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Abstract: Malignant lymphomas are a heterogeneous group of malignancies that develop both in
nodal and extranodal sites. The different tissues involved and the highly variable clinicopathological
characteristics are linked to the association between the lymphoid neoplastic cells and the tissues
they infiltrate. The immune system has developed mechanisms to protect the normal tissue from
malignant growth. In this review, we aim to explain how T lymphocyte-driven control is linked to
tumor development and describe the tumor-suppressive components of the resistant framework.
This manuscript brings forward a new insight with regard to intercellular and intracellular signaling,
the immune microenvironment, the impact of therapy, and its predictive implications. A better
understanding of the key components of the lymphoma environment is important to properly assess
the role of both B and T lymphocytes, as well as their interplay, just as two legendary boxers face each
other in a heavyweight title final, as was the case of Ali versus Foreman.
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1. Background on the Tumor Microenvironment in Malignant Lymphomas

In malignant lymphomas, there is a constant fight between lymphoma-promoting and
anti-lymphoma immune cells, which ultimately results in the abnormal supremacy of pro-malignant
cells which are seen and recognized by diagnostic pathologists each time a lymph node biopsy is
sent for interpretation. This constant fight is mirrored in the boxing match of Muhammad Ali versus
George Foreman in Zaire 1974, when after a long game of equal powers in the third round of the match,
unexpectedly, Forman with a huge punch sent Ali flying into the ropes. It was obvious to all 60,000
fans in the Stade du 20 Mai in Kinshasa, Zaire, and millions more watching live on television, that
things were beginning to go horribly wrong for Muhammad Ali. Foreman pursued Muhammad Ali
around the ring, launching punches from odd angles and power shots that thudded into Ali’s body,
inhuman blows that seemed too much for any man to withstand. However, in the end, Ali recovered
and won the game through a final knockout.

The same struggle is also seen when analyzing the slides of a lymphoma case, since the differential
diagnosis between B-cell lymphoma, T-cell lymphoma, or Hodgkin’s lymphoma is probably one of the
most challenging analysis that a pathologist has to make, since it is based only on hematoxylin-eosin
staining and the evaluation of cell morphology. Pathologists find it difficult to know whether a
B lymphocyte or a T lymphocyte is malignant or an accompaniment cell, in the absence of any staining.
As follows, many times 10–12 different staining protocols are carried out, until the final diagnosis
is reached.

Lymphoid tumors are malignant proliferations of B, T, or natural killer (NK) cells. They often
have a variable clinical behavior. Some are indolent cell proliferations, whereas others have an
aggressive behavior and a fulminant evolution [1–5]. T-cell lymphomas, in most cases, are classified
into the second category, being aggressive tumors with increased resistance to treatment and more
frequent and faster relapse rates when compared to B-cell lymphomas [6]. In comparison to tumors
originating from B lymphocytes, for which therapy in the last years became more precise with a
better response and remissions lasting longer [7–11], the therapy in T-cell lymphomas (TCL) generally
consists of a combination of classical chemotherapy with cyclophosphamide, doxorubicin, vincristine
and prednisone (CHOP) protocol combination chemotherapy).

As stated in the beginning, the tumor microenvironment in lymphomas is built on a constant
fight between bystander cells. As follows, in the past years, research did not just focus on tumor
cells, but also on the tumor microenvironment (TME). The TME sustains and promotes cancer cell
development and progression and it is involved in resistance to chemotherapy. Liu et al. [12] have
proven that tumor cells from a Hodgkin lymphoma (HL), also known as a Reed-Sternberg or Hodgkin
cell, collaborate closely with the surrounding lymphocytes, mastocytes, and other cells from the TME,
with the aim of secreting molecules necessary for cellular survival and division [12]. In some indolent
lymphomas, like mucosa-associated lymphoid tissue (MALT) lymphomas, chronic inflammation
induced by bacterial infections in most of the cases, as is the case of infections by Helicobacter pylori,
contributes to the promotion and support of tumor development. According to the van den Berg
group, from the University of Groningen, based on their experience, this hypothesis was proven by the
response to antibiotic treatment, which does not just lead to the eradication of the infection, but also to
a cease of tumoral development. The TME is of crucial importance in lymphoma development, as it is
constantly sustained by its heterogenous composition and stimulated by malignant cells [13]. Thus,
the TME is dependent on intercellular signaling between tumoral cells and surrounding cells, capable
of changing their phenotype as a result of lymphoma cells acquiring new genetic mutations. The TME
is formed by a multitude of cells, which include tumor-associated macrophages, tumor-associated
fibroblasts, follicular dendritic cells or dendritic cells, as well as immune cells, as is the case of cytotoxic
T lymphocytes (CTLs), T follicular helper cells (TFH), regulatory T cells (Tregs), natural killer (NK) cells,
and bystander B lymphocytes (Figure 1). Silencing the host’s immune system is an important feature of
malignant lymphomas. Achieving a better understanding of distinct pathways of interactions between
lymphomas and different immunological microenvironment compounds yields substantial potential
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for new treatment concepts. In both B-cell and T-cell lymphomas, tumor cells as well as their infiltrating
immune cells upregulate several immune checkpoint genes and critical proteins in a distinct pattern
of several immune escape strategies. Although, overactivation of NF-κB and B-cell receptor (BCR)
represents major cell intrinsic determinants of lymphoma aggressiveness, by mediating immune escape.
The co-expression of programmed death (PD-1) and programmed death ligand (PD-L1) contributes
further to giving B-cell lymphomas the worst prognosis of the lymphoma subtypes. These molecules
are important tools to control T-cell activity and proliferation and can both inhibit T cells as well as
stimulate immunosuppressive regulatory T cells, as further presented in this work.
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Figure 1. The role of extracellular matrix in lymphoma development and progression, an exemplification
of the sequence of events happening inside the malignant lymphoid tissue. The vascular network
is disorganized, and it has larger pores compared to normal blood vessels, due to overexposure to
vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-β), and transforming
growth factor (TGF-β). Due to these characteristics, the local microenvironment is hypoxic and there
is a general lack of systemic immune cell provision, while the local immune cells secrete cytokines
meant to facilitate lymphoma cell proliferation and invasion. The lymphoma cells (represented in the
current figure in round brown) are at a higher number than all the other non-malignant immune cells
in the lymphoma microenvironment. They arrive in the lymphoid organ through extravasation from
general blood circulation, helped by locally modulated immunity, and the lymphoma cells proliferate
and become more aggressive, until they start to leave the lymph node and enter into the lymphatic
circulation. Inside the malignant lymphoid tissue, the macrophages are polarized to M2 phenotype and
secrete interleukin-10 (IL-10), meaning that they have anti-inflammatory and malignancy-promoting
properties. The T follicular helper (TFH) cells secrete IL-21, and the T helper (Th) Th17 and CD8+ T cells
secrete IL-6. Th17 cells have a dual role by inhibiting regulatory T cells (Tregs), but also stimulating
malignant proliferation of B cells. CD8+ cells (cytotoxic T cells, CTL) inhibit lymphoma progression,
but they are in a small number in the lymphoma microenvironment. However, the main mechanism
through which the lymphoma progression is sustained by the extracellular environment is due to the
secretion of exosomes by the immune cells (T or B lymphocytes) and the lymphoma cells (of B or
T origin). In the top right part of the figure, in the circle, there is a representation of an exosome.

