dependent functionals [24, 25, 26]. The higher order terms can
also be included to increase the accuracy of the gradient estimate, but each
iteration then requires more computational effort.

The minimization procedure is performed with respect to the real and imag-
inary parts of matrix elements using the energy gradient given by Eq. (15)

∂E

∂Re(aij)
= 2Re

(
∂E

∂aij

)
(21)

and
∂E

∂Im(aij)
= −2Im

(
∂E

∂aij

)
. (22)

Computational algorithms for the evaluation of the the matrix exponential and
gradient of the energy are presented in Sec. 3.4

3. Algorithms and Computational Parameters

In order to find the optimal orbitals, O, corresponding to minimal energy,
the appropriate exponential transformation of the reference orbitals, C,

O = CeA (23)

needs to be determined. The reference orbitals can be chosen to be any set of
orthonormal orbitals spanned by the basis set and they are held fixed during the
minimization of the energy for a given number of steps while only the matrix A
is varied. The closer the reference orbitals are to the optimal orbitals, the faster
the iterative procedure will converge.

A line search method has been implemented where the (k + 1)th iteration
step is

~a (k+1) = ~a (k) + α (k) ~p (k). (24)

Here, ~a (k+1) is a vector consisting of the real and imaginary part of the upper
triangular elements of matrix A at the kth step of the minimization algorithm,

~a = (Re(a12), . . . ,Re(a1M ),

Re(a23), . . . ,Re(a2M ), . . . ,Re(aM−1M ),

Im(a11), Im(a12), . . . , Im(a1M ),

Im(a22), Im(a23), . . . , Im(a2M ), . . . , Im(aMM ))T ,

(25)

and ~pk is the search direction while αk is the step length.
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3.1. Choice of search direction

The search direction can be chosen according to the steepest descent method,
various Quasi-Newton methods, or nonlinear conjugate gradient (CG) meth-
ods. The calculation of the search direction involves algebraic operations asso-
ciated with the particular method plus the evaluation of the energy and gra-
dient for the given energy functional. The dimensionality of the minimization
problem scales as NM , where N is the number of occupied orbitals and M
is the number of basis functions. While Quasi-Newton methods such as the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm require fewer iterations
than limited-memory BFGS (L-BFGS) or CG, the algebraic operations become
a bottleneck even for systems of moderate size (the BFGS algorithm scales as
O(N2M2) [27]). However, every iteration of the L-BFGS algorithm, in which
the approximate inverse Hessian matrix is updated, can be computed with the
cost of O(mNM) operations, where m is the number of previous steps stored
in memory. In the present implementation, the L-BFGS algorithm as described
in Ref. [27] is used and m = 3 in the benchmark calculations.

3.2. Choice of step length

The step length αk is chosen in such a way that it satisfies the strong Wolfe
conditions [28, 29, 27]

E(~a (k) + α (k)~p (k)) ≤ E(~a (k)) + c1α
(k)∇~aE(~a (k)) · ~p (k) (26)

and

|∇E(~a (k) + α (k)~p (k)) · ~p (k)| ≤ c2|∇~aE(~a (k)) · ~p (k)| (27)

with 0 < c1 < c2 < 1. A trial step of α (k) = 1 is always used first to test
the conditions. After several iterations, a step length of 1 guarantees that the
strong Wolfe conditions are satisfied in the L-BFGS algorithm [27]. This is ap-
pealing since it reduces the number of energy and gradient calculations which
are computationally most intensive in KS-DFT calculations. If α (k) = 1 is not
satisfied by the strong Wolfe conditions, then the inexact line search based on
the interpolation of the energy along the search direction is used [27]. When the
energy of the system is evaluated, the KS-DFT potential needs to be obtained
and, as a result, there is little additional effort involved in evaluating the gra-
dient. Therefore, the energy along the search direction is always interpolated
by a cubic function using information about the energy values and gradient at
the boundaries of the search interval [a, b]. Alongside the strong Wolfe condi-
tions, approximate Wolfe conditions are also checked [30] at the minimum of
the interpolated cubic function

(2δ − 1)∇~aE(~a (k))T ~p (k) ≥ ∇~aE(~a (k) + α (k)~p (k)) · ~p (k) ≥ σ∇~aE(~a (k)) · ~p (k),
(28)

and the condition

E(~a (k) + α (k)~p (k)) ≤ E(~a (k)) + ε|E(~a (k))| (29)
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where δ < min{0.5, σ}, 0 < σ < 1 and ε is a small fixed number. Thus, the
line search algorithm is terminated when either the strong Wolfe conditions of
Eqs. (26)-(27) or the approximate Wolfe conditions of Eq. (28) along with the
condition in Eq (29) holds. The parameter values are set to [27, 30]

c1 = 10−4, c2 = 0.9, δ = 0.1, σ = 0.9, ε = 10−6. (30)

3.3. Preconditioning

A preconditioner speeds up convergence of this iterative algorithm. It is con-
structed as the inverse of an approximate Hessian matrix that can be obtained
by taking the derivative of a linear expansion of the gradient (Eq. (15)) with re-
spect to the skew-Hermitian matrix, and neglecting first order derivatives of the
effective potential. For the real valued case, the Hessian can be approximated
as

∂2E

∂aij∂alm
≈ δilHjm(fl + fi − fj − fm) (31)

+δjlHim(fm + fi − fl − fj) (32)

+δjmHli(fm − fi − fl + fj) (33)

+δimHlj(fl − fm − fi + fj) (34)

+βijδilδjm (35)

where the matrix βij must be chosen according to the following two principles:
(1) the approximate Hessian must be positive definite, and (2) it must provide
a good estimate of the true Hessian along the search direction such that a step
size of 1 satisfies the strong Wolfe conditions.

If the orbitals are chosen as eigenvectors of the Hamiltonian then the ap-
proximate Hessian is diagonal

∂2E

∂2aij
= −2(εii − εjj)(fi − fj) + βij . (36)

The first term on the right hand side coincides with the preconditioner that has
previously been used for molecular systems with integer occupation numbers [9].
There, an extra term was added in cases of degeneracy, εii = εjj , but here the
initial approximation of the Hessian in the L-BFGS algorithm [27] βij is used.
Since the approximate Hessian is diagonal, the preconditioner is simply

Pij =
1

−2(εii − εjj)(fi − fj) + βij
. (37)

In the present implementation, the preconditioner is updated iteratively and for
iteration k it is

P
(k)
ij =

1

−2(1− γ)(εii − εjj)(fi − fj) + γβ
(k)
ij

, (38)

8

58



Article I

where

β
(k)
ij =

‖∇~aE(~a (k))−∇~aE(~a (k−1))‖2

(~a (k) − ~a (k−1)) · (∇~aE(~a (k))−∇~aE(~a (k−1)))
. (39)

The parameter γ in Eq.(38) is a number that determines the mixing of the
two approximate Hessians: the one obtained from a linear expansion of the
gradient, Eq.(20), and the one based on the LBFGS estimate, Eq.(39). In the
calculations presented here, γ = 0.25 was found empirically to give a good
compromise between the rate of convergence and robustness. When k-point

sampling is included for the periodic systems, β
(k)
ij , needs to be multiplied by

the numerical weight of the corresponding k-point.
With this preconditioner, a step length of 1 is almost always accepted and it

works well for both finite and extended systems. It is used for both the real and
imaginary parts of the skew-Hermitian matrix. We note that the eigenvalues
in Eq. (38) are not updated at every iteration of the minimization algorithm
but only at the beginning, thereby avoiding the costly diagonalization of the
Hamiltonian matrix at each step.

3.4. Evaluation of the matrix exponential and energy gradient

The evaluation of the exponential of the skew-Hermitian matrix, exp(A), is
carried out using eigendecomposition of iA. Let Ω be a diagonal, real-valued
matrix with elements corresponding to the eigenvalues of the matrix iA and let
U be a column matrix of the eigenvectors of iA. Then the matrix exponential
of A is

exp(A) = U exp(−iΩ)U†. (40)

This computation requires diagonalization of a M × M matrix and becomes
a computational bottleneck for large systems. However, for unitary invariant
energy functionals (such as Kohn-Sham functionals), Hutter et.al. [12] have
shown that A can be parametrised without loss of generality as

A =

(
0 Aov
−A†ov 0

)
, (41)

where Aov is a N × (M − N) matrix (N - number of occupied states) and the
matrix exponential can be calculated as

exp(A) =

(
cos(P ) P−1/2sin(P 1/2)Aov

−A†ovP−1/2sin(P 1/2) IM−N +A†ovcos(P 1/2 − IN )P−1Aov)

)
,

(42)
where P = AovA

†
ov. In this case the computational effort scales as O(N2M).

An alternative and more general approach is provided by the scaling and
squaring algorithm based on the equation

exp(A) = exp(A/2m)2m

(43)

and on [q, q] Páde approximant to the matrix exp(A/2m), where m and q are
positive integer constants [31]. The algorithm of Al-Mohy and Higham is used
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here [32, 33]. The two approaches are compared in the benchmark calculations
presented below.

If the matrix exponential is evaluated using the eigendecomposition of iA,
then one can calculate the gradient of the energy using the matrices U and Ω
as

GT = U
((
U†LU

)
⊗D

)
U†, (44)

where the matrix D is

Dij =
e−i(Ωii−Ωjj) − 1

i(Ωii − Ωjj)
(45)

and the matrix G is

Gij =
∂E

∂aij

2

(2− δij)
. (46)

However, due to the sparsity of the matrix A and if the norm is ‖A‖ � 1,
the gradients can be evaluated more efficiently using only the first term on the
right hand side of Eq. (20)

G ≈ LT . (47)

If the norm of the matrix A is larger than 1, then the reference orbitals can be
updated C ← C exp(A) in which case A ← 0 and then Eq. (47) can be used.
Namely, during the iterative process,

O(k) = C exp(A(k))

check if ‖A(k)‖ > ε then set C ′ = C exp(A(k)), A(k) = 0 and continue with

O(k+1) = C ′ exp(A(k+1)).

For small systems, the performance is similar for the various methods for
evaluating the matrix exponential and energy gradient since the calculation of
the effective Kohn-Sham potential and the total energy then dominates the
computational effort. For larger systems, a difference in performance becomes
evident, as illustrated below for configurations of liquid water with up to 576
molecules.

3.5. Implementation and parameter values

We have implemented the ETDM algorithm using a numerical localized
atomic basis set and the projector augmented-wave formalism (PAW) [34] to
take into account the frozen, inner electrons of the atoms within the open-source
GPAW software [35]. An SCF algorithm based on the eigendecomposition of the
Hamiltonian in a localised atomic basis set representation is already available
there and is frequently used in KS-DFT calculations [36]. To compare the effi-
ciency of the two approaches, single-point ground-state energy calculations are
performed for the G2 [37] data set of small molecules, five ionic solids, as well
as liquid water configurations including 32, 64, 128, 256, 384 and 576 molecules
subject to periodic boundary conditions. The double-zeta polarized basis set
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(which is the default basis set in GPAW) and the generalized gradient approxi-
mation (GGA) parametrized by Perdew-Burke-Ernzerhof [38] is used. An initial
guess for the orbitals is taken to be the eigenvectors of the Hamiltonian obtained
from a superposition of atomic densities.

Convergence is considered achieved for both the SCF and the ETDM meth-
ods when the inequality

1

Ne

Nb∑
i=1

∫
d rfi|ĤKSψi(r)−

Nb∑
j=1

λijψj(r)|2 < 10−10 eV2 (48)

is satisfied. In the equation above, the λij are Lagrange multipliers and for an
SCF algorithm this is a diagonal matrix. Nb is the number of occupied orbitals.
Default values in GPAW are used, for example the Pulay density mixing param-
eters. We note that in cases where the SCF method fails to converge, it could in
principle be made to converge by using, for example, other, non-default values
of the density mixing parameter. Failure to reach convergence here means that
convergence is not obtained in the default maximum number of iteration steps,
which is 333.

4. Results

4.1. Molecules

The average number of energy and gradient evaluations for the ETDM
method and the average number of energy and diagonalization calculations for
the SCF method are presented in Table 1 and Fig. 1. The ETDM method
converges for all the 148 molecules in the G2 set using the parameter values
specified in Sec. 3. The SCF method, however, fails to converge for five of the
molecules: CH, SH, ClO, NO, and OH. These five molecules are also challenging
for the ETDM method as it requires more iterations to reach convergence there
than the average for the whole G2 set (see Fig. 1). For the molecules where SCF
converges, it requires a similar number of iterations as ETDM. On average 18
and 17 iterations are required by the SCF and ETDM methods, respectively.

The reason for the lack of convergence for SCF and slow convergence of
ETDM in the five problematic cases could be the presence of nearby saddle
points or near-degenerate higher energy states. In the SCF calculations, the
orbitals obtained from the diagonalization of the Hamiltonian matrix at subse-
quent iterations can ‘jump’ between different energy surfaces or oscillate around
a saddle point. Analogous convergence issues for the DIIS method have been
reported for the G2 molecular set and transition metal complexes [15].
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Figure 1: (a) Number of SCF iterations and energy/gradient evaluations in the exponential
transform direct minimization needed to reach convergence according to criterion Eq. (48) for
a representative set of 10 molecules from the G2 set. (b) Energy/gradient evaluations in the
exponential transform direct minimization for the molecules for which the SCF method failed
to converge.

Table 1: Comparison of the performance of the exponential transform direct minimization,
ETDM, and self-consistent field, SCF, methods for the G2 set of molecules (a total of 148
molecules). The average number of energy and gradient evaluations is reported for the former
method, but the average number of energy and diagonalization calculations for the latter (in
both cases denoted e/g(d)). In the column labeled ETDM∗, the five molecules for which the
SCF calculations did not converge are excluded.

SCF ETDM ETDM∗

average e/g(d) 18 17 16
min e/g(d) 12 6 6
max e/g(d) 26 72 25
did not converge 5 - -

For these small molecules, the evaluation of the matrix exponential and
energy gradient, i.e. the diagonalization of the Hamiltonian matrix, is not the
dominant computational effort. The various algorithms presented in Sec 3.4
therefore involve similar computational effort.

4.2. Periodic Systems

As examples of extended systems subject to periodic boundary conditions,
calculations have been carried out for five crystalline solids: NaCl, NaF, LiCl,
LiF and MgO. A cubic unit cell is chosen consisting of 8 atoms and Γ-centered
3 × 3 × 3 Monkhorst-Pack meshes are used for the BZ sampling. The lattice
constants are set to the optimal values obtained from PBE calculations [39].
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Figure 2: Number of SCF iterations and energy/gradient evaluations in the exponential
transform direct minimization needed to reach convergence according to criterion Eq. (48) for
NaCl, NaF, LiCl, LiF and MgO crystals.

The number of iterations required to reach convergence is presented in Fig. 2.
The results show that the ETDM and the SCF algorithms have similar rate of
convergence for these systems. This is an important test of the preconditioner
given in equation (38) and shows that it is suitable for solids as well as molecules.

Tests were also carried out for another set of extended systems representing
snapshots of liquid water. The systems contain 32, 64, 128, 256, 384 and 576
water molecules subject to periodic boundary conditions. The efficiency of the
two approaches for evaluating the matrix exponential in the ETDM method
discussed in Sec 3.4 is compared, also in relation to SFC, and reported in Fig.3.
One of the approaches is based on Eq. (42) and makes use of the fact that the
energy is invariant with respect to unitary rotations of the occupied orbitals. In
this case, the computation of the matrix exponential requires diagonalization of
an N ×N matrix and involves less computational time as compared to the SCF
algorithm where the first N eigenvectors of a M×M Hamiltonian matrix need to
be calculated. The other approach, the scaling and squaring algorithm Eq.(43),
is more general and does not rely on the parameterization of the skew-Hermitian
matrix based on Eq. (43). For dense matrices, this approach is generally slower
than the one based on eigendecomposion of the skew-Hermitian matrix Eq. (40),
but for sparse matrices this algorithm can outperform the eigendecomposion
approach. The energy gradient is calculated according to Eq. (47).

The ratio of the CPU time required by calculations using the SCF method
and the ETDM method is shown as a function of the number of water molecules
in Fig. 3. When the matrix exponential is evaluated using Eq. (42) the ETDM
method outperforms SCF by a factor of two if more than 200 water molecules are
included in the system. Also, the more general implementation of ETDM using
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Figure 3: Ratio of the CPU time used by the SCF method and the exponential transform
direct minimization, ETDM, method based on either the scaling and squaring algorithm,
Eq. (43) (ss, red curve) or the evaluation of the matrix exponential by diagonalization, Eq. (40),
(uinv, blue curve), as a function of the number of water molecules in liquid configurations
subject to periodic boundary conditions. For the largest system, the direct minimization
based on matrix diagonalization outperforms the SFC method by a factor of two while the
implementation based on the scaling and squaring algorithm is 20% faster than SCF.
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scaling and squaring, Eq. (43), is faster than SCF by 20% for these relatively
large systems. It has the advantage of being applicable to energy functionals
lacking unitary invariance, unlike the SCF algorithm.

5. Discussion and Conclusion

The main advantage of the ETDM implementation presented here, based on
a general preconditioner, L-BFGS algorithm and inexact line search is robust-
ness. For small molecules the computational effort is similar to the standard
SCF approach when the latter converges, but the ETDM is found to converge
for all the molecules in the G2 set with the same set of parameter values, a set
that also works for extended liquid configurations and insulating solids. This
demonstrates the transferability of the ETDM algorithm as implemented here.
For the large systems considered here, liquid water configurations with 200 and
up to 576 molecules, the ETDM outperforms the direct SCF method up to by
a factor of two when special parametrization of skew-Hermitian matrix is used
and by around 20% when the more general scaling and squaring method is used.
The latter is more general and can be applied to any type of orbital dependent
energy functional such as self-interaction corrected functionals [23].

The ETDM method involves minimization of the energy with respect to the
elements of a skew-Hermitian matrix and, therefore, the number of degrees of
freedom scales as M2, where M is the number of basis functions. However,
for energy functionals that are unitary invariant with respect to the occupied
orbitals, the skew-Hermitian matrices can be parametrized using N × (M −N)
degrees of freedom,[12] where N is the number of occupied orbitals. There-
fore, taking into account the sparsity of the matrices, the algorithm can be
implemented in such a way that the computational effort scales as O(N2M).
The scaling and squaring algorithm for evaluating the matrix exponential is not
as efficient but is more generally applicable and can still outperform the SCF
method as was found for the large liquid water configurations.

Future work will involve generalization of the ETDM method to finite tem-
perature KS-DFT, i.e. thermal smearing, where an additional inner loop for
variational optimization of the occupation numbers is included, analogous to
the direct minimization method used in ensemble DFT [13]. This is needed
for calculations of metallic systems. A more efficient preconditioner could also
likely be developed, especially for orbital density dependent functionals. Finally,
we point out that the ETDM method is also useful in other types of electronic
structure calculations, such as studies of excited states [40, 41].
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Abstract

The development of variational density functional theory approaches to excited elec-

tronic states is impeded by limitations of the commonly used self-consistent field (SCF)

procedure. A method based on a direct optimization approach as well as the maximum

overlap method is presented and the performance compared with previously proposed

SCF strategies. Excited-state solutions correspond to saddle points of the energy as a

function of the electronic degrees of freedom. The approach presented here makes use

of a preconditioner determined with the help of the maximum overlap method to guide

the convergence on a target nth-order saddle point. The method is found to be more

robust and to converge faster than previously proposed SCF approaches for a set of 89

excited states of molecules. A limited-memory formulation of the symmetric rank-one

method for updating the inverse Hessian is found to give the best performance. A

conical intersection for the carbon monoxide molecule is calculated without resorting

to fractional occupation numbers. Calculations on excited states of the hydrogen atom

and a doubly excited state of the dihydrogen molecule using a self-interaction corrected

functional are presented. For these systems, the self-interaction correction is found to
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improve the accuracy of density functional calculations of excited states.

