Axiomatizations from Structural Opera-
tional Semantics: Theory and Tools

Eugen loan Goriac

Doctor of Philosophy

August 2013

School of Computer Science
Reykjavik University

Ph.D. DISSERTATION

ISSN 1670-8539

4 N
Yik ywd

Axiomatizations from Structural Operational
Semantics: Theory and Tools

by

Eugen Ioan Goriac

Thesis submitted to the School of Computer Science
at Reykjavik University in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy

August 2013

Thesis Committee:

Luca Aceto, Supervisor
Prof., Reykjavik University

Jos Baeten, Examiner
Prof., Eindhoven University of Technology

Anna Ing6lfsdottir
Prof., Reykjavik University

MohammadReza Mousavi
Prof., Halmstad University

Copyright
Eugen loan Goriac
August 2013

Axiomatizations from Structural Operational Semantics:
Theory and Tools

Eugen loan Goriac

August 2013

Abstract

Structural Operational Semantics (SOS) is a well known standard for speci-
fying language semantics in a natural, yet rigorous way. Once a formal way
of checking for the equivalence of two programs written in such a language
is provided, it is of great interest to derive efficient automated methods to
prove if equivalences hold. Also of high interest for language designers is
the possibility of enhancing the expressiveness of SOS in a formal manner,
preserving as much from the already developed meta-theory of SOS as pos-
sible. The thesis focuses on these two areas, both from a theoretical and a
practical perspective.

The line of research addresses the extension of SOS with predicates and data,
while lifting certain results from the meta-theory of SOS to these extensions.
These results include automatically deriving axiomatizations for reasoning
on program equivalence, and checking for compliance to rule formats in
order to guarantee desired properties. Besides these extensions, the thesis
provides an axiomatization for the coordination language Linda, presents a
method to optimize axiomatizations for language constructs that are commu-
tative, and presents a rule format for idempotent unary operators and idem-
potent terms.

The practical aspect of this thesis consists of a core software framework for
working with SOS meta-theories, named Meta SOS, which is implemented
in Maude. The framework includes components for automatically deriving
axiomatizations, performing simulations, and checking whether language
constructs comply to a format for commutativity. It is designed in a mod-
ular and extensible fashion, and serves as a base for future implementations
of other results from the meta-theory of SOS.

Axiomatizations from Structural Operational Semantics:
Theory and Tools

Eugen loan Goriac

Agist 2013

Utdrattur

Pegar préa 4 areidanlegan og stodugan hugbunadar er oft fyrsta skerfid ad
lysa & formlegan hétt hvad skilyrdum hann 4 ad uppfylla. Petta er gert med
pvi ad bua til formleg likon af hugbinadinum sem nota ma { pesum tilgangi.
Pad hefur verid vinsalt 4 sidari &rum ad nota likon sem byggja a svokallada
uppbyggingarvinnslumerkingafradi, (4 ensku "structural operational seman-
tics en oftast vitnad til sem SOS) sem er fomlegur fredilegur rammi (e. meta
theory) til ad lysa eiginleikum formlega mélsins sem kerfinu er lyst {.

A sidastlidnum 4rum hafa miklar rannséknuir verid stundadar og gera
nidurstodur peirra pad mogulegt ad segja til um eiginleika formlegra mala
med pvi ad lita & reglurnar sem lysa merkingarfredi peirra.

I pessu doktorverkefni leggur hofundur sitt af morkum til SOS fredanna fra
tveimur sjénarmidum. Annars vegar hefur hann utvikkad almennu fredin
med pvi ad beta vid mikilvegum hugtokum sem ekki hefur verid fjallad
um adur. Hins vegar hefur hann forritad kerfi, byggt 4 almennu fredunum,
par sem hagt er ad spyrja spurninga um akvedin tilvik og fa svor vid peim.
Petta kerfi hefur fengid gédar undirtektir hja vaentanlegum notendum og er
mikilvaegt skref { attina ad nytingu 4 rannséknanidurstddum { greininni.

Acknowledgements

The first two persons I would like to thank are my supervisors and collaborators,
Anna Ing6lfsdottir and Luca Aceto. I am more than grateful for the freedom and
the support they gave me during the period of earning my PhD. They helped creat-
ing the ideal environment both for my professional and personal evolution.

I'thank my collaborators without whom this work would have never been possible
Daniel Gebler, Georgiana Caltais, Michel Reniers, MohammadReza Mousavi.
Besides my supervisors and MohammadReza Mousavi, the Thesis Committee
had Jos Baeten as the examiner. To all of them I am truly thankful for their

thoughtful comments and suggestions.

I am thankful to the friends I made abroad who helped me broaden my perspec-
tive of life Alexander, Alexandra, Ali, Anais, Andrea, Angelo, Annemie, Aron,
Bjarki, Caro, Cindy, Claudia, Claudio, Dario, David, Elizes, Filippo, Gabe, Gabriel,
Hamid, Ileana, Ioana, Iuliana, Jacky, Jan, Joe, Jolanda, Juan, Karolina, Kéri, Lilja,
Lyuba, Maarja, Marcello, Maria, Marijke, Marketa, Matteo, Madalina, Natalia,
Neil, Niccold, Nicola, Oli, Patrycja, Pradipta, Raluca, Sirry, Skarpi, Stephan,
Tanja, Ute, Verena, Verity, Valla, Victor, Viktor, Viky. I address special thanks
to Andrei Manolescu, Deepa Iyengar, Ingibergur Porkelsson and Marjan Sirjani,
who provided me with support in key moments. I thank those back home for
helping me preserve a wonderful sense of belonging Adriana, Amalia, Andrei,
Constantin, Doru, Georgiana, Iulian, Leti, Mariuca, Micsandra, Mihaela, Mihai,
Mimi, Radu, Stefan.

Iam deeply grateful to my tutors Liliana Ruset, Henri Luchian, Ovidiu Gheorghies
and Dorel Lucanu, who tremendously influenced my evolution in the field of
computer science. Last, but not least, I thank my parents Carmen and Viorel for
their love, trust and unconditional support.

vi

The work in this thesis was partially supported by the projects ‘Meta-theory of
Algebraic Process Theories” (nr. 100014021) and ‘Extending and Axiomatizing
Structural Operational Semantics: Theory and Tools” (nr. 1102940061) of the Ice-
landic Research Fund.

vii

Contents

1 Introduction 1
1.1 ProcessAlgebras 1

1.2 Structural Operational Semantics 3

1.3 Meta-theory of SOS oo oo 6

14 Softwaretools o o 8

1.5 Contributions oo o 8
1.5.1 Publications resulting while working on the thesis 11

2 A Ground-Complete Axiomatization of Stateless Bisimilarity over Linda 13
21 Introduction L o 13
22 Preliminaries e 15
23 Axiomatization o o oo 20
23.1 Adding the nask operations 24

2.3.2 Adding parallel composition 28

24 Conclusions o 29

3 Axiomatizing GSOS with Predicates 31
31 Introduction 31
32 GSOSwithpredicates. 33

3.3 Preliminary steps towards the axiomatization 38
3.3.1 Finite trees with predicates 39

3.3.2 Axiomatizing finitetrees L. 41

3.3.3 Axiomatizing negative premises 42

3.4 Smooth and distinctive operations 43
3.41 Axiomatizing smooth and distinctive preg operations 45

3.5 Soundness and completeness, 47
3.6 Motivation for handling predicates as first-class notions 50
3.7 Conclusions and futurework 53

3.A Proofof Lemma3.3.2 54

viii

3B Proofof Theorem3.33 54
3.C Axiom (Ay), a schema with infinitely many instances. 56
3.D Proof of Theorem3.3.6 56
3.E From general preg to smooth and distinctive 59
3.F A possible approach to handle implicit predicates 63
3.G Proof of Theorem3.4.7 63
3.H Proofof Lemma353 67
3.1 A thorough analysis on GSOS with Predicates 68
311 Predicate classification, 68
312 Thepreg*ruleformat. 73
3.1.3 Finite trees with predicates 73
314 Axiomatizing arbitrary preg* operations 76
3.1.5 Consistency requirements 77
316 Concludingremarks 78
Algebraic Meta-Theory of Processes with Data 79
41 Introduction o L 79
42 Preliminaries. 81
42.1 Transition Systems Specifications 81
422 Bisimilarity o 000 oo 83
423 Rule Formats for Algebraic Properties 83
424 Sound and ground-complete axiomatizations. 84
43 CurryingData o oo 86
44 Axiomatizing GSOSwithData 87
45 Case Study: The Coordination Language Linda 92
46 Conclusions o e 95
4 A Proof of Theorem4.3.1 96
4B The Hybrid Process Algebra HyPA 98

Exploiting Algebraic Laws to Improve Mechanized Axiomatizations 103

5.1 Introduction e 103
5.2 Preliminaries 105
5.2.1 Transition System Specifications 105
522 GSOSFormat 106
523 Bisimilarity and Axiom Systems 108
53 Commutativity Format 109
54 Mechanized Axiomatization 115

54.1 Axiomatizing Good Operators 115

ix

542 TurningBadintoGood, 119
5.5 Axiomatizing Parallel Composition. 124
5.6 Conclusions and Future Work 125
5.A Proving Theorem53.10 126
5B Proof of Proposition5.4.17 o oL 129

6 SOS Rule Formats for Idempotent Terms and Idempotent Unary Opera-

tors 131
6.1 Introduction 131
6.2 Preliminaries. 133
6.3 A rule format for idempotentterms L oL 136
6.4 A rule format for idempotent unary operators 143

641 Examples 148
6.5 Conclusions 151
6.A Proof of Theorem 6.3.7 152
6.B Proof of Theorem6.49 154

7 PREG Axiomatizer - A Ground Bisimilarity Checker for GSOS with

Predicates 159
7.1 Introduction 159
72 CaseStudies 161
7.3 Discussion and Future Work 165
8 Meta SOS - A Maude Based SOS Meta-Theory Framework 167
8.1 Introduction 167
8.2 Preliminaries 169
8.2.1 Transition System Specifications in Meta SOS 170

83 MetaSOSComponents 171
8.3.1 Simulator and Bisimilarity Checker 172

8.3.2 Axiom Schema Deriver 174

8.3.3 Commutativity Format Checker 179

8.3.4 Linda - Integrating Components 182

83.5 AddingComponents 186

84 Conclusion and Future Work 186

9 Conclusions and Future Work 189

Chapter 1
Introduction

Specifying and analyzing the behaviour of operating systems, communication
protocols, and embedded systems, among others, have always been both of great
interest and challenging in computer science. The aforementioned computer
systems are but a few examples of concurrent reactive systems [4], which are gener-
ally thought of as hardware and/or software devices that compute by reacting to

stimuli from their environment.

The interactive nature of reactive systems makes them particularly difficult to
develop. It is therefore not surprising that a substantial research effort has been
devoted to the development of formal aproaches for modelling, specification and

verification of such systems.

1.1 Process Algebras

Over the last thirty years, process algebras [25, 33, 95, 106] have been actively and
efficiently used for the formal specification and verification of concurrent reactive
systems [31]. Their approach involves associating a mathematical object, referred
to as process, to each reactive system. The formal analysis of processes usually
refers to checking whether an implementation complies to its specification, or to
verifying logical properties processes satisfy. The main two approaches for formal
analysis are equivalence checking, which we will focus on in this thesis, and model
checking. The former relies on logic reasoning, while the latter involves checking
for properties by means of exhaustive searches within the state space of a process

evolution.

2 Axiomatizations from SOS

A process algebra is often given by defining a language semantics for describing
processes, a notion of behavioural equivalence over processes, and a set of axioms
for deriving process equivalences using equational logic. One could also con-
sider a preorder relation between processes instead of a behavioural equivalence.
Preorders are often used to describe formally when the behaviour of one process
is an “approximation of” that of another one. In this thesis, we shall focus on

behavioral equivalences and we do not deal with preorders.

It is crucial that the chosen notion of behavioural equivalence is a congruence
because this means that, given a set of equivalent processes, it holds that a context
with a placeholder for one of these processes will present the same behaviour,
independently of the “plugged” process. This has high practical value as it
implies that, for instance, local optimizations do not alter the global behaviour,
and lead to global optimizations.

Once a suitable notion of behavioural congruence has been identified, it is natural
to ask oneself what are the “laws of programming” that hold with respect to it.
Such laws can be expressed in a clear and concise way by means of equations, or
axioms. For instance, the expectation that a parallel composition operator || be

associative is captured by the axiom

xlly)llz=xIl (vl 2).

It is mandatory that the axioms be sound, so that all the equalities between pro-
cesses that can be proved from the axioms are valid behavioural equivalences.
Ideally, the axioms should also be complete, in order to guarantee that any valid
equivalence between two processes can be formally inferred from the equations.
There also exist ground-complete axiomatizations, which can only be used for fully
specified processes, in contrast to pure complete axiomatizations that are given

for generic processes with yet unspecified components.

The true power of sound and (ground-)complete axiomatizations consists in their
ability to allow for syntactic reasonings on the behaviour of a process without gen-
erating its whole state space. This may help in combating the state explosion prob-
lem and in the analysis of infinite-state systems. Moreover, (ground-)complete
axiomatizations of process equivalences capture their essence by means of a col-
lection of laws. This often allows one to highlight the differences between two

different equivalences in terms of a few revealing axioms.

Eugen Ioan Goriac 3

Traditionally, language semantics has been given in an axiomatic, denotational
or operational manner [33]. Three representative process algebras, one for each
class of semantics, are ACP [25], CSP [95] and CCS [106].

In his early work on CCS, in order to provide operational semantics, Milner
introduced the idea of associating a labelled transition system to a process term.
One systematic way to obtain labelled transition systems from terms in a process
description language is via Structural Operational Semantics (SOS) [124].

1.2 Structural Operational Semantics

SOS was introduced more than thirty years ago by Matthew Hennessy and Gordon
Plotkin as a systematic way to assign operational semantics to programming
languages by means of a set of inference rules [93]. As stated by Plotkin in his
account of the history of the ideas leading to SOS [123],

... structural operational semantics was intended as being like an ab-
stract machine but without all the complex machinery in the configura-
tions, just the minimum needed to explain the semantic aspects of the
programming language constructs. The extra machinery is avoided
by the use of the rules, making the exploration of syntactic structure
implicit rather than drearily explicit.

Operational semantics characterizes the execution of a process by defining the
transitions it can perform. Each transition of a process may carry a label, which
describes abstractly the computational step that led to it. Such a label may, for
instance, stand for the communication of a message to the “outside world”. A
positive transition formula is a triple written as P L, P/, where P and P’ denote the
process states before and, respectively, after the transition, while I is the label of the
transition. There also exist negative transition formulas, which are pairs consisting
of a process state P and a label / and are written P . Such a formula has the

interpretation that process P cannot perform the transition with label I.

In SOS, a set of transitions is defined implicitly by means of a collection of syntax-

_ . premises ,)
d les, which h he f ———— . Th 1
riven rules, which have the form “onclusion: Lhe premises are a (possibly empty)

set of transition formulas. If they are satisfied, then the conclusion, which is a

positive transition formula, holds.

4 Axiomatizations from SOS

A formalizations of SOS is given by the so-called Transition System Specifications
(TSS’s), which were first introduced in [86]. Intuitively, a TSS consists of a sig-
nature, which describes the constructs in the language to which one is giving
semantics, together with their arities, and of a collection of inference rules. The
collection of inference rules is used to specify the set of legal transitions in the se-
mantics of a language. Intuitively, a transition is legal if, and only if, its existence
can be justified using the rules.

In order to concretely see how a TSS is provided, consider the following example
of, BCCSP [81], a basic concurrentlanguage for the description of nondeterministic
processes.

Example 1.2.1. The syntax of the language consists of a constant 0 (deadlock), the
binary operator _+_ (nondeterministic choice), and the unary operators «._ (action
prefix), where a ranges over a finite set of action labels A. Formally, the grammar of the
language is:

P:=0|a.P|P+P,

where a is from A.

Intuitively, 0 represents a process that does not exhibit any behaviour, Py + P, behaves
either like Py or Py, and P is a process that first performs action a and then behaves like
P. Formally, the behaviour of these operators is given by the following set of SOS rules,
for every a in A:

x—x

. @a) = G
ax—x x+y—x x+y—>y

Y=y

(1a)

Let us analyze how these rules are used in order to derive the evolution of a concrete
process. Assume that A = {a,b}. This means that every rule has two instantiations —
one when « is a, and the other when « is b. Consider the process term a.(0 + b.0). It
only matches a.x, the left hand side of the conclusion of rule (1,), by mapping x to 0+ b.0.
There are no premises to be satisfied for this rule, therefore the following transition takes
place: a.(0 + b.0) > 0 + b.0. The resulting term does match the conclusion of rules (2,)
and (2p), but neither of these rules has a satisfiable premise, as x is mapped to 0 and there
exists no rule that can derive a transition for 0. The only rule that can be fired for 0 + .0
is (3p). By mapping y to b.0, this rule’s premise is satisfied because, according to rule (1),
it holds that b.0 0. Therefore y' is mapped to 0, which leads, overall, to the following
transition: 0+ b.0 0.

Eugen Ioan Goriac 5

Given a TSS, it is of great interest to be able to verify whether two different
processes behave in the same way. One may want to check, for instance, if a
process behaves according to a given specification, which, in turn, is another
(usually more “abstract”) process. It may also be the case that a process is meant
to optimize another one, and that the implementer wants to make sure that both
processes perform similarly. We need, therefore, a way of defining what “similar
behaviour” between processes means. Let us consider the following notion of
process behaviour equivalence, defined in an informal manner.

Informal Definition 1.2.2 (Bisimilarity). Two processes S and T are bisimilar if, and
only if,

e if S can perform an « labelled transition to a process S’, then it must hold that T
performs an a-labelled transition to a process T’, such that S’ and T' are bisimilar,
and

o if T can perform an « labelled transition to a process T’, then it must hold that S
performs an a-labelled transition to a process S’, such that T’ and S’ are bisimilar.

The formal definitions of bisimilarity and some of its variants are given throughout
the following chapters. The informal definition above, however, suffices for the

purpose of this introduction.

It is important to note that, according to Definition 1.2.2, 0 is bisimilar with 0. This
is because 0 cannot perform any action, which means that both conditions hold
by default.

In order to get a sense of how important it is to work with a formal notion of
equivalence, consider that the length of a process is the number of characters
required to specify it. Also, let us assume that the shorter a process is, the higher
interest it presents. Therefore, when given a process, we want to know whether
there is a shorter one that exhibits the same behaviour. Considering again the
process a.(0 + b.0), we now become interested to check if there exists some other

shorter, but equivalent process.

We have previously shown that a.(0 + .0) 5 0 + b.0 50, Ttis easy to check that
the term a.b.0 evolves in this manner: 2.b.0 -5 5.0->0. As previously stated, 0 is
bisimilar with 0. Both 0 + .0 and b.0 can only perform a b-labelled transition,
and the two resulting processes are bisimilar, which means that 0 + 5.0 and 5.0
are bisimilar. We infer, in a similar fashion that processes a.(0 + 0.0) and 4.0.0,
are bisimilar. Therefore a.b.0 is a shorter process than 4.(0 + b.0), with equivalent
behaviour.

6 Axiomatizations from SOS

1.3 Meta-theory of SOS

By imposing syntactic restrictions on the form of the rules in a TSS, several in-
teresting semantic properties, such as well-definedness and finite branching of
the transition relation [50, 82, 84], congruence properties for behavioural equiva-
lences and preorders [47, 48, 80, 86], operational conservativity [13, 70], and issues
related to security [134] and probability [37, 98], can be inferred by purely syn-
tactic means for the corresponding operational semantics. These restrictions on
the form of the inference rules used in TSS’s give rise to the so-called rule formats,
which constitute the basis on which a meta-theory of SOS has been developed over
the last twenty years. (See the survey papers [14] and [118] for information on
results in the meta-theory of SOS.) The development of the meta-theory of SOS
allows for the generalization of well known results in the field of process algebras
to classes of languages, namely all those whose operational specification is given

in terms of rules fitting a rule format. A rule format is a syntactic template for rules

premises

of the form with the intent that, if the rules for an operation/language

conclusion . _ _
match the specified format, then the operation/language has some given semantic

properties.

We have already seen why it is important for a behavioural equivalence to be
a congruence. Proofs of congruence for bisimilarity, for instance, have been
given for many process algebras. Naturally, these proofs vary from language to
language, but their structure is, essentially, the same. Rule formats have proved to
be very useful in integrating the essence of these proofs. In order to give a concrete
example of a rule format, let us now present the one introduced in [49], referred to
as GSOS. This format is often used throughout the thesis and its importance lies,
among other things, in the guarantee that bisimilarity is a congruence for every
system that complies to the GSOS restrictions. The format also guarantees that
the induced transition systems are computable and finitely branching.
Definition 1.3.1 ([49]). A deduction rule for an operator f of arity n is in the GSOS
format if, and only if, it has the following form:

lij . . ll‘ .
oy l1<i<nl<j<miUlyg» |[1<i<nl<k<n)

F@ Dt

where, for every 1 < i < n, m; and n; are natural numbers, and for every 1 < j <m;, 1 <
k < ny, x;’s and y;j’s are all distinct variables, l;j’s, ly's and | are labels, and t is a process
term with variables including at most the x;'s and the y;;'s as variables.

Eugen Ioan Goriac 7

A TSS is in the GSOS format when it has a finite number of operations, a finite set of
labels, a finite set of deduction rules, and all its deduction rules are in the GSOS format.
We shall sometimes refer to a TSS in the GSOS format as a GSOS system.

Theorem 1.3.2 ([49]). Bisimilarity is a congruence for every GSOS system.

It is easy to check that BCCSP is a GSOS system, and therefore, by Theorem 1.3.2,
bisimilarity is a congruence for BCCSP.

Other formats for congruence are given in [30, 84, 86, 116, 132, 138].

Alongside the aforementioned results in the meta-theory of SOS, there has lately
been much progress on the automated generation of sound and ground-complete
axiomatizations of languages defined by SOS [2, 6, 35]. Instead of checking for the
equivalence of two processes by directly using the definition, one can, instead,
check for it at a purely syntactic level, using axiomatizations. Consider, for

instance, the following axiomatization.

X+y =y+x (commutativity)
(x+y)+z = x+(y+2) (associativity)

X+x = x (idempotence)

x+0 = x (unit element)

Itis well known that this axiomatization is sound and ground-complete for bisimi-
larity over BCCSP [106]. Due to this fact, we can syntactically show that a.(0 + b.0)
is bisimilar to a.b.0. The reasoning involves using the commutativity and unit
element axioms in order to derive that 0 + b.0 = b.0. Recall that bisimilarity is a
congruence for BCCSP. We can, therefore, use the fact that 0 + b.0 = b.0 inside the
context a.[_]. We thus infer that 4.(0 + b.0) = 4.b.0, which means, by the soundness
of the axiomatization, that 4.(0 + b.0) and 4.b.0 are bisimilar.

Another important aspect related to the specification of concurrent reactive sys-
tems is the expressiveness of process definition languages. For some types of sys-
tems it may be the case that the executional semantics given by the standard SOS
framework, surveyed in [14, 118] is not expressive enough. This happens when
we need the process states to be characterized by certain properties. A process
state may, for instance, satisfy predicates (such as termination) [19], have associ-
ated data and store (memory) [115, 116], or be characterized by nominal aspects
[72]. The more constructs are syntactically accepted by operational semantics
deduction rules, the higher is the complexity of systems that can be specified with
the obtained languages.

8 Axiomatizations from SOS

1.4 Software tools

Though using the results from the meta-theory of SOS tremendously simplifies
the work of language designers, doing it “by hand” can still be tedious and error-
prone. Therefore it is of high interest to have software tools that can automatically
apply these results, allowing designers to focus more on the language design
itself.

To our knowledge, the development of dedicated software solutions for language
design and analysis that rely on the meta-theory of SOS is currently in its infancy.
Perhaps the most notable effort towards such a solution is the prototype presented
in [59]. The prototype facilitates the specification of SOS languages and features
performing simulations, as well as checking for processes bisimilarity and for the
specification compliance to the GSOS format. LETOS [87] is a lightweight tool that
makes some first steps towards checking operational conservativity along the lines
proposed in the paper [86]. The Maude MSOS Tool (MMT) [57] also allows the
user to define SOS for languages based on the Modular SOS framework of Mosses
[108], however it does not focus on rule formats. None of these tools provides
support for deriving axiomatizations in order to perform algebraic reasoning.
The Process Algebra Manipulator (PAM) [99] does feature algebraic reasoning,
but only for a limited number of languages, namely CCS [106], CSP [95] and
LOTOS [54].

1.5 Contributions

The thesis focuses on using SOS rule formats in order to automatically derive

properties and axiomatizations for certain classes of systems.

The remainder of this section presents the structure of the thesis, concretely enu-
merating the contributions and indicating the papers they are based on. First
come all the chapters with theoretical contributions. Then there are two chapters
presenting software tools that implement results from the meta-theory of SOS,
some of which are obtained in this thesis.

Theory

e A Ground-Complete Axiomatization of Stateless Bisimilarity over Linda.
Chapter 2 offers a finite, ground-complete axiomatization of a notion of

Eugen Ioan Goriac 9

bisimilarity with data, named stateless bisimilarity [116], over the tuple-
space-based coordination language Linda [56, 78]. As stepping stones to-
wards this result, the chapter provides axiomatizations of stateless bisim-
ilarity over the sequential fragment of Linda without the nask primitive,
which tests for the absence of a tuple in the tuple space, and over the full se-
quential sub-language. It is also shown that stateless bisimilarity coincides
with standard bisimilarity over the sequential fragment of Linda without
the nask primitive. The material contained in this chapter is based on the

submitted paper [15].

e Axiomatizing GSOS with Predicates. Chapter 3 introduces an extension of
the GSOS rule format with predicates. This format is a basis for generalizing
the technique proposed by Aceto, Bloom and Vaandrager for the automatic
generation of ground-complete axiomatizations of bisimilarity over GSOS
systems. This paves the way to checking strong bisimilarity over process
terms by means of theorem-proving techniques. The material contained in
this chapter is based on the content of the published paper [7].

e Algebraic Meta-Theory of Processes with Data. There exists a rich lit-
erature of rule formats guaranteeing different algebraic properties for for-
malisms with a SOS. Moreover, there exist a few approaches for automat-
ically deriving axiomatizations characterizing strong bisimilarity of pro-
cesses. This literature has never been extended to the setting with data (e.g.
to model storage and memory). Chapter 4 shows how the rule formats
for algebraic properties can be exploited in a generic manner in the setting
with data. Moreover, it introduces a new approach for deriving sound and
ground-complete axiom schemata for stateless bisimilarity, based on intu-
itive auxiliary function symbols for handling the store component. We do
restrict, however, the axiomatization to the setting where the store compo-
nent is only given in terms of constants. The material contained in this

chapter is based on the content of the published paper [77].

e Exploiting Algebraic Laws to Improve Mechanized Axiomatizations. In
the field of SOS, there have been several proposals both for syntactic rule for-
mats guaranteeing the validity of algebraic laws, and for algorithms for au-
tomatically generating ground-complete axiomatizations. However, there
has been no synergy between these two types of results. Chapter 5 takes
the first steps in marrying these two areas of research in the meta-theory
of SOS and shows that taking algebraic laws into account in the mechan-

10

Axiomatizations from SOS

ical generation of axiomatizations results in simpler axiomatizations. The
proposed theory is applied to a paradigmatic example from the literature,
showing that, in this case, the generated axiomatization coincides with a
classic hand-crafted one. The material contained in this chapter is based on

the content of the published paper [18].

SOS Rule Formats for Idempotent Terms and Idempotent Unary Opera-
tors. A unary operator f is idempotent if the equation f(x) = f(f(x)) holds.
On the other end, an element a of an algebra is said to be an idempotent for
a binary operator © if a = a ® a. Chapter 6 presents a rule format for SOS
that guarantees that a unary operator be idempotent modulo bisimilarity.
The proposed rule format relies on a companion one ensuring that certain
terms are idempotent with respect to some binary operator. This study also
offers a variety of examples showing the applicability of both formats. The
material contained in this chapter is based on the content of the published
papers [17] and [21].

Software tools

e PREG Axiomatizer— A Ground Bisimilarity Checker for GSOS with Pred-

icates. In Chapter 7 we present PREG Axiomatizer, a tool used for proving
strong bisimilarity between ground terms consisting of operations in the
GSOS format extended with predicates. It automatically derives sound and
ground-complete axiomatizations using the technique proposed in Chap-
ter 3. These axiomatizations are provided as input to the Maude system
[59], which, in turn, is used as a reduction engine for provided ground
terms. These terms are bisimilar if, and only if, their normal forms ob-
tained in this fashion are equal. The motivation of this tool is the optimized
handling of equivalence checking between complex ground terms within
automated provers and checkers. The material contained in this chapter is
based on the content of the published paper [8]. The tool is downloadable

from http://goriac.info/tools/preg-axiomatizer/.

Meta SOS - A Maude Based SOS Meta-Theory Framework. Chapter 8 is
devoted to the presentation of Meta SOS, a software framework designed
to integrate the results from the meta-theory of SOS. These results include
deriving semantic properties of language constructs just by syntactically an-
alyzing their rule-based definition, as well as automatically deriving sound

and ground-complete axiomatizations for languages, when considering a

http://goriac.info/tools/preg-axiomatizer/

Eugen Ioan Goriac 11

notion of behavioural equivalence. This chapter describes the Meta SOS
framework by blending aspects from the meta-theory of SOS, details on
their implementation in Maude [59], and running examples. The material
contained in this chapter is based on the content of the published paper [16].

The framework is downloadable from http://goriac.info/tools/meta-sos/.

Chapters 2-8 are self-contained, as they are adaptations of the papers on which
they are based. Compared to the paper it is based on, each chapter has at least
some minor changes which resulted when adapting it to the context and format
of the thesis, or correcting minor errors spotted after publication. The chapters
that have more significant improvements clearly state this in the end of their
introduction. Though the notation has slightly evolved over time, each chapter
preserves the notation used when its related paper was conceived. For this reason
different chapters may have different notations for the same concept.

Chapter 9 is a conclusion of the thesis contributions and presents possible future

lines of development and research.

1.5.1 Publications resulting while working on the thesis

Below is a list of publications produced while working on the Ph.D. thesis.

1. Luca Aceto, Georgiana Caltais, Eugen-loan Goriac, and Anna Ingolfsdéttir.
Axiomatizing GSOS with predicates. In Proceedings of the Eighth Workshop
on Structural Operational Semantics, volume 62 of Electronic Proceedings in

Theoretical Computer Science, pages 1-15. 2011.

2. Luca Aceto, Georgiana Caltais, Eugen-loan Goriac, and Anna Ing6lfsdéttir.
PREG Axiomatizer —a ground bisimilarity checker for GSOS with predicates.
In Proceedings of the 4th Conference on Algebra and Coalgebra in Computer Science
(CALCO 2011), volume 6859 of Lecture Notes in Computer Science, pages
378-385. 2011.

3. Luca Aceto, Eugen-loan Goriac, Anna Ingélfsdétti, Mohammad Reza
Mousavi, and Michel Reniers. Exploiting algebraic laws to improve mech-
anized axiomatizations. In Proceedings of the 5th Conference on Algebra and
Coalgebra in Computer Science (CALCO 2013), Lecture Notes in Computer
Science. To appear. 2013.

http://goriac.info/tools/meta-sos/

12 Axiomatizations from SOS

4. Luca Aceto, Eugen-loan Goriac, and Anna Ing6lfsdéttir. SOS rule formats
for idempotent terms and idempotent unary operators. In Proceedings of
the 39th International Conference on Current Trends in Theory and Practice of
Computer Science (SOFSEM 2013), volume 7741 of Lecture Notes in Computer
Science, pages 108-120. 2013.

5. Luca Aceto, Eugen-loan Goriac, and Anna Ingo6lfsdéttir. SOS rule formats
for idempotent terms and idempotent unary operators. In Journal of Logic
and Algebraic Programming. To Appear. 2013

6. Luca Aceto, Eugen-loan Goriac, and Anna Ing6lfsdéttir. A ground-complete
axiomatization of stateless bisimilarity over Linda. Technical report, Reyk-
javik University, 2013. Submitted to Information Processing Letters. Available
from http://www.ru.is/faculty/luca/PAPERS/axiomatizing_linda.pdf.

7. Daniel Gebler, Eugen-loan Goriac, and Mohammad Reza Mousavi. Alge-
braic meta-theory of processes with data. In Proceedings of the Tenth Workshop
on Structural Operational Semantics. To appear. 2013.

8. Luca Aceto, Eugen-loan Goriac, and Anna Ingolfsdottir. Meta SOS — a
Maude based SOS meta-theory framework. In Proceedings of the Tenth Work-
shop on Structural Operational Semantics. To appear. 2013.

9. Marcello M. Bonsangue, Georgiana Caltais, Eugen-loan Goriac, Dorel Lu-
canu, Jan J. M. M. Rutten, and Alexandra Silva. Automatic equivalence
proofs for non-deterministic coalgebras. In Science of Computer Program-
ming. To appear. 2013.

Paper 9 does not concern SOS, therefore the results presented there are not part
of the present thesis.

http://www.ru.is/faculty/luca/PAPERS/axiomatizing_linda.pdf

13

Chapter 2

A Ground-Complete Axiomatization

of Stateless Bisimilarity over Linda

2.1 Introduction

The goal of this chapter is to contribute to the study of equational axiomatizations
of behavioural equivalences for processes with data—see, e.g.,the references [64,
89,90, 91] for earlier contributions to this line of research. Specifically, we present a
ground-complete axiomatization of stateless bisimilarity from [52, 62, 85, 116] over

the well-known tuple-space-based coordination language Linda [56, 78].

Linda is a, by now classic, example from a family of coordination languages that
focus on the explicit control of interactions between parallel processes. A com-
munication between Linda processes takes place by accessing tuples in a shared
memory, called the tuple space, which is a multiset of tuples. The communication
mechanism in Linda is asynchronous, in that send operations are non-blocking.
Our presentation of the syntax and the semantics of Linda follows those given
in [55, 116].

In the light of its intuitive appeal and impact, Linda has received a fair amount
of attention within the concurrency theory community. For instance, the relative
expressive power of fragments of Linda has been studied in [55] and the paper [64]
studies testing semantics, in the sense of De Nicola and Hennessy [63], over
applicative and imperative process algebras that are inspired by Linda. The
paper [63] also provides complete inequational axiomatizations of the studied

calculi with respect to testing semantics.

14 Axiomatizations from SOS

Testing semantics can be viewed as the most natural notion of behavioural equiv-
alence for a language from the programmer’s perspective. Indeed, it is the
formalization of the motto that “two program fragments should be considered
equivalent unless there is a context/test that tells them apart.” Testing semantics
is, however, not very robust. In particular, if one extends a language with new
features that increase the observational power of tests, the resulting notion of
‘testing equivalence’ for the extended language will be finer than the one for the
original language. This means that the results one had worked hard to establish
for the original language will have to be established anew.

Stateless bisimilarity [52, 62, 85, 116] is a variation on the classic notion of bisimilar-
ity [106, 120] that is suitable for reasoning compositionally about open, concurrent
and state-bearing systems. It is the finest notion of bisimilarity for state-bearing
processes that one can find in the literature and comes equipped with a congru-
ence rule format for operational rules [116]. It is therefore interesting to study its
equational theory in the setting of a seminal language like Linda, not least because
equational axiomatizations of stateless bisimilarity may form the core of axiom

systems for coarser notions of equivalence over that language.

Contribution and structure The main contribution of this chapter is a ground-
completeness result for stateless bisimilarity over Linda given in Section 2.3. We
first present a complete axiom system for stateless bisimilarity over the sequential
fragment of Linda without the nask primitive, which tests for the absence of a
tuple in the tuple space (Theorem 2.3.1). Interestingly, it turns out that stateless
bisimilarity over this fragment of Linda has the same axiomatization of standard
bisimilarity, when the considered sub-language of Linda is viewed as Basic Pro-
cess Algebra (BPA) with deadlock and the empty process [139]. We formalize the
connection between the two languages and their respective semantics, culminat-

ing in Theorem 2.3.2.

Next we offer a ground-complete axiomatization of stateless bisimilarity over the
tull sequential fragment of Linda (Section 2.3.1). In this setting, we have to deal
with the subtle interplay of ask and nask primitives, which test for the presence
and absence of some tuple in the tuple space, respectively. In Theorem 2.3.3, we
show that two equation schemas are enough to capture equationally the effect
that combinations of ask and nask primitives may have on the behaviour of Linda

terms.

Eugen Ioan Goriac 15

Following rather standard lines, we give a ground-complete axiomatization of
stateless bisimilarity over the full Linda language we consider in this chapter in
Section 2.3.2.

We end the chapter with some concluding remarks and a suggestion for future

research (Section 2.4).

2.2 Preliminaries

In this section we present the syntax and operational semantics for the classic,
tuple-space-based coordination language Linda [56, 78]. (Our presentation fol-
lows those given in [55, 116].) Moreover, we introduce the notion of stateless
bisimilarity and the basic definitions from equational logic used in this chap-
ter.

We assume two signatures Xp and Lp for processes and data, respectively, which
are sets of function symbols with fixed arities. A function symbol with arity zero is
referred to as a constant. We let Vp and V) denote two disjoint sets of, respectively,
process variables and data variables. By T(Xp) and T(Xp) we denote the sets of open
process and data terms, respectively, which are built using appropriate variables
and function symbols by respecting their arities. Closed terms are terms without
occurrences of variables. The sets of closed process and data term are T(Xp) and
T(Xp), respectively. A substitution replaces a variable in an open term with some
(possibly open) term. We call substitutions o : Vp — T(Zp) process substitutions
and & : Vp — T(Zp) data substitutions.

Linda’s signature Xp for data (the so-called tuple space) consists of the constant
0 for the empty tuple space, a (possibly infinite) set U of constants standing for
memory tuples and a binary separator _ _ that is associative and commutative,
but not idempotent, and has 0 as left and right unit. (The store is a multiset of
tuples.) The set T(Xp) of closed data terms is given, therefore, by the following
BNF grammar:

d:=0|uldd,

where u € U. Each data term d determines a multiset {u, ..., ux} of tuples in the
obvious way. In what follows, we write u € d when there is at least one occurrence

of the tuple u in the multiset denoted by 4.