2. Immune Cells of the Tumor Environment

One of the most important cell subtypes in the lymphoma microenvironment is regulatory T cells
(Tregs). Wang et al. [14] have shown that in the lymphoma microenvironment, Tregs can be classified
into direct tumor-killing Tregs, suppressor Tregs (CD8-positive), incompetent Tregs, and malignant
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Tregs (FOXP3-positive) [14]. Besides the immunosuppressive effect on T lymphocytes, Tregs may
also cause the suppression of B lymphocytes, macrophages, dendritic cells, or even NK cells [6].
Non-Hodgkin’s lymphoma (NHL) frequently has a high number of Tregs [15]. Thus, the subtype
of predominant Tregs and the rate of survival in these patients may be linked. On the other side, in
follicular lymphomas, a strong correlation between the survival rate and the number of intrafollicular
Tregs (FOXP3-positive) was reported with a high number of intrafollicular Tregs correlated with an
unfavorable prognosis and survival, as according to Xie et al. [16].

Cytotoxic T lymphocytes (CTLs) are a subtype of CD8-positive T lymphocytes with a crucial
role in infectious and malignant diseases. They are activated by a diversity of stimuli, may it be
infectious agents or tumoral antigens, including most MHC antigens [17]. Most CTLs express surface
cytotoxic markers, out of which T-cell intracellular antigen (TIA) and TIA receptor (TIAR) both have a
role in promoting stability or suppressing translation of messenger RNA, involved in apoptotic and
inflammatory processes. The downregulation of TIA and TIAR leads to uncontrollable cell growth
through incompletely understood mechanisms. Wahlin et al. [18] reported the association between an
increased number of CD8-positive lymphocytes and better survival in follicular lymphomas. Carreras
et al. [19] supported this and also showed that an increased number of cytotoxic programmed cell
death protein 1 (PD-1) lymphocytes is associated with a better prognostic factor in case of follicular
lymphomas [19].

The cytotoxic activity of T lymphocytes is potentiated through activating the PD-1 pathway,
which leads to the apoptosis of tumoral cells [20]. In oncogenesis, the activation of a protein called
lymphocyte activation gene (LAG-3) leads to the suppression of T-lymphocyte activation and therefore
secretion of cytokines, by which the immune homeostasis is maintained. The mechanism of signaling
and interaction through which LAG-3 works with checkpoints is still uncertain. LAG-3 exerts an
inhibitory effect on most lymphocytes, a synergy with PD-1, and therefore, an inhibitory anti-tumoral
immune response. Once the T lymphocytes during tumor progression have been exhausted, this
phenomenon is accompanied by the increment of inhibitory receptors for LAG-3. The interaction
between LAG-3/ major histocompatibility complex (MHC II) inhibits the expansion of T lymphocytes
and suppresses cytokinetic response. Similarly, LAG-3 could potentiate the sensibility of tumor cells to
Tregs in case of a clinical relapse through mediating the inhibition of T lymphocytes. LAG-3 is present
in normal human physiology in small quantities, in inactive CD8-positive lymphocytes, although
their level can rise significantly when responding to a tumoral antigen [21]. The blockage of LAG-3
on CD8-positive T lymphocytes leads to the enhancement of their function and implies an increased
production of interferon (IFN-γ), which portrays a phenomenon independent on T lymphocytes [22–24].
Furthermore, CD8-positive T lymphocytes can express LAG-3 concomitantly with other co-inhibitory
immune checkpoints, as is the case of PD-1 [25].