1 Introduction

In the light of recent and rapid advancements in fields such as photocatalysis and ultrafast

spectroscopies, the availability of e�cient and accurate computational methods to model

electronic excited-state properties of molecules has become increasingly important. A widely

used methodology to obtain excited-state properties of molecules is time-dependent density

functional theory (TDDFT).1–3 Practical applications of TDDFT rely on (i) linear response

to describe the perturbation of the electron density due to an external field, and (ii) the

adiabatic approximation, which neglects the time dependency of the functional derivative of

the exchange-correlation (xc) potential with respect to the density, the so-called xc kernel.

With those approximations, the computations can be carried out with local and semi-local

ground-state Kohn-Sham (KS)4,5 functionals without excessive computational requirements

and this has been found to give an adequate description of valence excitations in many

cases.1,6 On the other hand, the neglect of the time dependency of the xc kernel limits

the applicability of this approach and makes it, for example, inadequate for the description

of double excitations7–9 and conical intersections between ground and excited states.7,10

Moreover, due to the incorrect form of the potential at long range and to the lack of orbital

relaxation e↵ects,11–13 TDDFT with KS functionals su↵ers from systematic errors when

applied to excited states that are di↵use, such as Rydberg states,6,14,15 or involve transfer of

charge between spatially separated regions.16–18

Some of these issues can be solved employing alternative DFT formulations where excited

states are obtained as single Slater determinant wave functions optimized for non-aufbau oc-

cupations using ground-state functionals. Here, one seeks a saddle point on the energy

surface instead of a minimum. Thanks to the inclusion of state-specific orbital relaxation
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e↵ects, these methods can describe a broader range of excited states than linear-response

TDDFT in the adiabatic approximation, and have, therefore, seen a revival of interest re-

cently.12,14,15,19–35

The excited-state DFT methodology that we consider here does not enforce orthogonality

constraints between the di↵erent excited-state solutions and the ground state, and, there-

fore, represents a straightforward extension of ground-state DFT4. Higher-energy stationary

points of ground-state density functionals obtained in this way do not necessarily represent

rigorous approximations to the exact stationary states.15,36 On the other hand, practice has

shown that excited-state DFT calculations are usually able to deliver useful approximations

to excited-state properties of molecules, such as excitation energies and potential energy sur-

faces.23,34 Some studies have also highlighted how the method can satisfactorily treat cases,

such as conical intersections, with strong static correlation, despite the single-determinant

approximation.19,22,22,33

From a more practical point of view, the lack of orthogonality and the single-determinant

approximation give rise to di�culties in the convergence of higher-energy solutions. First of

all, when lower-energy states of the same symmetry are present, variational collapse can oc-

cur due to mixing of occupied and virtual orbitals with the same symmetry. The commonly

used self-consistent field (SCF) approach can be combined with a maximum overlap method

(MOM),15,23,34 which prevents variational collapse. However, SCF convergence can still be

problematic when dealing with single determinants that include unequally occupied degen-

erate or near-degenerate orbitals. This situation is analogous to what happens for ground

states with vanishing HOMO-LUMO gap37 and can arise, for example, close to conical inter-

sections.38 One strategy that is often adopted is electronic smearing to obtain convergence

on an average occupied configuration.39 This, however, comes with the risk of introducing

artifacts in the calculated excited-state properties, as will be demonstrated below.

4Sometimes, this method is referred to as � self-consistent field (�SCF),21,24,28,32,33,35 but here we prefer
the more general term “excited-state DFT”, following Cheng et al.,15 avoiding the risk of relating the method
to a specific nonlinear variational procedure (such as SCF) and to the computation of a specific excited-state
property (the excitation energy through the energy di↵erence, �, between excited and ground state).
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There exist alternative nonlinear variational procedures for finding stationary points of

energy functionals based on direct optimization (DO) of the orbitals through unitary trans-

formations.40–43 Implemented with gradient-based unconstrained optimization algorithms,

this approach has been shown to be a more robust strategy for converging ground states

with DFT than SCF-based methodologies.40,44,45 However, the risk of variational collapse

impedes straightforward application of DO methods for locating saddle points of the energy

surface. One way of circumventing this problem is to convert the saddle-point optimization

to a minimization of the squared norm of the gradient of the energy with respect to the elec-

tronic degrees of freedom.21 Variational collapse is avoided by squared gradient minimization

but there is a series of drawbacks that have to be considered. First, the computational cost

is increased with respect to ground-state calculations, because the gradient of the squared

norm of the gradient is needed. Furthermore, this strategy requires more iterations than

SCF-MOM (when convergence can be reached),21 because squared gradient minimization is

less well conditioned than energy minimization.21,46 Lastly, this approach can converge on

points where the squared norm of the gradient has a minimum but is not zero. The initial

guess, therefore, needs to be su�ciently good.21

When the above-mentioned practical issues have not represented a problem, excited-

state calculations using KS functionals have given more accurate results than linear-response

TDDFT for a number of challenging excited states. These include doubly excited states,21,23

core excitations,20 Rydberg15,21 and charge-transfer23,26,34,47 transitions, absorption spectra48

and structural dynamics24,49 in solution, including nonadiabatic dynamics.19,22,33 However,

it has been pointed out11,50 that many excited states, such as Rydberg, charge-transfer and

doubly excited states, are a↵ected more by self-interaction error (SIE) than ground states

at the level of the commonly employed semi-local KS functionals. An unbalanced treatment

of self interaction can, for example, lead to systematic errors in calculations of excitation

energy.11 Self-interaction correction (SIC)51 applied to KS functionals corrects the long-range

form of the e↵ective potential, as has been demonstrated, for example, for Rydberg states50
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and dipole bound anions;52 thus, it can improve the description of the excited states.53

However, it is challenging to perform fully variational calculations with SIC functionals

since they are explicitly orbital-density dependent and the energy is not invariant to unitary

tranformations among the equally occupied orbitals. While fully variational implementations

of SIC functionals has been developed for ground states,54–57 the excited-state calculations

have so far not been fully variational.50

Here, we present a DO approach with the aim of improving on already existing excited-

state DFT methodologies in two ways: (1) ensuring convergence for di↵erent types of excited

states, including cases with unequally occupied degenerate orbitals, while avoiding varia-

tional collapse and without increasing the computational cost with respect to ground-state

DFT calculations; (2) allowing the use of non-unitary invariant functionals, such as SIC func-

tionals, in variational excited-state calculations. The proposed method uses a quasi-Newton

algorithm to directly converge on saddle points of any order with the help of a preconditioner

built from the eigenvalues of the Hamiltonian matrix at given intervals during the optimiza-

tion, and MOM constraints to prevent variational collapse. A preliminary evaluation of the

convergence properties of the DO-MOM method when using the Limited-memory Broyden-

Fletcher-Goldfarb-Shanno (L-BFGS) algorithm and a new limited-memory formulation of

Powell inverse Hessian update (L-Powell) is presented in a conference proceeding.58 L-BFGS

is a quasi-Newton method commonly employed for minimization, and it was shown that the

application in the present context crucially depends on updates of the preconditioner and

on the MOM constraints in order to converge on a saddle point. L-Powell was found to be

less robust than L-BFGS,58 despite its ability to generate indefinite Hessian approximations.

It would be advantageous to attain convergence on a target nth-order saddle point with-

out relying on updates of the preconditioner, since it requires costly diagonalization of the

Hamiltonian matrix. In the present work, we extend the limited-memory inverse Hessian

update algorithm presented in reference58 to the symmetric rank-one (SR1) formula. SR1

can develop negative eigenvalues59 and therefore has the desired characteristics to minimize
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the dependency on the preconditioner.

The convergence properties of the DO-MOM method58 are tested on 55 singlet and 34

triplet excited states of small and medium size molecules, including tests of the new limited-

memory SR1 (L-SR1) inverse Hessian update algorithm. Furthermore, we test the conver-

gence with respect to two challenging charge-transfer states of the nitrobenzene molecule,

for which SCF-MOM has been reported to fail,21,60 demonstrating that improved robustness

and reduced dependency on the preconditioner can be achieved with the new L-SR1 method.

Finally, we show how the DO-MOM method can converge for systems with unequally occu-

pied (near-)degenerate orbitals without tuning modifications, taking the conical intersection

of two excited states of carbon monoxide as a representative example. In each case, the

performance of DO-MOM is compared to that of a standard SCF-MOM method.

The DO-MOM method can be used for non-unitary invariant functionals such as SIC

functionals, as well as the unitary invariant KS functionals. We perform fully variational

excited-state calculations with SIC on the hydrogen atom and dihydrogen molecule and show

that the application of SIC in both ground- and excited-state calculations leads to significant

improvement in the excitation energy.

2 Theory

2.1 Excited-State DFT

2.1.1 Kohn-Sham Formulation

Within KS DFT,4,5 excited states of a spin-polarized system of N = N" + N# electrons with

density n(r) = n"(r) + n#(r) can be found as saddle points of the energy surface defined by

the dependence of the ground-state energy on the electronic degrees of freedom:15

EKS [n", n#] = Ts [n", n#] + Vext [n] + J [n] + Exc [n", n#] (1)
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where Ts [n", n#] is the kinetic energy of the non-interacting N�electron system, Vext [n]

and J [n] are the energy due to the external potential and the Hartree electrostatic energy,

respectively:

Vext [n] =

Z
�ext(r)n(r)dr (2)

J [n] =
1

2

Z Z
n(r)n(r0)

| r� r0 | drdr0 (3)

while Exc [n", n#] is the exchange-correlation (xc) functional. The KS kinetic energy and the

spin densities n�(r) are given in terms of orthonormal KS orbitals  n�(r):

Ts [n", n#] = �1

2

X

n�

fn�

Z
 ⇤

n�(r)r2 n�(r)dr (4)

n�(r) =
X

n

fn� |  n�(r) |2 (5)

in which 0  fn�  1 is the occupation number for orbital n with � spin quantum number

(" or #).

Stationary states of the non-interacting N�electron system can be obtained by finding

extrema of the energy, eq. 1, subject to orbital orthonormality constraints:

Z
 ⇤

n�(r) m�0(r)dr = �nm���0 (6)

For a fixed set of f�n, the stationarity condition leads to a set of nonlinear coupled equations:

fn�H
�
KS n� =

X

m

��nm m� (7)

where the ��nm are Lagrange multipliers for the constraints, and H�
KS is the one-particle KS

7
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Hamiltonian:

H�
KS = �1

2
r2 + �ext(r) +

Z
n(r0)

| r� r0 |dr
0 + ��

xc(r) (8)

For a functional with a form given by eq. 1, any unitary transformation that mixes equally

occupied orbitals among themselves leaves the total energy unchanged. Therefore, the set of

orbitals that makes the energy stationary for given set of occupation numbers is not unique.

2.1.2 Self-Interaction Correction

In KS functionals, the Coulomb interaction between the electrons is estimated from the total

electron density, and hence it includes non-local self interaction. While the xc functional also

includes self interaction of opposite sign, a local or semi-local functional form cannot cancel

out the self Coulomb interaction and a SIE remains, as can be seen most clearly for one-

electron systems. Perdew and Zunger51 proposed the following procedure for removing self

interaction from a KS functional:

ESIC[n", n#] = EKS[n", n#]�
X

n�

(J [nn�] + Exc[nn�, 0]) (9)

where nn� = | n�|2 is an orbital density. This represents an orbital-by-orbital estimate of

the SIE that is exact for one-electron systems.

For a SIC functional, the stationarity condition leads to a set of nonlinear coupled equa-

tions:

fn� (H�
KS �Vn�)  n� =

X

m

��nm m� (10)

where the Hamiltonian contains an orbital-density dependent part:

Vn� =

Z
nn�(r

0)

| r� r0 |dr
0 + �xc(nn�) (11)
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In contrast to KS functionals, SIC functionals are not invariant under unitary transforma-

tions of the equally occupied orbitals, and the optimal orbitals are uniquely defined as those

that extremize the energy of the given SIC functional.54–57,61–63 This corresponds to maxi-

mizing the self-interaction correction, and involves unitary optimization within the manifold

of occupied orbitals.

2.2 Self-Consistent Field

For unitary invariant functionals, eq. 7 can be simplified by choosing a unitary transforma-

tion that diagonalizes �� while leaving the energy unchanged, leading to the generalized KS

eigenvalue equations in the canonical form:

H�
KS n�(r) = ✏n� n�(r) (12)

For the non-unitary invariant SIC functionals presented in the previous section, the Lagrange

matrix is not diagonal for the optimal orbitals that extremize the total SIC-DFT energy due

to the orbital-density dependence.56,61,64

Solutions to the KS equations are found iteratively, defining the SCF procedure. The

ground state corresponds to a minimum of the energy given by the functional and is ob-

tained if at each SCF iteration the orbitals are occupied according to the aufbau principle.

Saddle points on the energy surface are obtained for non-aufbau occupations and are in-

terpreted as excited states.15,21,65 Non-aufbau occupations can be enforced during the SCF

cycle through the MOM method: at each iteration, the occupied orbitals are selected as

those that overlap most with the occupied orbitals of the previous iteration34 or with a set

of fixed reference orbitals15,23 (the latter strategy is also known as initial maximum overlap

method (IMOM)23).

9
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2.3 Direct Optimization

Alternatively, the variational problem can be formulated as an optimization of the or-

bitals through application of a unitary transformation to a set of orthonormal reference

orbitals:40–43

�p�(r) =
X

q

U�
pq q�(r) (13)

The unitary matrix U can be parametrized as the matrix exponential:41,42

U = e✓ (14)

where ✓ is required to be anti-Hermitian (✓ = �✓†) in order to preserve the orbital or-

thonormality. In this way, the energy functional can be directly extremized in the linear

space formed by anti-Hermitian matrices, which makes it possible to use well-established

local unconstrained optimization strategies.59 The exponential transformation of molecu-

lar orbitals can be applied to both KS and SIC functionals, since it does not require the

functional to be unitary invariant (unitary optimization for SIC functionals means that the

elements of ✓ that mix occupied orbitals are non-zero in contrast to KS functionals, as ex-

plained in the next section). Moreover, gradient-based direct optimization (DO) ensures

more rigorous convergence compared to SCF.40,65

For excited states, the unconstrained search can be done with quasi-Newton methods

that are able to locate saddle points. Compared to minimization, the search for a sad-

dle point is arguably a more challenging task, requiring an initial guess that is su�ciently

close to the wanted solution and a good approximation to the Hessian. Nevertheless, quasi-

Newton methods for saddle points have long been employed with some success in various

contexts, most notably transition-state searches on potential energy surfaces for atomic rear-

rangements.66–71 Here, we explore a strategy for DO of saddle points of KS and SIC density
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functionals using quasi-Newton search directions starting from a guess obtained by promot-

ing one or more electrons from occupied to unoccupied orbitals of a converged ground-state

calculation.

3 Implementation

We have implemented DO-MOM with KS and SIC functionals in a development branch of

the Grid-based Projector Augmented Wave (GPAW)72–74 software using localized atomic

basis sets to represent the molecular orbitals. The implementation of the exponential trans-

formation for KS functionals is presented in Reference.58 A review of this implementation

and its extension to SIC functionals are given in Appendix A. The MOM is based on a

standard implementation using fixed reference orbitals23 as shown in Appendix C. In the

following, we describe the new L-SR1 algorithm, including the choice of preconditioner.

3.1 Quasi-Newton Step

The computational e↵ort of a quasi-Newton step based on updating the Hessian matrix

scales as O(n3),59 where n is the dimensionality of the optimization problem (the present DO

implementation based on exponential transformation scales as NM , where N is the number

of occupied orbitals and M the number of basis set functions). A less computationally

demanding approach is to update the inverse Hessian instead of the Hessian, since this does

not involve any matrix-matrix operation or solution of a linear system of equations. The

quasi-Newton step with inverse Hessian update is:

x(k+1) = x(k) �B(k)g(k) (15)

where B(k) is the approximate inverse Hessian at iteration k, and x(k) and g(k) are the vectors

of the {✓ij} independent variables and the analytical gradient, respectively.

When the inverse Hessian is updated, the arithmetic operations scale as O(n2),59 which
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can become a bottleneck for systems with a moderate number of electrons and/or large basis

sets. To circumvent the costly operations embedded in the explicit update and storage of the

Hessian matrix, quasi-Newton algorithms can be formulated in a limited-memory version by

storing only vectors and scalars carrying the information necessary to propagate B implicitly.

In this case, the operations involved in one iteration scale linearly as O(mn), where m is the

number of previous steps used to update the current step.

L-BFGS is a commonly used limited-memory version of BFGS, which is generally consid-

ered to be the most e↵ective inverse Hessian update for minimization. The L-BFGS method

has been implemented here as described in reference.59 In calculations of atomic structures,

the Powell or SR1 Hessian update formulas, or a combination of the two,67,75 are preferred

for saddle-point searches, because they are able to develop negative eigenvalues contrary to

the BFGS formula. Therefore, we have formulated and implemented limited-memory vari-

ants of the Powell and SR1 inverse Hessian updates (L-Powell and L-SR1) by extending

the approach based on Powell Hessian updates presented by Anglada et al.76 The L-Powell

method is described in reference58 and is reviewed in Appendix B.

The inverse Hessian SR1 update formula, written in a compact form, is:77

B
(k+1)
SR1 = B(k) +

j(k)jT (k)

jT (k)y(k)
(16)

where:

j(k) = s(k) �B(k)y(k), (17)

and:

s(k) = x(k+1) � x(k), y(k) = g(k+1) � g(k) (18)

For any vector v(k) and approximation B
(k)
0 to the inverse Hessian (B

(k)
0 can in principle be
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allowed to vary at each iteration), B
(k)
SR1v

(k) can be computed using the following recursive

formula:

B
(k)
SR1v

(k) = B
(k)
0 v(k) +

k�1X

i=k�m

j(i)jT (i)v(k)

jT (i)y(i)
(19)

which takes into account the implicit information contained in the m most recent steps.

Using this result, the L-SR1 algorithm can be formulated as shown in Algorithm 1.

Choose x(0), m and pmax;

k  0;

while not converged do

Choose B
(k)
0 ;

Compute p(k)  B(k)g(k) using eq. 19;

if kp(k)k � pmax then

p(k)  pmax

kp(k)kp
(k)

end

x(k+1)  x(k) � p(k);

if k > m then

discard vector j(k�m) and scalar r(k�m);

end

s(k)  x(k+1) � x(k) and y(k)  g(k+1) � g(k);

Compute j(k)  B(k)y(k) using eq. 19;

j(k)  s(k) � j(k);

r(k)  jT (k)y(k);

Store vector j(k) and scalar r(k);

k  k + 1;

end
Algorithm 1: Quasi-Newton algorithm with limited-memory SR1 inverse Hessian up-

date. The computational cost of the operations involved scales linearly with n if B
(k)
0 is

selected to be diagonal.

Among the quasi-Newton schemes that are commonly used in optimizations of saddle

points for atomic rearrangements, some update the Hessian through a combination of the

SR1 and Powell updates. Algorithm 1 is readily generalized to use an analogous update

13
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formula that combines the SR1 and Powell inverse Hessian updates:

B
(k+1)
� = (1� �k)B

(k+1)
SR1 + �kB

(k+1)
P (20)

where B
(k+1)
SR1 and B

(k+1)
P are given by eqs. 16 and B.1, respectively. Following Bofill,67,75 the

factor �k can be taken as:

�k = 1� (yT (k)j(k))2

(yT (k)y(k))(jT (k)j(k))
(21)

In Algorithm 1 we have also introduced a maximum allowed step length, pmax. This is

because, due to the approximate nature of the initial approximation to the Hessian (see next

section), initial steps may be too large, causing departure from the basin of attraction of the

desired saddle point. We have found that pmax = 0.20 provides an adequate balance between

stability and speed of convergence in most cases. The SR1 update can become unstable

if the denominator in eq. 16 is small. To avoid such instabilities, the following procedure

is adopted: if |jT (i)y(i)| < ", where " is a small number, then jT (i)y(i) is set to ". When

using " = 10�12, we have found that this procedure prevents L-SR1 from becoming unstable,

without a↵ecting the rate of convergence.