16 Axiomatizations from SOS

Following [55], the signature Xp for Linda is implicitly given by the BNF grammar
defining the set T(XZp) of open process terms over a countably infinite set Vp of
process variables:

tu=x|0] ¢ |ask(u) | nask(u) | tell(u) | get(u) [t+t|t;t]t ¢,

wherex € Vpand u € U. Closed terms are terms without occurrences of variables.
The set of closed process terms is denoted by T(Xp). A substitution o is a function of
type Vp — T(Zp). A closed substitution is a substitution whose range in included
in T(Xp). We write o(t) for the term resulting by replacing each occurrence of a
variable x in f with the term o(x). Note that o(t) is a closed term whenever ¢ is a
closed substitution.

Intuitively, 0 is a constant process that symbolizes deadlock, which satisfies no
predicates and performs no actions. The constant ¢ denotes a process that satisfies
the successful termination predicate, denoted by | in what follows, and performs
no action. The constants ask, nask, tell, and get are the basic Linda instructions for
operating with the data component. ask(u) and nask(u) check whether tuple u is
and, respectively, is not in the store. fell(u) adds tuple u to the store, while get(u)
removes it if is present. The ask(u), get(1) and nask(u) operations are blocking, in
the sense that a process executing them blocks if u is not in the tuple space for ask
and get, and if it is in the tuple space for nask. The operations _+_, _; _and _||_are,
respectively, the standard alternative, sequential and interleaving parallel com-
position operations familiar from process algebras—see, for instance, [25].
Definition 2.2.1 (Transition System Specification for Linda). The operational se-
mantics of Linda is given in terms of a unary immediate termination predicate | and a
binary transition relation — over configurations of the form (p,d) with p € T(Xp) and
d € T(Xp). Intuitively, (p,d) | means that the process term p can terminate immediately
in the context of the tuple space d, whereas

(p,d)— (", d)

indicates that the configuration (p,d) can evolve into (p’,d’) in one computational step.
Formally, | and — are the least relations over configurations satisfying the following set
of rules.

(e,d) | (ask(u),d u) — (¢,d u) (tell(u),d) — (¢,d u)

Eugen Ioan Goriac 17

[u ¢d]

(get(u), d u) — (&, d) (nask(u),d) — (e, d)

(x,d)— (x',d’) (y,d)— (v, d) (x,d) | (y,d) |
x+yd)—->@,d) x+yd—=(Y,4) x+ydl x+ydl

(x,d) > (', d') xd)l (yd)-W,d) @xdl ydl
(x Y d) - (x, Y dl) (x; Y, d) - (ylldl) (x Y d)l

(x,d) = (', d’) (y,d)— (v, d") xd !l (ydl
@llyd—llyd) &llyd-&ly,d) xllydl

Note that the predicate | is independent of the data component in a configuration,
thatis, if (p,d) | for some p € T(Xp) and d € T(Xp), then (p,d’) | also holds for each
d’ € T(Zp).

Throughout the chapter we use the notion of stateless bisimilarity from [52, 62, 85,
116] as our notion of behavioural equivalence over closed Linda process terms.
Stateless bisimilarity is the finest notion of bisimilarity for state-bearing processes
that one can find in the literature. It is a variation on strong bisimilarity for
processes with data in which the behaviour of process terms is compared in the
context of all possible data terms, and that allows for interference from ‘the envi-
ronment’ in the data part after each transition. This makes stateless bisimilarity
suitable for reasoning compositionally about open concurrent systems.

Definition 2.2.2 (Stateless Bisimilarity). A relation R C T(Zp) X T(XZp) is a stateless
bisimulation if, and only if, it is symmetric and the following conditions hold for each

(v, q) €R:

o forallp’ € T(Xp)andd,d’ € T(Xp),if(p,d)— (p’,d") thenthereissomeq’ € T(Lp)
such that (q,d)— (¢',d")and (p’,q') € R;

o foreachd € T(Xp), if (p,d) | then (q,d) |.

Two closed process terms p and q are stateless bisimilar, denoted by p <4 q, if there
exists a stateless bisimulation R such that (p,q) € R. Stateless bisimilarity is extended
to open terms in the standard way: two open terms t,t' € T(Xp) are stateless bisimilar
when o(t) €4 o(t') holds for each closed substitution o.

Example 2.2.3. The processes tell(u) || get(u) and tell(u); get(u) + get(u); tell(u) are

stateless bisimilar for each tuple u. Indeed, using the rules in Definition 2.2.1, it is not

18 Axiomatizations from SOS

hard to check that the symmetric closure of the relation R, consisting of the pair
(tell(u) || get(u), tell(u); get(u) + get(u); tell(u))
and the pairs

(¢ |l get(u), €; get(u)), (tell(u) || €, &;tell(w)), (¢ || €, ¢),

is a stateless bisimulation.

Example 2.2.4. Consider the terms ask(u) + nask(u) and ask(v) + nask(v), where u and
v are (possibly different) tuples. By Definition 2.2.2, these terms are stateless bisimilar
as they both transition to ¢, independently of the data term d € T(Xp) they are paired up
with, leaving the data term d unchanged.

Definition 2.2.5 (Congruence). Let X be a signature. An equivalence relation ~ over
Y-terms is a congruence if, for all f € ¥ and closed termsps,...,p,and qq,...,q,, where

nis the arity of f, if pi ~ qi foreach i € {1,...,n} then f(p1,...,pn) ~ fq1,--.,qn)-

The following result is easy to show.

Proposition 2.2.6. < is a congruence for Linda.

Definition 2.2.7 (Axiom system, Derivability [25]). An axiom system is a pair
(X, E), where L is a signature and E is a set of axioms (equations) of the form s = t,
where s, t € T(X).

By + we denote the well known notion of derivability in equational logic—closure under
substitutions and contexts, and the fact that equality is an equivalence relation are the
means through which one can derive equations.

An axiom system (X, E) is often identified with the set of equations E when the
signature X is clear from the context.

Example 2.2.8. The following axiom system E' over the signature for Linda coincides
with the one for BPA with the empty process and 6 proposed in [139, Table 4, page 291].

Eugen Ioan Goriac 19

X+y = y+x (e1)
x+(y+z) = @x+y)+z (e)
E+e = ¢ (e3)
e+ =¢ (eq)
(x+y)z = (52)+{y;2) (es)
X (y;2) = (G y)z (es)
0x =0 (e7)

X =X (es)

X; € =X (e9)

Using it, one can derive, for example, the following equations, which state that the +
operation is idempotent and has 6 as unit element:

2.1)
(2.2)

xX+Xx

Il
=

x+0

Il
i

The basic sanity criterion for an axiom system is that it only allows one to derive
valid equalities between terms. This is the so-called soundness property, which
is formalized in the following definition in the setting of Linda modulo stateless
bisimilarity.

Definition 2.2.9 (Soundness). An axiom system E over Lp is sound when, for all
s,t € T(Xp), if E+ s =tthens gt

The following result can be shown following standard lines.

Lemma 2.2.10. E' is sound for stateless bisimilarity over Linda.

Given a finite index set I = {ij, ..., i,} and an indexed set of terms {t;};c;, we write
Y tifort; +---+t; . An empty sum stands for 6. (The generalized sum notation
is justified since, by the above lemma and the derivability of equation (2.2), the +
operation is associative, commutative and has 6 as unit element, modulo stateless

bisimilarity:.)

Ideally, one would like to have axiom systems that are strong enough to prove all
the equalities that are valid with respect to the chosen notion of equivalence over
Linda. As is customary in the literature on process calculi, in what follows we
will focus on ground-complete axiom systems.
Definition 2.2.11 (Ground Completeness). An axiom system E is ground complete
when, forall p,q € T(Xp), if p 2aqthen E+ p =gq.

20 Axiomatizations from SOS

2.3 Axiomatization

In this section we provide a sound and ground complete axiomatization for state-
less bisimilarity over the collection of Linda process terms. The axiom system
is finite if the tuple names mentioned in the axioms are taken to be variables
ranging over tuples. We build the axiomatization incrementally starting with all
the operations except for nask and _ || _. Then we discuss the issues nask poses
and how to overcome them by means of two equations (Section 2.3.1). In order to
avoid cluttering previous explanations, the axiomatization for _||_ comes only at

the end and will be given following standard lines (Section 2.3.2).

We proceed by introducing the notion of normal form of a Linda process term,
which plays a crucial role in proving the completeness of the proposed axiomati-
zation.

Definition 2.3.1 (Normal Form). A term t € T(Xp) is in normal form if it is of the
form (Y ;cp ai(uy); ti)[+¢] (that is, either) ;cp ai(u;); ti or (X ai(ui); ti) + €), with I a finite,
possibly empty, index set, a; € {ask, nask, tell, get}, u; € U and t; is in normal form for
eachie I

The terms a;(u;); t; (i € I) and ¢, if present, are called the summands of (3_;c; ai(u;:); ti)[+¢€].

An axiom system E over Lp is normalizing for t € T(Xp) if there exists a term t' € T(Zp)
in normal form such that E+ t = t'.

In what follows, we let 2113 be Lp without the operations _|| _ and nask(u), for all
u € U, and Z% be Xp without the operation _|| _. The following lemma can be
shown following standard lines.

Lemma 2.3.2. E' is normalizing for each closed term in L3,

Theorem 2.3.1. E' is sound and ground complete for stateless bisimilarity over T(Z}).

Proof. The soundness of the axiom system is given in Lemma 2.2.10.

In order to establish the ground completeness of E!, we shall prove that, for all

p,q € T(X}),
peag=Erp=g

To this end, we first define the function height that computes the height of the
syntax tree associated with a term ¢ € T(Z}):

if p is a constant,

height(p) = 0
ST 1+ max(height(py), height(p2)) i p = py +p2 or pypa.

Eugen Ioan Goriac 21

We prove the claim by induction on M = max(height(p), height(q)).

Base case: If M = 0 then p = g = 0, because none of the terms in the set {¢} U
{ask(u), tell(u), get(u) | u € U} is innormal form, and the claim follows immediately
by reflexivity.

Inductive step, M > 0: In order to show that p = g4 we argue that each summand
of p is provably equal to a summand of q. We proceed by examining the possible

forms a summand of p may have.

e Assume that ¢ is a summand of p. Then (p,0) |. As p €4 g, it holds that

(9,0) l. Since g is in normal form, ¢ is also a summand of 4.

o Letask(u);p’ be asummand of p. This yields that (p, u) = (&;p’,u). Asp 244
and g is in normal form, we have that (g, u) = (¢;4’, u) for some g’ such that
&p €4 €q . This means that g has the summand ask(u);q’. Indeed, the
primitives tell(u’), for each ' € U, and get(u) alter the tuple space u, and,
if u” # u, neither ask(u’) nor get(u’) can be performed in the context of the
tuple space u. Since max(height(p’), height(q’)) < M and p’ €4 q’, we may use
the induction hypothesis to infer that E! + p’ = ¢’. Hence, by substitutivity,
E' v ask(u); p’ = ask(u); q’

o Lettell(u);p’ be asummand of p. This yields that (p,0) — (&;p’, u). Asp 44
and g is in normal form, we have that (g,0) — (¢;q’, u) for some g’ such that
&P €4 ¢€;q9'. This means that g has the summand tell(u); q’, as tell(u) is the
only Linda primitive that can transform the empty tuple space into u. The

proof now proceeds as in the above case.

o Let get(u); p’ be a summand of p. This yields that (p, u) — (¢;p’,0). Asp 47
and g is in normal form, we have that (g, u) — (¢;¢’, 0) for some g’ such that
&P €4 €9 . This means that g has the summand get(u); g, as get(u) is the
only Linda primitive that can transform u into the empty tuple space. The
proof now proceeds as above.

As each summand of p is provably equal to a summand of g, we have that
E' + g = p + q. (Note that, in the case that p = 0 + ¢, this equality can be derived
using equations (2.1) and (2.2).) By symmetry, E' + p = p + ¢ too, and therefore
E'rp=g. m

The import of the above result is that stateless bisimilarity over T(Z]) has the

same axiomatization as standard strong bisimilarity [106, 120] over BPA with the

22 Axiomatizations from SOS

el ask(u)aSJ{—(;l)E fell(”)t(ﬂ—(;[)€ get(u)gﬂl)e
x—a>x/ y_a>y/ xJ, yl
X+y>x x+ySy x+yl x+yl
xSy xl ySy o xl oyl
X;ySx;y Xy Sy -

Figure 2.1: SOS rule for the labelled transition system semantics for T(le,) (d € AY)

empty process and 6. This may seem surprising at first sight, since the definition of
stateless bisimilarity over Linda given in Definition 2.2.2 is based on an unlabelled
transition system semantics, whereas strong bisimilarity is based on a labelled
transition system semantics. However, as the proof of the ground-completeness
result given above indicates, the effect on the tuple space of the execution of the
primitive operations in Linda considered so far, in combination with the definition
of stateless bisimilarity, essentially encodes the primitive operation that is being
executed in an unlabelled computational step. We now make this intuition precise,
by showing how the problem of axiomatizing stateless bisimilarity over T(Z}) can

be reduced to that of axiomatizing ordinary bisimilarity over that language.

Let A* = {ask(u), tell(u), get(u) | u € U}. We define a partial function upd :
A* X T(Xp) = T(Xp) as follows, where d € T(Xp) and u € U:

upd(ask(u),du) = du,
upd(get(u),du) = d and
upd(tell(u),d) = du.

Intuitively, upd(a, d) = d’ holds for some a € A" and d,d’ € T(Xp) if, and only
if, the primitive operation a can be executed in the context of the tuple space
represented by d and its execution results in the tuple space represented by d’.
For example, the first equation in the definition of the function upd specifies that
upd(ask(u), d) is only defined if u € d, and that the execution of ask(u) leaves d
unchanged.

The following lemma connects the transition system semantics for T(X}) given in
Definition 2.2.1 with the standard labelled transition system semantics that T(le))
inherits when viewed as BPA, with € and 0§, over the set of actions A*, which is

given in Figure 2.1.

Eugen Ioan Goriac 23

Lemma 2.3.3. Forall p,p’ € T(X}) and d,d’ € T(Zp),
w,d)—- @, d)yeJacA.p 5 p" and upd(a,d) =d'.

Proof. Both implications can be shown by induction on the proof of the relevant

transition. We omit the straightforward details. m|

As an easy, but useful, corollary of the above lemma and of the definition of the
upd function, we have the following observations.
Corollary 2.3.4. Forall p,p’ € T(X}) and u € U, the following statements hold:

1. (p,u)— (p’, u) if, and only if, p”Sk_(l” v

3. (p,0)— (p',u) if, and only if, pteﬂf) p.
For the sake of clarity, we now recall the standard definition of bisimilarity in the
presence of the termination predicate.

Definition 2.3.5 (Bisimilarity). A relation R € T(X}) x T(X}) is a bisimulation if and
only if it is symmetric and, whenever (p,q) € R, the following conditions hold:

e Vp € TE.pop =3¢ € TEL. 459 AP, q)€ER;

eri=qgl
Two closed process terms p and q are bisimilar, denoted by p & g, if there exists a
bisimulation R such that (p,q) € R. Bisimilarity is extended to open terms in the
standard way: two open terms t,t' € T(Ly) are bisimilar when o(t) & o(t') holds for
each closed substitution o.

Theorem 2.3.2. Stateless bisimilarity and bisimilarity coincide over T(X})—that is,
©q q if, and only if, p & g, for all p,p’ € T(Z}).

Proof. Using Corollary 2.3.4, it is not hard to show that ©y is a bisimulation and,
using Lemma 2.3.3, one proves that £ is a stateless bisimulation. In establishing
both claims, we use the simple observation that

pl if,and only if, (p,d) | foralld € T(Xp),

forallp € T(le,), forallp € T(lej), and that, as remarked earlier, the predicate |

from Definition 2.2.1 is independent of the data component in a configuration. O

24 Axiomatizations from SOS

The above result yields an alternative, but less direct, proof of Theorem 2.3.1 by
reducing the problem of axiomatizing stateless bisimilarity over T(Z}) to that of
axiomatizing bisimilarity over that language. It is well known that bisimilarity is

axiomatized by the axiom system E' over T(X})—see, e.g., [32].

2.3.1 Adding the nask operations

As we proved above, the axiom system E! is ground complete for stateless bisim-
ilarity over T(X}). However, when we add the nask operations to X}, E' is not
ground complete any more. To see this, recall that in Example 2.2.4 we argued
that ask(u) + nask(u) €4 ask(v) + nask(v) holds, even when the tuples u and v are
distinct. The axiom system E', however, does not suffice to prove that equality

when u # v.

Consider the axiom system E?, which is obtained by adding the following equa-
tions to E'.

ask(u) + nask(u) + ask(v) = ask(u) + nask(u) forall u,v € U (eyp)
ask(u) + nask(u) + nask(v) = ask(u) + nask(u) forall u,v € U (e11)

Note that, using the above equations, one may derive the following ones:

ask(u) + nask(u) + ask(w) = ask(v) + nask(v) for all u,v,w € U,
ask(u) + nask(u) + nask(w) = ask(v) + nask(v) for all u,v,w € U.

Note that, due to the unlabelled nature of the transition relation, all “one-step”
processes that never block and that do not change the data component are equiv-

alent.

Our order of business in the remainder of this subsection is to show that E? is
sound and ground complete modulo stateless bisimilarity over T(X3). (Recall
that X3 is ©p without the operation _||_.)

For each p = (L ai(u;); pi)[+€] € T(X2) in normal form, let:
® Dan = Ziel, a; is ask or nask ll,‘(l/ll'); Pi,
® Dot = Ziel, a; is get or tell ai(ui); pi-

The following ‘decomposition lemma” will be useful in establishing the desired
completeness result.

Eugen Ioan Goriac 25

Lemma 2.3.6. Let p,q € T(X3) be two terms in normal form. Then p and q are stateless
bisimilar if, and only if,

1. Pan =] Qans
2. Pot 41 qgr, and

3. ¢ isasummand of p if, and only if, it is a summand of q.

Proof. The ‘if” implication follows because, by Proposition 2.2.6, stateless bisimi-
larity is preserved by +. Assume now that p and g are stateless bisimilar normal
forms. We shall show that statements 1-3 hold. Statement 3 is immediate since,
for each term t in normal form, (t,0) | if, and only if, € is a summand of ¢. To
prove the other two statements, it suffices to show that the relation

R = {(Pan,Gan), (P4t 9gt) | p, g are in normal form and p 24 g} U <4

is a stateless bisimulation. First of all, note that R is symmetric since so is € .
We limit ourselves to presenting the verification of the stateless bisimulation
conditions for a pair of the form (p,u, 4.n) € R. The proof for pairs of the form
(Pst,qqt) € R is similar and we omit it.

Let d € T(Xp). By definition of p,,, we have that (p,,,d) | does not hold.
Hence the second clause in Definition 2.2.2 is met vacuously. Assume now that
(Pan,d) — (p’,d’) for some p’ and d’. Then there is a summand a;(u;); p; of p,, such
that ‘a;(u;) is enabled in the context of d’, p’ = ¢;p; and d = d’. Since a;(u;); pi
is also a summand of p, we have that (p,d) — (p’,d). From our assumption that
p and g are stateless bisimilar, we infer that (g,d) — (7’,d) for some g’ such that

" ©4 q'. Since the execution of get and tell primitives modifies the tuple space d,
the above transition is due to a summand of g that is also a summand of g,,. Thus,
(Gan, d) = (¢, d) for some ¢’ such that p’ ©4 q’. Since €4 is included in R, we are

done. O
Theorem 2.3.3. E? is sound and ground complete modulo stateless bisimilarity over
T(Z2).

Proof. 1t is easy to check that equations (ey9) and (e;1) are sound.

In order to establish the ground completeness of E?, we shall prove that, for all

p,q€T(X2),
peag=Erp=g

26 Axiomatizations from SOS

Assume that p €4 gq. We shall prove the claim above by induction on M =
max(height(p), height(g)), where the function height from the proof of Theorem 2.3.1
is extended to T(X3) by setting

height(nask(u)) = 0.

By Lemma 2.3.2, we may assume that p,q are in normal form. Our induc-
tion hypothesis is that E* + p’ = ¢’ for all p’,q such that p’ &4 ¢ and M >
max(height(p’), height(q’)).

By Lemma 2.3.6, p,; and g are stateless bisimilar and they can be proved equal
by mimicking the proof of Theorem 2.3.1. Using again Lemma 2.3.6, we have that
Pan and q,, are also stateless bisimilar. We claim that

E2 F Pan = Gans (23)

from which the equality p = g follows by substitutivity, also in the light of the last

statement in Lemma 2.3.6.

In order to show the above claim, note, first of all, that, modulo E?, we may assume

that p,, and g,, are in the adapted normal forms

Y (O aiw))p: and

i€l je]l-

Y () b@ips

iel kekK;

Pan

Yan

where J; and K; are non-empty index sets (i € I), aj, by € {ask, nask} and E*¥p; = pj
(or, equivalently, p; ¢4 p;), for all i, j € I such that i # j. To see this, assume that
Pan = Yoger, Ae(ue); pe and that pg, £4 py,, for some €y, £, € L. Since

max(height(pe,), height(pe,)) < height(p.,) < height(p) < M,

we may use the inductive hypothesis to obtain that E*> + p;, = ps,. Therefore,
modulo E?,

Pan = Z a{’(”é’); Pél

el
wherep, € {p, | h € L and p, £ p,} is a canonical representative of the equivalence
class of the ‘suffixes’ of p,, that are stateless bisimilar to p,, for each ¢ € L. For this
reason, we can group all the summands of p,, with the same suffix p; modulo E?

by applying equation (es) form right to left as needed. This puts p,, in the desired

Eugen Ioan Goriac 27

form, namely
Pan = Y () a(u))ipr
el jeJ;

(Note that each J; is non-empty.) Let g., = Y. jerr bu(vn); gn. Since p,, and g,, are
stateless bisimilar, it is not hard to see that, for each i € H, there is some i € I such
that p; €4 g5. Using the inductive hypothesis as above, the equality p; = g;, can be
proved from E2. This means that g,, can be put in the form Yier((Xkex, br(©)); pis
by substitutivity and applying equation (e5) form right to left as needed. (Note
that, since pa, €4 gan, €ach K; is non-empty.)

In order to show claim (2.3), it therefore suffices to show that C; =)¢, a;(u)) is

provably equal to D; = } ;. bk(vy), for each i € I.

For a fixed i € I, we consider the two sums of ask and nask terms C; and D;. Since
E? proves equation (2.1), to the effect that + is idempotent, we may assume in
what follows that all the summands of C; and D; are different.

We shall prove that E? + C; = D; by case analysis on their possible form.

1. C; = ask(u) + nask(u) + C" and D; = ask(v) + nask(v) + D’, for some u,v € U
and C’,D’. (Note that, in the light of equation (2.2), C" and D’ may be 6.)
Then the equality C; = D; can be shown by using equations (e19) and (e11)
repeatedly.

2. C; = ask(u) + nask(u) + C, for some u € U and C, and D; = } ;. bi(vy), with
Uy, # U, Whenever ky # ky, for all ky, k, € K;. We shall argue that this case is
impossible, since it contradicts the assumption that p,, and g,, are stateless

bisimilar.

By using equations (ejg) and (e11) repeatedly, we can derive the equation
Ci = ask(u) + nask(u). It is easy to see that (C;,d) — (¢,d), for each d € T(Xp).
Therefore (pu.,d) — (¢;pi,d), for each d € T(Xp). However, since D; =
Yokext 45k(Vg,) + Lpexz nask(vy,) with K N K2 = @ and K} U K? = K;, the
tuplez space d’ = {vy, i ky € Ky} ‘blocks” D; (no transition can be performed
from (D;,d’)). This means that (4,,,d’) does not have a transition leading
to (&;pi, d’), which contradicts the assumption that p,, and q,, are stateless

bisimilar.

3. D; = ask(u) + nask(u) + D, for some u € U and D, and C; = } ;. br(vx), with
Ux, # Uk, Whenever k; # ky, for all ki, k, € K;. This case is symmetric to the

one above.

28 Axiomatizations from SOS

4. Assume that none of the previous cases applies. Let

C = Z ask(v;,) + Z nask(vj,),

el j2€J?

withJ! N J? =0and J! U J? = J;, and

D; = Z ask(vy,) + Z nask(vy,),

ks eK} ko eK].2

with Kl N K? = @ and K} U K? = K;. We have that v;, # vj,, for each j, € J!
and j, € J7, and vy, # vy,, for each k; € K} and k; € K.

We show that each summand in C; appears in D;, and vice versa, by re-
ductio ad absurdum. We consider the following four cases, each of which

contradicts the assumption that p,, and g,, are stateless bisimilar.

e Suppose JI \ K! # 0. Thend = (v, | € (J} \ K}) U K?} ‘blocks” D, but
(Ci,d) — (¢,d). This means that (4,,, d) doesnothave a transition leading
to (¢; pi, d), whereas (p,,,d) does. This contradicts the assumption that

Pan and q,, are stateless bisimilar.

e Suppose K} \ ! # 0. The proof for this case is similar to that for the

previous one.

e Suppose J2\K? # 0. Thend = {v; | | € K?} ‘blocks’ D;, but (C;, d) — (e, d).
This means that (4., d) does not have a transition leading to (¢; p;,),
whereas (p,,, d) does. This contradicts the assumption that p,, and g,

are stateless bisimilar.

e Suppose K7 \ J7 # 0. The proof for this case is similar to that for the

previous one.

Concluding, E*> + C; = D; for each i € I. This means that E? + p,, = a,, and we are
done. O

2.3.2 Adding parallel composition

Our goal in this section is to axiomatize stateless bisimilarity over the full Linda
language studied in this chapter. Consider the signature X3, an extension of Xp
with the binary left merge operation _||_, which stems from [43], defined by the

rules:

Eugen Ioan Goriac 29

(x,d)— (', d’) (x,d)l (v,d)l
xlyd— & llyd) xlydl

Asis well known (see, e.g., [107]), the left merge operation is necessary in order to

obtain finite equational axiomatizations of bisimilarity in process algebras.

Consider the axiom system E*> which is E? enriched with the following equa-

tions.

xlly =x[y+ylx (e12)
x+yllz=C&l2)+Wl2 (e13)
(au);x) || y = a(u); (x|l y) for all a € {ask, nask, tell, get} and u € U (e14)
eltx+y) =¢ellx+ely (e15)

e |l (a(u);y) = 6 foralla € {ask, nask, tell, get} and u € U (e16)
elle = ¢ (e17)

ello=2o (e18)

Ollx =0 (e19)

Theorem 2.3.4. E® is sound and ground complete modulo stateless bisimilarity over
T(Z3).

Proof. The soundness of E*> modulo stateless bisimilarity can be shown following
standard lines. The ground completeness of E> modulo stateless bisimilarity can
be reduced to that of E? over T(X3). Indeed, by induction on the size of terms, one
can show that the equations (e1» — e19) can be used to eliminate each occurrence of
|land || from terms. O

2.4 Conclusions

In this chapter, we have presented a sound and ground complete axiomatization
for stateless bisimilarity over the collection of Linda process terms. The axiom
system is finite if the tuple names mentioned in the axioms are taken to be variables
ranging over tuples.

The axiom systems we present in this chapter may form the core of axiom sys-
tems for coarser notions of equivalence over Linda. In particular, an interesting
direction for future research is the development of a complete axiomatization for
the notion of behavioural equivalence over Linda studied in [55].

30

31

Chapter 3

Axiomatizing GSOS with

Predicates

3.1 Introduction

One of the greatest challenges in computer science is the development of rigorous
methods for the specification and verification of reactive systems, i.e., systems
that compute by interacting with their environment. Typical examples include
embedded systems, control programs and distributed communication protocols.
Over the last three decades, process algebras, such as ACP [28], CCS [106] and
CSP [95], have been successfully used as common languages for the description
of both actual systems and their specifications. In this context, verifying whether
the implementation of a reactive system complies to its specification reduces
to proving that the corresponding process terms are related by some notion of

behavioural equivalence or preorder [79].

One approach to proving equivalence between two terms is to exploit the equa-
tional style of reasoning supported by process algebras. In this approach, one
obtains a (ground-)complete axiomatization of the behavioural relation of interest
and uses it to prove the equivalence between the terms describing the specification
and the implementation by means of equational reasoning, possibly in conjunc-

tion with proof rules to handle recursively-defined process specifications.

Finding a “finitely specified”, (ground-)complete axiomatization of a behavioural
equivalence over a process algebra is often a highly non-trivial task. However, as

shown in [6] in the setting of bisimilarity [106, 120], this process can be automated

32 Axiomatizations from SOS

for process languages with an operational semantics given in terms of rules in the
GSOS format of Bloom, Istrail and Meyer [49]. In that reference, Aceto, Bloom
and Vaandrager provided an algorithm that, given a GSOS language as input,
produces as output a “conservative extension” of the original language with
auxiliary operators together with a finite axiom system that is sound and ground-
complete with respect to bisimilarity (see, e.g., [2, 76, 136] for further results
in this line of research). As the operational specification of several operators
often requires a clear distinction between successful termination and deadlock,
an extension of the above-mentioned approach to the setting of GSOS with a

predicate for termination was proposed in [35].

Contribution In this chapter we contribute to the line of the work in [6] and
[35]. Inspired by [35], we introduce the preg rule format, a natural extension of
the GSOS format with an arbitrary collection of predicates such as termination,
convergence and divergence. We further adapt the theory in [6] to this setting and
give a procedure for obtaining ground-complete axiomatizations for bisimilarity
over preg systems. More specifically, we develop a general procedure that, given
a preg language as input, automatically synthesizes a conservative extension of
that language and a finite axiom system that, in conjunction with an infinitary
proof rule, yields a sound and ground-complete axiomatization of bisimilarity
over the extended language. The work we present in this chapter is based on
the one reported in [6, 35]. However, handling more general predicates than
immediate termination requires the introduction of some novel technical ideas.
In particular, the problem of axiomatizing bisimilarity over a preg language is
reduced to that of axiomatizing that relation over finite trees whose nodes may
be labelled with predicates. In order to do so, one needs to take special care
in axiomatizing negative premises in rules that may have positive and negative

premises involving predicates and transitions.

The results of the current chapter have been used for the implementation of a
Maude [59] tool, presented in Chapter 7, that enables the user to specify preg
systems in a uniform fashion, and that automatically derives the associated ax-
iomatizations. The tool is available at http://goriac.info/tools/preg-axiomatizer/.
This paves the way to checking bisimilarity over process terms by means of
theorem-proving techniques for a large class of systems that can be expressed

using preg language specifications.

http://goriac.info/tools/preg-axiomatizer/

Eugen Ioan Goriac 33

Structure In Section 3.2 we introduce the preg rule format. In Section 3.3 we in-
troduce an appropriate “core” language for expressing finite trees with predicates.
We also provide a ground-complete axiomatization for bisimilarity over this type
of trees, as our aim is to prove the completeness of our final axiomatization by
head normalizing general preg terms, and therefore by reducing the completeness
problem for arbitrary languages to that for trees.

Head normalizing general preg terms is not a straightforward process. Therefore,
following [6], in Section 3.4 we introduce the notion of smooth and distinctive op-
eration, adapted to the current setting. These operations are designed to “capture
the behaviour of general preg operations”, and are defined by rules satisfying a se-
ries of syntactic constraints with the purpose of enabling the construction of head
normalizing axiomatizations. Such axiomatizations are based on a collection of
equations that describe the interplay between smooth and distinctive operations,
and the operations in the signature for finite trees. The existence of a sound and
ground-complete axiomatization characterizing the bisimilarity of preg processes
is finally proven in Section 3.5. A technical discussion on why it is important
to handle predicates as first class notions, instead of encoding them by means
of transition relations, is presented in Section 3.6. In Section 3.7 we draw some
conclusions and provide pointers to future work.

This chapter is an extended version of [7]. It offers the proofs of results that
were announced without proof in this reference, as well as a new theory, in
Appendix 3.1, on many different types of predicates a system could include, and
how to axiomatize these systems.

3.2 GSOS with predicates

In this section we present the preg systems which are a generalization of GSOS

[49] systems.

Consider a countably infinite set V' of process variables (usually denoted by x, y,
z) and a signature X consisting of a set of operations (denoted by f, g). The set of
process terms T(X) is inductively defined as follows: each variable x € V is a term;
if f € X is an operation of arity /, and if 55, ..., S; are terms, then f(S;,...,S;) is a
term. We write T(Z) in order to represent the set of closed process terms (i.e., terms
that do not contain variables), ranged over by t,s. A substitution o is a function

of type V — T(X). If the range of a substitution is included in T(X), we say that

34 Axiomatizations from SOS

it is a closed substitution. Moreover, we write [x + t] to represent a substitution
that maps the variable x to the term ¢. Let X=x,...,X,bea sequence of pairwise
distinct variables. A Y-context C[X] is a term in which at most the variables ¥
appear. For instance, f(x, f(x, c)) is a X-context, if the binary operation f and the

constant ¢ are in X.

Let A be a finite, nonempty set of actions (denoted by a, b, c). A positive transition
formula is a triple (S,a,S’) written S 5 ', with the intended meaning: process
S performs action a and becomes process S’. A negative transition formula (S, a)
written S -, states that process S cannot perform action a. Note that S, S’ may
contain variables. The “intended meaning” applies to closed process terms.

We now define preg — predicate extension of the GSOS rule format. Let # be a
finite set of predicates (denoted by P, Q). A positive predicate formula is a pair (P, S),
written PS, saying that process S satisfies predicate P. Dually, a negative predicate
formula =P S states that process S does not satisfy predicate P.

Definition 3.2.1 (preg rule format). Consider A, a set of actions, and P, a set of

predicates.

1. A preg transition rule for an l-ary operation f is a deduction rule of the form:

i Dyiliel*,jely (Puilie]*,je])
(x;» liel,beB) {(-Qx|ic],QeQ)
f(x, ..., x) > CI%, 7]

where
(a) x1,...,x and y;; (i € I, j € J*) are pairwise distinct variables;
(b) I*,J*,I",]- € L={1,...,1} and each I and [is finite;
(c) aij, band c are actions in A (B; € A); and
(d) Pj;and Q are predicates in P (Q; C P).
2. A preg predicate rule for an l-ary operation f is a deduction rule similar to the one

above, with the only difference that its conclusion has the form P(f (x4, ..., x1)) for
some P € P.

Let p be a preg (transition or predicate) rule for f. The symbol f is the principal
operation of p. All the formulas above the line are antecedents and the formula
below is the consequent. We say that a position i for p is tested positively ifi € I* U J*

Eugen Ioan Goriac 35

and IF U J* # (. Similarly, i is tested negatively if i € I U |~ and B; U @ # 0.
Whenever p is a transition rule for f, we say that f(¥) is the source, C[%, /] is the
target, and c is the action of p. Whenever p is a predicate rule for f, we call f(X) the
test of p.

In order to avoid confusion, if in a certain context we use more than one rule, e.g.
p, p’, we parameterize the corresponding sets of indices with the name of the rule,
e.g., I,];,.

Definition 3.2.2 (preg system). A preg system is a pair G = (X, Rg), where X is a
finite signature and R = RE U RL is a finite set of preg rules over L (RZ and R
represent the transition and, respectively, the predicate rules of G).

Definition 3.2.3 (Transition relation). A transition relation over a signature X is a
relation ~» C T(Z) X A X T(X). We write t ~> ¥ as an abbreviation for (t,a,t') €~o.
Definition 3.2.4 (Predicate relation). A predicate relation over a signature X is a
relation oc C P X T(X). We write Pt as an abbreviation for (P, t) € .

Definition 3.2.5 (X-substitution). A (closed) X-substitution is a function o from
variables to (closed) terms over the signature X.. For a term S, we write So for the result
of substituting o(x) for each x in S. For Sand % of the same length, (/%) represents the
substitution that replaces the i-th variable of X by the i-th term of S, and is the identity
function on all the other variables.

Definition 3.2.6 (Rule satisfiability). Consider ~» a transition relation, o a predicate
relation, and o a closed substitution. For each (transition, resp. predicate) formula y, the
predicate ~, cc, 0 |y is defined as follows:

>

~, 0,0 ESS S (So,a,50) €e~,
At . (So,a,t) e~,
(P,So) € «,

(P,So) ¢ .

>

~, 0,0 ES N
~,oc,0 EPS
~,x,0 | -PS

>

>

Let H be a set of (transition and/or predicate) formulas. We define
~,0c,0 FH= Ny eH).~,x,0Ey
H ,
Let p = ? be a preg rule. We define

~, 0,0 FEp=(o,x,0EH) = (v,x,0FY)

36 Axiomatizations from SOS

Definition 3.2.7 (Sound and supported relations). Consider G = (X, Rg) a preg
system, ~» a transition relation over L, and oc a predicate relation over L. Then ~»> and
o are sound for G if, and only if, for every rule p € R¢ and every closed substitution o,
we have ~»,,0 E p.

A transition formula t ~> t' (resp. a predicate formula Pt) is supported by some rule

p= ; € Rg if, and only if, there exists a substitution o s.t. ~»,oc,0 EHand yo = t >t

(resp. yo = Pt). Relations ~ and o« are supported by G if, and only if, each of their
(transition, resp. predicate) formulas are supported by a rule in Re.
Lemma 3.2.8. For each preg system G there exists a unique sound and supported

transition relation, and a unique sound and supported predicate relation.

Proof. We start by showing that Vt € T(X¢), the following sets exist and are
uniquely defined:

~ () ={@,t) | t>t,ae Ay and «(t) = {P | Pt, P € P}

Lett = f(ty,...,t,) € T(Xg). In order to determine ~» (t) and «(t), we exploit the
properties:

. B
f@ = CI%, 7]

1. (a,t') e~ (t) if, and only if, AR = R and ¢ a substitution

s.t.
(@ ox) =t (Viell,...,n})
(b) CIZ lo = ¥
(c) Vx; A y;j € H, it holds that (a;;, 0(yij)) €~ (t;)
(d) Vx; € H, it holds that it..(b, £/) € ~> ()
(e) YP;x; € H, it holds that P;; € o(t;)

(f) V—lpi]'xi € H, it holds that Pl] ¢ OC(tZ')

2. P € «(t) if, and only if, AR = e R” and ¢ a substitution s.t.:

H
P(f(x))
(@ ox) =t (Viell,..., n}

(b) Vx; = y;; € H, it holds that (a;;, o(ys;)) €~ (£)

(c) Yx; € H, it holds that At/.(b, £}) €~ (t;)

Eugen Ioan Goriac 37

(d) VPijxi € H, it holds that Pij € OC(tl')
(e) V—|Pijxi € H,it holds that Pij ¢ OC(ti)
We further determine ~» (f) and o«(t) by induction on the structure of t.

e Base case: f is a constant symbol. For this case, conditions (1a) and (1c)-
(1f) are all satisfied. Moreover, there are no occurrences of variables in the
target, so the target has to be a closed term C. Therefore, we take t' = C and
consider (g,t) an element of the relation ~» (¢). Similarly for the predicate
rules — P € «(t).

o Induction step: t = f(t,...,t,). By the inductive hypothesis, the sets ~> (t;)
and o(t;) exist (Vi € {1,...,n}). So, identifying all the substitutions ¢ that
satisfy the conditions in 1. and 2. would suffice to determine the elements

in ~» (t) and oc(t), respectively.