Follicular helper T (TFH) cells are a population of T lymphocytes. These cells were first isolated
from the palatine tonsils, hence playing a role in immunity by sustaining B lymphocytes in the
production of antibodies. TFH cells are present in tissues rich in B lymphocytes, especially in the
germinal center (GC). TFH cells have a crucial part in the interaction with B lymphocytes, starting from
the maturation up until the stimulation of those for expressing immunomodulatory effects. Likewise,
TFH cells play a role in the formation of the GC by mediating interactions between CD40 and the
CD40 ligands on B lymphocytes, through the production of IL-21 and thus leading to the proliferation
of B lymphocytes. TFH cells express surface markers, amid CXCR5, PD-1, inducible co-stimulatory
protein (ICOS), and CD200. These markers are used in the diagnosis of angioimmunoblastic T-cell
lymphoma (AITL), a lymphoma originating from TFH cells. However, pathology slides of such
lymphomas also include plasmocytes, immature B lymphocytes, chemokines, immunoglobulins, IL-21,
and IL-6, thus originating in the largest part by TFH tumors [26–28]. Likewise, peripheral T-cell
lymphomas, not otherwise specified (PCTL-NOS) and the follicular PCTL variant are lymphomas with
TFH phenotypic T cells [29]. AITL is thus a prototype of TFH lymphomas. These lymphoma subtypes
were described in the 1970s as a non-neoplastic, immunological condition, and were later recognized
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as a subtype of the peripheral T-lymphoma. Recent genetic studies have demonstrated the fact that
changes in AITL genotype are the reason for different genetic mutations, without the rest of the T-cell
lymphomas, especially peripheral T-cell lymphoma (PTCL) [30,31]. The follicular variant of PTCL was
recently described, and the name comes from the follicular architecture of the lesions that resemble
a follicular, lymphoid structure mimicking a similar architecture like B-cell follicular lymphomas.
Considering the phenotype of TFH, similar common clinical and pathological traits between AITL and
the follicular variant of PTCL have been reported [32]. In support of this theory, genetic data prove
the presence of the chromosomal translocation t(5;9)(q33;q22), present in the majority of the follicular
variant of PTCL cases, but absent in the majority of non-follicular PTCLs, including AITL [33].

The activation of T lymphocytes is based on the antigen-presenting cell (APC) capacity to
internalize and present a molecular MHC II antigen. Dendritic cells (DC) have similar roles to APCs
and certain B lymphocytes, thus presenting a specific B-cell receptor (BCR) able to interact with
T-lymphocyte-specific antigens. As BCRs are produced by a variety of B lymphocytes, most B cells
play a minor role in presenting T-lymphocytic antigens. Some cells like T lymphocytes, NK cells,
and B lymphocytes can transfer cell membranous and cellular components to others. The most
important difference between B lymphocytes is their antigen-specific BCR, through which a change
of the membrane would allow the transfer of antigen-presenting capacity through the transfer of
BCR. Through the transfer of BCR from antigen-specific B lymphocytes to bystander B lymphocytes
during the immune response, the capacity of B lymphocytes to connect and present antigens can be
potentiated, displaying a process amplifying the immune response mediated by T lymphocytes [34,35].

3. T Cell and B Cell Subpopulation Types and Their Interplay in Lymphoma

The interplay between T cells and B cells in lymphoma is highly dependent on the type of
malignancy, meaning that, the anti-tumoral effect of cytotoxic T or B cells is reversed dependent
on lymphoma origin. For instance, the CD8+ (cytotoxic) T cells suppress the progression of
various lymphomas, such as Epstein-Barr virus (EBV)-positive Hodgkin’s lymphoma [36], follicular
lymphoma [18], and B-cell non-Hodgkin’s lymphoma [37]; however, in CD8+ lymphomas, these
cells are malignantly transformed and their proliferation/stimulation is associated with disease
progression [38,39]. Moreover, the regulatory T cells, that are considered pro-tumoral factors of
local immunity [40], have a limited anti-tumoral effect in cytotoxic T-cell lymphoma because it can
specifically interact and target the malignant cells [40]. As opposed to solid cancer types, the Tregs
in lymphoma can have three roles: negative, neutral, or positive. For instance, high FOXP3+ Treg
presence in T-cell lymphoma has no effect on the overall survival rate of the patients [41].

In fact, according to Wang et al. [14], there are multiple types of regulatory T cells [14]. The generally
encountered suppressor Tregs decrease patients’ survival rate, by downregulating the local immune
response at the malignant lymphoma site, in diseases such as non-Hodgkin’s lymphoma, peripheral
T-cell lymphoma, anaplastic large cell lymphoma, and Hodgkin’s lymphoma [14]. The second type of
Tregs with pro-tumoral effects are the Tregs that have undergone malignant transformation and are
now the source of T-cell lymphoma [14]. Thirdly, there is a small subset of Tregs that slow down tumor
progression. These are the direct tumor-killing Tregs that in T-cell lymphomas inhibit directly the
proliferation and aggressiveness of T cells [14,42]. Lastly, the fourth type of Tregs are the incompetent
Tregs that have lost the capacity to exert any effect in the local immunity interplay [14,43].

The T-helper cells have a dual role depending on their type. The T-helper cells of type 1 (Th1)
activate specifically the cytotoxic T cells (CD8+) through antigen presentation; thus, they have an
anti-tumoral effect, especially in classical Hodgkin’s lymphoma, B-cell non-Hodgkin’s lymphoma
(NHL) [44], and complete remission of diffuse large B-cell lymphoma [45]. T-helper 2 cells (Th2) are
differentiated T lymphocytes important in the immune response against pathogens that do not directly
infect cells. These cells also play key roles in tissue repair and contribute to the pathophysiology of
allergic disorders.
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The Th2 cells on the other hand disrupt the activity of Th1 cells and thus, their abundance is
associated with a lower disease-free survival in B-cell lymphoma [44], especially in untreated B-cell
lymphoma [45]. The Th17 cells have a dual role in lymphomas. These cells have an anti-tumoral effect
because they generally inhibit the activity of Tregs. This has been proven especially in EBV-negative
classical Hodgkin’s lymphoma (CHL) [36]. This T-cell subtype induces B-cell differentiation to
IgG2a and IgG3 subtype, general B-cell proliferation, and higher production of novel antibodies [46].
In classical B-cell lymphoma, circulating Th17 cells have a lower number in diagnosed patients
versus healthy individuals. However, in B-cell lymphoma patients [47], it was proven that the Th17
cells sustain rituximab resistance [48], having a higher number in recurrent disease [47]. This may
be caused by the fact that Th17 cells stimulate B-cell proliferation independent of B-cell normal or
lymphomagenesis status.