3.2 Preconditioner

The preconditioner for the quasi-Newton step, represented by the matrix B
(k)
0 introduced in

the previous section, is chosen as the inverse of the following diagonal approximation to the

Hessian matrix:42

@2E

@2✓ij

⇡ �2(✏i � ✏j)(fi � fj) (22)

where the ✏i are the eigenvalues of the Hamiltonian matrix. Eq. 22 is obtained by taking

the derivative of a linear expansion of the gradient (eq. A.6) and neglecting second-order
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derivatives of the potential. Previously, it has been shown that this type of preconditioner

can improve the convergence of Hartree-Fock (HF) and DFT calculations based on direct

minimization of the energy,21,40 when using the BFGS method.

At the beginning of the optimization, the preconditioner is generated using the eigenval-

ues and occupation numbers of the guess obtained by promoting electrons from occupied to

virtual orbitals of the ground state. As will be shown for the excited states of nitrobenzene,

it can happen that the number of negative eigenvalues of this initial approximate Hessian is

not consistent with the order of the saddle point corresponding to the target excited state.

To ensure that the preconditioner has the appropriate structure to guide the convergence

towards the target nth-order saddle point, the approximate Hessian of eq. 22 is recomputed

at regular intervals during the optimization and B
(k)
0 updated together with the reference

orbitals. In order to find the occupation numbers of the canonical orbitals, which are needed

to compute the preconditioner based on eq. 22, the MOM method is employed (see Ap-

pendix C). Close to the target solution, the update of the preconditioner is not needed and

can be avoided using a threshold on the magnitude of the energy gradient, which reduces

the computational cost by avoiding unnecessary diagonalization of the Hamiltonian matrix.

Finally, we note that the preconditioner derived from eq. 22 is not defined for oo terms,

since in this case f
(k)
i = f

(k)
j , and for degenerate ov pairs. For these cases, the preconditioner

is not used, corresponding to setting the elements of B
(k)
0 to 1.

4 Computational Methods

All the calculations presented in this work are performed with a development version of

GPAW where the DO-MOM method for KS and SIC xc functionals has been implemented.

The PAW method78 is used to treat the regions near the nuclei, core electrons of each atom

are frozen to the result of a reference scalar relativistic calculation of the isolated atom, and

valence electrons are represented in a basis of linear combination of atomic orbitals. For
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all the basis sets considered in this work, the uncontracted functions are removed, as the

nodal structure of the orbitals around the nuclei is accounted for by the PAW correction.

The simulation cell has a uniform grid with grid spacing of 0.15 Å, while the dimensions

of the box are chosen in such a way as to avoid e↵ects due to truncation of the numerical

representation of the basis functions. For the DO-MOM calculations, a maximum allowed

step length, pmax, of 0.20 is utilized, while the memory m of L-BFGS, L-Powell and L-SR1

is chosen as equal to 20. At every 20th step the preconditioner based on eq. 22 is updated

unless the root mean square of the gradient is less than 10�3 eV. The SCF-MOM method

is based on direct diagonalization of the Hamiltonian matrix in the basis of atomic orbitals

and updating the electron density using a direct inversion in the iterative subspace (DIIS)

procedure (Pulay mixing of the density72,79). We use GPAW default parameters for the Pulay

mixing of the density: the number of old densities used in the mixing is 3, the coe�cient used

in the linear mixing of the density with the density residual vector is 0.15, and no damping

of short wavelength density changes is used.72 Unless otherwise stated, convergence (both in

SCF or DO calculations) is considered achieved if the integrated value of the square of the

residuals of eq. 7 (for KS functionals) or 10 (for SIC functionals) is less than 4.0·10�8 eV2 per

electron. All calculations are performed within the spin-unrestricted formalism. Since each

state is described by a single determinant, open-shell singlets are not pure-spin states. Both

the KS and SIC calculations use the generalized gradient approximation (GGA) functional

PBE.80

4.1 Convergence Tests

The robustness and rate of convergence of the DO-MOM method is assessed by performing

single-point calculations of the excited states of small and medium size molecules. The tests

include 52 singlet and 34 triplet excited states of 18 small compounds from the benchmark

set of reference,81 and the lowest singlet excited states of 3 medium organic compounds

(acetone, benzene and naphtalene) from reference,82 for a total of 89 states generated by
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single electron transition from the ground state. Lowest triplet states have been excluded

from this benchmark set since they correspond to minima on the energy surface and not

saddle points. These states are chosen because highly accurate reference data is available

making reliable assignment of the states possible, and due to the diverse character of the

electronic transitions. The test set includes 35 valence (V) excitations (n ! ⇡⇤, � ! ⇡⇤

and ⇡ ! ⇡⇤ transtions), 53 Rydberg (R), and 1 charge-transfer (CT) states (the lowest

singlet excited state of hydrogen chloride). The geometries are taken from reference81 and

reference.82 For the DO-MOM calculations three di↵erent inverse Hessian update schemes are

compared: L-BFGS, L-Powell and L-SR1 (the latter two according to the limited-memory

algorithm presented in section 3.1). We further compare DO-MOM to a standard SCF-

MOM method based on direct diagonalization of the Hamiltonian matrix, as implemented

in GPAW.73 For each molecule, the ground state is first converged using SCF. Then, the

initial guess for an excited state is generated by a one-electron excitation involving the

occupied and unoccupied orbitals that define the character and symmetry of the excited

state. Convergence is obtained when the square of the residuals is less than 10�10eV2. The

maximum number of iterations for a calculation is 300. The aug-cc-pVDZ basis set83–85 is

used.

The calculations of nitrobenzene test both SCF-MOM and DO-MOM with L-BFGS and

L-SR1 with respect to convergence to the singlet 1A1(n⇡ ! ⇡0⇤) and 1A1(⇡
0 ! ⇡⇤) excited

states. Using the ground-state orbitals, the initial guess for the 1A1(n⇡ ! ⇡0⇤) state is

generated by promoting an electron from the highest energy ⇡ lone pair (n⇡) to the second

lowest ⇡⇤ orbital (⇡0⇤), while for the 1A1(⇡
0 ! ⇡⇤) state excitation is from the second highest

occupied ⇡ orbital (⇡0) to the lowest unoccupied ⇡⇤ orbital. The calculations are perfomed at

the C2v geometry used in references.21,60 The basis set is def2-TZVP,86 as in the calculations

presented in references.21,60

To further assess the robustness of the DO-MOM method in cases of orbital degeneracy,

the potential energy curves (PECs) of the lowest 1⇧(� ! ⇡⇤) and 1�(⇡ ! ⇡⇤) excited states
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of carbon monoxide are calculated around the conical intersection. The DO-MOM PECs and

analytical atomic forces are compared with PECs and forces obtained using an SCF-MOM

method where convergence is attained through Gaussian smearing of both the hole and the

excited electron.24 Let N denote the number of valence electrons described explicitly and

M the total number of orbitals included in the calculation. At each SCF step, the hole i

and the excited orbital a are determined through the maximum overlap criterion and the

occupation numbers of the n lowest N orbitals and those of the m orbitals from N +1 to M

are modified according to:

fn(✏n) = 1� si(✏n) (23)

fm(✏m) = sa(✏m) (24)

where si(✏n) and sa(✏m) are Gaussian functions of the KS eigenvalues:

si(✏n) =
1

Ai

exp


�(✏n � ✏i)2

2�2

�
, sa(✏m) =

1

Aa

exp


�(✏m � ✏a)2

2�2

�
(25)

with the normalization factors being such that the total number of electrons is conserved. The

width � is chosen as 0.01 eV at the beginning of the SCF and then it is increased by 0.02 eV

every 40th iterations, until convergence is reached. A similar electronic smearing technique

has been used before to stabilize the SCF convergence in DFT calculations of PECs33 and

Born-Oppenheimer molecular dynamics simulations with DFT atomic forces.24,49,87 For all

the calculated points of both DO-MOM and SCF-MOM PECs, the guess orbitals are from a

ground-state calculation at the reference geometry,81 where the interatomic distance is 1.134

Å. The DO-MOM and SCF-MOM calculations of the PECs of carbon monoxide use a dzp

basis73 (default in GPAW).
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4.2 Self-Interaction Corrected Calculations

DO-MOM calculations were carried out of the ground and first three lowest excited states of

the hydrogen atom and of the ground and 1⌃+
g (1�2

g ! 1�2
u) doubly excited state of the dihy-

drogen molecule using both PBE and SIC-PBE. The basis sets are daug-cc-pV6Z excluding

g- and h-type functions for hydrogen, and aug-mcc-pVQZ excluding f -type functions for

dihydrogen, which leads to an excitation energy converged to within ⇠0.01 eV (see Figure

S1 in the Supporting Information) The interatomic distance in dihydrogen is set to 1.4 Å as

in reference.23

5 Results

5.1 Convergence Tests

5.1.1 Benchmarks on Small and Medium Size Molecules

The results of the convergence tests on 55 singlet and 34 triplet excited states of small

and medium size molecules are reported in Tables 1 and 2. The average, maximum and

Table 1: Convergence properties of the SCF-MOM and DO-MOM methods for 52 singlet excited
states of molecules from the benchmark set in reference81 plus the lowest excited states of acetone,
benzene and naphtalene. For the DO-MOM methods, one iteration corresponds to one energy
and gradient evaluation, while for SCF-MOM it represents one energy evaluation and finding the
solution for the eigendecomposition of the Hamiltonian matrix.

SCF-MOM DO-MOM

L-BFGS L-Powell L-SR1

Convergence failures 17 2 10 0

Avg no. iterations 22.9 13.9 20.5 12.3

Max no. iterations 96 32 69 17

Min no. iterations 15 9 9 9

Local saddle points 0 1 1 1

minimum number of iterations are reported after excluding the cases that do not converge
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Table 2: Convergence properties of the SCF-MOM and DO-MOM methods for 34 triplet states of
molecules from the benchmark set in reference.81 The calculations corresponding to one iteration
are the same as in Table 1.

SCF-MOM DO-MOM

L-BFGS L-Powell L-SR1

Convergence failures 10 0 7 0

Avg no. iterations 26.6 15.1 23.0 12.4

Max no. iterations 121 35 44 16

Min no. iterations 15 9 11 10

Local saddle points 0 2 1 4

for any of the methods. Figure 1 shows the number of iterations needed to converge the

singlet states.

Figure 1: Number of iterations needed to reach convergence of the singlet excited states.

SCF-MOM fails to converge within the maximum number of iterations threshold in about
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30% of the cases. All the quasi-Newton algorithms employed within the DO-MOM framework

are more robust and show a faster rate of convergence than SCF-MOM. The best performance

is obtained with L-SR1, for which all calculations converge, and convergence takes on average

about 11 and 14 iterations less than SCF-MOM for singlet and triplet states, respectively.

L-BFGS also performs well, being able to converge in all cases except two (the 1�(⇡ ! ⇡⇤)

states of carbon monoxide and dinitrogen). The limited-memory Powell inverse Hessian

update in DO-MOM is considerably less e�cient than L-SR1 and L-BFGS. L-Powell can

have a slow rate of convergence close to a stationary point, which in many cases precludes

convergence within the maximum number of allowed iterations. We have tested di↵erent

combinations of limited-memory inverse Hessian updates by considering some of the cases

that are most di�cult to converge (see Figure 2). The combination of L-SR1 and L-Powell

according to the Bofill approach (see eqs. 20 and 21) is found to have similar performance

as L-Powell. This is consistent with the fact that in the Bofill approach �k, representing

the weight of the Powell update, tends to 1 when the optimization approaches a stationary

point. We have also tested a combination of L-SR1 and L-BFGS updates using the Bofill

factor.88 This approach does not lead to better convergence compared to L-SR1.

Figure 2 shows the number of iterations needed by DO-MOM with SR1 update to con-

verge the singlet excited states for which the other methods fail. On average these di�cult

cases require more iterations than the cases presented in Figure 1. Among the states that

are di�cult to converge are those where excitation occurs from or to a degenerate pair of ⇡

orbitals, such as the ⇧ states of hydrogen chloride, carbon monoxide and dinitrogen, while

others are high-lying Rydberg states, most of which involve near-degenerate p-type Rydberg

orbitals. A particularly challenging situation arises when both the donor and the acceptor

orbitals involved in the excitation belong to degenerate pairs, as for the �(⇡ ! ⇡⇤) states

of carbon monoxide and dinitrogen. In this case, all methods except L-SR1 fail to converge.

The other DO-MOM methods exhibit oscillations between di↵erent critical points, failing

to converge to the desired solution. The failure of SCF when degenerate orbitals are un-
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Figure 2: Total number of iterations when DO-MOM with L-SR1 is used to converge the
singlet excited states for which SCF-MOM fails.

equally occupied is discussed in detail below. In about 30% of the calculations that do not

converge with SCF-MOM, occupied orbitals can mix with lower-lying empty orbitals of the

same symmetry. On the other hand, the L-SR1 method is able to converge all these cases.

The properties of DO-MOM when orbitals involved in the excitation are allowed to mix are

analyzed in more detail in the following section, where calculations of two totally symmetric

excited states of the nitrobenzene molecule are presented.

The SCF convergence problems for states where degenerate orbitals are unequally occu-

pied arise because the electron density represented by a single determinant of KS orbitals

obtained at each step is not well defined and this can lead to large changes in the orbitals

involved in the excitation from one step to another, and oscillations between di↵erent critical

points.40 Several options can be used to help convergence of the SCF: di↵erent mixing of the

density, alternative DIIS extrapolation techniques,89 or tuning modifications such as damp-

ing, level shifting of the iterations, or electronic smearing.37 However, DO is able to follow

the same solution more consistently without such modifications. It can obtain convergence in

these di�cult cases if the chosen quasi-Newton method guarantees su�ciently accurate Hes-
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sian updates for the given form of the preconditioner, as shown here. The robustness of the

DO approach in calculations involving orbital degeneracies has been previously recognized

for ground states of systems with vanishing HOMO-LUMO gap.40

For some excited states, a DO method can converge on a solution with higher energy

than the solution obtained by SCF or another DO method for the same excited state. For

example, the solution obtained for the 11E(n ! 3p) state of ammonia with L-BFGS or L-

SR1 DO-MOM lies ⇠0.03 eV higher in energy with respect to the SCF-MOM solution. The

occurrence of higher-energy solutions, which we refer to as “local saddle points”, is indicated

in Tables 1 and 2. We stress that the multiple solutions that are obtained for a particular

case are all saddle points of the same order and correspond to the same excited state. Mul-

tiple solutions corresponding to the same excited state are found to di↵er in the orientation

of the highest occupied molecular orbitals (see Figures S2 to S6 in the Supporting Informa-

tion). Similar to what is observed here for saddle points, the geometric direct minimization

method of reference40 exhibits a tendency to converge on local minima of energy functionals

compared to SCF minimizers. Defining the “optimal” approximation to an excited state

among multiple variational solutions might not be trivial. Indeed, variational solutions of a

nonlinear optimization are in general not orthogonal to one another, and hence higher solu-

tions are not necessarily upper bounds to the exact excited states, but only upper bounds

to the ground state.90 Besides, for many practical applications, such as calculations of PECs

or molecular dynamics, one is usually only interested in consistently converging on the same

stationary point. For these cases, DO-MOM can be used without modifications. For cases in

which the lowest energy saddle point of a given excited state is desired, a possible strategy

could be to combine the DO approach with techniques for guiding the convergence towards

a global solution, such as the one presented in reference.91

Finally, we note that due to the small size of the molecules considered here, the compu-

tational e↵ort of SCF-MOM and DO-MOM is comparable, as indicated by similar values of

the elapsed time per iteration. For larger systems, care must be taken that the memory of
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the quasi-Newton algorithm used within DO-MOM, which here is chosen as m = 20, does

not degrade the computational performance of the method. From test calculations, where

we compare the convergence of L-BFGS and L-SR1 with di↵erent levels of memory, we find

that L-SR1 tends to become less robust with lower memory faster than L-BFGS. Therefore,

for large systems, L-BFGS might represent the best compromise between speed of conver-

gence and computational e↵ort among the various limited-memory inverse Hessian update

schemes.

5.1.2 Nitrobenzene

Figure 3 illustrates the frontier molecular orbitals involved in the electronic transitions that

lead to the 1A1(n⇡ ! ⇡0⇤) and 1A1(⇡0
! ⇡⇤) excited states of nitrobenzene. Both states

 

en
er
gy

 

Figure 3: Ground-state frontier molecular orbitals of nitrobenzene and depiction of the
electronic transitions involved in the 1A1(n⇡ ! ⇡0⇤) (Left) and 1A1(⇡0

! ⇡⇤) (Right) excited
states. The labels of the orbitals are according to the notation from reference.60 The orbital
surfaces are drawn at an isovalue of 0.1 Å�3/2.

have charge-transfer character: in the case of the 1A1(n⇡ ! ⇡0⇤) state, one electron moves

from the nitro group to the benzene ring, while in the case of the 1A1(⇡0
! ⇡⇤) state, the

direction of the charge transfer is reversed. Figure 3 also schematically illustrates that the

highest occupied orbitals, including the orbital from which excitation occurs, are all closely
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spaced in energy, covering a range of around 1 eV, despite being localized on di↵erent regions

of the molecule. Charge transfer from such a subset of closely spaced orbitals is expected to

be accompanied by a change of the energy ordering of the occupied orbitals.

Hait et al.
21 and Mewes et al.

60 have shown that SCF-MOM-based techniques fail to

converge to the 1A1(n⇡ ! ⇡0⇤) and 1A1(⇡0
! ⇡⇤) states, respectively. When the overlaps

used to find the occupation numbers with the MOM at one step are computed with respect

to the orbitals from the previous step, collapse to the ground state occurs; while if the

overlaps are computed with respect to the initial set of orbitals, the iterative procedure

does not converge. In accord with this, our SCF-MOM calculations exhibit large and rapid

oscillations without convergence in 300 iterations. This failure is likely caused by the presence

of orbitals energetically close to the n⇡ and ⇡0 orbitals from which excitation occurs, and

to rearrangements in the order of the orbital energy levels. DO-MOM, however, is able to

converge both of these challenging cases.

Figure 4 shows the convergence of energy and gradient in a DO-MOM calculation of

the 1A1(n⇡ ! ⇡0⇤) state using the L-BFGS method, where the preconditioner is updated

after the MOM determines a change in the occupation numbers. After 13 steps of the

Figure 4: Convergence of excitation energy and root mean square of the gradient in a DO-
MOM calculation of the 1A1(n⇡ ! ⇡0⇤) excited state of nitrobenzene using L-BFGS.
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optimization, a change of the character of the occupied orbitals is detected and, as a result,

the MOM induces a change in the occupation numbers, which restores the character of the

initial guess. Application of the MOM constraints is accompanied by a jump in the energy as

can be observed from Figure 4. After that, the energy is converged to 10�6 eV in ⇠50 steps.