According to the reasoning above, it is obvious that ~» (t) and o«(t) are unique.
Now take —¢g = {(t,a,t’)) | t € T(Xg), a € Aand (a,t') € ~ (1)} and =g =
Urerzg)oc(t) X {t}. It follows immediately that, by construction, both —¢ and ¢ are

unique, sound and supported. m|

Consider a preg system G. Formally, the operational semantics of the closed
process terms in G is fully characterized by the relations —¢ C T(Xg) X A X
T(X¢) and <g € P X T(Xg), called the (unique) sound and supported transition and,
respectively, predicate relations. Intuitively, soundness guarantees that —¢ and
¢ are closed with respect to the application of the rules in R; on T(X¢), i.e., —¢
(resp. =¢) contains the set of all possible transitions (resp. predicates) process
terms in T(X) can perform (resp. satisfy) according to R¢. The requirement that
—¢ and =g be supported means that all the transitions performed (resp. all the
predicates satisfied) by a certain process term can be “derived” from the deductive
system described by R;. As a notational convention, we write S %S and PGS
whenever (S,4,5") € = and (P, S) € <. We omit the subscript G when it is clear
from the context.

Lemma 3.2.9. Let G bea preg system. Then, foreacht € T(Xg) theset {(a,t') |t >t a €

A} is finite.

Next we introduce the notion of bisimilarity — the equivalence over processes we
consider in this chapter.

Definition 3.2.10 (Bisimulation). Consider a preg system G = (L¢, R¢). A symmetric
relation R C T(Xg) X T(Xg) is a bisimulation if, and only if:

38 Axiomatizations from SOS

1. foralls,t,s" € T(Xg), whenever (s,t) € Rand s 5 for some a € A, then there is
some t' € T(Zg) such that t =t and (s',) € R;

2. whenever (s,t) € R and Ps (P € P) then Pt.

Two closed terms s and t are bisimilar (written s ~ t) if, and only if, there is a bisimulation
relation R such that (s, t) € R.

Proposition 3.2.11 ([30]). Let G be a preg system. Then ~ is an equivalence relation
and a congruence for all operations f of G.

Definition 3.2.12 (Disjoint extension). A preg system G’ is a disjoint extension of a
preg system G, written G C G/, if the signature and the rules of G’ include those of G,
and G’ does not introduce new rules for operations in G.

It is well known that if G C G’ then two terms in T(Xg) are bisimilar in G if and

only if they are bisimilar in G’.

From this point onward, our focus is to find a sound and ground-complete axiomati-
zation of bisimilarity on closed terms for an arbitrary preg system G, i.e., to identify
a (finite) axiom system E; so that Eg + s = tiff s ~ tforalls,t € T(X;). The
method we apply is an adaptation of the technique in [6] to the preg setting. The
strategy is to incrementally build a finite, head-normalizing axiomatization for
general preg terms, i.e., an axiomatization that, when applied recursively, reduces
the completeness problem for arbitrary terms to that for synchronization trees.
This way, the proof of ground-completeness for G reduces to showing the equality

of closed tree terms.

3.3 Preliminary steps towards the axiomatization

In this section we start by identifying an appropriate language for expressing finite
trees with predicates. We continue in the style of [6], by extending the language
with a kind of restriction operator used for expressing the inability of a process to
perform a certain action or to satisfy a given predicate. (This operator is used in
the axiomatization of negative premises.) We provide the structural operational
semantics of the resulting language, together with a sound and ground-complete

axiomatization of bisimilarity on finite trees with predicates.

Eugen Ioan Goriac 39

3.3.1 Finite trees with predicates

The language for trees we use in this chapter is an extension with predicates of the
language BCCSP [79]. The syntax of BCCSP consists of closed terms built from
a constant 6 (deadlock), the binary operator _+_ (nondeterministic choice), and the
unary operators a._ (action prefix), where a ranges over the actions in a set A. Let
P be a set of predicates. For each P € P we consider a process constant «p, which
“witnesses” the associated predicate in the definition of a process. Intuitively, «xp
stands for a process that only satisfies predicate P and has no transition.

A finite tree term t is built according to the following grammar:

tu=6|xp (VP EP)|at(Mae A)|t+t. (3.1)

Intuitively, 6 represents a process that does not exhibit any behaviour, s + ¢ is
the nondeterministic choice between the behaviours of s and ¢, while a.t is a
process that first performs action a and behaves like t afterwards. The operational
semantics that captures this intuition is given by the rules of BCCSP:

x5y Sy
o) 2y L2)
ax—x x+y—>x’ x+y—>y’

Figure 3.1: The semantics of BCCSP

As our goal is to extend BCCSP, the next step is to find an appropriate semantics
for predicates. As can be seen in Figure 3.1, action performance is determined by
the shape of the terms. Consequently, we choose to define predicates in a similar
fashion.

Consider a predicate P and the term t = kp. As previously mentioned, the purpose
of xp is to witness the satisfiability of P. Therefore, it is natural to consider that xp
satisfies P.

Take for example the immediate termination predicate |. As a term s + 5" exhibits
the behaviour of both s and s’, it is reasonable to state that (s +s’) | if s | ors” |.
Note that for a term t = a.t’ the statement ¢ | is in contradiction with the meaning
of immediate termination, since f can initially only execute action 4. Predicates of
this kind are called explicit predicates in what follows.

Consider now the eventual termination predicate 4. In this situation, it is proper to
consider that (s + t)% if s% or t7 and, moreover, that a.s% if s4. We refer to predicates

40 Axiomatizations from SOS

such as % as implicit predicates (that range over a set P? included in P), since their
satisfiability propagates through the structure of tree terms in an implicit fashion.
We denote by Ap (included in A) the set consisting of the actions a for which this

behaviour is permitted when reasoning on the satisfiability of predicate P.

The rules expressing the semantics of predicates are:

Px Py Px

(7’14) P(X—-I-y) (7’15) P(X—-I-y) (7’16) _—, VP € P[Ya € ﬂp (1’17)

Pxp P(a.x)

Figure 3.2: The semantics of predicates

The operational semantics of trees with predicates is given by the set of rules
(rl1)—(rly) illustrated in Figure 3.1 and Figure 3.2. In particular, 6 satisfies no
predicate.

For notational consistency, we make the following conventions. Let Abe an action
set and P a set of predicates. Xrrp represents the signature of finite trees with
predicates. T(Xprp) is the set of (closed) tree terms built over Xryp, and Rerp is the
set of rules (rl;)—(rl;). Moreover, by FTP we denote the system (Zrrp, Rerp).

Discussion on the design decisions. At first sight, it seems reasonable for our
framework to allow for language specifications containing rules of the shape
ey OF just one of (rl5) and (rls). We decided, however, to disallow them, as their
presence would invalidate standard algebraic properties such as the idempotence

and the commutativity of _+_

Without loss of generality we avoid rules of the form 5. As far as the user
is concerned, in order to express that a.x satisfies a predicate P, one can always
add the witness xp as a summand: a.x + xp. This decision helped us avoid some
technical problems for the soundness and completeness proofs for the case of the
restriction operator dgq, which is presented in Section 3.3.3.

Due to the aforementioned restriction, we also had to leave out universal predi-

cates with rules of the form 2224 However, the elimination of universal predicates

P(x+y)*
is not a theoretical limitation to what one can express, since a universal predicate

can always be defined as the negation of an existential one.

Asalastapproach, we thought of allowing the user to specify existential predicates

using rules of the form P;f};‘f;")x (*)and Pll)?x:;”)y (#+) (instead of (rl5) and (7ls)). However,

in order to maintain the validity of the axiom x + x = x in the presence of rules

Eugen Ioan Goriac 41

of these forms, it would have to be the case that one of the predicates P; in the
premises is P itself. (If that were not the case, then let ¢ be the sum of the constants
witnessing the P;’s for a rule of the form (*) above with a minimal set of set
premises. We have that t + t satisfies P by rule (+). On the other hand, Pt does
not hold since none of the P; is equal to P and no rule for P with a smaller set of
premises exists.) Now, if a rule of the form (+) has a premise of the form Px, then
it is subsumed by (rl5) which we must have to ensure the validity of laws such as

Kp = Kp + Kp.

3.3.2 Axiomatizing finite trees

In what follows we provide a finite sound and ground-complete axiomatization

(Errp) for bisimilarity over finite trees with predicates.

The axiom system Eprp consists of the following axioms:

X+y=y+x (A1) x+x=x (A3
x+y)+z=x+({y+z) (A) x+6=x (Ag)
a.(x + xp) = a.(x + kp) + kp, VP € P¥ Va € Ap (As)

Figure 3.3: The axiom system Errp

Axioms (A1)—(A4) are well-known [106]. Axiom (As) describes the propagation of
witness constants for the case of implicit predicates.

We now introduce the notion of terms in head normal form. This concept plays a
key role in the proofs of completeness for the axiom systems generated by our
framework.

Definition 3.3.1 (Head Normal Form). Let ¥ be a signature such that Xprp C X. A
term t in T(Z) is in head normal form (for short, h.n.f.) if

t= a;.ti + Kp,,and the P; are all the predicates satisfied by t.
j] p y

i€l j€J

The empty sum (I = 0,] = 0) is denoted by the deadlock constant 6.
Lemma 3.3.2. Eprp is head normalizing for terms in T(Xprp). That is, for all t in T(Xprp),
there exists t' in T(XZprp) in h.n.f. such that Eprp + t =t holds.

Proof. The reasoning is by induction on the structure of ¢. O

42 Axiomatizations from SOS

Theorem 3.3.3. Epyp is sound and ground-complete for bisimilarity on T(Xrrp). That is,
it holds that (Vt, t e T(ZFTP)) Errprt=t l_[ft ~ .

The full proof of this theorem is included in Appendix 3.B.

3.3.3 Axiomatizing negative premises

A crucial step in finding a complete axiomatization for preg systems is the “ax-
iomatization” of negative premises (of the shape x -, =Px). In the style of [6],
we introduce the restriction operator dgq, where 8 € A and Q C P are the sets
of initially forbidden actions and predicates, respectively. The semantics of dgq
is given by the two types of transition rules in Figure 3.4.

x5 Px

- ifa¢ B (rlg)
I5,0(xX) > Dy gopr () ¥ Psax)

if P ¢ Q (o)

Figure 3.4: The semantics of dgq

Note that dgq behaves like the one step restriction operator in [6] for the actions
in B, as the restriction on the action set disappears after one transition. On the
other hand, for the case of predicates in Q, the operator dgq resembles the CCS
restriction operator [106] since, due to the presence of implicit predicates, not all
the restrictions related to predicate satisfaction necessarily disappear after one

step, as will become clear in what follows.

We write Eg;p for the extension of Errp with the axioms involving dgq presented
in Figure 3.5. RfTTP stands for the set of rules (rl;)~(rly), while FTP’ represents the
system (X2 ROrp).

FTP’
dg(0) =0 (Ae) Ipq(a-x) = Ypeqpan ke ifa€B (Ay)
dgqkp) =06 ifPe@Q (A;) Jdgalax)=dyq(a.x) ifa¢g B (Ap)
dga(kp) =xp ifP¢Q (Ag) dpqla.x)=a.dygpr(x) (A1)

dpa(x +Y) = dga(x) + dga(y) (A1)

Figure 3.5: The axiom system EgTP \ Errp

Axiom (Ag) states that it is useless to impose restrictions on 0, as 6 does not exhibit

any behaviour. The intuition behind (A7) is that since a predicate witness xp does

Eugen Ioan Goriac 43

not perform any action, inhibiting the satisfiability of P leads to a process with
no behaviour, namely 6. Consequently,, if the restricted predicates do not include
P, the resulting process is «p itself (see (Ag)). Inhibiting the only action a process
a.t can perform leads to a new process that, in the best case, satisfies some of
the predicates in 7 satisfied by t (by (rl;)) if Q # P (see (Ag)). Whenever the
restricted action set 8 does not contain the only action a process a.t can perform,
then it is safe to give up B (see (A1p)). As a process a.t only satisfies the predicates
also satisfied by ¢, it is straightforward to see that dyq(a.t) is equivalent to the
process obtained by propagating the restrictions on implicit predicates deeper
into the behaviour of t (see (A11)). Axiom (A;;) is given in conformity with the
semantics of _+_ (s + t encapsulates both the behaviours of s and t).

Remark 3.3.4. For the sake of brevity and readability, in Figure 3.5 we presented (Ao),
which is a schema with infinitely many instances. However, it can be replaced by a finite
family of axioms. See Appendix 3.C for details.

Remark 3.3.5. We can also combine (A1) and (A1) in order to obtain a single axiom,
dpq(a.x) = a.0ygnpr(x) ifa & B.

Theorem 3.3.6. The following statements hold for E2,p:

1. E2,p is sound for bisimilarity on T(X9,,).

2. Vte T(Z2,,), 3t € T(Zerp) s.t. Egqp H t =t

As proving completeness for FTP? can be reduced to showing completeness for
FTP (already proved in Theorem 3.3.3), the following result is an immediate
consequence of Theorem 3.3.6:

Corollary 3.3.7. E2,, is sound and complete for bisimilarity on T(X9,,).

3.4 Smooth and distinctive operations

Recall that our goal is to provide a sound and ground-complete axiomatization
for bisimilarity on systems specified in the preg format. As the preg format is
too permissive for achieving this result directly, our next task is to find a class of
operations for which we can build such an axiomatization by “easily” reducing it
to the completeness result for FTP, presented in Theorem 3.3.3. In the literature,
these operations are known as smooth and distinctive [6]. As we will see, these
operations are incrementally identified by imposing suitable restrictions on preg
rules. The standard procedure is to first find the smooth operations, based on
which one determines the distinctive ones.

44 Axiomatizations from SOS

Definition 3.4.1 (Smooth operation).

1. A preg transition rule is smooth if it is of the following format:

Sy |iel) {Px; | i€
i |liel,beB) (~Qxilic],QeqQ)
f(x1,...,x) = CIZ,]

where
(a) I, J*,I",]~ disjointly cover the set L = {1, ...,1},
(b) in the target C[X,] we allow only: y; (i € I'), x; i€ [T U).

2. A preg predicate rule is smooth if it has the form above, its premises satisfy
condition (1a) and its conclusion is P(f (x4, ..., x;)) for some P € P.

3. Anoperation f of a preg system is smooth if all its (transition and predicate) rules
are smooth.

By Definition 3.4.1, a rule p is smooth if it satisfies the following properties:
e a position i cannot be tested both positively and negatively at the same time,

e positions tested positively are either from I* or J* and they are not tested for
the performance of multiple transitions (respectively, for the satisfiability of

multiple predicates) within the same rule, and

e if pisa transition rule, then the occurrence of variables at positionsi € I* U J*
is not allowed in the target of the consequent of p.
Remark 3.4.2. Note that we can always consider a position i that does not occur as a
premise in a rule for f as being negative, with the empty set of constraints (i.e. either
i€eland B;=0,0rie] and Q = 0).
Definition 3.4.3 (Distinctive operation). An operation f of a preg system is distinctive

if it is smooth and:
e for each arqument i, either all rules for f test i positively, or none of them does, and

e for any two distinct rules for f there exists a position i tested positively, such that
one of the following holds:

- both rules have actions that are different in the premise at position i,

- both rules have predicates that are different in the premise at position i,

Eugen Ioan Goriac 45

- one rule has an action premise at position i, and the other rule has a predicate
test at the same position i.

According to the first requirement in Definition 3.4.3, we state that for a smooth
and distinctive operation f, a position i is positive (respectively, negative) for f if
there is a rule for f such that i is tested positively (respectively, negatively) for
that rule.

The existence of a family of smooth and distinctive operations “describing the
behaviour” of a general preg operation is formalized by the following lemma:
Lemma 3.4.4. Consider a preg system G. Then there exist a preg system G’, which is a

disjoint extension of G and FTP, and a finite axiom system E such that
1. E is sound for bisimilarity over any disjoint extension G of G’, and

2. for each term t in T(Xg) there is some term t' in T(Xq) such that t' is built solely
using smooth and distinctive operations and E proves t = t'.

A detailed description of the transformation process from general preg to smooth

and distinctive operations is provided in Appendix 3.E.

3.4.1 Axiomatizing smooth and distinctive preg operations

To start with, consider, for the good flow of the presentation, that we only handle
explicit predicates (i.e., we take P? = 0). Towards the end of the section we dis-
cuss how to extend the presented theory to implicit predicates. We proceed in a
similar fashion to [6] by defining a set of laws used in the construction of a com-
plete axiomatization for bisimilarity on terms built over smooth and distinctive
operations. The strength of these laws lies in their capability of reducing terms to
their head normal form, thus reducing completeness for general preg systems to
completeness of Errp (Which has already been proved in Section 3.3.2).
Definition 3.4.5. Let f be a smooth and distinctive l-ary operation of a preg system G,
such that FTP’ C G.

1. For a positive position i € L = {1,...,1}, the distributivity law for i w.r.t. f is

given as follows:

FXy, ., X+ X, X)) = fXay e, X XD+ f(X, ., XD X)),

46 Axiomatizations from SOS

2. Forarule p € R for f the trigger law is, depending on whether p is a transition or
a predicate rule:

f) = .C[X, 7l , peR” (actionlaw)
- kp , peR’ (predicate law)

where

ai.yi , ielt
Kp;, i€]+
aB,‘,Qi(xi) s iel” U]_

2
I

3. Suppose that for i € L, term X; is in one of the forms 6, z;, kp,, a.2;,a.2; + Z; 07 Kp, +Z;.
Suppose further that for each rule for f there exists X; € X(je(l,...,1})s.t. one
of the following holds:

o jel"and (X;=06or Xj=b.z; (b # a)) or Xj = kg, for some Q),
o jeJtand (X;=06o0r X; =xq (Q # Pj) or X; = b.z;, for some b),
e jel"and X; = bz + z where b € B;,
o je] and X; = xg + zj, where Q € Q;.

Then the deadlock law is as follows:
fX =s.

Example 3.4.6. Consider the right-biased sequential composition operation _;"_,

. . . xly EN y xl yl xl 7
whose semantics is given by the rules iy Sy Gl and R

respectively, the immediate termination and immediate divergence predicates. _;"_

where | and 7T are,

is one of the auxiliary operations generated by the algorithm for deriving smooth and
distinctive operations when axiomatizing the sequential composition in the presence of
the two mentioned predicates.

The laws derived according to Definition 3.4.5 for this system are:

x+y)z = x;"z + y;z o)y = 0
x; ' (y+z) = x;y + x;'z kyJy =06
kj;ay = ay ax;’y = 0
ki;"k, = ki x;’0 = 0

kiike =k

Eugen Ioan Goriac 47

Theorem 3.4.7. Consider G a preg system such that FTP° € G. Let £ C Z¢ \ X7, be
a collection of smooth and distinctive operations of G. Let E¢ be the finite axiom system
that extends E2., with the following axioms for each f € L.:

e for each positive arqument i of f, a distributivity law (Definition 3.4.5.1),
e for each transition rule for f, an action law (Definition 3.4.5.2),
e for each predicate rule for f, a predicate law (Definition 3.4.5.2), and
e all deadlock laws for f (Definition 3.4.5.3).
The following statements hold for Ec, for any G’ such that G C G':
1. Eg is sound for bisimilarity on T(Z¢).

2. Eg is head normalizing for T(X U ZgTP).

Obtaining the soundness of the action law (Definition 3.4.5.2) requires some care
when allowing for specifications with implicit predicates (P? # 0). Consider a

scenario in which a transition rule for a smooth and distinctive operation f is of
H

fE)S X’

P(c.C[5, t_j) holds for some predicate P in P?. This means that P(C[3, f]) holds. In

order to preserve the soundness of the action law, P(f(5)) should also hold, but

the form Assume the closed instantiation X = 5, V= fand assume that

this is impossible since f is distinctive. One possible way of ensuring the sound-
ness of the action law in the presence of implicit predicates is to stipulate some
syntactic consistency requirements on the language specification. One sufficient
requirement would be that if predicate rule ﬁzﬂ) is derivable, then the system

should contain a predicate rule with H” € H’. This is enough to guarantee

H/l
P(flZ))
that if the right-hand side of the action law satisfies P then so does the left-hand
side.

3.5 Soundness and completeness

Let us summarize our results so far. By Theorem 3.4.7, it follows that, for any
preg system G 2 FTP’, there is an axiomatization that is head normalizing for
T(ZUZ?TP), where X C X\ Z?Tp is a collection of smooth and distinctive operations
of G. Also, as hinted in Section 3.4 (Lemma 3.4.4), there exists a sound algorithm

for transforming general preg operations to smooth and distinctive ones.

48 Axiomatizations from SOS

So, for any preg system G, we can build a preg system G’ 3 G and an axiomati-
zation E¢ that is head normalizing for T(X¢ /). This statement is formalized as
follows:

Theorem 3.5.1. Let G be a preg system. Then there exist G' 2 G and a finite axiom
system Eq/ such that

1. Eg is sound for bisimilarity on T(X¢),
2. E¢ is head normalizing for T(X¢),

and moreover, G and E¢: can be effectively constructed from G.

Proof. The result follows immediately by Theorem 3.4.7 and by the existence
of an algorithm used for transforming general preg to smooth and distinctive
operations. |

Remark 3.5.2. Theorem 3.5.1 guarantees ground-completeness of the generated axiom-
atization for well-founded preg specifications, that is, preg specifications in which each

process can only exhibit finite behaviour.

Let us further recall an example given in [6]. Consider the constant w, specified
by the rule w - w. Obviously, the corresponding action law w = a.« will apply
for an infinite number of times in the normalization process. So the last step in

obtaining a complete axiomatization is to handle infinite behaviour.

Let t and t’ be two processes with infinite behaviour (remark that the infinite
behaviour is a consequence of performing actions for an infinite number of times,
so the extension to predicates is not a cause for this issue). Since we are dealing
with finitely branching processes, it is well known that if two process terms are
bisimilar at each finite depth, then they are bisimilar. One way of formalizing
this requirement is to use the well-known Approximation Induction Principle (AIP)
[28, 41].

Let us first consider the operations m,(-), n € IN, known as projection operations.
The purpose of these operations is to stop the evolution of processes after a certain
number of steps. The AIP is given by the following conditional equation:

x = yif m,(x) = m,(y) (Vn € IN).

We further adapt the idea in [6] to our context, and model the infinite family
of projection operations m,(-), n € IN, by a binary operation -/- defined as fol-

lows:

Eugen Ioan Goriac 49

a c
x—=>x" h—Hn Px
——— (rho) ——7~ (")
x/h— x|l . P(x/h) !
where c is an arbitrary action. Note that /- is a smooth and distinctive opera-

tion.

The role of variable & is to “control” the evolution of a process, i.e., to stop
the process in performing actions, after a given number of steps. Variable h
(the “hourglass” in [6]) will always be instantiated with terms of the shape c”,
inductively defined as: ¢ = 6, ¢"*! = c.c".

Let G = (X¢, Rc) be a preg system. We use the notation G, to refer to the preg system
Zc U {-/}, Rc U{(rho), (rl11)}) — the extension of G with -/- . Moreover, we use the
notation E4pp to refer to the axioms for the smooth and distinctive operation -/-,
derived as in Section 3.4.1 — Definition 3.4.5.

Based on the fact that -/ is a smooth and distinctive operation, we derive the
following axioms, as in Section 3.4.1 — Definition 3.4.5:
x+y)/z=x/z+y/z (A1)
x/(y+z)=x/y+x/z (A)
a.x/c.y =a.(x/y) (Ass5)

6/y =0 (Ase)
ll.X/6 =0 (A17)
Kp/y = Kp (Ai)

Figure 3.6: The axiom system Ep

We reformulate AIP according to the new operation -/- :
x=yifx/c" =y/c" (¥n € N)

Lemma 3.5.3. AIP is sound for bisimilarity on T(XZrrp,).

The whole proof can be found in Section 3.H.

Remark 3.5.4. Note that axiom x/6 = 6 (51) in [6] is not sound for our approach, as
by (rli1) x/6 satisfies all the predicates satisfied by x, while by definition, 6 satisfies no
predicates. For the case of preg systems, axiom (51) is “encoded” by (Ai7), and (Asg) for

y=0.

50 Axiomatizations from SOS

In what follows we provide the final ingredients for proving the existence of a
ground-complete axiomatization for bisimilarity on preg systems. As previously
stated, this is achieved by reducing completeness to proving equality in FTP.
So, based on AIP, it would suffice to show that for any closed process term ¢
and natural number 7, there exists an FTP term equivalent to ¢ at moment 7 in
time:

Lemma 3.5.5. Consider G a preg system. Then there exist G’ 3 G, and E¢ with the
property: YVt € T(Xg),Vn € N, At € T(Zprp) s.t. Eq Ft/c" = t'.

At this point we can prove the existence of a sound and ground-complete axiom-
atization for bisimilarity on general preg systems:

Theorem 3.5.6 (Soundness and Completeness). Consider G a preg system. Then
there exist G' 3 G, and Eg a finite axiom system, such that Eq, U Eap is sound and
complete for bisimilarity on T(X¢).

3.6 Motivation for handling predicates as first-class

notions

In the literature on the theory of rule formats for Structural Operational Seman-
tics (especially, the work devoted to congruence formats for various notions of
bisimilarity), predicates are often neglected at first and are only added to the
considerations at a later stage. The reason is that one can encode predicates quite
easily by means of transition relations. One can find a number of such encod-
ings in the literature—see, for instance, [61, 138]. In each of these encodings, a
predicate P is represented as a transition relation 5 (assuming that P is a fresh
action label) with a fixed constant symbol as target. Using this translation, one
can axiomatize bisimilarity over preg language specifications by first converting
them into “equivalent” standard GSOS systems, and then applying the algorithm
from [6] to obtain a finite axiomatization of bisimilarity over the resulting GSOS

system.

In light of this approach, it is natural to wonder whether it is worthwhile to de-
velop an algorithm to axiomatize preg language specifications directly. One pos-
sible answer, which has been presented several times in the literature [138], is that
often one does not want to encode a language specification with predicates using
one with transitions only. Sometimes, specifications using predicates are the most
natural ones to write, and one should not force a language designer to code pred-

Eugen Ioan Goriac 51

icates using transitions. (However, one can write a tool to perform the translation
of predicates into transitions, which can therefore be carried out transparently to
the user/language designer.) Also, developing an algorithm to axiomatize GSOS
language specifications with predicates directly yields insight into the difficulties
that result from the first-class use of, and the interplay among, various types
of predicates, as far as axiomatizability problems are concerned. These issues
would be hidden by encoding predicates as transitions. Moreover, the algorithm
resulting from the encoding would generate axioms involving predicate-prefixing

operators, which are somewhat unintuitive.

Naturalness is, however, often in the eye of the beholder. Therefore, we now
provide a more technical reason why it may be worthwhile to develop techniques
that apply to GSOS language specifications with predicates as first-class notions,
such as the preg ones. Indeed, we now show how, using predicates, one can
convert any standard GSOS language specification G into an equivalent positive

one with predicates G*.

Given a GSOS language G, the system G* will have the same signature and the
same set of actions as G, but uses predicates cannot(a) for each action a. The idea
is simply that “x cannot(a)” is the predicate formula that expresses that “x does

not afford an a-labelled transition”. The translation works as follows.

1. Each rule in G is also a rule in G*, but one replaces each negative premise
in each rule with its corresponding positive predicate premise. This means

that x - becomes x cannot(a).

2. One adds to G* rules defining the predicates cannot(a), for each action a.
This is done in such a way that p cannot(a) holds in G* exactly when p -
in G, for each closed term p and action a. More precisely, we proceed as

follows.

(a) For each constant symbol f and action 4, add the rule

f cannot(a)

whenever there is no transition rule in G with f as principal operation

and with an a-labelled transition as its consequent.

(b) Foreach operation f with arity at least one and action g, let R(f, a) be the
setof rules in G thathave f as principal operation and an a-labelled tran-
sition as consequent. We want to add rules for the predicate cannot(a)

52 Axiomatizations from SOS

to G* that allow us to prove the predicate formula f(ps, . .., p1) cannot(a)
exactly when f(py, ..., p;) does not afford an a-labelled transition in G.
This occurs if, for each rule in R(f, a), there is some premise that is not
satisfied when the arguments of f are py, ..., p;. To formalize this idea,
let H(R(f,a)) be the collection of premises of rules in R(f,a). We say
that a choice function is a function ¢ : R(f,a) — H(R(f,a)) that maps

each rule in R(f, a) to one of its premises. Let

neg(xiwc’) = xcannot(a) and

a a ’ ,
neg(x ») = x—x’, forsomex’.

Then, for each choice function ¢, we add to G* a predicate rule of the

form

{neg(¢(£)) | £ € R(f,a)}

f(x1,...,x) cannot(a)

where the targets of the positive transition formulae in the premises are
chosen to be all different.

The above construction ensures the validity of the following lemma.
Lemma 3.6.1. For each closed term p and action a,

1. pSp in Gif,and only if, p = p’ in G*;
2. p cannot(a) in G* if, and only if, p - in G* (and therefore in G).

This means that two closed terms are bisimilar in G if, and only if, they are bisimilar
in G*. Moreover, two closed terms are bisimilar in G* iff they are bisimilar when

we only consider the transitions (and not the predicates cannot(a)).

The language G modulo bisimilarity can be axiomatized using our algorithm
without the need for the exponentially many restriction operators. The conver-
sion to positive GSOS with predicates discussed above does incur in an exponen-
tial blow-up in the number of rules, but it gives an alternative way of generating
ground-complete axiomatizations for standard GSOS languages to the one pro-
posed in [6]. In general, it is useful to have several approaches in one’s toolbox,
since one may choose the one that is “less expensive” for the specific task at
hand. Moreover, using positive GSOS operations, one can also try to extend
the methods from the full version of the paper [2] (see Section 7.1 in the techni-
cal report available at http://www.ru.is/~luca/PAPERS/cs011994.ps) to optimize these

axiomatizations.

http://www.ru.is/~luca/PAPERS/cs011994.ps

Eugen Ioan Goriac 53

It is worth noting that the predicates cannot(a) are not implicit, therefore the

restrictions presented at the end of Section 3.4.1 need not to be imposed.

3.7 Conclusions and future work

In this chapter we have introduced the preg rule format, a natural extension of
GSOS with arbitrary predicates. Moreover, we have provided a procedure (similar
to the one in [6]) for deriving sound and ground-complete axiomatizations for
bisimilarity of systems that match this format. In the current approach, explicit
predicates are handled by considering constants witnessing their satisfiability as
summands in tree expressions. Consequently, there is no explicit predicate P
satisfied by a term of shape Z;cja;.t;.

The procedure introduced in this chapter has also enabled the implementation
of a tool, presented in Chapter 7, that can be used to automatically reason on
bisimilarity of systems specified as terms built over operations defined by preg
rules.

Several possible extensions are left as future work. It would be worth investigating
the properties of positive preg languages. By allowing only positive premises we
eliminate the need of the restriction operators (dgq) during the axiomatization
process. This would enable us to deal with more general predicates over trees,
such as those that may be satisfied by terms of the form a.t where a ranges over

some subset of the collection of actions.

Another direction for future research is that of understanding the presented work
from a coalgebraic perspective. The extensions from [6] to the present chapter,
might be thought as an extension from coalgebras for a functor (A x Id) to
a functor Z(P) x P (A x Id) where Z is the powerset functor, A is the set of
actions and % is the set of predicates. Also the language FTP coincides, apart
from the recursion operator, with the one that would be obtained for the functor
P(P) X P (A X Id) in the context of Kripke polynomial coalgebras [51].

Finally, we plan to extend our axiomatization theory in order to reason on the

bisimilarity of guarded recursively defined terms, following the line presented in

[2].

54 Axiomatizations from SOS

3.A Proof of Lemma 3.3.2

Proof. The reasoning is by induction on the structure of ¢.

Base cases
—-t=06=1t =06 (hnf) = Epp -t =t (by reflexivity)
—t=xp=t'=«p (hnf) = Eprp -t =t' (by reflexivity)

Inductive step cases

—t = a.t’; t’ has a simpler structure than ¢, so, by the inductive hypothesis, 3t in
hnf. s.t. Eprp Ft' = t]. Ast is a congruence, Eprp + a.t’ = a.t], so Eprp + t = a.t].
Now, P(t) holds for some predicate P if, and only if, P(#) and P € PZ. Since
t1 is the h.n.f. for #, it has the summand «p for each P s.t. P(t'). By using the
instance of (As) for those predicates P satisfied by ' for which there is a rule of
form (rl;) for P, we add a kp summand to the h.n.f. for t. We obtain, therefore,
Eprp Ft=a.t] + Z]-€] Kp; which is in h.n.f., where {P; | j € J} is the set of predicates
in P! that are satisfied by #'.

—t=1t +t,sodt],t,inhnf st Eprptt;= t,ie€ {1,2}. By the congruence of +
we have Eprp + t; + £ = t] + t). Using (A1), (A2), we infer Eprp + t; + £, = t],, which
is in h.n.f.

3.B Proof of Theorem 3.3.3

We first introduce a lemma that will be used in our proof:
Lemma 3.B.1. Let G be a preg system. If

o t, b eT(Xg)s.t. i Ny iff ty 5 tforalla € Aand forallt € T(Xs)
e Pty iff Pt, forany P € P
then tl ~ tz.
Proof. Follows directly from Definition 3.2.10 and the reflexivity of ~. O

We further continue with the proof of Theorem 3.3.3.

Proof.

The soundness (Egp s =t = s ~ t) follows in a standard fashion.

Eugen Ioan Goriac 55

Proving s ~ t = Eprp s = t [completeness]

Let us first define the function height that computes the height of the syntactic tree
associated to a term t € T(Xprp):

0 ift e {0} U{xp|P € P}
height(t) = { 1+ max(height(t1), height(t;)) ift =t +t
1 + height(t’) ift =a.t’

Note that we may assume (by Lemma 3.3.2) that s, t are in head normal form.
We prove the property by induction on M = max(height(s), height(t)).

Base case

either s=t=0,0Erpts=t
o M =0 FTP
or s=t=xp,sSOEprpts=t

Inductive step case(M > 0) We show that t = s + t. In order to do that we argue that
each summand of s is provably equal to a summand of ¢.

e leta.s’ be asummand of s = s 5 ¢'. Ass ~ ¢, it follows that — #' for some
t and s’ ~ . Now max(leight(s'), height(t')) < M =% Epmp + s’ = #, hence
Errptas =at’;

e let xp be a summand of s (Ps holds). As s ~ t, Pt. tis in h.n.f., therefore «xp is
also a summand of ¢.

So, every summand of s can be proved equal to a summand of t, so Eppp F t = s +1t.

(*)
By symmetry it follows thats = ¢ + s (**).

By (*,*¥), the congruence of - and (A; — A3), we have Eprp ks = ¢. O

Notice that we do not explicitly use (As) when proving the completeness of the
axiom system Eprp. This is because we work with processes in h.n.f.

56 Axiomatizations from SOS

3.C Axiom (Ayg), a schema with infinitely many in-

stances

In what follows we provide a finite family of axioms that can replace (Ay):

dgq(a.d)=difaec B (Ag1)
D ald.p) kp ifa€Band (PP’ and P ¢ Qand a € Ap) (Ass)

Kp) =
SR 6 ifaeBand (P ¢ P! orPeQorag¢ Ap) 2
dgqa.b.x) = daq(x)ifaec B (Ag3)
dga(a.(x + y)) = dgqla.x) + dgqla.y)ifa e B (Ags)

Figure 3.7: Axioms replacing (As)

Note that replacing (Ag) with (Ag;) — (A94) does not affect the validity of the
statements in Theorem 3.3.6.

Soundness (statement 1) follows in a standard fashion, similar to Theorem 3.3.3.

In order to prove statement 2 we proceed as follows. Assume t is a tree term and
a € B. We prove that thereisa h.nft’ s.t. E}?TP Fdgq(a.t) = t', using (Ag1) — (Aga).
The result follows by induction on the structure of ¢:

e t =6. Then use (Ag1).
e = xp. Then use (Ag)).
e t =Db.t". Use (Ag3) and induction.

e t =1t +t,. Use (Ag4) and induction.

3.D Proof of Theorem 3.3.6

Proof.

Proving E2p F s = t = s ~ t [soundness]
& Lrrp

The property follows directly for (As73) because neither the lhs, nor the rhs terms
can “advance” with actions and their (in)satisfiability of predicates is easily check-

Eugen Ioan Goriac 57

able.

Take (Ag). Let s = dgq(a.s), witha € B. Prove that s ~ t = }.pyq pu3) Kp-

e Asa € Bit follows that s . Alsos - for any b € Act,b # a. As tisasum of
constants, t + for any t € Act.

7’19

e If Ps = P ¢ Q and P(a.s). Then Pt also holds because «p is one of its sum-
mands. For the other direction, if Pt, then P(a.s) and P ¢ Q SN P(dgq(a.s)).

Therefore, by Lemma 3.B.1, it follows that s ~ ¢.

Take (Aqo). Lets = dgq(a.s) and a ¢ B. Prove thats ~ t = dyo(a.s).

o If s5¢ for some fixed b € Act and &' € S, then by (rlg), it follows that
b ¢ B, s = dygls”), and as5s’. Tt follows b = a, s” = s, and, therefore
s = dgq(a.5) > dyaE). Now, does t = dyq(a.5) = dya5) hold ? Yes, it does,
because a ¢ 0 and (rlg) can be used. Similarly for ¢ N

o If P(s = dggq(a.s)), then) p ¢ Q and P(a.s) LE P(dpq(a.s) = t). Similarly for
Pt.

Therefore, by Lemma 3.B.1, it follows that s ~ t.

Take (A11). Let s = dpq(a.5). Prove that s ~ t = 4.9y gnpr(5).

o Ifs 5 for some fixed b € Act and s’ € S, then by (rlg), it follows that b ¢ B,
s' = dpgnpr(s”), and 45> s". It follows that b = a, s = 5, and, therefore
s = dpq(as) > dyqupr (8). Now, by (rly) it holds that t = a.dgpr(s) N dgnpr(S).
Similarly for ¢ Ly

o If P(s = dyq(a5)), then 2 P ¢ Q and P(a3) LB P € PT and Ps & p e P!
and P(dgnpr(S)) o P(a.dgnpr(s) = t). Similarly for Pt.

Therefore, by Lemma 3.B.1, it follows that s ~ .

