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Abstract 
 

Volcanic eruptions can cause significant human health and environmental threats both during and after their 

event due to the hazardous materials and gases that are actively or passively released into the surrounding 

environment. Historical records suggest that severe historic eruptions in Iceland caused mass mortality to 

livestock, famine, altered weather and led to the contamination of water and air, all of which significantly 

impacted the health and living condition of people in the past. The aim of the project was to investigate the 

effects of volcanic eruptions on human health across Icelandic history, as well as the impacts of the 

anthropogenic use of heavy metals (e.g., Hg, As, Pb) and climate change (e.g., cooling weather during the 

Little Ice Age).  

 

The study used a range of different methods but mainly analyses on human and animal bones and soil 

samples. Standard osteological analyses were conducted on skeletal individuals (n=186) from 

archaeological sites (n=7) across Iceland dated between the 10th and the 19th century. Samples were then 

collected for further analyses: human bone (n=36) and teeth samples (n=31), as well as animal bone samples 

(n=23) and soil samples (n=13), which were selected from the monastic-hospital site of Skriðuklaustur (AD 

1493-1554). In addition to previously published comparative data, bone samples (n=14) and soil samples 

(n=9) were selected from a farm site, called Skeljastaðir, which was abandoned during the AD 1104 

eruption of the nearby volcano Hekla. Standard osteological and palaeopathological methods were used for 

the skeletal analysis and anthropological descriptions. Microscopy, radiography, endoscopy, and other 

specialized techniques were used where necessary. Isotope (δ18O, 87Sr/86Sr, δ13C) and trace element (Hg, 

Pb, Cd, As, Zn, Sb, Ba, Sr) analysis of dental enamel was undertaken to investigate geographic provenance 

and possible exposure to toxic emissions during childhood. At the same time, isotope ratio mass 

spectometry of bone collagen samples (δ13C, δ15N, δ34S) from humans and animals was used to reconstruct 

palaeodiet and provide indications about overall nutrition. Trace element analysis (ICP-MS and ISE) was 

also used on bone samples to investigate ante-mortem exposure to toxic elements of volcanogenic origins 

(F, Hg, Pb, Cd, As). Isotope analyses conducted for the reconstruction of geographic provenance of the 

people buried at Skriðuklaustur showed a local population born in Iceland that came to the monastery 

seeking treatment, hospice, trade, or religious activity from throughout the south-eastern quarter of the 

country. Dietary reconstruction showed a mixed marine and terrestrial diet with freshwater fish input at the 

monastic-hospital Skriðuklaustur, while a primarily terrestrial protein diet with freshwater fish input at the 

inland farm site Skeljastaðir.  

 

Overall, the results indicated that the burden of skeletal fluorosis on the human population was low, perhaps 

because people, unlike the livestock, quickly fled from areas directly impacted by volcanic fallout. The 

skeletal burden of most other volcanogenic pollutants was also low, indicating that any slight elevations 

were the result of natural, passive background emissions or limited anthropogenic exposure. However, 

mercury was elevated in these skeletal assemblages, due to both anthropogenic uses (e.g., as a medicine) 

and volcanogenic exposure. The impacts of volcanic hazards in the past cannot be dismissed and they 

certainly caused complicated, life-threatening, and long-term effects upon the living conditions and health 

of people in the past. On the other hand, it seems that the immediate dangers (e.g., volcanic smoke, lava 

flow) were mostly circumvented, unlike previously hypothesized. People likely mitigated against volcanic 

disasters by temporarily moving away from areas undergoing eruptions.  
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Útdráttur 
 

Eldgos geta ógnað heilsufari fólks og haft alvarleg áhrif á náttúruna, bæði meðan á þeim stendur og til langs 

tíma, sökum hættulegra efna og eitraðra lofttegunda sem þau losa út í umhverfið. Stór eldgos á Íslandi hafa 

áður verið talin hafa valdið stórfelldum búfjárdauða, hungri, breytingum á veðurfari og vatns- og 

loftmengun, sem hafði í kjölfarið mikil áhrif á heilsu og lífsskilyrði íbúa landsins fyrr á tíð. Markmið 

þessarar rannsóknar var að kanna hversu mikil áhrif eldsumbrotin höfðu á heilsufar fólks í gegnum aldirnar 

á Íslandi en um leið að skoða í sama skyni önnur mengunaráhrif í umhverfinu, til dæmis af mannavöldum 

(s.s. með notkun kvikasilfurs, arseniks og blýs) og vegna loftslagsbreytinga (s.s. kólnandi hitastigs á Litlu 

ísöld).  

 

Í rannsókninni var margvíslegum aðferðum beitt en einkum stuðst við greiningar á beinum manna og dýra, 

auk jarðvegssýna. Í úrtaki hennar voru bein 186 einstaklinga frá sjö mismunandi stöðum á Íslandi sem voru 

í byggð allt frá 10. öld til 19. aldar. Þá voru sértækar greiningar gerðar á gögnum frá Skriðuklaustri í 

Fljótsdal, þar sem var klaustur og spítali á árabilinu 1493-1554, og frá Skeljastöðum í Þjórsárdal, sem 

lögðust í eyði í kjölfar Heklugoss árið 1104. Alls voru 36 sýni úr mannabeinum og 31 tannsýni, sem og 23 

dýrabeinasýni og 13 jarðvegssýni valin til rannsóknarinnar frá Skriðuklaustri. Til samanburðar voru valin 

14 beinasýni og níu jarðvegssýni frá Skeljastöðum. Hefðbundnum beina- og meinafræðilegum aðferðum 

var beitt við greiningar á beinunum. Smásjárskoðanir, röntgenmyndatökur, speglanir og aðrar sérhæfðar 

aðferðir voru nýttar til frekari rannsókna þegar þess þurfti. Ísótópagreiningar (δ18O, 87Sr/86Sr, δ13C) og 

snefilefnarannsóknir (Hg, Pb, Cd, As, Zn, Sb, Ba, Sr) á tannglerungi voru framkvæmdar til að kanna 

landfræðilegan uppruna einstaklinga og mögulega útsetningu fyrir eitrun í æsku. Samhliða voru gerðar 

massagreiningar á samsætum úr kollagensýnum (δ13C, δ15N, δ34S) sem tekin voru úr beinum manna og dýra 

til að afla vísbendinga um mataræði og almenna næringu einstaklinganna. Snefilefnarannsóknir (ICP-MS 

og ISE) voru jafnframt gerðar á beinasýnum til að kanna útsetningu fyrir eiturefnum úr eldgosum (F, Hg, 

Pb, Cd, As) fyrir andlát. Niðurstöður ístópagreininga sýna að þau sem leituðu til Skriðuklausturs, til að 

sækja sér læknismeðferð, í viðskiptalegum erindagerðum eða af trúarlegum ástæðum, voru fædd á Íslandi 

og virðast hafa komið hvaðanæva að af suðausturhorni landsins. Niðurstöður rannsókna á mataræði íbúa 

þar leiddu ennfremur í ljós að meginuppistaða fæðuvals þeirra var blanda af sjávar- og landdýrum, auk þess 

sem merki voru um neyslu á ferskvatnsfiski. Íbúar Skeljastaða hafa hins vegar fyrst og fremst nærst á 

prótínríkri fæðu úr landdýrum, auk nokkurs ferskvatnsfisks.  

 

Helstu niðurstöður rannsóknarinnar eru þær að tíðni flúoreitrunar í sýnaúrtakinu er almennt lág, hugsanlega 

sökum þess að fólk, ólíkt búfé, flúði svæðin fljótt í kjölfar eldsumbrota. Eituráhrif vegna flestra annarra 

gosefna mældust sömuleiðis lág, sem gefur til kynna að smávægileg eiturfrávik séu til komin vegna 

óbeinna, náttúrulegra orsaka eða takmarkaðra útsetninga af mannavöldum. Þó mældust gildin hærri þegar 

kom að útsetningu fyrir kvikasilfurseitrunum, bæði af völdum eldgosa og manna.  Á meðan ekki verður 

horft fram hjá þeirri hættu sem eldgos ollu á Íslandi á fyrri tíð, virðist sem að beinir áhættuvaldar (s.s. 

gosgufur og gjóska) hafi haft takmarkaðri áhrif á heilsufar en áður hefur verið talið. Engu að síður hafa 

eldgos vissulega valdið flóknum, lífshættulegum langtímaáhrifum á framfærslu-, búsetu- og veðurfarsleg 

skilyrði sem síðan geta haft óbein áhrif á lifnaðarhætti og heilsu fólks. Líklegt er að fólk hafi komist hjá 

slíkum hamförum með tímabundnum búferlaflutningum frá gossvæðum. Í framtíðinni gæti verið mikilvægt 

að beina sjónum að viðbúnaði landsvæða á virkum gossvæðum gegn langtímaáhrifum félagslegra, 

pólitískra, umhverfislegra og efnahagslegra þátta fremur en að horfa til alvarleika skammtímaáhrifa sem 

eldsumbrot kunna að valda. 
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“Since the outbreak began, the atmosphere of the whole country has been full of vapour, smoke and dust, so 

much so that the sun looked brownish red, and the fishermen could not find the banks... Old people, especially 

those with weak chests, suffered much from the smell of sulphur and the volcanic vapours, being affected with 

dyspnoea. Various persons in good health fell ill, and more would have suffered had not the air been cooled 

and refreshed from time to time by rains” (Holm pg.57-60 quoted in Creighton, 1965, pg. 414). 

1 Introduction  
 

Environmental perils often remain concealed and overlooked despite the constant influences ecological 

conditions assert upon life and landscapes. Tectonic activity, earthquakes, and volcanic eruptions can cause 

severe natural disasters, such as those which have occurred throughout Icelandic history. Volcanoes are 

both destructive and productive and affect climatic, geologic, human, animal, vegetative, and other 

environmental constructs through their eruptions. They may cause significant human health and 

environmental threats both during and after their event due to the hazardous materials and gases that are 

actively or passively released into the surrounding environment (Hansell et al., 2006). Additionally, 

volcanic eruptions are known to cause the death of crops, livestock, inland fish and marine fauna near 

volcanic activity and the drying of wells following ground water level changes (Black, 1981, Grattan, 2006). 

In Iceland, climatic conditions during the Middle Ages complicated cultivation and losing many crops or 

animals at one time could be catastrophic to a population’s subsistence strategy and overall health (Mehler, 

2011; McGovern et al., 2014). Changes in climate, the use of land, the environment and availability of 

resources all directly affect public health (Semenza and Menne, 2009). The connection between the 

environment and human health has been observed since ancient times, such as in “Airs, Waters and Places” 

by Hippocrates (5th century BC) (Roberts, 2016). Nonetheless, archaeological research, has only 

infrequently considered the relationship between human health and pathological conditions resulting from 

environmental causes, such as volcanic emissions (see Petrone et al., 2013; Nelson et al., 2016). 

 

Archaeological skeletal remains have been retained from archaeological excavations in Iceland as far back 

as the end of the 19th century. Only a few skeletal analyses, such as Bruun (1903) and Hooton (1918), were 

conducted prior to 1939 when the medical doctor Jón Steffensen (1905-1991) first began to analyse 

skeletons from the excavation of cemetery at Skeljastaðir in Þjórsárdalur valley. From this point forward, 

Jón Steffensen served as the only physical anthropologist working on skeletal remains in Iceland until his 

death in 1991 (Zoëga and Gestsdóttir, 2010). Meanwhile, physical anthropologist Jens Ólafur Páll Pálsson 

(1926-2002) established the Anthropological Institute of the University of Iceland (Mannfræðistofnun 

Háskóla Íslands) in 1969, working mainly with anthropometry, taking measurements of living people. 

Despite the systematic approach of skeletal analysis that began with Jón Steffensen’s work, the principal 

aims of the analyses at that time were focused on using non-metric traits to assess the ancestry of the settlers 

of Iceland and identifying specific individuals from coffin inscriptions, historical records, burial locations, 

and comparisons of skulls to portraits (Steffensen, 1988; Zoëga and Gestsdóttir, 2010). These objectives 

were intertwined with the strong focus held by historians and archaeologist on identifying individuals and 

verifying events and locations described in the sagas at that time. Since then, the subject has changed 

considerably, moving away from case studies aimed at individual identification, with practitioners focusing 

instead on population analyses, palaeodemography, palaeopathology, migration studies, palaeodietary 

reconstructions and other multidisciplinary approaches to anthropological and bioarchaeological analyses 

(Zoëga and Gestsdóttir, 2010; Gestsdóttir, 2012). Recently, Icelanders, health researchers and many others 

have expressed concerns about the environmental and human health impacts of volcanic emissions 

(Gislason and Alfredsson, 2010).  

 

The research presented here will provide statistically relevant findings regarding the relationship between 

health and the volcanic environment in the past that will deepen our understanding of volcanogenic 

emissions upon the human body and Icelandic environnment in the present. The overarching aim of this 

thesis was to examine the impact of volcanogenic earth elements on human health in historical Iceland 
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through osteological and biochemical analyses of human skeletal remains. Human/environment interactions 

were contextualized by assessing skeletal assemblages representing populations historically residing near 

volcanic activity or during known volcanic events. Climatic changes, volcanic eruptions, natural resources 

and environmental disease burden were considered to be important agents to the shifting cultural and 

occupational behaviors occurring throughout history. Recent research studies have extensively addressed 

the relationship between pathological conditions and exposure to volcanogenic pollutants (Horwell et al., 

2013). However, this type of study has only very rarely been conducted on archaeological populations. The 

diagnosis of elemental toxicity is otherwise extremely rare in bioarchaeological or palaeopathological cases 

(Littleton, 1999; Gestsdóttir et al., 2006). Finally, the study also considered the importance of and 

connection between environmental and genetic influences on human health. This thesis aimed, moreover, 

to expand upon the scientific, historical, and medical record of volcanic and environmental health 

conditions, which still afflict modern populations, with both Icelandic and international applicability. 

 

1.1 Aims and Objectives 
 

The overarching aim of this research – as noted above – was to use osteological and archaeometric analyses 

to examine the health impacts and disease burden sustained by the historical population of Iceland as a 

consequence of the volcanic environment. In addition to skeletal changes, archaeometric analyses using 

inductively coupled mass spectrometry (ICP-MS) and ion-selective electrode (ISE) were employed to 

directly examine the uptake of toxic elements in bone. The estimation of elemental exposure in past 

populations is limited by the lack of pathognomonic osteological markers for environmental toxicities. 

Thus, considering bone element concentrations in correlation with bone pathological changes can provide 

additional perspective, as well as assist in identifying toxic exposure in incomplete individuals or 

individuals that lack bone pathologies. Isotope analyses were used for dietary reconstruction and to identify 

the geographic provenance of the analysed individuals, as both provide detailed information about the life 

course and the potential for exposure to toxic elements or emissions. 

 

The osteological component of this research aimed to explore environmental disease burden from the 10th-

19th centuries through skeletal analyses of 186 adult individuals from seven sites across Iceland. The seven 

sites include Skeljastaðir (ÞSK), representing the 10th-12th centuries, Skriðuklaustur (SKR) and 

Haffjarðarey (HFE), representing the 13th-16th centuries, and Viðey (VEY), Bessastaðir (BES), Reykholt 

(RKH) and Reykjavík (RVK), representing the 17th-19th centuries. Due to funding limitations and ethical 

considerations regarding the destructive effects of isotopic and elemental analyses, which require human 

bone or dental tissues, only individuals from Skeljastaðir (10th-12th centuries) and Skriðuklaustur (15th-16th 

centuries) were sampled. Although it remains a limitation in this research, these two earlier periods were 

selected over the later sites, due to the additional confounding factors faced during the 17th-19th century 

(e.g., industrialization, urbanization, increased trade, and shift in occupations). For example, mercury was 

used in product manufacturing factories (e.g., textiles, amalgams, early electronics), lead became more 

common in goods and infrastructure, and cadmium exposure likely increased due to the increased use of 

tobacco products (Parsons and Percival, 2005; Brodziak-Dopierala et al., 2015). Deficiency diseases, 

particularly scurvy and rickets, are also believed to have increased significantly during this period (Jónsson, 

1998), thereby implying that the risk of toxic elemental exposure would have also increased. Therefore, 

elemental exposure in the 17th-19th centuries should be analysed further in a future study, aimed at 

evaluating whether population density and the cultural changes occurring at that time increased elemental 

burden.  

 

1.1.1 Investigating mercury exposure with ICP-MS and osteological analyses (Article I) 

 

The objective of the mercury analysis was to investigate mercury exposure in medieval Iceland as a function 

of environmental exposure via volcanic eruptions or degassing and anthropogenic exposure via medical 
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(e.g., as a treatment for infectious disease), cultural practices (e.g., as a pigment in religious manuscripts) 

or subsistence strategy (e.g., consumption of marine resources). The research aimed to use ICP-MS on bone 

and soil samples (n=50, human; n=23, animal; n=22, soil) to determine mercury concentrations. Skeletal 

analysis was also performed to attempt to correlate potentially elevated mercury concentrations with 

mercury induced bone or dental changes, as well as characterize the pathological conditions that may have 

been treated with mercury in the past. Since Skeljastaðir (ca. AD 1000-1104) was inhabited until the 

eruption of Mt. Hekla in AD 1104, it was hypothesized that the population residing there, represented by a 

skeletal assemblage (n=56), were likely chronically exposed to mercury through passive degassing. Some 

individuals may have been acutely exposed to mercury during the eruption. Meanwhile, it was hypothesized 

that at least certain individuals represented by the skeletal assemblage (n=295) from Skriðuklaustur (AD 

1493-1554) were likely exposed to the mercurial formulations commonly used in Europe at that time to 

treat infectious diseases, such as venereal syphilis. 

1.1.2 Investigating Diet and Geographic Provenance with Isotope Analyses (Article II) 
 

The aim of the isotope analyses was to perform palaeodietary reconstruction (δ13C, δ15N, δ34S) using bone 

samples collected from Skeljastaðir (ca. AD 1000-1104) and Skriðuklaustur (AD 1493-1554) and to 

determine the geographic provenenance of the people from Skriðuklaustur using isotopic analyses (δ18O, 
87Sr/86Sr) on dental enamel samples. Additionally, the research aimed to evaluate ante-mortem exposure to 

lead (Pb) during childhood, considering its environmental, anthropogenic, health implications and as a 

marker of geographic origin. Barium (Ba), zinc (Zn), strontium (Sr), arsenic (As), antimony (Sb), and 

mercury (Hg) trace element concentrations were also determined, as they can likewise impart information 

about provenance, population composition, biocultural differences between individuals, and possibly 

palaeodiet or toxic exposure during childhood. Reconstructing palaeodiet and geographic origin was not 

only important to the overall context of the research; diet has important implications for overall health, 

which can also affect one’s predisposition to elemental uptake. Geographic origin or residence has 

important implications about whether people would have been exposed to environmental emissions in the 

first place based on their residential proximity to volcanogenic emissions or activity. This aspect of the 

project also aimed to produce baselines and a novel dataset of trace elements measured in archaeological 

remains as well as attempt to examine the possible health impacts of toxic element accumulation. For 

example, can elevated toxic element concentrations be correlated with osteological indications of traumatic 

injury, metabolic disease, or other skeletal changes? A further aim of the dental enamel analysis was to 

investigate the use, efficacy, and value of trace elements in the application of determining geographic 

provenance or origin. The hypotheses were that despite its inland location, the population of Skriðuklaustur 

would represent a wide range of individuals including immigrants and exhibit a diet primarily derived from 

marine resources due to religious fasting. Palaeodiet at Skeljastaðir on the other hand was analysed in a 

previous study (Sveinbjörnsdóttir et al., 2010), indicating a primarily terrestrial protein diet, but the addition 

of sulphur isotope analysis provided new indications about migration to the site and freshwater fish 

consumption.  

1.1.3 Investigating fluoride exposure with ICP-MS and osteological analyses (Article III) 
 

The aim of the fluoride analyses was to diachronically investigate the health burden of fluoride emissions 

from volcanogenic sources on multiple skeletal assemblages from seven Icelandic sites listed above. The 

study examined bone changes potentially correlated with skeletal fluorosis, as well as determine fluoride 

concentrations in bone (n=50) and soil (n=4) samples from Skeljastaðir and Skriðuklaustur. As Skeljastaðir 

is located near the volcano Mt. Hekla, a known fluoride and mercury emitter, and is believed to have been 

abandoned around the time of the AD 1104 eruption, it was hypothesised that the individuals residing there 

may have been acutely or chronically exposed to fluoride emissions. Furthermore, several modern eruptions 

have proven lethal to livestock grazing in the same region as the site, indicating that fluoride emissions 
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likely polluted the surrounding water sources and foliage. Similarly, the Veiðivötn-Bárðarbunga volcanic 

system, relatively close to Skriðuklaustur, underwent a momentous eruption in AD 1477, prior to the 

establishment of the monastery. Since the eruption caused severe destruction resulting in the abandonment 

of farms in the region, it was hypothesised that fluoride pollution to aquifers and foliage may have affected 

the individuals that were buried at Skriðuklaustur, who were all local to the area according to the isotopic 

analyses.  

1.1.4 Investigating exposure to other trace elements in bone (Pb, Cd, As) with ICP-MS 

(Thesis Chapter 5) 
 

An additional aim was to investigate other toxic heavy metals in bone and dental enamel samples from 

Skriðuklaustur and Skeljastaðir, potentially resulting from environmental emissions or anthropogenic 

activity. Lead (Pb), cadmium (Cd) and arsenic (As) were evaluated in addition to the previously discussed 

analysis of mercury (Hg) and fluoride (F) as toxic emissions that may be released during volcanic eruptions 

or degassing and their potential effects on the human population of medieval Iceland. The elements 

measured in bone samples aimed to draw conclusions about toxic exposure during childhood (dental 

enamel) and adulthood (bone) within a few years prior to death.  

 

1.2 Research Questions 
 

The general research questions addressed by the articles (I, II, III) and additional analyses included in this 

thesis are: 

1.2.1 How did environmental conditions impact subsistence, landscapes, human health, and culture in 

past Icelandic populations?  

 

1.2.2 What were the geographic origins of the people residing at Skeljastðir and Skriðuklaustur and 

does provenance relate to pathological conditions or exposure to toxic elements? 

 

1.2.3 Did volcanogenic emissions of mercury (e.g., from the Hekla eruption of AD 1104) or other 

elements affect the health of the local population of Skeljastaðir? Were any toxic substances used 

medicinally at the monastery? 

 

1.2.4 Regarding exposure to toxic elements, were there any identifiable differences (e.g., cultural, 

occupational, or behavioral) between men, women, children or individuals of different social status 

or age groups? 

 

1.2.5 Were socio-cultural or environmental conditions responsible for dietary shifts between the 

populations living during the Medieval Warm Period (Skeljastaðir assemblage) and the Little Ice 

Age (Skriðuklaustur assemblage)?  

 

1.2.6 Does osteological evidence for metabolic or nutritional distress show any relationship with 

pathological conditions, toxic element exposure or individual or population diet? 

 

1.2.7 Did historic eruptions in Iceland result in mass human mortality such as occurred among livestock?  

 

1.2.8 What osseous pathologies are present in the human skeletal assemblages and are they associated 

with heavy metal exposure or fluorosis, as revealed by ICP-MS and ISE?  
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1.3 Thesis Outline 
 

This thesis was produced by publication rather than traditional format, with the major results presented in 

a series of three published manuscripts (Article I, II, III), which are republished here in Chapter 8: 

Manuscripts. Additional unpublished results are also described in Chapter 5: Results and Discussion. 

 

Chapter 1. Introduction. Chapter 1 presents a general introduction to the project, followed by aims: 

assessing volcanic pollutants in bone and pathological skeletal changes associated with them, reconstructing 

palaeodiet and identifying geographic provenance of skeletal populations. The chapter also includes the 

research questions addressed in this thesis and finally the thesis outline.  

 

Chapter 2. Background: Volcanoes, elements, and health in the past. Chapter 2 provides a background 

discussion covering volcanic activity and ecology in Iceland, the health effects of volcanic emissions, 

environmental and climate change in historic Iceland, the record of past eruptions, cultural or occupational 

factors leading to exposure and the outcomes of Icelandic volcanic eruptions on flora, fauna, and human 

populations. It also reviews pathological conditions and the history/bioarchaeology, biological mechanisms 

and skeletal implications of exposure to volcanogenic toxic emissions and toxic substances or materials 

derived from the same elements. It thus addresses how skeletal and chemical evidence may be used to 

attempt to identify cases of exposure to toxic earth elements in archaeological human remains.  

 

Chapter 3. Background: Origins and Diet. Chapter 3 discusses the geographic provenance of archaeological 

individuals and the ancestral origins of the Icelandic population. This chapter also discusses past diet and 

themes related to dietary subsistence. Essentially, the chapter reviews previously published studies that 

have addressed questions of provenance and past diet. 

 

Chapter 4. Materials and Methods. Chapter 4 presents the materials and methods used during this research. 

Firstly, the archaeological sites and populations represented by the analysed skeletal assemblages are 

described, followed by detailed descriptions of the osteological methods, skeletal changes associated with 

mercury and fluoride toxicity, the methods used in elemental analyses (ICP-MS, ISE) on cortical bone 

samples and finally the methods used for the isotope and trace element analyses conducted on bone collagen 

and dental enamel samples. 

 

Chapter 5. Results and Discussion. Chapter 5 describes the results of the various analyses conducted in this 

project. Firstly, the results of the chemical analysis of animal bones and soil samples (ICP-MS) are 

presented, followed by the results of mercury (Hg) analysis in human bone samples and dental enamel. A 

discussion on the health burden of fluorosis (F) in the past as indicated by osteological analysis and ISE 

analysis of bone samples follows. The analytical results and discussion of lead (Pb), cadmium (Cd), arsenic 

(As) and antimony (Sb), are then respectively presented. Finally, the results of isotope analyses conducted 

on bone collagen and dental enamel for the reconstruction of geographic provenance and past diet, are then 

discussed. The chapter also provides a discussion, describing the relevance and meaning behind the results 

of this project and relationship or connection between the various strands of evidence described in Articles 

I, II and III and differing approaches of analyses which sought to answer questions about historical human 

health as correlated with environmental change and volcanic activity.  

 

Chapter 6. Conclusions. Chapter 6 presents a summary of the project, the aims and findings of each article 

and the overall conclusions of the completed research.  

 

Chapter 7. Bibliography. This chapter contains the bibliographic list of publications cited in this thesis 

summary and the thesis articles featured in Chapter 8. 

 

Chapter 8. Manuscripts. This chapter contains the published articles (I, II, III) of the thesis. 
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2 ‘Black sun, high flame:’ Volcanoes, elements, and health in the past 

 

2.1 Volcanism in Iceland 
 

Volcanoes and volcanic activity are represented by an array of differing structures constructed around 

geothermal vents that can be formed either by monogenetic (volcanoes erupting only once) or polygenetic 

eruptions (volcanoes that may erupt repeatedly) (Francis and Oppenheimer, 2004). Throughout history, 

Iceland has experienced all known forms of eruption and volcano types except diatremes, which have 

caused impacts on the hemispheric scale if not globally following some of the larger eruptions 

(Thorarinsson and Sæmundsson, 1979; Thorarinsson, 1981a, 1981b; Thordarson and Larsen, 2007). Types 

of volcanic eruptions, typified by effusive basaltic eruptions as well as explosive styles (e.g., felsic 

eruptions, mafic subglacial phreatomagmatic eruptions) occurring in Iceland range from classical conical 

shape stratovolcanos to archetypal mafic lava shields (Thordarson and Larsen, 2007). Volcanic systems in 

Iceland are composed either of a central volcano or fissure swarm, or both. 

 

Iceland’s basaltic plateau is situated upon the junction of the Mid-Atlantic Ridge and the Greenland-

Iceland-Faroe Ridge, two extensive submarine physiographic structures, and rises more than 3000 m above 

the local sea floor (Gudmundsson, 2000; Thordarson and Larsen, 2007). Its formation likely began around 

24 million years ago, resulting from interactions occurring between a mantle plume and a spreading plate 

boundary, but the oldest exposed rocks only date to 14-16 million years old (McDougall et al., 1984; Allen 

et al., 1999; Thordarsen and Larsen, 2007). This interaction is represented today through the geological 

architecture seen in Iceland, most apparently noticeable from the arrangement of its active volcanic zones 

and its elevation from the sea floor (Thordarsen and Larsen, 2007). There are 30 identified volcanic systems 

situated within the active volcanic zones of Iceland, which cover about one-third of the country and include 

the Reykjanes Ridge, Reykjanes Volcanic Belt, South Iceland Seismic Zone, West Volcanic Zone, Mid-

Iceland Belt, East Volcanic Zone, North Volcanic Zone, Tjörnes Fracture Zone, Kolbeinsey Ridge, Öræfi 

Volcanic Belt and the Snæfellsnes Volcanic Belt (Jóhannesson and Sæmundsson, 1989; Thordarson and 

Höskuldsson, 2002; Thordarson and Larsen, 2007) (see Figure 4.1 or the volcanic system map at 

www.vedur.is). The East Volcanic Zone, which contains the most active volcanic systems – Veiðivötn, 

Hekla, Grímsvötn and Katla – have produced as much as 80% of all historically verified eruptions in Iceland 

(Thordarsen and Larsen, 2007). 

2.1.1 Volcanic pollution  
 

Aside from affecting human health, volcanic eruptions can cause local and global climate change, air 

pollution, environmental alteration, and a wide array of detrimental effects to humans, animals, and 

vegetation, both natural and cultivated (D’Alessandro, 2006; Grattan, 2006). Volcanoes emit numerous 

gases and other elements, during and between eruptions, including Carbon dioxide (CO2), Sulphur dioxide 

(SO2), Hydrogen chloride (HCL), Ammonia (NH3), Hydrogen sulfide (H2S), Hydrogen fluoride or 

Hydroflouric acid (HF), Carbon monoxide (CO), halides, tephra, silica, and radon (Weinstein and Cook, 

2005; Hansell et al., 2006). These gases rapidly interact with the ashes and the atmospheric water in the 

volcanic plume forming acidic aerosols. Such volcanic emissions do not only occur during eruptions but 

also consistently appear between eruptions in volcanic and geothermal systems through passive degassing 

(Thordarson et al., 1996; Delmelle, 2002; Hansell et al., 2006; Tchounwou et al., 2012). Silica and 

radioactive radon are bound by falling ash and can, when inhaled, become lodged in the respiratory tract 

causing toxicity and respiratory complications (Hansell et al., 2006). The effects of exposure to volcanic 

particulates can occur either chronically or acutely. For example, fluoride poisoning, a chronic condition, 

is of primary concern in the examination of the health impacts of volcanic pollution (Weinstein and Cook, 

2005). Acute conditions have been noted during various modern eruptions throughout the world (e.g., 

http://www.vedur.is/
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Mount St. Helens – Bernstein et al., 1986; Montserrat – Forbes et al., 2003; Mount Etna – Fano et al., 2010; 

Hawaii – Mannino et al., 1996; Miyake Volcano – Scojima et al., 2006). Rarely, volcanic eruptions can 

also cause mortality through extremely elevated temperatures resulting in thermal lung burns, deep 

cutaneous burns and asyphyxiation. For example, it has been reported that at Herculaneum, Italy, those who 

perished during the eruption of Vesuvius in AD 79 exhibited heat-related skeletal markers (Petrone et al., 

2018; Martyn et al., 2020). Respiratory burns can result in permanent respiratory damage, fatal pharyngeal 

or pulmonary edema, or secondary respiratory infections and can even permeate protective gear or 

structures because of the extremely small size of many volcanic particles (Hansell et al., 2006).  

 

Tephra is toxic if inhaled, consumed, or masticated and exists in phases including vesiculated glass, 

plagioclase, orthopyroxene, clinopyroxene, titanomagnetite and olivine (Hansell et al., 2006; 

Bergþórsdóttir, 2018). Tephra, and many other volcanic emissions including hydrochloric acid (HCl), 

halides and fluoride, are highly soluble and are easily incorporated into the soil of a volcanic region after 

the particles leach into the surface of the soil. The fluoride bearing compounds are present in the formed 

aerosols and adhere to tephra particles during and after eruptions. Additionally, because of the water-

solubility of tephra, halides, HCl and fluoride, they are rapidly absorbed into the nose, oral mucosa and 

respiratory tract causing poisoning and respiratory disorders, especially bronchitis and asthma (Weinstein 

and Cook, 2005; Hansell et al., 2006). Mass fluoride poisoning of animals following volcanic eruptions 

throughout the world and the attrition effects of animals masticating glass-laden tephra deposited upon their 

grazing vegetation have been seen extensively in Iceland and elsewhere (Thorarinsson, 1981a; 

D’Alessandro, 2006; Grattan, 2006). The toll on human health of Icelandic volcanic eruptions has also been 

noted throughout Europe as the gases, ash and tephra are carried from Iceland on winds across the British 

Isles and onto continental Europe (Elliot et al., 2010; Offer et al., 2012; Carlsen et al., 2012a, 2012b). 

 

Aside from respiratory conditions and fluoride poisoning, volcanic eruptions also directly cause other health 

conditions, such as asphyxiation, carbon dioxide poisoning, and crop, groundwater, and residential 

contamination (for example, with the Hekla eruptions in 1947-1948 and 1970). In fact, autopsies of volcanic 

eruption victims often determine the primary cause of death as asphyxiation. In addition to chronic and 

acute diseases, smoke, ash, tephra, and silica inhalation due to volcanic emissions have been linked to 

neoplastic diseases (cancer), particularly malignant mesothelioma and radon lung cancer, following long-

term exposure (Mauderly, 1997; Horwell and Baxter, 2006). Respirated silica, perhaps the most toxic 

mineral found in volcanic ash deposits, or radicals, may also lead to DNA mutation and cancer by reacting 

directly with DNA by causing strands to break. Other respiratory pathologies, such as chronic obstructive 

pulmonary disease (COPD), silicosis (fibrotic lung scarification), and resurgence of dormant pulmonary 

tuberculosis or pneumoconiosis, may also occur from respirated silica (Harrison et al., 1994; Horwell et al., 

2003; Horwell and Baxter, 2006; Hansell et al., 2006). 

 

During volcanic eruptions, many gases and other volatile elements are deposited into the soil, upon crops, 

or into watersources thereby contaminating it and to a degree the crops growing in it. Soil contamination 

and acidification results in difficulties in feeding livestock and growing crops for years after an eruption 

(Young et al., 2004; Stewart et al., 2006). Ash can remain in the environment for decades after an eruption 

and the wind and human activity can remobilize it (Hansell et al., 2006). When inhaled, these gases cause 

irritation, toxicity, inflammation, and other damage to the respiratory system and alters the oxygen 

environment of the maxillary sinuses allowing the proliferation of anaerobic bacterial growth. Thus, regular 

exposure to volcanic emissions can cause chronic maxillary sinusitis, a condition which was prevalent in 

historical Iceland (see Collins, 2019). These emissions cause chlorotic and necrotic damage to leaves and 

fruits or vegetables of wild or cultivated flora, which can lead to reduced crop and produce yields (Delmelle 

et al., 2002). Outdoor cultivation in Medieval Iceland was limited to the short summer period and losing 

many crops at one time could be significantly detrimental to a population’s subsistence and thus result in 

nutritional stress, decreased pathogen resistance and overall health. Most importantly, volcanic emissions 

contaminate (e.g., with fluoride) nearby water sources, as well as clean crops, and cause pH changes that 
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increase the acidity of the water, thus endangering any organisms drinking from or living in it (Delmelle et 

al., 2002; Horwell and Baxter, 2006; Hansell et al., 2006). Wet climates that experience regular and heavy 

rainfall compound the already high solubility of the fluoride bound tephra particles, and potentially other 

particulates, into the surrounding soils (Young et al., 2004). Fluoride can be released into the surrounding 

environment almost immediately, as occurred during the 1970 Hekla eruption for example, while other 

eruptions release fluoride in successive extractions, often in highly soluble phases (Baxter et al., 1982; 

Cronin et al., 2003; Horwell et al., 2006; Baxter, 2009). 

 

In Iceland, throughout the Medieval Warm Period (ca. AD 9th to13th century) (Cronin et al., 2003), 

subsistence strategies were based upon agriculture, fishing, marine mammal hunting (e.g., seals and walrus) 

and imported domestic livestock, including cattle, sheep, goats, horses, and pigs (Júlíusson, 2013; 

McGovern et al., 2014). Following eruptions, toxicity risk is especially high for free roaming livestock due 

to daily surface water consumption and grazing upon foliage embedded within ash-laden vegetation and 

topsoil, especially in wet areas altered by erosion or animals and people treading through the land (Shupe 

et al., 1963; Cronin et al., 2003; D’Alessandro, 2006; Gísladóttir et al., 2010). Grazing animals have most 

obviously demonstrated fluorine toxicity (chronic and acute) particularly following volcanic eruptions, such 

as at Mt Hekla, Iceland and Mt. Ruapehu, New Zealand (see Figure 2.1; D’Alessandro, 2006). While most 

animal fatalities were due to acute fluorosis following these eruptions, some survived long enough to exhibit 

dental enamel pitting and discoloration, inappetence (loss of appetite) and ataxia (loss of control of muscles 

or voluntary movements) (Thorarinsson and Sigvaldason, 1972; Cronin et al., 2003; Grattan, 2006; 

D’Alessandro, 2006). According to historical records, nearly all 23 historical eruptions of Hekla produced 

toxic fallouts, many of which would have caused the mass mortality of livestock (Dugmore and 

Véststeinsson, 2012) and potentially of humans (Grattan, 2006). Aside from volcanic and geothermal 

activity, modern exposure to fluoride and heavy metals in Iceland occurs with residential proximity to 

aluminum smelting factories, especially among terrestrial grazing mammals (Schlegel, 1974; Krater and 

Rose, 2009). 
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Figure 2.1 Top, sheep metatarsal with a bone fluoride concentration of 20,600 ppm (parts per million) and 

bone changes caused by skeletal fluorosis during the Mt. Hekla eruption of 1845. Reprinted from Roholm 

(1939). Bottom, dental fluorosis (“ash-teeth”) seen in horse dentition following the Hekla eruption of 1970. 

© Keldur, the Institute for Experimental Pathology at the University of Iceland 

2.1.2 Historical volcanic eruptions and climate change 
 

The volcanic eruption of Mount Samalas, located in modern-day Indonesia, that occurred in AD 1257-1258, 

is thought to have initiated the dramatic cooling event throughout the North Atlantic known as the Little 

Ice Age (ca. 13th-19th centuries), succeeding the Medieval Warm Period (ca. 9th-13th centuries). At least 

seven other volcanic eruptions occurred throughout the world altering environmental conditions, increasing 

sea ice, storms, and changes in currents, and leading to a decline in farming production, marine mammal 

populations and navigation in Iceland during these times (Cronin et al., 2003; Matthews and Briffa, 2005; 

McGovern et al., 2014). Farms were often abandoned long-term or permanently as a result, as in the south 

at Skeljastaðir during the eruption of Hekla in AD 1104 (Þórðarson, 1943; Dugmore and Vésteinsson, 

2012). One of the largest known historical eruptions in Iceland occurred in Veiðivötn in the east near 

Skriðuklaustur in AD 1477; a monastic-hospital site heavily featured in this study. The impacts of this 

violent eruption were felt throughout Iceland, caused crop failure, devastated the landscape, human and 

animal populations and produced one of the largest tephra falls of historical times (Larsen, 1988; Rafnsson, 

1990; Thordarson and Larsen, 2007; Global Volcanism Program, 2013). For a modern comparison, the 

2014-2015 Bárðarbunga-Veiðivötn eruption released toxic gases and metals in the atmosphere, including 

over 60,000t of sulphur dioxide (SO2) and 500t of hydrogen chloride (HCl) into the atmosphere per day, 

causing respiratory illnesses across Iceland (Galeczka et al., 2016). Sulphur deposits into ground soils, upon 

crops but also into the surrounding water supplies and sources, which can be a severe environmental hazard 

for human and animal health and agricultural systems (Cronin et al., 2003; Horwell and Baxter, 2006). 
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Sulphur dioxide is a highly reactive irritant in the human body even at low concentrations impacting people 

both near and distant from the volcanic activity. Lung function may decrease within a few minutes of 

exposure, particularly if pre-existing conditions exists (e.g., asthma) (Delmelle et al., 2002; Hansell et al., 

2006; Horwell and Baxter, 2006; Roberts, 2007).  

 

British folklore and historical literature mention that the effects of the Hekla eruptions were felt across 

Europe and left cold, dark winters that lasted for decades (Grattan, 2006). The impacts of eruptions of Mt. 

Hekla echoed across Europe, causing long, dark, and cold winters. For example, the 1970 eruption of Hekla 

emitted very large amounts of fluorine (and mercury) causing the death of up to 8000 animals in Iceland as 

grazing pastures were permeated with lethal doses of fluoride (see Figure 2.2; Thordarson and Self, 2003; 

Gudmundsson et al., 2008). During the Laki eruption of AD 1783-1784, a high concentration of sulphur, 

fluorine and chlorine was released into the air resulting in the death of 20% of the population and up to 

75% of the livestock in Iceland (Thordarson and Self, 2003; D’Alessandro, 2006; Guðmundsson et al., 

2008; Grattan, 2012). Contemporaneous descriptions note that the population faced deficiency diseases 

(e.g., scurvy, rickets), serious malnourishment and plagues (e.g., smallpox) that raged across the country 

(Pétursson et al., 1984; Halldórsson, 2013; Sigurðardóttir, 2017).  

 

 

Figure 2.2 Left, a farmer and his son from Húnavatnssýsla stand beside a grave of their sheep that died of 

fluoride poisoning following the 1970 eruption of Mt. Hekla. © Magnús Finnsson. Right, sheep that died 

of fluoride poisoning following the Hekla eruption of 1947-1948. Reprinted from Hekla on Fire by Sigurður 

Þórarinsson (1956) 

From the time of the Settlement (ca. AD 874) until AD 1200, there were approximately ten volcanic 

eruptions per century recorded. During the Late Middle Ages, the number of eruptions increased to twelve 

per century. It is probable that far more eruptions occurred than were recorded as their documentation may 



29 

 

be incomplete. There are at least 205 recorded “fires,” or volcanic eruptions, mentioned in historical 

documents. In the post-Medieval era (after AD 1600), there were approximately 27 eruptions per century, 

significantly increasing the importance of understanding the health and environmental impacts of volcanic 

activities (Thordarson and Larsen, 2006). Climatic conditions began to worsen leading up to the Little Ice 

Age (ca. AD 13th-19th centuries), which likely resulted from the combination of a series of volcanic 

eruptions (initiated by the AD 1257 eruption of Mt. Salamas) throughout the world (Ogilvie and Jónsson, 

2001; Matthews and Briffa, 2005; McGovern et al., 2014) and the terrestrial carbon sink (increased 

accumulation of carbon on the land surface) that occurred due to the sharp rise in mass fatalities worldwide 

during the spread of the Black Death (van Hoof et al., 2006; Yeloff and van Geel, 2007; Keenan and 

Williams, 2018). The Little Ice Age contributed heavily to the deterioration of grazing lands, living 

conditions, navigability, and the viability of farming in Iceland (McKinzey et al., 2005).   

2.2 Health in the past 
 

In this section, pathological conditions relevant to this research project, or conditions that will be discussed 

later in the results (see Chapter 5), are described. The descriptions presented here cover skeletal pathologies 

recorded in this study from individuals from seven Icelandic archaeological sites: Skeljastaðir, 

Haffjarðarey, Skriðuklaustur, Reykjavík, Bessastaðir, Reykholt and Viðey (see section 4.1). Treponemal 

disease, such as venereal syphilis, and hydatic disease (cystic echinococcus), are relevant to this study due 

to the historical use of mercury as a medical treatment for these conditions. Paget’s disease and orofacial 

clefts are described here because individuals featuring these conditions were identified and provided unique 

or outlying results, likely correlated with their pathological conditions. Although not found in a high 

frequency in this study, rickets and osteomalacia are described here because these conditions were thought 

to be common in historical Iceland and in light of their connections with heavy metal toxicity and skeletal 

fluorosis. Caries, calculus, and periodontal disease are discussed both because of their relationship and 

interactions with each other and with fluoride exposure. 

2.2.1 Treponemal disease 
 

Treponemal disease was an important infectious disease observed during this research due to its high 

frequency among the Skriðuklaustur cemetery population (ca. AD 1493-1554) and because of the 

connection between this infection and mercury as a medicinal treatment. At Skriðuklaustur at least nine 

individuals showed skeletal changes indicative of treponematoses, specifically probable venereal syphilis, 

according to the criteria outlined by Hackett (1976) and Ortner (2003) (e.g., see Figure 2.3; Walser III et 

al., 2019). Thus, infections with treponemal disease caused by the spirochete treponema pallidum spread 

around Iceland contemporaneously with the venereal syphilis epidemic in western Europe (Kristjánsdóttir, 

2011; Walser III et al., 2019). Two other possible cases of treponemal disease have been described from 

Haffjarðarey and Viðey, although both are based only upon small, isolated, frontal lesions (Gestsdóttir, 

2004; Hoffman, 2018; Walser III et al., 2019). While the appearance of both lesions is consistent with caries 

sicca resulting from treponemal disease, such diagnoses should be based on a combination of characteristic 

bone changes found throughout the entire skeleton (see e.g. Hackett, 1976; Ortner, 2003) and cannot be 

definitively diagnosed from isolated bone fragments with solitary frontal lesions (Cook and Powell, 2012). 

Such lesions could arise from other causes, such as scalping, neoplastic disease or tuberculosis, for example 

(Ortner, 2003). Another issue worth considering is that cases of treponemal infections consistent with 

endemic syphilis (treponarid), which may not be able to be differentiated from venereal syphilis in dry 

bone, have been described from medieval (16th century) Norway (Anderson et al., 1986). Although multiple 

hypotheses of the origin of venereal syphilis in the Old World persist today (Baker et al., 2020), a 2011 

review found no solid evidence of a Pre-Columbian transmission of venereal syphilis in the Old World 

(Harper et al., 2011). Thus, in the case of the individual (HFE 34) from Haffjarðarey (occupied until AD 

1563), a venereal syphilis infection was only likely to occur in the final ca. 70 years of the site’s use, 

although the occurence of endemic syphilis in Iceland prior to this date cannot be ruled out. So far, the only 
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confidently diagnosable cases of treponemal disease were found among individuals buried at 

Skriðuklaustur. 