While the approximate Hessian at the initial guess has six negative eigenvalues, the converged

solution is a ninth-order saddle point. This is a consequence of a significant rearrangement

in the ordering of the orbitals induced by the charge transfer, which stabilizes the orbitals

localized on the nitro group, including the hole, and destabilizes the orbitals localized on

the benzene ring. When L-BFGS is used, it is essential to apply the MOM constraints and

update the preconditioner in order to achieve convergence to the target excited state. This

is illustrated in Figure 5, which shows a DO calculation with L-BFGS starting from the

same initial guess as in Figure 4 but where the MOM is not applied and the preconditioner

is not updated. In this case, the hole which has an initial n⇡ character, acquires during the

Figure 5: Convergence of excitation energy and root mean square of the gradient in DO
calculations using L-BFGS (Left) and L-SR1 (Right) without the MOM and with a precon-
ditioner fixed at the guess for the 1A1(n⇡ ! ⇡0⇤) state of nitrobenzene.

DO the character of the ⇡ orbital depicted in Figure 3 (the n⇡ and ⇡ orbitals are allowed to

mix because they both belong to the A2 irreducible representation in the C2v point group

symmetry), and the calculation eventually collapses to a third-order saddle point. Figure 5
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also shows a DO calculation without the MOM and with a fixed preconditioner when the

approximate inverse Hessian is updated using L-SR1. Despite an initial approximate Hessian

with a lower number of negative eigenvalues compared to the Hessian of the target solution,

the DO with L-SR1 is able to converge to the ninth-order saddle point corresponding to the

1A1(n⇡ ! ⇡0⇤) state. This can be explained with the ability of L-SR1 to develop negative

eigenvalues, while L-BFGS cannot. The squared gradient minimization method of reference21

is also able to converge to the 1A1(n⇡ ! ⇡0⇤) state of nitrobenzene. However, due to the need

to compute the derivative of the squared norm of the gradient at each step, the minimization

involves larger computational e↵ort per iteration than the present DO-MOM calculations.

In the case of the 1A1(⇡0
! ⇡⇤) excited state, the converged solution is found to be

a fourth-order saddle point, while the approximate Hessian at the initial guess generated

from the ground-state orbitals (see Figure 3) has three negative eigenvalues. As for the

1A1(n⇡ ! ⇡0⇤) state, a DO calculation with L-BFGS can converge to the target solution only

if the MOM is used and the preconditioner updated during the optimization.58 Figure 6 shows

the convergence of DO-MOM calculations using L-SR1 with and without preconditioner. It

Figure 6: Convergence of excitation energy and root mean square of the gradient in DO-
MOM calculations of the 1A1(⇡0

! ⇡⇤) excited state of nitrobenzene using L-SR1 with (Left)
and without (Right) preconditioner.

is found that DO-MOM with L-SR1 is able to converge to the 1A1(⇡0
! ⇡⇤) state even
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without the use of a preconditioner, although large oscillations of the energy are observed

at the beginning of the optimization and almost four times as many steps are required to

achieve convergence compared to a calculation that uses the preconditioner. These results

show that the L-SR1 method developed in the present work is less sensitive to the quality

of the preconditioner and is able to build a better approximation to the inverse electronic

Hessian when used in optimizations of excited states within DFT compared to a standard

implementation of the most used L-BFGS quasi-Newton algorithm.

All calculations presented above use a maximum step length, pmax, of 0.20, which is the

value found optimal in most of the cases. However, a pmax of 0.25 leads to smaller oscillations

at the beginning of the optimization and faster convergence in the case of the DO-MOM

calculations with L-SR1 (see Figures S7 and S8 in the Supporting Information). The use of

a fixed allowed step length is a limitation of the current implementation. To ensure smooth

and monotonic convergence for a broad range of systems, a trust region scheme could be

introduced.

5.1.3 Potential Energy Curves of Carbon Monoxide

The electron configuration of the ground state of carbon monoxide is

(1�)2(1�⇤)2(2�)2(2�⇤)2(1⇡)4(3�)2(1⇡⇤)0(3�⇤)0. The lowest singlet excited states arise

from � ! ⇡⇤ and ⇡ ! ⇡⇤ single-electron excitations. Among the states with these

configurations, the 11⇧(n! ⇡⇤) and 11�(⇡ ! ⇡⇤) can be approximated using a single

determinant.

KS DFT has several di�culties describing the 11⇧(n! ⇡⇤) and 11�(⇡ ! ⇡⇤) states and

their conical intersection. Firstly, the determinant obtained from a single-electron transi-

tion between orbitals of the same spin has a broken spin symmetry, since the pure singlet

open-shell state is a symmetry-adapted linear combination of two determinants with the

same configuration. Secondly, KS DFT neglects the multireference character of the wave

functions arising from mixing of configurations involving the degenerate pairs of 1⇡ and 1⇡⇤
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orbitals. Finally, at the conical intersection the 1⇡ orbitals become degenerate with the 3�

orbital, further increasing the multireference character of the states. The strong static cor-

relation prevents the SCF-MOM method with integer occupation numbers from converging.

Convergence can be achieved by smearing the hole and excited electron over the degenerate

orbitals. We emphasize that the aim here is not to assess the accuracy of DFT with KS

functionals in the description of the excited states, for which highly accurate multireference

calculations are available when the molecules are small, but rather to demonstrate the abil-

ity of the DO-MOM method to handle a challenging case without ad hoc modifications to

achieve convergence.

The PECs of the 11⇧(n! ⇡⇤) and 11�(⇡ ! ⇡⇤) states of carbon monoxide around

the conical intersection computed using SCF-MOM with Gaussian smearing and DO-MOM

are shown in Figure 7 together with the analytical atomic forces for selected points on the

11�(⇡ ! ⇡⇤) curves. For the Gaussian smearing SCF-MOM calculations, far from the

conical intersection, the occupation numbers of the 1⇡ orbitals are 1 (11⇧(n! ⇡⇤) state) or

0.5 (11�(⇡ ! ⇡⇤)), while the occupation of 3� is either 0 (11⇧(n! ⇡⇤) ) or 1 (11�(⇡ ! ⇡⇤)).

Close to the conical intersection, the hole can be smeared over both the 1⇡ and 3� orbitals

(see Tables S3 and S4 in the Supporting Information). When this happens, the SCF-MOM

PECs display some artefacts. The PEC of 11⇧(n! ⇡⇤) shows discontinuities around the

three points for which the smearing is largest. The only point of the PEC of 11�(⇡ ! ⇡⇤)

for which the hole is smeared over three orbitals coincides approximately with the point of

crossing of the two curves (R⇠1.56 Å). The analytical forces computed at this point are not

consistent with the slope of the 11�(⇡ ! ⇡⇤) curve.

On the other hand, the curves obtained with DO-MOM PECs and integer occupation

numbers do not exhibit discontinuities and the computed atomic forces are consistent with

the slopes of the curves. We further note that Gaussian smearing SCF-MOM converges on

higher-energy solutions, with the 11⇧(n! ⇡⇤) and 11�(⇡ ! ⇡⇤) PECs computed with DO-

MOM lying respectively ⇠0.1 and ⇠0.3 eV lower in energy with respect to the SCF-MOM
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Figure 7: Potential energy curves of the 11⇧(n! ⇡⇤) (black) and 11�(⇡ ! ⇡⇤) (blue)
excited states of carbon monoxide computed with the DO-MOM method (top) and a variant
of SCF-MOM using Gaussian smearing of the hole and excited electron (bottom). The red
lines represent the analytical atomic forces at selected points.

PECs. This also a↵ects the relative position of the two conical intersections.

Electronic smearing is often employed together with the SCF method to converge excited-

state DFT calculations, especially in molecular dynamics simulations.22,24,87,92,93 The results

presented here show that one needs to carefully check whether artefacts are introduced due

to the smearing. The DO-MOM method can converge energy and forces even in cases of
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degeneracies without the need of smearing.

5.2 Calculations with Self-Interaction Correction

5.2.1 Hydrogen Atom

Table 3 reports the energy and eigenvalue of the occupied orbital for the ground state and

each of the three lowest excited states of the hydrogen atom computed with PBE and SIC-

PBE using DO-MOM, as compared to the experimental values of the ionization energy.

The PBE functional displays a well-known systematic underestimation of the energy of the

Table 3: Total energies (E) and orbital eigenvalues (✏) of the ground and the three lowest excited
states of the hydrogen atom computed using DO-MOM with PBE and SIC-PBE and experimental
values of the ionization (I) energy.94 The values in parenthesis represent the di↵erences with respect
to the experimental energies. All values are in eV.

PBE SIC-PBE Exp.94

Electronic state E ✏ E ✏ -I

1s -13.60(0.00) -7.59(6.01) -13.60(0.00) -13.60(0.00) -13.60

2s -3.70(-0.30) -2.23(1.17) -3.40(0.00) -3.40(0.00) -3.40

2p -3.81(-0.41) -1.91(1.49) -3.40(0.00) -3.40(0.00) -3.40

3s -1.73(-0.22) -1.13(0.38) -1.50(0.01) -1.50(0.01) -1.51

excited states (linear-response TDDFT with PBE predicts no bound Rydberg states for

the hydrogen atom).15 The inability of excited-state DFT with KS semi-local functionals to

describe Rydberg series of atoms has been traced back to the fact that the long-range form

of the e↵ective potential is incorrect (see, for example, reference15).

The SIE of a one-electron system cancels exactly for the SIC-PBE functional. As a

result, the SIC-PBE energy values are accurate for the basis set used. Furthermore, for

a given state the eigenvalue of the occupied orbital coincides with the total energy and is

independent of the occupation number, i.e. for a one-electron system the SIC functional

restores the derivative discontinuity that is missing in the approximate functional.51

31

100



Article II

5.2.2 Dihydrogen Molecule

Gill et al.23 have recently reported SCF-MOM calculations of the 1⌃+
g (1�2

g ! 1�2
u) doubly

excited state of dihydrogen using xc fuctionals for several choices of the fraction of exact

exchange. Their results show that GGA and hydrid functionals with small fraction of HF

exchange severely underestimate the excitation energy because the SIE in the excited state

is significantly larger than in the ground state. The DO-MOM PBE calculation of the

1⌃+
g (1�2

g ! 1�2
u) state is in line with this observation. The PBE excitation energy is 27.25 eV,

with a deviation of 1.50 eV from the full configuration interaction (CI) result of reference23

(28.75 eV). The one-electron SIE calculated according to eq. 9 using the density and the

orbitals converged with PBE is ⇠-1.69 eV, compared to an SIE of ⇠-0.10 eV for the ground

state. Therefore, most of the error in the excitation energy comes from an imbalance in the

SIEs. If the self-interaction correction is applied non-variationally, the resulting excitation

energy is equal to 28.83 eV, which is closer to the full CI result. Further improvement

is obtained with the fully variational SIC-PBE calculations giving an excitation energy of

28.79 eV, only 0.04 eV larger than the full CI energy. The remaining error is due to the

approximate treatment of correlation and to the use of di↵erent basis sets in the DO-MOM

SIC-PBE and full CI calculations.

These results illustrate how self-interaction correction in variational DFT calculations of

excited states can be an e↵ective route to correct the unbalanced SIE between ground and

excited states in calculations based on semi-local functionals.

6 Concluding Remarks

DO has long been known to be a robust and computationally competitive alternative to SCF

in ground-state calculations.40,44,45 Calculations using single-determinant excited-state DFT

and DO have been limited to minimization of the squared norm of the gradient, while DO

of saddle points has been considered to be too di�cult, due to the need of a better approxi-
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mation to the Hessian and the risk of variational collapse. Here, a DO method is presented

that overcomes these challenges by: (1) employing a newly developed limited-memory for-

mulation of quasi-Newton SR1 inverse Hessian update (L-SR1) that is able to build a better

approximation to the Hessian for saddle-point searches than the L-BFGS update commonly

employed in minimization, and (2) avoiding variational collapse by using MOM constraints.

Since only one gradient evaluation is required at each step, the computational cost is the

same as for ground-state calculations. We further note that even if DO-MOM has been

presented here in the context of excited-state DFT, it can be applied with any other method

where the objective is to optimize a set of orthogonal orbitals, provided that the appropriate

form of the L matrix is used in the expression of the gradient, eq. A.6.

We find that DO-MOM in combination with a localized basis set representation of the

orbitals outperforms the conventional SCF-MOM approach both in terms of robustness and

speed of convergence for a benchmark set of 89 excited states. The best performance is

obtained with the L-SR1 algorithm when using a memory of 20 iterations. Furthermore, tests

on challenging charge-transfer excited states of nitrobenzene show that L-SR1 is more robust

than L-BFGS for saddle-point optimization, being less dependent on the preconditioner.

Therefore, DO-MOM with L-SR1 is a promising method for excited-state calculations of

large systems, where diagonalization of the Hamiltonian matrix needed to compute the

preconditioner is prohibitive. These tests were limited to valence and Rydberg excited states

of small and medium size molecules. In future work these tests will be extended to include

larger molecules and long-range charge-transfer states.

DO-MOM is able to converge single-determinant excited states close to conical inter-

sections, which often require fractional occupations in SCF approaches, as demonstrated

here for the first two singlet excited states of carbon monoxide. This makes it possible

to assess more rigorously the applicability of single-determinant density functional meth-

ods for modelling conical intersections as compared to methods that explicitly take into

account static correlation e↵ects. Crucially, such benchmarks are currently lacking despite
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the fact that excited-state DFT has been proposed in the context of nonadiabatic dynamics

simulations.19,22,33 Formally, the single-determinant approximation is a clear limitation of

excited-state DFT. Multiconfigurational e↵ects can be taken into account within, for ex-

ample, ensemble DFT.95 Extending the applicability of DO-MOM requires handling the

simultaneous optimization of the orbitals and the occupation numbers.96

Finally, our implementation of DO-MOM can be used with non-unitary invariant func-

tionals, such as SIC functionals. As pointed out earlier,11,50 the accuracy of excitation

energies obtained with semi-local functionals can be a↵ected by di↵erent amounts of SIE

in the ground and excited state. The accurate results obtained from the calculations on

the lowest doubly excited state of dihydrogen represent a preliminary indication that SIC

functionals can help alleviate this issue. However, tests on more complex systems are needed

to draw a general conclusion on the performance of SIC functionals. Benchmarks on excited

states of molecules, including Rydberg states, are currently ongoing.

Appendix

A Exponential Transformation

The spin index is omitted here for simplicity as the exponential transformation does not

mix orbitals with di↵erent spin quantum number. An initial guess for the optimal orbitals

(reference orbitals) is expanded into a linear combination of M localised basis functions:

�p(r) =
MX

µ=1

Cµp�µ(r) (A.1)

The coe�cients of this expansion must satisfy the orthonormality constraints:

X

µ⌫

C⇤
µpSµ⌫C⌫q = �pq (A.2)
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with:

Sµ⌫ =

Z
�⇤

µ(r)�⌫(r)dr (A.3)

The optimal orbital coe�cients corresponding to an extremum of the energy functional can

be found through a unitary transformation of the Cµp:

Oµk =
MX

p=1

Cµp

⇥
e✓
⇤
pk

(A.4)

The M ⇥M anti-Hermitian matrix ✓ contains the parameters that describe rotations of the

orbitals and is parametrized as:

✓ =

0
B@

✓oo ✓ov

�✓†
ov 0

1
CA (A.5)

where the N⇥N block ✓oo contains the parameters that describe rotations mixing occupied-

occupied (oo) orbitals, while the N ⇥ (M �N) blocks ✓ov mix occupied-virtual (ov) orbitals.

The total energy does not depend on rotations among the virtual orbitals and, as a result,

the virtual-virtual (vv) block is set to zero. Since ✓ is anti-Hermitian, the total number of

free parameters is N(2M �N). For KS functionals, the energy is invariant with respect to

unitary transformation of equally occupied orbitals and, therefore, the ✓oo block can be set

to zero without loss of generality.41 In this case, the number of degrees of freedom is reduced

to 2N(M � N) and the matrix exponential can be calculated using the equation given by

Hutter et al.41 For SIC functionals, ✓oo cannot be set to zero.54 In this case, the scaling and

squaring algorithm of Al-Mohy and Higham97 as implemented in the SciPy library98 is used

to evaluate the matrix exponential.

In order to carry out the optimization e�ciently, using a quasi-Newton method, or any

other gradient-based algorithm, the gradient of the energy with respect to the {✓ij} rotation
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parameters is needed:

@E

@✓⇤ij
=

2� �ij
2

Z 1

0

et✓Le�t✓dt

�

ij

(A.6)

where the matrix L has elements:

Llk = (fl � fk)Hlk + fkVlk � flV
⇤
kl (A.7)

In eq. A.7, the Hlk are the elements of the Hamiltonian matrix in the basis of optimal

orbitals:

Hlk =
X

µ⌫

O⇤
µlHµ⌫O⌫k, Hµ⌫ =

Z
�⇤

µ(r)HKS�⌫(r)dr (A.8)

while the Vlk are the elements of orbital-density dependent potentials due to SIC:

Vlk =
X

µ⌫

O⇤
µlV

k
µ⌫O⌫k, V k

µ⌫ =

Z
�⇤

µ(r)Vk�⌫(r)dr (A.9)

For KS functionals, the Vlk become zero.

The integral in eq. A.6 can be expanded in a series:

Z 1

0

et✓Le�t✓dt = L +
1

2!
[✓,L] +

1

3!
[✓, [✓,L]] + . . . (A.10)

When the norm of the matrix ✓ is small (k✓k ⌧ 1), the energy gradient can be estimated

accurately using only the first term of this series. During the optimization, the coe�cients of

the reference orbitals are updated with those of the optimal or canonical orbitals at regular

step intervals and, in addition, each time the MOM (see next section) changes the orbital

occupations. At every update, the ✓ matrix is reset to zero; therefore, these updates avoid

k✓k becoming too large, thus allowing to use only the first term of the series in eq. A.10 to

estimate the gradient.
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B Limited-Memory Powell Update

The Powell inverse Hessian update formula in compact form is:77

B
(k+1)
P = B(k) + j(k)uT (k) + u(k)

⇥
jT (k) �

�
yT (k)j(k)

�
uT (k)

⇤
(B.1)

where:

u(k) =
y(k)

yT (k)y(k)
(B.2)

and j(k) and y(k) are defined as in eqs. 17 and 18, respectively. The product B
(k)
P v(k), where

v(k) is a vector, can be computed using the following recursive formula:

B
(k)
P v(k) =B

(k)
0 v(k) +

k�1X

i=k�m

j(i)uT (i)v(k)

+
k�1X

i=k�m

�
u(i)

⇥
jT (i)v(k) �

�
yT (i)j(i)

�
uT (i)v(k)

⇤ 
(B.3)

The L-Powell algorithm is obtained by replacing the use of eq. 19 with eq. B.3 in Algorithm

1, which requires storing the vector u(k) in addition to j(k) at each step (see also Algorithm

1 in reference58).

C Maximum Overlap Method

The MOM method is used to ensure that the character of the occupied optimal orbitals

is consistent with the initial guess and to choose the occupation numbers of the canonical

orbitals whenever they are needed, e.g. when updating the preconditioner according to eq.