Take (A12). Lets = dgq(s1 + s2). Prove that s ~ t = dgq(s1) + dgq(s2)-

o If s5¢ for some fixed 2 € Act and s’ € S, then by (rlg), it follows that

a ¢ B, s = dyq(s’), and s1 + s, 5 ¢”. Then S1 59" or Sp N (by (rly3)),

58 Axiomatizations from SOS

a a . (rl2,3)
s0 dgq(s1) = dpa(s”) or dgq(sz) = doa(s”) (by (rlg)). Finally = dgqlsr) +
dpq(sy) = s'. Similarly for t 5t

e Also, if Ps for some fixed P € P, then by (rly) it follows that P ¢ Q and
P(s1 + sp). Then by (rly3) and (rly) it follows that P(dgq(s1)) or P(dsq(sz)).

rl3)

Finally ey P(dgq(s1 + s2)). Similarly for Pt.

Therefore, by Lemma 3.B.1, it follows that s ~ t.

We have covered all the possibilities, so Ex;p is sound for bisimilarity on T(Z2.,)-

Proving Vt € T(X%,,), ' € T(Zerp) s.t. Epp bt = ¥

Note that in order to prove the statement above, it suffices to show that EZp can
be used to eliminate all the occurrences of d from dgq(t), for all closed terms ¢ €
T(Xrrp), where B, Q are two sets of restricted actions and, respectively, predicates.

We proceed by structural induction on the structure of £.
Base cases
A
o =0 L3 EL dnald) = 6;

5 ifPe@
kp ifPe¢Q

A
e f=xp g Ellsz F aB,Q(Kp) = {

Inductive step cases

ot =t +h Z3 dgolti + h) = dgalt) + dgalt). Both t and t, are sub-
terms of t, so, by the inductive hypothesis, 3t{,t, € T(Zrrp) such that

(93@(1?):t, ngr. +
El AT S Lk dgalh) + dsalt) = E + t) € T(Zrrp);
dpq(tz) =t

o f=q.t

A
— 1€ BE dp0(at) = Ypsapan <p € T(Srm);

-a¢8B Ay dgqa.t’) = dpala.t’) = 1.0y gnpr(t'). As t' is a subterm of

t, by the inductive hypothesis it follows that 3t” € T(Zrrp) s.t. Eopp F
a.o'?amp.r(t’) =at’e T(ZFTP)-

We have covered all the possibilities, so E2.» eliminates all the occurrences of 9

from terms in T(ZI'Z O

TP)'

Eugen Ioan Goriac 59

3.E From general preg to smooth and distinctive

Given an arbitrary preg l-ary operation f, producing a family of smooth and
distinctive operations capturing the behaviour of f consists of the following

steps.

Transforming general preg to smooth operations. According to Definition 3.4.1,
an operation f is not smooth if there exists (at least) one rule p for f that matches

(at least) one of the following conditions:
e there are clashes between the sets I*,I7,]" and |,

e there is a positive position that has multiple transitions or that satisfies
multiple predicates or

e pisa transition rule that contains in its target variables on positive positions.

By way of example, a rule satisfying all the items above is:

a b d
X—Yy1 x>y, x-» Pix Pyx —Psx

f(X)iHHyl

p:

Given a non-smooth operation f, identifying a smooth function f’ that captures
the behaviour of f implies “smoothening” all the rules of f. For the rule p given

above, a convenient smooth rule p’ is:

a b d
, X121 Xo—2 Y X3P Pixg Poxs P3xe

f,(xll X2,X3,X4,X5, X6, x7) i) X7 + N
Note that the equation f(x) = f'(x, x, x, x, x, x, x) holds and allows us to relate the

behaviour of f with the one of its smoothened version.

Let G be an preg system and f a non-smooth [-ary function for G. The smoothening

mechanism consists of the following steps (similar to those in [6]):

1. Determine I’ — the arity of f’, the smooth version of f. We start by counting how

many fresh variables are needed for each positioniin {1,...,I}.

60

Axiomatizations from SOS

For each preg rule p for f (matching the format in Definition 3.2.1) and each

iin{l1,...,1}, we first define a “barb” value B(p, i), as follows:

B(p,i) = '|+ 1]+ C1 + C2

where
0, if Bi = Qi = (2)
Ci=131 if(B=0and@; #0)or (B; # 0and Q; = 0)
2, ifB;#0andQ; =0
and

Co - 0, if x;is notin the target of the conclusion
2T 1, if x;is in the target of the conclusion

Note that if p is smooth, then (Vi € {1,...,1}).B(p,i) < 1. Symmetrically, if p
is non-smooth, then (i € {1,...,1}). B(p,i) > 1.

The number of variables needed for eachi € {1,...,1}) is
B(f,1) = max{B(p,i) | p is a rule for f}.

We conclude that the arity of the function f"is I’ = }.._17 B(f, 7).

. Determine the smooth rules p’ for f’, based on the rules p for f. Consider p a

rule for f, @ = wyy, .. -, W1B(f 1), - - -, Wi, - - -, WiB(s,) @ Vector of I different fresh
variables (that do not occur in p), and consider a substitution t[w;; > xi]
mapping eachw;;tox;, i € {1,...,1},j € {1,...,n;}. Let p’ be asmooth preg rule
with the principal operation f’, such that with the exception of their sources
(resp. tests, for the case of predicate rules) f(¥) and f'(w), p'tlwi; = xi]
and p are identical (note that this rule always exists). Then p’ is the smooth

version of f.

. Show that f and f’ have the same behaviour. This result is a consequence of the

following lemma (similar to Lemma 4.12 in [6]):

Lemma 3.E.1. Suppose G is a preg system, and S = f(2) and S’ = f'(0) are terms
in T(Xg) with variables that do not occur in Rg. Suppose that there exists a 1-1
correspondence between rules for f and rules for f’ such that, whenever a rule p for
f is related to a rule p’ for f’, we have that p{Z/X) and p'{7/) are identical with
exception of:

e their sources f(X) and, respectively, f'(y)), if p and p’ are transition rules

Eugen Ioan Goriac 61

o their tests f(X) and, respectively, f'(3)), if p and p’ are predicate rules

Then
f@ = f©

is sound for bisimilarity on T(Xg).

The proof is a slightly modified version of the proof in [6]:

Proof. Consider G’ 3 G and ¢ a closed X —substitution. We have to prove
thats = f(2)o ~ f'(V)o = ¢, i.e.

(@) (YPeP).Ps & Ps'.
(b) VaeA).s >t s St

Case (a) “=". Assume Ps. We prove that Ps’ holds.

As wg, —¢ are supported by G’, Re contains a rule p = and there

P(f(x (7)
exists a Xo—substitution 7 s.t.:

(1) Xg, —ac, T |: H

@ f@r=s

We know that G’ is a disjoint extension of G, therefore p is also a rule of G.

So, there is p’ = arule of Rg C Re s.t. H(Z/X) = H'(T/1) (*).

P(f ’(?))

Asin [6], Lemma 4.12, we consider 7’ a Zg—substitution defined as follows:

, | o) ifwoccursinzord
T'(w) =

t(w) otherwise

and claim that for all variables w that do not occur in Z or 7, (7" o (Z/X))(w) =
T(w). At this point we infer:

(1) = =g, —¢, T E H =(variables of H do not occur in Z or 0)

<g, =, T o (Z/X) E H =(general property of)

<g, =c, T | H(Z/X) =(by (*))

<g, ¢, T |E H'(U/Y) =(general property of)

<g, =, T o (U/J) E H =(soundness of =¢ for p’)

<, —a, T 0 (/i) E P(f' (V) =

<o, —c, T | P(f'(9)) =(def.)

(B, f'(0)T') € =g =(T' =0oon)

62 Axiomatizations from SOS

(P, f'(0)0) € =g, so Ps’ also holds.
For the case (b) “=", the reasoning is the same as in [6], Lemma 4.12.

Cases (a) “<" and (b) “«=" are symmetric. O

The following lemma is a straightforward result of the smoothening procedure
presented in steps (1.)—(3.):

Lemma 3.E.2. Consider G a preg system and f a non-smooth l-ary operation for G.
Then there exists G’ 3 G with ' a smooth I'-ary operation for some I’, and there exist two
vectors of variables Z and T such that

f@) = f@)

is sound for bisimilarity on T(Xg~), for all the preg systems G” disjointly extending G'.

Transforming smooth to smooth and distinctive operations. Given a smooth,
but not distinctive, operation f’, we next identify a family of smooth and distinc-

tive operations f/, ..., f, that “capture the behaviour of f"”.

The procedure is identical to the one described in [6], Section 4.1.5. We consider
R, ..., R, a partitioning of the set of rules for f’ such that for all i € {1,...,n},
f'is dlstmctwe in the preg system (X¢, Rc \ U, 7 R! o)- Note that this part1t1onmg

always exists; in the worst case each partition would be a singleton set.

Consider X = ZgU{ fl, .., fal, where f/, ..., f, are fresh I-ary operation symbols.
Consider R; = RgU {RG |ief{1,...,n}}, where %G is obtained from RE by replacing
f" in the source with f/. Let G’ = (Z’ ,R:)- Note that G’ is a disjoint extension of
G. It is trivial to check that

f@ =A@+ +fi(D)

is sound for bisimilarity on T(X(.).
Lemma 3.E.3. Consider G a preg system and f a smooth I-ary operation for G. Then
there exist G' 3 G and fi, ..., f, smooth and distinctive I-ary operations for G" such that

f@ = A@ +... + ful®)

is sound for bisimilarity on T(X~), for all the preg systems G” disjointly extending G’.

Eugen Ioan Goriac 63

3.F A possibleapproachtohandleimplicit predicates

So far the current framework handles implicit predicates up to trees (i.e., terms
over the grammar (3.1)). For the case of arbitrary preg operations f we encountered
some problems when proving the soundness of the action law f X) = c.C[X, ¥

used in the head-normalization process.

Consider the closed instantiation X = §, i/ = F and assume that P(f(3)) holds for
some predicate P in /. Then P(c.C[S, ﬂ) should also hold, so we should have
P(C[$,#]). One possible way of ensuring this property syntactically would be to

stipulate some consistency requirements.

Consider, for instance, a scenario in which a transition rule for f has the conclusion
f X S ClX,] and there is a predicate rule = ;&D' If there is a derivable predicate

rule (ruloid) P(CI;% 2 with H” C H then this would ensure that if the left-hand side

of the action law satisfies P then so does then right-hand side. A symmetrical

consistency requirement can be formulated to ensure that P(f(5)) holds whenever
P(c.C[8, £]) holds.

Note that for certain restricted preg systems these consistency requirements are
guaranteed by the format of the rules. This is the case of the preg transition
rules with “CCS-like” conclusions, i.e., C[)_(), ij] is a variable or it is of the form

(21, eees Zm).

3.G Proof of Theorem 3.4.7

Proving [soundness]

Proof. Let f € X be a smooth and distinctive operation with the arguments

f= t1,...,t as closed terms over X.

Distributivity law.

Let i € L be a positive position for f (every rule for f tests i positively) with
ti = t/ +t’. We want to argue that the distributivity axiom for f is sound for

position i.

64 Axiomatizations from SOS

Assume dp € R™ (of the form (1)) such that flt, .. o+t h) 5 t for some t.
Then there are an action rule p and a closed substitution ¢ such that () o satisfies
the premises of p and (b) f(ty, ..., t;+t,..., 1) 5 tis obtained by instantiating the
conclusion of p with . Since f is smooth and distinctive, i is a positive position
for f, and p is a rule for f, we infer that there is a positive premise for i in p,
ie. i € IJUJ]. In either case, we may assume, without loss of generality, that
the positive premise is satisfied by t!. Take 0’ = o[x; + t!]. Then ¢’ satisfies the
premises of p and proves that f(t,...,t,...,t) 5 t. This is where we actually
make use of the restriction for x; to not occur in the target of the conclusion of p
(Definition 3.4.1). Therefore, the right hand side of the instance of the distributivity
law also has the transition to ¢ that performs c.

We follow a similar reasoning for f(ti,...,t,...,t;) + f(ty,..., t/,..., 1) St

The case in which dp € R” (of the format (2)) such that P(f(ty,..., t;+t/,..., b)) is
also handled similarly (it is actually easier).

We conclude that

by oo o) ~ flb, e e)+ (bt).

Action law. Let p be a transition rule (of the format (1)) for f s.t. t,...,# match
the restrictions the over the arguments of f in Definition 3.4.5.2, and t. be the

corresponding closed instantiation of C X, 7l

Obviously c.t. can only perform action ¢ and reach f., and c.t, does not satisfy any
predicate. By the hypothesis we know that p is a rule of f, so f can also perform
¢ and reach the same ¢,.

Next we want to prove that p is the only rule that applies for f (i.e., f(£) cannot
perform any other action and does not satisfy predicates). Assume there exits
p’ # p for f, that can be applied. As f is smooth and distinctive it follows that one
of the following holds:

1. die I; N I;, # (0 s.t. a; # a’ — case in which p’ cannot be applied, since t; = a;.t!

can only perform action a;;

2. diej;nJ; #0s.t. P; # P] - casein which p’ cannot be applied, since t; = «p,
only satisfies P;;

3. die I; N];, # () — but this cannot be the case since t; = 4;.t) does not satisfy
any predicate;

Eugen Ioan Goriac 65

4. Jdie J; NI, # 0 —but this cannot be the case since t; = kp, does not perform

any action.
We thus reached a contradiction.

We conclude that

(O ~ct, .

Predicate law. Let p be a predicate rule (of the format (2)) for f s.t. t1,...,# match
the restrictions over the arguments of f in Definition 3.4.5.2.

Obviously that xp does not perform any action, and only satisfies P. By following
a similar reasoning to the one for the case of action laws, we show that there is no
rule p’ # p that applies for f. So, f(f) does not perform any action, and does not
satisfy any predicate besides P.

We conclude that
FX) ~ xp.

Deadlock law. The soundness follows immediately from the restrictions imposed
by Definition 3.4.5.3. O

Proving head normalization

Proof. The result is an immediate consequence of the following claim:

Claim Let f € ¥ be a smooth and distinctive operation with the arguments
f = ti,..., 1 as closed terms over X in head normal form. Then there exists a
closed term t over L in head normal form such that E; + f (5 =t

The proof follows by induction on the combined size of t,...,t;. We perform a
case analysis:

1. (i € L positive for f) . t; = t; + t”. We apply the distributivity law and the
inductive hypothesis.

2. (di € L positive for f) . t; = 0. We apply a deadlock law.

3. (Yi € L positive for f) . t; is either of the form a;.t! or «p,.

(@) (VpeRforf).((Tje 7). tj= a}.t}(a} #aj)ort; = Kp}) or((djeJ;).tj=
a.t;ort; = Kp;(P; # P;)) = we can apply a deadlock law.

Axiomatizations from SOS

(b) ((Fp e Rfor f).(VjeI}) . ty=ajt)and ((Vj € J}) . £ = p).

Remark that, by the distinctiveness of f, p is the only rule that could
be fired (e). In order to prove this, assume, for instance, dp” # p that
could applied. If I] = JJ = 0 then this comes in contradiction with the
second item of Definition 3.4.3. On the other hand, if I; # () then one
of the following holds:

- (Fk e I; NI, # 0) . ax # a; — case in which p’ cannot be applied,

since t; can only fire a;;

- dk e I; N];, # () — case in which we reach a contradiction, since by
hypothesis we know that (¥j € I7) . t; = a;.t; which does not satisfy

any predicate.

The reasoning is similar for J7 # 0. So p is the only rule that can be
applied for f.

We further identify the following situations:

i @kel).t=bt +t (beB)or@ke;). b=t +1x0(QeQ)=>
we can apply a deadlock law.

ii. (Vke I, UT) .t = Yty + Lk st g, i€ [} N By =0 and
. k
{P;{|j€]}ﬂQk=®.

Recall the operator d is used to specify restrictions on the ac-
tions performed and/or on the predicates satisfied by a given term.
Therefore, for a term t; satisfying the conditions in the hypothesis,
it is intuitive to see that f; = dggq(tc). In what follows, we provide
an auxiliary result formalizing this intuition:

Lemma 3.G.1. Consider G 3 FTP’ a preg system and a term t =
Yiettiti+Yjey xp; € T(Xg) in h.n.f. Let Band Q be two sets of restricted
actions and predicates, respectively. If {a; |i € }NB = Qand {P; | j €
T} N Q = 0 then Efrp + t = dgq(t).

Proof. The proof follows immediately, by induction on the structure

of t and by applying the axioms (A¢) — (A12). m|

In these conditions, according to Lemma 3.G.1, it holds that (Vk €
I;U])) - te = dg, q(tk). Therefore, all the requirements for applying

Eugen Ioan Goriac 67

a trigger law are met: if p € R” then apply the action law for p,
and if p € R” then apply the predicate law for p.

This reasoning suffices to guarantee that E¢ is head normalizing. |

3.H Proof of Lemma 3.5.3

Proof. Lett,t' € T(Zprp,) s.t. (Yn € N).t/c" =t'/c". We have (Yn € N).t/c" ~t'/c"
and we want to prove that t ~ . In other words, we have to build a bisimulation
relation R C T(ZFTP/) X T(ZFTP/) s.t. (t, t/) € R.

First we make the following observations:
1. Vt € T(ZFrp,) it holds that t is finitely branching (by Lemma 3.2.9);
2. ift/c" ~ t'/c" then (VP € P). (Pt & Pt’), where t,t' € T(Zrrp,) and n € IN (the

reasoning is as follows: if t/c" ~ t’/c" then by the definition of bisimilarity it
holds that P(t/c") & P(t'/c"), so by (rl11) it follows that Pt & Pt’).

Next we show that the relation R C T(Xrrp,) X T(Zrrp,) defined as
(t,t') e Riff (Yn e N).t/c" ~ t'/c"

is a bisimulation relation.

Assume (t,t') € Rand t 5t and forn > 0 define S, = {t* | ¥ = " and t;/c" ~ £*/c").
Note that:

© 5125 2...,as /" ~ F/c"™ = /" ~ t/c" (the latter implication is

straightforward by the definition of bisimilarity and by (rly), (r111));

e (Vn>0).S, # 0, since by the definition of R we have that t;/c¢"*! ~ /"1,
and t - t; according to the hypothesis;

e each S, is finite, as t’ is finitely branching (1.).

At this point we conclude that the sequence Sy, S, ..., Sy, . . . remains constant from
some n onwards. Therefore N,-0S, # 0. Let ¢’ be an element of this intersection.
We have that: #' 5 #, (t;,t;) € Rand (VP € P). Pt =) P’ (). We follow a similar
reasoning for the symmetric case t’ 5 t; and show that Jt; s.t. ¢ S, for (4, t1) €R
and (VP € P).Pt’ =) Pt (#). By (&) and () it follows that R is a bisimulation
relation, so (t,') e R=>t ~ t'. O

68 Axiomatizations from SOS

3.1 A thorough analysis on GSOS with Predicates

In this section we provide a classification of the predicates a language designer can
operate with, introducing new types of predicates besides those already presented
in this chapter. We then provide an adapted rule format that includes these
predicates, as well as an axiom schema that is sound and ground-complete modulo

bisimilarity.

3.I.1 Predicate classification

Recall that we work with a finite set of actions A and with the standard signature
for finite trees Xpr, consisting of 9, the deadlock operation, _ + _, the nondeter-
ministic choice, and a._, the action prefix with a € A. A finite tree term ¢ is built

according to the following grammar

tu=0lat(NaeA) |t+t.

We want to be able to reason on process predicate satisfiability in a syntactic
manner. The idea is to denote that a closed term t satisfies (or does not satisfy) a
predicate by means of witnessing subterms.

To get the intuition for this idea consider four properties. A process may immedi-
ately terminate (), eventually terminate (4), perform action a (-»)!, or it may not
perform action a at all (). In order to be able check for the first two properties
in a syntactic manner we need to consider two corresponding constant processes,

x, and x;, such that x| satisfies | and «, satisfies 4.

We now have enough information to reason, for instance, on the properties sat-
isfied by the process denoted by the term a.2.0 + a.x; + x|. It can immediately
terminate because it has x| as a top witnessing constant summand. It can eventu-
ally terminate because it has «. as a witnessing subterm, which, in this case, does
not have to be a top summand. It satisfies % because it has a.t (t = 4.0) as a sum-
mand subterm. At the same time a.t acts as a negative witness for the property .

1t is convenient to denote the property can perform action a by the construct “-»”, which is the

same one used when building a positive transition formula. One can always distinguish between
the transition formula and the predicate formula, as the former involves writing a term on the

right hand side of the construct (e.g. “x = y”), while the latter does not (e.g. “x —").

Eugen Ioan Goriac 69

On the other hand | + «, does satisfy - as it does not have a negative witness
subterm of the form 4.t as a summand.

Let us now make a thorough analysis on the possible classes of predicates. We
denote by P the set of all considered predicates.

Existential/Universal predicates % is partitioned into existential and universal
predicates, subsets denoted by $5 and Py, respectively. Intuitively, a process
satisfies an existential predicate when there is at least one execution path on
which the predicate is satisfied, and a universal predicate when it is satisfied
on all possible execution paths. The formal distinction between existential and
universal predicates is given by the requirement that a term of the form s + ¢
satisfies an existential predicate whenever s or t satisfies it, and it satisfies a
universal predicate whenever both s and ¢ satisfy it. For example, |, 4 and 5 are

. . . . a . .
existential predicates, while —+ is universal.

When it is the case that an existential predicate P represents the negation of a
universal predicate Q (e.g. — is the negation of), we denote this by P = Q,
or Q = P. Here, ¥ : P — P is a partially defined bijective mapping between

existential and universal predicates.

Important convention From this point forward we will assume, for the ease of
presentation, that if a predicate P is in ¥, then its negation P is also in P (P is
closed under the application of =). This convention allows us to consider a single
class of witnessing constants that act both as positive witnesses for existential
predicates and negative witnesses for universal predicates.

Remark 3.1.1. The deadlock constant 6 satisfies all universal predicates. At the same
time, any constant kp, for some existential predicate P, satisfies a universal predicate Q
as long as P # Q. Also, any closed term t of the form a.t’ satisfies the universal predicate

Q as long as t is not a negative witness for Q.

This intuition is later formalized by the operational semantics of predicates presented in
Section 3.1.3.

Direct predicates We denote by P? the class of predicates directly satisfied by
the terms of the form a.t’ (for some action a) . Predicates in this class are named
direct predicates. We denote by AL C A the set consisting of all the actions for
which this behaviour is permitted when reasoning on the satisfiability of the

70 Axiomatizations from SOS

direct predicate P € PP. We refer to AL as the set of supported direct actions for
predicate P. In the context of the set of actions A = {a,b,c}, both % and b are
direct predicates, but A2 = {a}, while A? = {b, c}. By convention, &le? = (for any
predicate P that is not direct. "

Implicit predicates Another class we consider is that of predicates who hold
implicitly for terms of the form a.t (for some actions a) whenever they hold for
t. We denote this class by £, which consists of what we call implicit predicates.
An example of an implicit predicate is the eventual termination 4. We denote by
AL C A the set of all the actions which imply this behaviour when reasoning
on the satisfiability of the implicit predicate P € PZ. We refer to A; as the set
of supported implicit actions for predicate P. For the case of the predicate 4, it is
always the case that A = A. By convention, A = 0 for any predicate P that is
not implicit.

Remark 3.1.2. There exist predicates that are neither direct, nor implicit, such as immedi-
ate successful termination |. On the other side of the spectrum, there also exist predicates
that are both direct and implicit. Consider, for instance the existential property according
to which a process can eventually perform action a, denoted by 4,. Obviously a.t %, holds,
so the predicate is direct, and b.t 4, holds for some b # a whenever t 4, holds, which means

it is also implicit.

It is worth noting that the property “can never perform action a eventually” (the negation
of 44, denoted by %,) is universal and implicit, but not direct. This is because we cannot
directly infer that b.t %, holds for some action b. The property is verified only when b # a
and t4, holds.

Figure 3.8 presents the overview of the predicate classes. As it can be seen, the
set of direct predicates P? consists of direct predicates that are implicit () and
direct predicates that are not implicit (P1). Therefore P2 = PP UPT, which we
also denote by P . Similarly, P7 = P U P = P,

direct (7)2))

predicates
existential universal an +
predicates predicates P P
implicit T -+
P Py predicates &) P P

PiUP, = P = PTUPTUPTUPT

Figure 3.8: Predicates classification

Eugen Ioan Goriac 71

In order to familiarize the reader with the notations, we present the class each of

the predicates mentioned so far is in.
+ a = -
l € P] — € P] % € P35
bePS b eP] hePy

Figures 3.9 and 3.10 include many examples of existential and, respectively, uni-
versal predicates, in the context of the set of actions A = {a, b, c}.

P PO
a
—p can immediately perform a
ﬂ a) YP
| can immediately successfully ﬁ p <an, 1ménediately perform an action
terminate -

ﬂD can %mmedlately avoid performing a
% can eventually successfully
Serrmnate
5 T {ﬂ, b/ C}
2, can eventually perform a on a path
D _ I _
%% can take an “a-path” up to A, = {a} A, =1{b,c}
pI w1tnessmg constant

K %7 can eventually avoid 2 on a path

D _ I _
%d can avoid an “a-path” up to ﬂ ={b,c ‘ﬂéd = {a}
[witnessing constant
AL = {b,c)

7

Figure 3.9: Examples of existential predicates

Remark 3.13. If a predicate P is implicit, then its negation P is also implicit and,
moreover, they have the same set of supported implicit actions. Formally, P € Pb iff
Pe PP and AL = AL

To understand the intuition behind this remark, consider a term t and an implicit exis-
tential predicate P € P;b In order to verify if t satisfies P one needs to check if t has a
summand that witnesses P or a summand of the form a.t’ for some action a € AL and
term t' that satisfies P (which is recursively checked in the same manner as for t). On the
other hand, in order to verify if t satisfies P, one needs to make sure that t has no negative
witnessing summand and that for every summand of the form a.t’, with o € AL the
same statement holds recursively for t'. Note that the summands for which a ¢ AL are

72 Axiomatizations from SOS

P, PO

a
- cannot immediately perform a

AL = (b, c}

¢) 4 does not immediately terminate
-+
cannot perform any action ﬂf — {a’ b, C}

M, can immediately only perform a

AL = {a)

%% can avoid performing a somewhere
on every path before witnessing

% can never successfully terminate

&Z{i =1{a,b,c} constant
AL = {b,c} AL = {a}
£, can never perform a on any path % %

P AL = {b,o)

%Z can perform a somewhere on every

/\ can only perform a in the future path before witnessing constant
I _
Ay = lal AL = {a}) AL = {b,c}
7 7

q J

Figure 3.10: Examples of universal predicates

of no interest because they do not satisfy P by construction, so they satisfy P. A similar
reasoning is used if P € SD?.

Itis reasonable to require that one is able to check for the satisfiability of a predicate
P by a.t either by using the direct or the implicit reasoning. At the same time, we

want to avoid clashing predicate definitions:

e it cannot be the case that a.f satisfies both - and —79, no matter which action

a stands for;

e it cannot be the case that a.t satisfies both 4, and %, (the latter would require
for t 4, to hold), no matter which action « stands for.

We formalize these observations as language definition consistency requirements.
Consistency Requirement 3.1.4. Suppose the language characterization includes both
a predicate P and its negation P. In this case,

1 if P e P then AD = A\ AL, and

2. if P e PO then AD = A\ AL,

Eugen Ioan Goriac 73

3.1.2 The preg™ rule format

Definition 3.1.5 (preg* rule format). Consider A, a set of actions, and P, a set of
predicates. A preg” transition / predicate rule for an I-ary operation f is a deduction
rule of the form:

i Dyilieljel) (Poxlicljel} (Quxliek jeKy)
fe,..,x) > CIE G/ P(f(xa, ..., x)

where
1. xq,...,x, and y;;’s are pairwise distinct variables,
2. L KCL={1,...,1l}and each I;, J; and K; is finite,
3. aj,c € A, and
4. PijeP3,QijePy, PeP.

Note that this definition does not include negative premises. This is because nega-
tive transitions are regarded as universal predicates, and because every existential

predicate has a universal one as negation and vice-versa.

Definition 3.1.6 (preg* system). A preg* system is a pair G = (Xg, Rc), where X is
a finite signature and R = RA U RY is a finite set of preg rules over L (R and R
represent the transition and, respectively, the predicate rules of G).

Definition 3.1.7 (Bisimulation). Consider a preg system G = (Lg, Rg). A symmetric
relation R C T(Xg) X T(X) is a bisimulation if, and only if:

1. foralls,t,s" € T(Xg), whenever (s,t) € Rand s 5 for some a € ‘A, then there is
some ' € T(Zg) such that t >t and (s',¥') € R;

2. whenever (s,t) € R and Ps (P € P) then Pt.

Two closed terms s and t are bisimilar (written s ~ t) if, and only if, there is a bisimulation
relation R such that (s, t) € R.

3.1.3 Finite trees with predicates

We extend Xpr with a set of constants: Xrrp = Zpr U {kp | P € P%j}. Recall that
P € P5if, and only if, P € Py, and that «p is both a positive witness for P and a
negative witness for P.

74 Axiomatizations from SOS

Remark 3.1.8. The predicates in P such as =, need no witnessing constants because
terms of the form a.t serve as witnesses.

One might think that the constants for predicates in Pgﬂ should be excluded, and the truth
is that when specifying terms these constants should not be used. However, we include
them because they provide a good mechanism for reasoning on term equivalence by means
of axioms when considering implicit direct predicates.

The operational semantics of FTP is given by the preg™ set of rules TSSprp:

VaeA:) 22) L2)
ax—x x+y—>x’ x+y—>y’
. Px Py
VP e P3 : P(x—+y) (1’14) P(x—-i-y) (7’15) m (1’16)
wpep,. 2PV I ifP £ 0 (sl
€Py: Pl +) (rl7) P(d) (rlg) P(ig) it P # Q (rly)
vPepd VPePt Py

——— (rlo) D —— (rli1)

Vae AD = P(ax) Vae AL P(a.x)

Figure 3.11: The semantics of finite trees with predicates TSSrrp

The system Errp consists of the following axioms:

(A1) X+y=y+x

(A2) (x+y)+z=x+(y+2)

(As) X+x=x

(Ayg) X+0=x

(As) a.x = a.x+ Kp, VPEP? Vaeﬂl?

VP e Pd Vae A\ AL
(A¢) a.(x +xp) =a.(x +Kp) + Kp, VPESDEHb Vaeﬂlfj

Figure 3.12: The axiom system Eprp
Theorem 3.1.9. Errp is sound and ground-complete for bisimilarity on T(Zprp).

Proof. 1t is easy to see that the axioms are head normalizing, in the sense given
in Definition 3.3.1, which immediately helps inferring that the system is ground-

complete.

Concerning soundness, it is sufficient to only focus on the axiom (As) as the
soundness of the other axioms follows from Theorem 3.3.3.

Eugen Ioan Goriac 75

We want to prove that s = a.p ~ t = a.p + «p for a fixed a and P such that either
PePPacAPorPePy,ac A\ AL

It is trivial to check that s — pand t 5 p, by using rules (rl153).

Let us now prove that both terms satisfy the same predicates.

1

=" Consider Q € P such that Q(a.p) holds (#). Let us prove that Q(a.p + xp)
also holds.

If Q € 5 then Q(a.p + xp) is inferred by using (rl5).
If Q € Py then we need to show that Q(xp) holds, and afterwards apply (r17).

1. P e P;j and a € 5‘(11,). In this case Q(xp) holds only if Q # P (by rule (rly)).
Here «xp is the positive witness for P and negative witness for Q.

Let us prove by Reductio ad Absurdum that Q # P. Assume that Q = P. As
Pe Pﬁ and a € AY, we know that (rl) : P 1S apphcable By Consistency
Requirement 3.1.4, neither of these rules ex1st L Q(a - Therefore there is
no way to infer that Q(a.x) holds, which is false due to (s).

2.Pe 7)3 anda € A\ ﬂ% In this case Q(xp) holds only if Q # P (by rule (rly)).

Here «p is the negative witness for P and Q.

Let us prove by Reductio ad Absurdum that Q # P. Assume that Q = ﬁ
AsP e Pdr and a € A\ ff’(we know that (1) :

)

Therefore % cannot be applied. At the same tlme P ¢ P, so there is no
rule =——, which means that rule =— does not exist. Therefore there is no

P(a.x)’ Qla.x)
way to infer that Q(a.x) holds, which is false due to (s).

“«” Consider that Q(a.p + xp) holds. Let us prove that Q(a.p) holds.
If Q € Py, then the property is inferred by using (rly).
Suppose Q € Ps.

1. Pe Pﬁ anda e AY. If Q=PthenQ € P and asa € ?(Q, (rh1) : g can
be applied. If Q # P then Q(xp) does not hold, so Q(a.p) must hold.

2.Pe Pff anda € A\ ﬂ% If Q # P then Q(xp) does not hold, therefore Q(a.p)
must hold. If Q = P then by Consistency Requirement 3.1.4 it holds that

ae AP

p=gy SO rule (rl}1) : O can be applied.

76 Axiomatizations from SOS

3.1.4 Axiomatizing arbitrary preg™ operations

We denote the set of all rules for f by Ry = ij‘ U ij.

First we introduce a meta-operation that checks whether a head normal form ar-

gument of an operation satisfies the requirements of a rule for that operation.

v 1 T(X) X L X Ry — {true, false}

V|t 1,

(iSyglieljel) {Pplic]je]) {Qijxi|ie1<,je1<i}]_

¢
(ieI=VjelQzeTE)(t=ay;+2)
4 ie]=Vje]; ((PjeP?and Iz € T(X) (t = Kp, +2)) or
an (Pij € PT and Ay, z € T(Z) (Aa € AP (t=ay+2)))
ieK=VjeK ((Qje@PandVzeT(T) (t 2 kg, +2)) or
and (Qi € QF and Vy,z € T(T) (Va € ALt £ay+2)))|

We extend v so that it performs the same check for every argument of an opera-
tion:
V(Ep) = [\ (i)
tiet
Definition 3.1.10. Consider a preg* system G = (X, L, R) such that FTP C G. By Eg we
denote the axiom system that extends Eprp with the following schema for every operation
f in L, parameterized over the vector of process terms X in head normal form:

=L {eCIX, 71 | Vp = e RY (/(X,p))}

fES C[X vl

+L{k | WP ePF Fp = Tl e R (VX)}

P(f X)

+ X {ky 1 VQ PP (vp = Sl € R7 /(X o))}

f)

Theorem 3.1.11. Consider a preg” system G = (X,L,R) such that FTP C G. Eg is
sound and ground-complete for strong bisimilarity on T(X).

Proof. Soundness follows immediately — by construction, the left hand side of
each instance of an equation of the form given in Definition 3.1.10 can do (perform
a certain action / satisfy a certain predicate) everything the right hand side can
and vice versa. Concerning completeness, obviously the right hand side of the

equation is in h.n.f. m|

Eugen Ioan Goriac 77

3..5 Consistency requirements

Allowing a language designer the freedom to work both with existential and
universal predicates has its cost. It is easy to end up with overspecified or un-
derspecified systems. We provide, therefore, by means of examples, a list of
consistency requirements that a preg* system needs to have. We do not claim that
this list is complete.

Example 3.1.12. If the system has the rule XHL, it also needs to include the
xly—=x1y
x5
rule —.
x|y —

Consistency Requirement 3.1.13. Consider an operation f and a predicate P € Pf.
The following must hold:

H RA then H e R?

Vae AL if — — .
"e P#ﬂﬁﬂqzﬂef P(f(x)

Example 3.1.14. If the system includes the rules

xSy yh x5 ySy

fa,y >,y fny) = fxy)

and the predicate -, it also needs to include the rules:

Xb y» x-b x5 Yb yh X yh
foy) > faop -+ fry > floy) >

Example 3.1.15. Consider A = {a, b, c}. If the system includes the rules

a ., i} ’
VYae A: il >y

xly=xlly xlly=xIly
and the predicate M, (can immediately only perform a), it also needs to include the rule
b c b c
X X Y-+ y-»

(x [l y) M,

and vice versa.

Consistency Requirement 3.1.16. Consider an operation f and a predicate P € Pf.

For any a in A\ AL it must hold that if none of the rules in Rf‘ of the form QL
f@ = CI¥, 7]

78 Axiomatizations from SOS

can be applied then system has enough rules to infer P(f (X)) for any closed instantiation

of X.

Example 3.1.17. If a system includes the rule xai € Ryﬁ and the predicate %,,
xly—=x1ly =
then it also needs to include the rule ———~—.
" {1 y)%

Consistency Requirement 3.1.18. Let P € Pb,

H H
R m R”.
F(D) S Cl 7] =) T

Va € AT if

3.1.6 Concluding remarks

It is fair to say that the analysis in the current appendix indicates that an abstract,
general treatment of arbitrary predicates is hard in the setting of the meta-theory
of SOS if one wants to generate axiomatizations automatically. This seems to
indicate that an approach based on coding predicates as transition labels is easier
to handle when dealing with arbitrary predicates.

79

Chapter 4

Algebraic Meta-Theory of Processes
with Data

4.1 Introduction

Algebraic properties capture some key features of programming and specification
constructs and can be used both as design principles (for the semantics of such
constructs) as well as for verification of programs and specifications built using
them. When given the semantics of a language, inferring properties such as
commutativity, associativity and unit element, as well as deriving sets of axioms
for reasoning on the behavioural equivalence of two processes constitute one of
the cornerstones of process algebras [25, 127] and play essential roles in several
disciplines for behavioural modeling and analysis such as term rewriting [24] and
model checking [36].

For formalisms with a Structural Operational Semantics (SOS), there exists a rich
literature on meta-theorems guaranteeing key algebraic properties (commutativ-
ity [117], associativity [61], zero and unit elements [10], idempotence [5], and
distributivity [9]) by means of restrictions on the syntactic shape of the transition
rules. At the same time, for GSOS, a restricted yet expressive form of SOS spec-
ifications, one can obtain a sound and ground-complete axiomatization modulo
strong bisimilarity [6]. Supporting some form of data (memory or store) is a
missing aspect of these existing meta-theorems, which bars applicability to the
semantics of numerous programming languages and formalisms that do feature

these aspects in different forms.