The B-cell population also establishes multiple interactions with normal or malignant T cells.
The B2 follicular B cells interact with memory helper T cells and cause their anergy, thus allowing
the progression of malignant B cells in mature B-cell lymphoma [49]. IgA-positive B cells function as
antigen-presenting cells for T cells and activate CD8-positive T cells, thus functioning as anti-tumoral
stimulators in lymphomas [50]. In concomitant lymphoplasmacytic lymphoma and plasma cell
myeloma, the IgA-producing plasma cells are the origin of malignancy, thus they have a pro-tumoral
effect in this case [51].

The memory B (IgG-positive/IgM-positive) cells are localized in the tumor where they secrete
tumor-specific antibodies that activate innate immunity. The IgG-positive B cells can produce granzyme
B and directly inhibit the progression of malignant cells or through their secretion of IFN-γ, cooperate
with CD8-positive T cells to directly kill malignant cells [50]. However, in case of B-cell lymphoma
protein (BCL2): IGH translocation, the IgG-positive B cells re-enter in the germinal center and develop
into malignant follicular lymphoma [52]. In EBV-positive Burkitt’s lymphoma, memory B cells help
the EBV infection to stay latent [53]. The IgM-positive memory B cells are early memory B cells
that go through malignant transformation over the instalment period of mantle-cell lymphoma [54].
The regulatory B cells are a subpopulation of B cells that specifically secrete large quantities of IL-10
that causes downregulation of local immune response [55,56]. These cells have been found in large
numbers in non-Hodgkin’s lymphoma [57]. These cells have a pro-tumoral effect by suppressing the
activity of cytotoxic T cells and Th1 cells [55]. Details on the role of these subpopulations of T and
B cells are depicted in Table 1 [58–63].
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Table 1. Pro-/anti-tumoral immune cells in the tumor microenvironment of T-cell or B-cell lymphoma.

Cell Type Activity Target Type of Lymphoma Reference

Suppressor Treg Pro-tumoral Suppression of CD8+ T cells Non-Hodgkin’s lymphoma, peripheral T-cell lymphoma,
anaplastic large cell lymphoma, Hodgkin’s lymphoma [14]

Malignant Treg Pro-tumoral Inhibition of CD8+ activity T-cell lymphoma [14]

Direct tumor-killing Treg Anti-tumoral Are a source of malignant cells Cutaneous T-cell lymphoma, follicular lymphoma, diffuse
T-cell lymphoma, extranodal NK/T-cell lymphoma [14,42]

Incompetent Treg Anti-tumoral No effect Angioimmunoblastic T-cell lymphoma [14,43]

Cytotoxic T cell Anti-tumoral, Pro-tumoral in
CD8+ lymphomas

Inhibition of malignant cells;
inhibited by Tregs

Epstein-Barr virus (EBV)-positive Hodgkin’s lymphoma,
CD8+ cytotoxic T-cell lymphoma, nodal cytotoxic T-cell
lymphoma, Hodgkin’s lymphoma, follicular lymphoma,
B-cell non-Hodgkin’s lymphoma

[36–39,58,64]

Follicular helper T cell Anti-tumoral, Pro-tumoral in
follicular T-cell lymphomas B-cell maturation

Peripheral T-cell lymphoma, angioimmunoblastic T-cell
lymphoma (AITL), nodular lymphocyte predominant
Hodgkin’s lymphoma

[59,60,65]

T-helper cell type 1 (Th1) Anti-tumoral Activation of CD8+ T cells

EBV-negative classical Hodgkin’s lymphoma (CHL),
abundant in classical Hodgkin’s lymphoma, B-cell
non-Hodgkin’s lymphoma (NHL), abundant in complete
remission of diffuse B-cell large cell lymphoma

[36,44,45]

T-helper cell type 2 Pro-tumoral Inhibition of Th1
Depleted in classical Hodgkin’s lymphoma, B-cell
non-Hodgkin’s lymphoma (NHL), abundant in untreated
B-cell diffuse large cell lymphoma

[44,45]

T-helper cell type 17
Anti-tumoral (mostly),

pro-tumoral through rituximab
resistance

Contradictory conversion with
Tregs, stimulates B-cell

proliferation and antibody
production

EBV-negative classical Hodgkin’s lymphoma (CHL), B-cell
lymphoma, rituximab-resistant B-cell lymphoma [36,46–48,61]

B2 follicular B cells Pro-tumoral Memory CD4(+) T cells Probably present in mature B-cell lymphoma [49]

Immunoglobulin A (IgA)+
plasma cell Pro-tumoral Activation of CD8+ T cells,

antigen-presenting cells

Concomitant lymphoplasmacytic lymphoma and plasma cell
myeloma, peripheral T-cell lymphoma associated with IgG
plasma cell leukemia and IgA hypergammaglobulinemia

[50,51,62]

IgG1+/IgM memory B cells
Anti-tumoral general,
pro-tumoral in case of

malignant accumulation
Co-operation with CD8+ T cells

Malignant follicular lymphoma (oncogenic role of memory
B cells with BCL2: immunoglobulin heavy chain (IgHV)
translocation), Burkitt’s lymphoma (EBV+), mantle
cell lymphoma

[50,52,63]

Regulatory B cells Pro-tumoral
Suppression of cytotoxic T cells

and Th1 cells; activation of
malignant T cells

Non-Hodgkin’s lymphoma [55,57]
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4. Therapeutic Targets for T or B Cell Subpopulations in Lymphoma