22. The coe�cients of the reference orbitals for the MOM, which are used to compute the

overlaps with the orbitals at a given step, are chosen as the coe�cients Cµp of the orbitals
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of the initial guess, and are fixed. Accordingly, the overlap matrix at step k has elements:

⌦
(k)
pl =

X

⌫µ

C⇤
pµSµ⌫O

(k)
⌫l (C.1)

where Sµ⌫ is defined according to eq. A.3. The occupied orbitals are chosen as those with

the largest projections onto the occupied subspace of the initial guess orbitals:

!
(k)
l =

"
NX

p=1

⇣
⌦

(k)
pl

⌘2
# 1

2

(C.2)

If the MOM detects a change of the character of the occupied optimal orbitals, the reference

orbitals for the DO are updated. Analogous expressions are used to obtain the occupation

numbers of the canonical orbitals when a Hamiltonian diagonalization is performed.
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Abstract

A direct optimization method is presented for density functional calculations of

excited electronic states using either a real space grid or a plane wave basis set. The

method is variational, provides atomic forces in the excited states, and can be applied to

Kohn-Sham (KS) functionals as well as orbital-density dependent functionals (ODD)

including explicit self-interaction correction. The implementation for KS functionals

involves two nested loops: (1) An inner loop for finding a stationary point in a sub-

space spanned by the occupied and a few virtual orbitals corresponding to the excited

state; (2) an outer loop for minimizing the energy in a tangential direction. For ODD

functionals, a third loop is used to find the unitary transformation that minimizes the

energy functional among occupied orbitals only. Combined with the maximum overlap

method, the algorithm converges in challenging cases where conventional self-consistent

field algorithms tend to fail. The benchmark tests presented include two charge-transfer

excitations in nitrobenzene and an excitation of CO to degenerate ⇡⇤
orbitals where the

importance of complex orbitals is illustrated. An application of the method to several
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metal-to-ligand charge-transfer and metal-centred excited states of an Fe
II

photosensi-

tizer complex is described and the results compared to reported experimental estimates.

The method is also used to study the effect of Perdew-Zunger self-interaction correc-

tion on valence and Rydberg excited states of several molecules, both singlet and triplet

states. The correction is found to improve the description of molecular bond stretching

but calculated values of the excitation energy are improved only slightly, by ca. 0.1

eV, due to cancellation of the estimated self-interaction error in the ground and excited

states.

1 Introduction

Density functional theory (DFT) is commonly used in computational studies of molecules and

materials as it can in many cases give reasonable accuracy without too much computational

effort. Calculations of ground electronic states can be performed even by non-experts thanks

to well-established algorithms and software implementations. This does not, however, apply

to calculations of excited electronic states, although such states are of great importance in

many rapidly developing fields such as ultrafast spectroscopy, solar energy conversion and

photocatalysis. Even though DFT is formulated theoretically as a ground state theory, it

can also be used to provide useful estimates of excited states. The most commonly used

excited-state extension of DFT is time-dependent density functional theory (TDDFT).1–3

In practical implementations, TDDFT calculations are carried out using some ground-state

density functional, linear-response theory and an adiabatic approximation that neglects the

time dependence of the exchange-correlation (XC) kernel. Within these approximations,

TDDFT typically provides a fairly good description of low-lying valence excitations,3 but

often fails to describe higher excitations4–6 and conical intersections between the ground and

excited states.4

Alternative approaches with wide applicability and similar computational effort can be

based on time-independent DFT such as ensemble DFT,7–9 excited-state DFT (eDFT)10–17
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(also sometimes referred to as � self-consistent field, �SCF), the quasi-particle energy DFT

(QE-DFT) approach18, as well as constrained DFT,19–21 orthogonality constrained,22 and

constricted DFT approaches.23,24 There, an excited state is found from a stationary solution

of self-consistent equations and the computational robustness strongly depends on the algo-

rithm used. In eDFT, the excited state is a solution of the Kohn-Sham (KS) equations for

non-aufbau orbital occupation numbers. Commonly used methods in ground-state calcula-

tions are based on some iterative eigensolver such as the Davidson algorithm25 or the residual

minimization method–direct inversion in the iterative subspace (RMM-DIIS)26–28 enhanced

in various ways to improve robustness and rate of convergence.29,30 However, these algo-

rithms are not specifically designed for calculations of excited states. The maximum overlap

method (MOM)13 can be used to reduce the probability of convergence on the ground state

in the iterative calculation, but convergence problems often occur.16 The basic problem lies

in the fact that excited-state calculations do not involve finding the global minimum of the

energy as a function of the electronic degrees of freedom, but rather a more general station-

ary point on the high-dimensional electronic energy surface. A method that can in general

converge on a saddle point on the energy surface rather than a minimum is required. To find

an N-th order saddle point, one needs to maximize the energy with respect to N degrees of

freedom while minimizing with respect to all the others. The degrees of freedom along which

the energy needs to be maximized are not known a priori. This makes a search for a saddle

point significantly more difficult than a search for a minimum. Therefore, while calculations

based on SCF-MOM-type algorithms can in principle converge on excited states, they are in

practice not reliable.

Alternatively, direct optimization (DO) can be used to converge on solutions of the KS

equations. While this approach has mainly been used in energy minimization to find a

ground-state solution31–39, it can be extended to calculations of excited states.15,16,40 One

possible approach is to formulate the problem as a search for a minimum of the norm of

the gradient.16 But, it is then important to also ensure that the norm of the gradient is
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zero at the minimum and the evaluation of the gradient of this objective function increases

the computational effort significantly. A different approach is based on direct optimization

of the energy using a quasi-Newton method that can develop negative eigenvalues of the

Hessian consistent with the type of saddle point searched for.15,41 A preconditioner is then

needed to estimate the degrees of freedom for which the energy needs to be maximized

and thereby ensure convergence on the desired saddle point. When combined with MOM,

this approach can perform better than conventional SCF-MOM algorithms.15,41 The number

of degrees of freedom for which the optimization needs to be carried out is, however, an

important consideration and so far the DO-MOM approach has only been formulated and

implemented in the context of the linear combination of atomic orbitals (LCAO) basis set

where the number of degrees of freedom is relatively small.

Real space grid (RSG) and plane wave (PW) basis sets have the advantage that the

complete basis set limit can be reached by varying systematically a single parameter such as

the mesh spacing or plane wave cutoff. They are also more universal and can easily be applied

to diffuse states such as Rydberg and metallic states where a typical LCAO basis set needs

to be supplemented by specially tailored diffuse basis functions. This is demonstrated for a

Rydberg state of NH3 in section 3 of this article. In calculations relevant to, for example,

ultrafast experiments, the system may evolve through a series of localized and delocalized

states, making it challenging to design an LCAO basis set that is complete enough for all

the relevant states. It is clearly more convenient to use an RSG or PW basis set in these

cases.

In this article, a DO-MOM algorithm for calculating excited electronic states that can be

used with both RSG and PW basis sets is presented. The calculations are variational and,

since the Hellmann-Feynman theorem is satisfied not only at the minimum but also at any

stationary point on the electronic energy surface, they can be used to evaluate the atomic

forces, thereby providing a powerful tool for exploring excited-state potential energy surfaces

(PESs) in, for example, simulations of the dynamics or minimum energy path calculations.42
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The DO-MOM method is tested and its performances compared with that of SCF-MOM with

either Davidson or RMM-DIIS methods combined with Pulay density mixing.26 The tests

include charge-transfer excitations in nitrobenzene that are known to be challenging cases

for conventional algorithms. While the SCF-MOM algorithms show erratic behavior, likely

because of the presence of several orbitals with similar energy, the DO-MOM calculation

converges in a robust way. Another test involves calculations of an electronic excitation of

the CO molecule to degenerate states. Again, SCF-MOM shows erratic behavior while the

DO-MOM calculation converges smoothly. There, the advantage of using complex orbitals

instead of real orbitals is, furthermore, demonstrated.

Two applications of the DO-MOM method are presented. The first one involves calcula-

tions of metal-to-ligand charge-transfer (MLCT) and metal-centered (MC) excitations of the

[Fe(bmip)2]2+ (bmip=2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine) complex, a prototype

of a class of Fe-based photosensitizers.43–45 This complex has been studied experimentally

using X-ray emission and scattering with femtosecond resolution46 and theoretically using

TDDFT.47,48 In order to optimize its performance as a photosensitizer, an understanding

of the transitions between the various states and the way they are affected by the ligands

is needed. An initial excitation to a singlet MLCT state is believed to be followed in part

by a relaxation to a lower energy triplet MLCT state while another part decays to a triplet

MC state where it generates a vibrational wavepacket along a metal-ligand bond stretching

coordinate.47,48 This branching occurs on ultrafast time scale, on the order of 100 fs, and

influences the performance of the complex as photosensitizer. Dynamics of the molecule in

the lowest-lying, dark singlet MLCT state has been simulated using energy surfaces calcu-

lated with TDDFT but a higher energy, bright singlet MLCT state is likely populated in the

experiments.47,48 As a result, direct comparison with the ultrafast branching observed in the

experiment could not be made. Here, the DO-MOM method is used to calculate six excited

states that are close in energy, including the bright singlet MLCT state along the metal-

ligand bond stretching coordinate that is believed to be activated during the photoinduced
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dynamics. The calculated excitation energy agrees well with the experimentally observed

value and, furthermore, an estimate of the vibrational period in the lowest triplet MC state

is also found to be in good agreement with experimental observations. This demonstrates

that the DO-MOM method could, in future work, be used in dynamics simulations to help

interpret the experiments on this and similar photosensitizer complexes.

A second application of the DO-MOM method, which illustrates its applicability to ODD

functionals, is a study of the effect of Perdew-Zunger self-interaction correction (PZ-SIC)49

on the estimated excitation energy in 13 transitions to singlet and triplet excited states in

9 molecules. The results are compared with theoretical best estimates as well as experi-

mental values. Also, O-H bond stretching curves in the water molecule and water dimer

are calculated. It is found that PZ-SIC improves the shape of the curves, producing a local

minimum analogous to what has been found in high level wave function calculations while

the uncorrected functional does not.

The article is organized as follows. In section 2, the DO-MOM algorithm for variational

density functional calculations of excited states is presented. Section 3 shows the results

of the numerical tests. In sections 4 and 5, the applications of the DO-MOM method to

excited-state energy curves of the FeII complex and the effect of PZ-SIC on excited states of

molecules are presented, respectively. Finally, a discussion and conclusions are presented in

section 6.

2 Methodology

In generalized KS-DFT, the energy of an electronic system is given by

E [ ] = Ts +

Z
d
3r⇢(r)vext(r) + U [⇢] + Exc, (1)
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where Ts is the kinetic energy of a system of non-interacting electrons that have the same

density ⇢(r) as the interacting electron system

Ts = �
1

2

MX

i=1

X

�=0,1

fi�

⌦
 i�

��r2
�� i�

↵
(2)

and
MX

i=1

X

�=0,1

fi� hr| i�i h i�|ri = ⇢(r). (3)

with occupation numbers {fi�}. The occupation numbers can be chosen to be non-aufbau in

order to represent an excited state. M is the number of bands (orbitals) in the calculations

and � is the spin index. vext(r) is the external potential and U is the classical Coulomb

energy

U [⇢] = 1

2

ZZ
d
3r d3r0

⇢(r)⇢(r0)

|r� r0| . (4)

Exc is the XC energy, approximated in practice as a semilocal functional of the density and its

gradient, but can also include an explicit dependence on the orbitals (as in meta-generalized

gradient functionals and hybrid functionals).

Excited states are obtained when the total energy is stationary with respect to the orbitals

 = (| 1i , · · · , | Mi)T with non-aufbau occupation numbers and can correspond to saddle

points. The electronic energy surface has dimensionality MNb, where Nb is the number

of grid points in an RSG or number of PW coefficients. Even for a small molecule, the

number of grid points can easily become large, on the order of 106. In order to facilitate

the stationary-point search problem, the orbitals  are expanded in a linear combination of

some auxiliary orbitals �

 = U�, (5)

where U is an M ⇥M unitary matrix. The auxiliary orbitals, �, can be chosen to be the

ground-state orbitals or any set of orbitals that represents an initial guess for the excited
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state. The energy can then be considered as a functional of both U and �

E [ ] = E [U�] = F [U,�]. (6)

Therefore, stationary points of E [ ] can be found in two steps: first by extremizing F with

respect to the expansion coefficients U and then by minimizing the functional

L[�] = stat
U

F [U,�] (7)

with respect to �:

min
�

L[�] = min
�

stat
U

F [U,�] = stat
 

E [ ]. (8)

The introduction of the additional functional L[�] reduces the stationary-point search prob-

lem into two simpler tasks. First, instead of finding a saddle point in a wave function space,

one finds the saddle-point in the space of unitary matrices U of low dimensionality. The

reduction of dimensionality can further be achieved by decreasing the number of the virtual

orbitals. For example, the first excited state of ammonia can be obtained by including only

4 virtual orbitals and, therefore, the dimensionality of the problem equals 24, within a frozen

core approximation. This is a significant simplification as compared to the original problem

of finding a saddle point in a MNb dimensional space. Furthermore, an efficient algorithm

based on a recently proposed15 quasi-Newton method for finding saddle points in the space

of unitary matrices can readily be used with minor modifications. The second simpler task is

the outer loop minimization where conventional energy function minimization algorithms50

generalized for a wave function optimization can be employed.

The division of the original optimization problem into separate minimizations of different

degrees of freedom is a standard technique employed for ground-state calculations of metals,31

self-interaction corrected density functional calculations51–55 and ensemble density functional

calculations.56 The inner and outer loops are further described below. The optimization of
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E is further performed in conjunction with the maximum overlap method (MOM)13 used to

distribute the occupation numbers {fm}, similar to what has previously been done in the

context of LCAO,15,41 and it is described in Appendix B.

Additional considerations need to be addressed when a non-unitary invariant functional

is used as in the case of PZ-SIC.49 Semilocal approximations of the XC energy possess a

spurious self-interaction error due to the inability of semilocal functionals to cancel the non-

local self-interaction error in the classical Coulomb energy. Perdew and Zunger proposed an

orbital-by-orbital correction49

ESIC[ ] = E [ ]�
X

i�

(U [⇢i�] + Exc[⇢i�, 0]) (9)

making any approximation of the energy functional self-interaction free for one-electron

systems. The functional ESIC is not invariant with respect to unitary transformations of the

occupied orbitals and, therefore, an additional inner loop needs to be included in order to

find the optimal orbitals in the occupied subspace minimizing the self-interaction corrected

energy.49 In this case, the functional defined on the occupied subspace becomes unitary

invariant.51,55,57 Thus, finding a solution that corresponds to the SIC excited state is achieved

in a three-loop optimization:

stat
 

ESIC[ ] = min
�

stat
U

min
O

0 ESIC[UO�] = min
�

stat
U

FSIC [U,�] (10)

where the unitary minimization min0 is performed among occupied orbitals only. More

details on this additional inner loop are given in Appendix A.
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2.1 Inner loop: Finding a stationary point of F [U,�] with respect

to U .

To find a stationary point of F [U,�] for a given �, an exponential transformation is made,

analogous to what has previously been done for energy minimization in wave-function based

calculations58–61 and density functional calculations,36,53,62 and, more recently, for saddle-

point searches .15,41 The unitary matrix is parametrized as

U = e
A (11)

where A is a skew-Hermitian matrix, A
† = �A. The gradient of F with respect to the

elements of A is

@F
@A⇤

ij

=
2� �ij

2

Z 1

0

e
tA
Le

�tA
dt

�

ij

, (12)

where the elements of L are given by

Lij = h�j|ĥi|�ii � h�i|ĥj|�ji (13)

with ĥj defined as

ĥj | ji =
�E
� h j|

= fj


�1

2
r2 + v̂ext + v̂H + v̂xc

�
| ji (14)

During the optimization, the elements of A are found iteratively using a limited-memory

version of the symmetric rank one quasi-Newton algorithm.15 The initial inverse Hessian is

preconditioned with a diagonal matrix with elements61

Kij =
1

�2(✏i � ✏j)(fi � fj)
(15)
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where the ✏i are the eigenvalues of the KS Hamiltonian. Since this preconditioner is valid

only for the canonical representation of the Hamiltonian, the auxiliary orbitals are updated

to the canonical orbitals every Xth iteration of the outer loop if the inner loop reaches a

maximum number of iterations

� C = CU�, (16)

and set

U = I (17)

where C is the unitary matrix that transforms the auxiliary orbitals to the canonical orbitals.

Further implementation details of the inner loop can be found in Refs.15,41

2.2 Outer loop: Minimization of L[�].

Let M be a manifold in the Hilbert space such that

M = {� :

Z
dr�⇤

i (r)�j(r) = �ij, i, j = 1 . . .M}. (18)

The tangent space to this manifold at � is defined as

V�(G) = lim
"!0

R̂[�+ "G]��
"

= R̂
0
"[�+ "G]

��
"=0

(19)

where R̂ is the orthonormalization operator such that R̂[�+ "G] 2M, and G is a vector in

the Hilbert space. For example, R̂ can be chosen as the Löwdin transformation. Let SX,Y

be the overlap matrix between two vectors X,Y from the Hilbert space. Then

S�+"G,�+"G =

Z
dr (�+ "G)(�+ "G)† =

I + " (S�,G + SG,�) + "
2
SG,G = I + "W�,G + "

2
SG,G

(20)

11

132



Article III

with W�,G = S�,G + SG,�. For the Löwdin transformation

R̂[ + "G] = S
�1/2
 +"G, +"G ( + "G) (21)

and therefore, the tangent space at � is

V�(G) = G� 1

2
W�,G�, (22)

obtained after substituting eqs (20) and (21) into eq (19) keeping only first order terms with

respect to ".

The gradient of L can be calculated using the chain rule:

�L
��⇤ = U

�E
� ⇤ , (23)

where ✓
�E
� ⇤

◆

j

=
�E
� h j|

(24)

After defining the tangent space in equation (19) and the gradient in equations (23) and

(24), the minimization of L can be written as

Minimization algorithm.

• Set k  0, choose initial guess �(k); calculate gradient G(k) = �L/��⇤(k) using eqs (23)

and (24).

• Project gradient on the tangent space V (k) = V (G(k)) at �(k). " and calculate residual

error �(k) = kV (k)k.

• While �(k)
> ":

1. Compute search direction P (k) according to the chosen minimization algorithm

and apply preconditioning (for example, for gradient descent, P (k) = �G(k) and
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inverse kinetic energy operator as preconditioner28,63).

2. Project the search direction on the tangent space V (k) = V (P (k)) at �(k).

3. Choose optimal step length ↵(k) along V (k) and compute

�(k+1)  �(k) + ↵
(k)V (k) (25)

4. Orthonormalize the wave functions, �(k+1)  R̂[�(k+1)].

5. Compute new gradient G(k+1) and project it on

the tangent space V (k+1) = V (G(k+1)) at �(k+1).

6. Calculate residual �(k+1) = kV (k+1)k.

7. k  k + 1.

• End.

The search direction P (k) can be chosen using a conjugate gradient64 or a limited memory

quasi-Newton algorithm. Here, the limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-

BFGS) algorithm as described in Ref.65 is used. For minimization, this algorithm is known

to give fast and robust convergence.

3 Implementation and Numerical Tests

The DO-MOM algorithm has been implemented in a development branch of the Grid-based

projector augmented wave (GPAW) software66 and can be used with either a finite-difference

RSG67 or PW basis set. The calculations are carried out using the frozen core approximation

and the projector-augmented wave method.68 The iterative SCF algorithms used here are

based on either the Davidson algorithm25 or the RMM-DIIS algorithm28 as implemented in

GPAW. Both versions of the SCF algorithm make use of Pulay density mixing26 and MOM13

(see Appendix B). Default values of the convergence parameters are used. The Pulay density
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mixing uses densities from three previous steps and the coefficient used in the linear mixing

of the density with the density residual vector is 0.15. No damping of short-wavelength

density changes is used.66 In the DO-MOM calculations, Pulay density mixing is not used.

Instead, the density is calculated from the orbitals obtained at each iteration. The gradient

of the energy projected on the tangent space in the outer loop in DO, or the residual vector

in SCF, is preconditioned with the inverse kinetic energy operator.28,63

In the outer loop of the DO-MOM algorithm, the search direction is calculated according

to the L-BFGS algorithm, using only the previous step to estimate the Hessian matrix. For

a quasi-Newton algorithm a step length of 1 is a natural choice. However, the first step in

the optimization corresponds to the gradient descent algorithm and the following maximum

step length update is used in order to avoid too large changes in the orbitals: if the norm of

the search direction

� = P †P (26)

is larger than ↵max (� > ↵max) then

P  ↵max

�
P . (27)

The value ↵max = 0.25 is found to give reliable convergence. For the inner loop optimization,

the limited-memory symmetric rank one update15 is used.