 

The health impact of venereal syphilis was extensive throughout Europe and required a renegotiation of 

cultural practices, such as placing sanctions on prostitution, closing public baths and emphasizing the 

importance of religious devoutness. Divine punishment, bad air and bad blood were commonly thought to 

be the causative factors for contracting serious illnesses or impairments, such as syphilis or blindness for 

example (Meyer et al., 2002; Woolgar, 2006). These cultural changes also contributed to the “prudeness” 

associated with the Reformation. Other cultural manifestations, such as the wearing of gloves and wigs may 

have been used to conceal the visible syphilitic lesions that occur with long-term infections. Venereal 

syphilis is caused by contact with syphilitic lesions or bodily fluids, primarily during sexual contact, 

however it is also possible to become infected through poor hygiene and by using contaminated utensils or 

objects, albeit very rarely today. Venereal syphilis can also be acquired congenitally (i.e. transplacental 

infection in utero) (Meyer et al., 2002; Zuckerman, 2016, 2017a, 2017b).  

 

Mercury concentrations in skeletal remains showing changes associated with venereal syphilis can reflect 

the biogenic uptake of it during life, providing secondary evidence of medical treatment for various 

conditions (e.g syphilis, leprosy, gonnorhea, lice) conducted at hospitals or monasteries (Rasmussen et al., 

2015; Zuckerman, 2016, 2017). While syphilis eventually causes severe dermal lesions, skin conditions 

such as acrodynia, systemic allergic dermatitis, granulomas and others also occur due to mercury exposure 

(Boyd et al., 2000). Both venereal syphilis and mercury can also cause potentially irreversible psychological 

impairments (Pranjić et al., 2003; Crozatti et al., 2015). While mercury could be used to treat disease in the 

past, the ensuing mercury poisoning could not be treated (Guzzi and La Porta, 2008; Zuckerman, 2016, 

2017a).  

 

 

Figure 2.3 Cranium and tibia of young adult female individual (SKR 23) with bone changes suggestive of 

treponemal disease (probable venereal syphilis) 



31 

 

2.2.2 Hydatid disease  
 

Hydatid disease, caused by a parasitic organism (echinococcus granulosus), was probably introduced to 

Iceland during the Settlement period towards the end of the 9th century and quickly became endemic 

throughout the country by AD 1200. Today the condition is believed to be completely eradicated, following 

experimentation to determine its lifecycle in 1863 and extensive public education and outreach thereafter 

(Kristjánsdóttir and Collins, 2011). Jón Hjaltalín (John Hjaltelin), the Inspecting Medical Officer of Iceland 

(1855-1881) of the time, used calomel and mercury based medicinals to treat some cases of hydatid disease 

(and syphilis), reportedly with success (Hjaltelin, 1868; Hjaltelin, 2013). Skeletal analyses of the 

individuals buried at Skriðuklaustur revealed at least 13 individuals with calcified hydatid cysts (e.g. see 

Figure 2.4; Kristjánsdóttir and Collins, 2011). The parasite has a lifecycle involving canids (e.g., dogs) as 

definitive hosts and ungulates as intermediate hosts. In the past, the traditional Icelandic practice of home 

butchering sheep and feeding their offal to dogs promoted the transmission of the parasite (Moro and 

Schantz, 2009). Echinoccocuss granulosus infections can form in the interosseous membrane of bone or 

viscera and remain active for decades as the parasites reproduce. The condition often causes pain, shock, 

allergic reactions, respiratory conditions, increased fracture rate, osteosclerosis, itching and several other 

signs and symptoms. Hydatid cysts may take up to a decade to grow substantially and do not always 

preserve well in archaeological contexts, implying that the disease burden of hydatidosis could have been 

much higher (Kristjánsdóttir and Collins, 2011). Aside from the cases found at Skriðuklaustur, a few other 

examples of cystic echinococcus have been discovered in 17th to 19th century individuals from Viðey 

(Gestsdóttir, 2004) and at Landssímareitur in Reykjavík (Zoëga, 2018).  

 

 

Figure 2.4 Individual (SKR 126) from Skriðuklaustur with possible comorbidities of hydatid and 

treponemal disease. The black arrow indicates the hydatid cyst (© Steinunn Kristjánsdóttir) 

2.2.3 Cleft lip and palate 
 

Orofacial clefts are caused by the defective embryological development of the premaxillary, maxillary or 

palatal structures (Bhattacharya et al., 2009). Palatal clefts or perforations have several origins, (e.g., 

congenital, late-stage venereal syphilis), and generally result in substantial problems with drinking, eating, 

and speaking in uncorrected cases (see Figure 2.5 and 2.6; Patil, 2016; Ilczuk-Rypula et al., 2017). 

Breastfeeding is also challenging and compared with other children, people born with orofacial clefts 

generally take longer to adapt to consuming solid foods (Müldner et al., 2009; Wiet et al., 2017). In the 

past, infants with cleft lip had to be hand-fed, meaning that significant social care was required, especially 
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for the first year of life, for there to be any chance of the child’s survival (Bragg, 1994). In the 13th century, 

orofacial clefts were finally recognised as congenital conditions, although the first recorded successful 

surgical correction of a cleft palate was not performed until the 19th century. However, cleft lip surgeries or 

interventions have been recorded from as early as 390 BC (in China) (Bhattacharya et al., 2009). In Þorgils 

saga skarða from Sturlunga saga, a man called Þorgils skarði Böðvarsson is described as handsome, strong, 

attractive, and trustworthy despite being born with a cleft lip, from where his name “skarði” originates 

(Bragg, 1994). These descriptions indicate that, at the time the saga was written (13th-14th centuries), not all 

individuals with disfiguring conditions were socially marginalised and some could even be revered in 

Icelandic society. Recent research in the bioarchaeology of care further indicates that individuals with cleft 

palate may have been honoured and respected in the past, in light of their survival into adulthood and the 

typically non-deviant burials they received within their communities (Curry, 2019).  

 

Only a few cases of cleft lip, cleft palate and other maxillofacial anomalies have been discovered in Iceland 

(e.g., Figure 2.5 and 2.6). One individual (HFE 34, Figure 2.6) was diagnosed with Facio-Auriculo-

Vertebral sequence (FAVs) (see Hoffman et al., 2019), a congenital condition with probable genetic 

aetiology which is known to have extreme variability in range and severity between cases (Hartsfield, 

2007). The pathognomic malformations related to this condition are microtia (underdevelopment of external 

ear soft tissues), with other major deformities of the mandible, orbits, and vertebrae (Mathog and Leonard, 

1980; Hartsfield, 2007; Muñoz-Pedroza and Arenas-Sordo, 2013). There are no orbital deformations or 

asymmetry in the mandible and the vertebrae and soft tissues – the anatomical elements where 

pathognomonic features may occur – are not archaeologically preserved or available for study. The primary 

skeletal pathology potentially associated with FAVs is the incomplete right cleft premaxilla with asymmetry 

of the nasal bones and aperture.  

 

 

Figure 2.5 Left, cleft maxilla and premaxilla from SKR 22, inferior view. Right, inferior view of maxilla 

showing palatal perforations (SKR 201) resulting from an infectious process, such as treponemal disease, 

rather than a congenital or developmental defect 
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Figure 2.6 Anterior view of orofacial anomaly, an incomplete right unilateral cleft premaxilla (lip) possibly 

caused by FAVs, in an adult female (HFE 34). Anterior view of complete right unilateral cleft premaxilla 

(lip) in an adult female (SKR 9)  

2.2.4 Paget’s disease of bone 
 

Paget’s disease of bone appears to be caused by environmental factors acting upon a genetically susceptible 

individual. The condition predominately affects the skeletal system and is characterized by the abnormal 

and excessive remodeling of bone and deposition of irregular new bone (see Figures 2.7 and 2.8; Whyte, 

2006; Mays, 2010). The skull is usually involved, showing cortical bone thickening, a “cotton wool” 

appearance in the skull caused by areas of sclerosis and expansion of the diploë (Bhargava and Maki, 2010). 

The condition is usually initially asymptomatic, but a range of complications may arise throughout the 

clinical course, including bone pain, achiness, increased rate of fractures, osteoarthritis, osteosarcomas, 

neurological problems (e.g., hearing loss, headaches/migraines, dementia), spinal compression or ischemia, 

arthropathies and myopathies (Whyte, 2006). Paget’s disease of bone is very rare, although it is likely 

underrepresented in the palaeopathological record because not all bones of the body are always affected; 

some bones may exhibit the characteristic changes of Paget’s disease, while other bones in the same 

skeleton may appear radiographically and microscopically normal (Mays and Turner-Walker, 1999). In 

bioarchaeological research, individuals with Paget’s disease of bone often exhibit other skeletal 

complications such as bone deformity, osteosarcoma, fractures, and secondary osteoarthritis (Mays, 2010). 

The condition is statistically significantly more frequent in males than in females, according to studies 

conducted on archaeological skeletal remains and on modern populations (Mays, 2010). In a worldwide 

literature review of archaeological cases of Paget’s disease of bone, Mays (2010) found that 94% of cases 

came from England, with no cases coming from beyond western Europe. This strong geographic 

distribution indicates an origin of Paget’s disease of bone in western Europe, or even in England (Mays, 

2010). However, it is important to note that other factors could also explain this phenomenon, such as 
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misdiagnosis, observer error, poor preservation of pathological bone, the “Osteological Paradox”, or 

insufficient diagnostic recognition in other regions. These findings are relevant to this thesis because the 

condition persist today in a family residing in eastern Iceland and because an individual with Paget’s disease 

of bone was excavated from the cemetery at Skriðuklaustur also located in eastern Iceland (Walser III et 

al., 2020a, 2020b). A second possible case has since been discovered from the cemetery at Landssímareitur 

in Reykjavík (Zoëga, 2018). The genetic heritage of the Icelandic settlement population consisting 

predominately of the Norse (from Scandinavia) and Gaelic populations of the British Isles (Ebenesersdóttir 

et al., 2018), could possibly indicate the origin of Paget’s disease in Iceland. The condition is also relevant 

to this study as a differential diagnosis of skeletal fluorosis. 

 

 

Figure 2.7 Right radius, ulna and humerus and left femur from an older adult male (SKR 174) with bone 

changes consistent with Paget’s disease – anterior view 
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Figure 2.8 Radiographs showing skeletal changes observed in the older adult male (SKR 174) with Paget’s 

disease, a differential diagnosis of skeletal fluorosis, from Skriðuklaustur. From left: left femur (anterior), 

right humerus (anterior), left radius (anterior) and cranium (right lateral aspect)  

2.2.5 Rickets and osteomalacia 

 
Rickets (childhood) and osteomalacia (adulthood) are conditions resulting from vitamin D deficiency, 

which causes reduced concentrations of calcium and phosphorous thereby inhibiting the mineralization of 

bone. Rickets has been recognized since antiquity but increased significantly in the post-Medieval period 

and during the Industrial Revolution in Europe. Other inherited or acquired conditions may also cause 

osteomalacia, but these cases are unusual compared to vitamin D deficiency osteomalacia (Ives and 

Brickley, 2014). Vitamin D is an important hormone that is best obtained from skin exposure to ultraviolet 

sunlight, but it can also be obtained from ingesting food sources containing it, such as eggs, oily fish, milk, 

and butter (Ives and Brickley, 2014), which were all staples of the past diet in Iceland (Gestsdóttir, 1998; 

Gísladóttir, 1999; Mehler, 2011). Apart from poor skeletal mineralization, the condition increases fracture 

risk, deforms bones (e.g., mandible, ribs, and long bones), inhibits the development of epiphyses and causes 

numerous health problems, although only infrequently results in death (Brickley et al., 2010; Ives and 

Brickley, 2014). The condition became more common in the medieval period due to overcrowding, poor 

hygiene, and urban sanitation, work indoors, environmental factors (e.g., pollution, industry) and cultural 

behaviors (e.g., swaddling infants, wearing clothes that prohibit sunlight from reaching the skin) (Brickley 

et al., 2010; Ives and Brickley, 2014).  

 

Vitamin D deficiency (rickets and osteomalacia), iron anaemia and malnutrition were believed to be 

common in Iceland in the past due to the dark winter months, the latitude, and because of statements made 

in historical records and folklore (Gestsdóttir, 1998; Jónsson, 1998; Sigurðardóttir, 2017). However, 

vitamin D deficiency has only been rarely observed in Icelandic archaeological skeletal remains 

(Steffensen, 1943; Gestsdóttir, 1998, 1999; Sundman, 2011; Zoëga and Murphy, 2016). For example, early 

research by Jón Steffensen suggested that there were three individuals from Skeljastaðir with rickets or 

residual rickets (bone changes of childhood rickets persisting into adulthood), but a more recent 

reevaluation showed that only one of them had skeletal changes suggestive of vitamin D deficiency 

(Gestsdóttir, 1998). Perhaps the long summer months, the cultivation of angelica, the foraging of 
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mushrooms, onions and wild berries, ample supply of freshwater fish, the consumption of seaweed, Iceland 

moss and imported foodstuffs meant that vitamin D deficiency and malnutrition were likely only 

encountered seasonally when these resources were limited. Nonetheless, vitamin D deficiency is described 

here due to its relationship with bone mineralization and the impacts that fluorosis and other toxic elements 

have on bone microstructure. 

2.2.6 Caries 
 

The prevalence of carious lesions (see Figure 2.9) is low in archaeological individuals from Iceland prior 

to the 18th-20th centuries (Walser III et al., 2020b). Research conducted in India noted that dental caries and 

fluorosis occur in combination, with some researchers explaining that it is important to recognise that 

fluorosed teeth are poorly mineralized teeth and not necessarily protected from dental disease (Yoder et al., 

1998; Wondwossen et al., 2004; Susheela, 2007). Although it is known that fluoride impedes caries 

formation, the scale of its effects is unpredictable, and its functional concentrations are not uniform in all 

people. The level for reducing dental decay without causing detrimental side effects is normally indicated 

around 0.5 ppm (Littleton, 1999). While low-level fluoridated water can decrease caries prevalence, 

hypomineralisation caused by dental fluorosis increases caries risk. This relationship demonstrates the 

fragility of the ideal balance of fluoride intake. While the prevalence of caries is decreasing overall, the 

prevalence of fluorosis is increasing worldwide (Wondwossen et al., 2004; D’Alessandro, 2006; Petrone et 

al., 2013). In 2005, for example, at least 23% of people in the United States between 6-39 years of age 

exhibited at least mild enamel fluorosis (Everett, 2011). In a study conducted on Tanzanian children, it was 

shown that those exhibiting the least fluorotic teeth had the highest caries rate followed by those exhibiting 

the most fluorotic teeth. The lowest caries rate was seen in individuals with only moderately fluorotic teeth 

(Yoder et al., 1998).  

 

The cariogenic bacteria Staphylococcus mutans has increased significantly since the Medieval period, 

becoming more dominant after the onset of the Industrial Revolution approximately 250 years ago 

(Warinner et al., 2014; Weyrich et al., 2015). Changes in food production and technology during this period 

allowed for the widespread production of processed, refined, and concentrated grains and sugars resulting 

in an increase of mono- and disaccharide consumption, which are primary actors in lowering plaque pH 

and in enamel demineralization (Adler et al., 2013; Warinner et al., 2014; Weyrich et al., 2015). Studies 

conducted on skeletal remains recovered from high fluoride regions such as Bahrain, Pakistan, and Abu 

Dhabi, for example, demonstrated that high carbohydrate and sugar consumption will result to some extent 

in carious lesions regardless of the protection that fluoride consumption may provide (Littleton, 1993; 

Yoshimura et al., 2006; Petrone et al. 2013). Another study of 2nd and 3rd-century individuals from Palmyra, 

Syria, connected the high fluoride levels in the water found in this arid region to fluorosis by measuring 

fluoride content in normal and suspected fluorotic teeth. The teeth with enamel hypomineralisation and 

staining contained a higher fluoride content than the teeth that were considered normal (Yoshimura et al., 

2006). While rare in Iceland, fluorosis is still common in these arid regions today. For example, chronic 

fluoride toxicity remains endemic among the population of modern-day India and is associated with the 

local geology and dietary calcium deficiency (Teotia et al., 1998). Fluoride is not supplemented and is thus 

naturally low in Icelandic drinking water (median <0.1; range <0.1-0.6), except following eruptions, 

although it is used in toothpaste and other dental treatments today (Gunnarsdóttir, 2016). Modern caries 

rates in Iceland are generally considered high for European standards and are higher than in other Nordic 

countries (Ágústsdóttir et al., 2010). Still, dental fluorosis appears to be uncommon: past research found 

that most modern cases of enamel opacities were significantly associated with childhood illness, especially 

middle ear infections (otitis media), although some cases of diffuse enamel opacities could possibly be 

correlated with dental fluorosis (Árnadóttir et al., 2005). Previous studies show that caries rates reflect 

dietary conditions regardless of fluoride intake. However, caries rates may also be lower due to fluoride 

intake, thus complicating our understanding of the relationship between fluoride, caries, and diet, 

particularly regarding sugar and carbohydrates (Littleton and Frohlich, 1993).  
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Figure 2.9 Mandibular dentition (BES 19) with carious lesion (blue), periapical lesion (red), linear enamel 

hypoplasia (yellow) and hypomineralisation (green; opacities in dental enamel) – anterolateral view  

 

2.2.7 Calculus and periodontal disease 
 

Dental calculus (and periodontal disease) was common in historical Iceland (see Figure 2.10; Sigurðardóttir, 

2017). Calculus is essentially mineralized dental plaque, which sometimes includes other matter such as 

textile fragments, parasites, feathers, microparticles (e.g., protein, DNA) and botanical remains (e.g., 

phytoliths, pollen) (Weyrich et al., 2015; Juhola et al., 2019). The analysis of dental calculus can impart 

information about dietary resources, transitions in subsistence, cultural parafunctional behaviors (e.g., use 

of teeth as tools in weaving), ancient disease and the evolution of the microbiome (Hillson, 2003; Warinner 

et al., 2014; Juhola et al., 2019). Differences in calculus deposition between individuals can occur due to 

parafunctional or behavioral factors, such as preparing reeds for sewing by sliding them across the anterior 

mandibular teeth thereby removing calculus deposits (Greene et al., 2005, Aspiras et al., 2010). Sexually 

dimorphic caries rates can occur due to dietary differences, such as one sex in a population consuming more 

carbohydrates than the other (Greene et al., 2005). Inadequate dietary protein increases caries, especially 

when combined with high carbohydrate and sugar intake. Meanwhile, calculus rates increase with high 

starch, grain and protein diets (Hillson, 1979; Littleton and Frohlich, 1993; Johnson et al., 1995). Some 

studies suggest that high fluoride levels in dental calculus may also aid to inhibit the manifestation of 

carious lesions (Tatevossian, 1990; Aspiras et al., 2010).  
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Figure 2.10 Maxillary dentition (BES 19) with calculus (blue), linear enamel hypoplasia (red), alveolar 

resorption (yellow; periodontal disease) and hypomineralisation (enamel opacities) – lateral view 

Historical records and oral history indicate that dental calculus and periodontal disease were common in 

the past in Iceland and more prevalent than in neighbouring countries (Sigurðardóttir, 2017). 

Archaeological findings are in line with this, for example, at the early Christian cemetery of Keldudalur in 

northern Iceland, 100% of the individuals (n=21) presented with calculus (Zoëga and Murphy, 2016). As 

high protein diets increase oral alkalinity (Moynihan, 2000; Hillson, 2008; Roberts and Manchester, 2010), 

the high prevalence of calculus deposition is likely correlated with the historical staple diet that was 

predominately composed of meat, fish, eggs and dairy (Gísladóttir, 1999; Mehler, 2011) and low in grains, 

flour, and sugar until the 20th century (Jónsson, 1998; Gísladóttir, 1999; Sigurðsson, 2010; Mehler, 2011; 

Bjarnadóttir, 2016). Diets high in dairy or milk proteins can further contribute to the hardening of dental 

plaque and raise oral alkalinity thereby increasing calculus deposition; inversely, the calcium, phosphate 

and casein found in milk and cheese are cariostatic and therefore provide some prevention from caries, 

particularly in the absence of sugar (Moynihan, 2000; Johansson, 2002). Genetic variation, dental hygiene, 

local pH, and salivary flow also contribute to calculus formation (Hardy et al., 2009). Although toothpicks 

were used in the past, toothbrushes were not common until well into the 20th century (Sigurðardóttir, 2017). 

 

2.3 Toxic Elements 
 

In this section, toxic elements are described in terms of their connection with volcanic activity, 

anthropogenic uses, history, skeletal implications, biological mechanisms, previous archaeological 

findings, and their connections with Iceland. Exposure to high concentrations of heavy metals released 

during volcanic eruptions or anthropogenic activities or via prolonged exposure to objects containing them 

can lead to serious illness or death (González-Reimers et al., 2003; Swift et al., 2015; Rasmussen et al. 

2015; Jónsdóttir and Smáradóttir, 2015). Unlike advanced skeletal fluorosis, mercury, lead, cadmium, and 

arsenic exposure do not appear to cause specific skeletal changes, however, these toxic metals enter soft 

tissues and are retained in skeletal tissues, causing innumerable pathological conditions while interacting 

with bone metabolism in various ways (Ericson et al., 1991; Suzuki et al., 2004; Tchounwou et al. 2012; 

Brito et al., 2014; Wu et al., 2014; Brodziak-Dopierala, 2015). Toxic metal pollution is ca. 100 times higher 

today than it was in the past (Settle and Patterson, 1980; González-Reimers et al., 2003).  
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2.3.1 Mercury (Hg) 
 

a. History 

 

Mercury is found in many forms, such as elemental (the purest form), ore (cinnabar), methylated, inorganic 

and organic mercury (Holmes et al., 2009). Unprocessed cinnabar ore, the natural scarlet colored rock-form 

of mercury (mercury sulfide) is known to have been used as far back as the Neolithic period (Gajić-Kvaščev 

et al., 2012; Emslie et al., 2019). For example, the Vinča culture (6th-5th millennium BC) of Serbia used 

cinnabar to decorate figurines, vessels, and altars (Gajić-Kvaščev et al., 2012). Skeletal remains found in 

Spain and Italy exhibit cinnabar staining possibly due to use as an embalming preservative or as a ritual 

decoration upon the remains (Parsons and Percival, 2005; Emslie et al., 2019). Cinnabar was also utilized 

to produce pigments used in scholarly work (e.g., vermilion) to illuminate manuscripts and in paint used to 

decorate objects or make rock art (Parsons and Percival, 2005; Mehler, 2015). Today, approximately 20,000 

tons of mercury is released into the air per year as a direct result of anthropogenic activities, such as 

goldmining, causing global pollution to organisms and natural resources especially in cinnabar mining 

regions (Parsons and Percival, 2005; Zahir et al., 2005; Guzzi and LaPorta, 2008; Hylander and Meili, 

2003). However, significant mining of cinnabar in the largest known mine only began in Spain ca. 430 BC 

and throughout the world thereafter. One of the only exporting mercury mines remaining today, called 

Khaidarkan in Kyrgystan, has been exploited since at least AD 982, as mentioned in the Persian written 

work Hudūd al-‘ālam (“Limits of the Earth”) (Thomann, 2015). 

However, the extraction of mercury from ore may not have begun until around the 3rd century BC when 

Theophrastus of Eresus, a student of Aristotle, described how rubbing cinnabar with vinegar, inside a brass 

or copper mortar and pestle, could produce mercury. Vitruvius and Pliny the Elder documented the 

replacement of this method by distillation in the 1st century BC (Parsons and Percival, 2005). Once mercury 

is converted into its pure form, it must be contained to prevent its movement or evaporation into the 

atmosphere, as mercury is the only metal that evaporates and exists in liquid form at room temperature 

(Boyd et al., 2000). The Romans described the health hazards faced by those who were working in the 

cinnabar mines: thousands of individuals, primarily slaves and criminals, were noted to have died from the 

inhalation of mercury vapor. In the 2nd century BC, the Romans also noted that mercury toxicity killed or 

drove away fish and animals from areas where it was processed (Parsons and Percival, 2005).  

The uses and compositions of ancient medicines are primarily known from the written historical records of 

ancient Greece (e.g., Theophrastus, ca. 371-287 BC and Galen ca. AD 129-200 or 216), Rome (Pliny the 

Elder, AD 23-79), Egypt (medical papyri, ca. 3000 BC), China (ca. 2500 BC), India (ca. 1200 BC), and 

Persia (ca. 10th century AD) (Graeme and Pollack, 1998; Hylander and Meili, 2003; Parsons and Percival, 

2005; Giachi, 2013). In AD 850, Irish monks prescribed a mixture of mercury and old butter to treat lice. 

Later, it was suggested in the 11th-century Persian encyclopedia “Canon of Medicine” that mercury was 

useful for dermatological treatment (Ozuah, 2000). The Sanskrit manuscript, Rasarnavakalpa (11th century 

AD), extensively discusses the medical and alchemical uses of mercury, as well as combinations of 

mercury, sulphur and other metals and their toxic salts (Craddock, 2009). In the 9th-11th centuries, Islamic 

physicians used mercury in numerous medicinal treatments (e.g., for nits, lice, and scabies and possibly 

gonorrhea), although several noted the poisonous effects of mercury on their patients (Parson and Percival 

2005; Thomann, 2015). John of St. Amand (14th century AD) and Paracelsus (15th century AD) described 

the uses and medicinal benefits of mercury while also noting that high doses were poisonous rather than 

therapeutic (Ozuah, 2000; Hajdu, 2005; Parson and Percival, 2005).  

By the 16th century, mercury became widely used in medicine throughout the world, in amalgamation with 

low-grade silver ores, and for the treatment of anything from cuts to depression. These uses played a 

significant part in the sharp elevation of mercury concentrations appearing in the environment today 

(Graeme and Pollack, 1998; Boyd et al., 2000; Parsons and Percivcal, 2005; Fornaciari, 2011; Zuckerman, 

2016). Mercuric chloride (HgCl2), also known as calomel and sweet mercury, was used topically in 
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medicinal salves and delivered orally, while a mixture of mercuric chloride, cinnabar ore (HgS) and 

elemental (liquid, metallic) mercury (Hg) were used during fumigation (O’Shea 1990; Zuckerman 2016). 

Medieval antisyphilitic treatments were long-term (months to years), were provided via fumigation 

(mercurial vapour fumigation) and through dermatological preparations, and were generally provided in 

warm, enclosed spaces. The patients were also supposed to sit near a fire for extended periods of time to 

facilitate sweating. Pills made of mercury and other natural ingredients were also prescribed (O’Shea, 1990; 

Beck, 1997; Dobson, 2007; Kępa et al., 2012; Ávila et al., 2014; Thomann, 2015; Zuckerman, 2016). The 

toxic effects of mercurial treatments were recognized, and some practitioners even insisted on protecting 

the eyes from contact with mercurial vapors. Other historical accounts describe the side effects and 

iatrogenic effects resulting from mercurial treatment, including death, “hatters shakes,” oral ulcers, kidney 

failure, tooth loss and psychoses resulting from the treatment (Thomann, 2015; Zuckerman, 2016). Whether 

or not mercury worked to treat such conditions in the past is difficult to determine, however, mercury has 

strong biocidal properties. It is thus plausible that mercury successfully treated primary or tertiary stage 

venereal syphilis (when the bacterial load is low) at least to some degree. Since mercury has been proven 

to be biocidal to the type of bacteria responsible for syphilis (spirochetes), it is possible that mercurial 

treatments successfully cured infections in the primary and tertiary stages when the bacterial load is low. 

The appearance and severity of syphilis can fluctuate or remain in a latent stage which can last for decades, 

or even spontaneously resolve, likely making resolution appear connected with mercurial treatment. It is 

also possible that treatments with mercury exacerbated infections by causing an overall degradation in the 

patient’s health and immune response (Ortner, 2003; Zuckerman, 2016).  

Until the use of an arsenical called arsphenamine (1909) was developed, mercury remained the standard 

treatment for venereal syphilis. Then in 1940 the first antibiotic, penicillin, was introduced, thereby 

revolutionizing medical treatment for bacterial infections, including syphilis (Sartin and Perry, 1995; 

Ozuah, 2000;). Aside from the toxic properties of mercurial medicine, its inhibition of the immune system 

to fight off disease may also counteract any potential medicinal benefits. Although other treatments for 

syphilis were available, including the use of Epsom salt, many physicians considered them ineffective 

(Zahir, 2005; Hjaltelin, 2013). As previously mentioned, the medical doctor Jón Hjaltalín claimed that 

mercurial treatments could successfully cure some cases (Hjaltelin, 1868; Hjaltelin, 2013). 

Aside from anthropogenic uses, volcanic eruptions are a serious source of mercury emissions and potential 

exposure (Graeme and Pollack, 1998; Syversen and Kaur, 2012), with peaks in the mercury profile of the 

Greenlandic ice cores attributed to specific (and non-specific) volcanic events throughout history (Schuster 

et al., 2002). Nearly 10,000 tons of mercury enters the air per year as it is released in vapor form from the 

Earth’s crust (Zahir et al., 2005). As mercury is released into the air it is also swept into water sources, 

thereby contaminating bodies of water and rainwater (Guzzi and La Porta, 2008). The consumption of fish 

and sea mammals is a serious source of mercury (methylmercury) exposure today, but its impact on sea 

animals in the past remains unknown (Graeme and Pollack, 1998; Syversen and Kaur, 2012). 

Methylmercury is an organometallic compound that is formed during biogeochemical cycles, likely as an 

interaction with bacteria, and proceeds to accumulate in fish and sea mammals. As predatory organisms 

consume other organisms, they also accumulate the mercury within them. Methylmercury raises health 

concerns today, because of the consumption of fish and sea mammals, and in the recent past several events 

resulted in significant morbidity to large groups of people. The oceanic mercury hazards observed today 

are the result of modern environmental activity (e.g., volcanic eruptions) and industry (e.g., burning of 

fossil fuels and coal) as well as from mining endeavors that have been contaminating the earth, air, and 

water since at least the Roman period (Holmes et al., 2009). Another toxic methylated form of mercury, 

called dimethylmercury, caused the death of the prominent Professor of Chemistry, Dr. Karen Wetterhahn, 

at Dartmouth College when a few drops of the substance fell upon her latex glove during laboratory work. 

Dimethylmercury is extremely toxic because it easily crosses biological barriers (i.e., blood-brain barrier) 

and because it is not quickly expelled, it bioaccumulates easily (Graeme and Pollack, 1998; Parsons and 

Percival, 2005; Bradberry, 2012; Syversen and Kaur, 2012).  



41 

 

Evidence from ice cores and lake sediment cores in the Himalayas and Tibetan Plateau also shows that 

environmental mercury pollution began to rise substantially with the onset of the Industrial Revolution, 

followed by a dramatic increase in mercury deposition after World War II (Kang et al., 2016). Today, it has 

been noted that those working in cinnabar mines, unwittingly contaminate their food and living quarters 

when they return home from work (Hylander and Meili, 2003; Lombardi et al., 2012; Ávila et al., 2014). 

Exposure also occurs with old dental amalgam fillings, broken thermometers, and fluorescent lights, for 

example (Zahir et al., 2005; Syversen and Kaur, 2012). In the latter half of the 20th century, several mercury 

poisoning epidemics killed thousands of people in Japan and Iraq (Guzzi and La Porta, 2008; Syversen and 

Kaur, 2012). Recently, low-level exposure has proven to cause neurological and developmental birth 

defects (e.g., mental retardation, cerebral palsy, dysarthia, autism, deafness, and blindness), particularly in 

places were large fish and predatory sea mammals are consumed (e.g., Faroe Islands, Greenland, Japan) 

(Zahir et al., 2005; Guzzi and La Porta 2008; Holmes et al., 2009; Syversen and Kaur, 2012). Various 

potential sources of mercury exposure were important to consider in this research not only due to the 

extensive volcanic activity in Iceland, but also the historical traditions of its use as a medicine and in 

manuscript illumination. Additionally, methylmercury in some Icelandic seafood, including halibut and 

fermented shark (hákarl) test beyond the tolerable weekly intake, indicating that it is a substantial source 

of mercury exposure today and has possibly been in the past as well (Traustadóttir, 2016). 

b. Mechanisms 

 

Clinical research has shown that only negligible amounts of mercury are absorbed dermally or through the 

gastrointestinal tract. While mercury may not easily absorb dermally, it can quickly vaporize while 

handling. The inhalation of mercury vapor is extremely destructive as the body can retain at least 74%-80% 

as it is dispersed through the body, first targeting the brain, kidneys, lungs and gastrointenstinal tract. People 

exposed to mercurial vapors can develop numerous symptoms (e.g., chills, cough, fever, weakness) within 

just hours of exposure (Graeme and Pollack, 1998; Boyd et al., 2000; Ozuah, 2000; Guzzi and La Porta, 

2008; Bradberry, 2012; Syversen and Kaur, 2012). Elemental mercury causes toxicity following its 

oxidation to mercuric ions (Hg2+), thereby inhibiting transport functions and membrane, enzymatic, and 

cellular activity (Ozuah, 2000; Bradberry, 2012). Significant damage to the skin, eyes, lungs, and gingiva 

can occur due to acute exposure to large doses of inhaled mercury vapors. Low dose chronic exposure to 

mercury also results in systemic toxicity; it focuses within the nervous system resulting in tremors 

throughout the body, emotional and psychological conditions, as well as a multitude of conditions including 

pain, dental infections, sensory impairment, memory loss, delusions, psychosis, and weakness (Boyd et al., 

2000; Ozuah, 2000; Risher et al., 2003; Guzzi and La Porta, 2008; Holmes et al., 2009; Bradberry, 2012; 

Syversen and Kaur, 2012). Low-dose mercury toxicity also affects the renal, reproductive, immune, and 

cardiovascular systems and may lead to genotoxicity. Additionally, mercury and other heavy metal toxicity 

have been suggested to be contributing agents in some adult disorders, such as Alzheimer´s, Lupus and 

Parkinson’s disease (Ozuah, 2000; Risher et al., 2003; Parsons and Percival, 2005; Zahir et al., 2005; 

Holmes et al., 2009).    

 

c. Skeletal implications 

Diagenetic processes must be considered when investigating bone mercury concentrations in archaeological 

individuals. These processes include the absorption of heavy metals in bone and other bone changes 

occurring in the post-mortem environment, such as collagen destruction, microbial attack, ion, and mineral 

matrix alteration (Hedges, 2002). A study by Rasmussen et al. (2015) found that soil samples from the 

graves of skeletal individuals with elevated mercurial bone content had no correlation to eachother, 

demonstrating that diagenesis was not at play (Rasmussen et al., 2013a; 2015). Research by Yamada et al. 

(1995), Zuckerman (2017a), Emslie et al. (2019) and López-Costas (2020) also reported no evidence of soil 

derived diagenesis in bone. Mercury accrues in the bone hydroxyapatite through the replacement of calcium 

and by forming bonds with carbonates ante-mortem (Lee et al., 2005; Ávila et al., 2014). Thus, elevated 



42 

 

mercurial bone concentrations are strong indicators of in vivo exposure (Schwarz et al., 2013; Rasmussen 

et al., 2015). High concentrations of mercury, indicating its use as a medicine, have been found in the 

remains of members of royalty as well as the more general population from Russia, Denmark, England, 

Poland, and the Iberian Peninsula (Shorter, 2006; Kępa et al., 2012; Charlier et al., 2014; Rasmussen et al., 

2015; Zuckerman, 2016, 2017a; Emslie et al., 2019; López-Costas et al., 2020). In soft tissue, the half-life 

is just 60 days – eliminated via respiration primarily – but the matrix of bone is a long-term elemental 

reservoir (>2 years) that retains metals like mercury until resorption or remodeling begin (Miculescu et al., 

2011). In non-skeletal tissues mercury has a half-life of about 60 days (Boyd et al., 2000; Ozuah, 2000) and 

is eliminated primarily through human excreta and secondarily through exhalation, saliva and sweat 

(Holmes et al., 2009). Mercury exposure does not appear to normally cause diagnostically useful skeletal 

changes in adults and is believed to remain relatively stable within bone postmortem (Tucker, 2007; 

Rasmussen et al., 2013; Ávila et al., 2014). However, if mercurial medicine is provided during childhood 

it may cause enamel defects, which are unlike those associated with congenital syphilis (Ioannou et al., 

2016). While dental changes are known to occur within a wide percentage (circa 10%-65%) of individuals 

affected by congenital syphilis (Ioannou et al., 2016), the percentage of dental changes resulting from 

mercury exposure in children appears to be entirely unknown. Mercury alters calcium homeostasis, which 

can result in hypercalcemia, aside from directly altering the function of bone cells (Suzuki et al., 2004). 

Studies conducted on modern animal bones have shown that aside from decreasing calcemia, mercury 

poisoning also decreases estrogen receptor expression while increasing metallothionein synthesis. 

Furthermore, it has notable, negative effects on fetal development, decreasing long bone length and 

delaying ossification (Rodríguez and Mandalunis, 2018). 

 

In a recent study, López-Costas (2020) found no correlation between collagen preservation and bone 

mineral constituents (e.g., Sr, P, Ca) and noted that there was an absence of mercury in geological sources 

around the site the analysed individuals were excavated from. Previous studies of archaeological 

populations have suggested that mercury concentrations in bone range 0.08 (cortical) to 0.3 ppm 

(trabecular) (see Rasmussen et al., 2015). However, due to volcanically released mercury (e.g., Mt. Hekla) 

(see Coderre and Steinthorsson, 1977; Thordarson and Larsen, 2007), Iceland has a higher atmospheric 

mercury concentration than the areas that these background values were derived from. It is therefore likely 

that the normal threshold is higher in Iceland, therefore concentrations were not deemed to be elevated 

unless they exceed 0.3 ppm even though trabecular bone was not used in this study. In ancient and modern 

dental enamel from human teeth, Rasmussen (1974) found the range of mercury concentrations to be ca. 

≤0.001-1.88 ppm. 

2.3.2 Fluoride (F) 
 

a. History 

Fluorite, or fluorspar, is a mineral form of calcium fluoride (CaF2). Fluorite crystals were highly prized 

gemstones in ancient Greece and Rome and the material was used to create costly vessels known as vasae 

murrinae, such as the famous Roman Barber and Crawford cups (AD 50-100) (Tressaud and Vickers, 

2007). However, the first known historical descriptions of the use of fluorine compounds do not appear 

until the 16th century in books written by George Agricola (AD 1494-1555), where he describes its use in 

smelting to lower the melting point of various ores (Langley and Welch, 1983; Wisniak, 2002). Although 

the uses of various compounds of fluorine were well known, it was not isolated as an element until AD 

1886 (Langley and Welch, 1983). In the 18th and 19th centuries, experiments with fluorine chemistry 

resulted in the production of hydrofluoric acid, which became an important scientific and chemical 

commodity (Wisniak, 2002). Due to the extreme dangers of working with fluorine, large-scale production 

was not performed until around the time of World War II when it became an essential component for the 

development of nuclear devices (Wisniak, 2002). In the past, the most common exposure to fluoride, the 

ionic form of fluorite, likely occurred due to volcanic emissions from eruptions or passive degassing. In 
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one study of skeletal remains from Herculaneum (decimated during the AD 79 Vesuvius eruption), the 

researchers identified numerous cases of osteoscleroses, entheseopathies, and exceedingly high fluorine 

concentrations. These skeletal changes were indicative of fluorosis and suggested that it was endemic in 

the population (Petrone et al., 2011, 2013). 

 

Fluoride’s use as an anticaries supplement in water resulted from observations of populations with low 

caries rates in areas of high concentrations of fluoride in drinking water (Marquis et al., 2003; Browne et 

al., 2005). The first experimental use of fluoride in water for caries control began in 1945 in the US and 

1946 in Canada in four trial cities. After the beneficial effects were recognized in North America, 

experiments with water fluoridation were initiated in the United Kingdom and then in Ireland (Browne et 

al., 2005). Fluoridated water thereby became one of the most important methods for reducing the prevalence 

of carious lesions (Ishiguro et al., 1993; Browne et al., 2005). The World Health Organisation has set the 

maximum fluoride level in drinking water at 1.5 ppm (Yoshimura et al., 2006). While some countries have 

begun to limit this to lower than 1 ppm, numerous government agencies still maintain a maximum fluoride 

allowance of 4 mg/L (4 ppm), despite the adverse health effects often described even with concentrations 

lower than 2 mg/L (2 ppm) (Littleton, 1999; Ayoob and Gupta, 2006; Yoshimura et al., 2006). Fluorosis is 

a major public health problem in some regions of the world that can result in physical impairment and 

disability in individuals suffering from it (Seeley, 2001a, 2001b). Around 317 million people throughout 

the world are currently ingesting fluoride from naturally and artificially fluoridated water (Browne et al., 

2005). Tens of millions of people suffer from endemic fluorosis in over 25 countries, many of which display 

substantial volcanic activity (D’Alessandro, 2006). Today, Icelandic dentists occasionally discover 

fluorosed dental enamel in the modern population (Árnadóttir et al., 2005), but archaeological cases of 

human osteofluorosis have not yet been found Iceland. 

 

b. Mechanisms 

 

A variety of forms, doses, and lengths of exposure to fluoride can result in chemical and biological changes 

to cells and tissues. There is currently no way of determining the exact cutoff point between safe and 

dangerous levels of fluoride because so many biological, environmental, dietary, and cultural factors are at 

play (Arnala et al., 1985; Littleton, 1999; Everett, 2011; Petrone et al., 2013; Nelson et al., 2016). Low 

fluoride supplementation in drinking water should not cause fluorosis, but some studies have shown that 

under certain circumstances skeletal and dental changes associated with fluorosis can occur even with very 

low concentrations (Browne et al. 2005). People conducting physical labor, particularly in the heat, tend to 

be more susceptible as they require more water to rehydrate thereby also ingesting higher concentrations of 

fluoride. Although fluorosis is more commonly diagnosed in men, it tends to occur more rapidly in women 

(Alhava et al., 1980; Ebel et al., 1992; EFSA, 2010). In humans, skeletal fluorosis normally occurs with 

water fluoride concentrations over 4 ppm, but severe cases of fluorosis have been identified with 

concentrations as low as 1.35 ppm due to biocultural and environmental predisposing factors (e.g., 

malnutrition, water storage methods, climate) (Littleton, 1999; Savas et al., 2001). For example, endemic 

fluorosis has been seen in regions with water fluoride concentrations of 2-3 ppm. Dental fluorosis has been 

observed at water concentrations of 0.5 ppm, skeletal fluorosis at 0.7 ppm and crippling skeletal fluorosis 

concentrations as low as 2.8 ppm (Ayoob and Gupta, 2006; Petrone et al., 2013).  

Fluoride exposure normally occurs through diet and the consumption of water and although it does not 

absorb well through skin, it can cause severe skin burns. Neither does it systemically absorb particularly 

well via inhalation, but exposure to it increases the risk of developing chronic lung conditions, such as 

asthma (D’Alessandro 2006). Fluoride toxicity tends to be cumulative and gradual (Den Besten, 1999a, 

1999b; Nelson et al., 2016) although acute toxicity can occur in extreme cases (Littleton, 1999; Everett, 

2011). The circulatory system distributes it, and it can easily accrue in bone, especially during development 

or growth. As a result, its concentration increases with age as it is permanently retained in bones and teeth 

(Arnala et al., 1985). If an individual is suffering from calcium deficiency, up to 80% of ingested fluoride 
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can be absorbed through the gastrointestinal tract and retained in the bone, compared to around 50% under 

normal circumstances. The remainder is excreted primarily through urine (Whyte et al. 2008). The skeletal 

system contains approximately 99% of one’s total fluoride burden – fluoride (F-) substitutes for hydroxide 

(OH-) within the bone hydroxyapatite. This substitution forms hydroxyfluoroapatite (partial substitution) 

as well as fluoroapatite (full substitution), which are more compact and less soluble than unaltered 

hydroxyapatite (Whyte et al. 2008).  

 

Excess fluoride ingestion occurring during the development of the teeth can cause porotic, hypomineralised 

enamel (i.e., dental fluorosis) (Browne et al., 2005) as it disrupts crystal development, thus permanently 

altering the mineralizing matrix through (Den Besten, 1999a). Hydroxyfluoroapatite and fluoroapatite can 

reduce caries risk, especially combined with the antimicrobial properties of fluoride, but it can also cause 

changes in the stability and appearance of the teeth. Many researchers reduce these changes to merely 

aesthetic or cosmetic defects, while others consider the important biological and psychological impacts that 

poorly mineralized, discolored, cracked, and pitted teeth can cause (D’Alessandro, 2006; Susheela, 2007; 

Santa-Rosa et al., 2014; Rajeswari et al., 2016). For example, a study of red deer dentition showed that 

fluorotic teeth had reduced enamel hardness, which resulted in increased periapical lesions, periodontal 

disease and dental attrition and made the teeth fracture-prone (Schultz et al., 1998). 

 

Skeletal fluorosis causes the densification and thickening of bone (with increased fracture risk), anemia, 

ossification of soft tissues (decreases mobility), chronic pain, hormone imbalances and numerous other 

signs and symptoms (Baxter, 2009). In the early phases, the effects of fluorosis poisoning usually include 

pain, stiffness, nausea, constipation, and discomfort (ca. two weeks of chronic exposure) (Jolly et al., 1969; 

Littleton, 1999; EFSA, 2010; Petrone et al., 2013; Nelson et al., 2016;). Lower back pain may be a 

consequence of the early stages of fluorosis even when other symptoms are not present (Namkaew and 

Wiwatanadate, 2012). As the condition progresses, neuropathic, reproductive, and vascular complications 

arise, in addition to the development of thyroid dysfunction, early sexual maturation, diabetes and the 

restriction or stiffness of the muscles (Nelson et al., 2016). Soft tissues undergo calcification, resulting in 

limited joint mobility (such as inability to make a fist). The skeletal system begins to exhibit increased bone 

density and production and the teeth exhibit enamel staining, mottling and other enamel defects. During the 

later stages of the condition, difficulty in walking and other crippling effects may ensue as osteosclerosis 

and ankylosis occur throughout the skeleton, especially in the spine and chest (Littleton, 1999; Savas et al., 

2001; Petrone et al., 2013). Fluoride may also play a role in the promotion of cancer, particularly bone 

cancers such as osteosarcoma. For example, one study identified a seven-fold increase in bone cancer risk 

in children exposed to fluorosilicates used in water treatments (Bassin et al., 2006). 

Genes play a role in fluoride absorption, particularly regarding amelogenesis and bone homeostasis. 