The presented lymphocyte subpopulations establish multiple interactions with malignant cells.
This results in either suppression of immune response in immunogenic T or B cells, or further
stimulation of the activity of immunosuppressive cells. Programmed cell death protein 1 (PD-1) [66]
and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) are two well-known receptors present
on the surface of T-helper cells, especially Th1, and produce their anergy. Basically, these cells are
no longer capable of exerting their anti-tumoral response. The anti PD-1/PD-L1 or CTLA-4 have
significant effects on preventing Th1 anergy and reactivating the effects of cytotoxic T cells. The therapy
with anti-PD-L1 significantly improves the progression-free survival of lymphoma patients that have
PD-L1 overexpression on the surface of malignant cells [66]. In phase I or phase II clinical trials, PD-L1
blockage was especially efficient in relapsed/refractory B-cell non-Hodgkin’s lymphomas or in primary
mediastinal large B-cell lymphoma. Moreover, in follicular T-cell lymphoma, because the malignant
cells exhibit a higher level of PD-L1, this therapy also has significant good results [67].

The CTLA-4 is the other T-cell receptor that causes T-cell anergy and that is also overexpressed
on Tregs [68,69]. In Hodgkin’s lymphoma, this receptor is more expressed than PD-1 in recurrent
disease [70]. What may be difficult for future targeting of this receptor is its presence in the intracellular
vesicles of FOXP3+ Tregs, where it cannot interact with conventional therapeutic antibodies [71].
As follows, when considering a more targeted therapy toward preventing T-cell anergy, other
components of synaptic T cell–cancer cell interactions should be considered, as these may be alternative
pathways that give therapeutic resistance and lymphoma relapse. Adenosine A2a receptor (A2aR) is
another receptor present on cytotoxic T cells and T-helper cells that downregulate the T-cell response
and act in synergy with CTLA-4 and PD-1 [72]. Patients with diffuse large B-cell lymphoma have a very
high expression of this receptor [73]. Lymphocyte-activation gene 3 (LAG-3) is present on CD8+ T cells
and T-helper cells [74]. Its interaction with major histocompatibility complex type II (MHC II) causes
CD8+ T-cell exhaustion in synchrony with PD-1 receptor in B-cell non-Hodgkin’s lymphoma [74,75],
extranodal NK/T-cell lymphoma [76], Hodgkin’s lymphoma (HL) [77], and malignant Hodgkin
Reed-Sternberg (HRS) [77]. LAG-3 acts as an off-switch in T cells. In immune active T-helper cells, it
downregulates their reactivity, while in Tregs, it prevents their immunosuppressive response [74,75].

T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3) acts in a similar manner
and many times in coordination with PD-1 and CTLA-4. This receptor is expressed in IFN-γ-producing
T-helper cells and cytotoxic T cells. Its interaction with interleukin-inducible T-cell kinase (ITK)
downregulates IL-2 production and causes T-cell anergy [78,79]. In T-cell lymphoma, TIM3
overexpression does not affect patients’ survival rate, but it stimulates acquired chemoresistance [80].
In follicular B-cell non-Hodgkin’s lymphoma, it is associated with lower survival rate and advanced
disease stage [64].

There are contradictory data on V-set domain-containing T-cell activation inhibitor 1 (VTCN1)
that is present on a minor population of T cells, being mostly specific for B cells. However, some
reported the absence of this receptor on B or T cells or its presence only in stimulated lymphocytes [81].
This receptor, together with PD-1 and CTLA-4 activation, significantly lowers the secretion of IFN-γ,
T-cell proliferation, and cytotoxic response [82]. It was found to be overexpressed in lymphoma cells
from non-Hodgkin’s patients [83]. B7-H3 is highly expressed in IFN-γ-producing T cells. This biomarker
is overexpressed in many malignancies, being related to metastasis, epithelial-to-mesenchymal
transition, and disease progression [84]. However, through its stimulation of cytotoxic T cells, it
can stimulate local immunity in vivo [85]. In extranodal nasal natural killer (NK)/T-cell lymphoma
(ENKTCL) [86] and mantle cell lymphoma [87], this marker is also overexpressed and has been
associated with disease progression and acquired chemoresistance. The B7-H3-reactive chimeric
antigen receptor T cell (CAR T) cells or the anti-B7-H3/CD3 bispecific antibodies showed high efficiency
in vivo studies. B- and T-lymphocyte attenuator (BTLA) is expressed on the surface of follicular
T cells, Th1, and B cells [88]. This receptor binds to herpes virus entry mediator (HVEM) and
downregulates CD8+ T cells, thus preventing their cytotoxic activity. In diffuse large B-cell lymphoma
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with high expression of BTLA, this checkpoint inhibitor co-expresses with PD-1, TIM3, and LAG-3.
When activated, BTLA prevents CD8+ T-cell differentiation [89]. Its overexpression is also associated
with poor prognosis for patients with T-cell lymphoma [90]. In B-cell lymphoma from germinal center,
loss-of-function mutations in HVEM and the disrupted interaction between this receptor and BTLA
stimulates the proliferation of malignant B cells; thus, in this case, BTLA is a tumor suppressor [91].

In cutaneous T-cell lymphoma, diffuse large B-cell lymphoma, mantle cell lymphoma, B-cell
non-Hodgkin’s lymphoma (NHL) [92], follicular lymphoma [93], T-cell immunoreceptor with Ig and
immunoreceptor tyrosine-based inhibition motif (ITIM) domains (TIGIT) is overexpressed. This receptor
is present on T-cell population of various types: Th1, TFH, CD8+ T cells, and Tregs. In Tregs,
TIGIT activation stimulates the immunosuppressive phenotype of Tregs; in the immunoactive T-cell
population, it causes cell exhaustion, sometimes in synergy with PD-1 receptor [74]. V-domain Ig
suppressor of T-cell activation (VISTA) is a receptor present in the whole population of tumor-infiltrating
lymphocytes; however, its activation suppresses specifically only the T-cell response, while stimulating
the expression of FOXP3. The activation of this checkpoint inhibitor has no effect over B-cell response.
This biomarker lowers the survival rate of lymphoma patients [94]. The blockage of VISTA and PD-1
through the use of a small molecule, called CA-170, increases T-cell activation and IFN-γ production
by T cells [95]. Still, in Krakow, Musielak et al. [96] have shown that CA-170 has no interaction with
PD-1/PD-L1 and state that this previously potential clinical application must be further investigated [96].