80 Axiomatizations from SOS

Contribution In this chapter we provide a natural and generic link between
the meta-theory of algebraic properties and axiomatizations, and SOS with data
for which we consider that one data state models the whole memory. Namely,
we move the data terms in SOS with data to the labels and instantiate them to
closed terms; we call this process currying. Currying allows us to apply directly
the existing rule formats for algebraic properties on the curried SOS specifica-
tions (which have process terms as states and triples of the form (datum, label,
datum) as labels). We also present a new way of automatically deriving sound
and ground-complete axiomatization schemas modulo strong bisimilarity for the
curried systems for the setting in which the data component is characterized by
constants. It turns out that strong bisimilarity for the curried SOS specification
coincides with the notion of stateless bisimilarity in the original SOS specifica-
tions with data. The latter notion is extensively studied in [116] and used, among
others, in [42, 75, 38, 39]. (This notion, in fact, coincides with the notion of strong
bisimilarity proposed for Modular SOS in [110, Section 4.1].) Hence, using the
existing rule formats, we can obtain algebraic laws for SOS specification with data
that are sound with respect to stateless bisimilarity, as well as the weaker notions

of initially stateless bisimilarity and statebased bisimilarity, studied in [116].

SOS with data and store has been extensively used in specifying semantics of
programming and specification languages, dating back to the original work of
Plotkin [123, 124]. Since then, several pieces of work have been dedicated to pro-
viding a formalization for SOS specification frameworks allowing one to include
data and store and reason over it. The current chapter builds upon the approach
proposed in [116] (originally published as [112]).

The idea of moving data from the configurations (states) of operational semantics
to labels is reminiscent of Modular SOS [110, 109], Enhanced SOS [65], the Tile
Model [74], and context-dependent-behaviour framework of [60]. The idea has
also been applied in instances of SOS specification, such as those reported in
[34, 38, 119]. The present chapter contributes to this body of knowledge by
presenting a generic transformation from SOS specifications with data and store
(as part of the configuration) to Transition System Specifications [86, 49]. The
main purpose of this generic transformation is to enable exploiting the several
existing rule formats defined on transition system specifications on the results
of the transformation and then, transform the results back to the original SOS
specifications (with data and store in the configuration) using a meaningful and

well-studied notion of bisimilarity with data. Our transformation is also inspired

Eugen Ioan Goriac 81

by the translation of SOS specifications of programming languages into rewriting
logic, see e.g., [101, 100].

Structure The rest of this chapter is organized as follows. In Section 4.2, we
recall some basic definitions regarding SOS specifications and behavioural equiv-
alences. In Section 4.3, we present the currying technique and formulate the
theorem regarding the correspondence between strong and stateless bisimilarity.
In Section 4.4 we show how to obtain sound and ground-complete axiomatiza-
tions modulo strong bisimilarity for those curried systems for which the domain
of the data component is a finite set of constants. We apply the currying technique
to Linda [56], a coordination language from the literature chosen as case study in
Section 4.5, and show how key algebraic properties of the operators defined in
the language semantics are derived. We conclude the chapter in Section 4.6, by
summarizing the results and presenting some directions for future work.

4.2 Preliminaries

4.2.1 Transition Systems Specifications

We assume a multisorted signature . with designated and distinct sorts P and D
for processes and data, respectively. Moreover, we assume infinite and disjoint
sets of process variables Vp (typical members: xp, yp, xp,, Yp, . . .) and data variables

Vp (typical members: xp, yp, xp,, Yp, - . .), ranging over their respective sorts P and
D.

Process and data signatures, denoted respectively by Xp C X and Xp C L, are
sets of function symbols with fixed arities. We assume in the remainder that the
function symbols in X, take only parameters of the sort Xp, while those in Xp can
take parameters both from Xp and Xp, as in practical specifications of systems

with data, process function symbols do take data terms as their parameters.

Terms are built using variables and function symbols by respecting their domains
of definition. The sets of open process and data terms are denoted by T(Xp)
and T(Xp), respectively. Disjointness of process and data variables is mostly for
notational convenience. Function symbols from the process signature are typically
denoted by fp, ¢p, fp, and gp,. Process terms are typically denoted by tp, t,, and tp,.
Function symbols from the data signature are typically denoted by fp, f/, and fp,,

82 Axiomatizations from SOS

and data terms are typically denoted by tp, t;,, and tp,. The sets of closed process
and data terms are denoted by T(Xp) and T(Xp), respectively. Closed process and
data terms are typically denoted by p,q,p’, pi,p; and d, e, d’, d;, d;, respectively. We
denote process and data substitutions by o, ¢/, and &, &, respectively. We call
substitutions ¢ : Vp — T(Xp) process substitutions and & : Vp — T(Xp) data
substitutions. A substitution replaces a variable in an open term with another
(possibly open) term. Notions of open and closed and the concept of substitution
are lifted to formulae in the natural way.

Definition 4.2.1 (Transition System Specification). Consider a signature *. and a set
of labels L (with typical members I,1',1,...). A positive transition formula is a triple
(t, L t), where t,t’ € T(X) and | € L, written t—l> t', with the intended meaning: process

t performs the action labeled as | and becomes process t'.

A transition rule is defined as a tuple (H,), where H is a set of formulae and « is
a formula. The formulae from H are called premises and the formula « is called the
conclusion. A transition rule is mostly denoted by — and has the following generic
shape: “
(tStilielje)
(d) ,

tLy

where I,]; are sets of indexes, t,t',t;, t;; € T(X), and l;; € L. A transition system
specification (abbreviated TSS) is a tuple (X, L, R) where ¥ is a signature, L is a set of
labels, and R is a set of transition rules of the provided shape.

We extend the shape of a transition rule to handle process terms paired with data terms in

the following manner:

lij . .
@ {(tp, tp) = (tp,, tp,) |1 €1, j € ;)
l 4 ’ !
(tP/ tD) - (tp/ tD)
where 1, |; are index sets, tp,t}, tp, tp,; € T(Zp), tp, tp, tp, to; € T(Xp), and I;; e L. A
transition system specification with data is a triple 7~ = (Xp U Lp, L, R) where Lp

and Lp are process and data signatures respectively, L is a set of labels, and R is a set of
transition rules handling pairs of process and data terms.
Definition 4.2.2. Let 7 be a TSS with data. A proof of a formula ¢ from T is an

upwardly branching tree whose nodes are labelled by formulas such that

1. the root node is labelled by ¢, and

Eugen Ioan Goriac 83

2. if Y is the label of a node q and the set {; | i € 1} is the set of labels of the nodes

i€l
directly above q, then there exist a deduction rule M, a process substitution

o, and a data substitution & such that the application of these substitutions to x
gives the formula y, and for all i € I, the application of the substitutions to x; gives
the formula 1;.

Note that by removing the data substitution & from above we obtain the definition for
proof of a formula from a standard TSS. The notation T + ¢ expresses that there exists
a proof of the formula ¢ from the TSS (with data) 7. Whenever T is known from the
context, we will write ¢ directly instead of T + ¢.

4.2.2 Bisimilarity

In this chapter we use two notions of equivalence over processes, one for standard
transition system specifications and one for transition system specifications with
data. Stateless bisimilarity is the natural counterpart of strong bisimilarity, used
in different formalisms such as [38, 39, 42, 75].

Definition 4.2.3 (Strong Bisimilarity [120]). Consider a TSS 7 = (Xp,L,R). A
relation R C T(Xp) X T(Xp) is a strong bisimulation if and only if it is symmetric and
Voq (0,9) € R = (Y1 p—l>p’ = dy q—l>q’ A (q,q9") € R). Two closed terms p and q
are strongly bisimilar, denoted by p & q if there exists a strong bisimulation relation R
such that (p,q) € R.

Definition 4.2.4 (Stateless Bisimilarity [116]). Consider a TSS with data 7 = (Xp U
Yp,L,R). A relation Ry C T(Xp) X T(Zp) is a stateless bisimulation if and only if it is
symmetricand ¥,4(p, q) € Ra = Y104 (p, d) N (v, d)= 3,(q,4) N (q,dYNPp,q) €
Ry Two closed process terms p and q are stateless bisimilar, denoted by p 7, g, if there
exists a stateless bisimulation relation R such that (p,q) € Rq.

4.2.3 Rule Formats for Algebraic Properties

As already stated, the literature on rule formats guaranteeing algebraic properties
is extensive. For the purpose of this chapter we show the detailed line of reasoning
only for the commutativity of binary operators, while, for readability, we refer to
the corresponding papers and theorems for the other results in Section 4.5. We
only present the format for binary operations. (See Section 5.3 for a more general

one.)

84 Axiomatizations from SOS

Definition 4.2.5 (Commutativity). Given a TSS and a binary process operator f in its
process signature, f is called commutative w.r.t. ~, if the following equation is sound

w.r.t. ~:

f(xo,x1) = f(x1,X0).

Definition 4.2.6 (Commutativity format [23]). A transition system specification over
signature ¥ is in comm-form format with respect to a set of binary function symbols
COMM C X if all its f-defining transition rules with f € COMM have the following

form

Lij .
{X]'—/>y,‘]' |Z€I}

() 1
f(xo,x1) >t
where j € {0,1}, I is an arbitrary index set, and variables appearing in the source of
the conclusion and target of the premises are all pairwise distinct. We denote the set of
premises of (c¢) by H and the conclusion by a. Moreover, for each such rule, there exist a
transition rule () of the following form in the transition system specification
H/
() z
flgx)) =t
and a bijective mapping (substitution) i on variables such that
o 7i(x) = x1 and h(x}) = xo,
o fi(t') ~. tand
e fi(h') € H, for each h’ € H’,

where ~.. means equality up to swapping of arguments of operators in COMM in any
context. Transition rule (¢’) is called the commutative mirror of (c).

Theorem 4.2.1 (Commutativity for comm-form [23]). If a transition system specifica-
tion is in comm-form format with respect to a set of operators COMM, then all operators

in COMM are commutative with respect to strong bisimilarity.

4.2.4 Sound and ground-complete axiomatizations

In this section we recall several key aspects presented in [6], where the authors
provide a procedure for converting any GSOS language definition that disjointly
extends the language for synchronization trees to a finite complete equational

axiom system which characterizes strong bisimilarity over a disjoint extension of

Eugen Ioan Goriac 85

the original language. It is important to note that we work with the GSOS format
because it guarantees that bisimilarity is a congruence and that the transition
relation is finitely branching [49]. For the sake of simplicity, we confine ourselves
to the positive subset of the GSOS format; we expect the generalization to the full
GSOS format to be straightforward.

Definition 4.2.7 (Positive GSOS rule format). Consider a process signature Xp. A
positive GSOS rule p over Lp has the shape:

iy lieljel)
f(xll-"/xn)_l>c[£m

(g)

where all variables are distinct, f is an operation symbol form Lp with arity n, I C
{1,...,n}, J; finite for each i € 1, l;; and [are labels standing for actions ranging over a
given set denoted by L, and C[X, y] is a Lp-context with variables including at most the
xi's and y;;’s.

A finite tree term ¢ is built according to the following grammar:

tu=0|Lt(Vlel)|t+t.

We denote this signature by Zpccsp. Intuitively, 0 represents a process that does not
exhibit any behaviour, s +t is the nondeterministic choice between the behaviours
of s and t, while [t is a process that first performs action / and behaves like ¢
afterwards. The operational semantics that captures this intuition is given by the
rules of BCCSP [79]:

/

yoy

1
X— X

x5 x x+y—l>x’ x+y—l>y’
Definition 4.2.8 (Axiom System). An axiom (or equation) system E over a signature
Y is a set of equalities of the form t = t’, where t,t' € T(L). An equality t = t', for some
t,t' € T(X), is derivable from E, denoted by E v t = t', if and only if it is in the smallest
congruence relation over X-terms induced by the equalities in E.

We consider the axiom system Egccsp which consists of the following axioms:
X+y=y+x X+x=x

x+y)+z=x+(y+2) x+0=x.

86 Axiomatizations from SOS

Theorem 4.2.2. Epccsp is sound and ground-complete for bisimilarity on T(Xpccsp).
That is, it holds that Egccsp v p = q if, and only if, p @“F
p and q € T(Xpccsp).

Definition 4.2.9 (Disjoint extension). A GSOS system G’ is a disjoint extension of a
GSOS system G, written G E G, if the signature and the rules of G’ include those of G,

and G’ does not introduce new rules for operations in G.

q for any two ground terms

In [6] it is elaborated how to obtain an axiomatization for a GSOS system G
that disjointly extends BCCSP. For technical reasons the procedure involves
initially transforming G into a new system G’ that conforms to a restricted version
of the GSOS format, named smooth and distinctive. We avoid presenting this
restricted format, as the method proposed in Section 4.4 allows us to obtain the

axiomatization without the need to transform the initial system G.

4.3 Currying Data

We apply the process of currying [133] known from functional programming to
factor out the data from the source and target of transitions and enrich the label
to a triple capturing the data flow of the transition. This shows that for specifying
behaviour and data of dynamic systems, the data may be freely distributed over
states (as part of the process terms) or system dynamics (action labels of the transi-
tion system), providing a natural correspondence between the notions of stateless
bisimilarity and strong bisimilarity. An essential aspect of our approach is that
the process of currying is a syntactic transformation defined on transition system
specifications (and not a semantic transformation on transition systems); this al-
lows us to apply meta-theorems from the meta-theory of SOS and obtain semantic
results by considering the syntactic shape of (transformed) SOS rules.

Definition 4.3.1 (Currying and Label Closure). Consider the TSS withdata T = (£pU
(b, t0) =5 (tn, to,) [i €1, € J)

(tp,tp) = (t, tp)

Yp, L, R) and transition rule p € R of the shape p =

(tp; dijito,) . .
{t, — tp;liclje]i
(tp.Lt)
tp
R ={p°|peRland L* = {(tp,,t,) |l € L, tp,t,, € T(Lp)}. The curried version of

T is defined as T° = (Lp, L%, R°).

The curried version of p is the rule p© = . We further define

’

Eugen Ioan Goriac 87

(&(tp)ij < (tpyy))))
.ty - tp, i€l je€]i}
By p; = ;
E)LEM)
tp - tp
respect to the closed data substitution . By cl(p®) we denote the set consisting of all

we denote the closed label version of p° with

closed label versions of p°, i.e. cl(p?) = {p; | p* € R, s a closed data substitution}.
We further define cl(R°) = {cl(p®) | p¢ € R} and cl(L%) = {(&(tp), L, &(tp)) | (tp, L t}) €
L, & is a closed data substitution}. The closed label version of 7 ¢ is denoted by cl(7°) =
(Zp, cl(L?), cl(R")).

Our goal is to reduce the notion of stateless bisimilarity between two closed
process with data terms to strong bisimilarity by means of currying the TSS with
data and closing its labels. The following theorem states how this goal can be
achieved.

Theorem 4.3.1. Given a TSS T = (X, L, D) with data, for each two closed process terms

p,g € T(Zp), p QZZ- q if, and only if, p Qd((rc)q,

We provide a proof for the theorem in Appendix 4.A.

4.4 Axiomatizing GSOS with Data

In this section, we provide an axiomatization schema for reasoning about stateless
bisimilarity. We find it easier to work directly with curried systems instead of
systems with data because this allows us to adapt the method introduced in [6]
by considering the set of more complex labels that integrate the data, as presented

in Section 4.3.

Itis important to note that we present the schema by considering that the signature
for data terms, Lp, consists only of a finite set of constants.

BCCSP is extended to a setting with data, BCCSPp. This is done by adding to the
signature for process terms Xpccsp two auxiliary operators for handling the store,
named check and update, obtaining a new signature, Zgccsp,. Terms over Xpccsp,,

are built according to the following grammar:
tp = 0 | l.tp VIGL | C]’lECk(d, tp) | l/lpdlli'E(d, tp) | tp + tp.

Intuitively, operation check(d, tp) makes sure that, before executing an initial action
from tp, the store has the value d, and update(d, tp) changes the store value to d
after executing an initial action of process tp. The prefix operation does not affect
the store. We directly provide the curried set of rules defining the semantics of

88 Axiomatizations from SOS

BCCSP,.
(lxp) (e lxp)
Xp —— X/, Xp —— X},
(xp,Lxp) (xp,Lxp) (olyp)
l.xp —— xp check(xp, xp) —— x}, update(yp, xp) —— X,
(o dxp) (dap)
Xp —— Xp Yyp——Yp
(@ dxp) (o lxp)
Xp+yp—>xp Xp+yp—>yp

Definition 4.2.3 can easily be adapted to the setting of SOS systems with data.
Definition 4.4.1. Consider a TSS T = (Xp U Lp,L,R), which means that 7° =
(Zp, L5, R). A relation R € T(Xp) X T(Xp) is a strong bisimulation if and only if
it is symmetricand ¥, , (p,q) € R=> Va0 p (di‘i')p' =>d,q (dgi,)q’ AN(q,9") € R. Two
closed terms p and q are strongly bisimilar, denoted by p ©"" q if there exists a strong
bisimulation relation R such that (p,q) € R.

The axiomatization Epcesre, of strong bisimilarity over BCCSP{,, which is to be

proven sound and ground-complete in the remainder of this section, is given

below:
xp + Yp = Yyp+xp (n-comm)
xp + (Yp + zp) = (xp+yp)+2zp (n-assoc)
Xp + Xp = Xp (n-idem)
xp+0 = Xp (n-zero)
check(xp, xp + yp) = check(xp, xp) + check(xp, yp) (nc)
update(xp, xp + Yp) = update(xp, xp) + update(xp, yp) (nu)
check(xp, update(yp, xp)) = update(yp,check(xp,xp)) (cu)
update(xp, update(yp, xp)) = update(xp,xp) (uu)
check(d, check(d, xp)) = xp (VdeZXZp) (cc)
check(d, check(d’, xp)) =0 (Vd,d" € Xp,d #d’) (cc)
Lxp = Yjex,, update(d, check(d, l.xp)) (Ic)

Recall that Xp is a finite set of constants, and, therefore, the right hand side of
axiom (Ic) has a finite number of summands.

The following theorem is proved in the standard fashion.

Theorem 4.4.1 (Soundness). For each two terms s,t in T(Xpccspe) it holds that if

C
EBCCSP% Fs=tthens ﬁBCCSPDt.

Eugen Ioan Goriac 89

We now introduce the concept of terms in head normal form, which is essential for
proving the completeness of axiom systems.

Definition 4.4.2 (Head Normal Form). Let Xp be a signature such that Ypcesps, © Lp.
A term t in T(Xp) is in head normal form (for short, h.n.f.) if

t= Z update(t},,, check(tp;, li.tp;)),
i€l
where, for every i € 1, tp;, t,. € T(Xp), tp; € T(Xp), l; € L. The empty sum (I = () is
denoted by the deadlock constant 0.
Lemma 4.4.3 (Head Normalization). For any term p in T(Epccsps), there exists p” in
T(Z.BccspcD) in h.n.f. such that Epcesee, Fp=1p'.

Proof. By induction on the number of symbols appearing in p. We proceed with a
case distinction on the head symbol of p.

Base case
e p = 0; this case is vacuous, because p is already in h.n.f.
Inductive step cases

e pis of the shape Lp’; then

p S 1y € Yoens,, update(d, check(d, Lp')), which is in h.n.f.

e pis of the shape check(d”,p"”); then

ind. hyp.

p L check(d”,p”)
check(d"”, }.;c; update(d., check(d;, 1;.p’)))
Y. i1 Check(d” , update(d., check(d;, I;.p’)))

Yies update(d’, check(d”, check(d;, I;.p’))) £
Y jerg—a» Update(d,, check(d;, l;.p})), which is in h.n.f.

n
Ll
C

e pis of the form update(d”, p”); then

def. ind. hyp.
p =’ update(d”, p"’) eI
(nu)

update(d”,). c; update(d, check(d;, l;.p}))) =
Yicr update(d” , update(d;, check(d;, 1;.p}))))
Y ie; update(d”, check(d;, I;.p’)), which is in h.n.f.

e pis of the form py + py; then

90 Axiomatizations from SOS

def. p ind. hyp.
p = pPotpr =
Y ie1 Check(d” , update(d., check(d;, I;.p}))) +
Y jej Check(d”, update(d;., check(d;, | P)) =
Y ketvj Check(d” , update(d,, check(dy, Iy.p;))), which is in h.n.f.

O

Theorem 4.4.2 (Ground-completeness). For each two closed terms p,q € T(Epccsps),
it holds that if p ©*“vg, then Epcesps Fp = 4.

Proof. We assume, by Lemma 4.4.3 that p, g are in h.n.f., define the function height

as follows:
0 ifp=0
height(p) = { 1+ max(height(p:), height(p)) ifp = p1 +p2
1 + height(p’) if p = update(d’, check(d, L.p")),

and prove the property by induction on M = max(height(p), height(g)).
Base case (M = 0) This case is vacuous, because p = g = 0, s0 Epccspe F p = 4.

Inductive step case (M > 0) We prove Epccsps, F p = q + p by arguing that every
summand of g is provably equal to a summand of p. Let update(d’, check(d,l.q"))
be a summand of 4. By applying the rules defining BCCSP%,, we derive g @) q.
As q ©°“p holds, it has to be the case that p(dﬂ,)p’ and ¢ "oy’ hold.
As max(height(q’), height(p’)) < M, from the inductive hypothesis it results that
Epcesee, + 4" =7/, hence update(d’, check(d,1.q")) is provably equal to the term
update(d’, check(d, l.p")), which is a summand of p.

It follows, by symmetry, that Egccspe + g = p + g holds, which ultimately leads to
the fact that Epccsps Fp =94 holds. O

Consider a TSS with data 7 = (Xp U Xp,L,R). For an operation f € Xp, we
denote by R the set of all rules defining f. All the rules in R are in the GSOS
format extended with the data component. For the simplicity of presenting the
axiomatization schema, we assume that f only has process terms as arguments,

baring in mind that adding data terms is trivial.

Eugen Ioan Goriac 91

When given a signature Lp that includes Zpcesps , the purpose of an axiomatization
for a term p € T(Zp) is to derive another term p’ such that p ©” p’ and p’ €
T(Zpcesp:)-

Definition 4.4.4 (Axiomatization schema). Consider a TSS 7°¢ = (Lp, L%, R°) such
that BCCSP, C 7°. By Eq« we denote the axiom system that extends EBCCSP;, with the
following axiom schema for every operation f in T, parameterized over the vector of closed
process terms p in h.n.f.:

fp) =
r {update(d’, check(d, 1.C[p, yp])) | p =

dld’)

f(®) —— CIp, 4]
where V' is defined as v (7, p) = N5 v "(px, k, p),

(i Lij ;)
{xp, — Yp,, |ie I,j el

’ i Y —

and V'|px k, 3 =

f(p) —= Clp,q)
if k € Ithen Vi, 3 Epccsps F pr = update(d’j, check(dy, lkj.p")) +p”.

€ cl(ﬂ;) and v(p, p)},

Intuitively, the axiom transforms f(p) into a sum of closed terms covering all
its execution possibilities. We iterate, in order to obtain them, through the set
of f-defining rules and check if {J satisfies their hypotheses by using the meta-
operation v. v/ makes sure that, for a given rule, every component of jf is a term
with enough action prefixed summands satisfying the hypotheses associated to
that component. Note that the axiomatization is built in such a way that it always
derives terms in head normal form. Also note that the sum on the right hand side
is finite because of our initial assumption that the signature for data is a finite set
of constants.

The reason why we conceived the axiomatization in this manner is of practical
nature. Our past experience shows that this type of schemas may bring terms to
their normal form faster than finite axiomatizations. Aside this, we do not need
to transform the initial system, as presented in [6].

Theorem 4.4.3. Consider a TSS T° = (Xp, L, R") such that BCCSPS, T 7°. Eq is

sound and ground-complete for strong bisimilarity on T(Xp).

Proof. Itis easy to see that, because of the head normal form of the right hand side
of every axiom, the completeness of the axiom schema reduces to the completeness
proof for bisimilarity on T(ZBCCSPCD).

92 Axiomatizations from SOS

In order to prove the soundness, we denote, for brevity, the right hand side of the
schema in Definition 4.4.4 by RHS.

Let us first prove that if f(p) performs a transition then it can be matched by RHS.
dirli 'rdl“ . .
{xi(=])yij liel,je]
1) :

f@) = Clz, y]
ald) . ,
Then f (ﬁ)(=)C[p,cﬂ holds and, at the same time, all of the rule’s premises are

Considerarulep € cl (R}) that canbe applied for f(p): p =

met. This means that p; is of the form } ..; update(d;;, check(d;, l;;.p;;)) + p’ for some

j€li

p’ and pjj’s. Itis easy to see that all the conditions for v’ are met, so (d,1,d").C[p, 4] is
dilijdij N .

a summand of RHS, and therefore it holds that RHS(5 7 Clp, 41, witch matches

the transition from f(p).

The proof for the fact that f(p) can match any of the transitions of RHS is similar.
O

We end this section with the remark that the problem of extending the axioma-
tization schema to the setting with arbitrary data terms is still open. The most
promising solution we have thought of involves using the infinite alternative
quantification operation from [125]. This operation would help us to define and
express head normal forms as (potentially) infinite sums, parameterized over data
variables [25].

4.5 Case Study: The Coordination Language Linda

In what follows we present the semantics and properties of a core prototypical
language.

The provided specification defines a structural operational semantics for the co-
ordination language Linda; the specification is taken from [116] and is a slight
adaptation of the original semantics presented in [55] (by removing structural
congruences and introducing a terminating process ¢). Process constants (atomic
process terms) in this language are ¢ (for terminating process), ask(u) and nask(u)
(for checking existence and absence of tuple u in the shared data space, respec-
tively), tell(u) (for adding tuple u to the space) and get(u) (for taking tuple u from
the space). Process composition operators in this language include nondetermin-

istic choice (+), sequential composition (;) and parallel composition (||). The data

Eugen Ioan Goriac 93

signature of this language consists of a constant {} for the empty multiset and a
class of unary function symbols U{u}, for all tuples u, denoting the union of a
multiset with a singleton multiset containing tuple u. The operational state of a
Linda program is denoted by (p, d) where p is a process term in the above syntax

and d is a multiset modeling the shared data space.

The transition system specification defines one relation — and one predicate |.
Note that — is unlabeled, unlike the other relations considered so far. Without
making it explicit, we tacitly consider the termination predicate | as a binary
transition relation 4 with the pair (xp, xp), where xp and xp are fresh yet arbitrary
process and data variables, respectively.

Below we provide a table consisting of both the original and the curried and

closed label versions of the semantics of Linda on the left and, respectively, on the

right.
1 1,)—
M (e,d) | 197
2) (ask(u),d U {u}) — (¢,d U {u}) (2.) ask(u)(dU u},—,duf u})
(3) (tell(u), d)—> (e,d U {u}) (3c) tell() (d,- du{u})g
4 4,
()(get(u),du{u})—>(e,d) (% get(u) s
) ————— d
> (nask(u), d) — (e, d) e ¢ d] 0 nask(u) =")e[u #dl
(xp,d) | v (yp,d) 1 6.) xp | 7.) vl
(xp+yp,d)] (xp+yp,d)] ‘ xp+ypl ‘ xp+ypl
®) (xp,d) = (x},d) 8) xS l)x
(xp + yp,d) > (), d') T xp+yp = X,
(ve, D = Wy @) o0 2
(e + yp, d) = (Y5,) Twr Sy,
10) (xp,d) = (x,d') 10y “0
(o s yo,)= (< s yo,) Ty S
(o, d) L (Yo, d) = (v, d) Lo Sy,
(11) = ; . (1) ==

(xp ; yp, d) = (Yp, d') Xp;yp = Yp

94 Axiomatizations from SOS

(12) (xp,d) | (]/P, d) | (12,) xp l Yp l

(xp; Yp, d) | Xp; Yp l

. d-d)

(13) (xp,d) — (xp’,d) / (13 Xp ({:d /)xp
(xp L yp, d)— (" |l y, d) xpllyp = xp |l yp

L -4

(14) — W D= Wp) , (14,) — 2~ (:d,)y £
(ep 1 yp, d) = (xp || yp, d) xpllye = xp Il

(15) (xp,d) | (yp,d) | (15, xpl ypl

(xp Il yp,d) | Cxpllyel

In the curried SOS rules, d and d’ are arbitrary closed data terms, i.e., each tran-
sition rule given in the curried semantics represents a (possibly infinite) number
of rules for each and every particular d,d” € T(Xp). It is worth noting that by
using the I-MSOS framework [111] we can present the curried system without
explicit labels at all as they are propagated implicitly between the premises and

conclusion.

Consider transition rules (6.), (7;), (8:), and (9.); they are the only + -defining
rules and they fit in the commutativity format of Definition 4.2.6. It follows from
Theorem 4.2.1 that the equation x + y = y + x is sound with respect to strong
bisimilarity in the curried semantics. Subsequently, following Theorem 4.3.1,
we have that the previously given equation is sound with respect to stateless
bisimilarity in the original semantics. (Moreover, we have that (xy + x1,d) =

(x1 + x0,d) is sound with respect to statebased bisimilarity for all d € T(Xp).)

Following a similar line of reasoning, we get that x || ¥ = y || x is sound with

respect to stateless bisimilarity in the original semantics.

In addition, we derived the following axioms for the semantics of Linda, using the
meta-theorems stated in the third column of the table. The semantics of sequential
composition in Linda is identical to the sequential composition (without data)
studied in Example 9 of [61]; there, it is shown that this semantics conforms
to the Assoc-DE SiMoNE format introduced in [61] and hence, associativity of
sequential composition follows immediately. Also semantics of nondeterministic
choice falls within the scope of the Assoc-De SimoNE format (with the proposed
coding of predicates), and hence, associativity of nondeterministic choice follows
(note that in [61] nondeterministic choice without termination rules is treated in
Example 1; moreover, termination rules in the semantics of parallel composition

are discussed in Section 4.3 and shown to be safe for associativity). Following

Eugen Ioan Goriac 95

a similar line of reasoning associativity of parallel composition follows from the
conformance of its rules to the Assoc-De SimonE format of [61]. Idempotence
for + can be obtained, because rules (6.), (7.) and (8.), (9.) are choice rules [5,
Definition 40] and the family of rules (6.) to (9.) for all data terms d and d’ ensure
that the curried specification is in idempotence format with respect to the binary
operator +. The fact that ¢ is unit element for ; is proved similarly as in [10],

Example 10.

Property Axiom Meta-Theorem
Associativity for ; x;W;2)=(x;y);z Theorem 1 of [61]
Associativity for + x+(y+z)=(x+y)+z | Theorem 1 of [61]
Associativity for || x|l wllz)y=xllyllz Theorem 1 of [61]
Idempotence for + X+x=x Theorem 42 of [5]
Unit element for ; E;,X=X Theorem 3 of [10]
Distributivity of + over ;| (x+y);z=(x;y) + (x;z) | Theorem 3 of [9]

We currently cannot derive an axiomatization for Linda because its semantics

involves arbitrary data terms, as opposed to a finite number of constants.

4.6 Conclusions

In this chapter, we have proposed a generic technique for extending the meta-
theory of algebraic properties to SOS with data, memory or store. In a nutshell,
the presented technique allows for focusing on the structure of the process (pro-
gram) part in SOS rules and ignoring the data terms in order to obtain algebraic
properties, as well as, a sound and ground complete set of equations w.r.t. stateless
bisimilarity. We have demonstrated the applicability of our method by means of
the well known coordination language Linda.

It is also worth noting that one can check whether a system is in the process-tyft
format presented in [115] in order to infer that stateless bisimilarity is a congru-
ence, and if this is the case, then strong bisimilarity over the curried system is also
a congruence. Our results are applicable to a large body of existing operators in
the literature and make it possible to dispense with several lengthy and laborious

soundness proofs in the future.

Our approach can be used to derive algebraic properties that are sound with
respect to weaker notions of bisimilarity with data, such as initially stateless

96 Axiomatizations from SOS

and statebased bisimilarity [116]. We do expect to obtain stronger results, e.g.,
for zero element with respect to statebased bisimilarities, by scrutinizing data
dependencies particular to these weaker notions. We would like to study coalge-
braic definitions of the notions of bisimilarity with data (following the approach
of [135]) and develop a framework for SOS with data using the bialgebraic ap-
proach. Furthermore, it is of interest to check how our technique can be applied
to quantitative systems where non-functional aspects like probabilistic choice or
stochastic timing is encapsulated as data. We also plan to investigate the possibil-
ity of automatically deriving axiom schemas for systems whose data component

is given as arbitrary terms, instead of just constants.

4.A Proof of Theorem 4.3.1

GivenaTSST = (X, L, D) with data, for each two closed process terms p, g € T(Zp),
o7 gif, and only if, p "7y
Proof. Before we proceed with the proof of the theorem, we state and prove the

following auxiliary lemma.

Lemma 4.A.1. For each two closed process terms p,p’ € T(LZp), each two closed data
terms d,d’ € T(Xp) and each label | € L, it holds that T + (p,d) AN (p’,d’) if and only if

AT p S .

Proof. We split the bi-implication into two implications and prove them below:

= By induction on the depth of the proof for 7 + (p,d) AN (p’,d’). Since the
induction basis is a special case of the induction step (in which the last
transition rule in the proof has no premises), we dispense with stating the
induction basis separately. Assume that the last transition rule in the proof
is l
{(tp, tp;) = (tp; tp;) i €L, j € Ji}
p = 1 °
(tp, tp) = (tp, t))

Then there exists a closed process substitution ¢ and a closed data substi-

tution ¢ such that o(tp) = p, o(t;) = p’, &(tp) = d, &(tp) = d” and moreover
T+ (o(tp,), &(tp))) i> (a(tp,), &(tp,;)) with a shallower proof, for each i € I and
j S]i-

Eugen Ioan Goriac 97

It follows from Definition 4.3.1 that there exists a transition rule

(E(tp) i (tpy))) .
{tp, - tp, i€l j€]i}

Pe = ELE)
tp - tP

in the transition rules of c/(7°). The induction hypothesis applies to the
(Etp)LE(tD,;)
premises of p under o and &, hence we obtain c/(7°) + o(tp,) — o(tp,)

o . EEDILEMH)
for every i € I,j € J;. We, therefore, infer that c/(7°) + o(tp) — — o(t}),

dLd
hence cl(T°) + p @)p’.
dLd .

< By induction on the depth of the proof for c/(7°) + p) p’. We dispense
with stating the induction basis separately in this case too. Assume that the
last transition rule in the proof is
(dilij i) . .

{tp, — tp;li€lje]}

p = dld ’
tr 5 ¢

there exists a closed process substitution o such that o(tp) = p, o(t;,) = p’ and,
(@i lijdif) .

moreover, it holds that c/(7°) + a(tp) — o(tp,) with a shallower proof, for

eachie€land j€ J;.

It follows from Definition 4.3.1 that there exists a transition rule

lij . .
{(tpi, tD,') —]> (tpi/, tDij) | 1€ I,] S]z}

Loy o
(tP/ tD) - (tp/ tD)

p:

in the transition rules of 7~ and a data substitution ¢ such that p’ = pf, and
hence, &(to) = d, &(t,) = ', &(tn) = di, E(t,) = d forevery i€, j e Ji. The
induction hypothesis applies to the premises of p’, and hence, we obtain
T+ (o(tp,), &(tp))) 4 (o(tp,), &(tp,))) for every i € I, j € J;. We therefore infer
that 7 - (o(tp), £(t0) = (0(1}), &(t,)), hence T+ (p, d) = ¢/,).

O

Now we are ready to state the proof of Theorem 4.3.1. Let us first prove that

(T

p ©7 g if, and only if, p ©""g. Again we split the bi-implication into two

implications and prove them separately below.

98 Axiomatizations from SOS

= Sincep &7, g, there exists a stateless bisimulation relation R w.r.t. 7~ such that
(p,q) € R. We claim that R is also a strong bisimulation relation w.r.t. c/(7°).
R is symmetric because it is a stateless bisimulation relation and hence, it

remains to show that the following transfer condition holds:
1) 1)
f7rp = p,thenc(7°) g = g for some g’ such that (p’,q’) € R.

It follows from cI(7°) + p @ p’ and the right-to-left implication in Lemma
4. A1thatT r (p,d) 4 (p’,d’). Since p <:>Z g, we have that 7 (g, d) AN (q,4),
for some g’ such that (p’,q’) € R. It follows from the latter transition and
the left-to-right implication in Lemma 4.A.1 that c/(7°) + g (dﬂf’)q’ and we
already had that (p’,q’) € R, which concludes the proof of the left-to-right

implication.

& Symmetric to above. This implication is similar to the informal procedure of
turning Modular SOS specifications into SOS specifications in [110, Section
3.9]; there it is mentioned that formalizing the transformation and proving
a formal proof of correspondence between the original and the transformed

specification is left for future work.

4.B The Hybrid Process Algebra HyPA

In [62], a process algebra is presented for the description of hybrid systems, i.e.,
systems with both discrete events and continuous change of variables. The process

signature of HyPA consists of the following process constants and functions:
e process constants: 0, €, (a),ca, (C)cecs
e unary process functions: (init(d)_)ep, (O () cas
e binary process functions: &, ©, », >, ||, || ,and |.

We refrain from giving further information about the intended meaning of the sets
A, C, and D, and the meaning of the process constants and functions as these are
irrelevant to currying. The data state consists of mappings from model variables
to values, denoted by Val. The data signature is not made explicit.

The transition system specification defines the following predicate and rela-

tions:

Eugen Ioan Goriac 9

e a ‘termination’-predicate v/;

e a family of ‘action-transition’ relations (_ EN _) ;
leAxVal

e a family of ‘flow-transition’ relations (_ > _) .

o€T—Val

Also, the meaning of the set T is irrelevant for our purposes. The “termination’-

predicate is again tacitly considered as transition to a pair of fresh variables. Note

that the curried TSS introduces for every predicate a family of predicates for each

data term.

The transition rules are given below. Note that in the following semantics, each
deduction rule with multiple transition formulae in the conclusion is actually a
rule schema representing a separate deduction rule for each and every formula in
the conclusion.

1 2)—— [(v0)Ec]
Dewnr @ (a,v) 5 (e,v)’ Ven S a(t)) om=0Ar
@)V @ v 5 (g v
4—[/Ilzrd]/ 5 [,’I:rd]’
@ (init(d)x, v) v) ® (init(d)x, v) > (y, v’)
oo o) 5 (ly, V))
(X0 ® x1, V)V (X0 ® x1,v) > (y,V")
(x1 & xo, V)V (x1 ® xp,V) —l> (y,v’)
(8) <x0/ V) \/ <y0/ V> \/ (9) <x0/ V) _l> <]// V,>
(X0 © Yo, V)V (xo © x1,V) > (y © x1,V")
10y GGy - (y,v')
(Xo ® xl,v) —l> <y,1/,>
1) (x0, V)V (12) (x0,V) EN (y,v")

7 l V4
(x0 » x1, V)V (X0 » x1,V) =y » x1,V')

(xg > x1,V)V (xo > xl,v)—l>(y > X1, V')

100 Axiomatizations from SOS

(13) (x1, V)V (14) (x1,v) 4 (y,v')

(xo » x1, V)V’ (o > 21, 1) 5y, v

(x0,v) ~> (o, V")

o

(15) (X0, V)V (xl,v)\/’ 16) (x1,v) «» (y1,v") ,
(xo |l x1, V)V (xo llx1,v) ~ (yolly1,v")
(x0|x1, V)V (x0|x1,v) ~> (yollyr,v')

(x0, V) ~> (]/,V Y (xg, vV <xolv>‘ﬂ; (y,v"

(17) - , (18)
<XO||X1,V> > <%V > <X0||x1/V>’_><y||x1/V”
(1 10, v) > (y,v') (120, v) S (xy Il y, v
(o lx1,0) > (y,v') (xo L x1,v) 5 (yllo, v
(x1 | x0,v) ~ (y,v")

<x0/ V>a’_v)/ <y01 V,/> <x11v>a’;)v, <y1;V">

(19) [a" =ayad],
<x0||x1,v> <y0||}/1,V
(x| xlﬂ’) <y0 | y1,v”
(a0) — W ¢ H],
(O (), v) > (I (y) V")
o) (x,v) ~ (v, v") @ _wmv
(O (x),v) ~ (u(y),v) 9y (x),v)V

The curried version of the semantics of HyPA is given below.