Fluoride increases osteoblast proliferation at low concentrations, causes cellular death at high 

concentrations, alters regulating genes, and disrupts the formation and modeling of the intracellular matrix 

of skeletal and dental tissues (Mousny et al., 2006, 2008; Barbier et al., 2010; Everett, 2011; Kobayashi et 

al., 2014; Nelson et al., 2016). One study showed that several proteins are targeted for varying fluoride 

responses in skeletal tissues (Kobayashi et al. 2014). In genetic research on murinae and nematoda it was 

discovered that some fluoride resistance genes decrease biological responses to toxic levels of fluoride (see 

Mousny et al., 2006; Mousny et al., 2008), indicating that genetics involvement in fluorosis susceptibility 

(Everett, 2011; Kobayashi et al., 2014; Nelson et al. 2016).  

 

c. Skeletal implications 

Essentially, fluoride alters bone mineral metabolism (i.e., bone turnover) through changes to the accretion 

and resorption rates of skeletal tissues (Savas et al., 2001; Mousny et al., 2006). Following bone 

proliferation, soft tissue ossification, joint ankyloses, and fusion occur, severely limiting mobility (Arnala 

et al., 1985; Littleton, 1999; Browne et al., 2005; D’Alessandro, 2006; Mousny et al., 2008; Baxter, 2009; 
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EFSA, 2010; Petrone et al., 2013; Kobayashi et al., 2014; Nelson et al., 2016). These biochemical processes 

occur most rapidly in trabecular bone (Alhava et al., 1980; Ebel et al., 1992; Littleton, 1999; EFSA, 2010). 

Fluoride causes irregular bone proliferaration, increasing bone mass (increased osteoid volume), density 

and ossification at soft tissue attachment sites (Whyte et al., 2008). It has actually been used medicinally in 

low concentrations to increase bone density in the lumbar spine of osteoporotic patients (Arnala et al., 1985; 

Ishiguro et al., 1993; Mousny et al., 2006), although some studies show that both high and low 

concentrations increase fracture rates (EFSA, 2010; Namkaew and Wiwatanadate, 2012).  

 

Although fluoride can enter plants through the roots or via foliar absorption, research has indicated that 

fruits and vegetables are generally an unlikely source of fluoride poisoning (EFSA, 2010) possibly because 

of the cleaning, processing, and controlled sourcing of food (D’Alessandro, 2006). However, certain plants 

(e.g., tea) that are prone to fluoride accumulation can cause toxicity with habitual consumption (Whyte et 

al., 2008). Even if fluoride is unlikely to accumulate substantially within the tissues of most foliage, ash 

and other volcanic particulate matter and emissions are highly likely to deposit upon grazing fields. Thus, 

grazing terrestrial mammals are generally first and most severely affected (D’Alessandro, 2006; EFSA, 

2010). In numerous historic and modern-day instances, fluoride poisoning has caused death to livestock in 

Iceland and New Zealand (Grattan, 2006). For example, in the 1970 eruption of Hekla, sheep died of acute 

fluorosis within a week of bone concentrations increasing to 30-60 ppm. Fluoride poisoning in animals 

generally depends upon the duration of ingestion, diet, nutrition, individual biological response, body size, 

overall health and the type, solubility and amount of fluoride ingested (Shupe et al., 1963). Essentially, 

these principles apply to humans as well. Chronic fluorosis has been diagnosed in lambs at ca. 698 ppm 

(normally 116), one-year old sheep at ca. 1683 ppm (normally 560) and adult sheep at ca. 1329 ppm (normal 

830), showing that younger and smaller animals may accumulate fluoride more rapidly or in larger 

concentrations. Some animals tolerate higher concentrations better than others regardless of size or age, 

such as whales, which have shown concentrations between 8605-12700 ppm (Stefánsdóttir, 2016). As 

fluoride undergoes mobility in bone, not all individual’s skeletal elements will contain the same fluoride 

levels and there can also be disparity between bones and bone tissues (cortical or trabecular) (Littleton, 

1999; Hedges, 2002). Recent research found that fluoride tends to be more elevated in trabecular bone than 

cortical bone (Lanocha-Arendarczyk et al., 2015b). Arnala et al. (1985) analysed trabecular bone samples 

from the cadavers of individuals that resided in two regions (high-fluoridated and low-fluoride) in Finland, 

demonstrating that concentrations above ca. 1500 ppm may be considered elevated. Additionally, the 

individuals with impaired renal functions generally had higher fluorine concentrations (2090 ± 1010 ppm) 

(Arnala et al., 1985). People that are exposed to just 1 ppm of fluoride daily generally exhibit normal bone 

fluoride concentrations (<500-1500 ppm). 

 

Since fluoride accrues with increasing age, fluorosis especially affects older individuals (Arnala et al., 1985; 

Barbier et al., 2010; Petrone et al., 2011). As a result, elderly people often have elevated fluoride bone 

concentrations in even when they have no signs/ symptoms of osteofluorosis (Richards et al., 1994). In both 

palaeopathological (e.g., Jolly et al., 1969; Frohlich et al., 1989; Grimaldo et al., 1995; Littleton, 1999; 

Yoshimura et al., 2006; Petrone et al., 2011, 2013) and modern research (e.g., Ayoob and Gupta, 2006), 

categorize fluoride concentrations in bone into poorly defined ranges related to subjectively progressive 

changes. Depending upon geographic provenance and overall age, normal baselines for fluoride in 

unaffected human skeletal tissues ranges from <500 to 3000 ppm (Ebel et al., 1992; Sastri et al., 2001; 

Petrone et al., 2013). Advanced bone chages often occur with concentrations between 6000 and 9000 ppm 

(clinical phase 1-2), even though osteosclerosis and impairment of the renal system may begin with 

concentrations just exceeding the normal threshold. Bone concentrations exceeding 9000 ppm are 

associated with severe, crippling skeletal fluorosis (clinical phase 3) (USDHHS, 1991; Ayoob and Gupta, 

2006).  
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2.3.3 Lead (Pb) 

a. History 

 

The mining and use of lead in human history started at least 6000-7000 years ago, but the history of lead 

poisoning can only be traced to at least 2500 year ago (Lessler, 1988; Hernberg, 2000). Lead is a highly 

toxic heavy metal that easily bioaccumulates through inhalation, dermal contact, or ingestion due to natural 

or anthropogenic exposure (Bower et al., 2005; Rasmussen et al. 2014; Evans et al., 2018). Natural sources 

of lead exposure include geology (i.e., rock, volcanic particulate matter and associated plants and 

groundwater) (Åberg et al., 1998), while anthropogenic sources include its use as a material for buildings, 

pipes, gutters, roofs, windows, statues, pigments/colorants, kitchenware, pottery, ceramics and coins and 

through activities, such as mining, ship building, plumbing, food preparation, wine making, bronze or brass 

production, glass making, smelting and deliberate use in food (Nriagu, 1983; Hernberg, 2000; Rasmussen 

et al., 2015; Evans et al., 2018).  

 

Lead poisoning, in fact, is one of the earliest examples of disease caused both by environmental sources 

and occupational activities, with cases described since antiquity (Nriagu, 1983; Riva et al., 2012). For 

example, in the 2nd century BC Nicander of Colophon diagnosed lead poisoning based upon its acute 

presentation of saturnine colic and paralysis (Riva et al., 2012). Hippocrates (460-377 BC) noted lead 

poisoning symptoms, including colic, appetite and weight loss, irritability, nerve spasms and pallor, which 

are many of the same symptoms observed today (Lessler, 1988). Typically, the people normally exposed 

to lead prior to the Roman Empire were artisans or individuals from the lower ranks of society (Riva et al., 

2012). Several populations, including the Egyptians, Greeks and Romans documented the effects of lead 

poisoning from mining activities, generally amongs slaves or lower-class workers (Lessler, 1988). The 

Roman Empire was responsible for increasing the availability of lead by locating lead-rich ores for various 

uses, such as the construction of water and sewage systems. It was believed that lead salts released into 

drinking water flowing through these lead pipes may have been a primary cause in the downfall of the 

Roman Empire as the ruling class began to struggle with health problems and infertility due to lead 

poisoning (Riva et al., 2012). However, more recent research suggests that the raw mountain water within 

these pipes was rich in calcium carbonate, thereby coating them with a protective layer that would have 

prevented the release of lead salts into them. Thus, lead poisoning amongst upper-class Roman society was 

likely more associated with the use of lead acetate (“lead sugar”), produced from slowly cooking “sapa” 

(i.e., a preparation of must: freshly crushed fruit juice used for winemaking), to preserve and sweeten wine 

(Riva et al., 2012). Cerussa (white lead or ‘lead sugar’) was also used in cosmetic preparations, especially 

by women, to whiten the face, and other poisonous substances including cinnabar (mercury sulphide) and 

minium (red lead) were components of other cosmetics (Olson, 2009).  

 

In the medieval period, the use of lead widely increased, and lead poisoning became associated particularly 

with artists using lead-based paints and metallurgists, the latter being instructed to cover their mouths with 

rags and keep their windows open during metal work (Lessler, 1988; Riva et al., 2012). Alchemists and 

physicians quickly became aware of the extent of the toxic attributes of lead, identifying various 

occupations that were at high risk such as painters, potters, tinsmiths, and miners (Riva et al., 2012). 

However, the use of “sapa” prepared or stored in lead containers also persisted into the 17th century, 

resulting in outbreaks of lead poisoning characterized by saturnine colic (Riva et al., 2012). In Iceland, lead-

glazed kitchenware increased in availability around the 17th century, although some examples have been 

found at medieval sites (Þorgeirsdóttir, 2010). The use of lead exponentially increased during the Industrial 

Revolution as it became a necessity for metal products and other fabrications (Lessler, 1988). It was not 

until the 18th-19th centuries that scientists began to clearly link outbreaks of lead poisoning to water and 

dietary intake (Lessler, 1988; Riva et al., 2012). The analysis of the Greenland ice cores corroborates 

historical evidence that the mining and exploitation of lead caused worldwide pollution. Although lead 

pollution was pronounced in the Medieval and Rennaisance periods and during the Industrial Revolution, 
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it was remarkably high during the times of the ancient Greek and Roman empires (Hong et al., 1994). 

 

b. Mechanisms 

 

Upon exposure, lead is distributed throughout the soft tissues, especially to the liver and kidneys. Most (80-

90%) of the absorbed lead is excreted, while the rest is retained in bone (Lessler, 1988). Lead exposure can 

happen during skin contact with lead objects/structures, lead dust or paint inhalation, or the consumption 

of food, soil, or other materials (Hernberg, 2000; Vahter, 2007; Riva et al., 2012). Additionally, the 

accumulation/retention and susceptibility to the health effects of toxic metal exposure differ between males 

and females (Vahter et al., 2007). Females generally accumulate lead in the skeletal system more rapidly 

than males, mostly due to biological changes that alter the production of estrogen (e.g., menopause, 

pregnancy) (Vahter et al., 2007). Due to outdoor play and hand-to-mouth behavior, children are often 

environmentally exposed to it and absorb it easily (see Wittmers et al., 2002; Jacobs and Nevin, 2006).  

c. Skeletal Implications 

Lead exposure may result in notable skeletal pathologies including osteopenia, osteoporosis and increased 

fracture rates as its accumulation causes bone turnover malfunctions and reduction of bone density (Brito 

et al., 2014). Furthermore, vitamin D alters and stimulates the absorption of essential minerals, toxic metals 

and radioactive isotopes and may contribute to the severity of pathological conditions caused by exposure 

to toxic metals by increasing the rate of absorption and retention. Thus, lead exposure interferes with the 

normal vitamin D metabolism (Moon, 2013). Over 90% of the body’s lead burden is contained in bone and 

it becomes mobilized during periods of increased rates of bone turnover, such as during menopause, 

pregnancy, lactation, or pathological conditions altering bone metabolism (Vahter et al., 2007). Some 

studies have shown that bone remodelling occurs predominately (55%-80%) in the trabecular/cancellous 

bone as it is more metabolically active (Brito et al., 2014). Lead also acts to alter the balance of bone 

turnover, possibly by disrupting bone architecture and resorption or reduction of bone mass, thereby leading 

to conditions such as osteopenia and osteoporosis (Brito et al., 2014). Concentrations up to 5 ppm are 

normal in modern cortical bone and 7 ppm in normal modern trabecular bone (Rasmussen et al., 2015). 

Diagenesis, however, is a major complication in bone lead studies. Long bones have been shown to contain 

as much as double the lead concentration of flat bones (e.g., rib) (Barry and Mossman, 1970). It is well 

established that lead concentrations increase in bone according to age, particularly if an individual is 

periodically exposed to lead throughout life (Barry and Mossman, 1970; Hisanaga et al., 1989; Rasmussen 

et al., 2015). Dental enamel samples of prehistoric individuals buried in England show concentrations of 

0.04 to ca. 0.4 ppm, while individuals from the Romano-British and Medieval period had concentrations of 

up to 40 ppm. This marked increase is associated with anthropogenic exposure to lead during life from 

industrial pollution. Lead concentrations in dental enamel that are associated with geological sources 

through the diet, rather than from technological exposure, generally range from ca. 0.5-1.0 ppm regardless 

of time period (including modern individuals) (Budd et al., 2004).   

2.3.4 Cadmium (Cd) 
 

a. History 

 

As a distinct metal, cadmium was only discovered in AD 1817, despite its ubiquitous presence as an 

impurity of various metal ores that were extensively exploited in the ancient past, such as lead, zinc and 

copper (Hong et al., 1997). Aside from steel making and the incineration of wastes, volcanic eruptions and 

zinc production are the most significant sources of cadmium emissions in the environment (Hutton, 1983). 

During periods of major volcanic events, cadmium emissions were likely notably elevated, but according 

to Greenland ice core studies, cadmium concentrations did not increase beyond current natural background 
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levels during the Greek, Roman or Medieval periods (Hong et al., 1997).  

 

Cadmium toxicity appears to primarily affect contemporary populations and those living in the recent past 

because intentional production has only been extensively performed in modernity for use in batteries, paint 

pigments, electroplating, polyvinyl chloride plastic and other industry (Rahimzadeh et al., 2017). 

Significant increases in cadmium concentrations in human liver and kidney samples from 1980 were 

observed when compared with samples from 1897-1937, further indicating that increased cadmium 

exposure relates to modern industry (Ericson et al., 1991). Historical exposure could have occurred through 

the consumption of contaminated fish or shellfish, use in pigments, cooking with earthenware (Hisanaga et 

al., 1989) or perhaps through mining, smelting and amalgamation with other metals, such as lead. An 

association between osteomalacia and serious cadmium exposure was first demonstrated in a Japanese 

population residing in the Jinzu river basin region during the 1950s (Johri et al., 2010). The people residing 

there developed Itai-itai disease, characterized by severe skeletal pain, long bone malformation, increased 

fracture rate and other typical signs and symptoms associated with rickets or osteomalacia (Johri et al., 

2010). It was later determined that cadmium pollution entered the river because of industrial waste 

discharge from an upstream zinc mine (Vahter et al., 2007; Johri et al., 2010). 

 

Cadmium is low in Icelandic seafood today (Traustadóttir, 2016). Thus, it was unlikely to be a notable 

source of exposure in the past. While it is also generally very low in the environment in Iceland, it can 

increase in the atmosphere and environment following eruptions. For example, researchers found that over 

25 tons of poisonous cadmium were degassed during the 2014 eruption of Holuhraun (Bárðarbunga-

Veiðivötn volcanic system) in southern Iceland, making it a serious atmospheric and environmental 

pollutant (Jónsdóttir and Smáradóttir, 2015; Gauthier et al., 2016). As previously mentioned, an AD 1477 

eruption occurring in the same system causing catastrophic damage in eastern Iceland, not far from the 

monastery Skriðuklaustur (Larsen, 1988; Rafnsson, 1990; Thordarson and Larsen, 2007, Global Volcanism 

Program, 2013). 

 

b. Mechanisms 

 

Cadmium exposure occurs easily through the inhalation of tobacco smoke or industrially polluted air and 

through ingestion of contaminated food, water, or soil (Loganathan et al., 2003; Vahter et al., 2007; 

Rahimzadeh et al., 2017). Exposure may also occur from volcanic activity, mining for silver and lead and 

from objects, such as pottery, made with these materials (González-Reimers et al., 2003). Cadmium causes 

toxicity by altering the proliferation, differentiation, and apoptosis of cells, binding with mitochondria and 

by interfering with DNA repair mechanisms, which can result in the breakage of DNA strands, 

chromosomal deletions, and other mutations (Rahimzadeh et al., 2017). Low-level cadmium exposure has 

been shown to result in increased risk for the development of osteoporosis and kidney damage (Kazantzis, 

2004). Kazantzis (2004) describes studies that found that older inviduals (>60 years old) who were exposed 

to cadmium had a much higher bone fracture risk associated with decreased bone mineral density. Cadmium 

exposure promotes skeletal demineralization as it can directly interact with bone cells and inhibit collagen 

production (Rahimzadeh et al., 2017). Elevated cadmium concentrations in bodily tissues are a contributing 

factor to various conditions, including osteoporosis, increased fracture risk, osteomalacia, osteopenia, 

cancer (e.g., prostate, bladder, liver, stomach) and renal diseases (Black, 1988; Johri et al., 2010; Brodziak-

Dopierala et al., 2015; Nordberg et al., 2015; Chen et al., 2019). Cadmium accumulates predominately in 

the liver and kidneys, although it is also retained by the placenta, bone, and other bodily tissues, and most 

frequently causes renal damage, calcium loss, proteinuria, and nephrotoxicity (Rahimzadeh et al., 2017). 

The signs and symptoms of acute cadmium toxicity via ingestion include increased salivation, abdominal 

pain, choking, vomiting, vertigo and loss of consciousness while toxicity via inhalation includes a dry throat 

and cough, choking, vomiting, chest pains, pulmonary edema or fibrosis, bronchospasms, leg pains, muscle 

weakness, pneumonitis, bronchitis, emphysema, muscular weakness, headache, and flu-like symptoms 

(Johri et al., 2010; Chen et al., 2019). It has also been associated with reproductive system damage, heart 
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disorders and neurotoxicity (Suzuki et al., 2004; Vahter et al., 2007; Rahimzadeh et al., 2017) 

 

Cadmium toxicity in skeletal tissues (Itai-itai disease) is characterized by an imbalance in bone resorption 

and formation, critical mechanisms important for maintaining biomechanical properties of bone (Johri et 

al., 2010; Chen et al., 2019). Its skeletal effects include painful osteoporosis, increased fracture and 

pseudofracture rate, severe skeletal decalcification, femoral and lower back pain, osteomalacia and physical 

impairment resulting in decreased quality of life (Rahimzadeh et al., 2017). The effects of cadmium on 

bone include loss of trabecular bone, decreased number of osteocytes, inhibited osteoblastic activity, 

increased osteoclast formation and cortical bone thinning (Johri et al., 2010; Rahimzadeh et al., 2017). 

Cadmium exposure disrupts the production of vitamin D within the kidneys thereby decreasing intestinal 

calcium absorption, but it also has direct effects on bone (Vahter et al., 2007; Johri et al., 2010; Chen et al., 

2019). The removal of cadmium accumulation from bodily tissues occurs very slowly with a biological 

half-life of 10-30 years (Longanathan et al., 2003; Rahimzadeh et al., 2017), thus low quantity long-term 

exposure to cadmium leads to toxic concentrations (Black, 1988; Loganathan et al., 2003), altering bone 

metabolism (e.g., increased bone resorption, hypercalcemia) and integrity of bone structure and impeding 

cellular activity, which reduces the density of bone matrix and other mineral elements (Suzuki et al., 2004; 

Vahter et al., 2007; Brodziak-Dopierala et al., 2015). Sex and age are significantly associated with the 

extent of bone damage resulting from cadmium exposure, which most often occurs in elderly women 

(Vahter et al., 2007; Chen et al., 2019). Additionally, women tend to have higher concentrations of cadmium 

in the body due to increased absorption through the gastrointestinal system (Brodziak-Dopierala et al., 

2015). Diet and nutrition also seem to play a major role in an individual’s susceptibility to cadmium toxicity 

(Chen et al., 2019). For example, a diet high in zinc, magnesium, iron, copper, fibre and calcium can reverse 

cadmium-induced toxicity and alter the gastrointestinal absorption of cadmium. However, a diet high in 

rice could increase cadmium exposure as rice tends to easily absorb cadmium in polluted areas (Vahter et 

al., 2007; Brodziak-Dopierala et al., 2015; Rahimzadeh et al., 2017; Chen et al., 2019). Zinc appears to be 

particularly antagonistic to the effects of cadmium on bone tissue (Brodziak-Dopierala et al., 2015).  

 

c. Skeletal Implications 

 

Compartable to mercury toxicity, the non-specific nature of cadmium’s effect on bone makes it implausible 

to use osteological methods alone for the diagnosis of cadmium toxicity. However, Itai-itai disease is 

characterized by osteoporosis, osteomalacia, kidney damage and multiple, spontenous skeletal fractures 

(Vahter et al., 2007). In an archaeological context, González-Reimers et al. (2003, 2005) analysed 

prehistoric individuals from the Canary Islands, but the results did not indicate cadmium toxicity. The 

results rather demonstrated a notable increase in bone cadmium content in modern populations in 

comparison to the prehistoric skeletal material (González-Reimers et al., 2003, 2005). Another study 

conducted on prehistoric Native American individuals, demonstrated a cadmium concentration range of 

0.008 to 0.36 ppm (Ericson et al., 1991). Research by Martinez-García et al. (2005) found that cadmium 

concentrations were typically higher in ribs than in other skeletal tissues. Amongst all Medieval samples 

(8-13th centuries) the cadmium concentration was 0.01 to 19.0 ppm and the mean value was 1.5 ppm 

(Martinez-García et al., 2005). Brodziak-Dopierala et al. (2015) analysed cadmium concentrations from 

modern hip joint samples, resulting in a mean of 0.52 ppm in cortical bone and noted a correlation (Mann-

Whitney U test, p<0.025) between elevated cadmium concentrations, increased degenerative changes 

(average 0.64 ppm) and fracture (average 0.85 ppm) rates. González-Reimers et al. (2003) demonstrated 

that modern individuals’ bone cadmium averages 0.517 ± 0.352 ppm and lead averages 30.53 ± 14.62 ppm, 

while the mean concentrations in ancient individuals from Gran Canaria (dated 1405 ± 60 to 1213 ± 60 bp) 

was 0.085 ± 0.129 ppm in Cd and 4.06 ± 4.63 ppm in Pb. One study observed cadmium concentrations in 

children’s teeth in the range of 0.007-0.610 ppm (Bayo et al., 2001).  
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2.3.5 Arsenic (As) 
 

a. History 

 

Arsenic, known as the King of Poisons or the Poison of Kings, has been used therapeutically, for the 

treatment of skin lesions (e.g., ulcers, abscesses) and other ailments, as far back as 2000 BC (Jolliffe, 1993; 

Hughes et al., 2011). While most forms are highly unlikely to be essential nutrients, some studies have 

suggested that trace amounts of inorganic arsenic might be (Hughes et al., 2011). Arsenicals typically used 

in traditional medicine throughout history include orpiment, realgar, arsenolite or arsenic trioxide (Liu et 

al., 2008). Produced from the smelting of copper, arsenic trioxide is the form that has been used since at 

least 2000 BC as both a poison and medicine (Jolliffe, 1993). Early physicians, such as Hippocrates, 

Aristotle, Paracelsus, Galen and Pliny the Elder all described its extensive medical uses (Jolliffe, 1993; 

Hughes et al., 2011). Hippocrates used orpiment and realgar to treat necrotic or dead tissues, while 

Paracelsus frequently used elemental arsenic (Jolliffe, 1993). Realgar, an arsenic sulphide (AsS) mineral 

also known as ruby of arsenic or ruby sulphur, has likewise been used in traditional Indian and Chinese 

medicine since at least 200 BC, as an elixir for treating disease or to induce perpetual life (Liu et al., 2008), 

and even as a poison (Bolt, 2012). The poisonous effects of arsenic and other heavy metals have been noted 

since ancient times (Liu et al., 2008; Hughes et al., 2011).  

 

In the Medieval period, arsenic was commonly used medicinally, but also as a means of committing 

homicide and suicide. For example, the Medici and Borgia families used arsenic trioxide to assassinate their 

adversaries (Hughes et al., 2011). Arsenic trioxide (“white arsenic”) was a popular choice for poison 

because it was inexpensive, odorless, inconspicuous in appearance, widely available and tasteless unless 

burned (Jolliffe, 1993; Hughes et al., 2011). Arsenic preparations became common treatments for skin 

conditions (e.g., eczema, psoriasis, skin cancer), sexually transmitted diseases (e.g., syphilis and chlamydia) 

and other diseases, such as chorea, malaria, breast cancer and asthma (Hughes et al., 2011). They were also 

used to prevent diseases believed to be caused by miasma and treat lesions associated with plague (Tosetti, 

2014; Legan, 2015; Hughes et al., 2011). By the 18th century, arsenic trioxide was espoused as the cure for 

remittent fevers, periodic headaches, and agues (Jolliffe, 1993). In medicinal preparations, arsenic was often 

used alongside other ingredients, such as sulphur, mercury, antimony, and numerous herbs (Jolliffe, 1993; 

Tosetti, 2014; Legan, 2015). At least 60 different types of arsenic preparations were used throughout history 

before they were replaced with less toxic and more effective medicines, yet hundreds of traditional Chinese 

medications containing arsenicals remain in use today (Liu et al., 2008). 

 

Arsenic is a component trace element of basaltic rocks in Iceland, and it can become concentrated in 

hydrothermal fluids (ca. 0.15 ppm As) following water-rock reactions occurring in geothermal or volcanic 

systems. During these interactions, it can contaminate surface waters and it becomes a health concern if 

elevated in drinking water above 0.01 ppm (Olsen et al., 2010). Relevant to this study is the possibility that 

in the past, drinking water sources merging with water from geothermally or volcanically active areas could 

have been toxically contaminated. However, it would have been unlikely that people would collect water 

for consumption directly from geothermal sources, which may be foul tasting and smell strongly of sulphur. 

 

b. Mechanisms 

 

Arsenic exposure can occur naturally through soil, food, water and air or anthropogenically as a result of 

metallurgy or the use of arsenic containing chemical compounds in folk medicine and as preservatives, 

pesticides, fungicides or for industrial waste disposal (Hughes et al., 2011; Swift et al., 2015). Arsenic 

accumulation and incorporation occurs in the body especially through the consumption of contaminated 

drinking water and via inhalation (Kabata-Pendias and Mukherjee, 2007). In the past, arsenic exposure in 

Iceland may have occurred through locally produced food and drinking water, particularly following 

volcanic eruptions. While some volcano types (e.g., arc, hotspot) contain greater quantities of particular 
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metals, Icelandic volcanic emissions have been shown to contain notable amounts of toxic heavy metals 

relevant to this study, such as arsenic, cadmium and lead (Edmonds et al., 2018). Additionally, geothermal 

waters, which are ubiquitous in Iceland, are commonly high in arsenic (Weaver et al., 2019). The prolonged 

consumption of arsenic concentrations above 0.8 mg/L in drinking water can result in arsenic toxicity (Aras 

and Ataman, 2006). Seafood (e.g., fish, marine mammals, molluscs, bivalves) and seaweed, both of which 

were frequently consumed in historical Iceland (Walser III et al., 2020a), contain far higher arsenic 

concentrations than terrestrial foods and may have been significant sources of arsenic exposure (Aras and 

Ataman, 2006; Swift et al., 2015). Furthermore, cooking causes the solubilisation of arsenic, increasing its 

concentration in food according to factors such as temperature, cooking time, volume of water and level of 

contamination in water (Swift et al., 2015). Other exposures include tobacco smoking, drinking water 

pollution, close proximity to industrial emissions (e.g., metals, coal), gardening or agriculture, its use as a 

pigment and metallurgic practices (e.g., copper ore, metal, slag and smelting furnaces) (Brodziak-Dopierala 

et al., 2011; Hughes et al., 2011; Bolt, 2012; Swift et al., 2015). Arsenic often coexists with sulphur in the 

natural environment (Fisher et al., 2008) and it interacts with sulphur to form stable As-S complexes 

(Hughes et al., 2011). Sulphur is found in the Icelandic environment, which made it viable as an important 

trade commodity in the past, and has been recovered from Medieval archaeological sites, such as 

Skriðuklaustur (Kristjánsdóttir, 2012; Mehler, 2015). Thus, exposure to arsenic may have occurred amongst 

individuals responsible for metallurgic productions or sulphur processing and those administering or 

receiving arsenical and sulphur-based medicinal treatments.  

 

Exposure to arsenic is a serious health risk, both acutely (immediate toxicity) and chronically (e.g. as a 

highly potent carcinogen (Vahter et al., 2007; Swift et al., 2015). It also causes genotoxicity and is capable 

of interfering with fetal development transplacentally (Hughes et al., 2011; Swift et al., 2015). Arsenic 

exposure easily occurs through drinking water and certain foods, particularly rice and vegetables (Vahter 

et al., 2007). Co-exposure of arsenic with other toxic elements or compounds, such as fluoride, is a major 

concern in countries with groundwater or river pollution and where coal is combusted indoors (Bolt, 2012). 

The combined action of co-exposure to arsenic and fluoride, as well as arsenic and barium, have been 

demonstrated to result in cell death (Bolt, 2012). However, the correlation between strontium and arsenic 

in bone has been shown to be antagonistic (Brodziak-Dopierala et al., 2011). Symptoms of acute arsenic 

toxicity include liver, myocardial, vascular toxicity, kidney and gastrointestinal disease, and in extreme or 

high-dose cases, brain stem failure (Liu et al., 2008; Swift et al., 2015). Chronic arsenic exposure can cause 

cardiovascular disease, skin lesions, neuropathies, respiratory dysfunction, diabetes, goitres and numerous 

cancers (e.g. skin, bladder, liver, lung, kidney) (Liu et al., 2008; Swift et al., 2015). Illness can occur decades 

after limited arsenic exposure (Smith et al., 2006). However, it is important to note that some forms of 

arsenic have poor solubility in water and are poorly absorbed into the body (e.g., orpiment, realgar), thereby 

being quickly eliminated through urine and excrement (Liu et al., 2008). Other forms (e.g., arsenolite, 

arsenic oxide) are highly bioavailable with arsenic trioxide being extremely toxic (Liu et al., 2008; Hu et 

al., 2012). Some arsenic preparations used in traditional medicine have been demonstrated to be effective 

and have beneficial properties (e.g., killing leukemia cells), but their toxic risks and carcinogenic nature 

complicate the justification for their use (Liu et al., 2008). Nonetheless, arsenic trioxide is prescribed in 

specific situations, particularly for the treatment of acute promyelocytic leukemia (Bolt, 2012). 

 

c. Skeletal implications 

 

Arsenic replaces phosphorus, thereby localizing in bone where it can be retained for years and contribute 

significantly to bone marrow abnormality and other skeletal disorders (Wu et al., 2014). Arsenic alters bone 

metabolism, inhibiting osteoblast differentiation and may result in osteopenia (Wu et al., 2014). The earliest 

evidence of arsenic poisoning in archaeological remains due to environmental exposure was found in 

“Ötzi”, the Tyrolean Neolithic mummy that lived and died sometime between 3359-3105 BC (Bolt, 2012). 

Swift et al. (2015) found toxic elevations of arsenic in the skeletal remains of a pre-Columbian population 

from northern Chile, which were likely associated with the volcanic setting and local geology of the Andes. 
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The concentration of arsenic in skeletal tissues increases with age (Brodziak-Dopierala et al., 2011). Arsenic 

poisoning has been noted in modern cases with bone concentrations ranging from 0.5-1.0 ppm, but toxicity 

normally occurs with concentrations above 1 ppm (Swift et al., 2015). On the other hand, dental enamel 

concentrations of arsenic have been reported in ancient and contemporary human teeth as ranging between 

<0.001-0.406 ppm (Rasmussen, 1974). 

 

Arsenic exposure increases the risks of bone disorders but does not cause characteristic changes useful for 

the osteological diagnosis of arsenic toxicity (Wu et al., 2014). A notable skeletal effect of arsenic exposure 

in modern populations is bone cancer (Tsai et al., 1999). The results of Akbal et al. (2014) demonstrated a 

relationship between arsenic exposure and the functionality of bone metabolism as indicated by increased 

rates of osteopenia. Essentially, arsenic exposure interferes with bone remodeling and may result in the 

inihibition of osteoblast differentiation of bone marrow stromal cells (Hu et al., 2012; Wu et al., 2014). 

While some of these skeletal disorders or bone changes could indicate cadmium or arsenic toxicity, the 

same changes may also indicate toxicity with other heavy metals, such as mercury or lead, in addition to a 

vast array of other pathogeneses unrelated to exposure to toxic substances. It is thus vital to assess the 

concentration of multiple metal species in bone if any relationship or correlation between bone changes and 

toxic metal exposure may be indicated. 

2.3.6 Strontium (Sr) 
 

a. History 

 

Strontium, an alkaline earth metal, was first discovered in 1790 in a Scottish mine, but was not isolated 

until 1808. Strontium does not occur free in nature and instead it occurs as a result of metallic strontium 

oxidizing to form the yellow-colored strontium oxide. It is present in water and soil because it is a 

component of the earth’s crust and humans primarily ingest it through drinking water and the consumption 

of vegetables and cereals (Nielsen, 2004). Most forms of low dose strontium are only minimally toxic or 

non-toxic, however, it can result in hypocalcemia as it increases renal calcium excretion (Cabrera et al., 

1999; Nielsen, 2004). Experiments on animals have demonstrated that the amount of consumed strontium 

can vary significantly without the appearance of toxic effects. However, one study showed that when pigs 

were fed with 6700 ppm strontium and just 0.16% calcium, they experienced a lack of coordination, 

posterior paralysis, and weakness (Nielsen, 2004). Additionally, older research suggested that a diet high 

in strontium produced insoluble strontium phosphates, which may result in rickets or phosphorous 

deficiency (Jones, 1938; Nielsen, 2004). Human and animal research has since shown that harmful bone 

changes, such as rachitic lesions, occur with simultaneously increased strontium intake (e.g., high Sr in soil, 

vegetables, or water) and decreased vitamin D and calcium intake (e.g., lack of sunlight or dietary 

deficiency) (Nielsen, 2004). 

 

b. Mechanisms 

 

Strontium is generally poorly absorbed through the intestines, particularly in the presence of calcium, 

although vitamin D has been shown to promote absorption within the intestinal tract. Meanwhile, 

carbohydrates and lactose increase the absorption of both calcium and strontium. The typical diet consumed 

in most western countries results in neglible strontium exposure, particularly compared to calcium. 

Although strontium is a non-essential trace element, it is used in various medical treatments (e.g., radiation 

therapy for cancer; drug therapy with strontium ranelate for osteoporosis and has been shown to provide 

some preventative mechanism for the development of carious lesions. While the total amount of calcium 

within the skeleton is far greater than the amount of strontium (i.e., amount of Sr making up just 0.035 of 

the Ca content), strontium deposits almost entirely within skeletal tissues (Nielsen, 2004). Strontium 

substitutes for calcium within the hydroxyapatite of skeletal tissues but the amount absorbed is less than 

the dietary amount due to biopurification processes (Burton et al., 2003). Non-absorbed strontium is 
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predominately excreted through the renal system. Strontium behaves very similarly to calcium, both of 

which seek out bone, but competes with calcium for absorption within the intestinal tract and kidneys for 

example (Nielsen, 2004). Approximately 90% of the strontium stored within the body is retained in bone 

(Ezzo, 1994). Since Iceland’s landmass is composed primarily of basaltic rocks (~90%), most of which 

contain high concentrations of strontium (100-1000 ppm), all life forms residing in Iceland ingest basalt 

dietarily (Davidson, 1999; Snæbjörnsdóttir et al., 2014).  

 

c. Skeletal Implications 

 

Using ICP-MS, Liu et al. (2013) found that dental enamel from modern samples of teeth (Taiwan) show a 

mean strontium concentration of 108.31 ± 35.71 ppm. Strontium has been shown to engage in cariostatic 

activity (Dogan, 2018). Some studies have noted that strontium concentrations in dental enamel are lower 

in carious teeth (79.7-85.8 ppm) than in healthy teeth (128-156.8 ppm), regardless of age or sex (e.g., Li et 

al., 2013; Dogan, 2018). Therefore, dental enamel samples subjected to trace element analyses should be 

selected from non-carious, healthy teeth with well-preserved dental enamel to acquire data useful for 

archaeological interpretations about diet and geographic provenance. Regarding dietary reconstruction 

using strontium concentrations, completely vegan diets do not produce Ba/Ca and Sr/Ca ratios that are 

significantly different from the diet of organisms consuming a 60-70% carnivorous diet because calcium in 

both vegan and predominately carnivorous diets is derived from plant sources (Burton et al., 2003). High 

barium and strontium concentrations resulting from this biopurification at the herbivorous level overpowers 

the limited alkaline earth contribution derived from meat (Burton et al., 2003). Considering this, little 

variance in diet amongst group members residing in the same area is shown through these biomarkers 

(Burton et al., 2003). Strontium isotope ratios (87Sr/86Sr) are, however, one of the most useful and effective 

isotopic ratios for examining mobility and geographic provenance in ancient animal and human 

populations, particularly if paired with other isotope analyses (e.g., oxygen, carbon, lead, sulphur). As 

previously discussed, strontium isotopes enter the human skeleton through the consumption of food and 

water; the geochemical signatures of ingested strontium isotopes are recorded in the skeleton and can be 

mapped to past geological regions within the environment of an individual’s residence. Strontium ratios 

derived from bone, which provides a record connected to the time of death, are wrought with issues of 

diagenesis. However, dental enamel is highly resistant to diagenesis, but reflects signatures recorded during 

the development or formation of the enamel (i.e., in utero and during childhood) (Bentley, 2006). 

2.3.7 Zinc (Zn) 
 

a. History 

 

Zinc was extensively produced during Antiquity and the Medieval period as an important material used to 

produce brass and copper-zinc alloys, which were likely produced as early as ca. 3000-4000 years ago 

(Craddock et al., 1987; Hong et al., 1997). The form known as zinc oxide was used by early physicians 

(e.g., Galen) in medical treatments, especially in combination with lead for the treatment of cancers 

(Karpozilos et al., 2004). Zinc was heavily mined and used for brass making in India and China and 

historical and archaeological evidence indicates that substantial technology transfer occurred between India 

and the western world (Biswas, 2006). For example, zinc distillation technology spread and increased in 

use significantly in the 13th century AD although it was likely in use as early as the 4th century BC (Biswas, 

2006). While it has been found at ancient Greek archaeological sites, it was likely mined in Germany, India 

or China or even brought as a souvenir from India (Biswas, 2006). Ores containing zinc normally also 

contain lead and often silver, cadmium and copper as well, most of which were exploited significantly 

throughout Antiquity and the Medieval period (Craddock et al., 1987; Hong et al., 1997). Despite the 

extensive exploitation of zinc in the past, no significant changes to zinc concentrations are represented in 

Greenland ice cores during the Greek, Roman and Medieval period. Unlike lead, it appears that zinc mining 
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and smelting was not intense enough to cause emissions that would leave notable signals in Greenland ice 

beyond the normal background concentrations. Except during periods of severe volcanic eruptions, volcanic 

emissions were likely an insignificant source of atmospheric zinc emissions according to the results of 

Greenland ice studies (Hong et al., 1997). Nonetheless, zinc pollution did occur in the past from metallurgic 

and mining activities, as it continues to occur today along with additional pollution contributed by 

automobile traffic, waste incineration, galvanic industry and the production of rubber, paint, and plastic 

(Tvinnereim et al., 1999). In Iceland, zinc is released during volcanic eruptions, with large amounts being 

released during the eruption of Laki (AD 1783-1784) for example (Hong et al., 1997). Otherwise, zinc 

appears to be low in the environment and one study even indicated that grazing animals in Iceland (i.e., 

cattle and sheep) sometimes exhibit parakeratosis associated with zinc deficiency (Jóhannesson et al., 

2007). 

b. Mechanisms 

Zinc is an essential dietary element, important for proper metabolic and other human body functions 

(Tvinnereim et al., 1999; Brodziak-Dopierala et al., 2015). Zinc is derived predominately from high protein 

food sources, such as meat, dairy, poultry, seafood, and some whole grain products (Tvinnereim et al., 

1999). Its functions include the stimulation of metallothionein synthesis and proliferation of osteoblasts, 

regulation of vitamin D activity, regulation of hormones and cell growth, protection against free radicals 

and prevention of parathyroid hormone stimulated bone resorption (Tvinnereim et al., 1999; Brodziak-

Dopierala et al., 2015). It also plays a role in protein synthesis and acts as a co-factor for enzymes 

responsible for the regulation of gene transcription (Tvinnereim et al., 1999).  

 

Zinc deficiency can contribute to osteoporosis, with studies demonstrating that low-zinc diets lead to 

reduced bone size, length and stability thereby increasing fracture risk and diminishing trabecular bone 

content (Brodziak-Dopierala et al., 2015). It is also important for the proper mineralization of bones, acting 

to enhance and stimulate the synthesis of growth factors (e.g., IGF-1) on skeletal tissues (Brodziak-

Dopierala et al., 2015). Severe zinc deficiency can even cause dwarfism (Ezzo, 1994). It reduces bone tissue 

growth and induces bone resorption, resulting in thin, brittle bone prone to fracture (Ezzo, 1994; Brodziak-

Dopierala et al., 2015). Signs and symptoms include poor skeletal development, poor appetite, reduced 

wound healing, impaired immune response, and skin changes (Tvinnereim et al., 1999). On the other hand, 

zinc toxicity, which is rare, can cause immune system abnormalities, as well as nausea, lethargy, fatigue, 

vomiting and epigastric pain (Fosmire, 1990; Tvinnereim et al., 1999). Excess zinc can also induce copper 

deficiency, adding additional signs of neutropenia and anemia (Fosmire, 1990). Zinc and cadmium have an 

antagonistic relationship, with cadmium inhibiting zinc absorption within the intestinal tract. Furthermore, 

cadmium acts to block zinc stimulated growth factor (IGF) production, which acts to reduce osteoblastic 

bone matrix protein production, particularly in populations of older cells, potentially resulting in toxic bone 

tissue effects as age increases (Brodziak-Dopierala et al., 2015).  

 

c. Skeletal implications 

 

Zinc absorption occurs predominately within the intestinal tract, with the absorption rate generally 

correlated inversely with the quantity of zinc consumed in the diet (Ezzo, 1994). The skeletal system retains 

approximately 28% of the body’s zinc store (Ezzo, 1994). As zinc is a trace element under homeostatic 

regulation, the amount of dietary intake does not necessarily correlate with the total zinc within the body 

unless zinc deficiency is indicated (Ezzo, 1994). Bone and dentine are prone to the diagenetic uptake of 

zinc from the burial environment, correlating with the zinc content of the soil; zinc is best assessed in dental 

enamel, which is far less susceptible to diagenesis (Ezzo, 1994). Lappaleinen et al. (1981) showed an 

increase in zinc concentration in dental enamel according to increasing age. A combination of studies 

reviewed by Ezzo (1994), suggest ancient and modern bone concentrations of zinc as ranging from 10-1550 

ppm and in enamel from 58-2100 ppm. Enamel concentrations may relate to zinc absorption, with research 
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results showing a positive correlation between extent of industrialisation/urbanisation and zinc/lead 

concentrations (Tvinnereim et al., 1999). Clinical research has shown an association between low enamel 

zinc concentrations and malnutrition (Fosse and Justesen, 1978; Tvinnereim et al., 1999; Brown et al., 

2004). Norwegian research on deciduous dental enamel showed that zinc concentrations of less than 90 

ppm might indicate poor dietary zinc intake in childhood (e.g., Fosse and Justesen, 1978; Tvinnereim et al., 

1999). Furthermore, essential trace element deficiencies (e.g., calcium) may cause the rapid and irregular 

absorption of toxic heavy metals, especially in malnourished children (Talpur et al., 2018). Nonetheless, 

since zinc is subject to homeostatic control, zinc measured in enamel may not correlate with palaeodiet 

(Ezzo, 1994; Dolphin and Goodman, 2009). 

2.3.8 Barium (Ba) 
 

a. History 

 

In the past, blue and purple pigments were produced by the ancient Egyptians (i.e., Egyptian Blue) and 

Chinese (i.e., Han Blue, Han Purple) from barium copper silicates (an artificially produced, pigmented 

mineral). Egyptian Blue was used throughout Egypt, the Mediterranean, Western Asia and parts of central 

Europe until the fall of the Roman Empire (Ma et al., 2006). The Romans acquired the recipe for Egyptian 

Blue and thereby began to produce vestorianum (Pompeii Blue). The archaic Greeks and Persians also used 

Egyptian Blue on architectural structures and statues or figurines (Thieme, 2001). Han Blue and Purple, on 

the other hand, were important pigments used on bronze objects and pottery in China, particularly during 

the Han Dynasty (206 BC-AD 220) (Thieme, 2001; Ma et al., 2006). These were also used to adorn jewelry, 

the Terracotta Army and other objects (Thieme, 2001; Ma et al., 2006). Notably, almost all samples of 

artifacts adorned with Han Blue or Purple also contain substantial amounts of lead (Ma et al., 2006), adding 

additional toxicity to objects with barium copper silicate-based pigments. Today, toxic soluble barium salts 

are found in rodenticides, fireworks, fertilizer, insecticides, and depilatory substances and are also used 

during textile dyeing, welding, semiconductor production, glass manufacturing and in the steel and 

petroleum industry (Talwar et al., 2007; Naimy, 2008; Kravchenko et al., 2014). Various barium 

compounds are also used in the manufacturing of electronics, ceramics, pharmaceuticals, rubbers, plastics, 

bricks, cosmetics, and paper (Kravchenko et al., 2014). One study showed barium concentrations in welders 

were elevated up to 60 times the concentration found in the average population (Zschiesche et al., 1992; 

Kravchenko et al., 2014). Metallurgic activity in the past may therefore be considered a potential source of 

barium toxicity, as previously noted with mercury, lead, arsenic and cadmium. Cases of toxic natural 

exposure due to the combination of high barium levels in the local environment, cultural practices and diet 

have also occurred. For example, in Szechuan province (Pa Ping and Kiating areas) of China, where the 

local geology includes purple shales high in barium, phosphorous and calcium, subacute barium poisoning 

was endemic due to contaminated table salt and flour (Kravchenko et al., 2014; Oskarsson, 2015). Today, 

elevated barium concentrations are also found where industrial waste is disposed (Llugany et al., 2000). 