More details on the role of the abovementioned biomarkers, viewed as therapeutic targets, as
well as the currently available immune checkpoint inhibitors, and development and testing stages are
presented in Table 2 [96–104].
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Table 2. Types of molecular targets that are currently used or have the potential of being used as therapeutic targets of immune checkpoint inhibitors.

Marker Cell Drug Effect Clinical Effect in Lymphoma Patients Status Reference

A2AR
CD4+ and CD8+
T cells, Tregs in

response to stress

Monoclonal antibodies (mAbs):
SCH58261, SYN115, ZM241365, and
FSPTP

It downregulates T-helper cells and
cytotoxic T cell response, synergy
with cytotoxic T-lymphocyte
associated 4 (CTLA-4) and PD-1

• Lower survival rate in diffuse large
B-cell lymphoma patients with high
expression of A2AR

Phase I [72,73]

B7-H3 IFN-γ-producing
T cells

Potential therapeutic benefits of
monoclonal antibodies (mAbs)
targeting this biomarker

It increases T-cell reactivity
• Increased chemoresistance and tumor

progression of mantle cell lymphoma Preclinical data [85,87,96]

BTLA
T follicular helper cell

differentiation, Th1
helper cell

Soluble herpes virus entry mediator
(HVEM) ectodomain protein
(solHVEM) through CART cells or
bispecific antibody delivery could
restore HVEM– B and T lymphocyte
attenuator (BTLA), resulting in
apoptosis and tumor growth delay
in B-cell lymphomas

It binds to the HVEM receptor,
downregulates CD8+ T-cell
cytotoxicity in diffuse large B-cell
lymphoma, suppresses minor
histocompatibility antigen-specific
CD8+ T cell, downregulates B-cell
response

• Poor overall survival in patients with
T cells highly expressing BTLA

• Highly expressed in small
lymphocytic lymphoma

• HVEM loss-of-function mutations
frequently occur in B-cell lymphomas
from germinal center (GC), leading to
disruption of HVEM–BTLA interaction,
and stimulation B-cell proliferation

• Upregulated in advanced stages of
peripheral T-cell lymphomas (PTCLs)

Preclinical results [88–90,97]

CTLA-4
Intracellular vesicles
in FOXP3+ Treg cells
or activated T cells

Ipilimumab, tremelimumab
It prevents conventional T-cell
activation, it is highly expressed on
Tregs and stimulates their activity

• Hodgkin’s lymphoma has higher
CTLA-4+ T cells than PD-1+ T cells
and it is associated with
recurrent disease

• Super-expressed in relapsed/refractory
B-cell lymphoma

Phase I clinical trial [68–70,98]

LAG-3 Activated CD8+
T cell, T-helper cells

mAbs: BMS-986016, LAG525,
MK-4280, and IMP321 (APC
activator)

Its overactivation in tumor
microenvironment causes T-cell
exhaustion, especially in
collaboration with PD-1 activation

• Highly expressed in Hodgkin’s
lymphoma (HL) and malignant
Hodgkin Reed-Sternberg (HRS) cells

• Poor disease-free survival in
lymphoma patients

• High presence in extranodal
NK/T-cell lymphoma

Phase I-II clinical trial
in solid tumors, only
preclinical data for

lymphoma

[74–77,99]

PD-1 CD4+ T cell Nivolumab, pembrolizumab It causes T-cell anergy
• Improved overall and progression-free

survival, especially in
PD-L1+ lymphomas

Phase I and II clinical
trial [66,100]
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Table 2. Cont.

Marker Cell Drug Effect Clinical Effect in Lymphoma Patients Status Reference

TIGIT

Activated CD4+,
CD8+ T cells,

T follicular helper
(TFH) cells, Tregs

mAbs: MTIG7192A, BMS-986207,
OMP-313M32, MK-7684, AB154,
CGEN-15137, and CASC-TIGIT

TIGIT+ Tregs are more potent, CD8+
T cells have a much weaker response,
PD-1 and TIGIT have a synergic
effect

• Increased in the sera of cutaneous
T-cell Lymphoma patients

• Expressed in the tumor
microenvironment in diffuse large
B-cell lymphoma patients, and to a
smaller proportion of cases in mantle
cell lymphoma

• Overexpressed in follicular
lymphoma tissue

• Might be the reason for PD-1 inhibition
failure in B-cell non-Hodgkin’s
lymphoma (NHL)

Phase I in solid
tumors

[92,93,99,
101,102]

TIM3
IFN-γ-producing
CD4+ and CD8+

T cells, Tregs

mAbs: Sym023, INCAGN02390,
LY3321367 ± LY3300054, Sym021 ±
Sym023, MBG453 ± PDR001,
BGB-A425 + tislelizumab, TSR-022 ±
TSR-042, TSR-022 + TSR-042 +
chemo; bispecific mAbs: RO7121661,
LY3415244

Its overexpression on T lymphocytes
is specific for CD8+ T-cell exhaustion.
Single expression shows weak
exhaustion, while co-expression with
PD-1 has a more pronounced effect

• Associated with higher histological
grade (grade 2–3), greater lactate
dehydrogenase (LDH) level in the
blood, lower overall survival rate in
follicular B-cell
non-Hodgkin’s lymphoma