[(v,0)E¢c]
(1c) e \/ 4 (2) (v (a v)v) 7 (36) (v,0,0(t)) [dom(a)zfo,t]]’
& c ~> C

v

o' v

X vy , X =y
) it 7. /V[(V,V)l=r dl, (5) W)

mit(d)x — 'y

[(v,v') I d],

o X (vlv)y

0 0

6)—~ (7 7
Xo ® x1 vy Xo ® x; =

X1 © Xo \/v

Xo \/v yO \/v
Xo © Yo Vv

—, (8

7

Eugen Ioan Goriac 101

X (V'l—'tl)y Xo vy X (V'l—ﬂ;/)y
0 0 1
(96) (V,Z,V/) 7 (1OC) - (V,I,V/) 7
XoOx1 = YyOx Xo ©x1 = Y
W,y
X0 \/ Xo — y
(11C) —VI (12C) (VlV’) 7
x0>x1‘/v x0>xll>y>x1
Xo > x1 Yy Xo B> X1 (V,—A;/)y > X1
W,y
x1 Vv X1 5y
(13) ————, (14 o
Xo > X1 vy Xo » X1 DY
(v,o,v)
Xo ~ Yo
v v X 0y y
X X 1 1
(15) ————, (16.) ; ,
\/ v,o)
Xollx1 vy Xollx1 ~>" yolly
v,0")
Xolxr Vs xolxi ~" yolln
X (V;(\ff)f’) y x Y X w,(av")v")
0 1 v 0
(17C) (V,(I,V') 7 (18C) (V,(H,V'),V") 7
Xollxr "~y xollxr " =" "yl
v,o,v") v (av)V'")
x1l[xo ~>"y xillxo "= xally
(v,o,v) w(ayv)v")
Xolx; ~>"y ol x1 " =" "yl
(v,o,v)
X1lxg ~> "y
X (V/(H,V'),V”)y X @) V")
0 0 1 1
(]‘9C) (v,(a”,v'),v”) [a” = ﬂ]/b'l’],
xo |l x1 =" “yolly
(V’(a//’v/)lv//)
Xolxi " =" “yolly
W (ay')v")
(20C) ’ ’7 [{Z ¢ H]/
W (av)v")
du(x) =" du(y)
o)
x ~>y x Vv
(21C) (V,O,V’) 7 (22C) —V'

On HyPA process terms, in [62], a notion of robust bisimilarity is defined that, for

HyPA, coincides with our definition of stateless bisimilarity.

102 Axiomatizations from SOS

Nondeterministic choice and sequential composition have the same semantics in
HyPA as in Linda and hence their algebraic properties follow from an identical
line of reasoning. Commutativity of parallel composition follows from the fact
the commutative mirror of each rule derived from the rule schemata (15.), (16.),
(17.), (18;), and (19,) is represented by the same rule schema. Also for parallel
composition, all deduction rules but (16,) and (17.) are similar to Linda (modulo
renaming of labels); deduction rules (16.) and (17.) are, respectively, commu-
nication and left-choice + testing rules in the Assoc De SimoNE format of [61]
(with the addition of testing operators) and their combination trivially satisfies
the constraints of this format (the antecedents of all constraints of this format are
false) and hence, associativity of parallel composition follows from Theorem 2 of
[61]. Idempotence for @ is given because rules (6.) and (7.) are choice rules [5,
Definition 40] and the family of rules (6.), (7.) for all data terms d and d’ ensure
that the curried specification is in idempotence format with respect to the binary
operator @. Finding zero and unit elements for the operations &, ©, » and >
is similar to the examples presented in [10].

We derived the following axioms for the semantics of HyPA, using the meta-

theorems stated in the third column of the table.

Property Axiom Meta-Theorem
Commutativity for @ X0 D x1 = x1 D X Theorem 4.2.1
Commutativity for || X0 |l x1 = x1 || x0 Theorem 4.2.1
Associativity for @ X0 ® (x1 ® x2) = (x0 ® x1) D X2 Theorem 1 of [61]
Associativity for © X0 © (x1 © x2) = (%9 © x1) © x7 Theorem 1 of [61]
Associativity for || xo |l (o1 |l x2) = (x0 || x1) || x2 Theorem 2 of [61]
Idempotence for ® Xo ® X0 = Xo Theorem 42 of [5]
Unit element for & 0dx=x Theorem 3 of [10]
Unit element for © EQXx=x Theorem 3 of [10]
Unit element for » O x=x»0=x Theorem 3 of [10]
Unit element for > x> 0=x Theorem 3 of [10]
Zero element for © 00x=0 Theorem 5 of [10]
Zero element for > 0>x=0 E>X=¢ Theorem 5 of [10]
Distributivity of © over @ Xo® X1 Oxp=%x O x1 D x5 O xp Theorem 3 of [9]
Distributivity of > over @ (xo®x1) > xp=%x) > X2 ®x1 > xp | Theorem 3 of [9]
Distributivity of » over @ (xo ® x1) > xp2=%x0 » X2 ® x1 » xp | Theorem 3 of [9]
Distributivity of dy () over & dy (xo ® x1) = dy (x9) ® Iy (x1) Theorem 3 of [9]
Distributivity of di () over © dy (xg © x1) = dy (x9) © dy (x1) Theorem 3 of [9]
Distributivity of di () over > dy (xg > x1) = dg (x9) > Iy (x1) Theorem 3 of [9]
Distributivity of init() over & | init(d)(xo ® x1) = init(d)xo ® init(d)x; | Theorem 3 of [9]

103

Chapter 5

Exploiting Algebraic Laws to
Improve Mechanized

Axiomatizations

5.1 Introduction

Algebraic properties, such as commutativity, associativity and idempotence of
binary operators, specify some natural properties of programming and specifica-
tion constructs. These properties can either be validated using the semantics of
the language with respect to a suitable notion of program equivalence, or they
can be guaranteed a priori ‘by design’. In particular, for languages equipped
with a Structural Operational Semantics (SOS) [94, 123, 124], there are two closely
related lines of work to achieve this goal: firstly, there is a rich body of syntac-
tic rule formats that can guarantee the validity of certain algebraic properties;
see [23, 118] for recent surveys. Secondly, there are numerous results regarding
the mechanical generation of ground-complete axiomatizations of various be-
havioral equivalences and preorders for SOS language specifications in certain
formats—see, e.g., [2, 6, 35, 47, 80, 136].

However, these two lines of research have evolved separately and no link has
been established between the two types of results so far. In this chapter, we take
the first steps in marrying these two research areas and in using rule formats
for algebraic properties (specifically, for commutativity) to enhance the process

of automatic generation of axiomatizations for strong bisimilarity from GSOS

104 Axiomatizations from SOS

language specifications [46, 49]. In particular, we show that linking these two

areas results in axiomatizations that look like hand-crafted ones.

Many ground-completeness results have been presented in the literature on pro-
cess calculi. (See, for instance, the survey paper [11] for pointers to the liter-
ature.) A common proof strategy for establishing such ground-completeness
results is to reduce the problem of axiomatizing the notion of behavioural equiv-
alence under consideration over arbitrary closed terms to that of axiomatizing
it over ‘synchronization-tree terms’. This approach is also at the heart of the
algorithm proposed in [6] for the automatic generation of finite, equational,
ground-complete axiomatizations for bisimilarity over language specifications
in the GSOS format. A variation on that algorithm for GSOS language specifica-
tions with termination has been presented in [35]. In [136], Ulidowski has instead
offered algorithms for the automatic generation of finite axiom systems for the

testing preorder over De Simone process languages.

Contribution In Section 5.4 of this chapter, we present a refinement of the al-
gorithm from [6] that uses a rule format guaranteeing commutativity of certain
operators to obtain ground-complete axiomatizations of bisimilarity that are closer
to the hand-crafted ones than those produced by existing algorithms. (See Sec-
tion 5.5, where we apply the algorithm to axiomatize the classic parallel compo-

sition operator and compare the generated axiomatization to earlier ones.)

Our rule format for commutativity (presented in Section 5.3) is a generalization
of the rule format for commutativity from [117], which allows operators to have
various sets of commutative arguments. Apart from being natural, such a general-
ization is useful in the automatic generation of ground-complete axiomatizations,

as the developments in this study show.

Structure In Section 5.2 we recall some standard notions from process theory
and the meta-theory of SOS. In Section 5.3 we present a generalized notion of
commutativity and a corresponding rule format. In Section 5.4 we give an al-
gorithm for the automatic generation of ground-complete axiomatizations for
bisimilarity from GSOS language specifications. The algorithm uses information
derived from the generalized commutativity format, where possible, to reduce
the number of auxiliary operators and to produce axiom systems that are close
to hand-crafted ones. In Section 5.5 we apply the algorithm to axiomatize the

classic parallel composition operator and compare the generated axiomatization

Eugen Ioan Goriac 105

to earlier ones. Section 5.6 concludes the chapter and suggests some avenues for

future research.

This chapter is an extended version of [18]. It offers some explanations, examples
and proofs that we needed to remove from the reference in order to conform with

the restriction on the number of pages.

5.2 Preliminaries

In this section we review, for the sake of completeness, some standard definitions
from process theory and the meta-theory of SOS that will be used in the remainder
of the chapter. We refer the interested reader to [14, 118] for further details.

5.2.1 Transition System Specifications

Definition 5.2.1 (Signature and terms). We let V denote an infinite set of variables
with typical members x,x',x;, y,Y', Vi, A signature X is a set of function symbols,
each with a fixed arity. We call these symbols operators and usually represent them
by f,8,.... An operator with arity zero is called a constant. We define the set T(X)
of terms over L (sometimes referred to as Y-terms) as the smallest set satisfying the
following constraints.

e A variable x € V is a term.
o If feXhasaritynandty,...,t, are terms, then f(t1,...,t,) is a term.

We use s, t,t',ti,u,... to range over terms. We write t; = t, if t, and t, are syntactically
equal. The function vars : T(X) — 2V gives the set of variables appearing in a term. The
set C(X) is the set of closed terms, i.e., the set of all terms t such that vars(t) = 0. We
use p,p’,pi,q,7 ... to range over closed terms. A substitution o is a function of type
V — T(X). We extend the domain of substitutions to terms homomorphically. If the
range of a substitution lies in C(X), we say that it is a closed substitution.

Definition 5.2.2 (Transition System Specifications (TSS), formulae and transition
systems). A transition system specification 7~ is a triple (X, L, D) where

e . isa signature.

106 Axiomatizations from SOS

o L isaset of labels. Ifl € L and t,t' € T(X), we say that tSt s a positive
formula and t - is a negative formula. A formula is either a positive formula
or a negative one. A formula is typically denoted by ¢, V, @', @i,

e D is a set of deduction rules, i.e., pairs of the form (®, p) where ® is a set of
formulae and ¢ is a positive formula. We call the formulae contained in ® the

premises of the rule and ¢ the conclusion.

We say that a formula is closed if all of its terms are closed. Substitutions are also
extended to formulae and sets of formulae in the natural way.

!
We often refer to a closed formula t — t’ as a transition with t being its source, [its

label, and t' its target. The notions of source and label are similarly defined for
i

negative formulae. A deduction rule (®, ¢) is typically written as 5

5.2.2 GSOS Format

The GSOS format is a widely studied format of deduction rules in transition
system specifications proposed by Bloom, Istrail and Meyer [46, 49]. Transition
system specifications whose rules are in the GSOS format enjoy many desirable
properties, and several studies in the literature on the meta-theory of SOS have
focused on them—see, for instance, [3, 2, 6, 14, 20, 35]. Following [6], in this study
we shall also focus on transition system specifications in the GSOS format, which
we now proceed to define.

Definition 5.2.3 (GSOS Format [49]). A deduction rule for an operator f of arity n is
in the GSOS format if and only if it has the following form:

li' . . ll‘ .
oy l1<i<nl<j<m}U{y-|1<i<nl<k<n)

@Sl 7

where the x;’s and the y;;'s (1 < i <nand 1 < j < m;) are all distinct variables, m; and
n; are natural numbers, C[X,] is a X-term with variables including at most the x;'s and
the yii’s, and the l;’s and | are labels. If m; > 0, for some i, then we say that the rule tests
its i-th arqument positively. Similarly, if n; > 0 then we say that the rule tests its i-th
argument negatively.

The above rule is said to be f-defining and l-emitting.

Eugen Ioan Goriac 107

A TSS is in the GSOS format when it has a finite signature, a finite set of labels, a finite set
of deduction rules and all its deduction rules are in the GSOS format. We shall sometimes
refer to a TSS in the GSOS format as a GSOS system.

In addition to the syntactic restrictions on deduction rules, the GSOS format, as
presented in [46, 49], requires the signature to include a constant 0, a collection of
unary operators 4._ (a € L) and a binary operator _+_. Intuitively, 0 represents a
process that does not exhibit any behaviour, s + t is the nondeterministic choice
between the behaviours of s and t, while a.t is a process that first performs action a
and behaves like t afterwards. The standard deduction rules for these operations

are given below:

a . a . s
x1—>x1 x2—>x2

a.xq i>x1 x1+xzi>x; x1+x2i>x§
In the remainder of this chapter, following [46, 49], we shall tacitly assume that
each TSS in the GSOS format contains these operators with the rules given above.
The import of this assumption is that, as is well known, within each TSS in the
GSOS format it is possible to express each finite synchronization tree over L [104].
Following [81], the TSS containing the operators 0, a._ (a2 € L) and _+_, with the
above-given rules is denoted by BCCSP.

Informally, the intent of a GSOS rule is as follows. Suppose that we are wondering
whether f(p) is capable of taking an I-step. We look at each f-defining and I-
emitting rule in turn. We inspect each positive premise x; ﬂ) yij, checking if p; is
capable of taking an [;;-step for each j and if so calling the [;;-children g;;. We
also check the negative premises: if p; is incapable of taking an [;-step for each
k. If so, then the rule fires and f(p) 4 Clg,q]. This means that the transition
relation — associated with a TSS in the GSOS format is the one defined by the
rules using structural induction over closed L-terms. This transition relation is
the unique sound and supported transition relation [82]. Here sound means that
whenever a closed substitution o ‘satisfies’ the premises of a rule of the form given
in Definition 5.2.3, then o(f(x1, ..., X)) 4 o(C[%, /]). On the other hand, supported
means that any transition p AN g can be obtained by instantiating the conclusion
of a rule of the form given in Definition 5.2.3 with a substitution that satisfies its
premises. We refer the interested reader to [46, 49] for the precise definition and
much more information on GSOS languages. The above informal description of
the transition relation associated with a TSS in the GSOS format suffices to follow
the technical developments in the remainder of the chapter.

108 Axiomatizations from SOS

The notion of disjoint extension of a TSS is defined as in [6].

Definition 5.2.4. A GSOS system 7 is a disjoint extension of a GSOS system T,
denoted by T~ T T, if the signature and rules of T include those of T, and T introduces
no new rules for operators in the signature of T .

In the light of our assumption, BCCSP C 7 holds for each GSOS system 7 . If
7 disjointly extends 7~ then 7 introduces no new outgoing transitions for the
closed terms of 7. (More general conservative extension results are discussed in,
for instance, [70, 113].)

5.2.3 Bisimilarity and Axiom Systems

To establish a link between the operational model and the algebraic properties,
a notion of behavioural equivalence should be fixed. The notion of behavioural
equivalence that we will use in this chapter is the following, classic notion of
bisimilarity [106, 120].

Definition 5.2.5 (Bisimilarity [120]). Let 7 be a GSOS system with signature L. A
relation R € C(X) X C(X) is a bisimulation if and only if R is symmetric and, for all
po,p1, Py EC(X)andl € L,

(Po R p1 A po > py) = 3p; € CE). (p1 > P APy R p)).

Two terms py,p1 € C(X) are called bisimilar, denoted by T + py < p1 (or simply by

po € p1 when T is clear from the context), when there exists a bisimulation R such that
Po R ps.

It is well known that & is an equivalence relation over C(X). Any equivalence
relation ~ over closed terms in a TSS 7 is extended to open terms in the standard
fashion, i.e., for all tp,t; € T(X), the equation t;, = t; holds over 7 modulo ~
(sometimes abbreviated to ty ~ t;) if, and only if, 7 + o(ty) ~ o(t;) for each closed
substitution o.

Remark 5.2.6. If 7" is a disjoint extension of T, then two closed terms over the signature
of T are bisimilar in T if and only if they are bisimilar in 7.

Definition 5.2.7. Let ¥ be a signature. An equivalence relation ~ over X-terms is a
congruence if, for all f € X and closed terms p1,...,Pu,q1, - ., qn, Where n is the arity of

f,ifpi~gqiforeachie{1,...,n}then f(p1,...,pn) ~ f@G1,---,qn)-

Eugen Ioan Goriac 109

Remark 5.2.8. Let X be a signature and let ~ be a congruence. It is easy to see that,
forall f € Xandtermsty,... ty,us,..., u, wherenis the arity of f, if t; ~ u; for each

i€f{l,...,n}then f(t1,..., ty) ~ f(ua, ..., uy).

The following result is well known [46].
Proposition 5.2.9. « is a congruence for any TSS in GSOS format.

Ideally, a notion of behavioural congruence should coincide with the equational
theory generated by some ‘finitely presentable” set of axioms describing the de-
sired algebraic properties of the operators in a language. One side of this coinci-
dence is captured by the soundness requirement, which states that all the (closed)
equalities that are derivable from the axiom system using the rules of equational
logic are indeed valid with respect to the chosen notion of behavioural equiva-
lence. The other side of the coincidence, called ground completeness, states that all
the valid behavioural equivalences over closed terms are derivable from the axiom
system. These concepts are formalized in what follows.

Definition 5.2.10 (Axiom System). An axiom system E over a signature ¥ is a set of
equalities of the form t = t', where t,t' € T(L). An equality t = t’, for some t,t’ € T(X),
is derivable from E, denoted by E v t = t', if and only if it is in the smallest congruence
relation over Y-terms induced by the equalities in E.

In the context of a fixed TSS T, an axiom system E (over the same signature) is sound
with respect to a congruence relation ~ if and only if for all t,t' € T(X), if E+ t = t/,
then it holds that T v t ~ t'. The axiom system E is ground complete if the implication
holds in the opposite direction whenever t and t' are closed terms.

5.3 Commutativity Format

Commutativity is an essential property specifying that the order of arguments of
an operator is immaterial. In the setting of process algebras, commutativity is
defined with respect to a notion of behavioural equivalence over terms. In this
section, we first present a generalized notion of commutativity that allows n-ary
operators to have various sets of commutative arguments and then slightly adapt
the commutativity rule format proposed in [117] to the extended setting. More-
over, we give some auxiliary definitions that will be used in the axiomatization

procedure proposed in the next section.

In order to motivate the generalized notion of commutativity we present below,

consider, by way of example, the ternary operator f defined by the rules below,

110 Axiomatizations from SOS

where a ranges over the collection of action labels L.

x5 Y5y
f,y,2) > f,y,2) fx,y,2) > f(xy,z2)
x5y 257 Yoy 257

f(x,y,2) i>f(x’, v,7) f(x,y,2) N f(x, y’,z’)'

It is not hard to show that the operator f is commutative in its first two argu-
ments modulo bisimilarity, irrespective of the other operators in the TSS under

consideration—that is,
fp.q,7) < f(q,p,7)

, for all closed terms p,q,7. On the other hand, the third argument does not
commute with respect to the other two. For example, we have that

£(a.0,0,0) ¢ £(0,0,4.0)

because f(a.0,0,0) N £(0,0,0), but £(0,0,4.0) has no outgoing transitions.

The commutativity format presented in [117] can only deal with operators that are
commutative for each pair of arguments and, unlike the format that we present
below, is therefore unable to detect that f is commutative in its first two argu-

ments.

In what follows, we shall often use [n], n > 0, to stand for the set {1,...,n}. Note
that [0] is just the empty set.

Definition 5.3.1 (Generalized Commutativity). Given a set I, a family], of non-
empty, pairwise disjoint subsets of I is called a partition of I when | J[]; = L.

Let ¥. be a signature. Assume that f € ¥ is an n-ary operator, [[, is a partition of [n]
and ~ is an equivalence relation over C(X). The operator f is called [],-commutative
with respect to ~ when, for each K € [],} and each two j, k € K such that j < k, the

following equation is sound with respect to ~:

f(xll v /xn) = f(xll v Ixj—ll Xk, xj+l/ v ka—llle Xk+1s« - - rxn)-

where x4, ..., X, is a sequence of variables.

Note that the traditional notion of commutativity for binary operators can be
recovered using Definition 5.3.1 in terms of {{1,2}}-commutativity. Moreover,

the notion of commutativity for n-ary operators from [117] corresponds to {[n]}-

Eugen Ioan Goriac 111

commutativity. Any n-ary operator is 1j,j-commutative with respect to any equiv-
alence relation ~, where 1j,) = {{1}, ..., {n}} is the discrete partition of [n].

From this point onward, whenever a signature X is provided, we also assume that
every function symbol f € X of arity n has an associated fixed partition of its set
of arguments [1] denoted by [] ;. We denote the indexed set of all these partitions
by IT" = {ITf}ex.

Definition 5.3.2. Let [, and [, be partitions of some set 1. We say that][, is at least
as fine as [, if and only if for each Ky € []; there is some K, € [], such that Ky C K.
A family of partitions 15 is at least as fine as [[5 if and only if T], s is at least as fine as
[1o, for each f € X. In other words, this holds if, for each f € %, the equivalence relation
associated with [, is included in the equivalence relation associated with [];.
Definition 5.3.3. Assume Ly C X,. Let [[*' be a family of partitions. The extension
of [I™ to I, is obtained by taking [] s to be the discrete partition over [n] for each
f € Lo \ Ly, where n is the arity of f.

Our aim is to define a restriction of the GSOS rule format that guarantees the notion
of generalized commutativity defined above for any behavioural equivalence that
is coarser than bisimilarity. To this end, we begin by extending the notion of
commutative congruence introduced in [117] to the context of this generalized
notion of commutativity.

Definition 5.3.4 (Commutative Congruence). Consider a signature X and a set of
partitions [1*. The commutative congruence relation ~., (with respect to [1%) is the least
relation over M(X) satisfying the following requirements:

1. ~ is reflexive and transitive;
2. ~ 1S a congruence;

3. forall fe L, Ke Hf, ke Kwithj<kandt,... t, € T(X), it holds that

f(tll ey tn) ~ee f(t].l ceey tj—ll tk/ tj+1/ ceey tk—].l t]/ tk+1/ ceey tn)/

where n is the arity of f.
Lemma 5.3.5. ~ is an equivalence relation over T(X). Moreover, for all terms t, u, if

t ~c u then vars(t) = vars(u).

Proof. The relation ~.. is reflexive and transitive by definition. The fact that it is
also symmetric can be shown easily by induction on the definition of ~,. The
second claim also follows by a straightforward induction on the definition of
~eee O

112 Axiomatizations from SOS

Lemma 5.3.6. Let = be a signatureand let t,t' € T(X). Let o and o’ be two substitutions.
Assumethatt ~ t' (with respect to some [1%) and that o(x) ~c o’ (x), foreach x € vars(t).
Then o(t) ~q o’(t).

Proof. The claim can be shown by induction on the definition of ~.. In the case
that t ~, t’ because t = t’, one proceeds by a further induction on the structure of
t. The details of the proof are standard and we therefore omit them. O

The following two lemmas can both be shown by induction on the definition of

~

cc-
Lemma 5.3.7. Let . beasignature. Assume that [y and [15 are two families of partitions
over T, and that T} is at least as fine as [5. Then the commutative congruence associated
with [17 is included in the commutative congruence associated with []5.

Lemma 5.3.8. Assume L, C Y. Let [1™" bea family of partitions. Then the commutative
congruence associated with [[™ over L-terms is included in the commutative congruence
associated with the extension of lel to Xo.

We are now ready to present a syntactic restriction on the GSOS format that
guarantees commutativity with respect to a set of partitions [T" modulo any
notion of behavioural equivalence that includes strong bisimilarity. Unlike the
format for {[n]}-commutativity given in [117], the format offered below applies
to generalized commutativity, in the sense of Definition 5.3.1, and is defined for
TSSs whose rules can have negative premises. On the other hand, unlike ours,
the format introduced in [117] applies to rules whose positive premises need not
have variables as their sources and targets. Extending our format in order to
accommodate this kind of premises in deduction rules is straightforward, but is
not relevant for the purpose of this chapter.

Definition 5.3.9 (Comm-GSOS). A transition system specification over signature ¥ is
in the comm-GSOS format with respect to a set of partitions [~ if it is in the GSOS
format and for each f-defining deduction rule with f € L of the following form

H
(d) T
flx1,...,x0) >t

each K € 1y and for all j,k € K with j <k, there exist a deduction rule of the following

form in the transition system specification

(d’)

Eugen Ioan Goriac 113

and a bijective mapping h over variables such that
® Ji(x!) = x; for each i € [n] such that i # jand i # k,
. h(x}) = xx and h(x}) = x;,
o fi(t') ~. t, and
e I(H') = H.
Deduction rule d’ is called a commutative mirror of d (with respect to j, k and []>).

Informally, the role of the bijection 7 in the definition above is to account for the
swapping of variables in the source of the conclusion and a possible bijective
renaming of variables. Thus, the above format requires that, when f € L, for
each f-defining rule and for each pair (j, k) of arguments for which f is supposed
to be commutative, as specified by [] fr there exists a commutative mirror that
enables the ‘same transitions up to the commutative congruence ~. associated
with [T when the jth and kth arguments of f are swapped. This is the essence
of the proof of the following theorem, which states the correctness of the syntactic
comm-GSOS format.

Theorem 5.3.10. If a transition system specification is in the comm-GSOS format with
respect to a set of partitions [1™, then each operator f € ¥ is [] f-commutative with

respect to any notion of behavioural equivalence that includes bisimilarity.

Proof. The restriction to closed terms of the commutative congruence relation
with respect to []” is a bisimulation. The details of the proof may be found in
Section 5.A. O

Remark 5.3.11. Theorem 5.3.10 would still hold if the last constraint on the bijection h
in Definition 5.3.9 were relaxed to h(H") C H.

Example 5.3.12. Consider the ternary operator f we used earlier to motivate the notion
of generalized commutativity.

For ease of reference, we recall that the rules for f are

x5 yi)y’
flx, }/,Z)i>f(x’,y,z) flx, y,z)i>f(x, v, z)
x5y 257 Yoy 257

fe,y,2) 5, y,2) fuy2)>fay,7)

where a ranges over L.

114 Axiomatizations from SOS

Any transition system specification including the operator f is in the comm-GSOS
format with respect to any set of partitions 1" such that T] = L2} {3}). Indeed,
the a-emitting rules in the first row are one the commutative mirror of the other with
respect to [, and so are those in the second row.By way of example, consider the rule
y 5 Yy z 5z
f&y,2) = f Y, 2)
x—x z—o7Z

f(x,y,2) > f(x,y,2)
bijection I over variables such that i(x) = y, i(y) = x, hi(x") = y', i(y’) = x’ and that is the

and take j = 1 and k = 2 in Definition 5.3.9. To see that the rule

is a commutative mirror of the other with respect to []~, take the

identity function on all the other variables. Then hi({x > x', z-52')) = ly > v, z>2')
and h(f(x',y,2")) = f(v,x,2) ~c f(x,y',2"). The constraints in Definition 5.3.9 are
vacuously satisfied when we take K = {3}.

Therefore, by Theorem 5.3.10, we recover the fact that f is commutative in its first two
arguments.

Example 5.3.13 (Parallel Composition). A frequently occurring commutative operator
is parallel composition. It appears in, amongst others, ACP [44], CCS [106], and CSP
[95]. Here we discuss parallel composition with communication in the style of ACP
[44]. The rules for this operator are listed below. In those rules, a, b, c range over L and

y : L X L < L is a partial communication function.

a

X—X

4

ySy x5y yDy

(p1) y(a,b) =c

D —— 2 7 3 ¢
xly—=x"1ly xy—=xlly xly=x"1y
If the partial communication function y is commutative, then any GSOS system including
the operator || given by the above rules is in the comm-GSOS format with respect to any
set of partitions HZ such that [= {{1,2}}. Hence it follows from Theorem 5.3.10 that ||
is {{1, 2}}-commutative.
Example 5.3.14 (Timed Alternative Composition). Below, we consider the timing
rules for a discrete-time version of the alternative composition operator [29]. This operator
is commutative and its defining rules involve negative premises. (In the rules below, 1

denotes the discrete time transition.)

1, 1 1 1, 1, 1,

X—Xx -+ X - X—Xx -
(at)) Y @) — L2y T2 Y
XYy —x’ XQy—y XQY—=>x' QY

Any TSS including the operator ® given by the above rules is in the comm-GSOS format
with respect to any set of partitions [1~ such that [1y = {{1,2}}. Indeed, with respect to
such HZ, each of the rules (at;) and (aty) is the commutative mirror of the other, and rule

Eugen Ioan Goriac 115

(at3) is its own commutative mirror. From Theorem 5.3.10, it follows that ® is {{1,2}}-
commutative. (By including the standard action transitions for alternative composition,
such as those given for the binary operator +, the same result can be obtained.)

Lemma 5.3.15. Assume that a TSS T is in the comm-GSOS format with respect to
a family of partitions [15, and 15 is at least as fine as [[5. Then T is also in the
comm-GSOS format with respect to []5.

Proof. The claim follows from Lemma 5.3.7. m]

54 Mechanized Axiomatization

In this section, we present a technique for the automatic generation of ground-
complete axiomatizations of bisimilarity over TSSs in the comm-GSOS format,
which is derived from the one introduced in [6]. Our approach improves upon
the one in [6] by making use of the rule format for generalized commutativity we
introduced in the previous section. Our goal is to generate a disjoint extension
of the original TSS and a finite axiom system that is sound and ground complete
for bisimilarity over it. This finite axiom system may then also be used for
equationally establishing bisimilarity over closed terms from the original TSS. We
start by axiomatizing a rather restrictive subset of ‘good” operators in Section 5.4.1.
Then we turn ‘bad” operators into good ones by means of auxiliary operators.
In both of these steps, we exploit commutativity information, where possible,
in order to reduce the number of generated axioms, as well as the number of

generated auxiliary operators.

5.4.1 Axiomatizing Good Operators

The approach offered in [6] relies on the fact that the signature includes the
three operators whose semantics has been presented in Section 5.2.2, namely
the deadlock constant, the prefixing operator and the nondeterministic choice
operator. (Recall that, in keeping with [46, 49], we assume that these operators
are present in any TSS in the GSOS format.)

Definition 5.4.1. A term t is in head normal form if it has the form a;.t; +--- + a,.t,
for some n > 0, some set of actions {a; | i € [n]} and set of terms {t; | i € [n]}. Ifn =0
then ay.ty + - - - + a,.t, stands for 0.

116 Axiomatizations from SOS

The aim of the axiomatization procedure is then to generate an axiom system that
can rewrite any closed term p into a term p’ in head normal form such thatp < p’.

(We call an axiom system with this property head normalizing.)

For ‘semantically well founded’ terms (see [6, Definition 5.1 on page 28]), rewrit-
ing into head normal form can be used to prove that each closed term is equal to a
closed term over the signature for BCCSP. This leads to a ground-complete axiom-
atization of bisimilarity, since BCCSP is finitely axiomatized modulo bisimilarity

by the following axiom system Egccsp from [92]:

X+y=y+x X+x=x
x+y)+z=x+{y+z) x+0=x

Proposition 5.4.2 (Hennessy and Milner [92]). The axiom system Epccsp is sound and
ground complete for bisimilarity over BCCSP.

To start with, we focus on the case of closed terms built using only good operators,
which we now proceed to define.
Definition 5.4.3 (Smooth and distinctive operator). Consider an n-ary operator f.

1. A smooth GSOS deduction rule is of the form

a;) bij .
{xi—ByileI}U{xi—é |l€],1$]$7’li}

flxt, ..., x,) > CIE 7]

where
(a) I and | are disjoint subsets of [n] such that IU | = [n];
(b) C[X,] can only include the variables x; (i € [n] \ I) and y; (i €).

An operator f of a TSS in the GSOS format is smooth if all its rules are smooth.

2. An n-ary operator f of a TSS in the GSOS format is distinctive if it is smooth,
each f-defining rule tests the same set of arquments I positively, and for every two
distinct f-defining rules there is some argument tested positively by both rules, but
with a different action.

We refer the interested reader to [6, Section 4.1] for an in-depth discussion of the
constraints for smooth and distinctive operators.

Remark 5.4.4. The ternary operator f from Example 5.3.12 and the parallel composition
operator from Example 5.3.13 are smooth but not distinctive. On the other hand, the

Eugen Ioan Goriac 117

classic communication merge operator [25, 431, given by the rules

a . s b,
X—X —

- (y(a,b) = o),
x|ly—-x |y

is smooth and distinctive. Moreover, assuming that y is commutative, any TSS whose
signature L. includes || and | with the previously given rules is in the comm-GSOS format
with respect to any set of partitions 1" such that [T, =I1; = {{1,2}}.

Definition 5.4.5 (Discarding and Good Operators). A smooth GSOS rule of the form
given in Definition 5.4.3 is discarding if none of the variables x; with i € | and n; > 0
occurs in C[X, yj]. A smooth operator is discarding if so are all the rules for it. A smooth

operator is good [53] if it is both distinctive and discarding.

In the remainder of this subsection, we assume that the GSOS system 7 has
signature X and is in the comm-GSOS format with respect to a set of partitions
HZ. Let f € X be a good operator that is not in the signature for BCCSP, and let
n be its arity. Our goal is to generate an axiom system that can be used to turn
any term of the form f(#,...,t,), where the t;’s are in head normal form, into a
head normal form. In the generation of the axiom system, we will exploit the
commutativity information that is provided by the partition [] ; and therefore we
assume that n > 2. (If f is either a constant or a unary operator, then it will be
axiomatized exactly as in [6], since commutativity information is immaterial.) Let
I C [n] be the set of arguments that are tested positively by f and let J; be the

complement of I;.

Assume that [| F= {Ki, ..., K¢} Since 7 is in the comm-GSOS format with respect
to HZ, and f is smooth and distinctive, it is not hard to see that for each h €
(€],

Kh QIfOI‘Kh Q]f.

Indeed exactly one of the above inclusions holds. Let H; ={K|Ke]] fand K C
I¢} and HJZ ={K|K¢e€]_[f and K C J¢}. We use K;; (respectively, ij) to denote a
subset of I (respectively, J) that results by choosing exactly one representative
element for each K €]7 (respectively, K € [T}).

Example 5.4.6. Consider the communication merge operator | from Remark 5.4.4. We
already remarked that, when the communication function y is commutative, the rules
for | are in the comm-GSOS format with respect to any set of partitions []~ such that
[1, = I, = {{1,2}}. For the operator |, we may take K|+ = {1}. Since the rules for | have
no negative premises, K" is empty.

118 Axiomatizations from SOS

Definition 5.4.7. Let f be a good n-ary operator, and let K;; and K: be defined as above.

We associate with f the finite axiom system Ey consisting of the following equations.

1. Distributivity laws: For each i € K¥, we have the equation:

flo, ooxi+xi,oo0,x,) = flen, .., X, X)) + f(xn, .0, X LX),

2. Peeling laws: For each rule for f of the form given in Definition 5.4.3, each k € K;

with ny > 0 and each a ¢ {byj | 1 < j < i}, we have the equation:

f(Pll---/pn):f(Qll---/Qn)/

a;.Yy; iel a;.Y; 1€l
where Pi =1 ax, +x/ i=k and Q; = x/ i=k
x; otherwise x; otherwise.

3. Action laws: For each rule for f of the form given in Definition 5.4.3, we have the
equation:
f(Py,...,P,) = cCIP, 7],

where
ai.yi iel
0 i€fJandn;>0

s
Il

x; otherwise.

4. Inaction laws: For each i € K}r, we have the equation

f(xll e Xic1y, 01 Xitlseves xn) =0.
Suppose that, for each i € [n], term P; is of the form a.z; when i € Ir, and of the form

a.z;+z or z; when i € [r. Suppose further that, for each rule for f of the form given
in Definition 5.4.3, there exists some i € [n] such that one of the following holds:

e i€ lyand (P; = a.z;, for some a # a;),
o i€ Jrand (P; = bjj.z; + 2, for some 1 < j < ;).
Then we have the equation f(Py,...,P,) =0.

5. Commutativity laws: For each equivalence class K €], and each two i, j € K
such that i < j, we have the equation:

fr, oo X Xy, X0) = f(X1, 0 Xy, Xy, Xn).

Eugen Ioan Goriac 119

The axiom system Ef (a rewrite system, when the axioms are oriented from left to
right), in combination with the axioms for BCCSP, can be used to turn any term of
the form f(ti,...,t,), where the t/’s are in head normal form, into a head normal
form.

Theorem 5.4.8. Consider a TSS T in GSOS format. Let L, be a collection of good
operators of T Let Ex_ be the finite axiom system that consists of the axioms in Epccsp
and the axioms in Ey, for each f € L.

The following statements hold for any GSOS system T such that T E T ':
1. Ey, is sound modulo bisimilarity over T(X'), where ¥ is the signature of 7.

2. Ey, is complete for terms built using the operations in the signature Y., and those
in the signature of BCCSP.

Proof. The two statements can be shown following the lines of the corresponding

theorem in [6]. See also the proof of Theorem 5.8 in [1]. O

Example 5.4.9. For the communication merge operator |, taking K = {1} as in Exam-
ple 5.4.6, Definition 5.4.7 yields the following axiom system E:

distributivity: (x+y)lz = (x|z2)+y|2),

action: ax|by = c(x|ly) ify(b)=c
inaction: Oly = 0,

inaction: ax|by = 0 ify(a,Db)isundefined,
commutativity: xly = ylx.