 

b. Mechanisms 

 

Barium is an alkaline earth metal that is present in substantial quantities in the natural environment and is 

concentrated in the earth’s crust (Llugany et al., 2000; Kravchenko et al., 2014). Of interest in this thesis, 

is that geographic regions with volcanic activity are also usually high in barium content (Kravchenko et al., 

2014). Past eruptions in Iceland show that barium concentrations increase with silica concentrations 

(Alnethary, 2018). Increased barium may thus occur with certain eruptions, such as the 2010 eruption of 

Eyjafjallajökull where 58% of the mass of ash was composed of silica (Gislason et al., 2011). Barium is 

absorbed via inhalation through the lungs or through the intestinal tract via ingestion (ca. 70-80% from 

food, ca. 20% from water) and predominately accumulated within the skeletal system (Kravchenko et al., 

2014; Oskarsson, 2015). Its concentration in soil is low to moderate (up to 1200 ppm; ca. 75 in Icelandic 
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bedrock) but marginal in seawater (ca. 0.013 ppm) and freshwater (0.0026 ppm) (Llugany et al., 2000; 

Naimy, 2008). Due to the high content of barium in soil and geological features, plants tend to have the 

highest amount of barium, followed by terrestrial herbivores, while carnivores have the lowest 

concentrations (Burton et al., 2003). Similarly, sea fish and marine mammals have substantially lower 

barium concentrations than plants, terrestrial animals, and freshwater fish (Llugany et al., 2000; Burton et 

al., 2003; Naimy, 2008; Szostek et al., 2009). In theory, bone barium concentrations should be lower in 

humans that consume more meat than plants (Burton et al., 2003). Freshwater barium concentrations range 

between 0.01-302 ppb (average 3.6 ppb) in Iceland (Naimy, 2008).  

 

Some compounds of barium are toxic dependent upon their solubility and mechanism of absorption, while 

others are used medicinally (e.g., barium sulfate) and do not necessarily absorb at all (Kravchenko et al., 

2014; Oskarsson, 2015). Most barium found in the environment has low solubility, making the risk of 

exposure to toxic barium compounds low (Llugany et al., 2000). However, cases of barium poisoning 

resulting in death have occurred when individuals ingest, accidentally or suicidally, compounds containing 

soluble barium (Naimy, 2008; Kravchenko et al., 2014; Oskarsson, 2015). Toxicity may occur with the 

ingestion of as little as 200 mg of soluble barium salts, but a lethal dose can occur with the ingestion of 1-

30 g of various soluble barium salts depending upon the degree of absorption, diet, and gastric pH (Naimy, 

2008). It is a common pollutant in urban air as particulate matter produced through combustion of diesel or 

coal and the incineration of waste materials. Major sources of ingested barium include nuts, milk, 

freshwater fish, seafood, and legumes. Lactose in milk increases the overall absorption of barium 

(Kravchenko et al., 2014), which may be a relevant factor in the examination of barium concentrations in 

Iceland due to the high dietary dependency on dairy products in the past. If inhaled, it can cause benign 

pneumoconiosis (Oskarsson, 2015). 

 

Animal experiments and cases of human exposure have demonstrated that toxic barium salts cause cardiac 

malfunction, renal and liver toxicity or failure, reproductive system alterations, instestinal hemorrhage, 

hypokalemia (i.e., low potassium), cardiac arrythmias, pulmonary edema, hearing loss and hypertension 

(Talwar et al., 2007; Kravchenko et al., 2014; Oskarsson, 2015). Signs and symptoms of barium poisoning 

include nausea, vomiting, tremors, headache, confusion, seizures, diarrhea, abdominal pain, respiratory 

paralysis and quadripilegia, all of which may begin within just hours of exposure (Talwar et al., 2007; 

Kravchenko et al., 2014). These experiments also showed that the kidney is a sensitive target organ in 

animals ingesting drinking water that contains barium chloride (Oskarsson, 2015). Barium poisoning blocks 

potassium channels in cell membranes, redistributing it, thereby causing severe hypokalemia that may lead 

to paralysis (Talwar et al., 2007; Oskarsson, 2015). Soluble forms of barium (e.g., Ba2+ ion) act as a muscle 

poison ultimately leading to paralysis (Oskarsson, 2015).  

 

c. Skeletal implications 

 

Barium enters the body through the diet, such as via the consumption of plants or terrestrial animal tissues 

(Szostek et al., 2009). It is a non-essential element that is not under homeostatic control in the human body, 

has no biological function and it varies according to the consumer’s trophic level (Szostek et al., 2009). 

Dependent upon the chemical form of the ingested barium, only about 5-30% of it is absorbed within the 

intestinal tract, with anywhere between 9-98% of it being excreted through urine and excrement 

(Kravchenko et al., 2014). Barium absorption may be inhibited by the intestinal concentrations of 

antagonistic compounds, such as zinc, phosphorous and calcium (Kravchenko et al., 2014). Barium replaces 

calcium within the hydroxyapatite, or mineral component, of bone where 90-99% of the total barium 

amount is retained (Szostek et al., 2009). The total amount of barium retained in bone appears to also be 

partly determined by the amount of casein (i.e., milk proteins) present in the human diet, potentially 

reflecting the inclusion of dietary components of an animal origin. A similar effect has been noted with the 

elevation of zinc concentrations (Szostek et al., 2009). One study showed barium concentrations in dental 

enamel to be 6.4 ppm in dry weight (Manea-Krichten et al., 1991). Another study found that deciduous 
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teeth contain 6.41 ppm while permanent teeth contain 4.4 ppm (Brown et al., 2002, 2004; Liu et al., 2013). 

Liu et al. (2013) found a lower average of barium (1.96 ± 1.01 ppm) in dental enamel. In the case of lead 

exposure, barium concentrations in dental enamel remain lower than lead concentrations (Manea-Krichten 

et al., 1991; Liu et al., 2013). 

 

Barium analysis can be applied in archaeological studies to examine diet and geographic provenance. 

However, as calcium in either vegan or predominately carnivorous diets is derived from plant sources, 

completely vegan diets do not produce Ba/Ca and Sr/Ca ratios that are significantly different than the diet 

of organisms consuming a 60-70% carnivorous diet. This biopurification at the herbivorous level, resulting 

in high barium and strontium, overpowers the limited alkaline earth contribution that is derived from meat. 

Considering this, these biomarkers show little variance in diet amongst group members residing in the same 

area (Burton et al., 2003). As a result, barium analysis can corroborate the findings of other isotope analyses 

that suggest whether any non-local individuals (from childhood) were members of a local group (or if all 

members were local). 

2.3.9 Antimony (Sb) 
 

a. History 

 

Antimony (Sb) has been used since ancient times in cosmetics, alchemical experiments (e.g., transmutation 

into gold), medicine and amalgamation (Hansell, 2015). The ancient Egyptians, Greeks and Assyrians all 

made use of antimony for various ailments, such as for conditions of the urinary system, and the Eberus 

papyrus (ca. 1550 BC) discusses its use as a medicinal remedy (McCallum, 1999). As previously discussed 

(section 2.3.3), scholars formerly believed that the fall of the Roman Empire may have been partly caused 

by chronic lead poisoning among the population, but this theory has been dismissed as the calcite deposits 

in the pipes would have prevented the transfer of lead into running water (Riva et al., 2012). Recent research 

by Charlier et al. (2017) instead suggests that the Romans living at Pompeii may have been poisoned by 

antimony leaching out of their lead pipes. In Iceland, antimony is released during volcanic eruptions, such 

as during the 2014-2015 eruption of Holuhraun (Bárðarbunga-Veiðivötn volcanic system) when the air 

became enriched with antimony and other trace metals (Jónsdóttir and Smáradóttir, 2015). 

 

Antimony is rarely found naturally in a metallic state and is usually found in an ore called stibnite (Sb2S3) 

(Hansell, 2015). In antiquity, stibnite was frequently used as an eye makeup due to its deep, black color, 

but it was also used to treat skin conditions (Hansell, 2015). The widespread use of antimony in Europe 

appeared in the Medieval period, only gaining extensive attention from ca. 1300s, particularly in medicine 

(McCallum, 1999). It was also frequently used in glass production and to produce domestic vessels (e.g., 

cooking vessels) (Dungworth and Nicholas, 2004). However, despite the knowledge of its poisonous nature, 

it played an important role in humouric medicine as an alternative to bloodletting as it was believed to 

balance the humours by inducing sweating, vomiting, or having laxative effects (McCallum, 1999; Hansell, 

2015). It was taken as a pill or pellet, which was later collected for re-use probably because it was expensive 

(Hansell, 2015). By the 1600s antimony pellets were banned and new, alternative treatments came into play 

such as drinking wine that was left in an antimony cup overnight (Hansell, 2015). In fact, the use of 

antimony was banned in 1566 and in 1615 in Paris due to its poisonous properties but the bans were then 

overturned in 1666, with antimony thus becoming officially approved as a medicine. King Louis XIV of 

France used a medicinal preparation containing antimony with purportedly successful results, thereby 

diminishing concerns over its use and effectiveness (Cooper and Harrison, 2009). However, it has also been 

suggested that antimony poisoning may have contributed to Mozart’s young age-at-death (35 years old) 

(McCallum, 1999; Hansell, 2015).  

 

Although numerous metals and herbs were used in medical preparations, antimony stirred the most conflict 
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and controversy, with the period of ca. 1560 to ca. 1660 being called the “Antimony War” in Western 

Europe, particularly in France and Germany (McCallum, 1999). Antimony (and arsenic) was often a 

component found in speiss, a residue of silver smelting that often problematically absorbed some of the 

silver and presented an inhalational health hazard to metallurgical practitioners. This residue was often 

discarded in antiquity, but metallurgists and alchemists later learned to extract the silver from it (Williams, 

2009). It was common to alloy antimony with other metals to improve its strength and hardness for use in 

various products. For example, in the printing press invented by Johannes Gutenburg in the 1400s, lead-

tin-antimony alloys were used for the metallic type blocks (Hansell, 2015). The medical use of antimony 

declined substantially in the 18th century and after the 19th century its use shifted primarily to industry 

(McCallum, 1999). In the 20th century, anthropologists described the use of mineral antimony for staining 

the teeth black by some cultures in the Philippines to beautify and strengthen the teeth (Atienza, 2014). 

Antimony is still used today as a flame retardant in plastics, fabrics and brake linings and it is also used as 

a component in batteries, rubber compounding, electronics, sheet and pipe metal, solder, ammunition, 

pewter, bearings, type metal, castings, paint pigments and some alloys and ceramics (Cooper and Harrison, 

2009; Hansell, 2015). Some pentavalent compounds of antimony remain in medical use today, 

predominately for treating tropical diseases such as the parasitic infection leishmaniasis (Al Jaser et al., 

1995; McCallum, 1999; Cooper and Harrison, 2009; Hansell, 2015).  

 

b. Mechanisms 

 

Antimony is a toxic substance and non-essential element that has also been found to be carcinogenic 

(Hansell, 2015; Tylenda et al., 2015). It enters the environment predominately through anthropogenic 

means, such as mining, smelting, amalgamation, alloying and the processing of its ores in general (Cooper 

and Harrison, 2009). Exposure occurs through ingestion via water, food or soil contact or inhalation via 

airborne dust (Cooper and Harrison, 2009; Hansell, 2015). Antimony exposure may likewise occur through 

milk consumption, but exposure through food or diet appears to be insignificant. Exposure to airborne 

antimony results in eye, lung, and skin irritation, with chronic exposure resulting in antimoniosis (a form 

of pneumoconiosis) (Cooper and Harrison, 2009). Another source of exposure to antimony in the past and 

the present is through glass making (Jackson, 2005; Cooper and Harrison, 2009). For example, the Romans 

used it extensively to create colourless glass as antimony acts as a decolorizor and fining agent resulting in 

bright, clear glass (Jackson, 2005). In addition to its oncogenic and mutagenic potential, other effects of 

chronic exposure include heart, gastrointestinal, lung conditions (e.g., cancer), chromosome damage, and 

reproductive disorders (Cooper and Harrison, 2009). Antimony exposure has also occurred with cases of 

lead toxicity because antimony ores are frequently associated with lead and arsenic, causing symptoms such 

as constipation, loss of appetite, colic, mouth ulcers, weight loss, glycosuria, albuminuria, dizziness, 

abdominal pain, and headaches (Cooper and Harrison, 2009). Like most toxic metals, the risk of antimony 

toxicity relates to age, sex, nutritional condition, lifestyle, family traits, overall health and the dose, route, 

and duration of exposure. Contemporaneous exposure to other toxic metals, such as lead, increases the 

toxicity risk of antimony. Unlike many other toxic elements (such as lead), antimony is not known to 

accumulate in aquatic organisms and does not leach through drinking water pipes (Cooper and Harrison, 

2009). Additionally, antimony does not systemically distribute to all the same tissues that other toxic metals 

do, according to post-mortem examinations that found insignificant concentrations of it in liver and kidney 

tissues (Cooper and Harrison, 2009). It is primarily excreted through urine and feces (Tylenda et al., 2015). 

Antimony is generally very low in soil (<1 ppm) with high concentrations (109-2550 ppm) being found 

today predominately at industrial or hazardous waste sites (Harrison and Cooper, 2009). 

 

c. Skeletal implications 

 

Antimony is poorly absorbed by the body, but the antimony that is absorbed is retained long-term and has 

a long biological half-life, particularly in lung tissues. Other tissues that may exhibit high concentrations 

are the thyroid and adrenal glands, liver, and kidneys (Tylenda et al., 2015). As the mechanisms of antimony 
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absorption remain poorly understood (Hansell, 2015), the skeletal implications of exposure to it are unclear. 

Some studies have examined its function in the liver, spleen, and bone marrow (Al Jaser et al., 1995). Retief 

et al. (1970) found a mean antimony concentration of 0.96 ppm, Underwood (1977) found a range of 0.005-

0.67 ppm and Jones (2014) found a range of 0.00-1.01 ppm with a mean of 0.05 ± 0.15 ppm in modern 

dental enamel samples. Rasmussen (1974) found a range of <0.001-1.59 ppm in human dental enamel from 

a combination of archaeological and modern individuals. 

2.4 Diagenesis in bone 
 

Numerous factors, involving burial conditions, contribute to the diagenetic alteration of bone, such as the 

presence of groundwater and soil contamination via anthropogenic or environmental means. While dental 

enamel can incur diagenetic enrichment if poorly preserved, this is far less likely than in bone (Hollund et 

al., 2015). Therefore, the following section will address diagenesis in bone, the far more susceptible skeletal 

tissue, with respects to the elements discussed above and analysed in this thesis. The presence of 

groundwater is an important factor as elements such as arsenic are mobilized within it, thereby causing 

surface contact between the element in the water and the buried skeletal material (Swift et al., 2015). 

Various scholars recommend comparing the soil concentrations of the burial environment with the 

concentrations found in bone samples to examine the likelihood of diagenetic enrichment (e.g., González-

Reimers et al., 2003, 2005; Rasmussen et al., 2008, 2013a, 2013b, 2015, 2017; Ávila et al., 2014; Swift et 

al., 2015). Another way to examine possible diagenetic change is to investigate the bone element 

concentrations in non-adults, especially infants, whose bones are less mineralized and more porous and 

therefore more prone to diagenetic uptake (Swift et al., 2015).  

 

European soil background concentrations of arsenic are reported to 11.6 ppm (range 0.32-282 ppm), of 

mercury to 0.061 ppm (range 0.005-1.35 ppm), of cadmium to 0.284 ppm (range 0.145-14.1 ppm) and of 

lead to 32.6 ppm (range 5.32-970 ppm) (Salmien et al., 2001). Total fluoride concentration in most soil 

types can range anywhere from from 20-1000 ppm (Edmunds and Smedley, 2005; Ozsvath, 2008; WHO, 

2002). Strontium, zinc, barium, and antimony are not discussed below because they were only measured in 

dental enamel, which is far less likely to undergo diagenetic enrichment than bone (Kendall et al., 2018). 

Additionally, the elements only measured in dental enamel have little to no comparative data for bone 

measurements and their diagenetic behaviors in bone have yet to be deeply investigated.  

 

Mercury  

 

Rasmussen et al. (2013a, 2015) measured soil samples associated with skeletons that had high mercury 

concentrations and these showed no correlation with soil mercury levels, thus indicating that diagenesis 

was not a factor. Yamada et al. (1995) and Zuckerman (2017a) likewise found no evidence for diagenetic 

transfer of mercury between bone and soil. Mercury is rare in nature and humans are not prone to the post-

mortem uptake of it into bone, unlike with lead (Swanston et al., 2012) mercury is uncommon in the natural 

environment and humans are not prone to post-mortem uptake (Ávila et al., 2014; Rasmussen et al., 2015). 

Bone hydroxyapatite retains mercury by replacing calcium and bonding with carbonates during life (Lee et 

al., 2005; Ávila et al., 2014). Therefore, high concentrations of mercury in skeletal remains are robust 

indicators of in vivo exposure (Schwarz et al., 2013; Rasmussen et al., 2015). As noted earlier (section 

2.3.1), the matrix of bone behaves as a long-term (>2 years) heavy metal reservoir prior to remodelling, but 

mercury has a half-life of just 60 days in non-skeletal tissues (Boyd et al., 2000; Ozuah, 2000; Miculescu 

et al., 2011).  
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Fluoride  

 

Fluoride has a high affinity for water and as a result it is most concentrated in areas of the natural 

environment where water flows. Accordingly, the diagenesis of fluoride into bone tends to occur 

predominately in permanently waterlogged burial environments. For example, Petrone et al. (2011) 

examined the extent of fluoride diagenesis in bone samples from Vesuvius, where the ash deposit was rich 

in fluoride and permanently saturated with groundwater. The researchers measured fluoride concentrations 

in the surrounding environment, which proved to be fluoride-laden, and investigated structural change in 

bone through histology, which showed no changes correlated with microbial activity. Despite the fluoride 

contamination in the burial environment and surrounding area, they suggest that the anoxic nature of the 

waterlogged burial environment likely reduced the extent of diagenesis as these types of conditions inhibit 

microbial activities and other related diagenetic process. A few of the samples were found to have non-

biogenic fluoride, such as the infants that likely showed diagenetic bone fluoride concentrations due to the 

porosity of the bones and their propensity for diagenetic uptake in general and were thereby excluded from 

further analysis (Petrone et al., 2011). Soil fluoride concentration in Iceland may increase following 

eruptions, such as the Hekla eruption of 1947-1948, when fluoride concentrations temporarily increased in 

fresh water sources from a low, normal maximum of 0.57 ppm to 9.5 ppm in some samples. Aside from 

ashfall deposit, such increases in stream water may contribute to temporarily increased fluoride 

concentrations in surrounding soil, which normally has a very low concentration in Iceland (Stefánsson and 

Sigurjónsson, 1957; Sigurðsson and Pálsson, 1957; Stewart et al., 2006; Gunnarsdóttir et al., 2016). 

Essentially diagenesis of fluoride in bone is primarily a concern if the surrounding environment contains a 

rich fluoride deposit in combination with significant groundwater saturation or water flow. Total fluoride 

concentration in most soil types worldwide generally range between 30-500 ppm (Edmunds and Smedley, 

2005; Ozsvath, 2008), but can technically range anywhere between 20-1000 ppm (WHO, 2002). Volcanic 

soils defluoridate naturally, but slowly, over time through adsorption via contact with various forms of 

aluminum and clay minerals (D’Alessandro, 2006), both of which are common components of Icelandic 

geology. 

 

Lead  

 

The diagenesis of lead into skeletal remains has been thoroughly addressed in the literature and a correlation 

between soil and bone lead concentrations has been widely acknowledged (e.g., Waldron et al., 1979; 

Waldron, 1983; Vuorinen et al., 1990; Skytte and Rasmussen, 2013; Rasmussen et al., 2008, 2013a, 2013b, 

2015). Trabecular tissue has been demonstrated to undergo far more diagenetic change than cortical bone, 

which can be mechanically cleaned to significantly reduce or even eliminate non-biogenic lead 

contamination from the surface of bone samples (Rasmussen et al., 2015). Some sites may be more prone 

to lead diagenesis due to factors such as pH (scale of acidity or basicity) and groundwater flux (inflows and 

outflows). Furthermore, earlier studies reporting diagenesis of lead in bone samples have often not reported 

what bone tissue was used for analysis or the methods employed for cleaning, decontaminating, and 

preparing the samples (e.g., Waldron, 1983; Vuorinen et al., 1990), perhaps because whole bone samples 

(cortical plus trabecular) were used and minimal or no sample decontamination was performed (Rasmussen 

et al., 2015).  

 

Cadmium  

 

Research conducted across Iceland showed average cadmium concentrations of 0.63 ppm (Panek and 

Kepinska, 2002). While the propensity for bone to undergo diagenetic change with natural background 

levels of cadmium in the burial environment have not been directly investigated, González-Reimers et al. 

(2003, 2005) did find a correlation between lead and cadmium concentrations in bone samples from the 

Canary Islands. Following that correlation and the lack of apparent lead diagenesis in bone, the research 
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implied that diagenesis of cadmium in the bone samples did not play a significant role (González-Reimers 

et al., 2003). 

 

Arsenic 

 

While arsenic incorporation in bone is likely to occur biogenically via inhalation or the consumptions of 

contaminated water (Kabata-Pendias and Mukherjee, 2007), it may also be integrated into bone 

diagenetically via infiltration into bone through soil pore water (Mahoney et al., 2005). Unfortunately, 

arsenic appears to be an element which is quite susceptible to diagenetic enrichment, particularly if the 

burial environment contains groundwater and clay minerals (e.g., iron, hydrous manganese, and aluminum 

oxides) and can therefore accumulate in bone even if surrounding arsenic concentrations are low (Pike and 

Richards, 2002). European soil background concentrations of arsenic are reported as 11.6 ppm (range 0.32-

282 ppm) (Salmien et al., 2001), yet one Icelandic survey of soil arsenic concentrations found extremely 

low concentrations of just 0.10 to 0.50 ppm (with the concentrations closer to 0.50 ppm being found in the 

closest vicinity to smelters and industrial plants (Magnússon and Thomas, 2007).  
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3 Origins and Diet  
 

3.1 The origins of the Icelandic population 
 

Isotope (enamel 87Sr/86Sr, 18O; collagen 34S), trace element (e.g., Pb, Sb, Ba, Sr, Zn), osteological and 

ancient (aDNA) analyses are generally used to obtain mobility information from archaeological skeletal 

remains (Walser III et al., 2020a). Ancient DNA analyses can also be used to examine the ancestry of a 

population by assessing changes or differences in genetic variation and drift (Ebenesersdóttir et al., 2018). 

These methods are particularly powerful when used in conjunction with historical documents, ethnographic 

research, and the literary record – an approach that was taken in this study. 

3.1.1 Icelandic ancestry according to mtDNA and ancient DNA analysis 

 

Despite its degraded nature, ancient DNA from human skeletal remains can be used to help explore the 

genealogical relationships between individuals and populations, as well as the burden of infectious disease 

(Roberts and Manchester, 2010; Anastasiou and Mitchell, 2013; Ebenesersdóttir et al., 2018). Earlier DNA 

studies indicated that the ancestry of Icelanders was primarily (between 60-90%) Norse and 10-30% Gaelic 

and that the population was, to a degree, genetically homogenous (e.g., Helgason et al., 2000a, 2000b, 2001; 

Goodacre et al., 2005). Research also showed that most of the matrilineal ancestry (62%) originated from 

Britain and Ireland while Y-chromosome microsatellite variations suggests that most of the patrilineal 

ancestry (75%) is of Scandinavian origin (Helgason et al., 2000b, 2009). Recently, genomic analyses based 

on Next Generation Sequencing (NGS) from 27 ancient Icelanders demonstrated that the founding 

population was not only composed of Norse and Gaelic individuals, but also of admixed individuals. A D-

statistic test D(YRI,X; Gaelic, Norse) further revealed a greater affinity between Norse and contemporary 

Icelanders than between Norse and ancient Icelanders, indicating that settlers of Norse ancestry may have 

had greater reproductive success than the Gaelic settlers. This was possibly a result of social constraints 

(e.g., slavery of Gaels, language inequality, social marginalisation) and later immigration from Denmark, 

which controlled Iceland between the 14th and 20th centuries. The study also showed that the ancient 

individuals were notably more similar to their source populations than modern day Icelanders after a 

millennium of genetic drift (see Ebenesersdóttir et al., 2018). Other research has shown that certain 

pathological conditions have a high degree of heritability (e.g., inflammatory bowel disease, ankylosing 

spondylitis) (Thjodleifsson et al., 2007). The small founding population and founding events may have thus 

been relevant to the overall risk of developing certain diseases in historical Iceland.  

 

3.1.2 Ancestry according to osteological analyses of non-metric traits 
 

Previous non-metric studies, such as Hallgrimsson et al. (2004), have made suggestions about the origin of 

the Icelanders. Mandibular (torus mandibularis) and palatine tori (torus palatinus) are extremely common 

non-metric traits in both historical and present Icelandic populations, exhibiting one of the world’s highest 

prevalence rates of oral tori (see Figure 3.1) (Hooton, 1918; Axelsson and Hedegaard, 1981, 1985; 

Halffman et al., 1992; Richter and Eliasson, 2008). Oral tori are bony growths extending from the mandible 

or maxilla towards the tongue. These traits are also frequently seen in other Scandinavian populations and 

the indigenous Greenlanders (e.g., the Inuit) and it is believed that there may be additional factors specific 

to the arctic region’s environment, such as masticatory stress-related to tough food (e.g., harðfiskur) and a 

primarily meat-based diet (Hooton, 1918; Suzuki and Sakai, 1960; Halffman et al., 1992). Hooton (1918) 

found that amongst the Icelandic individuals from Alftanes and Haffjarðarey he analysed, 68% presented 

with mandibular torus and 71% presented with palatine torus. Richter and Eliasson (2008) found that 

mandibular tori were present in 50% of the individuals excavated from Skeljastaðir, while palatine tori were 

present in 40% of them.  
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Scott et al. (2016) noted that ancient Icelanders and the Greenlandic Norse showed a very high frequency 

(65-97%) of mandibular torus, while Norwegians showed a somewhat lower frequency (48%) and Danish 

Vikings showed a very low frequency (9%). Because of the small population in Medieval Iceland, a very 

small gene pool may have existed allowing for greater admixture of these potentially heritable skeletal 

expressions (Hallgrimsson et al., 2004). However, the study also indicated that the expression of mandibular 

tori was far more likely to result from environmental pressures or local stresses than from genetic 

inheritance or dental attrition although they suggest that cold, bruxism and high-protein diets may play roles 

in torus formation (Scott et al., 2016). Nonetheless, some clinical research suggests that genetic factors are 

dominant in the expression of oral tori (e.g., Auškalnis et al., 2015) yet others suggest environmental factors, 

abnormal continuous growth, masticatory hyperfunction, mechanical stress, trauma, mandibular 

morphology, or a combination of these variables, demonstrating that a single aetiology for torus expression 

cannot yet be validated (Cortes et al., 2014; Smitha and Smitha, 2015). Irritation to the oral mucosa may 

also be correlated with torus formation, which is relevant to this study of Icelandic skeletal remains in light 

of the irritation to eyes, connective tissue and mucous membranes that volcanic emissions are known to 

cause. Torus mandibularis is found situated between the periosteum and the mucous membrane and the 

exostosis itself is composed of lamellar bony tissues (Hooton, 1918; Suzuki and Sakai 1960; Halffman et 

al., 1992; Gorsky et al., 1998; Hallgrimsson et al., 2004).  

 

 
Figure 3.1 Left, palatine torus (SKR 169) – inferior view. Right, mandibular torus (ÞSK 55) – superior 

view 

3.1.3 Principles: using δ18O, 87Sr/86Sr and trace element analyses (e.g., Sr, Pb, Zn, Ba) to 

evaluate geographic provenance 
 

Mobility or geographic residence reconstructions are normally performed by determining isotopic ratios of 

strontium (87Sr/86Sr), oxygen (18O) (Åberg et al., 1995; Katzenberg, 2012) and trace elements (Kamenov 

and Gulson, 2014; Åberg et al., 1998). For the geographic provenancing of archaeological individuals, δ18O, 
87Sr/86Sr and trace element analyses (e.g., Sr, Pb, Zn, Ba) may be conducted on dental enamel samples. 

Dental enamel is composed of a calcium phosphate lattice and is very resistant to diagenesis. Trace element 

ions can accumulate in enamel when they substitute for calcium during dental development (Åberg et al., 

1998; Montgomery, 2002; Neil et al., 2017). Enamel does not remodel once it is mineralised and 87Sr/86Sr 

values do not significantly vary by trophic levels, so the ratio reflects the sources of strontium that people 

are exposed to during dental formation (beginning in utero, persisting through childhood and adolescence) 

(Montgomery, 2002; Bentley, 2006; Neil et al., 2017). The identification of the geographic provenance of 
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archaeological individuals using strontium isotopes is possible because humans dietarily acquire strontium 

through biosphere sources; as geological weathering occurs, strontium is released from rocks and enters 

groundwater and soil where it becomes bioavailable, entering the food chain thereafter (Capo et al., 1998; 

Neil et al., 2017). While these levels vary between biota and specific tissues for several reasons, strontium 

isotope ratios do not undergo biologically induced fractionation due to the small differences in mass 

between strontium isotopes (Price et al. 2002). Isotopic studies have noted that strontium concentrations 

generally tend to be higher amongst individuals excavated from coastal or island sites (Neil et al., 2017).   

Oxygen isotopes determined from skeletal remains primarily represent the isotopic composition of the 

drinking water people consume, however, they can also reflect variation resulting from culturally mediated 

behaviors (Brettell et al., 2012a, 2012b). Some variables that can alter oxygen isotope ratios include 

chemically bound oxygen in food, respiration, consuming fluids that undergo fractionations (e.g., cow’s 

milk), food preparation methods (e.g., slow cooking, stewing), climate, ale drinking and 

breastfeeding/weaning (Brettel et al., 2012a; Neil et al., 2017). For example, the regular consumption of 

brewed drinks or slow cooked food can raise δ18O values significantly (Brettell et al. 2012a). Furthermore, 

oxygen isotope ratios (δ18O) decrease according to increasing latitude, altitude, and the distance from 

sources of atmospheric water vapor (Laffoon et al., 2012). Since oxygen concentrations in human bioapatite 

are primarily derived from fluid ingestion, oxygen isotope ratios reflect drinking water and are thereby 

useful for estimating provenance (Laffoon et al., 2012; Price et al., 2015; Neil et al., 2017). Modern 

phosphate oxygen isotope ratios in precipitation were originally estimated on average to be around -7.0‰ 

in Iceland (Lecolle, 1985; Fricke et al., 1995). Modern bottled water from Reykjavík averaged δ 18O -8.7 

(source) and -8.8 (purchase) (Bowen et al., 2005). A 2013 study reported the results of isotopic analyses 

for δ18O in 11 groundwater samples from Iceland as ranging between -8.8 and -8.2 (Friedrich and Schlosser, 

2013). 

The mechanisms of uptake of strontium and lead differ and therefore respond to migration differently (Budd 

et al., 2004; Montgomery 2002). Lead concentrations in dental enamel generally range between 0.5-0.7 

ppm, therefore a Pb value of more than 0.7 ppm in dental enamel potentially indicates exposure beyond the 

normal environment and individual outliers may represent migrants amongst a sample population (Evans 

et al., 2018). Lastly, other trace elements in dental enamel can also be used to provide details about diet and 

provenance. Zinc (Zn) values are correlated with meat consumption, environmental sources and 

anthropogenic pollution and are reported to range between 9.9 and 1550 ppm in dental enamel (Jaouen et 

al., 2016, 2017; Guede et al., 2017). Barium (Ba) and strontium (Sr) reflect local geology and the plant and 

water sources consumed (Liu et al., 2013; Guede et al., 2017). One study demonstrated that Pb values tend 

to be higher than Ba values when Pb exposure beyond the normal environment occurs (see Liu et al., 2013).  

3.1.4 Geographic provenance as revealed by previous isotope and trace element analyses 
 

Price and Gestsdóttir (2006) identified 32 non-Icelandic migrants using strontium isotope (87Sr/86Sr) ratio 

analysis on enamel from pre-Christian individuals (n=83) excavated from around the country. Individuals 

were identified as non-local if their 87Sr/86Sr values were greater than ca. 0.7092, which is the value for 

seawater and rain and the upper 87Sr/86Sr end-member for Iceland’s basaltic biosphere. Icelandic geologic 

and bioavailable strontium isotope baselines (87Sr/86Sr) are presented in Table 3.1. This study likewise 

indicated 87Sr/86Sr variations may relate to differing diets between people residing inland (values closer to 

0.703) and coastally (values closer to 0.7092) (Gestsdóttir and Price, 2006; Price and Gestsdóttir, 2006). 

Icelandic bioavailable strontium isotope ratios are greater than those derived from whole rock (ca. 0.703) 

due to the seasplash and spray occurring all over the country. A small subset (n=10) of the same Viking 

Age samples also underwent oxygen isotope analyses, though δ18O values were only published for five of 

them (see Gestsdóttir and Price, 2006; Price et al., 2015). The combination of the 87Sr/86Sr and δ18O values 

determined for the sampled individuals imply non-local geographic origins. Lastly, tooth and bone samples 
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of one early Settlement Period female migrant, Bláklædda Konan (LKS 1), underwent 87Sr/86Sr, δ18O, δ15N, 
δ13C isotope analyses, in addition to the trace element analyses of strontium and lead (Montgomery and 

Jakob, 2015). The results of these two studies provide a limited, but interesting pool of comparative data. 

Table 3.1 Strontium ratios (87Sr/86Sr) determined in bedrock, grass grown on volcanic soil, modern barley, 

and seawater and from modern and archaeological faunal dental enamel. The sheep samples were collected 

from inland sheep that did not graze upon seaweed, which may raise strontium isotope ratios (Price et al., 

2015)  

 

Intra- and inter-population differences in geographic provenance can be observed by assessing trace 

element variability between individuals. These applications are particularly strong with non-essential 

elements that are not under homestatic control (Jaouen and Pons, 2017). Prior to this study, apart from the 

single individual (LKS 1), trace element analyses (i.e., Zn, Pb, Ba, Sr) have not been performed on Icelandic 

human dental enamel samples. It is possible that such analytical data could improve geographic provenance 

determination for Icelandic archaeological populations (Burton et al., 2003; Montgomery et al., 2014). 

However, these elements were previously measured in Icelandic geology (rock, soil, plants, and 

groundwater) (see Table 3.2). The results of Panek and Kepinska (2002) showed that there was very little 

anthropogenic lead input soil and foliage from Iceland, especially when compared with the concentrations 

seen in Poland and Sweden.  

 

Table 3.2 Zinc, lead, and barium concentrations (ppm) found in two species of moss (Racomitrium sp. and 

Drepanocladus sp.), topsoils (andosols, regosols, leptosols, organic soil), bedrock (basalt) and 

groundwater in Iceland 

 

 
 

3.2 The diet of past Icelandic populations 
 

Dietary reconstructions from skeletal remains are usually performed by determining the isotope ratios of 

carbon (13C), nitrogen (15N) (Katzenberg, 2008) and more recently, sulphur (34S) isotopes (Nehlich, 

2015; Sayle et al., 2016). The water and food sources (plants or animals) humans ingest are recorded within 

the consumers’ tissues and can be revealed through isotope analyses (Sealy, 2001) providing powerful 

information, especially when used in combination with historical documents and archaeozoology. 

 

 

Enamel sample 87Sr/86Sr n Source Material 87Sr/86Sr Source

Archaeological Cattle 0.7042 2 Price et al. (2015) Bedrock 0.7030-0.7037 Sigmarsson et al., (1992); Price et al. (2015)

Archaeological Pig 0.7042 1 Price et al. (2015) Grass (volcanic soil) 0.7030-0.7040 Åberg (1995)

Modern Redshank Bird 0.7057 5 Evans and Bullman (2009) Barley 0.7068 Price et al. (2015)

Modern Sheep 0.7059-0.7069 5 Price and Gestsdóttir (2006) Seawater 0.7092 Åberg (1995)

Modern Reindeer 0.7060 1 Åberg (1995) Rainwater 0.7090 Åberg (1995)

Material Zinc Lead Barium Source

Racomitrium sp. 46.1 5.5 - Panek and Kepinska (2002)

Drepanocladus sp. 54.1 5.9 - Panek and Kepinska (2002)

Topsoil 83 5.8 - Panek and Kepinska (2002)

Bedrock 63 4.7 75 Panek and Kepinska (2002); Naimy (2008)

Groundwater - - 0.0036 Naimy (2008)
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3.2.1 Principles: using carbon (13C), nitrogen (15N) and (34S) isotope analysis and trace 

elements (Pb, Zn, Ba, Sr) for palaeodietary reconstructions 
 

Carbon and nitrogen stable isotope analysis on human bone collagen is the most common method of 

reconstructing the diets of past populations. Carbon isotope ratios are dependent upon diet, based upon 

differences in photosynthesic pathways between C3, C4 and CAM (crassulacean acid metabolism) plants 

(Katzenberg, 2012). C3 plants (e.g., wheat, oats, rye) are the most abundant (around ca. 85% of earth plant 

species) and are best adapted to cool environments, while C4 plants (e.g., corn, millet) are rather adapted to 

warm and often arid environments (Yamori et al., 2014). Lastly, CAM plants (e.g., pineapple, aloe, cacti) 

are adapted to hot, dry environments (Katzenberg, 2012). An individual consuming primarily C3 plants 

(average value around -26.5‰) will usually exhibit δ13C values of around -21.5‰ in bone collagen. In bone 

collagen this value rises by about +1‰ in the consumer relative to the individual’s dietary protein source 

(e.g., δ13C for exclusively terrestrial protein consumers = ca. -20.5‰, δ13C for exclusively marine protein 

consumers = ca. -12‰) (Smith and Epstein, 1971; DeNiro and Epstein, 1978; Schoeninger et al., 1983). 

Additionally, δ13C values can vary significantly between or even within species (Katzenberg, 2012). δ13C 

values measured in enamel carbonate can also impart dietary information that is closely correlated with 

δ13C values measured in bone collagen (Loftus and Sealy, 2012). While δ13C and δ15N values determined 

in bone collagen predominately reflect the protein component and the consumption of C3 and C4 plants in 

a person’s adult diet, δ13Ccarbonate values determined from bioapatite (i.e., dental enamel) reflect whole diet 

during the time the sampled tooth was forming. Individuals primarily consuming C3 food sources generally 

exhibit δ13Ccarbonate values between -17.0 and -14.0 ‰ (Froehle et al., 2012; Neil et al., 2017). 

Nitrogen isotope ratios (δ15N) are used to examine an organism’s trophic level, which reflects the number 

of steps it is removed from the starting point of a food chain. Determining δ15N can thus be very helpful 

during dietary reconstruction if an individual’s diet contains more heavily enriched carbon isotopes, such 

as marine foods and C4 plants. The δ15N offset in human bone collagen is estimated to be around +5.5 ± 

0.5‰ indicating a trophic shift value of around +4.5‰ (e.g., terrestrial herbivores range +2.5‰ to +6.5‰, 

terrestrial carnivores range +7‰ to +11‰) (Fernandes, 2015). Marine food webs are more complex, 

resulting in δ15N values reaching between 15‰-20‰ in exclusively marine protein consumers (predators) 

(DeNiro and Epstein, 1981; Schoeninger et al.,1983; Schoeninger and DeNiro, 1984; Sayle et al., 2016). 

More recently, sulphur isotope analysis has been conducted, enabling deeper differentiation between 

protein sources in palaeodietary studies. Sulphur isotope ratio (34S) values measured in consumers reflect 

the local environment as characterised by geological processes. Plants absorb sulphur through their roots in 

the form of sulfate and oxidized sulphides, which leach into earth and water via bedrock weathering. 

Sulphur isotopes undergo little to no fractionation and therefore 34S values can provide information about 

the geographic provenance of an organism (Trust and Fry, 1992; Richards et al., 2001). However, sulphur 

(34S) ratios are most useful for identifying the differences between or the combination of marine, 

freshwater, and terrestrial dietary resources in archaeological remains (Sayle et al., 2016). Marine plants 

and algae exhibit a small range of 34S values around 17‰ to 21‰, while according to the local geology, 

terrestrial and freshwater plants exhibit a vast range of 34S values from -22‰ to 22‰ (Peterson and Fry, 

1987). 34S values determined in bone collagen show an increase of about 1‰ from the dietary protein 

source (Peterson and Howarth, 1987). Researchers have also attempted to use trace element analysis (e.g., 

Pb, Sr, Ba, Zn) for palaeodietary reconstruction, as the variations seen in the results of such analyses may 

help supplement other data that can discriminate between populations or groups with differing diets (Safont 

et al., 1998).  

3.2.2 Past diet according to archaeological research and historical and literary records 
 

Despite the precarious sub-polar climate of Iceland, people have supplied themselves with a diverse 

selection of foodstuff since the start of the Settlement period (AD 871±2) (Karlsson, 2000). Though barley 
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was cultivated, there was short, challenging, and limited growing season (Mehler, 2011; Svanberg and 

Ægisson, 2012; Mooney and Guðmundsdóttir, 2020). The spread of epidemics along with volcanic and 

climatic events occurring during the Little Ice Age (ca. 13th to 19th century AD) further complicated local 

cultivation (Dugmore and Véststeinsson, 2012; McGovern et al., 2014). Though it is often thought that 

plants were only a small component of the diet (Mehler, 2011; McGovern et al., 2014), subsistence 

gardening was practiced at some sites, such as at Skriðuklaustur (Kristjánsdóttir et al., 2014) (see Table 

3.3). A list of the most common edible plants found in Iceland can be seen in Table 3.3. 

Table 3.3 Examples of some of the most consumed edible wild plants in historical Iceland (see 

Gísladóttir, 1999; Mehler, 2011; Svanberg and Ægisson, 2012) 

 

The staples of the diet were diary, sheep meat and fish, much of which was often salt-preserved, fermented, 

smoked, or acidified/soured (Mehler, 2011). Fish and meats were also exchanged for various goods with 

foreign traders despite ample local production (Mehler, 2011). Archaeozoological research indicates that 

the subsistence economy in Iceland during the Settlement period was likely much healthier and far more 

stable than in Greenland where almost all available fat was exploited from all livestock bones except the 

ribs, indicating a less healthy diet compared to Iceland, where fat from bone marrow was not utilized to the 

same extent. This evidence of subsistence stress is probably the result of dwindling seasonal supplies due 

to differing climate conditions, soil quality and fishing behaviour between Norse Iceland and Greenland 

(Outram, 2003).   

3.2.3 Past diet according to previous isotope research 

The first palaeodietary isotopic study relevant to Icelandic populations was conducted in 1999 on the 

Greenland Norse, the Icelandic migrants that resided in Greenland (ca. AD 1000-1450). The results 

determined that these individuals underwent significant dietary change between the initial settlement, 

moving from a primarily terrestrial diet to a largely marine protein diet by the end of their occupation in 

Greenland (Arneborg et al. 1999). Nelson et al. (2012) found that the dietary economy of Norse settlements 

in Greenland was focused on a combination of domestic livestock and hunting. In 2010, Sveinbjörnsdóttir 

Common name Icelandic name Scientific name Plant part Purpose

Common silverweed Tágamura Potentilla anserine Root Subsistence

Common horsetail Klóelfting Equisetum arvense Root Subsistence

Garden angelica Ætihvönn Angelica archangelica Root, leaves Subsistence, medicinal

Scurvy grass Skarfakál Cochlearia officinalis Root, leaves Subsistence, medicinal

Common sorrel Túnsúra Rumex acetosa Leaves Subsistence

Iceland moss Fjallagrös Cetraria islandica Moss Subsistence, medicinal

Bilberry Aðalbláberjalyng Vaccinium myrtillus Berries Subsistence, seasoning

Bog bilberry Bláberjalyng Vaccinium uliginosum Berries Subsistence, seasoning

Crowberry Krækilyng Empetrum nigrum Berries Subsistence, seasoning

Dulse Söl Palmaria palmata Seaweed Subsistence

Carrageen moss Fjörugrös Chondrus crispus Seaweed Subsistence

Wild thyme Blóðberg Thymus praecox Leaves, flowers Tea, seasoning

Caraway Kúmen Carum carvi Seeds Seasoning

Common juniper Einir Juniperus communis Berries Seasoning

Common butterwort Lyfjagras Pinguicula vulgaris Leaves Seasoning, medicinal

Mountain avens Holtasóley Dryas octopetala Leaves, flowers Tea
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et al. (2010) isotopically analysed 83 skeletal samples (79 humans, two horses and two dogs) for the dietary 

reconstruction of early Icelandic settlers and to make comparisons with the study conducted on the 

Greenland Norse. The sampled individuals all lived between AD 900-1250: those from Christian burials 

(n=45) showed an average δ13C value of -19.39 ± 0.46‰ and those from “pagan” burials (n=30) had an 

average δ13C value of -18.73 ± 1.05‰. The results showed a dietary variation between people, likely due 

to geographic residence (i.e., proximity to the sea) and possibly non-local migration and social status (see 

Sveinbjörnsdóttir et al., 2010). The consumption of fish and seaweed can raise δ13C values, resulting in a 

dietary signature that appears to be more marine based (Schulting et al., 2017). The consumption of fish 

and seaweed in addition to the heavy dietary reliance on seaweed- and fishmeal-eating sheep in historical 

Iceland (Hallsson, 1964; Sigurðsson, 1988) could potentially alter isotope values (Schulting et al., 2017; 

Balasse et al., 2019).  

Other isotopic studies noted that δ15N values in human bone collagen samples contain dietary-derived 

freshwater carbon resulting in a complicated reservoir effect and have described several problems with 

palaeodietary reconstructions based solely upon δ13C and δ15N in Iceland (Ascough et al. 2012, 2014). Thus 

in 2013, 129 archaeological animal bones from the Settlement period (landnám, ca. AD 874-930) site 

Skútustaðir in north-eastern Iceland were isotopically analysed (δ13C, δ15N and δ34S) (Sayle et al., 2013). 