Phase I-II clinical trial
in solid tumors, only
Sym023 is in Phase I

clinical trial for
lymphoma

[99,103,
104]

VISTA
Highly expressed on

tumor-infiltrating
leukocytes

CA-170 V-domain Ig suppressor of
T cell activation (VISTA) proteins

Suppressed proliferation of T cells,
but not B cells

• Possible poor survival rate of
lymphoma patients

Phase I and II clinical
trial [94,96]

VTCN1
(B7-H4/B7- S1)

Activated minor
population of T cells,
most B cells (defined

as B220+),
macrophages

Potential therapeutic benefits of
mAbs targeting this biomarker

It decreases IFN-γ production by
T cells, downregulates cytotoxic
T-cell response, decreases T-cell
proliferation, synergy with PD-1 and
CTLA-4

• Preclinical results: improved survival
rate in B-cell lymphoma of mice,
smaller tumor size of mice
T-cell lymphoma

• Overexpressed in non-Hodgkin’s
lymphoma cells isolated from patients

Preclinical studies in
solid tumors [81–83]
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5. Extracellular Components in the Lymphoma Microenvironment

Angiogenesis has a crucial part in tumor progression and survival [105,106]. Malignant cells
are capable of synthesizing stimulatory factors of angiogenesis. Newly formed vessels have a
structural defect and differ from normal vessels, that are more immature and permeable, which enables
tumor cells to penetrate the vascular walls and enter the bloodstream, thereby increasing the risk
of metastasis [107–110]. To get the required rate for cellular multiplication, lymphoma cells need a
new vascular network dedicated to satisfying the energy needs of the cells [111]. The production
of immature tumor vessels is caused by an abnormal secretion of vascular growth factors by the
tumor cells: vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF-β),
and transforming growth factor (TGF-β) [112]. A defect model of the vascular network from the
TME leads to cell hypoxia and decreased supply of the inflammatory cells in the surrounding of
tumors and indirectly of chemotherapeutics, but also increases tumor cell adaptability, rendering them
more therapy-resistant and aggressive [108]. New therapies focus more on correcting structural and
functional defects of the network of neoangiogenesis [113]. Thus, by repairing the vascular defects, the
supply of oxygen normalizes, preventing hereby the adoption of more aggressive cellular components
caused by a hypoxic TME [114].

The extracellular matrix (ECM) is a component of the TME and a complex system of macromolecules
that guarantees a biochemical fundament and the biology necessary for cellular survival. Tumor cells
have the key feature of plasticity, which allows them to change their physiological characteristics
for surviving a therapy [115]. Tumor cells are also capable of producing, degrading, or modifying
molecular components of the ECM, with the goal to facilitate tumor progression [116]. In solid tumors,
alterations of the ECM accelerate tumor progression, tumor invasion, and metastasis, either by cellular
modification at the level of tumor cells or by effecting the TME [117,118].

Cytokines are a broad and heterogeneous class of bioactive molecules that are secreted by cells of
the immune system and influence a target cell [119]. We describe the role of cytokines in one type of
PTCL, namely angioimmunoblastic T-cell lymphoma (AITL), because of the heterogeneous aspect of
both cytokines and peripheral T-cell lymphoma (PTCL). AITL is associated with autoimmune events
induced by this disease and because of its development from a T follicular helper cell (TFH), which
has a high involvement in cytokine signaling [120]. In a murine model of the disease, AITL was
shown to be driven by proteins specific for TFH cells [121]. A key cytokine characteristic to TFH
cells and in turn to AITL is IL-21 [122]. IL-21 is upregulated in AITL and its knockdown has been
shown to inhibit lymphoma genesis in a model of Swiss Jim Lambart (SJL) mouse [123]. TFH cells also
secrete IL-10, linked to a negative prognosis in AITL due to higher levels of M2 macrophages. [124].
The cytokines secreted by AITL cells also have a role in chemoattraction and activation of immune
cells infiltrating AITL. For B cells, the upregulation of the CXCL13/CXCR5 axis recruits B cells in the
AITL microenvironment [31,125]. Other cells known to infiltrate AITL are CD8-positive T cells and
Th17 cells, the latter being recurrently implicated in autoimmune events and being stimulated by IL-6
produced by mast cells in the microenvironment [126,127]. By directly synthesizing IL-6, mast cells
contribute to setting a pro-inflammatory TME. The AITL lymphoma clone itself attracts mast cells in
this inflammatory microenvironment and thus, mast cells change the immunological TME of AITL,
with important clinical implications in diagnosis and prognosis.

Recently, international attention was gained in cancer biology by the study of extracellular vesicles
in a wide range of biological fluids [65,128–134]. These vesicles are heterogeneous particles that
originate from different subcellular compartments and have different molecular dimensions and
composition. According to their origin, extracellular vesicles are classified into microvesicles (which are
formed via outward budding of the plasma membrane), exosomes (which are formed in multicellular
bodies through the intraluminal budding of endosomal membranes), and apoptotic bodies (specific
to cell death process). Extracellular vesicles are important mediators of cell–cell communication
and play a key role in both normal and pathological processes, such as cancer development and
progression [135].
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Exosomes are nanovesicles secreted by normal or tumor cells with dimensions between
30–150 nm [136–140]. During biosynthesis, exosomes carry important bioactive molecules from
the donor cell, such as nucleic acids (DNA, RNA, microRNA, long non-coding RNA (lncRNA),
circulating RNA), proteins, and lipids [141]. The exosomal membrane is formed from cholesterol,
sphingolipids, and phosphatidylserines—molecules found on the outward cell membrane and on
the outside of the exosomes. The proteins of the exosomal membrane are tetraspanins (CD9, CD63,
and CD81), major histocompatibility complex molecules, or proteins involved in the cell adhesion
process [142].