These are exactly the equations describing the interplay between the operator | and the
BCCSP operators given in Table 7.1 on page 204 of [25].

5.4.2 Turning Bad into Good

In order to handle arbitrary GSOS operators, one needs two additional procedures:
one for transforming non-smooth operators into smooth and discarding (but not
necessarily distinctive) operators, and one for expressing smooth, discarding and
non-distinctive operators in terms of good operators. We adopt the same approach
for the first procedure as the one presented in Lemma 4.13 in [6]. On the other
hand, for the second procedure, we improve on the algorithm derived from
Lemma 4.10 in [6].

120 Axiomatizations from SOS

The step from smooth, discarding and non-distinctive operators to good ones
involves the synthesis of several new operators. We now show how to improve
this transformation, as presented in the aforementioned reference, by reducing the
number of the generated auxiliary operators, making use of the ideas underlying

the generalized commutativity format presented in Section 5.3.

Making Smooth and Discarding Operators Distinctive. Consider a TSS7 with
signature L in the comm-GSOS format with respect to a set of partitions []*. Let
f € X be a smooth and discarding, but not distinctive operator, and let n be its
arity. We will now show how to express f in terms of good operators. We start
with partitioning the set of f-defining rules into sets Ry, ..., R, m > 1, such that f
is distinctive when its rules are restricted to those in R; for each i € [m]. Note that
all the rules in each R; test the same arguments positively. If []; is the discrete
partition over [n] then one proceeds by axiomatizing f as in the version of the
original algorithm based on the so-called peeling laws presented in [6]. Indeed,
in that case, f has no pair of commutative arguments. Suppose therefore that [],
is not the discrete partition, and take some K € []; of maximum cardinality.

Remark 5.4.10. Any non-singleton K would do in what follows. However, picking a K
of maximum cardinality will reduce the number of auxiliary operators that is generated

by the procedure outlined below.

Our aim now is to define when two sets of rules for f are ‘essentially the same
up to the commutative arguments in K’ and to use this information in order to
synthesize enough good operators for expressing f up to bisimilarity.

Definition 5.4.11.

o Letdandd' betwo f-defining and l-emitting rules. We say that d’ isa commutative
mirror of d with respect to K and [1~ if the constraints in Definition 5.3.9 are met
for some j, k € Kwith j <k.

o Weuse £ to denote the reflexive and transitive closure of the relation ‘is a commu-
tative mirror with respect to K'.

o Let Rand R’ be two sets of f-defining rules. We write R Ir if, and only if,
— foreach d € R there is some d’ € R’ such that d L, and

— foreach d’ € R’ there is some d € R such that d L.
Example 5.4.12. Consider the ternary operator f defined by the rules on page 110. That
operator is smooth and discarding, but not distinctive. Collecting all the rules that test

the same arguments positively in the same set, we obtain the following four sets of rules:

Eugen Ioan Goriac 121

e R, contains all the rules of the form - 7 - (ael).
fey,2) = f(*,y,2)

® R, contains all the rules of the form s 7 s (ael).
foy,2) = fly,2)

® Rj; contains all the rules of the form i xu, S (ael).
foy,2) = [, y,2)

o Ry contains all the rules of the form LA ya' S (ael).
foy,2)= fxy,2)

We have already seen in Example 5.3.12 that any GSOS system including the operator
f is in the comm-GSOS format with respect to any set of partitions [~ such that
[Ty = {12}, {3}}. Take K ={1,2}.

It is not hard to see that Ry £ R, and R; £ Ry hold. Indeed, as we observed in
Example 5.3.12, each a-emitting rule in Ry (respectively, Rs) is the commutative mirror
of the a-emitting rule in R, (respectively, Ry) with respect to K, and vice versa.

Lemma 5.4.13. £ is an equivalence relation over f-defining rules and over sets of
f-defining rules.

The following notion will be useful in characterizing the relation L over the
collection of f-defining rules.

Definition 5.4.14. Let n > 0 and let K C [n]. A bijection 7 : [n] — [n] is a K-
permutation if it is the identity function over [n] \ K.

Lemma 5.4.15. Let d and d’ be two f-defining and l-emitting rules. Suppose that
H H

d= and d' = —. Then d L if, and only if there are

l /7
flx1,...,x,) >t flx1,...,x,) >t
some K-permutation 1 and some bijection i over variables such that

® Ji(x;) = Xn), for each i € [n],
o /i(t') ~. t, and

e fi(H') = H.
Proof. By induction on the definition of L. O

Recall that {Ry,...,R,}, m > 1, is a partition of the set of f-defining rules such
that f is distinctive when its rules are restricted to those in R; for each i € [m].
Consider {Ry, ..., R}/ \If/, the quotient of the set {R;, ..., R,,} with respect to the
equivalence relation L Let p1,- .., Pe be representatives of its equivalence classes.

For example, in the case of the operator considered in Example 5.4.12 above, one

122 Axiomatizations from SOS

could pick R; and Ry, say, as representatives of the two equivalence classes with

12
respect to 2,

We proceed by adding to the signature L fresh n-ary operator symbols fi,..., f;.
The rules for the operator f; are obtained by simply turning those in p; into f;-
defining ones. Let 7 be the resulting disjoint extension of 7". Following [6], we
now need to generate an axiom that expresses f in terms of fi,..., f;.

Definition 5.4.16. Let n > 0 and let K C [n]. A bijection : [n] — [n] is a K-
permutation if it is the identity function over [n] \ K.

The equation relating f to the f’s, i € [{], can now be stated as follows:

¢
flx1,...,x,) = Z Z{ﬁ(x”(l)’ .o, Xn) | T is @ K-permutation}. (5.1)
i=1

For our running example, namely the ternary operator f defined by the rules
on page 110 and considered in Examples 5.3.12 and 5.4.12, with the choice of
representatives mentioned above, there are two auxiliary operators f; and f, with
x5y Yoy, 257

i y,2) > f(,y,2) Ay, fxy,2)

from the identity function over [3], the only {1,2}-permutation is the one that

rules , where a ranges over L. Apart

swaps 1 and 2. Therefore, instantiating equation (5.1), we obtain that

fx1,x2,x3) = fi(x1,x2,x3) + fi(x2, X1, x3) + fo(x1, X2, X3) + fo(X2, X1, X3).

Using Definition 5.3.3, the family of partitions []* can be extended to any signature
that includes the signature X U {f; | i € [{]}. Note that any disjoint extension of 7~
is in the comm-GSOS format with respect to this extension of []*.

Proposition 5.4.17. Equation (5.1) is sound in any disjoint extension of 7.

Proof. See Appendix 5.B. m]

Equation (5.1) can be simplified in case any of the auxiliary operators fi, ..., fris
commutative in the set of arguments K. Indeed, let N C [{], and assume that 7" is
in the comm-GSOS format with respect to the family of partitions that associates
with each operator g the partition H? when ¢ € ¥, the partition {K} U 1j,,\x when
g € {fi | i € N}, and the partition 1) otherwise. Then we have the following

result.

Eugen Ioan Goriac 123

Proposition 5.4.18. The following equation is sound in any disjoint extension of 7.

flx1,...,x,) = Z Z{fi(xn(l), coo s Xpm) | TUis a K-permutation} +

i€[1\N

Zfi(xl,...,xn)

ieN

(5.2)

In the following section, we will see that the above simplification leads to an ax-
iomatization of the classic parallel composition operator thatis equal to an existing
hand-crafted one. Of course, if either N or [£] \ N are empty, the corresponding 0
summand can be omitted in equation (5.2).

Turning Non-Smooth Operators into Smooth Ones. The methods we have
presented so far yield an algorithm that, given a TSS 7~ with signature ¥ in the
comm-GSOS format with respect to a set of partitions []*, can be used to generate a
disjoint extension 7’ of 7 over some signature ¥’ thatincludes ¥ and a finite axiom
system E such that E is sound modulo bisimilarity over any disjoint extension
of 77 and is head normalizing for all closed ¥Y’-terms. Ground-completeness
of E with respect to bisimilarity over 7’ (and therefore over 7°) follows using
standard reasoning, by possibly using the well-known Approximation Induction
Principle [43] if 7~ is not semantically well founded. See [6] for details.

The algorithm has the following steps:

1. Start with the axiom system Egccsp and consider next the operators that are
not in the signature for BCCSP.

2. For eachnon-smooth operator f € X, generate a fresh smooth and discarding
operator f’, and add to the axiom system the equation expressing f in terms
of f” as in Lemma 4.13 in [6].

3. For each smooth and discarding, but not distinctive, operator f in the result-
ing signature, generate a family of fresh good operators fi, . .. f;, as indicated
in this section, and add to the axiom system the instance of equation (5.1) or
of equation (5.2), as appropriate, expressing f in terms of fi,... f;.

4. For each good operator in the resulting signature, add to the axiom system
the equations mentioned in the statement of Theorem 5.4.8.

124 Axiomatizations from SOS

5.5 Axiomatizing Parallel Composition

Let us concretely analyze the axiomatization derived using the procedure de-

scribed above for the classic parallel composition operator || from Example 5.3.13.

We assume henceforth that the partial synchronization function y is commutative,
so that || is {{1,2}}-commutative. As we observed in Remark 5.4.4, the parallel
composition operator is smooth but not distinctive. When we partition the set of
rules for || into subsets of rules that test the same arguments positively, we obtain
three sets Ry, R, and R3, where each R; consists of all the instances of rule (p;) from
Example 5.3.13. Itis easy to see that R, 2 R,. Therefore, following the procedure
described in Section 5.4.2, we can generate two auxiliary binary operators, which
are the classic left merge and communication operators, denoted by || and |,
respectively. The rules for | are those in Remark 5.4.4 and those for the left merge

operator are

x5y
(ael).
ag
xly=xly
Since we know that | is {{1,2}}-commutative, the relationship between || and the
two auxiliary operators can be expressed using equation (5.2), whose relevant

instance becomes

x|y =&y + Yl x)+ x| y).

This is exactly equation M in Table 7.1 on page 204 of [25]. The axioms for |
produced by our methods are those given in Example 5.4.9. On the other hand,
the left merge operator is axiomatized as in [6] since commutativity information

is immaterial for it.

In Figure 5.1 we compare the axiomatization for the parallel composition operator
|| derived using the algorithm from [6] and the ‘optimized axiomatization” one
obtains using the algorithm mentioned above. (We omit the four equations in
the axiom system Epccsp recalled in Section 5.4.) The axioms generated by the
algorithm from [6] do resemble the original axioms of [44] to a large extent. The

auxiliary operator || is called right merge in the literature.

Eugen Ioan Goriac 125

Standard Optimized
xlly = (ly+G&ly)+&ly) xlly = lly)+Wlx)+&ly)

(ax)||y = a(xly) (ax)|y = a(x|y)

x||@y) = a(x|ly) (ax)|(by) = c(x|ly) ify@b)=c
(ax)| (b.y) = cx|ly) ify@b)=c x+yllz = (x|l 2)+ Wl z)
x+yllz = &ll2)+yll2) x+y)lz = (xl2)+(y]2)

x| (y+z) =]y +x]2)

x+ylz = (xl2)+(y]2)

x|(y+z) = (x|ly)+(x]2) Ofx =0

0[[x=0 x|]0=0 Olx = 0

0lx=0 x|0=0 (a.x) | (b.y) = 0 ify(a,b)isundefined
(ax)|(b.y) = 0 ify(a,b)isundefined xly = ylx

Figure 5.1: Axiomatizing ||

We implemented the axiomatizations in the rewriting logic specification and pro-
gramming language Maude [59]. The optimized axiomatization consists of fewer
axioms and uses only two auxiliary operators instead of three, yet it brings terms
into normal forms, which only contain the operators from the signature of BCCSP,
only negligibly faster than the standard axiomatization. For example, the term
a® || b || ¢ is reduced to its normal form by performing 5736 rewrites using the
optimized axiomatization and 5748 when using the standard one, at the same
average speed of ~350.000 rewrites/second. For the purpose of the experiment,
we considered the communication function defined by y(I;, ;) = min(/;,), where
li,I €f{a,b,clanda<b<c.

5.6 Conclusions and Future Work

In this chapter, we have taken a first step towards marrying two lines of devel-
opment within the field of the meta-theory of SOS, viz. the study of algorithms
for the automatic generation of ground-complete axiomatizations for bisimilarity
from SOS specifications (see, for instance, [6, 35, 136]) and the development of
rule formats guaranteeing the validity of algebraic laws, such as those surveyed
in [23]. More specifically, we have presented a rule format for commutativity
that refines the one offered in [117] in that it allows one to consider various sets of
commutative arguments, and we have used the information provided by that rule
format to refine the algorithm for the automatic generation of ground-complete

126 Axiomatizations from SOS

axiomatizations for bisimilarity from [6]. The resulting procedure yields axiom
systems that use fewer auxiliary operators to axiomatize commutative operators
than the one from [6]. Moreover, in some important cases, the mechanically pro-
duced axiomatizations of some operators are identical to the hand-crafted ones

from the literature.

To the best of our knowledge, the ideas we have presented in this chapter have
never been explored before, and they enrich the toolbox one can use when reason-
ing about bisimilarity by means of axiomatizations. Moreover, the combination
of two closely related strands of research on the meta-theory of SOS we have
begun in this chapter is of theoretical interest and may lead to further improve-
ments on algorithms for the automatic generation of axiomatic characterizations
of bisimilarity. As future work, we will implement the axiomatization procedure
presented in this chapter in the PREG Axiomatizer tool (see Chapter 7). We also
intend to explore the use of other rule formats for algebraic properties in im-
proving mechanized axiomatizations for bisimilarity. The ultimate goals of this
research are to make automatically generated axiomatizations comparable to the
known ones from the literature and to make the first steps towards the automatic
generation of axiomatizations that are complete for open terms. The latter goal
is a very ambitious one since obtaining complete axiomatizations of bisimilarity
is a very hard research problem even for sufficiently rich fragments of specific

process calculi; see, for instance, [11, 12, 22].

5.A Proving Theorem 5.3.10

Let R be the relation ~ restricted to closed terms. By definition, this relation

contains all the desired pairs of terms of the form

(f(plr---er/---/Pk/---/Pn)zf(Plz---zpk/---/sz---an))/

where j, k € K for some K € [] f and j < k. It therefore suffices to prove that Ris a

bisimulation relation. To this end, note, first of all, that R is symmetric since so is

~

cce

Consider now an arbitrary pair (p,q) € R. Suppose that p 5 p’ for some ! € L and
p’. We have to prove the existence of a 4" such that g 4 q" and (p’,q’) € R. This

we show by induction on the definition of R, and proceed with a case analysis on

Eugen Ioan Goriac 127

the reason why (p,7) € R holds. (Recall that R is the restriction of ~. to closed
terms.)

1. If p = g then the claim holds since ~.. is reflexive.
2. Assume that (p,q) is in R because p = f(p1,...,p») and g = f(q1,...,4n), for

some n-ary f € L and closed terms p; and g; such that (p;,g;) € R (1 <i < n).
Asp EN p’, there are a rule

lij . . I; .
ioyll1<i<nl<j<mjU{y- |[1<i<n1<k<n)

(d)
f@ >t

and a substitution ¢ such that
i . .
° 0(x;) = pi—]>a(yij) foralll<i<mand1l<j<m
e o(x;) :pi—ll)’& foralll1<i<nand1<k<mn;and

e o(t)y=p'.
Let

X = {xj|1<i<n}and

Our aim is to use the above rule to show that g = f(q1,...,49,) 4 q’ for some
q' such that (p’,q’) € R. To this end, we will now define a new substitution
o’ in such a way that

e ¢’ ‘satisfies the premises of rule &/,
e 0/(f(¥)) =gand
e (0(x),0’(x)) R, foreachx € V.

We start with the following partial definition:

o () = qi ifx=x; 1<i<n)
o(x) ifxeV\(XUY).

Hitherto, we already have that o’(f(x)) = g and that (o(x),0’(x)) € R for
each x € V'\ Y. Moreover, ¢’ satisfies the negative premises of d. Indeed,
as (pi,qi) € R by assumption, the induction hypothesis yields that p; and g;

128

Axiomatizations from SOS

have the same set of initial actions. Therefore, since p; satisfies the negative
premises of d, so does g;.

It remains to complete the definition of ¢’ for the variables in Y in such a
way that o’ satisfies the positive premises of rule 4 and (o(x), 0’(x)) € R, for
lij
each x € Y. To this end, consider a premise of 4 of the form x; - yij, for some
i
1<i<nand1 < j<m. Since o(x;) = pi, (pi,q:) € R and o(x;) SN o(yi), it
follows from the induction hypothesis that there exists some p;; such that
qi EN p;; and (o(yij, p;;) € R. We let o’(yij) = pj;. Defining o’ for each y;; € Y
inductively, in this manner, concludes the proof since rule d instantiated
with o’ gives us that q 4 o’(t) and, by Lemma 5.3.6, (o(t), 0’(t)) € R. (Recall
that R is just ~ restricted to closed terms.)

We are left to examine the case where

p = fpu,.-,Pj-- Pk, Pn) and
f(P1/~--/Pk/---/Pj/---/pn)/

for some f € Y and j,k € K € [], with j < k. Since p 4 p’, there are a rule

L . Ly . ,
i Dyiel1<i<n1<<mUlxy5 [1<i<nl<l <ny

(d) 1
f@) St

and a substitution ¢ such that
o a(x;) =p; LS o(yie) foralll <i<mand1 <€ <m,
e o(x;) :piﬁf-; foralll<i<mnand1l<{¢ <n; and
e o(t)y=p'.

As before, our aim is to show that g = f(p1,..., px,---,Pjs---/Pn) 4 q" for

some q’ such that (p’,4’) € R. In what follows, for the sake of brevity, we

refer to the set of premises of rule d as H. According to Definition 5.3.9, the

transition system specification contains another rule of the following form:
, lie

v,)
/Sy, l1<i<nl<f<m}uix-» [1<i<nl<l <n)

(d) l
fx,...x,)—=t

1/ n

Moreover, there is a bijective mapping /i over the set of variables such that

Eugen Ioan Goriac 129

e i(x)) =x;for1 <i<mnsuchthati# jandi #k,
° h(x;.) = xx and fi(x}) = x;,
e /i(t') ~, tand
e /i(H’) = H, where H’ stands for the collection of premises of d’.
Let 0’ = o o hi. It is not hard to see that o’ satisfies the premises of d’.

Therefore,

O (F e s X)) = fPrreee P Do) = 4 0 (E).
Since Ai(t') ~¢ t, by Lemma 5.3.6, we have that
o' (t') = a(fi(t')) ~cc o(t).
Hence (o(t), 0’(#')) € R and we are done.

4. Assume that (p,q) € R because, by shorter inferences, (p,r) € Rand (r,g) € R.
By Lemma 5.3.5, r is closed. Suppose that p EN p’ for some closed term p’. By
the inductive hypothesis, there is some closed term r’ such that r L7 and
(p’,7") € R. Using again the induction hypothesis, we have that g 5 q" and
(7,q") € R, for some gq’. Since R is transitive, (p’,q") € R and we are done.

This completes the proof of the theorem.

5.B Proof of Proposition 5.4.17

Consider an arbitrary disjoint extension of 7. Assume that f(p1,...,ps) 4 p, for

some closed terms py, . .., pu, p. This is because there arearuled = .

flx1,...,x0) >t
and a closed substitution o such that

e o satisfies H,
e o(x;) = p;, for eachi € [n], and
e o(t)=p.

Since the TSS under consideration is a disjoint extension of 7, and thus of 7,
there is some set of rules p;, j € [£], and some ruled” € p;such thatd L. Letting,

130 Axiomatizations from SOS

’
without loss of generality, d’ = , this means that there are some
f(xll- . -/xn)_)t/
K-permutation © and some bijection 7 over variables such that

® Ji(x;) = Xn(), for eachi € [n],
o /i(t') ~. t,and
e fi(H') = H.

Consider now the closed substitution o o fi. This substitution satisfies H’ because
o satisfies H and 7i((H’) = H. Moreover,

(0 o R)(f(x1,---,xu) = o(f(Xnq), - - - s Xn(n)

and (o o h)(t') ~. o(t) = p, by Lemma 5.3.6. Furthermore, from the proof of

Theorem 5.3.10 in Appendix 5.A, we have that ~. is a bisimulation, and therefore
HI

(0 o h)(t') & p. Since there is a rule for f; of the form —, we have
fitxi, . x0) > F
that
! ’
o(fi(Xry, - -+ s Xnmy)) = (@ 2 B)(t) £ p.
Therefore it holds that

4
a(Z Z{ Fi(Xrty, - - - Xnw) | 70 is a K-permutation}) - (o o B)(') < p,
=1

and we have found a matching transition, up to bisimilarity, from the instantiation
of the right-hand side of equation (5.1) with o.

We now check that each transition

14
.
b= Z; Z{fi(pn(l)/ .-, Pr@w) | T @ K-permutation} — p

can be matched by f(pi,...,p,) up to bisimilarity. To this end, assume that, for
some p, 5 p This means that there are some j € [{] and some K-permutation 7
such that fi(prqy, - -, Prw) 5 p- Since each rule for f; is a rule for f, we have that
f®ray, - Prny) —l>p also holds. As 7 is a K-permutation, K € [] f and 7 is in
the comm-GSOS format with respect to []*, by repeated use of Theorem 5.3.10,
we have that f(pra), ..., Prm) € f(p1,...,pn). Therefore there is some p’ such that
fp1,-..,pn) 4 p’ and p’ € p, which was to be shown.

131

Chapter 6

SOS Rule Formats for Idempotent
Terms and Idempotent Unary

Operators

6.1 Introduction

Over the last three decades, Structural Operational Semantics (SOS) [124] has
proven to be a flexible and powerful way to specify the semantics of programming
and specification languages. In this approach to semantics, the behaviour of
syntactically correct language expressions is given in terms of a collection of state
transitions that is specified by means of a set of syntax-driven inference rules.
This behavioural description of the semantics of a language essentially tells one
how the expressions in the language under definition behave when run on an

idealized abstract machine.

Language designers often have expected algebraic properties of language con-
structs in mind when defining a language. For example, in the field of process
algebrassuchas ACP [25], CCS[106] and CSP [95], operators such as nondetermin-
istic and parallel composition are often meant to be commutative and associative
with respect to bisimilarity [120]. Once the semantics of a language has been
given in terms of state transitions, a natural question to ask is whether the in-
tended algebraic properties do hold modulo the notion of behavioural semantics
of interest. The typical approach to answer this question is to perform an a poste-
riori verification: based on the semantics in terms of state transitions, one proves

the validity of the desired algebraic laws, which describe the expected semantic

132 Axiomatizations from SOS

properties of the various operators in the language. An alternative approach is
to ensure the validity of algebraic properties by design, using the so called SOS
rule formats [23]. In this approach, one gives syntactic templates for the inference
rules used in defining the operational semantics for certain operators that guar-
antee the validity of the desired laws, thus obviating the need for an a posteriori
verification. (See [5, 9, 10, 23, 61, 117] for examples of rule formats for algebraic
properties in the literature on SOS.) The definition of SOS rule formats is based on
finding a reasonably good trade-off between generality and ease of application.
On the one hand, one strives to define a rule format that can capture as many
examples from the literature as possible, including ones that may arise in the
future. On the other, the rule format should be as easy to apply, and as syntactic,
as possible.

The main advantage of the approach based on the development of rule formats
is that one is able to verify the desired algebraic properties by syntactic checks
that can be mechanized. Moreover, it is interesting to use rule formats for estab-
lishing semantic properties since the results so obtained apply to a broad class of
languages. Last, but not least, these formats provide one with an understanding
of the semantic nature of algebraic properties and of their connection with the
syntax of SOS rules. This insight may serve as a guideline for language designers
who want to ensure, a priori, that the constructs of a language under design enjoy

certain basic algebraic properties.

Contribution The main aim of this chapter is to present a format of SOS rules
that guarantees that some unary operation f is idempotent with respect to any
notion of behavioural equivalence that includes bisimilarity. A unary operator f
is idempotent if the equation f(x) = f(f(x)) holds. Examples of idempotent unary
operators from the fields of language theory and process calculi are the unary
Kleene star operator [96], the delay operator from SCCS [88, 105], the replication

operator from the 7-calculus [129] and the priority operator from [27].

It turns out that, in order to develop a rule format for unary idempotent operations
that can deal with operations such as Kleene star and replication, one needs a
companion rule format ensuring that terms of a certain form are idempotent for
some binary operator. We recall that an element a of an algebra is said to be an
idempotent for a binary operator © if 4 = a © a. For example, the term x*, where *
denotes the Kleene star operation, is an idempotent for the sequential composition

operation ‘-’ because the equation x* = x* - x* holds. As a second contribution of

Eugen Ioan Goriac 133

this chapter, we therefore offer an SOS rule format ensuring that certain terms
are idempotent with respect to some binary operator. Both the rule formats we
present in this chapter make an essential use of previously developed formats for
algebraic properties such as associativity and commutativity [61, 117].

We provide a variety of examples showing that our rule formats can be used
to establish the validity of several laws from the literature on process algebras

dealing with idempotent unary operators and idempotent terms.

Structure The chapter is organized as follows. Section 6.2 reviews some stan-
dard definitions from the theory of SOS that will be used in the remainder of this
study. We present our rule format for idempotent terms in Section 6.3. That rule
format plays an important role in the definition of the rule format for idempotent
unary operators that we give in Section 6.4. We discuss the results of the chapter

and hint at directions for future work in Section 6.5.

This chapter is an extended version of [17]. Apart from offering the proofs of
results that were announced without proof in that reference and a variety of
examples of applications of our rule formats, this chapter also presents a general-

ization of the rule format for idempotent unary operations given in [17].

6.2 Preliminaries

In this section we review, for the sake of completeness, some standard definitions
from process theory and the meta-theory of SOS that will be used in the remainder
of the paper. We refer the interested reader to [14, 118] for further details.

Transition System Specifications in GSOS Format

Definition 6.2.1 (Signature, terms and substitutions). We let V denote an infinite set
of variables with typical members x,x’, xi;, Yy, Y, Vi, A signature X is a set of function
symbols, each with a fixed arity. We call these symbols operators and usually denote
them by f,g,.... An operator with arity zero is called a constant. We define the set
T(X) of terms over X (sometimes referred to as X.-terms) as the smallest set satisfying the

following constraints.
o A wvariable x € V is a term.

o If feXhasaritynandty,..., t, are terms, then f(t1,...,t,) is a term.

134 Axiomatizations from SOS

We use t,t',t;,u,... to range over terms. We write t = t, if t; and t, are syntactically
equal. The function vars : T(X) — 2V gives the set of variables appearing in a term. The
set C(X) € T(X) is the set of closed terms, i.e., the set of all terms t such that vars(t) = 0.
We usep,p’,pi,q, ... to range over closed terms. A context is a term with an occurrence
of a hole [] in it.

A substitution o is a function of type V. — T(X). We extend the domain of substitutions
to terms homomorphically. If the range of a substitution is included in C(X), we say that
it is a closed substitution. For a substitution o and sequences x1,...,x, and ty,...,t,
of distinct variables and of terms, respectively, we write o[x; » t1,...,x, > t,] for
the substitution that maps each variable x; to t; (1 < i < n) and agrees with o on all
of the other variables. When o is the identity function over variables, we abbreviate

olxi—=t,...,xp > t]to[x1 > t,...,x, > L]

The GSOS format is a widely studied format of deduction rules in transition
system specifications proposed by Bloom, Istrail and Meyer [46, 49]. Transition
system specifications whose rules are in the GSOS format enjoy many desirable
properties, and several studies in the literature on the meta-theory of SOS have
focused on them—see, for instance, [3, 2, 6, 14, 20, 35]. In this study we shall
also focus on transition system specifications in the GSOS format, which we now
proceed to define.

Definition 6.2.2 (GSOS Format [49]). A deduction rule for an operator f of arity n is
in the GSOS format if and only if it has the following form:

li' . . ll‘ .
ioyjll<i<nl<j<m}uly-|1<i<nl<k<n)

@Sl 7

(6.1)

where the x;’s and the y;;'s (1 < i <nand 1 < j < m;) are all distinct variables, m; and
n; are natural numbers, C[X,]]’] is a X-term with variables including at most the variables
x;’s and y;i’s, and the l;;'s and | are action labels (or simply actions). The above rule is said

to be f-defining and l-emitting.

A transition system specification (TSS) in the GSOS format 7 is a triple (X, L, D)
where ¥ is a finite signature, L is a finite set of labels, and D is a finite set of deduction
rules in the GSOS format. The collection of f-defining and l-emitting rules in a set D of
GSOS rules is denoted by D(f,).

Example 6.2.3. An example of a TSS in the GSOS format is the one describing the
semantics of BCCSP [81]. The signature for this TSS contains the operators 0 (of arity

Eugen Ioan Goriac 135

zero), a._ (a € L) and _+_. The standard deduction rules for these operators are listed
below, where a ranges over L.

a a a
a.x1 — X1 X1+ X2 > X] X1+ X2 > X]

Informally, the intent of a GSOS rule of the form (6.1) is as follows. Suppose
that we are wondering whether f(p) is capable of taking an I-step. We look at
each f-defining and [-emitting rule in turn. We inspect each positive premise
X 5, vij, checking if p; is capable of taking an /;;-step for each j and if so calling the
lii-children g;;. We also check the negative premises: if p; is incapable of taking
an Ily-step for each k. If so, then the rule fires and f(p) 4 C[g,4]. This means
that the transition relation — associated with a TSS in the GSOS format is the
one defined by the rules using structural induction over closed X-terms. This
transition relation is the unique sound and supported transition relation. Here
sound means that whenever a closed substitution o ‘satisfies’ the premises of a
rule of the form (6.1), then o(f(X)) —I>G(C[J?, 7]). On the other hand, supported
means that any transition p 5 g can be obtained by instantiating the conclusion
of a rule of the form (6.1) with a substitution that satisfies its premises. We refer
the interested reader to [46, 49] for the precise definition of — and much more
information on GSOS languages. The above informal description of the transition
relation associated with a TSS in GSOS format suffices to follow the technical
developments in the remainder of the paper.

Remark 6.2.4. In this paper, we restrict ourselves to TSSs in GSOS format for the sake
of simplicity, though the results also hold for tyftftyxt. The rule formats we present in
what follows can be extended to arbitrary TSSs at the price of considering the so-called
three-valued stable models. See [14] for a survey introduction to three-valued stable
models.

Bisimilarity Terms built using operators from the signature of a TSS are usually
considered modulo some notion of behavioural equivalence, which is used to
indicate when two terms describe ‘essentially the same behaviour’. The notion
of behavioural equivalence that we will use in this paper is the following, classic
notion of bisimilarity [106, 120].

Definition 6.2.5 (Bisimilarity). Let 7 be a TSS in GSOS format with signature X.. A
relation R € C(X) x C(X) is a bisimulation if and only if R is symmetric and, for all

136 Axiomatizations from SOS

po,p1,py € C(X)and I € L,

l / / l / V4 /
(Po Rp1 A po—pp) = Ip; € C(X). (p1 = py Apy Rpy)-

Two terms py,p1 € C(X) are called bisimilar, denoted by T + py « p1 (or simply by
po € p1 when T is clear from the context), when there exists a bisimulation R such that

po R p1. We refer to the relation < as bisimilarity.

It is well known that € is an equivalence relation over C(X). Any equivalence
relation ~ over closed terms in a TSS 7 is extended to open terms in the standard
fashion, i.e., for all fp,t; € T(X), the equation f, = t; holds over 7~ modulo ~
(sometimes abbreviated to t, ~ t;) if, and only if, 7 + o(ty) ~ o(t;) for each closed
substitution o.

Definition 6.2.6. Let X be a signature. An equivalence relation ~ over X-terms is a
congruence if, for all f € X and closed terms p1,...,Pu,q1, - ., qn, Where n is the arity of
f,ifpi ~qiforeachi€{1,...,n}then f(p1,...,pn) ~ f(q1,---,qn)-

Remark 6.2.7. Let Y. be a signature and let ~ be a congruence. It is easy to see that,
forall f € X and terms ty,...,t,,u1,..., U, where n is the arity of f, if t; ~ u; for each

i€f{l,...,n}then f(t1,...,ty) ~ f(ua,..., up).

The following result is well known [46].
Proposition 6.2.8. & is a congruence for any TSS in GSOS format.

The above proposition is a typical example of a result in the meta-theory of SOS:
it states that if the rules in a TSS satisfy some syntactic constraint, then some
semantic result is guaranteed to hold. In the remainder of this paper, following
the work presented in, e.g., [5, 9, 10, 23, 61, 117], we shall present a rule format
ensuring that certain unary operations are idempotent. This rule format will
rely on one yielding that terms of a certain form are idempotent for some binary
operator. For this reason, we present first the latter rule format in the subsequent

section.

6.3 A rule format for idempotent terms

Definition 6.3.1 (Idempotent term). Let X be a signature. Let f and © be, respectively,
a unary and a binary operator in . We say that f(x) is an idempotent term for © with

Eugen Ioan Goriac 137

respect to an equivalence relation ~ over T(X) if the following equation holds:
f) ~ f(x) © f(x). (6.2)

In what follows, we shall present some syntactic requirements on the SOS rules
defining the operators f and © that guarantee the validity of equation (6.2) with
respect to bisimilarity, and therefore any notion of equivalence that is coarser
than it. In order to motivate the syntactic constraints of the rule format, let us
consider the unary replication operator ‘!", which is familiar from the theory of the
ni-calculus (see, e.g., [129]), and the binary interleaving parallel composition ||’
which appears in, amongst others, ACP [44], CCS [104], and CSP [95, 126]. The
rules for these operators are given below, where a ranges over the set of action
labels L.

a / a / a /
X=X X=X y—=y

(6.3)
kS xllySxlly xlySxly
It is well known that !x is an idempotent term for || modulo any notion of equiva-

lence that includes bisimilarity. Indeed, the equation
x = (%) || ('x)

is one of the laws for the structural congruence over the rt-calculus with replication
considered in, e.g., [66].

It is instructive to try and find out why the above law holds by considering

4

the interplay between the transition rules for ‘" and those for ‘||, rather than
considering the transitions that are possible for all the closed instantiations of the
terms !x and ('x) || ('x). To this end, consider the rule for replication for some
action a. The effect of this rule can be mimicked by the term (!x) || (!x) by means of
a combination of the instance of the first rule for || in (6.3) for action a and of the
rule for replication. When we do so, the appropriate instantiation of the target of

the conclusion of the first rule for || is the term
@ Tyl = Iy, y=lx] =& || %)]| x.

Note that the target of the conclusion of the rule for replication, namely x’ || 'x,
and the above term can be proved equal using associativity of ||, which is well

known, and the version of axiom (6.2) for replication and parallel composition, as

138 Axiomatizations from SOS

follows:

) =2 (x| 1x) = x" || .

The validity of the associativity law for || is guaranteed by the rule format for
associativity given in [61, Definition 8]. On the other hand, as shown in the
remainder of the section, the soundness of the use of equation (6.2) can be justified

using coinduction [128].

Consider instead the combination of the instance of the second rule for || in (6.3)
for action a and of the rule for replication for that action. When we do so, the
appropriate instantiation of the target of the conclusion of the second rule for || is
the term

I yx=!x, y=x' || Ix] =Ix || (x" || x).

Note that the target of the conclusion of the rule for replication, namely x” || !x, and
the above term can be proved equal using commutativity and associativity of ||,
which are well known, and the version of axiom (6.2) for replication and parallel

composition, as follows:
el (" [) = (7 1) [e = o] (e [1) = 7) L

The validity of the commutativity law for || is guaranteed by the rule format for
commutativity given in [117].

The above discussion hints at the possibility of defining an SOS rule format guar-
anteeing the validity of equation (6.2) building on SOS rule formats for algebraic
properties like associativity and commutativity of operators [23], and on a coin-
ductive use of equation (6.2) itself. The technical developments to follow will
offer a formalization of this observation.

Our definition of the rule format is based on a syntactically defined equivalence
relation over terms that is sufficient to handle the examples from the literature we
have met so far.

Definition 6.3.2 (The relation «v). Let 7 = (X,L, D) be a TSS in GSOS format.

1. Therelation « is the least equivalence relation over T(X) that satisfies the following
clauses:

o f(t,u) ¢ f(u,t), if f is a binary operator in X. and the commutativity rule
format from [117] applies to f,

Eugen Ioan Goriac 139

o f(t, f(t',u)) e« f(f(t,t'),u), if f is a binary operator in ¥ and one of the
associativity rule formats from [61] applies to f, and

o C[t] «» C[t'], if t e~ t, for each context C[].

2. Let f and © be, respectively, a unary and a binary operator in ©.. We write t | ¢ u
if, and only if, there are some t' and u’ such that t ¢ t', u «» u', and t' = u’ can
be proved by possibly using one application of an instantiation of axiom (6.2) in a
context—that is, either t' = u’, or t' = C[f(t")] and u’ = C[f(t")O® f(t"")], for some
context C[| and term t”, or vice versa.
Example 6.3.3. Consider the terms x || (x" || 'x) and x" || 'x. Then

¥l Ly 1l ().

Indeed, 'x || (x" || 'x) e~ x” || (!x || 'x), because the rules for || are in the associativity and
commutativity rule formats from [61, 117], and x’ || !x = x’ || (!x || !x) can be proved
using one application of the relevant instance of axiom (6.2) in the context x' || [].
Remark 6.3.4. The definition of the relation <~ can be easily strengthened by adding
more clauses, provided their soundness with respect to bisimilarity can be ‘justified syn-
tactically’. Moreover, in the definition of the relation | 5, we could allow for any number
of applications of axiom (6.2) in context. The current definition suffices to handle all the
examples from the literature we have met so far.

Lemma 6.3.5. Let 7 = (X,L,D) be a TSS in the GSOS format, and let t,t' € T(X). If
t e~ t' then

1. tet,
2. vars(t) = vars(t') and

3. a(t) e~ a(t'), for each substitution o.

Proof. All the claims can be shown by induction on the definition of <. The
soundness modulo € of the rewrite rules in Definition 6.3.2(1) is guaranteed by
results in [61, 117] and by Proposition 6.2.8. |

We are now ready to present an SOS rule format guaranteeing the validity of
equation (6.2). The aim of the rule format is to ensure that the following
properties hold for each closed term p, whenever the rules for a unary operator f
and a binary operator O satisfy the given constraints:

e if f(p) > p’ for some p’, then there is some ¢’ such that f(p) © f(p) = ¢’ and
the bisimilarity between p” and 4" can be justified using the relation | s,

140 Axiomatizations from SOS

o if f(p) ® f(p) = ¢ for some q’, then there is some p’ such that f(p) = p’ and
the bisimilarity between p” and g’ can be justified using the relation | ¢.