With the addition of sulphur isotope analysis, the researchers were able to differentiate between terrestrial, 

freshwater- and marine-based diets amongst animals as well as explore aspects of animal husbandry and 

the trade of livestock (Sayle et al., 2013). Recent isotope research (δ13C, δ15N and δ34S) on 46 human and 

39 animal bone samples showed a wide range of isotopic values, indicating that the individuals living at the 

Late Viking Age (ca. AD 940-1070) site Hofstaðir í Mývatnsveit were consuming a varied diet, with outliers 

suggesting migrants to the area (Sayle et al. 2016). Volcanic activity causes fluctuations in sulphur 

concentrations found in water sources and foliage: one study demonstrated that sulphur concentrations in 

water in the Hekla region were elevated even 15 years after the last eruption due to magmatic degassing 

(Holm et al., 2010; Sayle et al., 2013). For the study presented here, it is therefore important to consider the 

effect that volcanic activity may have had on populations residing close to volcanic systems, such as those 

living at Skeljastaðir (near Mt. Hekla) and Skriðuklaustur (near the Veiðivötn-Bárðarbunga volcanic 

system). 
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4 Materials and Methods 
 

From the seven sites that were included in this analysis osteological and palaeopathological analysis was 

undertaken on a total of 186 adult (>17 years) individuals. A total of 50 individuals from two sites 

(Skriðuklaustur and Skeljastaðir) were sampled for stable isotopes of δ13C, δ15N, δ34S and bone element 

concentrations of Hg, Pb, Cd. F and As. While most of the samples were selected from the adult individuals 

that were osteologically analysed, six non-adults were also sampled. All the individuals that were analysed 

for elemental or isotope data underwent osteological analyses, but the results and statistical findings 

presented in Chapter 5 only include adult individuals (the osteological data of the non-adults that were 

sampled for elemental and isotope analyses was not included in those tabulations). Trace element analysis 

was undertaken on dental enamel for Hg, Pb, Cd, As, Sb, Sr, Zn and Ba on a total of 31 of the same 

individuals. Soil samples (n=22) from Skriðuklaustur and Skeljastaðir were analysed alongside human bone 

samples to examine natural background levels of various elements in the local environment and to control 

for concerns over diagenetic enrichment. Animal bones (n=25) were examined for this purpose as well, but 

also to investigate differences in exposure between livestock, wild animals, and the human population. The 

animal bone samples were also used to provide isotope baselines for the palaeodietary reconstruction. 

Details of the archaeological sites and methods (e.g., ion-selective electrode, ISE; isotope ratio mass 

spectrometry, IRMS; inductively coupled plasma mass spectrometry, ICP-MS; osteological analyses) are 

included in this chapter. 

 

4.1 Materials: archaeological sites, population background and volcanic history 

 

4.1.1 Sites from the 10th to 12th centuries 
 

From the initial Settlement (late 9th century), the Icelandic economy and subsistence was based upon the 

import and farming of domestic stock. Foraged foods, hunting (e.g., fish, birds, seals) and likely small-scale 

cultivation of cereals (e.g., barley) also contributed to the subsistence economy (Harrison and Snæsdóttir, 

2012; Riddell et al., 2018). People resided on farms that practiced inter-regional exchange, but the country 

was entirely devoid of urban centers (McGovern et al., 2006, 2007; Harrison, 2009; Harrison and 

Snæsdóttir, 2012). During this period, the population began observing Christian regulations and were 

influenced by Christian habits (Kristjánsdóttir, 2017: 18-26).  
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Figure 4.1. Map depicting the volcanoes of Iceland (green triangles) and the archaeological sites (black 

dots) analysed in this research. The dates correspond to the skeletal assemblages rather than the entirety 

of the sites use. The map is presented in a modified form from the Volcanic Hazards map issued by the 

Icelandic Meteorological Office (Veðurstofa Íslands), http://www.vedur.is/skjalftar-og-eldgos/eldgos, 

where a larger, clearer version of the map and names of volcanoes may be seen 

http://www.vedur.is/skjalftar-og-eldgos/eldgos
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Skeljastaðir (ÞSK). Skeljastaðir is in the Þjórsárdalur valley by Skeljafell in southern Iceland, and the 

cemetery was used up until the severe AD 1104 eruption of Mt. Hekla, a volcano located nearby (Steffensen, 

1943; Þórðarson, 1943; Dugmore et al., 2007). It is believed that the cemetery was used from AD 1000-

1104 (Gestsdóttir, 2014). During the excavation (1939) 63 individuals were recovered from the cemetery 

(Steffensen, 1943; Þórðarson, 1943). Only 56 of these individuals are currently available for study at the 

National Museum of Iceland due to the commingling of remains following the excavation. Previous isotopic 

research on 33 individuals from Skeljastaðir demonstrated that only one individual (ÞSK 44) was of non-

local origin (Price and Gestsdóttir, 2006). Radiocarbon dating conducted on seven skeletons resulted in a 

range of AD 890-1220 (68.2% probability) (Sveinbjörnsdóttir et al., 2010), indicating that some of the 

individuals were possibly buried following the eruption.  

4.1.2 Sites from 13th to 16th centuries 
 

By the 13th century, power struggles between the elite families in Iceland were amplified and Iceland fell 

under Norwegian rule. The zenith of the Catholic church’s influence occurred during this period, with 

noticeable changes in subsistence habits, medical care, manuscript production (from vellum to parchment) 

and the import of fine metallic church objects, such as chalices (Kristjánsdóttir, 2017). During this period 

there were still no urban centers, thus international trade occurred seasonally at certain coastal trading posts 

on an increasingly larger scale due to the favourable weather conditions (Barrett et al., 2004; Mehler, 2007, 

2015; Perdikaris and McGovern, 2009; Véstseinsson et al., 2010; Harrison and Snæsdóttir, 2012; Barrett, 

2016; Hoffman, 2018). The climatic conditions during the Medieval Warm Period (9th to 13th centuries) 

also increased the population density of certain fish species, such as cod, which was essential to the diet 

and herring, which was an important commodity. These favorable conditions further contributed to the 

increasing human population density and the presence of foreign fishermen and traders in the North 

Atlantic, as the demand for fish grew exponentially due to religious fasting rules (Barrett et al., 2004; 

Perdikaris and McGovern, 2009; Barrett, 2016; Hoffman, 2018). During the 14th and 15th centuries, Iceland 

came under Danish rule and trade with England and Germany significantly increased, particularly in the 

exchange of refined sulphur, woollen items and fish for various goods, such as alcohol and grain (Mehler, 

2007, 2015). Considering the monastic functions of Skriðuklaustur, and its role as a center of commerce, 

the use of materials such as lead for structures and objects was likely far more common than at fishing or 

farm sites, such as Skeljastaðir or Haffjarðarey.  

 

Haffjarðarey (HFE). The Catholic church and cemetery on the island Haffjarðarey (HFE) in Haffjörður, 

off the Snæfellsnes Peninsula, are believed to have been in use from approximately AD 1200-1563 

(Þorkelsson, 1888; Steffensen, 1946). The cemetery ceased to be used in 1563, likely because of severe 

coastal erosion and the Reformation (Steffensen, 1946; Hoffman, 2018). Though none erupted during the 

time the site was used, the region has three volcanic systems (i.e., Snæfellsjökull, Lýsuskarð, Ljósufjöll) 

(Harðarson, 1993). Two excavations were carried out, one beginning in 1905 and the other in 1945. A total 

of 24 individuals were excavated along with the remains of 34 more individuals from disturbed burials. 

Fifty-four of these individuals are curated in the National Museum today. The people residing at 

Haffjarðarey likely represented the general population, made up of laborers and farmers (Gestsdóttir, 2004). 

Strontium isotope analysis conducted on 11 of the excavated individuals showed only local geographic 

provenance (Price and Gestsdóttir, 2006).  

 

Skriðuklaustur (SKR). Skriðuklaustur (SKR) in Fljótsdalur was an Augustinian monastery (AD 1493-1554) 

and hospital located inland in eastern Iceland, in the Vatnajökull region. It began operating just 16 years 

after a severe eruption of the Bárðarbunga-Veiðvötn volcanic system (AD 1477) (Thordarson and Larsen 

2007, Kristjánsdóttir 2012), that resulted in a massive tephra fall and place abandonment in the 

Hrafnkelsdalur valley. It devastated the crops and landscape, as well as the livestock and human populations 

(Larsen, 1988; Rafnsson, 1990; Thordarson and Larsen, 2007; Global Volcanism Program, 2013). A total 

of 295 individuals, around one-third of which are nonadults (<17 years), were excavated from the site and 
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around half show notable pathological conditions. The discovery of surgical instruments, healing plants and 

numerous cases of infectious disease (e.g., treponematosis, tuberculosis, hydatidosis) and other pathological 

conditions (e.g., Paget’s disease, cleft palate, traumatic injuries) demonstrated its role as a monastic hospital 

(Kristjánsdóttir, 2012; Walser III et al., 2019). According to zooarchaeological, isotopic and historical data, 

trade, particularly for fish, and small-scale gardening were the basis of their subsistence economy 

(Pálsdóttir, 2006; Hamilton-Dyer, 2010; Kristjánsdóttir, 2012; Kristjánsdóttir et al., 2014; Mehler, 2015; 

Walser III et al., 2020a). The monastery and the hospital were closed shortly after the Lutheran Reformation 

(mid-16th century) in Iceland (Kristjánsdóttir, 2011, 2012, 2015).   

4.1.3 Sites from the 17th to 19th centuries 
 

During the Protestant era, printing and textile production became more industrialised (Arnórsdóttir, 2013). 

Between AD 1602-1787 the Kingdom of Denmark maintained a trade monopoly in Iceland, enacted through 

designated trading centers throughout the country. Regardless, unauthorized trade amongst fishermen and 

merchants from England, Germany, Holland and elsewhere persisted (Karlsson, 2000; Þórhallsson and 

Joensen, 2014). During this period, the Icelandic population was still dispersed across small, rural villages 

and farms throughout the country, with no towns or urban centers (Harrison and Snæsdóttir, 2012). In the 

mid-18th century, Reykjavík underwent a rapid transition from a predominately rural to a densely populated 

urban society over just a few generations, shifting occupational dependency from farming and seasonal 

fishing to specialized production (Jónsson and Þorsteinsson, 1991; Björnsson, 1998; Harrison and 

Snæsdóttir, 2012). The importance of trade goods also increased, marking a major shift in occupational 

roles and the subsistence economy, which were previously centered on food production (Jónsson, 1998).  

 

Reykjavík was an excellent location for fishing and gathering of marine resources, but the area was less 

suited for farming. Until the end of the 18th century, fishermen operated seasonally, and most were therefore 

also farmers. The Danish trade monopoly restricted socio-economic development and prevented the 

necessary technological advancements that later lead to the significant increase in fisheries and the fishing 

economy. In the last decades of the trade monopoly, the company Innréttingar was established by high-

status Icelanders, marking the beginning of urbanization in Reykjavík. The company developed specialist 

factories or workshops, thereby also forming the first real streets in the city, and focused on improving the 

fishing, manufacturing, and farming industries in Iceland. The trade monopoly was finally abolished in AD 

1787 (Karlsson, 2000; Óskarsson, 2002; Pálsdóttir, 2008; Harrison and Snæsdóttir, 2012). The 19th century 

saw the increased import of sugar, coffee, and tobacco as well as the replacement of whole rye and barley 

products with wheat flour, which is much lower in nutritional value. Grains and vegetables began to replace 

animal proteins and sugar consumption increased from AD 1870. Nonetheless, the increased availability of 

grain and its decreasing price led to population growth as the society became less dependent upon livestock 

supply. Despite the increased consumption of grain, nutrition seems to have improved dramatically towards 

the mid-19th century, except among the poor who suffered from malnutrition and disease (Jónsson, 1998). 

However, unlike during the late 18th to early 19th centuries in Britain, the Industrial Revolution did not begin 

in Reykjavík until the 20th century (Karlsson, 2000). None of the volcanic systems in the region of 

Reykjanes Peninsula (Viðey, Reykjavík or Bessastaðir) erupted during the times that the sites were 

occupied (17th to 19th centuries) (Figure 4.1) (Global Volcanism Program, 2013). However, the Laki 

eruption of AD 1783-1784 was devastating and caused a volcanic winter that led to famine and climatic 

changes, as well as mass mortality to the human (20-25%) and livestock (75%) populations (Jónsson, 1994; 

Thordarson et al., 1996; Thordarson and Larsen, 2007; Guðmundsson et al., 2008; Halldórsson, 2013).  

 

Reykholt (RKH). The Reykholt farm site, located in Borgafjörður in western Iceland, was occupied soon 

after the Settlement of Iceland, but a church is not mentioned in the historical records until AD 1185 (DI. 

I., 279-280; Sveinbjarnardóttir, 2012). Archaeological remains were found at Reykholt during construction 

work in 1930, followed by numerous research expeditions over the years (Sveinbjarnardóttir and Jónsson, 

1998). Since the cemetery is still in use, and the area was not under development, the archaeologists chose 
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to excavate as few graves as possible. Eighteen individuals were excavated from the site, ten of whom are 

adults and eight non-adults. The burials date to between the mid-16th and the late 19th centuries and include 

some high-status, known individuals (e.g., Rev. Þorleifur Bjarnason) (Sveinbjarnardóttir, 2016). 

Prestahnúkur (Langjökull system), the only volcano closeby, last erupted in 3550 BC and thus did not affect 

the people living at Reykholt (Global Volcanism Program, 2013). However, the Book of Settlements 

describes that the geothermal pool located at Reykholt was used by an individual that resided there and by 

the neighboring settlement farm since at least the 11th century (Íslenzk Fornrit I, 1968: 78, 192). 

 

Bessastaðir (BES). Bessastaðir in Álftanes, in the Reykjavík area, is the current presidential residence, but 

historical records suggest that the area has been used since about AD 1000. It became the residence of the 

Danish King’s highest-ranking officers as early as the 13th century. The Bessastaðir church and cemetery 

are still in use today. In 1987, a total of 18 individuals dating between the 18th and 19th centuries were 

excavated from the cemetery due to road development. The burials likely represent a mixture of the local 

populace and high-status individuals associated with the governor’s household (Amarosi et al., 1992; 

Gestsdóttir 2004; personal correspondence: Guðmundur Ólafsson, Archaeologist, 2019).  

 

Viðey (VEY). On the island of Viðey, located less than 1 km off the coast of Reykjavík in southern Iceland, 

36 out of a total of 91 burials were excavated between 1987-1988 (Hallgrímsdóttir, 1989, 1993). Since 

before the monastic period a church and cemetery were located there. Although an Augustinian monastery 

operated there from AD 1226-1539, the excavated burials rather date to the 18th and 19th centuries as they 

are associated with the church constructed in AD 1774 (Kristjánsdóttir, 1995a, 1995b, 1996). 

Hallgrímsdóttir, 1989, 1991, 1993; Gestsdóttir, 2012). After, a farm and leprosy hospital were established. 

During the time that Skúli Magnússon, an 18th century representative of the Danish King in Iceland, lived 

on Viðey, the island hosted various establishments (e.g., a printing office). Analyses of faunal and pollen 

remains indicate that the individuals were of a high social status (Amarosi, 1996; Riddell et al., 2018). The 

island of Viðey itself has no volcanic or geothermal activity, but the area is subject to the previously 

described Reykjanes peninsula volcanic systems. 

 

Reykjavík (RVK). In Reykjavík, the first church charter dates to AD 1397, however an earlier church is 

mentioned by the bishop Páll Jónsson from Skálholt in AD 1200. The cemetery in Reykjavík was used until 

1838 when it was replaced by the nearby, modern cemetery known as Hólavallagarður (Óla, 1963; 

Gestsdóttir, 2009). The site was first excavated in 1940 and again in 1967 (Gestsdóttir, 2012). The skeletal 

assemblage contains numerous disarticulated remains in addition to 17 articulated individuals (Gestsdóttir, 

2009). Although another 38 individuals were excavated from the site in 2016 (Zoëga, 2018), they were not 

available for research until recently and are therefore not included in this study. The individuals included 

in the Reykjavík skeletal assemblage likely represented members of the general public and have been dated 

to the 18th and 19th centuries based upon artefact identifications (e.g., buttons) (Gestsdóttir, 2012). No 

volcanic systems are found in the greater Reykjavík area, but the area is subject to the previously described 

Reykjanes peninsula volcanic systems. 

 

4.2 Methods: skeletal analysis 

 

4.2.1 Anthropological descriptions and osteological analyses 
 

The osteological analysis was conducted on a total of 186 adult skeletal individuals from the previously 

described archaeological sites, dating between the 10th-19th centuries (see Figure 4.1, Table 4.1, and Section 

4.1). Though six non-adults were included in the elemental bone analyses, they were not included in the 

osteological results. 
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Table 4.1 Table indicating the numbers of individuals analysed osteologically from each site 

 

 
 

The aim of the osteological analysis was predominately to investigate overall health and the possible ante-

mortem exposure to fluoride, which is known to cause characteristic, but diffuse skeletal changes. While 

the other elements measured in bone in this study, including lead (Pb), cadmium (Cd), arsenic (As) and 

mercury (Hg), all interact with the skeleton, and none of them regularly cause bone changes that can be 

directly correlated with toxic exposure. Standard anthropological methods as outlined by Buikstra and 

Ubelaker (1994) and Brickley and McKinley (2004) were used to estimate age, sex, stature, and 

pathological conditions. Due to the multitude of skeletal markers necessary for an accurate investigation 

into skeletal fluorosis and other conditions relevant to this research, only adult individuals with more than 

50% completeness and good preservation (grade 0-1; see Brickley and McKinley, 2004, Chapter 5, Section 

5.3) were analysed from the seven sites used in the present study. Sex determination was performed using 

metrical estimations, cranial morphology and os coxae morphology (Buikstra and Ubelaker, 1994; Brickley 

and McKinley, 2004, Chapter 8) and distal humerus morphology (Rogers et al., 1999; Falys et al., 2005; 

Vance et al., 2011). Age was estimated according to phase changes on the morphology of the auricular 

surface (Lovejoy et al., 1985) and the pubic symphysis (Brooks and Suchey, 1990), epiphyseal fusion 

(Buikstra and Ubelaker, 1994; Scheuer and Black, 2000) and dental eruption and development (AlQahtani, 

2010). Secondary methods used to estimate age include degree of dental attrition (Brothwell, 1981), cranial 

suture closure (İşcan et al., 1984, 1985; Meindl and Lovejoy, 1985) and acetabular degeneration (Calce, 

2012). Age categories were limited to younger adult (YA; 17-36 years) and older adult (OA; 36+ years) 

because dental attrition-based age estimation methods appear to overestimate the age of skeletal individuals 

from Iceland. These overestimations are caused by the high dental wear rate and acid erosion occurring 

from the consumption of certain acidic dietary staples (see Lanigan and Bartlett, 2013; Richter and Eliasson, 

2017). Differential diagnoses for pathological conditions were considered according to the descriptions in 

reference material by Ortner (2003), Roberts and Manchester (2010) and Aufderheide and Rodriguez-

Martin (2011) in addition to recent journal articles (see methods of Articles I, II, III and supplementary 

information of Article III). Osteological data was first documented on skeletal recording sheets prior to 

registration in a bespoke electronic database (Kupa, National Museum of Iceland). Skeletal conditions were 

presented as crude prevalence rates (number of individuals with a condition/number of observable 

individuals) and dental conditions were presented as true prevalence rates (number of teeth or alveolar 

positions with conditions/number of observable teeth or alveolar positions). T-tests were performed using 

Excel and chi-squared tests were conducted using PAST (PAleontological STatistics) software, with p-

values of ≤0.05 being considered statistically significant. 

 

Period Site n Male Female YA OA

10
th 

- 12
th

 centuries Skeljastaðir 50 24 26 20 30

Total 10
th 

- 12
th

 centuries 50 24 26 20 30

Haffjarðarey 16 7 9 6 10

Skriðuklaustur 66 24 42 45 21

Total 13
th 

- 16
th

 centuries 82 31 51 51 31

Reykjavík 13 7 6 6 7

Viðey 21 12 9 11 10

Bessastaðir 10 5 5 4 6

Reykholt 10 7 3 6 4

Total 17
th 

- 19
th

 centuries 54 31 23 27 27

Sum Total 10
th 

- 19
th

 centuries 186 86 100 98 88

Osteological analysis

17
th 

- 19
th

 centuries

13
th

 - 16
th

 centuries
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4.2.2 Diagnosing heavy metal toxicity (Hg, Pb, Cd, As) 
 

The identification of heavy metal toxicity from skeletal remains is highly dependent upon measurements 

conducted on skeletal and dental tissues. Bone changes associated with heavy metal toxicity are not 

pathognomonic and predominately appear as osteopenia of trabecular bone and increased fracture risk, with 

only a few exceptions (see Table 4.2; Rodríguez and Mandalunis, 2018). For example, cadmium can cause 

yellow staining on dental enamel, while mercury can cause grey staining in addition to enamel mottling and 

malformation if exposure occurs during childhood (Mortazavi et al., 2014). However, these bone or dental 

changes cannot be systematically evaluated as evidence of toxic exposure and may only be described as 

potentially correlated if bone element concentrations exceed normal background levels. 

 

Mercury exposure does not normally cause diagnostically useful skeletal changes in adults (Tucker, 2007; 

Rasmussen et al., 2013; Ávila et al., 2014). However, in children, treatment with mercury can cause enamel 

abnormalities, which are different from those caused by congenital syphilis (Ioannou et al., 2016). While 

dental changes are known to occur within a wide percentage (ca. 10%-65%) of individuals affected by 

congenital syphilis (Ioannou et al., 2016), the percentage of dental changes resulting from mercury exposure 

in children appears to be entirely unknown. Mercury alters calcium homeostasis, which can result in 

hypercalcemia, and directly alters the function of bone cells (Suzuki et al., 2004). Therefore, mercury 

exposure can only be macroscopically assessed to some degree in non-adult skeletal remains, while adult 

skeletal remains must be sampled for elemental analysis because of the lack of bone changes diagnostic or 

indicative of mercury toxicity. Some studies draw correlations between mercury exposure and osteopenia 

and osteoporosis, but exposure to other toxic elements (e.g., Pb, Cd, F, As) may also be indicated. These 

conditions can also result from numerous other etiologies and are therefore not useful for estimating 

exposure to toxic elements. Some of the skeletal changes associated with fluorosis can also result from 

heavy metal poisoning (see Tables 4.2 and 4.3; Whyte et al., 2008). For example, cadmium toxicity can 

result in osteomalacia, osteoporosis and increased fracture rate (Lanocha-Arendarczyk et al., 2015a), while 

lead can increase the severity of fluorosis (Leite et al., 2011). Common volcanic pollutants that can result 

in human toxicity were therefore analysed in this research.  

Table 4.2 Table showing the primary in vivo effects of metals on bone analysed in this study on bone, 

adapted from Rodríguez and Mandalunis (2018) 

 

 

4.2.3 Diagnosing fluoride (F) toxicity and skeletal fluorosis 
 

Due to the cumulative and progressive nature of skeletal fluorosis, a large range of skeletal changes must 

be considered in combination with measured fluoride concentrations in bone (see Table 4.5; Littleton, 1999; 

Petrone et al., 2013; Nelson et al., 2016). Digital radiography was used to distinguish fluorosis from other 

conditions causing similar bone changes (e.g., Paget’s disease). Light microscopy was used to analyse 

enamel defects (e.g., mottling, hypomineralisation, chipping) as well as enhance the observation of skeletal 

changes when necessary. Indicators of dental and skeletal fluorosis were recorded following clinical and 

palaeopathological descriptions (e.g., Dean, 1936; Littleton and Frohlich, 1993; Littleton, 1999; Hillson, 

2008; Petrone et al., 2013, 2016; Nelson et al., 2016). Each bone was assessed for changes potentially 

related to skeletal fluorosis and scored according to presence or absence, ossification of soft tissues (e.g. 

glands, ligamentum flavum, atlanto-occipital membrane) (Steinbock, 1989; Binder et al., 2016; Geber and 

In vivo  effects of metal on bone Stimulation (increase) Inhibition (decrease) Alteration (either)

Bone Formation Arsenic (As), Lead (Pb) Cadmium (Cd) -

Osteoblast Differentiation - Cadmium (Cd) -

Bone Resorption Cadmium (Cd), Lead (Pb) - Arsenic (As)

Osteoclast Differetiation - Arsenic (As) -

Mineralisation - Cadmium (Cd) Lead (Pb)

Endochondral Ossification - Arsenic (As), Lead (Pb) -
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Hammer, 2018), calcification of soft tissue attachment sites (Mariotti et al., 2007; Petrone et al., 2013), 

ankyloses (Rogers et al., 1985; Petrone et al., 2013; Ventades et al., 2018), vitamin D deficiency (Brickley 

et al., 2005, 2010; Ives and Brickley 2014) and enamel defects (Dean, 1936; Hillson, 2008). Detailed 

descriptions of the methodologies used in this study to assess skeletal fluorosis are included in the 

Supplementary materials of Article III. 

Table 4.3 Skeletal changes associated with fluorosis investigated in this study. Additional skeletal changes 

and differential diagnoses can be seen in Table 4.4 

 

 
 

The bone and dental changes observed in sheep (gaddur) following the Hekla eruption of 1970 appear to 

have inspired the diagnosis of skeletal fluorosis in an archaic human (Homo erectus) from present-day Java, 

Indonesia that was found in geological strata composed primarily of volcanic ash. The research suggested 

that the individual acquired skeletal fluorosis due to the consumption of plants or fruits that had been 

contaminated with volcanogenic fluoride. The diagnosis was based upon an analogous soft tissue 

ossification noted in the archaic human and an autopsy patient with skeletal fluorosis who died of hepatic 

cirrhosis from the daily consumption of fluoridated table wine (Soriano, 1970). Since then, this bone 

formation has been re-diagnosed multiple times as evidence of anything from an injury or myositis 

ossificans to an infection (Ruff et al., 2015). This case illustrates some of the complications associated with 

the retrospective diagnosis of skeletal lesions, perhaps fluorosis especially, as bone displays limited 

variation in reactive changes to a wide range of substantially different pathological conditions. Some other 

limitations in retrospective diagnosis include the “Osteological Paradox” (see Wood et al., 1992), 

inadequate translations of historical texts, the presence of multiple or concurrent conditions, the 

disappearance of some disease and the emergence of others (Mitchell, 2011).  

 

Skeletal fluorosis is an important differential diagnosis for Paget’s disease of bone (see section 2.2.4), of 

which one case is included in this study. Some modern literary analyses have attempted to identify what 

condition may have caused the reportedly striking appearance of the poet-Viking Egill Skallagrimsson of 

Egil’s saga. Egill has been described as ugly, with misshapen bones, and as having the characteristic Pagetic 

whitening of the cranium with a soft, pumice-like outer table when he was reportedly struck with an axe. 

Some scholars suggest that the description of Egil’s condition may be attributable to Paget’s disease, 

thereby retrospectively diagnosing him with this condition (Byock, 1993). However, the skeletal changes 

could also be attributable to skeletal fluorosis (Weinstein, 2005) as well as other conditions (e.g., thyroid 

disorders, osteopetrosis, myositis ossifcans) and – as previously discussed – retrospective diagnosis based 

upon historical or literary descriptions is problematic and often sensationalized (see Mitchell, 2011). 

 

Fluorosis can cause different forms of osteoarthritis including seronegative and inflammatory arthritis, for 

example (Shukla, 2016). Its symptoms and bone changes often resemble osteoarthritis, particularly in early 

stages. Partly due to this resemblance, it is often misdiagnosed (Connett, 2012; Namkaew and 

Wiwatanadate, 2012; Petrone et al., 2013). Similarly, osteoarthritis itself can actually be induced by chronic 

fluorosis. Osteoarthritis occurs prior to detectable osteosclerosis of the spine, thereby rendering early 

Skeletal change Description

Osteomalacia and residual rickets Morphological deformities, fractures, others 

Ossification of ligamentum flavum Cranial or caudal ossifications on vertebral arch attachments

Atlanto-occipital membrane Increased rugosity or mineralisation

Entheseal & interosseous calcification Increased rugosity or mineralisation

Ankyloses Joints or bones otherwise fused to one another

Fractures Healed or unhealed perimortem or antemortem fractures

Enamel defects Linear enamel hypoplasia; hypomineralisation (opacities); mottling; chipping

Calculus Presence of mineralised plaque formation on dentition 

Caries Carious lesions on any aspect of tooth roots or crowns

Other ossifications Ossification or calcification of glands (e.g. thyroid), cartilage or organs
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diagnostic differentiation difficult when based upon skeletal changes alone. For example, in a study 

conducted in China it was demonstrated that osteoarthritis and fracture risk was significantly higher in one 

known fluorosis region than in its control group or even in the rest of the country (Liang et al., 1997; EFSA, 

2010). Another study conducted on individuals from an area of endemic fluorosis in Turkey found that 

66.1% of individuals with fluorosis experienced symptoms of knee pain primarily due to osteophyte 

formation. Despite a small sample size (n=96: 56 patients and 40 age- and sex-matched controls), the study 

suggests that the severity of knee osteoarthritis increases with endemic fluorosis. It also found infrequent 

radiological evidence of the hallmark skeletal changes associated with fluorosis, such as osteosclerosis and 

soft tissue calcifications (Savas et al., 2001). These results indicate that regardless of toxicity, skeletal 

manifestations of fluorosis are differential, not always observable, and likely underrepresented 

diagnostically. Common differential diagnoses and skeletal changes associated with skeletal fluorosis are 

shown in Table 4.4.  

 

Table 4.4 Skeletal and dental changes associated with skeletal fluorosis. Compiled from the criteria 

described by Dean (1936), Shupe et al. (1963), Den Besten (1999a, 1999b), Littleton (1999), Pendrys et al. 

(1999), Savas et al. (2001), Brown et al. (2005), Ayoob and Gupta (2006), Yoshimura et al. (2006), Hillson 

(2008), Whyte et al. (2008), Alvarez et al. (2009), EFSA (2010), Blinkhorn and Mekertichian (2013), 

Petrone et al. (2013), Faccia et al. (2015), Nelson et al. (2016). Differential diagnoses as described by 

Littleton (1999), Yoshimura et al. (2006), Whyte et al. (2008), Faccia et al. (2015) and Nelson et al. (2016). 

Common causes of increased bone mass as described by Whyte et al. (2008) 

 

 

 

Diagenetic and taphonomic factors must always be considered when conducting elemental analysis on 

archaeological bones for the purpose of diagnosis because skeletal remains tend to accumulate certain 

elements from the burial environment, particularly in areas that are rich in organic matter and moisture 

(Krajcarz, 2017). Due to diagenetic processes, skeletal remains may exhibit elevated concentrations from 

Bone formation or changes Vertebral changes Dental changes

dense periosteal deposition widened vertebral appearance discoloration

extensive new bone production disc space narrowing enamel pitting

joint disease or ostoearthritis osteophytic vertebral fusion mottling

osteosclerosis ossification of spinal ligaments hypoplasia

periosteal hyperostosis thoracic kyphosis brown staining

hypertrophic bony exostoses degenerative joint disease white opacities

Ossification or calcification Microstructure Other

f. magnum ligaments thickened cranial diploe increased fracture rate

tendons osteopenia osteomalacia

ligaments osteoporosis diaphyseal widening

interosseous membranes osteophytosis genu varum

costo-vertebral & -sternal joints coarse trabecular pattern genu valgum

intercostal calcification intermittent growth lines flexion deformations 

Differential diagnoses and other common causes of increased bone mass

Differential diagnoses Common causes of increased bone mass

DISH Craniodyaphyseal dysplasia Lymphoma

Ankylosing spondylitis Craniometaphyseal dysplasia Hypervitaminosis A

Hematogenous osteomyelitis Endosteal hyperostosis Hypervitaminosis D

Hyper- or hypoparathyroidism Melorheostosis Renal osteodystrophy

Paget's disease Myelofibrosis Fibrogenesis imperfecta ossium

Myositis ossificans Sarcoidosis Skeletal metastases

Osteopetrosis Heavy metal toxicty Engelmann disease

Skeletal and dental changes associated with skeletal fluorosis
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elements in the soil rather than from antemortem bioaccumulation (Hedges, 2002; Nelson et al., 2016; 

Krajcarz, 2017). Fluoride has a natural affinity for water, thus environmental fluoride concentrations are 

usually elevated in regions with significant groundwater water movement and saturation (King et al., 2011). 

It is therefore important to measure the elemental concentrations of soil from the burial environment as well 

(Littleton, 1999; Petrone et al., 2013; Nelson et al., 2016). Unfortunately, soil concentrations may not 

always reflect the exact concentration of an element present at the temporal period under investigation due 

to its persistent exposure to rainwater and groundwater over the years (EFSA, 2010). Generally, the range 

for fluoride concentrations in soil is between 30 and 500 ppm (Edmunds and Smedley, 2005; Ozvath, 2008). 

Volcanic eruptions can substantially elevate this concentration (Pyle and Mather, 2009), however, it 

normalizes over time as it rinses out of soil, ash, and flora. For example, volcanic ash from the Hekla 

eruption of 1970 presented with fluoride concentrations up to 2000 ppm and some vegetation measured up 

to 4000 ppm (Thorarinsson and Sigvaldason, 1972). Such high values only occur due to extreme conditions 

and are almost always attributable to volcanic activity (D’Alessandro, 2006). Human bones generally 

exhibit fluoride concentrations ranging from 300-7000 ppm according to overall lifetime exposure. 

Individuals exposed to large amounts of fluoride during life tend to exhibit bone fluoride concentrations 

that are 2 to 3 times higher than normal (Aras and Ataman, 2006). 

 

4.3 Methods: elemental analyses of cortical bone samples 
 

Elemental analyses (ICP-MS and ISE) were used to investigate the concentrations of mercury, lead, 

cadmium, arsenic and fluorine in bone samples. Bone samples (n=50) were selected from Skeljastaðir (10th-

12th centuries) and Skriðuklaustur (15th-16th centuries). Samples were not selected from the 17th-19th 

centuries sites due to funding limitations as well as difficulties with controlling industry-related variables 

that notably increased during this period. For example, mercury was used in the production of hats and 

other textiles, tobacco use increased thereby increasing cadmium exposure and lead or lead-glazed goods 

became widely available. Also, a pilot study examining fluoride exposure in 17th-19th centuries skeletal 

remains was conducted by Gestsdóttir et al. (2006), thereby providing some comparative material.  

 

Mercury concentations in cortical bone were considered elevated if they exceeded 0.3 ppm (see section 

2.3.1). While osteofluorosis may occur at relatively low concentrations in bone, this research defines 

concentrations greater than 3500 ppm (pre-clinical phase) in cortical bone as the cutoff for elevated fluoride 

concentrations that might indicate skeletal fluorosis (see section 2.3.2; see Franke et al., 1975; Smith and 

Hodge, 1979; USDHHS, 1991). Lead concentrations in bone were considered elevated if they exceed 7 

ppm even though trabecular bone was not used in this study (see section 2.3.3). Cadmium concentrations 

in bone were only considered elevated if they exceeded 1 ppm in this study (see section 2.3.4). Lastly, 

arsenic concentrations below 1 ppm are considered normal in this study (see section 2.3.5).  
 

4.3.1 Inductively coupled plasma mass spectrometry (ICP-MS) analysis 

Inductively coupled plasma mass spectrometry was used to assess elemental concentrations, including 

mercury, lead, cadmium and arsenic, in bone samples. A total of 50 rib samples were selected according to 

preservation, pathology, sex, age, and completeness (>50%) following the methods described above 

(section 4.2.1). Cortical bone samples were selected primarily from non-pathologically altered ribs. In a 

few cases, the samples were selected from long or cranial bones due to the absence of suitable rib samples. 

Ribs were selected for conservation and ethical reasons, as they are often fragmentary, do not contain much 

trabecular bone – which was discarded in this study – and could mostly be selected without further 

destruction. Thirty-six samples in total were selected from individuals buried in the cemetery at 

Skriðuklaustur. Five of these samples were selected from individuals with no bone changes related to 

infectious disease. From the Skeljastaðir cemetery, 14 rib samples were selected, but only six of them 

displayed skeletal markers suggestive of infectious disease.  
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The method of sample preparation was adapted from Skytte and Rasmussen (2013). The human bone 

samples were cut from complete, well-preserved ribs. They were photographed, cleaned, and then placed 

in sterile, labeled containers. A dental bur was used to abrade the cortical surfaces and then the samples 

were cleaned with a synthetic brush and ultrapure water. The trabecular bone was removed mechanically 

using a scalpel. The samples of cortical bone were each pulverized with a basic analytical mill. Only cortical 

bone from the rib samples was used because it is much less susceptible to post-mortem contamination from 

the burial environment than trabecular bone (see Rasmussen et al., 2015). Rib samples provide average 

values that are skewed towards the end of an individual’s life because the bone turnover rate is faster for 

ribs than most other bones (Fahy et al., 2017). High metal concentrations in rib samples can indicate a 

period of exposure within a few years prior to death. Previous research by Rasmussen et al. (2013b), found 

that intra-skeletal differences in cortical bone metal concentrations are marginal, while significant 

differences were noted in trabecular bone. The study also showed that concentrations are higher in 

trabecular bone found in the thoracic cavity, probably because of close proximity to the organs (i.e. kidneys, 

lungs, liver) that absorb and retain the majority of ingested or inhaled heavy metals found in the body.  

Elemental concentrations in the bone and soil samples were determined by ICP-MS (inductively coupled 

plasma mass spectrometry) after mineralisation with closed vessel acid digestion. Portions (up to 200 mg 

weighed to 0.1 mg) of pulverised samples together with 3 ml HNO3 (nitric acid) were transferred to 50 ml 

digestion vessels. They were then digested in a Milestone Ultrawave Acid Digestion System (Milestone 

Inc.), according to method SV-25-02-SN in the Matís Quality Manual. The digested sample solutions were 

quantitatively transferred to 50 ml polypropylene tubes and diluted to 30 ml with Milli-Q water. The 

mercury concentrations in these digests were determined by ICP-MS (Agilent 7500ce, Waldbronn, 

Germany). 115Indium was used as an internal standard. A detailed description of the analyses of inorganic 

contaminants is presented in method SV-22-02-SN-1 in Matís Quality manual. Certified reference 

materials are routinely treated and analysed in the same manner as the samples to assure the quality of metal 

analysis. All samples, standard and wash solutions contain 200 ppb Au, which reduces the memory effect 

of Hg (see Thermo Electron Corp., 2003). All samples were run in triplicates and all blanks were carefully 

monitored. 

To control for diagenetic factors and evaluate environmental baselines for mercury, lead, cadmium and 

arsenic, animal bones and soil samples were also analysed. The samples were primarily selected from ribs 

and from long bone fragments when ribs were not available. Animal bones (n=23) from Skriðuklaustur, 

representing dog and fox (Canidae sp.), cattle (Bos taurus), fish, seals (Phocidae sp.), sheep (Ovis aries) 

or goat (Capra hircus), horses (Equus sp.), and swan (Cygnus sp.) were measured. Soil samples (n=14) 

from outside the site and from several locations around it were also measured. Soil samples (n=9) from 

within the cemetery at Skeljastaðir were analysed, but no animal bones were preserved or available for 

study. 

 

4.3.2 Ion-selective electrode (ISE) analysis 
 

Ion-selective electrode (ISE) was used to assess fluorine bone concentrations. A total of 50 well-preserved 

bone elements were sampled for fluoride analysis: 36 from Skriðuklaustur (n=295 individuals) and 14 from 

Skeljastaðir (n=56 individuals). All the samples were taken from ribs except six, two of which were from 

long bones, one from a temporal bone, one from an os coxa, and two from parietal bones. First, the samples 

were cleaned with a synthetic brush and distilled water. The trabecular bone was mechanically removed 

with a scalpel, and to remove surface contamination the cortical bone surfaces were abraded using a dental 

bur. Trabecular bone was discarded as it is far more susceptible to post-mortem diagenesis than cortical 

bone (see Rasmussen et al., 2015). Preservation, age, sex, and pathological markers informed sample 

selection. Soil samples were collected from the Skeljastaðir (n=2) and Skriðuklaustur (n=2) cemeteries.  
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Fifty archaeological human bone samples and four soil samples were analysed for cumulative bone fluoride 

concentrations using ion-selective electrode (ISE). Prior to analysis, NaOh (9 grams) was melted at 500ºC 

in a nickel-crucible and then cooled down to room temperature. Portions (1 gram) of ground sample 

material, blanks (same procedure without sample) and control samples (containing 10 mg CaF2 instead of 

a bone sample) were digested at 500ºC for 60 minutes. After cooling, they were dissolved in 100 ml of 

water. Aliquots of the samples were neutralized and TISAB-solution (NaCl, Titriplex and acetic acid in 

water, pH 5.5) was added. The samples, blanks and controls were then measured with ISE for fluoride. The 

ISE device is calibrated daily to ensure the accuracy of the instrument. 

 

4.4 Methods: isotope analyses of bone collagen and dental enamel 
 

For the purpose of this research, bone samples from 50 humans (36 from Skriðuklaustur and 14 from 

Skeljastaðir) and 25 animals (from Skriðuklaustur) underwent isotope analysis for carbon (δ13C), nitrogen 

(δ15N) and sulphur (δ34S). The sample selection was informed by the overall skeletal completeness, state of 

preservation, sex, age and pathologies. The samples were taken from skeletal elements that did not have 

pathological bone changes. The human bone samples were primarily selected from ribs, which provide a 

dietary record of the last few years of life. A previous study performed dietary isotope analysis of 13 

individuals from Skeljastaðir (Sveinbjörnsdóttir et al., 2010). Three of these 13 individuals were re-

analysed here to control for inter-laboratory differences. No animal bones were available for sampling from 

Skeljastaðir. From Skriðuklaustur, bone samples representing several animal species were selected, 

including Cygnus cygnus (swan), Capra hircus sp. or Ovis aries sp. (sheep or goat), Bos taurus sp. (cattle), 

Equus sp. (horse), Phocidae sp. (seal), Canidae sp. (dog or fox), and marine fish, considering their 

differences in dietary resources and animal-human interactions. A modified Long method was used for 

bone collagen extraction (Longin, 1971; O’Connell & Hedges, 1999) and the δ13C and δ15N stable isotope 

analyses were conducted using a Costech Elemental Analyser (ECS 4010) connected to a Thermo Delta V 

Advantage isotope ratio mass spectrometer. Finally, δ34S stable isotope analysis was performed with a 

Costech Elemental Analyser (ECS 4010) attached to a Thermo Scientific Delta V Plus isotope ratio mass 

spectrometer (see Article II and Supplementary Materials, Article II). 

Dental enamel samples from 31 of the same individuals sampled from Skriðuklaustur also underwent 

isotope analysis for oxygen (δ18O), strontium (87Sr/86Sr), and trace elements, including lead (Pb), zinc (Zn), 

strontium (Sr), and barium (Ba). The enamel samples were primarily selected from premolars, the enamel 

of which mineralises within about three years between the ages of 2.5 to 8.5 years (AlQahtani et al. 2010). 

Only the 3rd molars were available for sampling in three individuals, the enamel of which mineralises within 

about four years between 7.5 to 16.6 years of age (AlQahtani et al., 2010). Dental analysis from Skeljastaðir 

was not performed here because results from a previous study by Price and Gestsdóttir (2006) were 

available.  

All isotope and trace element analyses were performed in the Department of Earth Sciences, Durham 

University. Oxygen (δ18O) and Carbon (δ13C) isotope ratios were measured in the carbonate (CO3) 

component of tooth enamel by Thermo Fisher Scientific MAT 253 gas source mass spectrometer for isotope 

analysis. The 87Sr/86Sr ratios were acquired using a Neptune Multi-Collector Inductively Coupled Plasma 

Mass Spectrometer (MC-ICP-MS). Finally, enamel samples were analysed for Sr, Ba, Zn and Pb by ICP-

MS (Thermo Scientific XSeries2) and the final enamel concentrations were then determined according to 

sample weights and total dilution volumes. Detailed analytical methods are provided below. 

4.4.1 Bone collagen carbon and nitrogen isotope analysis  
 

Bone collagen was extracted using the modified Longin method (see Brown et al., 1988). Total organic 

carbon, total nitrogen content and stable isotope analysis of the samples were performed using a Costech 



81 

 

Elemental Analyser (ECS 4010) connected to a Thermo Finnigan Delta V Advantage isotope ratio mass 

spectrometer. Carbon isotope ratios were corrected for 17O contribution and reported in standard delta (δ) 

notation in per mil (‰) relative to Vienna Pee Dee Belemnite (VPDB). Isotopic accuracy was monitored 

through routine analyses of in-house standards, which were stringently calibrated against international 

standards (e.g., USGS 40, USGS 24, IAEA 600, IAEA N1, IAEA N2): this provided a linear range in δ13C 

between –46 ‰ and +3 ‰ and in δ15N between –4.5 ‰ and +20.4 ‰. Analytical uncertainty in carbon and 

nitrogen isotope analysis was typically ±0.1 ‰ for replicate analyses of the international standards and 

typically <0.2 ‰ on replicate sample analysis. Total organic carbon and nitrogen data was obtained as part 

of the isotopic analysis using an internal standard (Glutamic Acid, 40.82 % C, 9.52 % N). 

4.4.2 Bone collagen sulphur isotope analysis  
 

Sulphur isotopic analysis of collagen samples were performed using a Costech Elemental Analyser (ECS 

4010) connected to a Thermo Scientific Delta V Plus isotope ratio mass spectrometer. Collagen was 

weighed out into 10x10mm tin capsules (between 4 and 6 mg) and approximately the same weight of 

vanadium pentoxide (V2O5) was added to aid in the combustion process to release sulphur. Isotopic 

accuracy was monitored using the following international sulphur standards: IAEA-S-2, IAEA-S-3, IAEA-

S-4, IAEA-SO-5, and NBS 127. Analytical uncertainty in sulphur isotope analysis was typically <0.2 ‰ 

for replicate analyses of the international standards. Total sulphur was obtained as part of the isotopic 

analysis using the international standards listed above. 

4.4.3 Enamel carbon and oxygen isotope analysis 
 

Carbon (δ13C) and oxygen (δ18O) isotope ratios were measured in the carbonate (CO3) component of tooth 

enamel. For each tooth, approximately 2mg of powdered sample was weighed and transferred into an 

individual exetainer vial. Vials were flushed with helium (grade 4.5) then CO2 was liberated by reaction 

with 99% ortho-phosphoric acid for 2 hours at 70oC. The resultant gas mix of helium and CO2 was 

transferred through a Thermo Fisher Scientific Gasbench II in which a gas chromatographic column 

separated the CO2 from the gas mixture then passed into a Thermo Fisher Scientific MAT 253 gas source 

mass spectrometer for isotopic analysis. 