The calculations were carried out in the following way if not stated otherwise: The

molecule is placed in a rectangular box with at least 7 Å vacuum space in all directions from

the nuclei to the boundary of the box. Open boundary conditions are used. A grid mesh

spacing of 0.2 Å is employed. All the calculations are spin-unrestricted and use the PBE

functional.69

The advantage of RSG over LCAO is illustrated in a calculation of the 3pz Rydberg

state of NH3 for excitation from the HOMO, see Fig. 1. An LCAO calculation using the

aug-cc-pVDZ basis set is clearly not sufficient to reproduce the RSG calculation while the
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expanded d-aug-cc-pVDZ basis set, which includes additional diffuse functions, gives close

agreement.

Figure 1: Comparison of three basis sets in a PBE calculation of the 3pz excited state of
NH3 for excitation from the HOMO. The 3pz orbital is shown along the rotational axis of the
molecule (z-axis). The finite-difference real-space grid calculation with grid spacing of 0.2 Å
(red) is closely reproduced by an LCAO calculation when the expanded d-aug-cc-pVDZ basis
set including an extra set of diffuse functions is used (blue dashed), but the aug-cc-pVDZ
basis set is clearly not sufficient (black dashed).

The energy of an open-shell singlet state is calculated using the spin purification:70

E
s = 2E("#)� E(""), (28)

where E("") is the energy of the triplet state and E("#) is the energy of the mixed spin state.

Both states are calculated independently and variationally. The singlet excited-state energy

will hereafter be referred to as the energy calculated according to eq (28). This has been

found to give a better estimate of the singlet excited-state energy in eDFT calculations using

semilocal KS functionals compared to the estimate obtained from the mixed spin state.14
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3.1 Test I: Charge-transfer excitations in nitrobenzene

Charge-transfer excitations in nitrobenzene are known to be challenging cases for conven-

tional algorithms16,71 and are often used as benchmark tests.15–17,41 The 1A1(⇡0 ! ⇡
⇤) excita-

tion transfers an electron from the benzene ring to the nitro group while in the 1A1(n⇡ ! ⇡
0⇤)

excitation the transfer is in the opposite direction.

A ground-state calculation including 9 virtual orbitals was first performed to obtain the

initial orbitals. The 1A1(⇡0 ! ⇡
⇤) excited state was then calculated by promoting an electron

from the HOMO-2 to the LUMO orbital, while the 1A1(n⇡ ! ⇡
0⇤) state was calculated by

promoting an electron from the HOMO-4 to the LUMO+1 orbital.

An analysis of the performance of the DO-MOM calculation and comparison with the

two versions of the SCF-based methods is presented in Fig. 2. Both the Davidson and

RMM-DIIS implementations of SCF-MOM quickly approach the excitation energy of the

target solution but then show erratic behaviour. This is attributed to the presence of several

orbitals with energy close to that of the orbital from which excitation occurs.15,41 The energy

difference between HOMO-4 and HOMO-1 is only 0.56 eV and a change in the ordering of the

orbitals occurs during the optimization of the excited state.15,41 It is known that for orbitals

that are energetically close, SCF algorithms have a difficulty converging unless smearing

of occupation numbers is used or the parameters in the Pulay mixing are fine tuned. In

contrast, the DO-MOM algorithm shows robust convergence. Tight convergence is obtained

within 30 to 45 outer loop iterations as shown in Fig. 2(b) and (e). Initially, during each

outer loop iteration, several inner loop iterations are performed as shown in Fig. 2(c) and (f).

Towards the minimum of the energy functional L, no inner-loop iterations are performed,

only outer-loop iterations.
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Figure 2: Comparison of the performance of various algorithms in calculations of the
1A1(⇡0 ! ⇡

⇤) excitation (a,b,c) and 1A1(n⇡ ! ⇡
0⇤) excitation (d,e,f) of nitrobenzene. The

SCF-MOM method, based either on Davidson (SCF-Dav-MOM) or RMM-DIIS (SFC-R-
MOM) algorithms, does not converge well, while DO-MOM gives robust convergence. (a)
and (d) show the convergence of the energy; (b) and (e) show the norm of the residual,
and (c) and (f) show the number of inner-loop iterations for each outer-loop iteration in the
DO-MOM calculation.
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3.2 Test II: Excitation to degenerate orbitals

Degenerate electronic states need to be represented by multi-determinant wave functions.

When a single determinant is used in a KS-DFT calculation two problems occur. The first

is a technical problem, as the SCF algorithm has difficulty converging unless large enough

smearing of the occupation numbers is used. The second is a conceptual problem, in that dif-

ferent single determinants which should in principle be degenerate can give different electron

densities and, as a result, different total energy. This occurs, for example, in calculations of

open-shell atoms.72,73 In the case of degenerate excited states, an additional problem arises.

In order to unambiguously assign an excited state, the wave function needs to have the

symmetry of the excited state. With real-valued orbitals, which are most commonly em-

ployed in electronic structure calculations, this requirement is not necessarily satisfied due

to symmetry breaking, as is demonstrated below.

Consider the lowest valence excited state in carbon monoxide. Using a single determinant,

this excited state can be described by the promotion of an electron from a � orbital (ground-

state HOMO) to one of the two lowest degenerate ⇡⇤ orbitals, (⇡⇤
x or ⇡⇤

y , the ground-state

LUMO, in the case of real wave functions). For such an excitation, the SCF method with

the Davidson algorithm does not converge with integer occupation numbers. The energy

oscillates around the excited-state solution, as shown in Fig. 3(a). The DO-MOM algorithm,

however, gives smooth convergence to the excited-state solution.

Since the chosen orbitals are real, they are not eigenstates of the z-component of the

angular momentum operator, and the angular momentum of the single-determinant wave

function around the internuclear axis (z-axis) is not defined. In addition, the resulting

electron density lacks uniaxial symmetry. It has instead an elliptic shape in the x-y plane

with orientation depending on which orbital is occupied, ⇡⇤
x or ⇡⇤

y , see Fig. 3(b). This is

inconsistent with the symmetry of the molecule. In the DO-MOM calculation, the orbitals

can be chosen to be complex valued functions without any modifications of the algorithm.

If the LUMO is chosen as a complex ⇡
⇤
+1 or ⇡⇤

�1 orbital, where +1 or -1 is the eigenvalue
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of the z-component angular momentum operator, the single-determinant excited-state wave

function has a well-defined angular momentum and can unambiguously be identified as a ⇧

state. The solution DO-MOM converges to using complex orbitals has 0.15 eV higher energy

compared to the real valued solution, but it is more accurate since the total density then has

rotational symmetry around the internuclear axis [see Fig. 3(b)]. Thus, the use of complex

orbitals not only allows one to properly represent the total angular momentum of the excited

state, but it also provides a density with the correct symmetry. The spin symmetry is still

broken, however, in the unrestricted calculation.

The importance of using complex orbitals in order to provide correct description of

the ground state has been emphasized in calculations of atoms and molecules using self-

interaction corrected functionals74–76 as well as within restricted Hartree-Fock theory77 and

KS formalism.78 In particular, in the work of Lee et. al78 it was shown that real orbitals

break the cylyndrical symmetry of the density in the singlet ground state of O2 while complex

orbitals restore such symmetry within the restricted KS formalism. Here, it is shown that

a similar situation occurs in the excited states of open-shell singlets and that the symmetry

can be restored in the spin-unrestricted formalism using complex orbitals.
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Figure 3: (a) Comparison of the performance of the SCF-MOM method implemented with
Davidson and the DO-MOM method in calculations of the lowest n! ⇡

⇤ excitation of a
carbon monoxide molecule. (b) Comparison of the DO-MOM calculations with real and
complex orbitals. The inset shows the total electron density obtained with real orbitals
(red) and complex orbitals (blue). The internuclear axis is perpendicular to the plane of the
image. The density obtained using real orbitals lacks the uniaxial symmetry.

4 Application I: Excited states of an Fe
II

carbene photo-

sensitizer

The first application of the DO-MOM method involves calculations of four MLCT and two

MC excited states of the [Fe(bmip)2]2+ complex that consists of 63 atoms (see Fig. 4). The

calculations are carried out with the BLYP functional.79,80
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Figure 4: Atomic structure of the [Fe(bmip)2]2+ complex together with the orbitals involved
in the transition to the bright MLCT state (C atoms green, N atoms blue, H atoms white,
Fe atom orange). (a) HOMO orbital of the ground state localized on the Fe atom. (b)
LUMO+2 orbital of the ground state delocalized over the ligands. Promotion of the electron
from HOMO to LUMO+2 corresponds to a charge-transfer excitation (denoted as 1MLCT2

state in the text). The isosurfaces are shown with grey and orange colors and correspond to
isovalues of ±0.16 Å�3/2.

Fig. 5 shows the energy of the various states calculated along the metal-ligand bond

stretching coordinate (the Q6 breathing normal mode according to Ref.48) that is believed

to account for the nuclear dynamics following photoexcitation.46,47 The singlet state labelled
1MLCT2 in Fig. 5, corresponding to a HOMO-to-LUMO transition (see Fig. 4), has an

excitation energy of 2.58 eV, only 0.13 eV lower than the position of the maximum of the

experimental UV/VIS absorption spectrum of the complex dissolved in acetonitrile.43 Indeed,

this state has the same character as the state with largest oscillator strength in TDDFT

calculations;48 thus, confirming that 1MLCT2 corresponds to the bright MLCT state with

a calculated excitation energy in good agreement with experiment. The triplet with same

orbital occupancy (labelled 3MLCT2 in Fig. 5), the lower-lying singlet (1MLCT1) and triplet

MLCT (3MLCT1) states arising from the HOMO-to-LUMO excitation are also shown, as

well as the lowest triplet MC state and the corresponding singlet with same character (arising

from HOMO-1 to LUMO+4 excitation). The orbitals involved in the transitions to these
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states are shown in the Supporting Information.

Figure 5: Potential energy curves along a metal-ligand normal coordinate (the breathing
mode Q6 as defined in Ref.48) that is expected to be responsible for the nuclear dynamics
during the relaxation from the initially photoexcited 1MLCT state to the 3MC state. MLCT:
metal-to-ligand charge-transfer excitation, MC: metal-centered excitation.

The combined ultrafast X-ray emission and scattering experiments have detected vibra-

tional wavepacket dynamics along the metal-ligand stretching coordinate in a 3MC state

with a period of 278 fs.46 The curvature of the energy curve for the 3MC state calculated

with DO-MOM is used to estimate the vibrational period, obtaining a value of 280 fs (see

Supporting Information). The shape of the PES predicted by DO-MOM with BLYP, there-

fore, appears to agree well with the experiment in this respect, lending support for the use of

DO-MOM in future dynamics simulations to study this and other photosensitizer complexes.
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5 Application II: Assessment of Perdew-Zunger

self-interaction correction

Calculations are carried out for 9 valence and 9 Rydberg excitations in 13 molecules involving

both singlet and triplet excited states. The results of the calculations are compared to

theoretical best estimates from Ref.,81 which include corrections for basis set limitations and

"all-electron" effects. The "all-electron" relaxation effects are estimated to be small, around

0.01 � 0.02 eV,81 in the present cases. On the other hand, the basis set correction can be

significant, and is important for a consistent comparison with the finite-difference RSG results

obtained in the present work. The molecules are placed in a rectangular box with at least 9

Å vacuum space in in all directions from any of the nuclei to the edge of the simulation box.

This is found to be large enough to correctly describe even the diffuse Rydberg orbitals. The

atomic coordinates of the molecules are those given in Ref.81 The number of virtual orbitals is

set to 8. The excitation energy is calculated with respect to the energy of the singlet ground

state. The excited states are calculated using the lowest energy single Slater determinant for

a given transition without enforcing point-group symmetry constraints on the total density.

The SIC calculations are carried out using the PBE functional with full PZ-SIC (PBE-

SIC) and with the PBE functional where the correction is scaled by a half (PBE-SIC/2) as

such scaling has previously been found to provide better estimates of atomization energy of

molecules and band gaps of solids.75,82

The DO-MOM calculated values of the excitation energy are given in Table 1 for the

triplet states and in Table 2 for the singlet states. Since mixed spin states are often used in

practice as an approximation to a singlet energy surface, such calculations are also performed

and the results are given in Table S1 in the Supporting Information.

The calculations using the PBE functional give a mean error (ME) of -0.27 eV and a root

mean square error (RMSE) of 0.31 eV with respect to the theoretical best estimates for the

excitations to triplet states while a larger error is obtained for excitations to singlet states,
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ME of -0.46 eV and RMSE of 0.54 eV. If the spin purification for singlet states is not applied,

the error in the excitation energy is significantly larger, with the RMSE being 0.95 eV.

The calculations using self-interaction correction, i.e. the PBE-SIC functional, give

slightly better values, the magnitude of the ME with respect to the theoretical best esti-

mates being 0.2 eV smaller for the singlet state excitations and 0.1 eV smaller for the triplet

state excitations, compared to PBE. The MAE is not improved as much. As has been

shown previously in ground state calculations, it is important to use complex orbitals in

SIC calculations.74–76 This is also found to be the case here in the calculated values of the

excitation energy. If real orbitals are used, the calculated values of the excitation energy

become worse than those obtained with the PBE functional (the RMSE being 0.44 eV for

triplet excitations, see Table S2 in Supporting Information).

For the triplet excitations, the scaled self-interaction correction, PBE-SIC/2 functional,

gives smaller improvement while for the singlet excitations the MAE and RMSE with respect

to the theoretical best estimates is a bit smaller than for full correction PBE-SIC. For mixed

spin states, PBE-SIC performs better (see Table S1 in Supporting Information).

The small effect PZ-SIC has on the excitation energy is a result of cancellation of the

estimated self-interaction energy in the ground and excited states. This orbital-by-orbital

estimate of the self-interaction energy, which is most appropriate for a single electron system,

turns out to be of similar magnitude for the ground and excited states. This is a surprising

result since the classical self-Coulomb energy of a diffuse, Rydberg orbital is known to be

smaller than that of a more localized ground-state orbital. Table 3 shows an analysis of this

for the water molecule. A near cancellation of the total self-interaction energy still occurs

because there is a simultaneous change in the self-XC term that offsets the difference in the

classical self-Coulomb energy.
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Table 1: Energy of excitations to triplet states calculated with the DO-MOM method and
comparison with theoretical best estimates as well as experimental values. The calculations
make use of a generalized gradient approximation Kohn-Sham functional (PBE), with scaled
self-interaction correction (SIC/2) and with full self-interaction correction (SIC). The mean
error (ME), mean absolute error (MAE) and root mean square error (RMSE) are given with
respect to theoretical best estimates and with respect to experimental values at the bottom
of the table.

molecule excitation PBE SIC/2 SIC TBEa EXPb

acetaldehyde 13A00 (n ! ⇡⇤; V) 3.65 3.75 3.79 3.98 3.97

acetylene 13�u(⇡ ! ⇡⇤; V) 6.33 5.89 6.04 6.40 6.0

ammonia 23A1(n!3s; R) 6.16 6.10 6.06 6.37 6.02

carbon monoxide 13⇧(n! ⇡⇤; V) 5.91 5.84 5.66 6.28 6.32

diazomethane 13A2(⇡ ! ⇡⇤; V) 2.76 2.38 1.88 2.80

ethylene 13B3u(n!3s; R) 7.01 7.05 7.07 7.28 6.98
13B1u(⇡ ! ⇡⇤; V) 4.46 4.63 4.75 4.54 4.36

formaldehyde 13B2(n!3s; R) 6.69 6.99 7.12 7.14 6.83

formamide 13A"(n! ⇡⇤; V) 5.14 5.23 5.27 5.37 5.2

hydrogen sulfide 13A2(n!4p; R) 5.39 5.44 5.43 5.74 5.8

ketene 13B1(⇡ !3s; R) 5.64 5.77 5.79 5.85 5.8

methanimine 13A"(n! ⇡⇤; V) 4.20 4.35 4.41 4.64

thioformaldehyde 13A2(n! ⇡⇤; V) 1.71 1.81 1.88 1.94
13B2(n!4s; R) 5.31 5.54 5.67 5.76

23A1(⇡ ! ⇡⇤; V) 3.36 3.33 3.28 3.44 3.28

water molecule 13B1(n!3s; R) 7.10 7.09 7.08 7.33 7.2
13A2(n!3p; R) 8.75 8.87 8.97 9.30 8.9
23A1(n!3s; R) 9.28 9.25 9.23 9.59 9.46

ME (TBE) -0.27 -0.25 -0.18
ME (EXP) -0.09 -0.06 -0.02

MAE (TBE) 0.27 0.26 0.21
MAE (EXP) 0.19 0.16 0.21
RMSE (TBE) 0.31 0.29 0.25
RMSE (EXP) 0.22 0.21 0.27

aTheoretical best estimates as given in Ref.81 bExperimental values listed in Ref.81 (see references therein).
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Table 2: Energy of excitations to singlet states (spin purified) calculated with the DO-MOM
method and comparison with theoretical best estimates as well as experimental values. The
calculations make use of a generalized gradient approximation Kohn-Sham functional (PBE),
with scaled self-interaction correction (SIC/2) and with full self-interaction correction (SIC).
The mean error (ME), mean absolute error (MAE) and root mean square error (RMSE) are
given with respect to theoretical best estimates and with respect to experimental values at
the bottom of the table.

molecule excitation PBE SIC/2 SIC TBEa EXPb

acetaldehyde 11A00 (n ! ⇡⇤; V) 3.94 3.74 3.59 4.31 4.27

acetylene 11�u(⇡ ! ⇡⇤; V) 6.69 7.72 7.76 7.10 7.2

ammonia 21A1(n!3s; R) 6.44 6.40 6.37 6.66 6.38

carbon monoxide 11⇧(n! ⇡⇤; V) 7.48 7.96 9.36 8.48 8.51

diazomethane 11A2(⇡ ! ⇡⇤; V) 2.94 2.56 2.14 3.13 3.14

ethylene 11B3u(n!3s; R) 7.14 7.18 7.2 7.43 7.11
11B1u(⇡ ! ⇡⇤; V) 6.72 7.17 7.64 7.92 7.6

formaldehyde 11B2(n!3s; R) 6.89 7.10 7.30 7.11

formamide 11A"(n! ⇡⇤; V) 5.38 5.17 5.01 5.63 5.8

hydrogen sulfide 11A2(n!4p; R) 5.63 5.63 5.55 6.10

ketene 11B1(⇡ !3s; R) 5.87 5.97 6.11 6.06 5.86

methanimine 11A"(n! ⇡⇤; V) 4.65 4.77 4.89 5.21

thioformaldehyde 11A2(n! ⇡⇤; V) 1.91 1.74 1.57 2.20 2.03
11B2(n!4s; R) 5.64 5.72 5.77 5.99 5.85

21A1(⇡ ! ⇡⇤; V) 5.36 6.02 6.66 6.34 6.2

water molecule 11B1(n!3s; R) 7.46 7.46 7.41 7.70 7.41
11A2(n!3p; R) 8.91 9.02 9.11 9.47 9.2
21A1(n!3s; R) 9.73 9.71 9.69 9.97 9.67

ME (TBE) -0.46 -0.33 -0.21
ME (EXP) -0.30 -0.17 -0.06

MAE (TBE) 0.46 0.40 0.44
MAE (EXP) 0.33 0.27 0.36
RMSE (TBE) 0.54 0.43 0.51
RMSE (EXP) 0.46 0.35 0.49

aCorrected theoretical best estimates as given in Ref.81 bExperimental values listed in Ref.81 (see references therein).
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Table 3: One-electron self-interaction energy in eV calculated for the ground- and excited-
state optimal orbitals of the water molecule. The excited-state 3s orbital has smaller classical
self-Coulomb energy than the valence ground-state (GS) orbitals. However, the estimate of
the total self-interaction energy is of similar magnitude for all the orbitals.

orbital Coulomb XC Coulomb + XC

GS1
a

10.06 -10.46 -0.40

GS2
a

10.98 -11.23 -0.26

3s orbital
b

3.34 -3.70 -0.36

a
Two orbitals from a ground-state calculation with PBE-SIC/2 (see Figure S5 in the Supplementary

Information), giving different SIC estimates.
b
Orbital obtained from a DO-MOM excited-state calculation.