In contrast, large amounts of cytoskeletal and heat shock proteins, as well as endosomal proteins
(SNARE, annexin, and flotillin), Alix, and TSG101, which belong to the biosynthesis of multicellular
bodies [143], are encapsulated in the exosome structure. Nucleic acids are encapsulated in the exosome
structure and further involved in the mediation of important biological processes that underlie the
development and progression of cancer cells, as well as in processes of angiogenesis, migration, and
invasion, immune system, and metastatic lesion formation.

Exosomes derived from tumor cells can influence normal cells to “create” a tumor microenvironment
that allows tumor growth and metastasis. Thus, tumor exosomes influence endothelial cells to support
neoangiogenesis, a process that fuels tumor growth and induces vascular permeability, in order to facilitate
metastasis [144]. Exosomes are also key players in the process of differentiating fibroblasts by transforming
them into pro-angiogenic and pro-tumorigenic cancer-associated fibroblasts [145,146]. By interfering
the exosomes with the immune system, the target cell phenotype is altered to pro-tumorigenic [147]
and pre-metastatic [144]. By transferring oncoproteins to a target cell, exosomes induce changes in
phenotype by activating different signaling pathways, such as mitogen-activated protein kinase (MAPK)
and PI3K-AKT-mTOR. Exosomes can transfer oncogenic entities, such as mutated proteins [148], fusion
genes (EML4-ALK) [149], and oncogenic long non-coding RNA [150,151] from cancer cells to the tumor
microenvironment cells. By transferring microRNA sequences, exosomes induce resistance to receptor
cell level therapy [150] and induce hypoxia [152] and angiogenic response in endothelial cells.

The lymphoma microenvironment is important in lymphoma biology as it promotes tumor cell
proliferation and resistance to apoptosis and provides the mechanisms to prevent the immune system.
The lymphoma microenvironment is formed from immune cells, stromal cells, cytokines, blood vessels,
and extracellular matrix components (Figure 2). Moreover, extracellular vesicles form a two-way
flow of information between the microenvironment and the nanoparticles [135]. Recently, it was
shown that extracellular vesicles secreted by a diffuse large B-cell lymphoma (DLBCL) contain the
mutated form of myeloid differentiation primary response 88 (MYD88), a part of reprogramming the
bone marrow lymphoid microenvironment [153]. Up to date, most studies have assessed the role of
extracellular vesicles (EVs) secreted by lymphomas on immune cells. For EBV-induced lymphomas,
EVs polarize the resident macrophages to an M2 phenotype, which leads itself to an immune-evasive
microenvironment [154]. Moreover, the same EVs also induce apoptosis in T cells, further increasing
the immune-evasive phenotype of the lymphoma [155]. Hodgkin’s lymphoma (HL) cells secrete
CD30-positive EVs, which interact with cells presenting CD30 ligand (CD30L), ultimately leading to
changes in the immune cells [156]. Some lymphomas also secrete EVs that contain NKG2D ligand,
which leads to a downregulation of NKG2D on NK cells in the lymphoma microenvironment, thus
inhibiting NK-mediated tumor killing [157]. Aside their roles in inhibiting immune cells already
present in the lymphoma microenvironment, lymphoma-secreted EVs also upregulate endothelin B on
endothelial cells, leading to an inhibition of T-cell migration [158,159].
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Figure 2. The role of extracellular matrix in lymphoma development and progression. The vascular
network is disorganized and it has larger pores than normal blood vessels, due to overexposure to
VEGF, PDGF-β, and TGF-β. Due to these characteristics, the local microenvironment is hypoxic and
there is a general lack of systemic immune cell provision, while the local immune cells secrete cytokines
meant to facilitate lymphoma cell proliferation and invasion. The macrophage is polarized to the
M2 phenotype and secretes IL-10, the TFH cells secrete IL-21, and the Th17 and CD8+ T cells secrete
IL-6. However, the main mechanism through which the lymphoma progression is sustained by the
extracellular environment is due to the secretion of exosomes by immune cells (T or B lymphocytes) and
lymphoma cells (of B or T origin). The exosomes contain at their surface, targeting molecules, such as
tetraspanins (CD9, CD63, and CD81), major histocompatibility complex (MHC) (I and II), and integrins.
In their interior, the exosomes have nucleic acids: DNA in the form of fusion genes (EML4-ALK), long
non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and miRNAs. The exosomes also contain
SNARE, annexin, lotilin, Alix, TSG101, and mutated forms of proteins, such as mutMYD88.

6. Conclusions

On 30 October 1974, a historic boxing event in Kinshasa, Zaire (now called Democratic Republic
of the Congo), was organized at the 20 May Stadium. It brought face-to-face the undefeated world
heavyweight champion George Foreman against challenger Muhammad Ali, the former heavyweight
champion. The event had an attendance of 60,000 people. Ali won by knockout, putting Foreman
down just before the end of the eighth round. It has been called “arguably the greatest sporting
event of the 20th century”, watched by a record estimated television audience of 1 billion viewers
worldwide. Without crossing the line, in tumor biology, very few cases present the background of two
similar players, such as B and T lymphocytes interacting with each other in malignant lymphomas.
The tumor microenvironment and the local immune system of the niche have been merely regarded as
the background for neoplastic cells to become a focus of our understanding of cancer development,
cancer progression, and point of action for new therapeutic concepts. Still, the interplay between
B cells and T cells play a role in the pathogenesis of various lymphoma subtypes. The plasticity
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of the microenvironment makes it difficult to be studied in static circumstances and, for obvious
reasons, in animal models as the constitution of the microenvironment and its interactions might differ
from that in humans. Still, progress has been achieved for the contribution of immune system to
lymphoma development and progression, and this knowledge has been transferred into therapeutic
strategies. In the present work, we presented the key cellular players and their role in the development,
dissemination, and response or resistance to therapy.
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