The following international reference materials were analysed with each batch of samples: NBS 18 (calcite, 

n=3), IAEA-CO-1 (marble, n=3) and LSVEC (Lithium Carbonate, n=3). In addition, two internal standards: 

DCS01 (calcium carbonate, n=6) and Dobbins (horse tooth, n=2) were also analysed. Repeated analysis of 

both international and internal standards yielded an analytical precision of 0.20‰ (2 s.d.) for δ13C and 

0.24‰ (2 s.d.) for δ18O. Duplicate analyses of the same sample reproduced within or better than 0.06‰ and 

corrections were made using IAEA-CO-1 and LSVEC, with all δ13C and δ18O values reported relative to 

the Vienna PeeDee Belemnite (VPDB) standard. δ18O was additionally reported relative to the Vienna 

Standard Mean Ocean Water (VSMOW) standard for comparison purposes. 

4.4.4 Enamel strontium isotope analysis 
 

The enamel samples were collected following the procedure given in Montgomery (2002). For each molar, 

a single chip of enamel weighing approximately 20mg was collected using a diamond-tipped rotary dental 

saw. All surfaces of the enamel samples were cleaned and polished with a diamond-tipped dental burr to a 

depth of >100 μm to remove traces of contaminants such as soil and dentine. Cleaned enamel samples were 

analysed in the Arthur Holmes Isotope Geology laboratory, Department of Earth Sciences, Durham 

University using column chemistry methods outlined in Font et al. (2008). Samples were first dissolved in 

3M HNO3 and heated overnight on a hot plate. The samples were loaded onto cleansed and preconditioned 

columns containing 60μl of strontium-specific resin. 2x250 μl 3M HNO3 was passed through to elute the 

waste, then 2x200 μl MQ H2O was passed through to elute the strontium, which was collected. Seventeen 

μl of ca. 15.5M HNO3 was added to the Sr fraction to make the solution 3% HNO3. Following preparation, 
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the size of the 86Sr beam was tested for each sample to assess the strontium concentrations. From this 

analysis, a dilution factor could be calculated for each sample and each was diluted to yield a beam size of 

approximately 20V 88Sr, where possible, to match the beam size of the isotope reference material, NBS987. 

The strontium samples were analysed by Multi-Collector Inductively Coupled Plasma Mass Spectrometry 

(MC-ICP-MS) using a Neptune MC-ICP-MS. Samples were introduced into this using an ESI PFA50 

nebuliser and a glass expansion cinnabar micro-cyclonic spray chamber. Instrumental mass bias was 

corrected for using an 88Sr/86Sr ratio of 8.3752 (the reciprocal of the accepted 86Sr/88Sr ratio of 0.1194) and 

an exponential mass fractionation law. Corrections were also applied for Kr (krypton) interferences on 84Sr 

and 86Sr, derived from Ar (argon) gas supply, and the Rb (rubidium) interference on 87Sr, derived from the 

sample, by monitoring masses 82Kr, 83Kr and 85Rb respectively. The average 83Kr intensity throughout the 

analytical session was ca. 0.22mV, which is insignificant considering the Sr beam size (88Sr between 4.6 

and 27V, average of 14.8V). The average 85Rb intensity was slightly greater at ca. 0.61mV (range: 0.20-1.1 

mV) but again, given the range in Sr beam size, the Rb correction on the 87Sr/86Sr, was very small 

(<0.00001) and is accurate at that magnitude. The samples were analysed in two analytical sessions during 

which the average 87Sr/86Sr value and reproducibility for the international isotope reference material 

NBS987 was 0.710258±0.000013 (2SD; n=12) and 0.710266±0.000009 (2SD; n=6). Data are renormalized 

to an accepted value for NBS 987 of 0.71024. Total procedural Sr blanks run during the period of study 

were <100 pg, which is insignificant relative to the average sample size of 143 ng (0.07% blank) and even 

the minimum sample size of 26ng (0.38% blank) and do not require application of a blank correction. 

4.4.5 Enamel trace element analysis (ICP-MS) 
 

In a 1.5ml plastic vial, the pre-weighed sample (5-10mg) had 1ml of 3N HNO3 added and was left overnight 

to dissolve. Subsequently, 0.5 ml was then transferred to a 15ml autosampler vial and diluted to 10ml. 

Samples were analysed by ICP-MS (Thermo Scientific XSeries2) previously optimised for low oxide and 

double charge interferences and calibrated for Sr, Ba, Zn and Pb. Calibration standards and blanks were 

analysed throughout the sample sequence to monitor and correct for any instrumental drift. Final enamel 

concentration was then determined based on sample weight and total dilution volume. Re-analysing the 

same sample from the 15 ml vial is reproducible ±2%.    
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5 Results and Discussion 

 

The results of all analyses, and the discussion of the results, are summarized below. Further detailed 

discussions about the bone mercury (Article I), isotope (Article II) and fluoride (Article III) findings are 

contained with the respective articles.  

 

5.1 Summary of Results 

 

5.1.1 Soil samples 
 

European soil background concentrations of arsenic are reported to 11.6 ppm (range 0.32-282 ppm), of 

mercury to 0.061 ppm (range 0.005-1.35 ppm), of cadmium to 0.284 ppm (range 0.145-14.1 ppm) and of 

lead to 32.6 ppm (range 5.32-970 ppm) (Salmien et al., 2001). Research conducted on modern samples 

from across Iceland showed average lead concentrations of 5.8 ppm in topsoil (4.7 pp in bedrock) and 

cadmium concentrations of 0.63 ppm (Panek and Kepinska, 2002). Generally, the background range of 

fluoride in soil worldwide is 30-500 ppm (Edmunds and Smedley, 2005; Ozsvath, 2008), however, it can 

temporarily increase after volcanic eruptions (Pyle and Mather, 2009). Topsoil leaching can result in 

inaccurate measurements or interpretation of historic fluoride concentrations in the environment, but soil 

concentrations eventually return to normal over time, as previously discussed at the end of section 4.2.3 

(Thorarinsson and Sigvaldason, 1972; EFSA, 2010).  

 

Elemental concentrations (Pb, Hg, As, Cd) were measured in 22 soil samples using ICP-MS and four 

samples were measured for fluoride. The results are presented in Table 5.1. The soil samples were measured 

for trace elements from the Skriðuklaustur and Skeljastaðir cemeteries. Lead concentrations in soil were 

low, ranging from 0.2 to 4.4 ppm for lead. Archaeological bone is prone to the diagenetic uptake of easily 

mobilised elements such as lead (see section 2.3.10; see Rasmussen et al., 2015). These concentrations 

suggest an absence of environmental lead pollution in the Icelandic environment, including the present day 

(see Panek and Kapinska, 2002), thereby reducing the likelihood of diagenetic enrichment. Mercury 

concentrations were also low, ranging from 0.06 to 0.10 ppm (all were ≤0.06 ppm except a single sample 

from just outside Skriðuklaustur that showed 0.10 ppm). The cadmium concentrations ranged from 0.03 to 

0.13 ppm (all were ≤0.03 ppm except a single sample from just outside Skriðuklaustur that showed 0.13 

ppm) for cadmium. The arsenic concentrations were lower than those found in most European nations, 

ranging from 0.237 to 1.913 ppm. However, due to the likelihood of diagenetic enrinchment of arsenic in 

bone, interpretations of such data should be considered irresolute. Lastly, fluoride concentrations in soil 

(n=4) were very low at both sites (<68 ppm), again indicating that diagenesis was not likely to have been 

at play. Overall, these results indicate that diagenesis was not a significant confounding variable on 

elemental data derived from human bone samples. 

 

All the soil samples showed negligible amounts of mercury and cadmium, with most of the concentrations 

being below the level of detection. In other words, none of the cadmium, mercury or lead concentrations in 

soil exceeded the normal background concentrations at either site. However, despite being within the 

normal range, it is worth noting that four out of 22 samples (all from Skriðuklaustur) exceeded arsenic 

concentrations of 0.50 ppm because concentrations above this figure increase risk of toxicity. Considering 

the lack of permanent sources of groundwater at the analysed sites and the overall results of the soil and 

non-adult (n=6, see section 5.1.3) bone samples analysed here, diagenesis does not appear to have played a 

discernible role in this research. However, it is not possible to entirely dismiss the potential for post-

depositional (diagenetic) uptake to have occurred. The additional elements (Sb, Zn, Sr, Ba) that were only 

measured in dental enamel were not analysed in soil samples because well-preserved enamel is highly 

resistant to diagenesis.  
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Table 5.1 Heavy metal concentrations (ppm in soil samples from Skriðuklaustur (SKR) and Skeljastaðir 

(ÞSK). All fluoride concentrations determined in soil (n=4) were below <68 ppm 

    

 
 

5.1.2 Animal bone samples 
 

All the animal bone samples were selected from Skriðuklaustur as no animal remains were available for 

sampling from Skeljastaðir. None of the animal bone samples (n=23) had elevated concentrations of 

cadmium (all <1 ppm), mercury (all <0.3 ppm) or lead (all <7 ppm), however, one cow had a notably 

elevated arsenic concentration of 3 ppm (Table 5.2). In the Nordic countries, during the Medieval Period, 

arsenic or other mineral salts (e.g., copper) were often mixed with antiparasitic botanicals and other 

substances to deworm livestock (Waller et al., 2001). It is therefore possible that the cow with elevated 

heavy metal concentrations could have been receiving antiparasitic or other treatment, although these 

elevations may have also occurred simply from consuming contaminated food or water, if diagenetic 

enrichment could be ruled out. In any case, the low concentrations of these heavy metals in animal bone 

(and the soil samples previously described) further indicate that the trace element concentrations determined 

in the human bone samples are biogenic rather than diagenetic. 

 

Table 5.2 Trace element (As, Pb, Cd, Hg) concentrations (ppm) determined in animal bone samples from 

Skriðuklaustur 

 

 

Sample As Cd Hg Pb Sample As Cd Hg Pb

SKR soil 1 1.913 0.130 0.059 4.368 ÞSK soil 1 0.304 <0.03 <0.06 0.176

SKR soil 2 0.439 <0.03 <0.06 1.297 ÞSK soil 2 0.311 <0.03 <0.06 0.254

SKR soil 3 0.475 <0.03 <0.06 1.111 ÞSK soil 3 0.337 <0.03 <0.06 0.673

SKR soil 4 0.401 <0.03 <0.06 0.409 ÞSK soil 4 0.334 <0.03 <0.06 0.540

SKR soil 5 0.447 <0.03 <0.06 0.812 ÞSK soil 5 0.348 <0.03 <0.06 0.239

SKR Soil 6 0.615 <0.03 0.097 2.254 ÞSK soil 6 0.355 <0.03 <0.06 0.199

SKR soil 7 0.364 <0.03 <0.06 0.584 ÞSK soil 7 0.342 <0.03 <0.06 0.234

SKR soil 8 0.508 <0.03 <0.06 1.373 ÞSK soil 8 0.313 <0.03 <0.06 0.200

SKR soil 9 0.411 <0.03 <0.06 0.344 ÞSK soil 9 0.237 <0.03 <0.06 0.452

SKR soil 10 0.416 <0.03 <0.06 0.375

SKR soil 11 0.545 <0.03 <0.06 1.689

SKR soil 12 0.274 <0.03 <0.06 0.218

SKR soil 13 0.311 <0.03 <0.06 0.203

Sample As Cd Hg Pb Sample As Cd Hg Pb

Seal 1 <0,04 <0,03 <0,03 0.122 Cow 1 <0,04 <0,03 <0,03 <0,06

Seal 2 <0,04 <0,03 <0,03 0.091 Cow 2 0.081 0.086 <0,03 0.936

Seal 3 0.173 0.031 0.03 2.200 Cow 3 <0,04 0.074 <0,03 <0,06

Seal 4 <0,04 <0,03 <0,03 0.145 Cow 4 <0,04 <0,03 <0,03 <0,06

Sheep 1 0.182 <0,03 <0,03 <0,06 Cow 5 0.083 0.067 <0,03 0.122

Sheep 2 <0,04 0.169 <0,03 <0,06 Cow 6 3.000 0.051 <0,03 0.065

Sheep 3 0.131 0.355 <0,03 0.182 Fish 1 0.181 0.184 <0,03 0.315

Sheep 4 0.207 0.221 0.037 0.132 Fish 2 0.201 0.217 <0,03 0.262

Sheep 5 <0,04 0.409 <0,03 0.095 Fish 3 0.184 0.249 <0,03 0.163

Swan 1 0.07 0.055 <0,03 0.763 Fish 4 0.078 0.062 <0,03 <0,06

Horse 1 <0,04 0.045 <0,03 <0,06 Dog 1 0.057 0.21 0.038 <0,06

Horse 2 0.22 0.076 0.059 0.07
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5.1.3 Human bone analyses 
 

The tables presented in this section (5.1.3) are discussed throughout Chapter 5. Cumulative bone element 

concentrations (Hg, Pb, Cd, As) were determined in the 50 human bone samples from Skriðuklaustur and 

Skeljastaðir as previously described. The results are presented in Table 5.3 and summary statistics in Tables 

5.4 and 5.5. The results of each of these elemental analyses are discussed in detail in this chapter. The 

fluoride bone concentration (n=50) results are presented in Supplementary Table I of Article III and 

summary statistics in Table 7 of Article III. Isotope and trace element analysis results – dental enamel 

(n=31) and bone collagen (n=50) – are presented in Table 5.6 below and the findings are discussed in detail 

throughout this chapter. The results of the osteological analyses (n=186) are presented in Tables 3-5 from 

Article III and Supplementary Table 1 from Article III and are also discussed in section 5.3.1.  

 

Table 5.3 Trace element (As, Pb, Cd, Hg) concentrations (ppm) determined in human bone samples from 

Skriðuklaustur (SKR) and Skeljastaðir (ÞSK) 

 

 

Sample Sex Age Bone As Cd Hg Pb Sample Sex Age Bone As Cd Hg Pb

SKR 4 M OA Rib 0.066 0.325 0.252 5.0 SKR 169 F OA Rib 0.208 0.592 0.112 9.5

SKR 10 F OA Rib 0.036 0.295 0.111 0.9 SKR 172 M OA Rib 0.278 1.948 0.397 22.2

SKR 14 NA NA Rib 0.069 0.716 0.494 3.6 SKR 174 M OA Femur 0.041 0.030 0.030 13.5

SKR 22 NA NA Rib 0.085 0.446 0.139 7.1 SKR 181 F OA Temporal 0.331 0.797 0.192 77.2

SKR 23 F YA Rib 0.003 0.188 0.069 7.7 SKR 189 F YA Rib 0.275 1.078 0.295 2.9

SKR 29 F YA Rib 0.284 1.004 0.092 11.9 SKR 195 F YA Rib 0.271 2.679 0.513 11.4

SKR 30 F OA Rib 0.045 5.293 1.854 1.2 SKR 201 F YA Rib 0.225 2.273 1.823 93.8

SKR 33 F OA Rib 0.112 0.927 0.278 1.7 SKR 221 NA NA Rib 0.129 0.438 0.062 1.2

SKR 46 NA NA Rib 0.062 0.612 0.251 9.4 SKR 236 F OA Rib 0.057 1.931 0.157 0.6

SKR 65 F YA Rib 0.782 1.330 0.476 37.3 SKR 241 F OA Rib 0.165 0.849 0.087 0.9

SKR 81 F YA Rib 0.269 1.464 0.066 1.7

SKR 91 M YA Rib 0.073 0.329 0.193 4.0 ÞSK 3 F OA Rib 0.057 0.326 0.572 0.5

SKR 100 M YA Rib 0.291 1.139 0.107 2.5 ÞSK 4 F YA Rib 0.115 3.654 10.134 2.4

SKR 115 M OA Rib 0.369 1.022 0.178 5.8 ÞSK 16 F OA Rib 0.054 0.361 0.496 1.3

SKR 122 F YA Parietal 0.151 0.729 0.195 9.6 ÞSK 17 F OA Rib 0.035 0.172 1.585 0.7

SKR 126 F OA Rib 0.169 0.548 0.107 0.7 ÞSK 29 M OA Rib 0.079 1.447 12.860 1.2

SKR 128 F OA Rib 0.058 1.055 0.163 60.7 ÞSK 32 M YA Rib 0.033 0.090 1.431 0.8

SKR 130 M OA Rib 0.037 1.737 0.598 4.3 ÞSK 34 M YA Rib 0.064 0.463 1.738 0.6

SKR 135 M YA Clavicle 0.340 0.610 0.121 5.3 ÞSK 37 M OA Rib 0.169 4.059 13.059 1.2

SKR 144 F OA Rib 0.947 1.834 0.283 1.9 ÞSK 41b M OA Rib 0.038 0.340 0.490 0.9

SKR 146 NA NA Rib 0.157 0.254 3.429 2.0 ÞSK 42 M OA Rib 0.074 0.165 0.523 1.6

SKR 150 M YA Rib 0.408 7.138 1.782 18.5 ÞSK 44 M OA Os coxa 0.172 0.485 11.327 7.0

SKR 152 M YA Rib 0.256 1.108 0.289 3.2 ÞSK 48 M OA Parietal 0.099 0.156 0.478 1.4

SKR 155 M OA Rib 0.127 0.482 0.435 5.4 ÞSK 51 F OA Rib 0.049 0.144 0.438 0.6

SKR 163 NA NA Rib 0.093 0.368 0.933 5.8 ÞSK 54 M YA Rib 0.087 0.444 3.340 0.6

SKR 167 M YA Rib 0.212 0.818 0.343 3.4

Key: SKR= Skriðuklaustur, ÞSK = Skeljastaðir; NA = Non-adult (<18), YA = Younger adult (18-35), O A = O lder 

adult (35+),  M = Male, F = Female
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Table 5.4 Average (mean) concentrations and standard deviations of cadmium (Cd), arsenic (As), lead (Pb) 

and mercury (Hg) in ppm among samples from Skriðuklaustur and Skeljastaðir 

 

 
 

Table 5.5 Table with p-values (t-test) detailing statistically significant differences between Skriðuklaustur 

and Skeljastaðir across sites, ages and sex categories 

 

 
 

Table 5.6 All isotope and trace element data from the Skriðuklaustur and Skeljastaðir samples. Samples 

labeled with italics indicate δ13C and δ15N results reported by Sveinbjörnsdóttir et al. (2010). All strontium 

concentrations from Skeljastaðir (ÞSK), conducted on 1st molars unless unavailable, indicate results 

reported by Gestsdóttir & Price (2003, 2006) and Price & Gestsdóttir (2006). Enamel samples from SKR 

30, 130, 144, 146 and 163 were unavailable or not preserved. δ34S is not reported for SKR 174 due to 

insufficient collagen for analysis 

n Cd SD As SD Pb SD Hg SD

SKR 36 1.233 1.391 0.208 0.196 12.6 21.4 0.470 0.696

ÞSK 14 0.879 1.307 0.080 0.045 1.5 1.7 4.176 5.136

SKR and ÞSK 50 1.134 1.364 0.172 0.177 9.5 18.8 1.507 3.189

SKR Male 12 1.390 1.898 0.208 0.198 7.8 6.6 0.394 0.465

SKR Female 18 1.381 1.184 0.244 0.248 18.4 29.0 0.382 0.545

ÞSK Male 9 0.850 1.269 0.091 0.050 1.7 2.0 5.027 5.631

ÞSK Female 5 0.932 1.525 0.062 0.031 1.1 0.8 2.645 4.213

All Males 21 1.159 1.643 0.158 0.121 5.2 5.9 2.380 4.281

All Females 23 1.284 1.242 0.204 0.231 14.7 26.5 0.874 2.090

SKR Non-Adults 6 0.472 0.167 0.099 0.037 4.9 3.1 0.885 1.285

SKR Younger Adults 14 1.563 1.741 0.274 0.179 15.2 24.5 0.455 0.589

SKR Older Adults 16 1.229 1.244 0.190 0.229 13.2 22.7 0.327 0.433

ÞSK Younger Adults 4 1.163 1.670 0.075 0.035 1.1 0.9 4.161 4.069

ÞSK Older Adults 10 0.765 1.220 0.083 0.050 1.6 1.9 4.183 5.708

All Younger Adults 18 1.474 1.685 0.230 0.179 12.1 22.2 1.278 2.388

All Older Adults 26 1.051 1.232 0.149 0.187 8.8 18.5 1.810 3.937

As Cd Pb Hg

SKR vs ÞSK 0.0207 0.4157 0.0597 0.0002

SKR Males vs Females 0.6539 0.9874 0.2222 0.9511

SKR Younger vs Older 0.2765 0.5456 0.8174 0.5008

SKR Adults vs Nonadults 0.1396 0.1448 0.3392 0.1105

ÞSK Males vs Females 0.2716 0.9159 0.5410 0.4275

ÞSK Younger vs Older 0.7844 0.7022 0.6086 0.9945

SKR Males vs ÞSK Males 0.0228 0.4697 0.0156 0.0100

SKR Females vs ÞSK Females 0.1226 0.4863 0.2029 0.0285

SKR Younger vs ÞSK Younger 0.0452 0.6880 0.2760 0.0027

SKR Older vs ÞSK Older 0.1585 0.3609 0.1235 0.0119
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Table 5.7 Means and ranges of isotope ratios determined in the human dental enamel samples from 

Skriðuklaustur. Samples SKR 100, 115 and 189 were run during the second analytical session which gave 

the average 87Sr/86Sr value and reproducibility for the international isotope reference material NBS987 as 

0.710266±0.000009 (2SD; n=6) while all others were run in the first analytical session which gave 

0.710258±0.000013 (2SD; n=12) 

 

 
 

Table 5.8 Medians, standard deviation, and ranges (highest and lowest values) of trace elements 

determined in the human dental enamel samples from Skriðuklaustur. Concentrations from the samples that 

were not detectable are not included. Lowest concentration of the range represents the sample with the 

lowest detectable concentration 

 

 
 

5.2 Health and cultural implications of mercury (Hg) in bone and dental enamel 

 

5.2.1 Mercury concentrations in bone 
 

Cumulative bone mercury concentrations were determined in 22 soil samples (Table 5.1), 23 faunal bones 

(Table 5.2) and the 50 human bone samples (Table 5.3). This section addresses Research Questions 1.2.3, 

1.2.4, 1.2.6. The human bone mercury concentrations, along with palaeopathological descriptions and 

differential diagnoses, are presented in Table 1 of Article I. Increased mercury concentrations (>0.3 ppm) 

were found in eleven (n=11) individuals from Skriðuklaustur. Among females (n=18), the mean 

concentration was 0.382 ppm, while it was it was 0.394 ppm among males (n=12). When one male outlier 

(SKR 174; the only sample with <0.03 ppm) is excluded, the mean for males (n=11) was 0.427 ppm. Even 

if access to medical care was different between social classes or biological sexes, the mercury 

concentrations reported in this study did not show a statistically significant difference. For older adults (>36 

years) (n=16) the mean was 0.327 ppm. Though younger adults (17-35 years) (n=14) had a higher mean of 

Samples n
87

Sr/
86

Sr ± 2SD δ18Ophosphate ‰ (VSMOW) δ18Odrinkingwater ‰  (VSMOW) δ13Ccarbonate ‰ (VPDB)

Male 11 0.70741 ± 0.00144 15.2 ± 0.7 -10.2 ± 1.1 -15.3 ± 0.6

Female 16 0.70797 ± 0.00099 15.2 ± 0.6 -10.3 ± 1.0 -15.2 ± 0.8

Non-Adult 4 0.70811 ± 0.00114 15.7 ± 0.1 -9.6 ± 0.2 -14.6 ± 1.0

All 31 0.70779 ± 0.00132 15.3 ± 0.6 -10.2 ± 1.0 -15.2 ± 0.8

Ranges (All) 31 0.70602 to 0.70887 13.8 to 16.1 -12.3 to -8.3 -16.6 to -12.9
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0.455 ppm, it was not statistically significant (see Tables 5.4 and 5.5 above and Figure 3 and 4 from Article 

I). Zuckerman (2016) found a similar trend, with older adults having lower concentrations than younger 

individuals. In this study, at least nine of the analysed individuals had bone markers associated with 

treponemal disease (e.g., venereal syphilis). The 11 individuals that had increased mercury concentrations 

all showed bone markers indicative of either hydatid, treponemal, or non-specific infectious disease. 

Therapy with mercurial medicines was normally initiated following the onset of skin lesions (Zuckerman, 

2017a), which usually appear in the first (primary) and secondary phases of venereal syphilis (Baughn and 

Musher, 2005; Nyatsanza and Tipple, 2016). A latent period sometimes follows and can potentially last for 

30+ years (Nyatsanza and Tipple, 2016). Thus, if older individuals were in the latent or tertiary stages of 

the disease, it is possible that they may have stopped taking mercurial medicine prior to death. Meanwhile, 

a young adult female (SKR 201) had the highest concentration (1.823 ppm) (excluding non-adults) and 

exhibited destructive bone activity that caused multiple perforations to the palate. It must be considered that 

mercury toxicity itself can also lead to a younger age-at-death, especially in light of the the non-standardised 

dosage given medicinally during the 16th century (see Ioannou et al., 2016; Zuckerman, 2016). Two 

neonates had increased mercury in bone, potentially originating during gestation via transplacental transfer, 

or directly through mercurial therapy following birth. Dental enamel defects were absent on the observable 

teeth; however, enamel changes only appear in an unknown number (circa 10%-65%) of affected 

individuals (Ioannou et al., 2016). Six individuals (SKR 10, 65, 115, 144, 174 and 221) had normal 

concenrations ranging from <0.03 to 0.283 ppm and no skeletal markers indicative of infectious disease.  

 

Overall, the mercury concentrations determined from Skeljastaðir were all elevated and are statistically 

significantly higher than those from Skriðuklaustur, not only between sites (t-test, p=0.002), but also across 

age and sex categories (Tables 5.4 and 5.5 above and Figure 7 and 8 from Article I). The mean concentration 

for those without pathological conditions (n= 8) was 4.945 ppm. Individuals with skeletal pathologies (n=6) 

had a mean of 3.151 ppm. These means are markedly greater than they were at Skriðuklaustur, 

predominately due to the individuals (n=5) with severely elevated concentrations. Four individuals (ÞSK 

17, 32, 34 and 54) had elevate dconcentrations that ranged from 1.585 ppm to 3.340 ppm, but another four 

(ÞSK 4, 29, 37 and 44) had exceedingly high concentrations that ranged between 10.134 ppm and 13.059 

ppm. Since some individuals sampled from Skeljastaðir date to after the Mt. Hekla eruption of AD 1104 

(see Sveinbjörnsdóttir et al., 2010), it is possible that acute mercury exposure occurred during and following 

it. It is worth nothing that mercury alone can cause bone and dental pathologies, such as periodontitis, dental 

enamel defects, brittle teeth, dental attrition, and higher rates of ante-mortem tooth loss, in addition to 

maxillary and mandibular new bone formation (Zuckerman, 2016). One individual (ÞSK 29) had ante-

mortem tooth loss of all mandibular teeth (maxilla unobservable), lingual wear, enamel defects on the 

anterior teeth (mottling), advanced alveolar resorption, and a bone mercury concentration of 12.860 ppm. 

These bony alterations could have been caused by exposure to mercury, fluoride or by numerous other 

pathological conditions.  

Elevated concentrations of mercury found in the skeletal population from Skriðuklaustur could have arisen 

from several points of possible exposure, such as from medical use, through pigments featured in scholarly 

writing (e.g., vermilion) or from the dietary importance of marine resources (see Parsons and Percival, 

2005; Mehler, 2015). While mercury was used (e.g., treatment for skin conditions) during the time period 

that Skeljastaðir was inhabited, it was not commonplace until around the time that syphilis plagued western 

continental Europe (late 15th century) (Parsons and Percival, 2005; Swiderski, 2008). Marine mercury 

contamination rose five-fold in the 1800s and ten-fold during the 1900s (Hylander and Meili, 2003; Parsons 

and Percival, 2005). Therefore, prior to the 19th century, marine animals had far lower levels of mercury 

pollution than in the present. Thus, diet was not likely a major source of exposure to mercury in Medieval 

Iceland. Additionally, isotopic results showed that marine protein was unimportant to the diet at 

Skeljastaðir, whereas the opposite was the case at Skriðuklaustur (Sveinbjörnsdóttir et al., 2010; Walser III 

et al., 2020a). As volcanoes almost constantly release emissions (passive degassing) and eruption events 

may persist for months or even years (Simkin and Siebert, 1994; D’Alessandro, 2006), exposure could have 
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happened during eruptions or via residential proximity so close to Mt. Hekla. Rib samples showing notably 

elevated concentrations imply exposure occurring within weeks to a few years of the sampled individual’s 

time-of-death. Though mercury can be high in the atmosphere due to degassing or eruptions (Coderre and 

Steinthorsson, 1977), cinnabar ore does not occur naturally in Iceland (personal correspondence: Kristján 

Jónasson, Geologist, Icelandic Institute of Natural History, 31.01.2016). Therefore, any forms of mercury 

(e.g., ore, elemental) that were used in would have been purchased from abroad for medicinal purposes. 

5.2.2 Mercury concentrations in enamel 
 

In ancient and modern dental enamel from human teeth, Rasmussen (1974) found the range of mercury 

concentrations to be ca. <0.001-1.88 ppm. In this study, only six out of 31 individuals presented with 

detectable concentrations of mercury in their tooth enamel (Table 5.7). The six samples with detectable 

mercury concentrations ranged between 0.01-0.60 ppm, indicating that none of them were exposed to 

mercury during childhood (Table 5.8). 

5.3 Health and culturual implications of fluoride (F) in bone and associated skeletal and 

dental changes 

 

5.3.1 Results of osteological analysis 
 

The results of all the osteological analyses are provided in Tables 3-5 from Article III and Supplementary 

Table 1 from Article III. This section addresses Research Questions 1.2.1, 1.2.4, 1.2.6, 1.2.7 and 1.2.8. 

Overall, the observed skeletal markers increased with age. This was to be expected, considering that many 

of the recorded pathologies are directly associated with increasing age. There were low rates of vertebral 

ankyloses (6%) and other joint ankyloses (8%), with no observed significant differences between 

demographic categories. Nearly half (42%) of the individuals displayed at least one ante-mortem fracture, 

with males and individuals aged 36+ years most affected across time. Periosteal new bone formation was 

seen in 57% of the analysed individuals. Fractures, entheseal and interosseous calcifications were higher 

(with some cases statistically significantly higher) in all time periods among males and individuals from 

the 36+ category, perhaps because differences in behaviour and biology are strongly correlated with 

increased rates of calcifications (see e.g., Meyer et al., 2011; Shuler et al., 2012; Milella et al., 2012; 

Henderson and Cardoso, 2013; Santana-Cabrera et al., 2015). Therefore, entheseal changes have a highly 

multifactorial aetiological origin (Villotte and Knüsel, 2013). Since the accumulation of fluoride is age 

related, long-term, low-dose fluoride exposure may instead be indicated (Arnala et al., 1985; Barbier et al., 

2010; Petrone et al., 2011). Comparative data from Herculaneum (see Petrone et al., 2013) is presented in 

Table 5.9. Unfortunately, the demographic data provided in the Petrone et al. (2013) publication is limited 

and thus detailed demographic differences between Iceland and Herculaneum cannot be directly compared. 

Categories requiring more detailed discussion are presented below and in the text of the Article (III). 
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Table 5.9 Comparison of results of skeletal analyses performed on individuals from Herculaneum (Petrone 

et al., 2013) and Iceland (this study). Petrone et al. (2013) only presented the results as percentages and 

not as frequencies 

 

 
 

Fractures 

 

In this research, 42% of individuals had a minimum of one ante-mortem post-cranial fracture (e.g., Figure 

5.1, 5.2 and 5.3 and Table 3 from Article III), providing a higher prevalence rate than what was seen at 

Herculaneum (32%), where osteofluorosis was endemic and severe (Petrone et al., 2013). Aside from 

fluorosis, the higher fracture rate seen in the Icelandic assemblages might also be related to the local 

ecology, human behaviour, or geography (e.g., mountains, lava fields, glaciers). 

 
 

Figure 5.1 Photograph and radiograph a healing oblique fracture to distal shaft of the right tibia of an 

adult female (ÞSK 16) – lateral view 

 

Herculaneum Iceland

Fractures 32% 42%

Spinal Ankylosis 20% 6%

Interosseous/Entheseal 92% 41%

Osteomalacia 8% 3%

DJD Appendicular 47% 46%

DJD Spinal 28% 72%

Fluoride Concentrations mean: 6672 ppm mean: 2056 ppm
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Figure 5.2 Radiograph and photograph of healed oblique fractures on the left tibia and fibula of an adult 

male (HFE 18) – anterior view 

 

 
 

Figure 5.3 Lumbar vertebra (L5) with spondylolisis, a fracture that can occur from heavy lifting, in an 

adult male (BES 5) – superior (body) and posterior (neural arch) view 
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Ankylosis 

 

Ankyloses of spinal (6%) and non-spinal joints (8%) had low prevalence rates and do not suggest skeletal 

fluorosis (e.g., Figures 5.4, 5.5 and 5.6 and see Table 3 in Article III). At Herculaneum, for comparison, 

Petrone et al. (2013) observed ankylosis on a minimum of one skeletal element in 39% of individuals: 20% 

spinal, 28% foot distal interphalangeal joints and 22% manubriosternal joint.  

 

 
 

Figure 5.4 Ankylosis of two thoracic vertebrae in an adult individual (RKH 7) – posterior view 

 

 
 

Figure 5.5 Ankylosis of proximal and distal ends of right tibia and fibula of an older adult male (ÞSK 29) 

– anterolateral view. The individual also had ossified cartilage on the manubrium, sternal body, xiphoid 

process, and sternal rib ends. However, these bone changes may rather be correlated with older age and 

diffuse idiopathic skeletal hyperostosis, which may be seen throughout the spine 
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Figure 5.6 Diffuse idiopathic skeletal hyperostosis in an older adult male (ÞSK 29). Some of the lower spine 

has fused completely – lateral view 

 

Degenerative joint disease 

 

The highest prevalence of skeletal changes occurred in the form of joint disease, with 72% individuals 

showing evidence of vertebral joint degeneration and 46% of individuals exhibited non-spinal joint 

degeneration of at least one joint surface (e.g., Figures 5.7, 5.8). Spinal joint disease and/or osteoarthritis 

of at least one joint surface was noted in ca. 63% of younger adults (17-35 years) and ca. 81% of older 

adults (36+ years) and non-spinal joint disease and/or osteoarthritis was observed in ca. 25% of younger 

adults and ca. 65% of older adults. In this study, non-spinal degenerative joint disease was statistically 

highest (chi-squared test, p=0.00003) across all time periods amongst individuals aged 36+ from 

Skeljastaðir. Non-spinal joint disease was also significantly higher in the 17th-19th centuries assemblages 

than in the assemblage from the 10th-12th centuries. Non-spinal joint disease was significantly higher in 

older individuals than in younger individuals in the 10th-12th centuries and in the assemblages from the 13th-

16th centuries. While the prevalence of non-spinal joint disease was also higher amongst older adults 

compared to younger adults in the assemblages from the 17th-19th centuries, it was not statistically 

significant (chi-squared test, p=0.057). 

Previous research noted that ca. 32% of individuals at Skeljastaðir had evidence of osteoarthritis and that 

there was a high prevalence of hip osteoarthritis compared with English, Swedish and Danish populations 

(Gestsdóttir, 2006, 2014; Gestsdóttir et al., 2006b). When compared with the skeletal assemblage 

representing the Greenland Norse, a similar pattern of osteoarthritis was noted, likely because these 

individuals were practicing similar subsistence strategies and physical activities and had the same genetic 

background as those residing in Iceland at the same time (Gestsdóttir, 2006). Furthermore, research has 

shown a correlation between hip osteoarthritis and farming activities, such as those practiced at Skeljastaðir 

(Gestsdóttir, 2014). At a contemporaneous site (10th-12th centuries) in northern Iceland, Keldudalur, 44% 
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of the population showed evidence of degenerative joint disease, consistent with a strenuous farming and 

animal husbandry lifestyle (Zoëga and Murphy, 2016). For a non-local comparison by Rogers et al. (1981), 

a large multiperiod study (n=400) on skeletons from England, found that 50% of individuals exhibited 

spinal joint disease and 40% of individuals showed evidence of non-spinal joint disease. Therefore, the high 

prevalence of spinal (39 out of 45; 86%) and non-spinal (28 out of 50; 56%) degenerative joint disease 

affecting at least one joint surface at Skeljastaðir is likely predominately correlated with age, underlying 

genetic factors and subsistence strategies centered around farming. At Herculaneum spinal degenerative 

joint disease was noted in 28% of individuals, while it was present in 72% of individuals analysed from 

Iceland. Meanwhile, the prevalence of appendicular degenerative joint at Herculaneum was 47%, similar 

to the 46% prevalence noted from Iceland. Petrone et al. (2013) suggest an age-related explanation for 

degenerative joint disease at Herculaneum rather than an association with osteofluorosis. 

 

 

Figure 5.7 Degenerative joint disease in a lumbar vertabra of an adult female (BES 20) – posterior view 
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Figure 5.8 Left femur of an adult male (HFE 18) with osteoarthritis (eburnation, porosity, osteophytes, 

contour/morphological change) – anterior view 

 

Infectious disease 

 

Periosteal new bone formation was observed in 57% of individuals (e.g., Figures 5.9 and 5.10). At 

Skriðuklaustur, individuals showing evidence of infectious diseases were common, possibly inflated by the 

medical activities performed there; osteitis/osteomyelitis (e.g., Figure 5.9), several cases of tuberculosis, 

the highest prevalence of hydatid disease (e.g., Figure 2.4) and the only confidently diagnosed cases of 

treponemal disease across all skeletal assemblages in Iceland (e.g., Figure 2.3; Kristjánsdóttir and Collins, 

2011; Kristjánsdóttir, 2012; Walser III et al., 2019). Haffjarðarey, unlike Skriðuklaustur, was a coastal site 

that likely substantially depended upon fishing and the gathering of other marine resources (Gestsdóttir, 

2014). An intensive fishing economy was in place on the Snæfellnes peninsula, with people fishing year 

around in addition to farming (Guðmundsson et al., 1988; Valdimarsson and Bjarnason, 1997), indicating 

that those residing at Haffjarðarey were likely subject to more rigorous activities and occupational 

behaviors that may have mechanically contributed to periosteal changes, particularly in the lower leg bones 

(see Lassus, 2002). The population at Haffjarðarey likely had a less varied diet than was consumed at inland 

sites and probably depended upon seafood, especially harðfiskur (dried fish) (Hoffman, 2018). As fresh or 

dried sea food can contain high fluoride concentrations (Marya, 2011; Ganta et al., 2015), the importance 

of fish and other marine resources at both these sites, unlike the 10th-12th-century site (ÞSK), may also 

indicate an additional source of fluoride exposure beyond volcanic emissions. 

 



98 

 

 
 

Figure 5.9 Photograph and radiograph of the fibulae, tibiae, and left femur of a non-adult individual (SKR 

46) with periosteal change, osteitis, and osteomyelitis. On the radiograph, destructive lesions that are not 

apparent in the photograph can be seen below the cortical surfaces of the bones, particularly in the tibiae 

– anterior view 

 

 
 

Figure 5.10 Primary (woven) new bone formation on the left distal fibula of an older adult male (RVK-C-

6) – medial view 
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Ossification of the ligamentum flavum, atlanto-occipital membrane and other soft tissues 

 

Ligamentum flavum ossification (e.g., Figure 5.11) was seen in 26% of individuals. Females dating from 

the 17th to 19th centuries (RKH, BES, RVK and VEY) had the highest prevalence; see Table 3 in Article 

III). The distribution of ligamentum flavum ossification was even across sex and age categories when all 

assemblages were pooled together. Bone changes at the attachment site of the atlanto-occipital membrane 

(e.g., Figure 5.12) (foramen magnum, posterior margin), were analysed in this study because of the 

anatomical correspondence it has to the ligamentum flavum (Cramer and Darby, 2017; Gonzales and 

Iwanaga, 2018). Antlanto-occipital membrane attachment site ossification was seen in 37% of individuals 

and no differences were observed across sex or age categories, aside from in the 10th-12th century 

assemblage (ÞSK) which had a less frequent rate in younger adults (24%) than in older adults (44%) (Table 

3 in Article III). Atlanto-occipital membrane or attachment site changes are sometimes discussed in clinical 

studies after traumatic accidents (e.g., vehicular accidents causing whiplash). In some cases, underlying 

congenital or developmental conditions act as predisposing factors (Vangilder and Menezes, 1983; Lustrin 

et al., 2003; Riascos et al., 2015). Occupation, such as the heavy lifting performed during farm work, could 

potentially explain the higher rate observed among older adults from the 10th-12th century assemblage.  

The pathogenesis of ligamentum flavum ossification is related to genetics and diet, but various additional 

factors might contribute as well (e.g., Mobbs and Dvorak, 2007; Shepard et al., 2015; Geber and Hammer, 

2018). The 17th-19th-century assemblages (43%) had a higher prevalence than the 13th-16th-century (22%) 

and 10th-12th-century (16%) assemblages possibly due to to a mixture of factors such as the diverse diet 

available to the upper class (see Jónsson, 1998), genetic admixture (see Ebenesersdóttir et al., 2018), 

changes in occupation connected to urbanization (see Harrison and Snæsdóttir 2013) and environmental 

fluoride pollution following the eruption of Laki in AD 1783-1784 (see Steingrímsson, 1998; Halldórsson, 

2013). Ligamentum flavum ossification was seen in 15.6% of female and in 23.6% of male thoracic 

vertebrae in a Medieval Polish sample (AD 900-1000), for comparison (Swedborg, 1974). In another 

example, research on the Mary Rose skeletal assemblage from England showed that 46.3% of individuals 

had ligamentum flavum ossification throughout the thoracic spine, which was interpreted to have been 

caused by rigorous activity or occupation (Stirland and Waldron, 1997). 

 

Other soft tissue ossifications (e.g., Figure 5.13), such as glands or cartilage, were observed in 20% (36 out 

of 184) of individuals. They were found to be more common in older individuals (25%; 22 out of 87), as 

expected, than in younger individuals (14%; 14 out of 97), likely related to increasing age. Other soft tissue 

ossifications were associated with increasing age, aside from the 17th-19th-century assemblages, which had 

similar frequencies between younger (15%) and older adults (11%) (Table 3 in Article III). 
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Figure 5.11 Ossification of the ligamentum flavum (blue arrow) in a thoracic vertebra of an adult male 

(ÞSK 26) – posterior view 

 

 

 
 

Figure 5.12 Inferior view of older adult male cranium. Slight changes to the attachment site of the atlanto-

occipital membrane at the posterior aspect of the foramen magnum are indicated by the blue arrows 
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Figure 5.13 Ossification of cartilage on manubrium and sternum of an adult male (ÞSK 29) 

 

 

Mineralization of interosseous and entheseal attachment sites 

 

The results of entheseal changes (e.g., Figure 5.14, 5.15, 5.16 and 5.17) analysis are presented in Table 4a 

in Article III and interosseous mineralization (e.g., Figure 5.18 and 5.19) in Table 4b in Article III. 

Entheseal changes had a non-significantly higher prevalence in the 10th-12th-century assemblage than was 

observed in the 13th-16th century assemblages yet statistically lower prevalence than those seen from the 

17th-19th centuries. Interosseous mineralization was lowest in the 10th-12th-century assemblage, while the 

17-19th century assemblages had statistically significantly higher prevalence rates (chi-square test, p<0.02 

for all long bones except fibulae) than both the 10th-12th and 13th-16th-century assemblages. Though no 

pattern was observed according to sex, the older adults representing the 17th-19th century assemblages had 

the highest frequencies – sometimes significantly higher – of calcifications on interosseous and entheseal 

attachment sites. Calcification of the interosseous crest of the ulnae, radii, fibulae, and tibiae was seen on 

12-24% of each bone in younger adults and on 26-46% of each bone in older adults. Entheseal calcification 

was recorded in 6-27% of each long bone or os coxa in younger adults and in 30-57% of older adults. In 

line with the findings of previous studies of entheseal changes, the severity and prevalence of entheseal 

changes increased among older adults (the 36+ OA category) and were higher in males than in females. 

From Skeljastaðir, at least 14 individuals had severe entheseophyte formation (Gestsdóttir, 2008; this 

study), suggesting entheseal change beyond normal increased rugosity. 
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Figure 5.14 Right and left humerus with entheseal changes to the deltoid tuberosity (blue arrows) – anterior 

view. This cortical defect, also known as a chronic avulsive injury, is a benign reactive lesion secondary to 

high force movements at the pectoralis major insertion on the proximal humerus shaft (see Fulton et al., 

1979; Villotte et al., 2016) 
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Figure 5.15 Posterior aspect of right femur, of an older adult female (SKR 169), with slight entheseal 

changes to the linea aspera 

 

 
 

Figure 5.16 Posterior aspect of the right and left femur, of an older adult male (ÞSK 30), with moderate 

entheseal changes to linea aspera, spiral line and gluteal tuberosity 
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Figure 5.17 Os coxa from an older adult male (ÞSK 30) with entheseal changes to iliac crest – posterior 

view 

 

Across all sites and all ages, under 41% of individuals showed indicators, on at least one bone, of 

mineralization of entheseal or interosseous attachment sites. Meanwhile, at Herculaneum, 92% of 

individuals of all ages had clear evidence of calcificying/ossifying changes on at least one bone (see Petrone 

et al., 2013). Similar to the rates presented here, previous studies have all shown a strong correlation to 

increasing age instead of activity patterns or pathologies (e.g., Campanacho and Santos, 2013; Henderson 

and Cardoso, 2013; Henderson et al., 2013). Rates of calcification on the entheseal attachment sites and 

interosseous crests were only slightly lower in the older assemblages than in the 17th-19th-century 

assemblages. As fluoride burden increases according to age, it is possible that these rates of entheseal and 

interosseous calcifications are related to elevated environmental fluoride contamination originating from 

Iceland’s most catastrophic historic eruption – the Skaftáreldar fires (Laki) of AD 1783-1784. The 

population dealt with dietary malnourishment, aside from fluoride pollution, as metabolic deficiency 

conditions became endemic (e.g., rickets, scurvy, osteomalacia) and diseases, like smallpox, spread 

throughout the country (Pétursson et al. 1984; Halldórsson, 2013). 
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Figure 5.18 Slight mineralization of the interosseous crest of the right tibia of a young adult female (RVK-

C-4) – medial view 

 

 
 

Figure 5.19 Ossification of the interosseous crest of the left tibia of an older adult female (SKR 169) – 

lateral view. Corresponding changes can be seen on the left fibula, which is not pictured here 

 

The results of this research demonstrated a higher prevalence of changes to the interosseous crest of the 

lower leg in females (chi-squared test, p<0.009), while males had a higher prevalence of interosseous crest 
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changes on the lower arm (chi-squared test, p<0.04). While these results may have implications for 

gendered activities, Halldórsdóttir (2018) notes that women were not just farmer’s wives but were often 

farmers themselves and, in some cases, managed the farm alone. Farm work performed by women 

particularly increased in the winter, especially with tasks related to the preparation of wool for textile 

production (Róbertsdóttir, 2014). Women also worked in the wool and fish factories, as housekeepers and 

even as fisherwomen (Róbertsdóttir, 1998, 2001, 2008; Willson, 2016; Frangoudes and Gerrard, 2018). 