In order to further investigate the effect of PZ-SIC on excited states, the change in

energy as an O-H bond is stretched in a water molecule and a dimer of water molecules is

calculated for the ground and lowest singlet excited states. The spin-purification correction

is not applied in this case. First, the ground-state geometry is optimized until the maximum

of the force on the atoms has magnitude below 0.01 eV/Å. Then, the hydrogen-bonded O-

H bond is stretched by changing the position of the hydrogen atom in increments of 0.1

Å, while keeping the positions of all other atoms frozen. The results of these calculations

with both PBE and PBE-SIC/2 are presented in Fig. 6 and compared with the results of

CR-EOMCCSD(T),ID/aug-cc-pVTZ calculations from Ref.83 The energy curves obtained

with PBE and PBE-SIC/2 lie close to each other. However, the PBE-SIC/2 energy curve

reproduces better the S-shape of the high level reference curves for both the monomer and

the dimer. For the water dimer in the lowest excited state, PBE-SIC/2 reproduces the local

minimum at short bond length while PBE predicts a barrierless path towards the second

constrained energy minimum near 1.8 Å O-H distance.
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Figure 6: Potential energy curves calculated for ground and lowest excited singlet states
using mixed-spin determinant along the hydrogen-bonded O-H bond with all other molecular
geometry parameters fixed. (a) Water monomer, (b) Water dimer. The insets show the
atomic configurations at the energy minimum and the endpoint of the scan in the O-H bond
length. aCR-EOMCCD(T),ID/aug-cc-pVTZ calculations from Ref.83

6 Discussion and Conclusions

The RSG or PW representations have an advantage over LCAO in that full basis set limit

can be reached by systematically changing only a single parameter. However, such calcu-

lations involve larger computational cost than LCAO and are limited to the frozen core

approximation. A useful strategy for reducing the computational cost is to obtain initial

orbitals from an LCAO calculation of the excited state and then switch to RSG or PW

mode. All three types of representations can be available in the same software, as is the case

with our implementation in the GPAW software, making such a hybrid approach relatively

straightforward.
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The search of saddle points on multidimensional electronic energy surfaces is a consid-

erably more difficult problem than minimization due to the fact that the energy must be

maximized along a few degrees of freedom that are not known a priori. Even if the order

of a saddle point is known, the success of the extremization of the energy depends on how

close the initial guess for the orbitals is to the target solution. The ground-state orbitals can

represent a good enough initial guess for the iterative convergence on an excited state, but

in some cases another excited-state solution provides a better choice. This can be especially

important when the lowest energy excited state does not correspond to a HOMO-LUMO

excitation. For example, in the water dimer the lowest excited state corresponds to an

electron-hole pair localized on the hydrogen bond donor molecule but the HOMO-LUMO

excitation corresponds to the transfer of an electron from the donor to the acceptor molecule

with the hole localized on the donor and the excited electron localized on the acceptor. In

the calculations of the potential energy curve for the lowest excited state in the water dimer

presented in Sec. 5, a two-step procedure was used: First, the HOMO-LUMO excitation was

computed and the obtained solution then used as an initial guess in the calculation on the

lowest excited state.

In conclusion, we have developed a formulation of the DO-MOM algorithm for density

functional calculations of excited states that can be applied to RSG and PW representations,

where it is not possible to include all virtual orbitals, unlike with LCAO basis sets. This

implementation of the DO-MOM algorithm is found to be robust and able to converge on ex-

cited states that are challenging for commonly used SCF-MOM algorithms. The importance

of complex-valued orbitals in calculations of excited states with a KS-DFT functional is also

demonstrated. In the case of the lowest excited state of CO, it was shown that real-valued

orbitals break the uniaxial symmetry of the electron density, while complex-valued orbitals

restore the symmetry and correspond to higher energy solutions. The fact that complex

orbitals provide a better description of the electronic system is in par with findings from

ground-state calculations.74–78
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The application of DO-MOM in calculations of the excited states of the [Fe(bmip)2]2+

complex shows that: (1) the approach is robust enough to allow the calculation of several

excited states that are close in energy, including regions where the potential energy curves

cross; and (2) the predicted excited-state properties are in good agreement with experimental

values. As for any single-determinant method, the quality of the excited states obtained

with DO-MOM is expected to degrade when the states have a multi-determinantal character

and this can represent a limitation for the application of the methodology to dynamics

simulations. However, when explicit solvent effects are included in the simulations, the

symmetry breaking induced by the solvent can lift degeneracy, thereby reducing the presence

of multi-determinantal states. So far, excited-state dynamics simulations of systems as large

as transition metal complexes using a variational eDFT approach have been limited to a single

Born-Oppenheimer surface.84–86 The present results represent a preliminary indication that

the DO-MOM method is viable for nonadiabatic molecular dynamics simulations including

multiple excited states. Current efforts in this direction include evaluating nonadiabatic

couplings between the excited states obtained variationally, using numerical or analytical

approaches such as the one recently presented in Ref.87 A simulation of the excited-state

relaxation of the [Fe(bmip)2]2+ complex starting from an excitation to the bright MLCT

state could help explain the experimentally observed ultrafast 3MLCT/3MC branching that

affects its performance as a photosensitizer.

An assessment of self-interaction correction, the PZ-SIC, applied to the PBE functional

has been performed for excited states. For valence and Rydberg excitations, the correction

improves the value obtained for the excitation energy, but only by ca. 0.1 eV. This small

effect is due to a cancellation of the correction to the energy of the ground and excited

states and may be attributed to the one-electron nature of this orbital-by-orbital estimate

of the correction. Both the PBE value and the corrected value typically underestimate the

excitation energy. Even though the effect of SIC on the excitation energy is small, it can

lead to improved shape of the potential energy surface as is seen for the lowest excited state
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of the water monomer and dimer. There, the dependence of the excited-state energy on the

O-H bond length agrees better with results of high-level, CR-EOMCCD(T),ID/aug-cc-pVTZ

calculations83 better than results obtained with the PBE functional. Further improvement

in excited-state energy calculations may require going beyond the self-interaction correction

based on orbital densities, for example by including the complementary density in the error

estimate.88

An important advantage of the RSG and PW implementation presented here is the

possibility of doing calculations for extended systems that are subject to periodic boundary

conditions. This includes, for example, excited states of defects in crystals and solvent effects

on electronic excitations of molecular complexes. This will be the topic of future studies with

the DO-MOM method.
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Appendix

A Inner-Loop Minimizaion for ODD functional

The unitary matrix that minimizes an ODD functional, such as the PZ-SIC among occupied

orbitals is found using an exponential transformation:

| ii =
X

ij

(e�A)ij |�ji (A.1)

where A is a skew-hermitian matrix, A† = �A. Let

�ij =
D
�i

��� ĥj + v̂j

����j

E
(A.2)

with ĥj defined in Eq. (14) and

v̂j = �
� (U [⇢j] + Exc[⇢j, 0])

�⇢j
(A.3)

The gradient of the energy with respect to matrix elements of A is:

@EODD

@Aij
= �ij � �⇤ji + o(kAk) (A.4)

This expression must be zero at the minimum and for equally occupied orbitals this leads to

the Pederson (or localization) conditions:89

h�i | v̂j � v̂i |�ji = 0 (A.5)

The L-BFGS algorithm with inexact line search is used to find the optimal matrix A

and, thereby, the optimal unitary matrix O = e
�A. Details of the implementation of the

exponential transformation are given in Ref.62
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B Maximum Overlap Method within the Projector-Augmented Wave

Approach

Let {| ni} be the N orbitals used as initial guess for an excited-state calculation and {| (k)
m i}

the M orbitals at the k
th iteration of the optimization. Within the PAW approach, the

elements of the overlap matrix between orbitals {| ni} and {| (k)
m i} are:68

S
(k)
nm =

⌦
 n

�� (k)
m

↵
=
D
 ̃n

���  ̃(k)
m

E
+
X

a,i1,i2

D
�̃n

��� p̃ai1
E⇣⌦

�
a
i1

���a
i2

↵
�
D
�̃
a
i1

��� �̃a
i2

E⌘D
p̃
a
i2

���  ̃(k)
m

E

(B.1)

where | ̃ni are pseudo orbitals, |p̃ai1i (|p̃ai2i) are projector functions localized on atom a,

while |�a
i1i (|�a

i2i) and |�̃a
i1i (|�̃a

i2i) are partial and pseudo partial waves localized on atom

a, respectively. After computing the overlap matrix at iteration k, the occupation numbers

{fm} of the orbitals {| (k)
m i} are chosen as following. An occupation number of 1 is given to

the first N orbitals with the highest numerical weights, evaluated from the projection onto

the manifold {| ni}:

!
(k)
m =

 
NX

n=1

|S(k)
nm|2

!1/2

(B.2)

The remaining M �N orbitals are left unoccupied (occupation number of 0).
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1 Ground-state molecular orbitals of [Fe(bmip)2]
2+

Below are the molecular orbitals of the [Fe(bmip)2]2+ complex involved in the electronic

transitions investigated in the present work. The isofurfaces are represented with gray and

orange colors and correspond to isovalues of ±0.16 Å�3/2.

Figure S1: HOMO-1
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Figure S2: LUMO
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Figure S3: LUMO+4
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2 Curvature of the
3
MC potential energy curve of [Fe(bmip)2]

2+

The potential energy curves of the lowest 3MC state of [Fe(bmip)2]2+ calculated with DO-

MOM (BLYP) in the present work and linear response TDDFT (B3LYP*) from Ref.S1 are

fitted using a fourth order polynomial:

E(Q) = �de +
k

2
(Q� re)

2 � ↵(Q� re)
3 + �(Q� re)

4, (1)

where k is the curvature. Below are the results of the fitting of the curve calculated with

DO-MOM (BLYP):

de = �1.934

k = 1.332⇥ 10�2

re = 5.060

↵ = 1.265⇥ 10�4

� = �1.652⇥ 10�6

and of the curve calculated with TDDFT (B3LYP*):

de = �1.821

k = 1.263⇥ 10�2

re = 5.514

↵ = 9.256⇥ 10�4

� = 2.461⇥ 10�7

The fitting curves are shown in Fig. S4 together with the points obtained from the DO-MOM

(BLYP) and TDDFT (B3LYP*) calculations. The curvatures of the fitting curves di↵er by

around 5%. The oscillation period estimated on the basis of TDDFT is 285 fs,S1 and thus,
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we obtain an estimation of an oscillation period on the basis of eDFT as

TeDFT = TTDDFT

r
kTDDFT

keDFT
⇡ 280 (fs)

Figure S4: Potential energy curves along a metal-ligand normal coordinate (the breathing
mode Q6 as defined in Ref.S1) of the lowest 3MC state. The DO-MOM (BLYP) calculations
were performed using a finite-di↵erence real-space basis set as described in the main text of
the article. aCalculations from Ref.S1
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3 Excitation Energy obtained from the Mixed-Spin De-

terminant

Table S1: Mixed-Spin States

species excitation PBEa SIC/2b SICb TBEc EXPd

acetaldehyde 11A00 (n ! ⇡⇤; V) 3.79 3.74 3.69 4.31 4.27

acetylene 11�u(⇡ ! ⇡⇤; V) 6.51 6.81 6.90 7.10 7.2

ammonia 21A1(n!3s; R) 6.30 6.25 6.23 6.66 6.38

carbon monoxide 11⇧(n! ⇡⇤; V) 6.70 6.90 7.51 8.48 8.51

diazomethane 11A2(⇡ ! ⇡⇤; V) 2.85 2.47 2.01 3.13 3.14

ethylene 11B3u(n!3s; R) 7.07 7.12 7.14 7.43 7.11
11B1u(⇡ ! ⇡⇤; V) 5.59 5.90 6.20 7.92 7.6

formaldehyde 11B2(n!3s; R) 6.79 7.04 7.16 7.30 7.11

formamide 11A”(n! ⇡⇤; V) 5.26 5.20 5.14 5.63 5.8

hydrogen sulfide 11A2(n!4p; R) 5.51 5.53 5.49 6.10

ketene 11B1(⇡ !3s; R) 5.75 5.87 5.95 6.06 5.86

methanimine 11A”(n! ⇡⇤; V) 4.43 4.56 4.65 5.21

thioformaldehyde 11A2(n! ⇡⇤; V) 1.81 1.78 1.72 2.20 2.03
11B2(n!4s; R) 5.47 5.63 5.72 5.99 5.85
21A1(⇡ ! ⇡⇤; V) 4.36 4.67 4.97 6.34 6.2

water 11B1(n!3s; R) 7.28 7.27 7.24 7.70 7.41
11A2(n!3p; R) 8.83 8.94 9.04 9.47 9.2
21A1(n!3s; R) 9.50 9.48 9.46 9.97 9.67

ME (TBE) -0.73 -0.66 -0.59
ME (EXP) -0.59 -0.52 -0.49
MAE (TBE) 0.73 0.66 0.59
MAE (EXP) 0.59 0.52 0.50
RMSE (TBE) 0.95 0.83 0.73
RMSE (EXP) 0.88 0.76 0.68

a Employing real-valued orbitals; b Initial guess for the wave functions is PBE real-valued orbitals followed by complex
Rudenberg-Edmiston localization; c Corrected theoretical best estimates as given in Ref.;S2 d Listed in Ref.S2 (see references

therein);
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4 The Perdew Zunger Self-Interaction Correction Re-

stricted to Real Orbitals (rSIC)

Table S2: Excitation energy from the PBE-rSIC/2 functional

species excitation Mixed Spin Triplet Singlet
acetaldehyde 11A00 (n ! ⇡⇤; V) 3.71 3.73 3.69

acetylene 11�u(⇡ ! ⇡⇤; V) 6.56 5.60 7.52

ammonia 21A1(n!3s; R) 6.15 6.01 6.29

carbon monoxide 11⇧(n! ⇡⇤; V) 6.94 5.79 8.09

diazomethane 11A2(⇡ ! ⇡⇤; V) 2.26 2.15 2.36

ethylene 11B3u(n!3s; R) 6.87 6.80 6.93
11B1u(⇡ ! ⇡⇤; V) 5.90 4.62 7.19

formaldehyde 11B2(n!3s; R) 6.90 6.85 6.96

formamide 11A”(n! ⇡⇤; V) 5.01 5.06 4.96

hydrogen sulfide 11A2(n!4p; R) 5.46 5.42 5.49

ketene 11B1(⇡ !3s; R) 5.73 5.24 6.22

methanimine 11A”(n! ⇡⇤; V) 4.66 4.39 4.92

thioformaldehyde 11A2(n! ⇡⇤; V) 1.75 1.80 1.69
11B2(n!4s; R) 5.60 5.51 5.69
21A1(⇡ ! ⇡⇤; V) 4.72 3.15 6.29

water 11B1(n!3s; R) 7.00 6.84 7.16
11A2(n!3p; R) 8.69 8.63 8.76
21A1(n!3s; R) 9.43 9.21 9.66

ME (TBEa) -0.73 -0.38 -0.40
ME (EXPb) -0.59 -0.23 -0.24
MAE (TBEa) 0.73 0.39 0.46
MAE (EXPa) 0.59 0.26 0.34
RMSE (TBEa) 0.95 0.44 0.50
RMSE (EXPa) 0.88 0.31 0.41

a Deviation from corrected theoretical best estimates as given in Ref.;S2 b Deviation from experimental values collected in
Ref.S2 (see references therein);
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5 Ground-State SIC Complex Orbitals of the Water

Monomer

Figure S5: Real and imaginary parts of optimal ground-state SIC complex orbitals of the
water monomer. The isofurfaces are represented with blue and red colors and correspond
to isovalues of ±0.05 Å�3/2. There are two degenerate pairs and only one orbital of each
degenerate pair is shown. One optimal orbital (GS1 as denoted in Table 3 of the main text)
is made of real part (a) and imaginary part (b). The other optimal orbital (GS2 as denoted
in Table 3 of the main text) is made of real part (c) and imaginary part (d). Each figure
(a), (b), (c), and (d) contains its own isosurfaces from two di↵erent views as shown by the
axis in insets.

S-10

174



Article III

References
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Jónsson⇤,†,¶

†Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107

Reykjav́ık, Iceland.

‡St. Petersburg State University, 199034, St. Petersburg, Russia

¶Department of Applied Physics, Aalto University, Espoo, FI-00076, Finland.

E-mail: hj@hi.is

1

178



Article IV

Abstract

Qualitatively incorrect results are obtained for the Mn dimer in density functional

theory calculations using the generalized gradient approximation (GGA) and similar

results are obtained from local density and meta-GGA functionals. The coupling is

predicted to be ferromagnetic rather than antiferromagnetic and the bond between the

atoms is predicted to be an order of magnitude too strong and about an Ångstrøm

too short. Explicit, self-interaction correction (SIC) applied to a commonly used GGA

energy functional, however, provides close agreement with both experimental data and

high-level, multi-reference wave function calculations. These results show that the

failure is not due to strong correlation but rather the single electron self-interaction

that is necessarily introduced in estimates of the classical Coulomb and exchange-

correlation energy when only the total electron density is used as input. The corrected

functional depends explicitly on the orbital densities and can, therefore, avoid the

introduction of self-Coulomb interaction. The error arises because of over-stabilization

of bonding d-states in the minority spin channel resulting from an overestimate of the

d-electron self-interaction in the semi-local exchange-correlation functionals. Since the

computational e↵ort in the self-interaction corrected calculations scales with system

size in the same way as for regular semi-local functional calculations, this approach

provides a way to calculate properties of Mn nanoclusters as well as biomolecules and

extended solids where Mn dimers and larger cluster are present, while multi-reference

wave function calculations can only be applied to small systems.
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Manganese atoms have large magnetic moment and are, therefore, of interest for various

technical applications. Complexes of Mn atoms are also found in several metalloenzymes,1,2

for example in the oxygen-evolving photo-system II. The properties of such systems are of

great interest and theoretical calculations could in principle provide valuable information to

help gain an understanding of the role Mn atoms play. However, theoretical calculations

prove to be particularly challenging for these systems. The Mn dimer is the simplest man-

ganese complex and it represents an important test system for theoretical methods that could

ultimately be used for the larger and more complex systems. Its properties are quite well

known from electron spin resonance and optical absorption measurements of dimers confined

in a rare gas matrix. The ground state is found to be antiferromagnetic3–5 with a small bond

energy of 0.13±0.1 eV6 and a large bond length of 3.4 Å.4,7 Resonance Raman spectra give

vibrational frequency of 76 cm�1 in a Kr matrix8 and 68 cm�1 in a Xe matrix.5

High-level wave function calculations of an isolated Mn dimer give results in close agree-

ment with the experimental measurements. Both complete-active-space self-consistent field

in combination with second-order perturbation theory,9 as well as multi-reference9–13 calcu-

lations have been carried out. They predict bond energy in the range 0.10 - 0.14 eV and

bond length of 3.3 - 3.8 Å in an antiferromagnetic ground state with a coupling constant

of J=-5.8 cm�1. It is clear from the close agreement between these calculations and the

experimental measurements that the e↵ect of the confining rare gas matrix is small and the

measurements indeed probe the properties of the Mn dimer. Such high-level, wave function

based calculations become, however, impractical for larger systems due to the strong scaling

of the computational e↵ort with system size.

Kohn-Sham density functional theory (KS-DFT)14 can provide a valuable tool for the-

oretical studies of large systems with up to several hundred atoms, free – in principle – of

adjustable parameters with unknown values. Unfortunately, the results of such calculations

for the Mn dimer with commonly used energy functionals such as local density approximation

(LDA) and generalized gradient approximation (GGA), are in strong disagreement with the

3
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experimental measurements and the high-level, wave function calculations.15–17 The ground

state is predicted to be ferromagnetic rather than antiferromagnetic with the bond between

the Mn atoms being much too strong and too short. All electron calculations with various

GGA functionals give a binding energy of around 0.9 eV and bond length of 2.57-2.61 Å.17

Below, we present results using an elaborate meta-GGA functional, SCAN,18 where the Mn

dimer is also found to be poorly described. We will from now on refer to calculations using

LDA, GGA or meta-GGA functionals collectively as semi-local DFT calculations.

Similar failure in DFT calculations of magnetic coupling constants has also been reported

for various manganese binuclear complexes.19 Shortcomings of DFT calculations are often

ascribed to ‘strong correlation’ and systems where large errors are obtained are often charac-

terized as ‘highly correlated systems’ (for a recent discussion of a possible meaning of these

terms, see Ref.20). The Mn dimer is an example of such a system. It has, however, been

shown that calculated results for the Mn dimer can be improved when exact exchange is

added to a semi-local DFT functional to form a hybrid functional, but the weight of the

exact exchange in this blend needs to be significantly larger than the range of 0.20 to 0.25

in commonly used functionals of this form.17,19,21 Semi-local DFT functionals tend to give

errors of opposite sign to those of Hartree-Fock calculations, so some mix of the two can

often be tuned to give the desired result.

An alternative reason for the failure of semi-local DFT calculations is the self-interaction

error that is necessarily introduced in the estimate of the classical Coulomb interaction

between the electrons when only the total electron density is used as input. This error is

highly non-local. In the exchange-correlation part of the semi-local functionals a correction

is estimated, i.e. a self-interaction contribution of opposite sign, but the cancellation can

mathematically not be complete and, therefore, self-interaction error remains and can lead

to erratic results. Previously it has been speculated that the self-interaction error is not

responsible for the poor performance of semi-local DFT functionals for the Mn dimer but

rather strong correlation.15,16 So, the question remains whether the large error in semi-local

4
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DFT calculations of the Mn dimer is due to strong correlation or self-interaction, or possibly

some other source of error.

In this letter, the results of variational, self-consistent calculations are presented where the

self-interaction error is removed explicitly as proposed by Perdew and Zunger.22 As described

below, the results are found to be in remarkably good agreement with the high-level wave

function calculations. While any form of correlation necessarily reflects interaction between

two or more electrons, the self-interaction error in semi-local DFT functionals is present even

for systems containing a single electron and the correction applied here involves terms that

depend only on one-electron densities. The results presented here therefore demonstrate

that the problem in the semi-local DFT calculations of the Mn dimer is not related to

correlation, but rather self-interaction error. In addition to providing important insight into

the reason for the failure of DFT for the Mn dimer, this opens up an avenue for accurate

calculations of larger systems containing Mn complexes because the computational e↵ort of

the GGA calculations with self-interaction correction scales with system size in the same

way as regular GGA calculations.23

In Kohn-Sham density functional theory,14 the energy of an electronic system is estimated

from

EKS[⇢] = Ts +

Z
vext(r)⇢(r)dr+ EC[⇢] + Exc[⇢", ⇢#] (1)

were, Ts is the kinetic energy of an independent electron system described by spin-orbitals

� and the electron density

⇢�(r) =
X

i�

⇢i�(r) =
X

i�

|�i�(r)|2 (2)

corresponds to the ground state electron density of the interacting electron system for each

spin channel, � = {", #}. The energy due to the electron-nuclei interaction, described by

the external potential vext, can be evaluated correctly from the total electron density, ⇢(r) =

5
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⇢"(r) + ⇢#(r), but the estimate of the classical Coulomb interaction between the electrons

EC[⇢] =

Z Z
⇢(r)⇢(r0)

|r� r0| drdr0 (3)

includes spurious interaction of each electron with itself. This is most clearly seen for a system

with a single electron where non-zero interaction energy is obtained from this estimate.

A more accurate estimate can be obtained by using the spin-orbital densities, ⇢i, where

interaction of a spin-orbital with itself is avoided

ESIC
C [⇢1, . . . , ⇢N ] = EC[⇢]�

X

i

Z Z
⇢i(r)⇢i(r0)

|r� r0| drdr0 =
X

i

X

j>i

Z Z
⇢i(r)⇢j(r0)

|r� r0| drdr0 (4)

Here, the summation indices run over both spin channels, i = {i", i#}. The exchange-

correlation energy term in the KS-DFT functional, Exc, attempts to provide such a correc-

tion but, because of the semi-local form, cannot accurately cancel out the non-local self-

interaction error in EC[⇢].

Perdew and Zunger proposed a procedure where the net self-interaction error is estimated

for each spin-orbital and the sum subtracted from the Kohn-Sham functional22

ESIC[⇢1, . . . , ⇢N ] = EKS[⇢]�
X

i

(EC[⇢i] + Exc[⇢i, 0]) . (5)

This provides the correction to the classical Coulomb energy as in Eqn. (4) and also ad-

dresses the extent to which the exchange-correlation functional is able to cancel out the

self-interaction by evaluating the net self-interaction for each spin-orbital separately. For a

one electron system, the corrected functional is guaranteed to be self-interaction free, but

for many electron systems, this correction procedure is approximate. While this approach

was originally proposed for the LDA functional, it can also be applied to GGA functionals

but there it has been found to give an overcorrection and a scaling by 1/2 has been shown to

give good results for a wide range of systems and properties such as atomization energy of

6
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molecules, band gaps of solids and the balance between localized and delocalized electronic

states.24–26 We choose here to use the PBE functional,27 a GGA functional approximation

that is commonly used in calculations of condensed matter and refer to the corrected func-

tional as PBE-SIC/2. As discussed below, the scaling of 1/2 is not essential here, similar

results are obtained for the Mn dimer without the scaling.

The corrected functional is not unitary invariant as it depends explicitly on the orbital

densities, as indicated in Eqs. (4-5), and it turns out that the optimal spin-orbitals that min-

imize the energy of the system are hybrid orbitals, i.e. linear combinations of the canonical

orbitals that are eigenfunctions of the Hamiltonian. The calculations need to make use of

complex-valued functions to represent the optimal spin-orbitals.28–30 Here, a real-space grid

has been used31 combined with projector augmented wave (PAW) to represent the e↵ect of

frozen core-electrons of the atoms.32 A localized atomic orbital basis set is used including

primitive Gaussians from the def2-TZVPD basis set33–37 augmented with a single-zeta ba-

sis.38 Tests against calculations using full flexibility of the real-space grid with mesh size of

0.15 Å give nearly identical results, showing that the atomic basis set is su�cient. Starting

from localized orbitals,39 the energy is variationally minimized using an exponential trans-

form direct optimization method described elsewhere.40,41

Fig. 1 shows the energy of the three lowest energy electronic states of the Mn dimer as

a function of the distance between the atoms, calculated with the PBE functional with and

without self-interaction correction. Three relevant, low lying electronic states are found in

the calculations: two ferromagnetic states, 11⌃+
u and 11⇧u, and an antiferromagnetic 1⌃+

g

state. The self-interaction corrected functional predicts the antiferromagnetic state to be

the ground state, and gives a binding energy of 0.18 eV and bond length of 3.32 Å, in close

agreement with the experimental results as well as the high-level wave function calculations.

The ferromagnetic 11⌃+
u state is only 0.04 eV higher in energy at the optimal bond length.

A vibrational frequency of 69 cm�1 is obtained from the ground state energy curve, in

good agreement with the experimental measurements.5,8 The magnetic coupling constant is

7
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calculated using the relationship17

J =
EAF � EF

hS2
F i � hS2

AF i
, (6)

where EAF and EF are the energy of the antiferromagnetic and ferromagnetic states, and

< S2 > is evaluated taking into account spin contamination.42 This gives J= -6.0 cm�1, close

to the value obtained in the MCQDPT2 calculations.9 The scaling of the self-interaction

correction is not important in this case. When the full correction is used as in Eqn. (5),

similar results are obtained, namely bond energy of 0.12 eV, bond length of 3.5 Å and

vibrational frequency of 56 cm�1. Most importantly, the self-interaction correction, scaled

or not scaled, gives the right antiferromagnetic ground state.

Di↵erent results are obtained with the uncorrected PBE functional, as can be seen from

Fig. 1. There, the ferromagnetic state 11⇧u is lowest in energy and even the other ferro-

magnetic state, 11⌃+
u , turns out to be lower than the antiferromagnetic, 1⌃+

g state at the

experimental bond length. The calculated binding energy in the ground state is 0.90 eV

with a bond length of 2.6 Å in strong disagreement with best estimates. These results are

consistent with previously reported calculations using semi-local functionals.17 At a large

distance between the Mn atoms, the 11⇧u state becomes higher in energy than the others

as it dissociates into a d 6s1 configuration for one of the Mn atoms. Calculations with the

meta-GGA SCAN functional18 were also carried out using the VASP software43 and the

results are qualitatively similar to the PBE results in that they also give the ferromagnetic

11⇧u state as the ground electronic state, but the binding energy is smaller than for PBE,

0.46 eV. The SCAN functional can produce an antiferromagnetic ground state if a U-term

is added, e↵ectively mimicking a self-interaction correction (see supporting information in

Ref.44).

In order to analyse this failure of the semi-local functional calculations, a molecular

orbital diagram is shown in Fig. 2. Interestingly, the occupation of minority-spin molecular

8
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Figure 1: Energy of the Mn dimer in the three lowest lying electronic states as a function of
distance between the atoms calculated with the PBE functional (filled diamonds) and self-
interaction corrected PBE-SIC/2 (filled circles). The zero of energy is twice the energy of an
Mn atom in the 6S electron configuration. The ferromagnetic states 11⌃+

u and 11⇧u are shown
in blue and green, respectively, and the antiferromagnetic state 1⌃+

g in red. The ground state
in the PBE calculations is ferromagnetic with a binding energy of nearly 0.9 eV and bond
length of 2.6 Å while the antiferromagnetic state is the ground state in the self-interaction
corrected PBE-SIC/2 calculations, with binding energy of 0.18 eV and bond length of 3.32 Å.
Experimental estimates4,6,7 of the bond length and bond energy (shaded grey area indicating
the estimated error bar) are shown with dashed lines. The triangles show results of high-level
calculations using MCQDPT29 (filled) and CASPT210 (open). The self-interaction corrected
PBE-SIC/2 calculation is in close agreement with experimental measurements as well as the
high-level calculations, while the PBE results are qualitatively incorrect. Open diamonds
show results of calculations where the PBE energy is evaluated for the PBE-SIC/2 electron
density, showing that the dominant error is in the self-interaction rather than the electron
density.

orbitals turns out to play an important role here. In the PBE calculation, the bonding

minority spin orbital ⇡(3d) is lower in energy than the anti-bonding �⇤(4s), and this leads

to d-d bond formation in the minority spin states. When the self-interaction correction is

applied, the relative energy of ⇡(3d) and �⇤(4s) is reversed and the anti-bonding spin-orbital

9

186



Article IV

Figure 2: Molecular orbital diagram for the lowest energy ferromagnetic state of the Mn
dimer calculated with the PBE functional and with the self-interaction corrected PBE-SIC/2
functional, based on orbital energy of the canonical orbitals. In the PBE calculations, the
bonding ⇡(3d) minority spin orbital has lower energy than the antibonding �⇤(4s) orbital,
and becomes populated, resulting in a 11⇧u ground state for the Mn dimer. When self-
interaction correction is applied, in the PBE-SIC/2 functional, the relative energy of these
two molecular spin-orbitals is reversed, and �⇤(4s) becomes populated resulting in a 11⌃+

u

state of the dimer. The magnetic coupling then makes the 1⌃+
g state slightly lower in

energy than the 11⌃+
u state, by 0.04 eV, resulting in an antiferromagnetic ground state in the

PBE-SIC/2 calculation. The surfaces illustrating the molecular spin-orbitals in the insets
correspond to a value of ±0.08 Å�3/2, where di↵erent colors indicate the sign for the PBE
orbitals, but for PBE-SIC/2 the amplitude of the orbitals is shown as they are complex.

is occupied instead. The relative energy of the d and s atomic orbitals is an important issue

here.

It is well known that semi-local DFT functionals do not describe well the energy balance

between localized and delocalized electrons, and this is reflected in the relative energy of d

and s atomic orbitals. The repulsive self-interaction error in the classical Coulomb interaction

is larger the more localized the electrons are. One might, therefore, expect that d electrons

are calculated to be high in energy compared with s electrons. However, the results of the

calculations presented here using the PBE functional show the opposite trend, as illustrated

10
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in the molecular orbital diagram of Fig. 2 where the PBE functional ends up placing electrons

in a molecular spin-orbital formed from d atomic orbitals rather than the one formed from

s atomic orbitals. The answer lies in the estimate of the self-interaction in the exchange-

correlation part of the PBE functional, a contribution that should cancel out the repulsive

self-interaction in the classical Coulomb term. This estimate is based on an analysis of

smoothly varying electron gas. The larger the deviation is from the uniform electron gas,

the larger an error can be expected in the exchange-correlation functional. The extent to

which the self-interaction is cancelled out by the two contributions for the various atomic

orbitals in the Mn atom as well as a few other atoms is shown in Fig. 3. The cancellation

of the self-interaction energy for the 3s atomic orbital is quite good, the net self-interaction

being only 0.03 eV. But, the net self-interaction has a larger magnitude and is negative

for the 3d orbitals of the Mn atom, -2.8 eV. This might be related to the fact that the

d electrons exhibit a multi-center character which the semi-local functionals often fail to

describe.45 Similar trend is observed for orbitals of other atoms, as shown in the figure. The

self-interaction correction in the semi-local exchange-correlation functional is, therefore, an

overcorrection and makes the d atomic orbitals too low in energy as compared with the s

atomic orbitals. This leads to the population of a bonding ⇡(3d) molecular spin-orbital in

the Mn dimer instead of an anti-bonding �⇤(4s) spin-orbital. As a result, the Mn dimer is

overbound in an incorrect electronic ground state in the semi-local DFT calculations.

There are two aspects of the error in DFT calculations:46 (1) an error in the self-consistent

electron density, and (2) an error in the energy obtained for a given, possibly correct, electron

density. A calculation using the PBE functional with the PBE-SIC/2 electron density as

input for the Mn dimer is also shown in Fig. 1. The binding energy for both ferromagnetic

states is reduced, but the 11⇧u state is still the lowest energy state and there is still large

overbinding of the dimer. This shows that the self-interaction is the main source of error

rather than the electron density.

To analyze this further, the electron interaction terms are evaluated using PBE for each
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Figure 3: (a) Net self-interaction, EC[⇢i]+Ex[⇢i, 0], evaluated for atomic orbitals using orbital
densities obtained from PBE calculations of the atoms. Results are shown for the Mn atom,
as well as a few other atoms (Na, Al, Sc) to illustrate the trend of increasing magnitude of
the negative net self-interaction as the orbital angular momentum increases. For s orbitals,
the negative self-interaction energy in the exchange part of the PBE functional compensates
well the positive self-interaction energy in the classical Coulomb part, but for d orbitals it
overcorrects. The d orbitals in the Mn atom are, therefore, too low in energy compared to
the s orbitals and this leads to incorrect ordering of the bonding ⇡(3d) molecular spin-orbital
and the anti-bonding �⇤(4s) spin-orbital in the minority-spin channel, as illustrated in Fig.
2. (b) Self-interaction in the correlation part of the PBE functional evaluated for the atomic
orbitals as in (a). Here, the largest contribution is obtained for the s orbitals, but this
contribution is an order of magnitude smaller than the one shown in (a).

of the Mn2 molecular spin-orbitals separately using the optimal PBE-SIC/2 orbital densities

(see Table 1). The net self-interaction energy estimated for the majority-spin 11⇧u and

11⌃+
u states di↵ers only by ca. 20 meV so the relative energy of these states is not a↵ected

significantly by the self-interaction error. The reason is that these two states have similar type

of bonding, both involve ten molecular orbitals formed from d electrons and two molecular

orbitals formed from s electrons. However, for the minority-spin states, the magnitude of the

self-interaction energy is quite di↵erent, being 1.2 eV larger for the 11⇧u state than the 11⌃+
u
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state. The reason is that the former involves an orbital formed from d electrons, ⇡(3d), as

well the �(4s) orbital formed from s electrons, while the latter involves only orbitals formed

from s electrons. As a result, the subtraction of the self-interaction error from the PBE

functional has a large e↵ect and reverses the relative energy of the 11⇧u and 11⌃+
u states.

Table 1: The sum of the classical Coulomb and exchange-correlation self-interaction energy
evaluated with PBE for each molecular spin-orbital separately, using optimal spin-orbitals
from the PBE-SIC/2 calculation. Only the 14 valence electrons are included. For the
majority-spin orbitals, the di↵erence is just 0.02 eV, because they both involve ten molecular
orbitals formed from d electrons and two molecular orbitals formed from s electrons. But,
for the minority-spin, the 11⌃+

u state involves two orbitals formed from s electrons, �(4s) and
�⇤(4s), while the 11⇧u state involves an orbital formed from d electrons, ⇡(3d), as well as the
�(4s) orbital. The self-interaction has, therefore, di↵erent magnitude for the minority-spin,
being 1.2 eV larger for the 11⇧u state than for the 11⌃+

u and, thereby, reverses the relative
stability of these states.

Majority spin Minority spinP
EC [⇢i]

P
Exc[⇢i] totalmaj

P
EC [⇢i]

P
Exc[⇢i] totalmin

11⇧u 114.9 -126.0 -11.10 8.8 -10.6 -1.8
11⌃+

u 118.6 -129.7 -11.08 7.2 -7.8 -0.6

In summary, KS-DFT calculations with the LDA, GGA or meta-GGA functional approx-

imations give qualitatively incorrect results for the Mn dimer. The reason for this failure

is not strong correlation but rather the one-electron self-interaction error that results from

incomplete cancellation of the non-local self-interaction that is necessarily included in an es-

timate of the classical Coulomb interaction using only the total electron density as input and

the semi-local estimate of the compensating self-interaction in the exchange correlation term

in these functionals. It turns out that the net self-interaction error is particularly large for

the d-electrons and artificially lowers their energy with respect to that of s-electrons because

of an overestimate of the self-interaction in the semi-local exchange correlation functionals.

As a result, an electronic state that dissociates into an Mn atom with a d 6s1 electron con-

figuration becomes the ground state and much too strong bonding is obtained because of

constructive overlap of the d-orbitals in the minority spin channel. The results presented

here show that an explicit self-interaction correction for each spin-orbital applied to the PBE
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functional accurately describes the Mn dimer, predicting bond distance, binding energy, vi-

brational frequency and magnetic coupling constant in close agreement with experimental

measurements and high-level quantum chemistry calculations. Since the computational ef-

fort in the self-interaction corrected calculations scales with system size in the same way

as DFT calculations with semi-local functionals, i.e. as the system size to the third power,

the method can be applied to large systems including extended solids.24,26 There are several

other formulations of self-interaction correction and di↵erent implementations47 and it would

be interesting in future work to see how well they perform in calculations of the Mn dimer.
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