This implies that even if any distinct gendered social roles were in place at the time, women still participated 

in equally strenuous work. Though it is known that heavy or repetitive physical activities exacerbate skeletal 

changes resulting from fluorosis, particularly at entheses (Maheshwari, 2006; Nelson et al., 2016), increased 

rugosity and other degenerative changes may occur just as extensively without fluoride exposure. 

Furthermore, other pathological changes that can occur at the attachment site, such as those resulting from 

neoplastic disease, may occasionally be misidentified or difficult to differentiate from non-specific 

entheseal change (e.g., Figure 5.20). The repetitive strain causes minor trauma, making bone respond with 

remodeling (Littleton, 1991, 1993; Maheshwari, 2006; Nelson et al., 2016). However, Meyer et al. (2011) 

noted that entheseal change studies often interpret sexually dimorphic differences as the effect of gendered 

divisions of labor, but the results may instead just reflect intrinsic sexual dimorphism rather than cultural 

or population-related differences. Henderson et al. (2016), for example, found that textural changes at the 

biceps brachii insertion are common and relate rather to normal biology than directly to bodily strain or 

activity. In light of this, changes to the radial tuberosity and similar attachment sites, although recorded, 

were not included in this research. It is also important to note that skeletal activity marker research often 

lacks consistency between methods and is notorious for issues with inter-observer differences, inter-sample 

comparison and reproducibility (Henderson, 2013). Also, the impact of age and its connection with 

entheseal features has not been evaluated deeply enough, thus substantially reducing the application of their 

study to the examination of specific activity patterns (Henderson et al., 2016). For a more nuanced 

perspective on the possible gendered differences seen through skeletal activity markers, a wider study using 

the Coimbra method (see Henderson et al., 2016) could be undertaken in the future, particularly as Palmer 

et al. (2018) showed that data produced using the Coimbra method is broadly comparable with the Mariotti 

method (Mariotti et al., 2004, 2007), the method used in this study in a modified form. 
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Figure 5.20 Posterior aspect of right femur, of a young adult female (ÞSK 5), with possible traumatic soft 

tissue changes to the greater trochanter, such as from entheseal or muscular trauma. However, a strong 

possible differential diagnosis is a benign neoplasm (e.g., osteochondroma exostosis)  

 

Vitamin D deficiency 

 

According to historical records, folklore, and supposition due to latitude, it is believed that rickets (and 

residual rickets) and osteomalacia (vitamin D deficiency) were prevalent in Icelandic history (e.g., Figure 

5.21; Jónsson, 1998; Sigurðardóttir, 2017). However, vitamin D defieciency diseases are not often 

identified in Icelandic skeletal assemblages (Steffensen, 1939; Gestsdóttir, 1991; Sundman, 2011; Zoëga 

and Murphy, 2016). The results of the research described here also provided low rates for these conditions. 

Osteomalacia was observed in in six individuals (3%) and residual rickets in 13 individuals (7%); vitamin 

D deficiency overall was thus noted in just 10% of the sample set (Table 3 in Article III). About 32% of 

vitamin D deficiency cases were from Skeljastaðir and 42% were from Skriðuklaustur. There were five 

individuals with vitamin D deficiency from the 17th-19th century assemblages, or 26% of the total observed 

cases. The vitamin D deficiency frequency is thereby comparable with results of studies on adult skeletons 

from the British Isles dated between the 18th and 19th centuries AD: there was a prevalence of 14% (20 out 

of 135) for residual rickets (Brickley et al., 2010) and 1.43% (19 out of 1,323) for osteomalacia (Ives and 

Brickley, 2014). However, Newman and Gowland et al. (2018) found a far higher rate of rickets at some 

Northern sites in the British Isles. The prevalence rates from Iceland described here might be lower than 

expected because of the long-period of sunlight during the summer months and the dietary importance of 

fish and other vitamin D rich foodstuff (e.g. foraged mushrooms and Iceland moss, Cetraria islandica). 

Osteomalacia is a notable predisposing condition for osteofluorosis (Gupta et al., 1996; Khandare et al., 

2005) but diagnosis can be difficult (Ives and Brickley, 2014). Though vitamin D deficiency was equal 
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between females (n=3) and males (n=3) at Skeljastaðir (10th-12th centuries), it varied insignificantly across 

females from the 13th-16th-century (n=6) and 17th-19th-century (n=4) assemblages and males (n=2 and n=1, 

respectively). While this may result from the small sample sizes, gendered social roles could also be 

indicated: women and children of the past may have spent more time indoors than men, especially in the 

later periods (see Norrman, 2008; Hayeur-Smith, 2014; Veselka et al., 2018). Aproximately 3% of 

individuals had osteomalacia, while at Herculaneum around 8% of the individuals that had fluorosis also 

had osteomalacia (see Petrone et al., 2013). 

 

 

 

Figure 5.21 Femoral bowing, possibly due to residual rickets, in a young adult male (ÞSK 34) – anterior 

view. However, the right femur was fused to the acetabulum (detached post-mortem), causing notable 

angulation and immobility. Thus, it is possible that the bowing and atrophy may be due to mobility 

impairment rather than vitamin D deficiency  
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Dental Changes 

Dental chipping, which may relate to poor enamel mineralisation (e.g., from dental fluorosis) (Thylstrup 

and Fejerskov, 1978), was present in 7% of teeth, though in this research it is likely associated primarily 

with diet instead of enamel mineralization. Linear enamel hypoplasia (e.g., Figure 2.9, 2.10) may occur due 

to childhood fluoride exposure (Thylstrup and Fejerskov, 1978; Petrone et al., 2011, 2013; Marklein et al., 

2016;) and was the most common (16%) enamel defect observed in this research (mottling, 3%; 

hypomineralisation/opacities, 8%) (see Table 5 in Article III). Enamel hypomineralisation (opacities) (e.g., 

Figure 5.22) was only just higher than normally reported in healthy, modern teeth (ca. 5%) (Hillson, 1996). 

Hypercementosis prevalence (e.g., Figures 5.23 and 5.24) was very low (mandible, <1%; maxilla, 4%). For 

comparison, a very high prevalence (85% of 104) of hypercementosis was reported in 17th-19th-century 

slaves from Barbados by Corruccini et al. (1987). Hypercementosis is often idiopathic, but it can result 

from a wide range of systemic and local factors (Pinheiro et al., 2008; García-González et al., 2019) aside 

from dental fluorosis (Littleton, 1999). None of the individuals seen in this study with elevated bone 

fluoride concentrations presented with evidence of hypercementosis, but linear enamel hypoplasia, enamel 

hypomineralisation, dental chipping, and mottling were observed among those with pre-clinical 

concentrations.  

 

 
 

Figure 5.22 Mandible of a young adult female (BES 11) with hypomineralisation (dental enamel opacities, 

e.g., blue arrow)  

 

 
 

Figure 5.23 Premolar with hypercementosis of the root from a female adult (SKR 96) – lateral view  
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Figure 5.24 Photograph and radiograph of an adult male (HFE 18) with hypercementosis: the tooth could 

not be removed from the maxillary alveolar bone due to the pathologically enlarged morphology of the 

tooth root – lateral view  

Calculus (60% maxillary and 68% of mandibular teeth; see e.g., Figures 2.9 and 2.10) and periodontal 

changes/alveolar resorption (ca. 72% of individuals) had high prevalence rates. However, the prevalence 

of carious lesions (ca. 1%) was very low. There were 286 periapical lesions (ca. 5% of all alveolar sockets) 

and 540 teeth lost ante-mortem (ca. 8% of all teeth) (see Table 5.10).  
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Table 5.10 Results of dental analyses for presence, post-mortem loss, ante-mortem loss, and periapical 

lesions. See Table 5 in Article III for remaining dental analyses 

 

 
 

 

Respiratory disease 

 

Sinusitis is an important indicator of respiratory health in past populations (Merrett and Pfeiffer, 2000; 

Sande and Gwaltney, 2004; Hedayati et al., 2007). According to the study presented here (n=186), 70% of 

individuals with observable sinuses (n=130) displayed evidence of either lamellar or woven new bone 

formation in the maxillary sinuses, indicating a high rate of sinusitis (e.g., Figure 5.25). Meanwhile, up to 

60%, dependent on bone and side, of individuals showed evidence of lower respiratory disease in the form 

of woven or lamellar new bone deposition on the visceral aspects of the ribs. This analysis was conducted 

to provide additional information about the impact of volcanic particulate matter on respiratory health, but 

due to the widespread and diverse etiology of sinusitis it is not included as evidence of outdoor 

environment-related illness in this study and showed no discernible pattern by age or sex. A recent 

investigation concluded that the high rate of otitis media and sinusitis observed in ancient Icelandic skeletal 

remains is likely to be correlated with infectious diseases, especially tuberculosis, rather than from poor air 

quality (Collins, 2019). 

Maxilla Mandible

Tooth Present Unobservable AM loss Periapical Tooth Present Unobservable AM loss Periapical

 RM3 84/186 (45) 78/186 (42) 24/186 (13) 11/186 (6)  RM3 109/186 (59) 63/186 (34) 14/186 (8) 12/186 (6)

RM2 129/186 (69) 24/186 (13) 23/186 (12) 24/186 (13) RM2 147/186 (79) 24/186 (13) 15/186 (8) 12/186 (6)

RM1 135/186 (73) 35/186 (19) 16/186 (9) 26/186 (14) RM1 142/186 (76) 25/186 (13) 19/186 (10) 24/186 (13)

RPM2 134/186 (72) 36/186 (19) 16/186 (9) 8/186 (4) RPM2 141/186 (76) 26/186 (14) 19/186 (10) 7/186 (4)

RPM1 139/186 (75) 31/186 (17) 16/186 (9) 11/186 (6) RPM1 145/186 (78) 27/186 (15) 14/186 (8) 9/186 (5)

RC 144/186 (77) 32/186 (17) 10/186 (5) 6/186 (3) RC 145/186 (78) 33/186 (18) 8/186 (4) 6/186 (3)

RLI 130/186 (70) 38/186 (20) 18/186 (10) 2/186 (1) RLI 142/186 (76) 29/186 (16) 15/186 (8) 2/186 (1)

RCI 127/186 (68) 37/186 (20) 22/186 (12) 2/186 (1) RCI 136/186 (73) 28/186 (15) 22/186 (12) 1/186 (<1)

LCI 129/186 (69) 34/186 (18) 33/186 (18) 3/186 (2) LCI 133/186 (72) 32/186 (17) 21/186 (11) 2/186 (1)

LLI 127/186 (68) 32/186 (17) 27/186 (15) 2/186 (1) LLI 142/186 (76) 32/186 (17) 12/186 (6) 1/186 (<1)

LC 141/186 (76) 36/186 (19) 9/186 (5) 5/186 (3) LC 148/186 (80) 29/186 (16) 9/186 (5) 2/186 (1)

LPM1 138/186 (74) 34/186 (18) 14/186 (8) 4/186 (2) LPM1 145/186 (78) 30/186 (16) 11/186 (6) 3/186 (2)

LPM2 139/186 (75) 36/186 (19) 11/186 (6) 3/186 (2) LPM2 144/186 (77) 30/186 (16) 12/186 (6) 7/186 (4)

LM1 137/186 (74) 36/186 (19) 13/186 (7) 15/186 (8) LM1 135/186 (73) 32/186 (17) 19/186 (10) 25/186 (13)

LM2 120/186 (65) 39/186 (21) 27/186 (15) 13/186 (7) LM2 140/186 (75) 27/186 (15) 19/186 (10) 17/186 (9)

LM3 88/186 (47) 80/186 (43) 19/186 (10) 11/186 (6) LM3 108/186 (58) 65/186 (35) 13/186 (7) 10/186 (5)

All 2041/2976 (69) 648/2976 (68) 298/2976 (8) 146/2976 (5) All 2202/2976 (74) 532/2976 (18) 242/2976 (8) 140/2976 (5)

Key: Presence/Absence (% ) pooled across all sites/periods; Present (presence of tooth); Unobservable (post-mortem loss, unerupted, other); AM loss (ante-

mortem loss); Mottling (dental enamel mottling or pitting); Periapical (periapical lesions)
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Figure 5.25 Small area of remodelling (lamellar), spiculated new bone formation (within blue circle) in the 

right maxillary sinus of a younger adult female (BES 20) – superior view 

 

5.3.2 Fluoride concentrations in bone 
 

Bone fluoride concentrations are presented alongside osteological findings in Supplementary Table 1 of 

Article III and summary statistics for bone fluoride concentrations are presented in Table 7 and 8 of Article 

III. This section addresses Research Questions 1.2.7 and 1.2.8. Cumulative bone fluoride concentrations 

were determined in the human bone samples (n=50) and four soil samples. The fluoride concentrations of 

the bone samples (n=50) ranged from 223 to 4370 ppm and had a mean of 2056 ± 1112 ppm. The bone 

fluoride concentrations at Skriðuklaustur (n=36) ranged from 223 to 4370 ppm and had an overall mean of 

2324 ± 1067 ppm. The bone fluoride concentrations at Skeljastaðir (n=14) ranged from 223 to 3030 ppm 

and had an overall mean of 1366 ± 937 ppm. Inter-site differences in fluoride concentrations were 

statistically significant (t-test, p<0.002 excluding non-adults; t-test, p<0.005 including non-adults; Table 8 

of Article III), but intra-site differences according to sex and age categories were not. At Skriðuklaustur, 

bone fluoride concentrations were significantly higher than at Skeljastaðir, even across sex and age 

categories. The majority (24 out of 36; 67%) of individuals from Skriðuklaustur had fluoride concentrations 

falling within the normal range (<3000 ppm), though the remainder (12 out of 36; 33%) were elevated. 

While no concentrations were indicative of clinical fluorosis, some were consistent with the pre-clinical 

phase (>3500 ppm) were noted in 5 out of 36 (14%) of the individuals (Table 6 of Article III). The mean 

for non-adults from Skriðuklaustur was 1638 ± 1018 ppm. The mean for non-adults was not significantly 

lower (p = 0.084) than it was for the adults (2461 ± 1039 ppm). Lastly, only 2 out of 14 (14%) individulals 

from Skeljastaðir presented with elevated concentrations.  

 

At Herculaneum, for example, the fluoride bone concentrations clearly indicated widespread fluorosis. The 

concentrations ranged between 2042 and 11342 ppm and had a mean of 6672 ppm. In contrast with the 

results from Iceland, the fluoride concentrations at Herculaneum were strongly correlated with increasing 

age (Petrone et al., 2013). In this study, all except two individuals with elevated concentrations were 

categorized as younger adults (YA), possibly suggesting the occurrence of increased exposure (e.g., from 

volcanic emissions) beyond normal age-related fluoride accumulation from consuming uncontaminated 

drinking water. One older female (SKR 128) had multiple vertebral fractures as well as reduced bone 

density observable under radiography and microscopy, indicating osteoporosis. Clinical studies have 

demonstrated that bone fluoride concentrations do indeed steadily increase with age (Ishiguro et al., 1993). 
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Women over 55 years of age had the most noticeable elevations, probably because of the concurrence of 

senile osteoporosis and menopause. Rather than from toxic exposure, the elevated concentration (3190 

ppm) in SKR 128 likely relates to osteoporosis and age-related accumulation.  

The individuals with elevated fluoride concentrations had higher than average rates of linear enamel 

hypoplasia (83%, 10 out of 12), enamel hypomineralisation or opacities (50%, 6 out of 12) and mottling 

and ante-mortem chipping (23%, 3 out of 12). The rates of interosseous and/or entheseal calcifications 

(50%, 6 out of 12), fractures (33%, 4 out of 12), ankyloses (16%, 2 out of 12), joint disease (25%, 3 out of 

12), and atlanto-occipital membrane attachment site changes (8%; 1 out of 12), however, were not markedly 

different between those with elevated fluoride concentrations and the rest of the population sample when 

controlled for sex and age. None had ossification of the ligamentum flavum, though one individual (SKR 

150) had Eagle’s syndrome, displaying an elongated, ossified stylohyoid chain measuring 56.3 mm. On 

average, the styloid process usually measures about 20-30 mm. The symptoms (e.g., dysphagia, 

cervicofacial pain, cerebral ischemia) of Eagle’s syndrome are clinically observed in people with elongated 

styloid processes longer than 40 mm on average (see Balcioglu et al., 2009; Salega and Farba, 2018). The 

generally low fluoride concentrations seen in the non-adults (mean 1638 ± 1018) provides further evidence 

that diagenesis was not at play because porous, less mineralized non-adult bones are generally particularly 

prone to it. Despite bone fluoride concentrations increasing with increasing age, they should remain 

relatively low if toxic exposure is not indicated. An older male adult (SKR 174) with Paget’s disease of 

bone had a fluoride concentration of 2120 ppm, suggesting that osteofluorosis is an unlikely differential 

diagnosis (see Figures 2.7 and 2.8). The low-level uptake of fluoride among people buried at Skriðuklaustur 

may have resulted from volcanic emissions, normal age-related accumulation and possibly from the dietary 

importance of marine resources.  

The absorption of fluoride into the bone hydroxyapatite can be altered or decreased by the simultaneous 

absorption of lead, calcium, and other trace elements. Clinical studies have shown that concurrent exposure 

to lead and fluoride increases lead concentrations in calcified tissues, without increasing fluoride (Whyte 

et al., 2008; Sawan et al., 2010; Leite et al., 2011). The individuals with treponemal disease, who also had 

been exposed to lead during childhood (>0.7 ppm in enamel), also had the lowest fluoride concentrations 

(<525 ppm F): SKR 22 (2.7 ppm Pb) and SKR 23 (4.1 ppm Pb) (see Walser III et al., 2020a). The low 

concentrations might partly relate to concurrent lead exposure – if it continued into adulthood – or other 

poisonous elements that interact with bone hydroxyapatite. Icelandic aquifers (range 1.3-52.8 ppm; median 

5.5 ppm) have 3-5 times more calcium than the aquifers of other Nordic countries (Gunnarsdóttir et al., 

2016) and important historic dietary staples (e.g. bone marrow, dairy) are also high in calcium. Since the 

uptake of fluoride can be reduced by the uptake of calcium (Whyte et al., 2008), it could be that these 

individuals received nourishing diets as patients of the monastery. 

At Skeljastaðir, the mean bone fluoride concentration was actually lower than first expected, especially 

considering the site is to Mt. Hekla – a known heavy fluoride (and mercury) emitter (Thorarinsson and 

Sigvaldason 1972; Coderre and Steinthorsson, 1977; Thordarson and Larsen, 2007). The highest fluoride 

concentrations were predominately observed in those (ÞSK 4, 44) who also had the highest mercury 

concentrations. It may be that the individuals found to have elevated elemental bone concentrations had 

exposure to toxic emissions during the volcanic eruption, especially since some of the individuals post-date 

the eruption (AD 1104). Meanwhile, the others were perhaps only exposed to passive emissions from the 

surrounding area. One older adult male (ÞSK 44), for example, had a fluoride concentration of 3010 ppm 

in addition to interosseous and entheseal calcifications upon the long bones and osteochondritis dissecans 

on the right ulna (proximal end). Moreover, 14 individuals had robust entheseal changes which could 

potentially be correlated with mild osteofluorosis (Gestsdóttir 1998, 2009; this study).  
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5.4 Health and cultural implications of lead (Pb) and barium (Ba) in dental enamel and 

lead (Pb) in bone 

 

5.4.1 Lead in bone  
 

Cumulative bone lead concentrations were determined for 22 soil samples (Table 5.1), 23 faunal bones 

(Table 5.2), and 50 human bone samples (see Table 5.3). This section addresses Research Questions 1.2.2, 

1.2.3 and 1.2.4. Across all human samples (n=50) the lead concentrations ranged from 0.52 to 93.81 ppm 

and had a mean of 9.49 ppm (Tables 5.4 and 5.5). At Skriðuklaustur (n=36), they ranged from 0.65 to 93.81 

ppm and the overall mean was 12.6 ± 21.4 ppm. At Skeljastaðir (n=14), they ranged from 0.52 to 6.98 ppm 

and had an overall mean of 1.5 ± 1.7 ppm (Table 5.4). The samples from Skriðuklaustur had higher bone 

lead concentrations than at Skeljastaðir, but this difference was not statistically significant (Table 5.5). 

However, lead concentrations among males from Skriðuklaustur were significantly higher (t-test, p=0.02) 

than concentrations in males from Skeljastaðir. From Skriðuklaustur, 14 out of 36 (39%) of individuals 

exhibited elevated lead concentrations (>7 ppm) while the remainder (22 out of 36; 61%) had normal 

concentrations. Furthermore, a little over half (8 out of 14; 57%) of the Skriðuklaustur indviduals with 

elevated bone lead concentrations also represent 72% (8 out of 11) of the individuals that had elevated lead 

concentrations in their dental enamel (Table 5.6). This implies that these individuals were likely exposed 

to lead not only in childhood but also as adults. Meanwhile, at Skeljastaðir, only one (1 out of 14) individual 

(ÞSK 44, 7 ppm) had an elevated lead concentration. Considering his migrant status (see Price and 

Gestsdóttir, 2006), it is possible that the lead exposure did not actually occur at Skeljastaðir, but elsewhere 

prior to his migration to the farm site. 

 

According to Rasmussen et al. (2015) bone lead concentrations may be considered elevated if they exceed 

>7 ppm in trabecular bone and >5ppm in cortical bone and post-mortem diagenesis is not indicated. In this 

study, bone lead concentrations were only considered elevated if they exceeded 7 ppm, although trabecular 

bone was not analysed. From Skriðuklaustur, 39% (14 out of 36) of individuals had bone lead 

concentrations greater than 7 ppm; however, some parts of the cemetery appear to have been contaminated 

by lead objects (e.g., tools) and infrastructure (e.g., window frames) potentially indicating that diagenesis 

may have altered the bone lead concentrations post-mortem. Nevertheless, it is interesting to note that 57% 

(8 out of 14) of those individuals with elevated bone lead concentrations also exhibit elevated dental enamel 

concentrations, which may imply that these individuals were exposed to lead both during childhood and 

throughout life or close to the time of death, if diagenetic uptake did not occur post-mortem within the 

burial environment. Exposure to lead at Skeljastaðir was probably lower because less trade/commerce 

occurred there (or during that time period), compared with Skriðuklaustur, which was occupied later. At 

Skriðuklaustur, due to the monastic functions and its role as a center of commerce, the use of materials such 

as lead for structures and objects was probably far more common and accessible than at the earlier farm site 

Skeljastaðir.  

 

5.4.2 Lead and barium in dental enamel  

This section addresses Research Questions 1.2.2, 1.2.3 and 1.2.4. The dental enamel trace element analyses 

showed low barium concentrations, likely because seawater and Icelandic groundwater and basalt are low 

in barium content (see Naimy, 2008) (Table 5.6). The low values, little variation, and small range in barium 

concentrations also further indicate that the people of Skriðuklaustur were of local origin. The means for 

lead concentrations are higher than they were for barium, which may suggest lead exposure (see Liu et al., 

2013) from anthropogenic sources at Skriðuklaustur (Supplementary Figure S1 of Article II). No 

individuals presented with elevated or outlying barium concentrations. However, one individual happened 

to have both the highest strontium and barium concentrations in dental enamel. Twelve sampled individuals 
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had a lead content higher than ca. 0.7 ppm (Tables 5.6 and 5.8), the concentration that is usually thought to 

be the threshold for lead exposure in archaeological human dental enamel (Montgomery et al., 2010; 

Millard et al., 2014).  

 

All the samples presenting with anthropogenically elevated lead (e.g., from inhaled lead dust/paint, skin 

contact, or ingestion of contamined food or soil) were from non-adults or individuals that are biologically 

female with the exception of the older adult male with Paget’s disease of bone (SKR 174). These findings 

may indicate differing routes of exposure due to the life course in general or gendered socio-cultural roles. 

Women may have spent more time inside, as it is thought that they were especially responsible for 

housekeeping, preparing food, and the production of woven textiles, which were important both as a 

currency (vaðmál) and for clothing and other goods. Textile production was highly standardised because it 

was essential for paying taxes, tithes, and other economic and legal transactions. It was an important 

occupation and form of female agency in historic Iceland that was potentially regulated by law to some 

degree (Norrman, 2008; Hayeur-Smith, 2014). On the other hand, biological differences between men and 

women (e.g., menopause or pregnancy) also play an important role in the retention and susceptibility to 

negative health impacts resulting from exposure to heavy metals (Vahter et al., 2007).  

A young adult female (SKR 189) with cystic echinococcosis (hydatid disease) had a lead concentration of 

9.40 ppm in bone, which was significantly higher than the rest of sample set. She also had the highest lead 

concentration in enamel, indicating childhood lead exposure occurred, which may have then continued into 

adulthood. The second highest lead concentration (4.1 ppm) was from a young adult (ca. 17-25) female 

(SKR 23) displaying skeletal evidence of treponemal disease, consistent with probable venereal syphilis 

(see Hackett, 1976; Ortner, 2003). From the 17th century onwards lead-glazed goods became much more 

common and accessible in Iceland, though they remained generally associated with high-status sites 

(Þorgeirsdóttir, 2010). For context, Rasmussen et al. (2015) measured lead concentrations in archaeological 

assemblages from monastic, rural, and urban sites in northern Germany and Denmark. The results showed 

that people with high social status were more likely to reside close to or within lead buildings as well as be 

able to afford lead or lead-glazed goods. One of the few individuals (SKR 65) buried inside the church, 

which may suggest that she held some special status there (e.g., as a benefactor), had a lead concentration 

of 3.51 ppm (Kristjánsdóttir, 2010; Walser III et al., 2019). Thus, some anthropogenic exposure likely 

occurred on site, particularly among those residing there in childhood. However, with just a few exceptions, 

the lead enamel concentrations are mostly under ca. 0.7 ppm, implying that the samples from Skriðuklaustur 

represent people that were raised in a generally unpolluted environment, such as Iceland (see Montgomery 

et al., 2014; Walser et al., 2020a).  

5.5 Health implications of cadmium (Cd) and arsenic (As) concentrations in bone and 

dental enamel and antimony (Sb) in dental enamel 
 

Overall, the low concentrations of cadmium and arsenic in bone and dental enamel and antimony in dental 

enamel indicate that these individuals lived within an environment and culture that did not heavily rely on 

these elements for medicine, production, or trade. If these elements were used in society, this was likely 

limited to artisans or individuals working within specialized centers such as schools or monasteries. 

Furthermore, the low concentrations and little variability in concentrations of each element seen between 

individuals corroborates the interpretation that the sampled individuals represent a local group of people 

that were born and grew up in Iceland. 

5.5.1 Cadmium in bone  
 

Cumulative cadmium concentrations were analysed in 22 soil samples (Table 5.1), 23 faunal bones (Table 

5.2), and 50 human bone samples (Table 5.3). This section addresses Research Question 1.2.3 and 1.2.4. 



116 

 

The cadmium concentrations of all human samples (n=50) ranged from <0.03-7.14 ppm with a mean of 

1.13 ppm. At Skriðuklaustur (n=36), the bone cadmium concentrations ranged between <0.03-7.14 ppm 

and the overall mean was 1.23 ± 1.39 ppm. At Skeljastaðir (n=14), the bone cadmium concentrations ranged 

between 0.09-4.06 ppm and the overall mean was 0.88 ± 1.31 ppm (Tables 5.3 and 5.4). Overall, the bone 

cadmium concentrations were slightly higher at Skriðuklaustur than at Skeljastaðir, but inter-site 

differences and differences between sex and age groups in cadmium concentrations were not statistically 

significant (Table 5.5).  

 

According to the results of this research, some individuals may have been exposed to cadmium close to the 

time of their death. Assuming no diagenetic processs were at play, 16 out of 36 (44%) of individuals from 

Skriðuklaustur exhibited elevated cadmium concentrations (>1 ppm) while the remainder (20 out of 36; 

55%) had normal concentrations. At Skeljastaðir, two out of 14 individuals had elevated concentrations, 

while the rest had normal cadmium levels. Research by Martinez-García et al. (2005) on Medieval skeletal 

remains from Spain found that cadmium concentrations were typically higher in ribs than in other skeletal 

tissues. This factor further demonstrates that the values determined in this research are relatively low, 

particularly considering that some of their results were as high as 19.0 ppm (Martinez-García et al., 2005). 

However, cadmium and lead concentrations have been observed to be significantly correlated in other 

bioarchaeological studies (e.g., González-Reimers et al., 2003). It is therefore possible that the elevated 

bone cadmium concentrations observed at Skriðuklaustur in this study could be correlated with lead 

pollution at the monastery, particularly considering the low prevalence of elevated cadmium concentrations 

at Skeljastaðir where lead pollution was not indicated. Although elevated concentrations could reflect 

exposure to volcanogenic cadmium, other sources such as smoke inhalation, tobacco smoking and working 

with objects containing cadmium are more likely to be the cause when considered in combination with the 

other bone element concentrations. 

5.5.2 Arsenic in bone  
 

Cumulative bone arsenic concentrations were determined in 22 soil samples (Table 5.1), animal bones 

(Table 5.2) and all the human bone samples (Table 5.3). This section addresses Research Question 1.2.3 

and 1.2.4. The arsenic concentrations of all samples (n=50) ranged between <0.003-0.947 ppm with a mean 

of 0.17 ± 0.18 ppm. At Skriðuklaustur (n=36), the bone arsenic concentrations ranged between 0.003-0.947 

ppm and the overall mean was 0.21 ± 0.20 ppm. At Skeljastaðir (n=14), the bone arsenic concentrations 

ranged between 0.033-0.172 ppm and the overall mean was 0.08 ppm ± 0.05 (Table 5.4). Overall, the bone 

arsenic concentrations were significantly higher (t-test, p=0.02) at Skriðuklaustur than at Skeljastaðir. The 

males at Skriðuklaustur had significantly higher arsenic concentrations (t-test, p=0.02) than the males at 

Skeljastaðir and this was the same for younger individuals (t-test, p=0.05). No other inter-site differences 

or differences between sex and age groups were statistically significant (Table 5.5). None of the individuals 

analysed in this research presented with concentrations indicative of toxicity (>1 ppm), although toxicity 

has been noted in modern individuals within the range of 0.5-1.0 ppm. If this range is used as an indication 

of potentially elevated arsenic levels, then two individuals (SKR 144, 0.947 ppm; SKR 65, 0.782 ppm) 

from Skriðuklaustur may have been exposed to arsenic. However, considering the propensity of arsenic to 

infiltrate bone diagenetically, such interpretations must be made cautiously regardless of the extremely low 

background levels found in the natural environment in Iceland. 

 

Since arsenic toxicity normally occurs with concentrations greater than 1 ppm (Swift et al., 2015), the 

results of this study indicate that none of the analysed individuals suffered from arsenic toxicity. However, 

seven individuals from Skriðuklaustur had notably higher concentrations than the others, including one 

older adult female (SKR 144) that presented with a bone arsenic concentration of 0.947 ppm, which is just 

under the threshold of potential toxic exposure. Additionally, a younger adult female (SKR 65) also 

presented with a slightly elevated bone arsenic concentration (0.782 ppm). This individual, who was one 

of just seven people buried within the church itself, also had elevated cadmium (1.330 ppm), mercury (0.476 
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ppm) and lead (37.3 ppm) bone concentrations, all of which may be correlated with a special status as a 

benefactor, layperson, or medical practitioner within the monastery. Furthermore, arsenic is a byproduct of 

tin and copper mining and it is also commonly found in sulphur and other metals. Since refined sulphur 

was found at Skriðuklaustur (Walser III et al., 2019) and was an important commodity sourced in Iceland 

(Mehler, 2016), it is possible that elevated arsenic concentrations in the people buried at Skriðuklaustur are 

correlated with medicinal uses of sulphur or with occupational exposure through sulphur mining and 

processing. On the other hand, at Skeljastaðir, none of the individuals showed increases in bone arsenic 

concentrations, which is worth noting considering its proximity to use and during a volcanic eruption. This 

may indicate that anthropogenic activities (e.g., medical preparations, sulphur mining or refining) were a 

more likely source of arsenic exposure than environmental emissions in Medieval Iceland. However, 

despite extremely low background levels of arsenic in the natural environment in Iceland, arsenic is known 

to infiltrate bone diagenetically and thus such interpretations must be made cautiously.  

5.5.3 Arsenic, cadmium, and antimony in dental enamel 
  

This section addresses Research Questions 1.2.2, 1.2.3 and 1.2.4. Dental enamel concentrations of arsenic 

have been reported in ancient and contemporary human teeth as ranging between <0.001-0.406 ppm 

(Rasmussen, 1974). In this study, all individuals presented with detectable concentrations of arsenic in 

enamel that ranged between 0.005-0.124 ppm, indicating that none of them were substantially exposed to 

arsenic during childhood (Table 5.6 and 5.8). Similar to the cadmium concentrations found in dental 

enamel, the concentrations determined in this research are well below the baselines determined in ancient 

and modern human teeth, thereby indicating that the sampled individuals were not substantially exposed to 

arsenic during childhood dental development.  

 

In this study, 19 out of 31 individuals presented with detectable concentrations of cadmium in enamel. The 

19 samples with detectable cadmium concentrations ranged between 0.002-0.138 ppm (Tables 5.6 and 5.8). 

Few studies have assessed cadmium concentrations in dental enamel, but in modern non-adult dental 

enamel Bayo et al. (2001) found cadmium concentrations to range from 0.007-0.610 ppm and Tvinnereim 

et al. (2000) found a mean of 0.113 ± 392 ppm. It is unlikely that substantial exposure to cadmium occurred 

during childhood in any of the individuals sampled in this study considering the results fall within a range 

that is lower than the baseline concentrations determined in modern individuals. This indicates that 

cadmium exposure among the individuals analysed here did not exceed normal background limits.  

 

Dental enamel concentrations of antimony have been reported in ancient and contemporary human teeth as 

ranging between <0.001-1.59 ppm (Rasmussen, 1974). In this study, 30 out of 31 individuals presented 

with detectable concentrations of antimony in enamel that ranged between 0.002-0.181 ppm, indicating that 

none of them were substantially exposed to antimony during childhood (Tables 5.6 and 5.8). The dental 

enamel antimony concentrations determined in this study are far lower than the upper limits of the baselines 

reported by Rasmussen (1974). 

5.6 Origins and elements 

 

5.6.1 Health and cultural implications of mobility or migration according to bone collagen 

isotope (δ34S) and dental enamel isotope (87Sr/86Sr, δ18O) analyses  
 

This section addresses Research Questions 1.2.1, 1.2.2 and 1.2.4. The δ18O, δ13C and 87Sr/86Sr (n=31) from 

enamel samples can be seen in Table 5.6 and isotope ratio mean averages and ranges in Table 5.7. The 

human samples from Skriðuklaustur range from 0.7060 to 0.7088 and all fall within the lower geological 

end-member of basalt and the upper end-member of the Icelandic biosphere of rain and seawater, i.e. 0.7030 
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to 0.7092. The animals and humans were all consistent with geographic provenance in Iceland or other 

areas of marine or basaltic limestones, the only two rock types that produce biosphere values under 0.7092 

(Figure 5.26). The human δ18Ocarbonate values range from 22.8 to 25.0 ‰, mean = 24.2 ± 0.6‰. Using the 

equations provided in Chenery et al. (2012) (δ18Ophosphate = 1.0322 x δ18Ocarbonate – 9.6849 and δ18Odrinkingwater 

= 1.590 x δ18Ocarbonate (VSMOW) – 48.634), this equates to a δ18Ophosphate range of 13.9 to 16.1‰ and mean of 

15.3 ± 0.6‰. The δ18Odrinkingwater values range from -12.3 to -8.9‰. Converting enamel δ18O to precipitation 

significantly raises the uncertainty of individual measurements, which is ±1‰ (2SD) according to Chenery 

et al. (2012). Nevertheless, the range for human dental enamel falls into the annual Icelandic δ18O range for 

modern precipitation (-13‰ to -8‰) (see Price et al., 2015: Fig. 20; Bowen, 2018). It is also close to the 

values seen in groundwater in modern contexts (range -8.2 to -8.8; n=11) (Friedrich and Schlosser, 2013). 

Water sources in the North Atlantic region may have been affected by climate changes in the past, such as 

those that occurred during the Little Ice Age (Fricke et al., 1995; Daux et al., 2005, 2008), but these results 

provide a δ18Odw range exceeding 3‰ at -12.3 to -8.9 ± 1‰ (2SD) for Medieval humans of apparent 

Icelandic geographic provenance based upon their 87Sr/86Sr ratios (Article II). 

 

 

Figure 5.26 A plot of δ18Ophosphate and 87Sr/86Sr values for the enamel samples from individuals buried at 

Skriðuklaustur (SKR; dark blue). For comparison, Settlement period migrants are indicated by the light-

yellow markers (Gestsdóttir and Price, 2006 except LKS 1). LKS 1 indicates the settlement period migrant 

known as Bláklædda konan (Montgomery and Jakob, 2015). Icelandic bedrock (0.703), sheep (0.706) and 

seawater (0.7092) are indicated by the horizontal lines (also see Table 3.1). Error bar for standard 

deviation for δ18O at ±0.5‰ and 87Sr/86Sr at 0.002 

The geographic provenance of the people buried in the temporally constrained cemetery at Skriðuklaustur 

(AD 1493-1554) was unclear prior to this research (Article II), but it was thought they might have been a 

mixture of locals, foreign traders, patients, and pilgrims seeking treatment, hospice and commerce, 
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particularly in light of the site’s hospital status and international network (Kristjánsdóttir, 2012, 2017). The 

oxygen and strontium isotope findings indicated that the sampled individuals were all of local provenance 

(no samples exceeded the 87Sr/86Sr value of rain and seawater, 0.7092). However, it is still possible that 

some of them first resided on chalk, which has a range of 0.708-0.709 (e.g., Southern Britain and Denmark) 

(see Evans et al., 2010; Evans et al., 2012; Montgomery et al. 2014). Nevertheless, the δ18Ophosphate values 

are not consistent with a geographic provenance in Ireland or Britain, where δ18Ophosphate would then fall 

into the range of 16.3‰ to 19.1‰ (see Montgomery et al., 2014). Additionally, the δ18Ophosphate range is ca. 

2‰, the standard range of a single temporally contemporaneous population. When 87Sr/86Sr approaches the 

value of sea and/or rainwater, δ13Ccarbonate values move away from a terrestrial value thus indicating greater 

marine-derived carbon and strontium input in the diet (Figure 5 of Article II). It must be remembered though 

that δ13Ccarbonate reflects whole diet (e.g., protein, carbohydrates, fat) instead of just the protein portion of it. 

The δ13Ccarbonate and 87Sr/86Sr variability might suggest though that some individuals (e.g., SKR 167) 

subsisted on a wholly terrestrial diet while also residing further away from the coast (lower δ13Ccarbonate, 

more basaltic-derived 87Sr/86Sr values) in childhood. Meanwhile, those with higher δ13Ccarbonate and more 

marine-derived 87Sr/86Sr values (e.g., SKR 10 and 14) seem to have subsisted on seafood and resided closer 

to the coast where seaspray and splash were more prevalent. This positive correlation is reinforced by the 

Sr concentrations, that are likewise positively correlated with δ13Ccarbonate and 87Sr/86Sr: enamel Sr content 

increases while Sr isotope ratios move towards the seawater value (see Figure 5.26). This implies that the 

higher values are associated with people that grew up in areas close to the coast where the consumption of 

seaweed and seaweed-grazing fauna and marine seasplash and spray affected the foodweb. On the other 

hand, individuals with lower ratios and concentrations lived further from the coast in inland areas where 

the food chain was dominated by basalt. Though there is a logical correlation between these three 

parameters, it is only rarely seen this clearly in human populations. These findings imply that isotope 

analyses could even be used to identify geographic provenance within Iceland.  

The older adult male (SKR 174) that had bone changes associated with Paget’s disease of bone (e.g., 

endocranial “cotton wool” appearance, cranial diploë expansion, diffuse and abnormal new bone formation 

on the long bones and cranium) (see Ortner, 2003) had the lowest 87Sr/86Sr value, which suggests that he 

was originally from an inland area (see Figure 5.26 and Figure 5 of Article II). Clinical research shows that 

patients with Paget’s disease of bone involving the femur, tibia, or acetabular region of the ilium experience 

statistically and clinically significant mobility and functional impairments (Lyles et al., 1995). In addition 

to mobility limitations, it frequently leads to muscular atrophy and sensory and psychological (e.g., 

deafness, dementia) impairments (Monsell, 2004; Kimonis et al., 2008) which can increase the risk of social 

disability (see Roberts, 2000). They may have relocated to the monastery from an inland area to seek 

medical assistance, possibly aided by members of his local community. Medieval Icelandic monasteries, 

according to the written record, were each responsible for designated areas of the country. Thus, people 

went to the monastery within their region when they required their services (Kristjánsdóttir, 2016; 2017). 

Sometimes corpses were transported to the designated monastery from the place of death to receive funerary 

services and proper burial rites (Kristjánsdóttir, 2017: 134, 248-249). Though Icelandic monasteries did not 

all function as hospitals, they were principally required to deliver aid to those seeking it, especially travelers 

and the poor or homeless (Kristjánsdóttir, 2016; 2017). Since Skriðuklaustur was responsible for the south-

eastern quarter of Iceland (Kristjánsdóttir, 2016), at least some of the samples from there are likely to 

represent individuals coming from somewhere within this district. Meanwhile, from Skeljastaðir, only one 

sampled individual (ÞSK 39) (n=33) was of foreign geographic provenance (Price and Gestsdóttir, 2006). 

They also had a substantially higher δ15N value than the rest of the sample set, both in the results presented 

here and in those presented by Sveinbjörnsdóttir et al. (2010) (Figures 5.27 and 5.28). This dietary 

difference could thereby be related to their non-local geographic origin and the diet they ate before they 

relocated and resided at Skeljastaðir. 
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5.6.2 Other indicators of ancestry, provenance, and environmental influences 

 

According to the study presented here (n=186), 63% (95% confidence interval, 55% to 70%) of the analysed 

skeletal individuals dated between the 10th-19th centuries exhibited mandibular torus, while 40% (95% 

condence interval, 32% to 49%) exhibited palatine torus. In addition, 27% (95% confidence interval, 20% 

to 34%) of these individuals also exhibited maxillary tori. The decreased prevalence in oral tori from the 

ancient to modern Icelanders is unlikely to be associated with ancestry-linked genetic components, rather, 

it is more likely to be due to a decrease in environmental stressors and significant changes in subsistence. 

Scott et al. (2016) found that archaeological Greenlandic Norse and Icelanders had a high frequency of 

morphologically pronounced (65-97%) mandibular torus, while comparative Medieval Norwegians had a 

significantly lower frequency (48%) and Danish Viking skeletons had a very low rate (9%). Axelsson and 

Hedegaard (1981) found that modern Icelanders (n=976) had a mandibular torus prevalence of 13% in one 

region (n= 213; North Þingeyjarsýsla) and 30% in another (n=763; South Þingeyjarsýsla), notably lower 

than prevalence rates found in archaeological individuals from Settlement Period Iceland. Since the 

prevalence of mandibular torus has decreased over time and considering that Norse ancestry increased from 

the Settlement period to the present (see Ebenesersdóttir et al., 2018), any heredity association with this 

trait would have to be positively linked with Gaelic ancestry. Although earlier family studies (e.g., Moorrees 

et al., 1952; Suzuki and Sakai, 1960) suggested a hereditary origin of mandibular torus (autosomal dominant 

mode of inheritance), they did not consider diet, socio-economic status and other variables that may be 

shared within or between families in each population. Recent evidence rather indicates the strong 

environmental, dietary, and mechanical components of variance associated with the expression of 

mandibular (Scott et al., 2016; Baumann et al., 2017) and palatine torus (Halffman and Irish, 2004). 

 

5.7 Dietary health implications according to bone collagen isotope (δ13C, δ15N, δ34S) and 

dental enamel isotope (δ13Ccarbonate) analysis, dental enamel trace element (Zn) analysis and 

osteological analyses 
 

5.7.1 Diet implications of bone collagen (δ13C, δ15N, δ34S) and enamel (δ13Ccarbonate) analysis 
 

This section addresses Research Questions 1.2.5 and 1.2.6. C:N atomic ratios (SKR C:N atomic mean of 

3.2, ÞSK C:N atomic mean of 3.3) were between 3.0 and 3.4 for all human and animal bone samples, which 

provided well preserved bone collagen (see Ambrose, 1990; DeNiro, 1985). While no significant 

differences in δ13C or δ15N values were found at either site across age groups or between males and females, 

one male from Skeljastaðir (ÞSK 44, higher) and two males from Skriðuklaustur (SKR 135, lower, and 

SKR 172, higher) showed outlying δ34S values. Descriptive statistics are presented in Table 5 of Article II. 

Following the values indicated by Arneborg et al. (1999), which are derived from research performed on 

humans from Canada, Norway, Sweden, and western Greenland (see Sveinbjörnsdóttir et al., 2010), the 

Skeljastaðir assemblage (n=14) showed a terrestrial dietary signal (closer to the terrestrial dietary end-

member of -21‰) while the Skriðuklaustur assemblage (n=36) presented with a range and overall δ13C 

mean indicative of a marine diet (closer to the marine dietary end-member of -12.5‰). The δ13C and δ15N 

results found by Sveinbjörnsdóttir et al. (2010) from individuals analysed from Skeljastaðir are included in 

the means, thus increasing the total number of sampled individuals to n=24 (excluding δ34S values). Despite 

the nearly identical δ15N values Sveinbjörnsdóttir et al. (2010) reports, their δ13C sample values are 1-2‰ 

higher than the values found in this research. A 1-2‰ offset of δ13C was even observed among the three 

samples which were re-analysed during this study (ÞSK 16, 34 and 48). Thus, when the two sets of data are 

examined together it becomes clear that the overall δ13C mean at Skeljastaðir is elevated by ca. 1‰. The 

offset is likely the result of inter-laboratory differences.  
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The nitrogen and carbon isotope ratios (bone collagen) from adult individuals sampled from Skriðuklaustur 

indicated a diet dominated by mixed C3 terrestrial and marine protein. The significantly different diet 

consumed at Skeljastaðir, on the other hand, was C3 terrestrial protein dominated. The δ13C, δ15N and δ34S 

mean values derived from faunal bones (n=25) from Skriðuklaustur can be seen in Table 6 of Article II and 

plotted in Figures 5.27 and 5.29. As no faunal bones from Skeljastaðir were available for sampling, the 

human isotope results from there are only comparable with animal baselines from Skriðuklaustur (Figure 

5.27 and Table 6 of Article II) and other Icelandic sites (Table 2 of Article II). With Canidae species, a 

single sample showed a notably low δ15N (1.6‰) value, yet the other showed a substantially higher δ15N 

(9.1‰). This difference could imply that these two samples are from different species (e.g., wild arctic fox 

and domestic dog) or that they could be from the same species with different diets. Also, two domestic goat 

or sheep samples presented with notably higher carbon and nitrogen isotope ratios (δ13C ca. -13.8, δ15N ca. 

14.3, δ34S ca. 13.4) than the others (n=5) (mean δ13C -21.6 ± 0.5‰, δ15N 2.5 ± 1.3‰ and δ34S 4.1 ± 1.6‰), 

implying that they heavily consumed marine resources (see Schulting et al., 2017). Sayle et al. (2013). Sayle 

et al. (2013), for comparison, published sheep or goat samples with means of δ13C -21.2 ± 0.4‰, δ15N 2.5 

± 1.1‰ and δ34S 6.7 ± 1.9‰ but no δ15N outliers in were observed. These findings indicate that, for 

domestic animals, different feeding strategies were practiced.  

 

Figure 5.27 Plot of δ13C versus δ15N values for sampled individuals from Skriðuklaustur and Skeljastaðir. 

Also plotted are the δ13C versus δ15N values of the archaeological animal bone samples from 

Skriðuklaustur, except for freshwater fish, which were reported in Sayle et al. (2013). The data points within 

the black square and ÞSK 39 represent individuals from Skeljastaðir as reported in Sveinbjörnsdóttir et al. 

(2010). 2SD error ±0.4‰ 

The δ13Ccarbonate values, representing childhood whole diet, have a mean of -15.2 ± 0.8‰ and range from -

16.6 to -12.9‰. Aside from SKR 10 and SKR 14, all the individuals were in the expected range of a diet 
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predominately acquired from C3 terrestrial resources (-17.0 to -14.0 ‰; see Kellner and Schoeninger, 2007; 

Froehle et al., 2012; Neil et al., 2017). When the δ13Ccarbonate values are plotted against the δ13Ccollagen it may 

be seen that all sampled individuals fell between the C4/marine protein line and the C3 protein line, further 

demonstrating the mixed marine and terrestrial subsistence strategy held at Skriðuklaustur (Figure 5.28). 

 

 

Figure 5.28 δ13Ccarbonate vs. δ13Ccollagen plot of individuals from Skriðuklaustur 

As previously shown by Sveinbjörnsdóttir et al. (2010), subsistence at Skeljastaðir was predominately based 

on terrestrial protein resources. During the Medieval Warm Period, within just a few decades of AD 1000, 

North Atlantic sea fishing increased substantially (Barrett et al., 2004). At Skeljastaðir there was a low 

input of marine resources, likely because subsistence strategies focused on sea-fishing were less common 

at the time of the site’s occupation (AD 1000-1104). It is however possible that this just relates to the long 

geographical distance (ca. 60 km) between Skeljastaðir and the coast. Similarly, δ13C and δ15N isotope 

analyses conducted on skeletal remains from the United Kingdom by Müldner and Richards (2007) showed 

that High Medieval groups subsisted on significantly more marine resources than earlier populations and 

that church-imposed regulations regarding dietary fasting were likely responsible. While no documentary 

evidence about Skeljastaðir is available, archaeological data demonstrates that as many as 15 other farms 

existed in the valley before the Hekla eruption of AD 1104. The valley is a verdant grazing land and has 

numerous freshwater sources containing fish (Steffensen, 1943; Þórðarson, 1943; Dugmore et al., 2007; 

Gestsdóttir, 2014). The sulphur isotopes (δ34S), when compared with bone collagen derived δ13C and δ15N 

values, indicate that some individuals from Skeljastaðir consumed freshwater protein in a greater quantity 

than others, while individuals from Skriðuklaustur subsisted more heavily on a mixture of fresh and 

saltwater resources (see Figure 5.29).  
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Figure 5.29 A. Plot of δ15N versus δ34S values determined from the sampled herbivores from Skriðuklaustur. B. Plot of δ15N versus δ34S values 

determined from the archaeological human and animal bone samples from both sites. C. Plot of δ13C versus δ34S values determined from the 

archaeological human and animal bone samples from both sites. Freshwater fish (n=12; not shown on plots) exhibit mean δ13C values of -9.8 ± 0.6, 

δ15N values of 5.9 ± 0.6 and δ34S values of -2.7 ± 1.4, according to Sayle et al. (2013). There was not enough collagen to measure δ34S for SKR 174 
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The carbon and nitrogen results derived from human bone collagen from Skriðuklaustur line up with 

zooarchaeological findings and historical evidence, showing a subsistence strategy high in marine and 

possibly freshwater fish protein. No sex differences were observed in dietary intake. Following a trophic 

shift of +1‰ for carbon and 5.5 ± 0.5‰ for nitrogen (see Fernandes, 2015; Sayle et al. 2016), which results 

in a δ13C value of -20.7‰ and a δ15N value of 7.7 ± 0.5‰, none of the humans sampled from Skriðuklaustur 

consumed a completely terrestrial protein diet during adulthood. If the two fishmeal or seaweed grazing 

sheep or goats (see Figure 5.27) are included, however, then a +5.5 ± 0.5‰ trophic shift provides a δ15N 

value of 9.2 ± 0.5‰. In that case, a single individual (SKR 22; 16.5-18.5 years old) with a significantly 

lower δ15N value (8.6‰) subsisted on a solely terrestrial diet. As the individual has a cleft lip (cleft 

premaxilla) and palate (cleft maxilla) (Barnes, 2012) (Figure 2.5) as well as evidence of treponemal disease 

marked by gummatous tibial and cranial lesions (see Hackett, 1976; Ortner, 2003; Aufderheide and 

Rodríguez-Martín, 2011), dietary restrictions and poor general health may be indicated. As described in 

section 2.2.3, palatal clefts or perforations have several origins, such as from congenital birth defects or 

late-stage venereal syphilis, and frequently result in notable problems with talking, drinking, and eating 

(Patil, 2016; Ilczuk-Rypula et al., 2017). Overall, the isotope results suggest that the people living at 

Skriðuklaustur ate a varied diet of marine and terrestrial resources. Considering the reliable access that the 

monastery had to both imported and local foodstuff, it is suggested that the people living there acquired a 

fair supply of nutritious food. 

 

5.7.2 Dietary implications of palaeodental analyses  
 

This section addresses Research Questions 1.2.1, 1.2.5 and 1.2.6. Earlier studies have indicated a notably 

high dental wear rate, probably resulting from parafunctional behaviours (e.g., weaving vaðmál, a woollen 

fabric) and the local past diet of tough/gritty foods, acidic drinks, and dairy products (Scott and Jolie, 2008; 

Lanigan and Bartlett, 2013; Richter and Eliasson, 2017; Hoffman, 2018). As previously mentioned (section 

3.2.2), the staples of the diet were dried or cured meat, dried fish, stone-ground grain, cheese, milk, and 

fermented milk products (i.e., súr mysa,) (Gísladóttir, 1999; Mehler, 2011; Svanberg and Ægisson, 2012).  

 

Carious lesions (<1%) had a low prevalence, which is probably related to the high rate of calculus (>60%) 

(see Green et al., 2005) as well as the past diet, which was high in protein and low in flour, grains, and 

sugar until the 20th century (see Jónsson, 1998; Gísladóttir, 1999; Sigurðsson, 2010; Mehler, 2011; 

Bjarnadóttir, 2016). In combination with the low fluoride content found in Icelandic aquifers and drinking 

water, fluoride bound within large calculus deposits, which were common in the skeletal assemblages, 

might have likewise aided in cariostasis (see Tatevossian, 1990; Aspiras et al., 2010; Gunnarsdóttir et al., 

2016). The childhood disease burden of dental fluorosis was low overall overall. At Herculaneum, for 

comparison, 47% of teeth had linear enamel hypoplasia, 55% had enamel mottling, 18% had 

hypomineralisation and 20% of teeth had dental caries. However, hypercementosis was only observed in a 

few individuals (Table 5.11; Petrone et al., 2013).  

 

Table 5.11 Comparison of results of dental analyses performed on teeth from Herculaneum (Petrone et al., 

2013) and Iceland (this study). The percentages are derived from the total number of teeth analysed from 

each site. Percentage for hypercementosis was not reported in Petrone et al. (2013). The percentages of 

dental changes indicative of fluorosis are much higher among individuals from Herculaneum than Iceland 

 

 

Herculaneum Iceland

Linear enamel hypoplasia 47% 16%

Enamel mottling 55% 3%

Hypomineralisation 18% 8%

Dental caries 20% <1%

Hypercementosis 2 teeth 8%
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Metabolic deficiencies (e.g., vitamin D, rickets and osteomalacia; vitamin C, scurvy) are important 

predisposing factors for skeletal fluorosis (Gupta et al., 1996; Khandare et al., 2005). However, as 

previously mentioned (see section 2.2.5), both have only rarely been observed in Icelandic osteological 

studies. Additionally, scurvy can contribute to periodontal disease (Timmerman et al., 2007; Roberts and 

Manchester, 2010; Zoëga and Murphy, 2016), which was observed in ca. 72% of the individuals analysed 

in this study. Dental calculus and periodontal disease were also common in historical Iceland and more 

prevalent than in neighbouring countries (Sigurðardóttir, 2017). For example, at the early Christian 

cemetery of Keldudalur in northern Iceland, all the individuals (n=21) presented with calculus (Zoëga and 

Murphy, 2016). As high protein diets increase oral alkalinity (Moynihan, 2000; Hillson, 2008; Roberts and 

Manchester, 2010), the high prevalence of calculus deposition is likely correlated with the historical staple 

diet that was predominately composed of meat, fish, eggs and dairy (Gísladóttir, 1999; Mehler, 2011). Diets 

high in dairy or milk proteins can further contribute to the hardening of dental plaque, thereby increasing 

calculus deposition; the calcium, phosphate and casein found in milk and cheese are cariostatic and 

therefore provide some prevention from caries, particularly in the absence of sugar (Moynihan, 2000; 

Johansson, 2002). Grains, flour, and sugar were uncommon and were not found in large quantities until the 

20th century (Gísladóttir, 1999; Sigurðsson, 2010; Mehler, 2011; Bjarnadóttir, 2016). Other factors that 

contribute to calculus formation include genetic variation, dental hygiene, local pH, and salivary flow 

(Hardy et al., 2009) and these must also be considered. For example, both cheese consumption and heavy 

mastication increase salivary flow, which also raises oral pH/alkalinity (Moynihan, 2000). Furthermore, 

calculus (a mineralisation process) acts as a shield from the bacterial acids that cause carious lesions (a 

demineralisation process), despite being partly composed of the same microorganisms responsible for 

caries. Essentially, the increase of calculus leads to an increase in periodontal disease and a decrease in 

carious lesions (Greene et al., 2005).  

As calculus itself is a significant contributor to periodontal disease, the high rate of calculus (60% maxillary 

and 68% of mandibular teeth affected) noted in this research likely contributed to the high rate of 

periodontal changes (i.e., alveolar resorption in ca. 72% of individuals) as it displaces gingival epithelial 

tissues enabling bacteria and non-calcified plaque to reach the alveolar process (Riethe, 1974; Albandar 

and Kingman 1999; Kinane, 2002). The high calculus prevalence likely also contributed to the prevention 

of carious lesions, which had a very low prevalence (ca. 1%) as previously mentioned (see Table 5 in Article 

III). While there may be some correlation with dental calculus fluoride content and cariostasis (see 

Tatevossian, 1990; Aspiras et al., 2010), the generally low fluoride concentrations in Icelandic aquifers (see 

Gunnarsdóttir et al., 2016) imply that low fluoridation in natural drinking water was not an important 

contributor to caries prevention in the historical population. Therefore, it is far more likely that dietary 

factors are responsible for the low prevalence of carious lesions. Since carious lesions were rare, the 146 

maxillary and 140 mandibular periapical lesions (ca. 5% of all alveolar sockets) and the 298 maxillary and 

242 mandibular teeth lost ante-mortem (ca. 8% of all teeth) observed in this research are likely correlated 

with non-carious pulp exposure and mechanical oral stress (see Clarke and Hirsche, 1991; Molnar, 2008) 

as was noted in a previous study of the Skeljastaðir assemblage (Richter and Eliasson, 2017). Other factors, 

such as vitamin D deficiency and hormonal changes that alter bone density could have also contributed to 

the rates of periodontal disease and ante-mortem tooth loss (Burnett, 2016; Hoffman, 2018). As previously 

noted, dental hygiene was limited and although toothpicks were historically common, toothbrushes were 

not until well into the 20th century (Sigurðardóttir, 2017). These observations indicate that subsistence 

significantly contributed to the notable dental wear, which was likely an important factor in overall dental 

health in historical Iceland. Indeed, other osteological studies conducted on Icelandic assemblages have 

shown extremely low caries rates combined with extremely high rates of calculus, dental attrition, 

periodontal disease and other oral or dental pathologies (see Gestsdóttir, 2004, 2008, 2009; Kristjánsdóttir, 

2012; Lanigan and Bartlett, 2013; Zoëga, 2016; Richter and Eliasson, 2017).   
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5.7.3 Dietary implication of zinc concentrations determined in dental enamel  
 

This section addresses Research Question 1.2.6. Clinical research has found a connection between 

malnutrition and lower enamel zinc concentrations (Brown et al., 2004). It has also shown that enamel zinc 

concentrations of more than 90 ppm might indicate poor zinc uptake in childhood (e.g., Tvinnereim et al., 

1999). Other research demonstrates that essential trace element deficiencies, like calcium, can lead to the 

rapid and abnormal absorption of poisonous metals (e.g., lead), especially in malnourished non-adults 

(Talpur et al., 2018). Zinc is a homeostatically-controlled essential trace element. Nevertheless, its 

concentrations can be altered by multiple complex interactions occurring with disease, diet, digestion, 

absorption, and individual variation. Thus, zinc concentrations derived from dental enamel might not 

actually relate to either diet or health (Ezzo, 1994; Dolphin and Goodman, 2009). The lowest zinc 

concentrations seen in this research were found in an adult male (SKR 150) (47.3 ppm) and an adult female 

(SKR 195) (43.8 ppm), potentially suggesting they received a limited supply of zinc as children (see 

Supplementary Figure S2 in Article II). They also had dental enamel hypoplasia, a skeletal marker 

associated with periods of metabolic or general health stress occuring childhood (see Ortner, 2003). The 

highest zinc concentration (145.83; SKR 10) was still well within the lower side of the scope of expected 

dental enamel zinc concentrations (9.9-1550 ppm) (see Jaouen et al., 2017).  

5.8 Hidden dangers? 
 

This section addresses all the research questions, but especially addresses Research Questions 1.2.1 and 

1.2.7. Environmental conditions, changes and events have partly shaped how space and human settlements 

were used by people and their animals and vice-versa in a reciprocal process (Black, 1981; McKinzey et 

al., 2005). Humans are known to react to both the immediate and anticipated dangers they face (e.g., 

environmental, interpersonal/intergroup conflict) (Lowe et al., 2002). Therefore, it is worth considering 

whether assessments of volcanic risks held a secondary role in choosing locations for villages or farms in 

the past. For example, ethnographic data and oral history from the Maori of New Zealand discuss taboos 

around visiting regions subject to substantial volcanic activity (Lowe et al., 2002). Historical texts also 

imply that people were aware of the devastating effects of volcanism and subsequent fallout (Creighton, 

1965) and likely acted to minimize their exposure risk perhaps by considering evacuation pathways, 

resource supply and geographic proximity of residence to volatile areas (Black, 1981; Grattan, 2006). 

However, records indicate that this may not have been the case in historical Iceland (Karlsson, 2000). In 

some cases, entire regions or settlements were destroyed leading to the displacement of the population and 

cultural discontinuity with known allies, neighbouring villages, or traders/merchants. The psycho-social 

impacts of such displacements, in addition to the severe alteration of weather patterns and light conditions, 

can be as debilitating in terms of health and survival as the direct physical impacts (Black 1981; Noji, 1997; 

Grattan, 2006; Dugmore and Véststeinsson, 2012). Additionally, challenging geographic topography (e.g., 

Icelandic lava fields and glaciers) often imposes mobility limitations for individuals with physical 

impairments (Institute of Medicine, 1997), such as skeletal fluorosis, that may lead to social disability 

(Seeley, 2001a, 2001b). The ethnographic record has also demonstrated that tectonic and volcanic activities 

have resulted in the abandonment or fleeing of settlements due to fear and panic (e.g., 19th century Aleutian 

villages abandoned following earthquakes and volcanic eruptions) (see Black, 1981). Regardless, these 

abandonments should likely be perceived as short-term responses: evidence shows that these abandoned 

places are often later reinhabited or are reestablished in nearby locations (Black, 1981). While Skeljastaðir 

and other Þjórsárdalur farms were abandoned during the Hekla eruption of AD 1104, for example, Dugmore 

et al. (2007) report evidence of human activity and animal grazing persisting at least until a subsequent 

eruption in AD 1300. Regardless, few historic Icelandic eruptions have directly resulted in individually 

known fatalities, although mass fatalities certainly occurred during volcanic fallout due to famine, disease, 

and extreme environmental change (D’Alessandro, 2006; Gestsdóttir et al., 2006; Grattan, 2006).  
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The disease burden of skeletal fluorosis, even when considering possible predisposing factors, appears to 

be lower in historical Iceland than originally hypothesised. The arid climate in the Arabian Gulf has 

contributed significantly to the prevalence of fluorosis, which remains common in that region today. 

Meanwhile, despite the high volcanic activity, Iceland has a subarctic climate, which was likely a key factor 

in the low prevalence of skeletal fluorosis. The results suggests that the dental and skeletal changes reported 

in this research appear to be more connected to population dynamics, culturally mediated behaviors (e.g., 

gendered social roles, marine food sourcing), environment, and increasing urbanization than widespread 

fluoride pollution. These findings agree with the results of a pilot study (n=3) by Gestsdóttir et al. (2006), 

which used palaeopathology, radiography, and ICP-MS to investigate osteofluorosis in skeletal individuals 

from two burial grounds close to the Laki fissure, that were used around the time of the AD 1783-1784 

eruption. The results did not show any bone changes suggestive of skeletal fluorosis and the concentrations 

did not exceed normal baselines (Gestsdóttir et al., 2006).  

 

Volcanogenic mercury emissions on the other hand seem to have affected all the analysed individuals from 

Skeljastaðir, either through chronic exposure via passive volcanic degassing or due to heavy subacute 

exposure during the eruption of Mt. Hekla (AD 1104). At Skriðuklaustur, in contrast, ca. 31% of the 

analysed individuals exhibited elevated mercury concentrations consistent with the long-term, low-dose 

exposure that patients undergoing mercurial medicinal treatments received. The dietary isotope analyses 

demonstrated the importance of marine dietary resources in Iceland (e.g., Skriðuklaustur), but also showed 

that freshwater fish were consumed in areas far from the sea (e.g., Skeljastaðir). It does not appear that the 

consumption of fish or marine mammals (or freshwater fish) resulted in toxic exposure to biologically 

cycled mercury (methylmercury) or fluoride. Marine contamination with mercury and fluoride is believed 

to have increased dramatically only after the Industrial Revolution, which may also explain the apparent 

lack of elevated bone element concentrations in the fish and marine mammal bones. The results of bone 

cadmium and arsenic concentrations were not notably elevated and any low-level exposure to these 

elements indicated in this research is more likely to correlate with anthropogenic activities and cultural 

behaviors than volcanogenic exposure. Most of the analysed individuals with elevated bone lead 

concentrations from Skriðuklaustur – who were all of local geographic provenance according to the multi-

isotope and trace element analyses presented here – also had elevated concentrations in dental enamel, 

indicating that people were likely exposed to lead during childhood and into adulthood, possibly from the 

lead infrastructure or objects found at the site. Meanwhile, Skeljastaðir only had one individual with an 

elevated bone lead concentration, which is likely correlated with their non-local provenance.  

 

Epidemiological and environmental conditions were probably major catalysts for migration or travel to 

Skriðuklaustur as the monasteries could provide aid in times of need (Figure 5.30). Medieval monasteries 

in Iceland were usually found on important travelling paths or close to settlements on the coast where much 

of the population lived (Figure 5.31). While Skriðuklaustur seems to be in an isolated inland valley, at the 

time it was occupied it was actually a central place on an essential path connecting the northern and southern 

halves of eastern Iceland (Kristjánsdóttir, 2012: 296; 2016). Up until the 17th century – at which time the 

travelling route fell out of use because of climate change – pilgrims, patients, merchants, and others 

regularly traversed the Vatnajökull glacier to reach the Fljótsdalur valley (Kristjánsdóttir, 2016) (Figure 

5.32); the area was heavily traveled and thus diseases spread by travellers and patients seeking healing at 

the monasteryr. The Black Death, or the Plague, came to Iceland for the first time in the beginning of the 

15th century, resulting in the death of over half of the population (Karlsson, 2000: 114-117; Kristjánsdóttir, 

2016; Júlíusson, 2018). In 1495-1496, just after Skriðuklaustur was established, the second wave of the 

Black Death appeared in Iceland (Kristjánsdóttir, 2016). Moreover, cases of treponemal disease in Iceland 

have only been confidently diagnosed in individuals excavated from Skriðuklaustur (Kristjánsdóttir, 2012; 

Walser III et al., 2019). This suggests that immediately after the Black Death, cases of treponemal disease 

broke out in Iceland simultaneously with the late 15th century epidemic occurring in mainland Europe (see 

Walker et al., 2014). Various plagues, including the Black Death, likewise coincided with changes in the 
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climate (e.g., cooling weather and sustained summer rains), leading to crop and grass failure, shortage of 

food, and increased disease burden and the population of homeless people (Kristjánsdóttir, 2016). 

 

 

Figure 5.30 Changes in the environment, subsistence economy and public health in Iceland over time. 

Adapted from Mehler (2011). The listed volcanic eruptions were historically recorded as “fires” and in 

some cases one event represents numerous consecutive eruptions (e.g., 10-11 eruptions occurred during 

the AD 1783-1784 Skaftáreldar (Laki) fires) (Thordarsen and Larsen, 2007) 

 

 
 

Figure 5.31 Map of Iceland depicting the locations of Skriðuklaustur (east), Skeljastaðir (south) and the 

trading ports active during the 16th century. Presented here as a courtesy of Natascha Mehler (© Natascha 

Mehler), with additions 
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The brethren living at the Skriðuklaustur monastery bought coastal farms so they would have stable access 

to the important resources (e.g., driftwood, fish, seals, and whales) that the sea offered. These coastal 

properties were clearly essential to their dietary subsistence, especially for religious fasting, but they were 

also important for the trade of fish to other countries and monasteries across northwestern Europe. For 

example, refined sulphur, which was an important trade commodity at the time, was discvovered there 

(Mehler, 2011; Kristjánsdóttir, 2012), potentially for medicinal uses (Leslie et al., 2004) or to produce 

vermilion (Mehler, 2015). Other imports of note include a monastic trumpet, an effigy of Saint Barbara, 

and uncommon ceramics imported to Iceland from France (Kristjánsdóttir, 2012; Mehler et al., 2018). 

Monetary sources included payment for medical services, donations from local benefactors, local and 

international trade, community charity, and education (Steinsson, 1965: 108, 1966; Kristjánsdóttir, 2016). 

Foreign commerce was also a vital part of the subsistence strategy followed at the monastery.   

Numerous fish bones, especially from ling (Molva molva), cod (Gadus morhua), haddock (Melanogranmus 

aeglefinus), rays and were recovered from Skriðuklaustur, again suggesting that fish were a vital part of the 

monastic subsistence strategy. Smaller fish (60-80 cm in length) are normally found around the eastern and 

northern coasts of Iceland and in the Greenland Sea. Meanwhile, larger fish (often over 100 cm), which 

were characteristic at the monastery, are usually fished in the vicinity of the western and southern coasts 

(Kristjánsdóttir, 2016). Relevant to this study is that, compared to smaller fish, larger fish tend to have 

elevated isotope values and higher trophic levels, which could potentially impact consumer’s isotope ratios 

(Schoeninger and DeNiro, 1984; Häberle et al., 2016). Fish were culturally and dietarily essential to the 

monastic subsistence strategy, where dietary abstinence or fasting for religious reasons was observed 

(Kristjánsdóttir, 2017). Though uncommon at inland sites, where mostly dried fish are found, 

archaeozoological analysis indicated that fresh fish were often eaten there (Pálsdóttir, 2006; Hamilton-

Dyer, 2010). This marked difference was presumably related to religious fasting (Pálsdóttir, 2006). 

Nevertheless, in some Augustinian and other monastic orders, seals, and bipedal animals (e.g., poultry) 

could be eaten during periods of the fast as well (Kristjánsdóttir, 2017).  
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Figure 5.32 A map of Iceland depicting the locations of Skriðuklaustur and Skeljastaðir. The major routes 

of trade and travel to and from Skriðuklaustur are also shown (© S. Kristjánsdóttir & V. Gunnarsdóttir) 

From 1600 to the late 19th century, weather conditions in Iceland were variable, unpredictable, and 

characterized by cold periods, particularly when sea ice floating on ocean currents landed on the coasts, 

thereby preventing fishing, and even reducing the growth of grass and temperature on land (Ogilvie and 

Jónsson, 2001; Ogilvie, 2005, 2010). During the Laki fissure eruption of AD 1783-1784, a highly 

concentrated toxic haze of sulphur, fluorine and chlorine was released into the air causing environmental 

changes, darkness, cooler weather and severe damage and death to people, animals, and vegetation 

(Gunnlaugsson and Rafnsson, 1984; Rafnsson, 1984). The eruption caused one of four major famines that 

occurred during the 17th-18th centuries (Júlíusson et al., 2017). An estimated 8700 people (20-25%) of 

Iceland’s human population (Guðmundsson et al., 2008) and tens of thousands of sheep, cattle and horses 

died (up to 75% of Iceland’s livestock at the time) (Gunnlaugsson and Rafnsson, 1984; Jónsson, 1994; 

Halldórsson, 2013). Reverend Jón Steingrímsson (1728-1791) provided a detailed report of disease 

following the eruption, describing symptoms associated with fluorosis in both dead and living animals and 

humans, describing that people survived by eating cooked skin or hide, hay mixed with water and meal to 

make porridge and boiled fish bones crushed into milk (Steingrímsson, 1998; Halldórsson, 2013). He also 

recounts that people who depended upon locally sourced water and food – contaminated with fluoride 

among other pollutants – developed the same bone and tooth changes associated with fluorosis as the 

livestock. The health conditions were likely compounded by poor nutrition following food shortages during 

the long-lasting volcanic eruption and subsequent fallout (D’Alessandro, 2006). Descriptions of human 

health in 1783 in Iceland, the Netherlands and the UK are consistent between regions, specifically 

mentioning farmers, some of whom were incapable of work due to severe respiratory distress. Accordingly, 

asthmatics suffered more than usual due to an overall decrease in lung function, and people were plagued 

with headaches, eye conditions and a permeating sulphurous stench (Thorarinsson, 1981; Grattan, 2006; 
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Grattan et al., 2012; Moffat and Wilson, 2012). A haze followed the eruption causing difficulties in visibility 

and navigation, particularly for fishermen (Rafnsson, 1984). The bishop Hannes Finnsson from Skálholt, 

which was an important cultural, intellectual, and spiritual center and seat of governmental power 

containing an episcopal see, school, cathedral, and cemetery, described the haze-famine which followed 

the Laki eruption in a work entitled Um mannfækkun af hallærum á Íslandi (Decimation of the population 

in Iceland due to famine) (Gjerset, 1925; Rafnsson, 1984; Karlsson, 2000; Lucas, 2010). He described that 

“hunger and starvation marked people’s appearance with all the diseases which thereof spread; particularly 

dysentery, scurvy and mumps. The hunger was so common that it could even be seen on many priests and 

well-off farmers” (Finnsson, 1970: 117-118; translation by Halldórsson, 2013: 32). These records suggest 

that the population faced serious malnourishment, deficiency diseases (e.g., scurvy) and plagues, such as 

smallpox (Pétursson, 1984; Halldórsson, 2013). However, these conditions were certainly temporary and 

were likely alleviated shortly after the volcanic eruption and subsequent fallout ended. For example, the 

import of grain temporarily increased considerably immediately following the eruption (Beck, 2020). 

Earthquakes also occurred throughout Iceland, one of which caused severe destruction to Skálholt in AD 

1784, forcing the bishopric to relocate to Reykjavík (Hambrecht, 2011). At the time, Skálholt had one of 

the largest populations (>100 individuals), making it the place that most resembled a town in Iceland until 

the growth of Reykjavík occurred in the late 18th century (Lucas, 2010). The famine, pestilence and climatic 

changes that occurred following the eruption threatened the very survival of the country, reconfiguring 

Iceland both physically and politically and provided additional impetus for the abolishment of the trade 

monopoly just three years later, in AD 1787 (Streeter et al., 2012; Clark and Jones, 2016).  

 

Ideology is an important component of state formation and landscapes were focal points for national identity 

and political consciousness during this period (Hastrup, 2008), so it may be argued that landscape change 

and habitability contributed to shifting ideological principles, which are likewise vital to state formation 

(Mann, 1986; Clark and Jones, 2016). Thus, in addition to the constraints of the Danish trade monopoly, 

the natural disasters, diseases, and famine occurring at the time likely also contributed to the dispersal of 

the population and the eventual urbanization of Reykjavík. The aftermath of historic volcanic eruptions has 

often been characterized by innovation, development, and social agency throughout the world (Grattan, 

2006), yet some scholars argue that volcanic impacts stifled innovation and even promoted conservatism in 

Iceland (see Karlsson, 2000; Dugmore and Vésteinsson, 2012). However, this point of view may be 

correlated with hegemonic or nationalist tendencies that posit historical Icelanders as highly strategic 

survivors against all odds, particularly in the earliest centuries of Iceland’s settlement. Some scholars (e.g., 

Ebel, 1977) have even argued that Icelanders could not have survived without foreign trade due to a lack 

of raw materials, but archaeological investigations have proved this argument to be entirely invalid 

(Gardiner and Mehler, 2007). Nonetheless, 18th century Iceland simultaneously underwent the worst natural 

and epidemiological disasters that led up to a positive shift in cultural core values (Þórhallsson and Joensen, 

2014). In effect, these natural disasters, and periods of pestilence, in combination with the abolishment of 

the Danish trade monopoly (1787), may have contributed significantly to the multi-factorial changes in 

population dynamics and the steady economic and urban growth occurring in the 18th century. For example, 

in AD 1801 the population census of Reykjavík recorded just 307 inhabitants but grew steadily and rapidly 

in population density and urban development, thereby reaching a population of nearly 6700 individuals by 

AD 1900 (Malmström, 1958). Iceland was rural, comprised primarily of farmers, and, as in most places 

throughout history, poverty and poor hygiene likely contributed to periods of poor health in the past 

(McGovern et al., 2007; Loftsdóttir, 2008). Infectious diseases (e.g., leprosy, tuberculosis) spread easily as 

people greeted one another with a kiss (Sigurðardóttir, 2017). Sites indicating archaeological and 

documentary evidence for a trade economy between Europe and Iceland are indicative of significant 

subsistence upon fish and terrestrial animal meats that were traded for Icelandic goods and resources such 

as sulphur and walrus ivory (Harrison et al., 2008). 

 

Modern ethnographic studies illustrate commonly held criteria for avoiding contaminated water, such as by 

evaluating its smell, taste, and color (Scherzer et al., 2010). Unfortunately, clear, and scentless water does 
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not necessarily indicate safety, the same way that foul smelling or discolored water does not always indicate 

that it is unsafe (Napier and Kodner, 2008). However, the salty and bitter taste of fluoride-contaminated 

water has prevented cases of lethal exposure in some instances: two-thirds of 34 children that drank water 

highly contaminated with fluoride recovered within a 24-hour period, for example (Hoffman et al., 1980). 

In some areas, the consumption of locally sourced water carries stigma, thereby leading to collective beliefs 

about what should or should not be consumed and what sources are appropriate to draw from. People’s 

beliefs and experiences are important factors in their following behaviors and practices (Scherzer et al., 

2010). A study conducted in India, where water is often contaminated with fluoride and arsenic, 

demonstrated that when options for sourcing water are limited, people adapt to what is available and attempt 

to mitigate the problems associated with it. However, when multiple options are presented, people begin to 

differentiate and prioritise water quality (Linneck, 2016). With regards to this study, people in the past 

likely implemented strategies for acquiring uncontaminated food and water and likely managed to evacuate 

areas affected by volcanic eruptions at least to some degree (Black, 1981; Grattan, 2006). Overall, a social 

group’s preparedness to manage environmental stresses is vital for mitigating the impacts of natural 

disasters (Black, 1981; Noji, 1997). 
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6 Conclusions 
 

Despite Iceland being a rural country well into the modern period, the general health and living conditions 

do not appear to have been vastly different from any of the neighboring countries (Júlíusson, 2018; Turchin 

et al., 2018). Human groups probably fled from certain regions that were especially affected by volcanic 

fallout and unlike the livestock, they probably managed to avoid contaminated drinking water when 

possible. Therefore, volcanic dangers were not well hidden, especially when it was possible to move away 

from the ashfall and visible fires that spread across the country. These dangers were probably only 

concealed during passive periods, when natural degassing still posed health risks to those living within 

close proximity to active volcanic regions. Looking towards the future, the preparedness and stability of 

geo-political and socio-economic structures of regions prone to volcanic activity should be especially 

considered rather than focusing solely upon the abrupt, short-term consequences that eruptions cause. 

 

In this concluding chapter, the original research questions presented in section 1.2 are reiterated and 

summaries of the results and findings of the articles (see Articles I, II, and II) and additional results 

published in Chapter 5 of this thesis summary are provided below to address the research questions. 

Research Question 1.2.1 How did environmental conditions impact subsistence, landscapes, human 

health, and culture in past Icelandic populations?  

 

Overall, this research (see Articles I, II, II and Thesis Summary) aimed to investigate diet, geographic 

provenance, and exposure to volcanogenic or anthropogenic contaminants and their connection with the 

environment and overall health among the historic population of Iceland. The research suggests that 

Medieval Icelanders were aware of the volcanic impact on their health, environment, livestock, and 

surroundings, perhaps even informing the selection of settlement places and land use. While volcanic 

eruptions cause disturbances in individuals residing in certain areas and the community’s forms of 

subsistence, a culture’s ability to cope with environmental stresses plays a major role in mitigating the 

effects of detrimental impact (Black, 1981; Noji, 1997; Grattan, 2006). Because of Iceland’s small 

population, which in the Middle Ages was only a fraction (ca. 1/6th) of today’s population, close genetic 

and familial structure, and the struggle for survival during volcanic fallout, Icelanders may have emphasized 

reciprocity and altruism during difficult times (Grattan, 2006).  

 

Research Question 1.2.2 What were the geographic origins of the people residing at Skeljastaðir and 

Skriðuklaustur and does their provenance relate to pathological conditions or exposure to toxic elements? 

 

Previous research showed that Skeljastaðir was inhabited by locals aside from a single migrant (Price and 

Gestsdóttir, 2006). It was similarly important to determine the geographic origins of the population at 

Skriðuklaustur, as such information provides indications about where people might have lived, what they 

may have been exposed to earlier in life and whether changes in environment or locale were correlated with 

pathological changes. It was hypothesized that the people buried at Skriðuklaustur would be both local and 

foreign, such as traders, considering the high rate of infectious disease cases found at the site. For example, 

individuals with long-standing, probable venereal syphilis infections were found at Skriðuklaustur, 

demonstrating that the disease arrived in Iceland close to the time that it reached epidemic levels on 

mainland Europe. However, the research ultimately found that none of the analysed individuals were 

foreigners and that the cemetery population is likely predominately representative of a local population of 

people born in Iceland that resided both at inland and coastal sites within and around the southwestern 

quarter of the country. People from throughout the region traveled or relocated to Skriðuklaustur for 

medical treatment of a wide range of conditions, hospice, trade, religious reasons and perhaps because of 

homelessness. One older adult male from Skriðuklaustur with advanced, potentially disabling, Paget’s 

disease resided further inland as a child (see Article II). This individual also had very low trace element 

concentrations in bone, probably due to the irregular bone remodeling that occurs with Paget’s disease (see 
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Article I; Chapter 5 of Thesis Summary). Trace elements used as indicators of provenance (Sr, Pb, Ba, Zn) 

analysed in this study were low in variation and when considered together with the strontium and oxygen 

isotope ratios determined in dental enamel, further indicate a local population that was born in Iceland (see 

Article II).  

 

Research Question 1.2.3 Did volcanogenic emissions of mercury (e.g., from the Hekla eruption of AD 

1104) or other elements affect the health of the local population of Skeljastaðir? Were any other toxic 

substances used medicinally at the monastery? 

 

Considering the volcanogenic emission of mercury in Iceland and the known Medieval use of the chemical 

element as a medicine at monastaries across the present-day European continent, the research sought to 

investigate whether the individuals buried at two sites, Skriðuklaustur and Skeljastaðir, were exposed to it 

during life. Elevated mercury bone concentrations were found at both sites: the results from Skeljastaðir 

suggest high-dose and possibly acute volcanogenic exposure, while the results from Skriðuklaustur are 

consistent with long-term, low-dose exposure to mercury, probably associated with medical treatment. Soil 

samples and animal bones were also analysed, all of which showed around or under the normal background 

threshold of mercury, indicating that diet and diagenesis were not significant contributors to the elevated 

ante-mortem mercury values found among the analysed individuals (see Article I). None of the human bone 

samples indicated arsenic exposure, despite the widespread use of arsenic in medical preparations in the 

past. Only one animal bone sample had an elevated arsenic concentration, but none of the other animal 

bones showed any elevated concentrations of the elements analysed here. It is possible that the cow with 

elevated heavy metal concentrations could have been receiving an antiparasitic treatment, which often 

contained arsenic and minerals salts (e.g., copper) at the time in the Nordic countries, although the elevation 

could have also occurred from contaminated food or water as well. Low-level cadmium exposure was 

indicated at Skriðuklaustur, while only a couple of cases presented at Skeljastaðir. These elevated 

concentrations could reflect exposure to volcanogenic cadmium, but other sources such as smoke 

inhalation, tobacco smoking and working with objects containing cadmium are more likely to be the cause 

when considered in combination with the other bone element concentrations (see Chapter 5 of Thesis 

Summary). Elevated bone lead concentrations were noted from Skriðuklaustur, particularly in individuals 

that were also exposed to lead during childhood, possibly from the lead infrastructure or objects found at 

the site. Only one individual from Skeljastaðir had an elevated bone lead concentration, probably related to 

their non-local provenance (see Article II; Chapter 5 of Thesis Summary).  

 

Research Question 1.2.4 Regarding exposure to toxic elements, were there any identifiable differences (e.g., 

behavioral, or occupational exposure) between men, women, children or individuals of different social 

status or age groups?  

 

There were no statistical differences between men and women in mercury exposure in bone samples from 

Skriðuklaustur even though access to medical treatment could have differed between the sexes and social 

classes in the past. Meanwhile, younger adults had higher mercury concentrations than older adults, 

possibly because they had entered the latent or tertiary stages (e.g., the latent stage lasts >30 years) and had 

stopped taking mercurial medicines prior to death. Younger age-at-death can also occur from mercury 

poisoning, especially in light of the non-standardised dosage provided for medical treatment during the 16th 

century (see Article I). Trace element analysis of dental enamel showed that children and women were often 

exposed to lead: in children this was likely due to hand-to-mouth activities, while in women this was 

probably because of occupational activities that may have involved more time spent indoors around lead 

objects and structures containing lead (see Article II).  
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Research Question 1.2.5 Were socio-cultural or environmental conditions responsible for dietary shifts 

between the populations living during the Medieval Warm Period (Skeljastaðir assemblage) and the Little 

Ice Age (Skriðuklaustur assemblage)?  

 

Archaeological evidence, historical records and isotope analyses demonstrate that the diet was 

predominately based upon mixed marine (i.e., fish, seals) and terrestrial resources (i.e., foraged edibles, 

gardening, imported goods and livestock). Freshwater fish were likely important to the subsistence strategy 

of inland farm sites, especially towards the beginning of the Settlement Period: stable isotope analyses 

showed that the protein portion of the diet at Skeljastaðir was mainly terrestrial with some freshwater fish 

consumption, while at Skriðuklaustur there was highly marine diet (mixed marine and terrestrial) with the 

addition of some freshwater fish input. Despite being an inland site, historical records and 

zooarchaeological studies conducted at Skriðuklaustur are in line with the findings of this research, showing 

that fish was important to the diet, probably because of religious fasting. The steady exploitation of marine 

resources began during the beginning of the Settlement of Iceland but increased significantly over time. 

While the early migrants to Iceland may have grown crops such as barley, the cooling weather leading up 

to the Little Ice Age impacted the growth, practice and yield of grain farming. Trade networks were 

important from the earliest period, but the importance and frequency of visiting traders increased steadily 

and significantly leading up to the Little Ice Age, resulting in a stable and varied diet that included various 

imported goods such as fruit (see Article II). Historical records from the more recent past (17th-19th 

centuries) indicate that the import of flour, sugar and other refined and processed goods became important, 

contemporaneously with the urbanization of Reykjavík – the only real urban center established during the 

country’s history (see Article III).  

 

Research Question 1.2.6 Does osteological evidence of metabolic or nutritional distress show any 

relationship with pathological conditions, toxic element exposure or diet? 

 

Diet is important to overall health, but it is also a primary source of exposure to certain toxic elements, such 

as lead, mercury or fluoride. Marine fish and mammals are particularly known to accrue high amounts of 

the highly toxic, biologically cycled methylmercury. Likewise, marine fish and mammals are also prone to 

fluoride uptake. Therefore, it was important to examine the subsistence of the analysed populations to 

control for diet-derived exposure. The lack of elevated bone element concentrations in the fish and marine 

mammal bones indicates that the consumption of fish or marine mammals was unlikely to have been a 

significant source of toxic mercury exposure. This is probably because marine mercury contamination only 

increased dramatically after the Industrial Revolution (see Article I). A few cases of possible metabolic or 

health stress in childhood were suggested by dental enamel hypoplasia in combination with apparent zinc 

deficiency, although being under homeostatic control, it remains uncertain whether zinc concentrations in 

dental enamel actually reflect palaeodiet or not. Additionally, only one individual from Skriðuklaustur 

consumed a completely terrestrial diet, probably correlated with dietary restrictions caused by a congenital 

case of cleft maxilla and premaxilla (palate and lip) (see Article II). The high rate of calculus and the low 

rate of caries was likely correlated with the historical diet, which was high in protein derived from dairy 

products, fish, and meat and low in sugar, flour, and other processed foods prior to the urbanization of 

Reykjavík. Dental calculus may have provided some protection from carious lesions, but likely played a 

part in the high rate of periodontal disease seen in the archaeological population (see Article III). 

 

Research Question 1.2.7 Did historic eruptions in Iceland result in mass human mortality such as occurred 

among livestock?  

 

The results show that the human fluorosis burden was very low, which suggests that people were aware of 

the toxic effects of volcanic emissions and likely knew not to consume water, livestock or foliage 

immediately or directly affected by volcanic fallout. Similarly, fluoride can significantly bitter the taste of 

water, which was probably a clear indicator to people that it was not safe to drink as has occurred in some 
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modern cases of drinking water contaminated with fluoride. The bone changes reported here are probably 

related rather to environmental conditions, population dynamics, culturally mediated behaviors and 

increasing urbanization and population density than to serious fluoride exposure (see Article III).  

 

Research Question 1.2.8 What osseous pathologies present in the human skeletal assemblages and are they 

associated with toxic heavy metal or fluoride exposure, as revealed by ICP-MS and ISE? 

 

The human health impact of fluoride emissions in historical Iceland from volcanogenic sources was 

investigated by examining bone fluoride concentrations and skeletal changes potentially associated with 

skeletal fluorosis, a disease caused by fluoride toxicity. Considering historical reports and modern findings 

of the devastating impact volcanogenic fluoride has had on past and present livestock, it was hypothesized 

that people residing at sites situated nearby and occupied during or following volcanic eruptions would 

have been subject to enough fluoride emissions to cause toxicity. Unless relocated, livestock tend to 

continue drinking the water and eating the foliage within their local vicinity even during volcanic fallout.  

Overall, the skeletal and dental changes likely reflect occupational activities (e.g., fishing and farming), 

culturally mediated behaviours (e.g., gendered occupations), increasing urbanization, population dynamics, 

and diet rather than exposure to volcanic pollution, such as from fluoride (see Article III). 

 

Concluding remarks 

 

Overall, this research indicates that volcanic emissions predominately only affected the people residing 

near actual eruption events. Although these events dramatically impacted the living conditions and the 

habitability of zones subject to volcanic fallout, sometimes resulting in site abandonment, the actual health 

burden of skeletal fluorosis and other toxic elements of volcanogenic origin appears to be minimal. Instead, 

anthropogenic sources of toxic substances seem to have been much more commonplace, such as the use of 

mercury as a medicine and lead exposure resulting from regular contact with lead objects or infrastructure. 

Relevant to the present day, this research suggests that it may be even more vital to reinforce socioeconomic 

circumstances, geopolitical conditions, and disaster mitigation protocols in regions with volcanic risks 

rather than focus on concerns over the severity of the immediate, temporary effects resulting from volcanic 

eruptions (see Thesis Summary). 
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