Intuitively, condition 1 in the definition below ensures that the former property
holds by requiring that each rule for f can be used to derive suitable matching
transitions from terms of the form f(p) © f(p). On the other hand, conditions 2
and 3 guarantee that the latter property holds by requiring that any applicable
combination of rules for f and © can be ‘simulated’ by a rule for f.

Definition 6.3.6 (Rule format for idempotent terms). Let 7 = (X,L, D) be a TSS in
the GSOS format. Let f and © be, respectively, a unary and a binary operator in X.. We
say that the rules for f and © in T are in the rule format for idempotent terms if either
the rules for © are in the rule format for idempotence from [5] or the following conditions
are met:

1. For each f-defining rule in D, say

H

f) St

there is some ©-defining rule
Hl

X1 O Xp i> u
such that

(a) H' C{x1-> y1, X2 v}, and

(b) tlf,@ u[xl = f(x)IXZ = f(x)/ n = t/ yz — t]
2. Each ©-defining rule has the form

Syl Ul Syl el Uin Dz keK)

, (6.4)
X1 © Xo 5 u

where i € {1,2},] and K are index sets, and vars(u) C {x1, X2, yi}.

3. Let r be an ©-defining rule of the form (6.4) such that D(f,a;) # 0, for each j €],
and D(f, bx) # 0, for each k € K. Let

H

flx) St

Eugen Ioan Goriac 141

be a rule for f. Then

tlroulxi = f(x),x2 = f(x),yi > t].

Theorem 6.3.7. Let 7 = (X,L,D) be a TSS in the GSOS format. Let f and © be,
respectively, a unary and a binary operator in L. Assume that the rules for f and © in
T are in the rule format for idempotent terms. Then equation (6.2) holds over T~ modulo
bisimilarity.

The proof of this result may be found in Appendix 6.A.

Example 6.3.8 (Replication and parallel composition). The unary replication operator
and the parallel composition operator, whose rules we presented in (6.3), are in the rule
format for idempotent terms. Indeed, we essentially carried out the verification of the
conditions in Definition 6.3.6 when motivating the constraints of the rule format and the
relation <. Therefore, Theorem 6.3.7 yields the soundness, modulo bisimilarity, of the
well-known equation

Ix = (Ix) || ('x).

Example 6.3.9 (Kleene star and sequential composition). Assume that the set of
action labels L contains a distinguished action v/, which is used to signal the successful

termination of a process.

Y

Consider the unary Kleene star operator *_*" [96] and the binary sequential composition

operator "’ given by the rules

x5
a+Vv
56 X*i>X’-(X*)(:
a. ., Vo a.
X—X x—x, y—
T _@#v) ~Y e,
X-y—x -y X-y—y

where 6 is a constant. These rules satisfy the requirements of the rule format for idempotent
terms. Indeed, to verify condition 1 in Definition 6.3.6, observe that

e the first rule for the Kleene star operator can be ‘matched” by the instance of the
second rule schema for - with a = v/, and

o the second rule for the Kleene star operator can be ‘matched’ by the equally-labelled
instance of the second rule schema for -.

Condition 2 is easily seen to hold. To check condition 3, we examine all pairs of equally-
labelled rules for - and the Kleene star operator. By way of example, let us look at the pair

142 Axiomatizations from SOS

consisting of the rules

X=X X=X
(a#V) (a# V).
x-y—=x -y X5 (x)
Then
@yl x,y= XX =X (x)] = &)

(\/\/) x/ . (x* . x*)

= x-(x9) by (6.2).

The second step in the above argument is justified since the associativity rule format
from [61, Definition 10] applies to -. Therefore, Theorem 6.3.7 yields the soundness,
modulo bisimilarity, of the well-known equation

Example 6.3.10 (Perpetual loop and sequential composition). Consider the unary
perpetual loop operator *_“’ from [69] given by the rules

X=X
- (a+V)
x? —x" - (x¥)
and the binary sequential composition operator -" given by the rules in Example 6.3.9.
These rules satisfy the requirements of the rule format for idempotent terms. The conditions
in Definition 6.3.6 can be checked along the lines of Example 6.3.9. Note that, since there

is no v'-emitting rule for the perpetual loop operator, the premises of rules of the form

Voo a
X—X, y—)y

(@ael)
X ysy
cannot be all met when x is instantiated with x* and therefore condition 3 in Defini-

tion 6.3.6 holds vacuously for those rules. Thus, Theorem 6.3.7 yields the soundness,
modulo bisimilarity, of the well-known equation

Eugen Ioan Goriac 143

6.4 A rule format for idempotent unary operators

Definition 6.4.1 (Idempotent unary operator). Let X be a signature. Let f be a unary
operator in .. We say that f(x) is idempotent with respect to an equivalence relation ~
over T(X) if the following equation holds:

fx) ~ f(f(x)). (6.5)

Example 6.4.2 (Delay operator). The rules for the unary delay operator 6 from SCCS [88,
105] are as follows, where 1 is a distinguished action symbol in L that is used to denote a
delay of one time unit:

a. .
X—>X

- (ae€L).
0x — O0x ox = x'

It is well known that 6 is idempotent modulo bisimilarity.

Example 6.4.3 (Prefix iteration). The delay operator we presented in Example 6.4.2 is a
special case of the unary prefix iteration operator a*_ from [68]. The rules for this operator
are as follows:

X—X

- (b el).

ax—a’x ax—x
It is well known that a*_ is idempotent modulo bisimilarity.
Example 6.4.4 (Hiding operator). Assume that 7 is a distinguished action in L that is
used to label internal transitions of a system. For each I C L\ {t}, the rules for the unary
hiding operator t; familiar from ACP [40] and CSP [95] are as follows:

a
X—X

(@ael) —— (agl)
(%) > T(x') (%) 5 Ty(x')

/ /

a
X—X

It is well known that 7 is idempotent modulo bisimilarity.

In what follows, we shall present some syntactic requirements on the SOS rules
defining a unary operator f that guarantee the validity of equation (6.5). The rule
format for idempotent unary operators will rely on the one for idempotent terms

given in Definition 6.3.6.

In order to motivate the use of the rule format for idempotent terms in the defini-

tion of the one for idempotent unary operators, consider the replication operator

144 Axiomatizations from SOS

whose rules were introduced in (6.3). As is well known, the equation
Ix =(!x)

holds modulo bisimilarity. The validity of this equation can be “justified” using

7

the transition rules for ‘! as follows. Consider the rule for replication for some

action a, namely

4

X—X

x5 || Ix
The effect of this rule can be mimicked by the term !(!x) by using the same rule
twice. When we do so, the appropriate instantiation of the target of the conclusion
of the rule for *!" is the term

@)X = x| x, x =] =]) | 1(Mx).

Note that the target of the conclusion of the rule for replication, namely x” || x,
and the above term can be proved equal using associativity of ||, the version of
axiom (6.2) for replication and parallel composition, and the version of axiom (6.5)

for replication, as follows:
" 1) [11(8x) = (") [e = 2] (e [) = o] L

As mentioned in Example 6.3.8, the validity of the version of axiom (6.2) for
replication and parallel composition is guaranteed by Theorem 6.3.7. On the
other hand, as shown in the remainder of the section, the soundness of the use of
equation (6.5) can be justified using coinduction [128].

As we did in the definition of the rule format for idempotent terms presented
in Definition 6.3.6, in stating the requirements of the rule format for idempotent
unary operators, we shall employ a syntactically defined equivalence relation
over terms that is sufficient to handle the examples from the literature we have
met so far.

Definition 6.4.5 (The relation). Let 7 = (X,L, D) be a TSS in the GSOS format.

1. The relation > is the least equivalence relation over T(X) that satisfies the following
clauses:

o f(t) & f(t) © f(t), if the rules for f and © in T are in the rule format for
idempotent terms from Definition 6.3.6,

Eugen Ioan Goriac 145

o f(t,u) & f(u,t), if f is a binary operator in ¥ and the commutativity rule
format from [117] applies to f,

o f(t, f(t',u)) & f(f(t,t'),u), if f is a binary operator in X. and one of the
associativity rule formats from [61] applies to f, and

o C[t] & C[t'], if t & t', for each context C[].

2. Let f be a unary operator in X. We write t || u if, and only if, there are some '
and u’ such thatt < t', u < u’, and t' = u’ can be proved by possibly using one
application of an instantiation of axiom (6.5) in a context—that is, either t' = u’,
or t' = C[f(t")] and u' = C[f(f(t"))], for some context C[]| and term t”, or vice
versa.

Example 6.4.6. Consider the terms (x’ || x) || !(x) and x" || 'x. Then
x| e Gy (7 (1) (] ().

Indeed, x" || !x & (x" || 'x) || x, using the relevant instance of axiom (6.2) and associativity
of ll, and (x" || 'x) || 'x = (x" || 'x) || !('x) can be proved using one application of the relevant
instance of axiom (6.5) in the context (x" || !x) || [].

Lemma 6.4.7. Let T = (X,L,D) be a TSS in the GSOS format, and let t,t' € T(X). If
t & t' then

1. tet,
2. vars(t) = vars(t') and

3. o(t) & a(t'), for each substitution o.

Proof. The lemma can be shown along the lines of the proof of Lemma 6.3.5, using
Theorem 6.3.7 to justify the soundness modulo bisimilarity of applications of the
clause f(t) & f(t)© f(t), when the rules for f and ©in 7 are in the rule format for

idempotent terms from Definition 6.3.6.]

Asindicated by the SOS rules for the hiding operator presented in Example 6.4.4, a
rule format foridempotent unary operators that can deal with that operator should
allow for some ‘renaming’ of transition labels in rules. Indeed, the operator 7;
relabels a actions of its argument term into 7 for each a € I. However, the
renamings i : L — L that should be allowed by a rule format for idempotent
unary operators are, not surprisingly, limited to the idempotent ones—that is, to
those satisfying h*> = h. Itisnot hard to see that a renaming /i : L — Lisidempotent

if, and only if, h(a) = a for each a contained in the range of h. Conditions 3 and 4

146 Axiomatizations from SOS

in the following definition formalize this observation and, in conjunction with
the other requirements in that definition, guarantee that each transition from a
closed term of the form f(p) can be ‘matched’ by a transition from f(f(p)), and
vice versa.

Definition 6.4.8 (Rule format for idempotent unary operators). Let 7 = (X,L, D)
be a TSS in the GSOS format. Let f be a unary operator in . We say that the rules for
f are in the rule format for idempotent unary operators if the following conditions are
met:

1. Each rule for f in D has the form

Hulxs |je]

fx) St

7 (6'6)

where either
(a) HC x>} and
(b) H = {x = x'}if] is non-empty.

or] =0and H = {x—b>x’}f0r some b # a. In the latter case, we call (6.6) a
renaming rule and say that b is renamed by rule (6.6).
2. If some rule for f of the form (6.6) has a premise of the form x b, then each

b-emitting and f-defining rule has a positive premise of the form x L

3. Ifsome a-emitting and f-defining rule is a renaming rule, then there is an f-defining
rule of the form

ac . s
X—>X

f0) S fr)y

4. If b is renamed by some rule of the form (6.6) then each b-emitting and f-defining

6.7)

rule has the form

b ’
X—X

— (6.8)
fx) >t

for some term t'.
5. Consider a rule for f of the form (6.6). Then one of the following conditions is met:

(a) H is empty and t |J; t{x — f(x)],

Eugen Ioan Goriac 147

(b) H = {x 5 x'} and, for each a-emitting rule for f
HI
f =t

7

we have that
t' Urtlx = f(x),x & t],

or

(c) H={x EN x'} with a # b and, for each b-emitting rule for f of the form (6.8),
tUstlx = f(x),x" = t'].

Theorem 6.4.9. Let 7 = (X,L,D) be a TSS in the GSOS format. Let f be a unary
operator in X.. Assume that the rules for f in T are in the rule format for idempotent

unary operators. Then equation (6.5) holds over T~ modulo bisimilarity.

The proof of this result may be found in Appendix 6.B.
Remark 6.4.10. Condition 1b in Definition 6.4.8 requires that, in rules of the form
(6.6), H = (x5 x'} if] is non-empty. This requirement is necessary for the validity of

Theorem 6.4.9. To see this, consider the unary operator f with rules

b b, c c. ., b
X x—x, x-» xX—x, x-»

)50 f Do)50

The rules for f satisfy all the conditions in Definition 6.4.8 apart from the requirement in
condition 1b that all rules have positive premises when they have negative ones.

It is not hard to see that f(b.0 + c.0) has no outgoing transitions. On the other hand,
using the a-emitting rule for f, we have that

F(f(.0 + c.0)) 5 0.

Therefore, f(b.0+c.0) <2 f(f(b.0+c.0)), and the equation f(x) & f(f(x)) does not hold.
Remark 6.4.11. Condition 2 in Definition 6.4.8 is necessary for the validity of Theo-
rem 6.4.9. To see this, consider the unary operator f with rules

b a ,
XP,X—>X

050 fbo

148 Axiomatizations from SOS

The rules for f satisfy all the conditions in Definition 6.4.8 apart from the requirement
in condition 2. Observe that f(a.0) 20. On the other hand, f(f(a.0)) . Therefore,

f(a.0) <2 f(f(a.0)), and the equation f(x) & f(f(x)) does not hold.

6.4.1 Examples

We now present some examples of applications of the rule format given in Defi-
nition 6.4.8.

Example 6.4.12 (Delay operator). Consider the delay operator 6 introduced in Exam-
ple 6.4.2. Each rule for 6 is of the form (6.6), meeting condition 1 in Definition 6.4.8. To
see that condition 5 is also met, observe that

o O0x |5 6(6x) = (6x)[x > Ox,x" > bx],
o X' |fx' =x'[x Ox,x" > x'], and
o Ox [y x'[x > 6x,x" > 0Ox].

Therefore, Theorem 6.4.9 yields the soundness, modulo bisimilarity, of the well-known
equation
ox = 6(ox).

The prefix iteration operator discussed in Example 6.4.3 is handled in similar fashion.
Example 6.4.13 (Encapsulation). Consider the classic unary encapsulation operators
du from ACP [25], where H C L, with rules

4

a
X—X

- a¢ H.
In(x) = Idu(x’)

It is a simple matter to check that the above rules meet all the conditions in Definition 6.4.8.

In particular,
In(x’) Uay, Ou(du(x)) = Iu(x")[x = du(x), x" - du(x)].

Therefore, Theorem 6.4.9 yields the soundness, modulo bisimilarity, of the well-known
equation
In(x) = I(Iu(x)).

Eugen Ioan Goriac 149

Example 6.4.14 (Priority). Assume that < is an irreflexive partial ordering over L. The
priority operator O from [27] has rules

x5, (x EA for each b such that a < b)

(@ael).
O(x) N O(x")

It is not hard to see that the rules for O satisfy the conditions in Definition 6.4.8. In
particular, for each a € L, the only a-emitting rule for O has a positive premise of the form

x - x’. Hence, condition 1b in Definition 6.4.8 is met.

Therefore, Theorem 6.4.9 yields the soundness, modulo bisimilarity, of the well-known
equation
0(x) = 0(0(x)).

Example 6.4.15 (Replication). Consider the replication operator ‘!" whose rules were
given in (6.3). We claim that the rules for *!” satisfy the conditions in Definition 6.4.8.
Indeed, the rules for ’!” are of the form (6.6) and, as we observed earlier in Example 6.4.6,

) e b (7) | () = (7)[x o e, X7 e x| .

Therefore, Theorem 6.4.9 yields the soundness, modulo bisimilarity, of the well-known
equation

Ix = I(1x).

*

Example 6.4.16 (Kleene star). Consider the unary Kleene star operator °_*" whose rules

were given in Example 6.3.9. We claim that the rules for _* satisfy the conditions in
Definition 6.4.8. Indeed, observe, first of all, that the rules for *_*" are of the form (6.6).

Moreover,
e 0.0[x— x',x" — 0], and
o X - (X)L (- (x)) - () = (- (x))[x > X7, x> X - (x0)]

The proof of the latter claim uses that the rules for *_*" and " satisfy the requirements
of the rule format for idempotent terms. Therefore, Theorem 6.4.9 yields the soundness,

modulo bisimilarity, of the well-known equation

The perpetual loop operator discussed in Example 6.3.10 is handled in similar fashion.
Example 6.4.17 (Hiding). Consider the hiding operator t;, whose rules we presented in
Example 6.4.4. 1t is not hard to see that the rules for this operator satisfy the requirements

150 Axiomatizations from SOS

in Definition 6.4.8. Indeed, since t ¢ I, we have the rule

T
X—>X

71(x) = T (x')
meeting condition 3. Condition 4 is vacuously true and the others can be checked along
the lines we followed in the previous examples.

Therefore, Theorem 6.4.9 yields the soundness, modulo bisimilarity, of the well-known
equation

T1(x) = t7(T1(X)).

Example 6.4.18 (Idempotent relabelling). Let h : L — L be an idempotent renaming—
that is, a function satisfying h*> = h. (For ease of reference, we recall that, as mentioned
earlier, a renaming h : L — L is idempotent if, and only if, h(a) = a for each a contained
in the range of h.)

Consider the unary operation py, familiar from ACP [26] and CCS [106] with rules

x5
o (@ael).
pn(x) = pn(x’)

It is not hard to see that the rules for this operator satisfy the requirements in Defini-
tion 6.4.8. For example, condition 3 is met because if a is the label of the conclusion of
some renaming rule, then h(a) = a because h is an idempotent renaming. Condition 4 is
vacuously true. Indeed, if a # h(a), then a is not contained in the range of h, because h is
an idempotent renaming, and therefore there are no a-emitting rules. The other conditions

in Definition 6.4.8 can be checked along the lines we followed in the previous examples.

Therefore, Theorem 6.4.9 yields the soundness, modulo bisimilarity, of the equation

pn(x) = pr(pn(x)).

The proviso that h be an idempotent renaming is necessary for the validity of the above
equation. For instance, assume that a, b, c are pairwise different, h(a) = b and h(b) = c.
Then py(a.0) and py(py(a.0)) are not bisimilar.

Eugen Ioan Goriac 151

6.5 Conclusions

In this study, we have presented an SOS rule format that guarantees that a unary
operator is idempotent modulo bisimilarity. In order to achieve a sufficient degree
of generality, that rule format relies on a companion one ensuring that certain
terms are idempotent with respect to some binary operator. In addition, both
rule formats make use of existing formats for other algebraic properties such as
associativity [61], commutativity [117] and idempotence for binary operators [5].
In this paper, we have restricted ourselves to TSSs in GSOS format [46, 49] for the
sake of simplicity. The rule formats we offered in this study can be extended to
arbitrary TSSs in standard fashion, provided one gives the semantics of such TSSs

in terms of three-valued stable models.

The auxiliary rule format ensuring that certain terms are idempotent with respect
to some binary operator may be seen as a refinement of the one from [5]. That
paper offered a rule format guaranteeing that certain binary operators are idem-
potent. We recall that a binary operator © is idempotent if the equation x © x = x
holds. Of course, if a binary operation is idempotent, then any term is an idempo-
tent for it. However, the sequential composition operator *-’ is not idempotent, but
the term x* is an idempotent for it. Similarly, the parallel composition operator ‘||’
is not idempotent, but the term !x is an idempotent for ||. Since the laws x* - x* = x*
and !x || Ix = !x play an important role in establishing, via syntactic means, that
the unary Kleene star and replication operators are idempotent, we needed to
develop a novel rule format for idempotent terms in order to obtain a powerful

rule format for idempotent unary operations.

To our mind, idempotence of unary operators is the last ‘typical” algebraic law
for which it is worth developing a specialized rule format. An interesting, long-
term research goal is to develop a general approach for synthesizing rule formats
for algebraic properties from the algebraic law itself and some assumption on
the format of the rules used to give the semantics for the language constructs in
the style of SOS. We believe that this is a hard research problem. Indeed, the
development of the formats for algebraic properties surveyed in [23] has so far
relied on ad-hoc ingenuity and it is hard to discern some common principles that
could guide the algorithmic synthesis of such formats.

152 Axiomatizations from SOS

6.A Proof of Theorem 6.3.7

Let R be the least reflexive relation over C(X) such that
e f(p)R f(p)© f(p) and f(p) © f(p) R f(p), for each p € C(X),
e ifpep,p’Rq andq < g, thenp R g, and
e if ¢ € Xisann-ary operator and p;Rg; foreachi € {1,...,n}, theng(ps, ..., p)R
81, -+, qn)-

In order to prove the theorem, it suffices to show that R is a bisimulation. To this
end, note, first of all, that the relation R defined above is symmetric. Assume now
that pRgand p = p’ for some p’. Our aim is to prove that there is some g’ such that
g->¢ and p’ R¢'. This we show by an induction on the definition of R. Below we

limit ourselves to detailing the proof for the cases when, for some p; € C(X),
* p=f(p1)and g = f(p1) © f(p1), and

* p=fp)oflpy)and g = f(p1).
Suppose that f(p;) = p’. Then there are a rule

H

fx) St

and a closed substitution o such that ¢ satisfies H, o(x) = p; and o(t) = p’. By
condition 1 in Definition 6.3.6, there is some ®-defining rule

20
X 0x; 5 u’
such that
1. H C{x N Y1, X2 N Y2}, with x1, x2, 11, ¥» pairwise distinct, and
2. tlgoulxi = f(x),x2 = f(x), y1 = t,y2 — t].

Consider now the closed substitution

o' =o[xi- f(p),x2- f(p1), 1= p, =Pl

Eugen Ioan Goriac 153

Since f(p;) — p’, we have that ¢’ satisfies H’. Therefore, using the above-mentioned
rule for ©, we may conclude that

fp1) © f(p1) = 0’ (w).

Ast|ioulx; = f(x),x2 = f(x),y1 = t,y2 & t], we have that there are some ' and
u’ such that

o fevw i/,
o ulx; = f(x),x2 f(x),y1 =t y2 = t] e u’, and

o either t = u’, or without loss of generality t = C[f(t”)] and v’ = C[f(t") ©
f(t")], for some context C[] and term #”.

By Lemma 6.3.5 and the definition of R,
p=ot)yecl)Ro) e oulx; — f(x),x2 = f(x), 11 = t,y2 = t]).
Moreover, it is easy to see
o(ulx; = f(x),x2 = f(x), 11 =ty o 1) = o' (w).
Therefore, by the definition of R, we conclude that
p'=a(t)Ro'(u),

which was to be shown.

Assume now that p = f(p1) © f(p1) — p’. Then, by condition 2 in Definition 6.3.6,
there are a rule

Sy Ul Syl el Uin Sz keK)

4

a
X1 O X, > U

and a closed substitution ¢ such that o satisfies the premises of the rule, o(x;) =
o(x2) = f(p1) and o(u) = p’. By condition 2 in Definition 6.3.6, we have that

1. ie (1,2}, and

2. vars(u) C {x1,x2, yi}.

154 Axiomatizations from SOS

Suppose, without loss of generality, that i = 1. Then

a(x1) = f(p1) > a(y).

Therefore there are a rule H

fo =t
for f and a closed substitution ¢’ such that ¢’ satisfies H, 0’(x) = p1 and o’(t) = o(y1).
We claim that

o'(t) = o(y1) R o(u) = p.

To see this, observe that, by condition 3 in Definition 6.3.6,

tlf,@ M[Xl — f(X),Xz = f(X), U2 Nad t]

Therefore, we have that there are some #’ and u’ such that
o fevwt/,
o ulxi > f(x),%2 = f(0), 1 > 1] & 1/, and

e either t' = u’, or without loss of generality t' = C[f(t’)] and u’ = C[f(t") ©
f(#")], for some context C[] and term ¢”.

By Lemma 6.3.5 and the definition of R,
dt)yedt')Rd W) e dulx - f(x),x2 = f(x), 1 — t]).
Moreover, it is easy to see
o'(ulxy = f(x), %2 = f(x), y1 = t]) = o(u).
Therefore, by the definition of R, we conclude that

o(y1) =0’ () Ro(u) = p/,

which was to be shown. Since R is symmetric, we are done.

6.B Proof of Theorem 6.4.9

Let R be the least reflexive relation over C(X) such that

Eugen Ioan Goriac 155

e f(p)R f(f(p)) and f(f(p)) R f(p), for each p € C(Y),

eifpep,p’Rqg and g’ g, thenp R g, and

e if ¢ € Lisann-ary operator and p;Rg;foreachi € {1,...,n}, theng(ps,...,pn)R
g@q1, .-, qn)-

In order to prove the theorem, it suffices to show that R is a bisimulation. To this
end, note, first of all, that the relation R defined above is symmetric. Assume now
thatpRgand p 5 p’ for some p’. Our aim is to prove that there is some g’ such that
7> ¢ and p’ Rq’. This we show by an induction on the definition of R. Below we

limit ourselves to detailing the proof for the cases when, for some p; € C(X),
* p=f(p)andq = f(f(p1)), and
e p=f(f(r1)) and q = f(p1).

Suppose that f(p;) = p’. Then, using condition 1 in Definition 6.4.8, there are a
rule)
HuU{x- | jEJ}
flay >t

and a closed substitution ¢ such that o satisfies H, o(x) = p; and o(t) = p’. We

Y =

proceed with the proof by distinguishing two cases, depending on whether rule

r is a renaming rule.
Assume, first of all, that H C {x—x’}. By conditions 5a and 5b in Defini-
tion 6.4.8,

tUstlx = f(x),x" = t].

(Note that, if H = 0, then x is the only variable that might possibly occur in ¢, and
therefore t[x — f(x),x" = t] = t[x — f(x)].)

Our goal is to use the rule r to infer a matching transition from the term f(f(p1)).
To this end, consider the substitution o[x = f(p1),x’ + p’]. Since f(p1) — p’, that
substitution satisfies H. We claim that o[x — f(p1),x’ — p’] also satisfies the

negative premises of r. Indeed, let j € J. Since o satisfies x—b/», we have that
o(x) = p1 % . By condition 2 in Definition 6.4.8, each b;-emitting and f-defining
rule has a positive premise of the form x o, x'. Asp 4 , it follows that f(p) % ,as
claimed. Therefore, the above rule yields

f(f(p) = alx = f(pr),x" = p'1H).

156 Axiomatizations from SOS

Ast |ft[x = f(x),x" — t], we have that there are some t" and u’ such that
ot t/,
o t{x— f(x),x' = t] & v, and

e eithert’ = u’, ort' = C[f(t")] and v’ = C[f(f(t"))], for some context C[] and

term t”.

By Lemma 6.4.7 and the definition of R,
p=o(t)2cl’)Ro) e o(tlx = f(x),x - t]).
It is easy to see that

olx = f(p1), X = p'l(t) = o(t[x = f(x),x" - t]).

Therefore, again by the definition of R, we conclude that

p'=o0() Rolx = f(p1), x" = p’1(t),

which was to be shown.

Assume now that | =) and H = {x LN x’'} for some b # a. Recall that the closed
substitution ¢ satisfies o(x) = p; and o(t) = p’. By condition 3 in Definition 6.4.8,

there is an f-defining rule of the form
x5
f@) = fx)

Since, by our assumption, f(p;) — p’, instantiating the above rule with the closed
substitution 0’ = o[x = f(p1),x’ +— p’] yields that

f(f(p1) = f@p) = flo(D)).

We are left to argue that o(t) = p’ R f(p’) = f(o(t)). To this end, observe that, by
condition 5b in Definition 6.4.8, we have that

from which o(t) = p’ R f(p’) = f(o(t)) follows as above.

Eugen Ioan Goriac 157

Assume now thatp = f(f(p1)) — p’. Then, by condition 1 in Definition 6.4.8, there
are a rule .
HU{x—+ |je])
fla) >t

and a closed substitution ¢ such that o satisfies H, o(x) = f(p1) and o(t) = p’.

/

r =

If H is empty, then condition 1b in Definition 6.4.8 ensures that | is also empty.
Thus the above rule yields the transition f(p;)— o[x +— pi](t). Moreover, by

condition 5a in Definition 6.4.8,

tUrtlx = f(x)].

Therefore, reasoning as above,

alx = pl(®) Ro[x = prl(tlx = f(0)]) = o(t) = ¢/,

and we are done.

If H = {x 5’} then f(p1) % 6(x’). Therefore, there are some a-emitting rule for

f
H/

fe->t
and some closed substitution ¢’ such that ¢’ satisfies H’, 0’(x) = p; and o’(t') =
o(x"). Moreover, by condition 5b in Definition 6.4.8, we have that

t' Uptlx > f(x),x = t].
Now, reasoning as above,
o (t')Ro'(tlx = f(x),x' = t'])=0(t)=p

Since R is symmetric, we are done.

It H = {x—b>x’}, for some b # a4, then | = 0 by condition 1 in Definition 6.4.8.
Moreover f(p1) = o(x) LA o(x’). Therefore, by condition 4 in Definition 6.4.8, there
are some b-emitting rule for f

b 4
X—X

fo S

and some closed substitution o’ such that

158 Axiomatizations from SOS

® 0'(x)=p,

e 0/(t') =o(x') and

e 0'(x) =p EN o’ (x).
By instantiating rule 7" with the closed substitution 0/, we infer that

f(p) =’ (®).
Now, by condition 5c in Definition 6.4.8, we have that
trtlx = f(x),x" = t'].
Therefore, reasoning as above,
d(H)Ro'(t[x = f(x),x' = t'])=0)=p"

Since R is symmetric, we are done.

159

Chapter 7

PREG Axiomatizer — A Ground
Bisimilarity Checker for GSOS with
Predicates

7.1 Introduction

Proving that two process terms are related by some notion of behavioural equiv-
alence is at the heart of the equivalence-checking approach to verification. In this
chapter we introduce a tool named PREG Axiomatizer! that tackles this prob-
lem focusing on ground (i.e., fully specified) terms built using operations defined
using the preg format, a predicates extension of the GSOS format presented in
Chapter 3. GSOS [49] is a restricted, yet powerful, way of defining Structural
Operational Semantics (SOS) for programming and specification languages in the
style introduced by Plotkin in [124]. We refer the reader to Chapter 3 for the
detailed description and intuition behind the preg rule format and the considered
notion of behavioural equivalence, which is a natural extension to predicates of

the classic strong bisimulation equivalence.

Building on the techniques in [6, 35], we proposed in Chapter 3 a procedure to
construct a finite collection of sound equations that can be used to bring any
ground term to a normal form. We showed that the normal forms of two terms
are equal if and only if the terms are bisimilar. Given a set of actions A and a
set of predicates #, the normal forms we refer to are terms built according to the

1 The tool is downloadable from http://goriac.info/tools/preg-axiomatizer/.

http://goriac.info/tools/preg-axiomatizer/

160 Axiomatizations from SOS

grammar for finite trees with predicates, namely
su=0|xkp (VP eP)|as(VaecA)|s+s,

that are of the shape t =), ai.ti +)., kp;. Here the P/’s are all the predicates
satisfied by ¢, and the t;’s are terms in normal form. The empty sum (I = 0,] = 0)

is denoted by the constant 6.

Intuitively, 0 represents the process exhibiting no behaviour, s + t is the nonde-
terministic choice between the behaviours of s and ¢, while a.t is a process that
tirst performs action a4 and behaves like t afterwards. For each predicate P we
consider a constant xp, which denotes a process with no transitions. This process
only satisfies P. A finite tree satisfies predicate P if and only if it has kp as a top
summand of its associated normal form. We refer to predicates in P as existential
predicates. The operational semantics that captures this intuition is given by the
rules of BCCSP extended with predicates. The SOS specification for this language
consists of rules parameterized over all actions a and explicit predicates P:
x5 Yy Px Py
x+ySy Prp’ Plx+y) Plx+y)

7 7

ax5x x+ y 5 x
In Chapter 3 we showed that, for the above language, the following set of axioms
[106] is sound and ground-complete for bisimilarity on the set of ground finite

trees with predicates:

x+y =y+x x+y)+z =x+(y+2)

X+x =x x+6 =x
Recall that our purpose is to find ground-complete axiomatizations like the one
above for all the languages given in the preg format. In order to achieve this
goal for operators whose rules involve negative premises, we use the restriction
operator dgq (Where B C A and Q C P are the sets of initially forbidden actions
and predicates, respectively). The semantics of dgq is given by the following two
types of transition rules:

7 ifagB —% _ifPe¢Q
dg,a(x) > Jga(x) P(dgq(x))

The axiomatization of the operators dgq is provided in Chapter 3.

Internally, PREG Axiomatizer brings the provided rule system to a “manageable”
format, introducing auxiliary operators as described in Chapter 3, and afterwards

performs the axiomatization itself. The tool is implemented in the Maude lan-

Eugen Ioan Goriac 161

guage [59], which has been already proven to be very useful for analyzing SOS
rule formats in [114, 57]. Not only did we use Maude as a programming language,

but also as an equational reduction system for the generated sets of axioms.

Contribution PREG Axiomatizer is, to our knowledge, the first public tool
that automatically derives sound and ground-complete axiomatizations mod-
ulo bisimilarity for GSOS-like languages. Prior to using the techniques presented
in [6, 35] and Chapter 3, one had to use ingenuity and dedicate a considerable
amount of time in order to obtain axiomatizations for a language with even a

limited number of operators.

The tool is generic, in the sense that the SOS specification defining the labelled
transition system semantics of the process calculus is provided by the user. One
does this in terms of well-founded GSOS systems, which only allow for the deriva-
tion of finite labelled transition systems for the given terms (see [6] for more
details). As presented in [53], the generated axiomatizations are guaranteed to
be confluent, but, as a downside of our approach, only weakly normalizing. This
downside is diminished by the fact that there exists a substantial decidable sub-
class of systems, namely the linear and syntactically well-founded ones [53], for
which the generated axiomatizations are strongly normalizing. This subclass
includes important languages such as CCS, CSP, and ACP.

7.2 Case Studies

In this section we present two scenarios involving several classic operations with
their semantics extended with certain explicit predicates. Conventionally, the tool
language accepts process term variables such as X,X1,Y’, actions like a, b, ¢, a[0],
b[2], c["name"], and predicates like P, Q, P[1], Q["prop"].

Example 7.2.1. Let us describe how PREG Axiomatizer is used in order to prove that
“a.(a.x;; b.(ax))” and “while a.b.x| do a.x;” are bisimilar. Here _;_and while_do_
are, respectively, the sequential composition and the process loop operators (presented in
[49]) extended to the preg format with the immediate successful termination predicate |
(which we choose to denote by P in the specification for tool consumption). In Figure 7.1
we present the operational semantics for these operations with the rules given both in

standard notation, as well as using the syntax supported by the tool.

162 Axiomatizations from SOS

x = x X -(a)-> X’
XY= Xy x ;Y -Z;» & ;v
xlySy P L, Y -@-> Y
Ky-oy XY @ T

xlyl PO, PN

xy)l ' PX : 1)

x| . P(X)

(while x do y) |

X x . X -(a)-> X’
. a M ===
while x do y — while X do Y -(a)->
y;while x" do y Y ; while X’ do Y

Figure 7.1: preg rule system for _;_ and while_do_

The rules involving action a also have to be instantiated for b. After providing this
specification, the user can press the button labelled “Axiomatize” and the tool generates a
Maude specification including the axioms obtained by following the procedure described
in Chapter 3. We exemplify a small part of the output which consists of the axiomatization
for the while_do_ operator:

eq while X0 + X1 do X2 = while X0 do X2 + while X1 do X
ceq while X do Y=a . (Y ; while X’ do Y) if a . X’
ceq while X do Y=Db . (Y ; while X’ do Y) if b . X’
ceq while X do Y = k[P] if X := k[P]

eq while X1 do X2 = delta [owise]

2
X .
X

In order to check for the bisimilarity of the two process terms introduced at the beginning
of the current example, one loads the generated specification and uses the Maude command

reduce:

> reduce a . (a . k[P] ; b . (a . k[P])) ==
while a . b . k[P] do a . k[P]
result Bool: true

> reduce while a . b . k[P] do a . k[P]
result PTerm: a . a . a . b . a . a . k[P]

We successfully used PREG Axiomatizer to further extend the operational seman-

tics of _;_ with the predictable non-failure predicate # 6 (which plays the role of

: “ ” : . . xi>x’ y#0 x#0 y#0
the predicate “#0” presented in [10]) with the rules: R CTF
to test the property that x; 6 and 6 are bisimilar on various closed instantiations.

. We managed

Eugen Ioan Goriac 163

It is worth noting that this property does not always hold for the initial version of
Example 7.2.2. In this example we show how we use our tool to obtain the execution tree
of a network of communicating processes. This procedure is useful, for instance, when one
needs to use an external model checker to verify if the communication protocol satisfies

certain logical properties. Our example is based on a case study from [25].

ac

Figure 7.2: Communication protocol

Consider the process network given in Figure 7.2 where A, B, C are the communicating
processes and ia,ab, ac, co are the ports. The actions of sending, receiving, and synchro-
nizing on the datum d over the port p are denoted by, respectively, p'd, p?d, and p#d. By
using these actions, the parallel composition operator _||_, and the immediate successful
termination predicate |, we specify the whole protocol as the term:

T =ia?d.(ab\d .« || acld . x)) || ab?d . x| || ac?d .cold . x| .
We present preg rules for _||_, in which act € {p'd, p?d, p#d}:

x5y y Sy xlyl

MySxly xllySxy @iyl

pd pd prd pd
X—x y—y X—Xx Yy—y

pHd pid
xlly—xlly xlly—x|y

Figure 7.3: preg rule system for _||_

The input for PREG Axiomatizer consists of:

PCX) , PCY)
o the predicate rule ==
PX IV

e all the instantiations of the first two transition rules in Figure 7.1 for which act
is an action from the set A = {ia?d, ab'd, ac'd, ab?d, ac?d, ab#d, ac#d, cold)
X -(a["ia?d"])-> X’
e.g. === , and
X||lY-(a["ia?d"]D—> X" || Y

164 Axiomatizations from SOS

e all the instantiations of the last two transition rules in Figure 7.1 in which p is a
X -(a["ab?d"])-> X’ , Y -(a["ab!d"])-> Y’
port from {ab, ac} |e.g., ===
X || Y -G["ab#d"])-> X’ || YV’

We generate the process network execution tree (consisting of 582 states) by calling the
command reduce on the specification term T:

> reduce ((a["ia?d"] . (a["ab!d"] . k[P] || a["ac!d"] . k[P])) ||
a["ab?d"] . k[P]) || a["ac?d"] . a["co!d"] . k[P] .
result PTerm: a["ab?d"] . (...) + a["ac?d"] . (...) + a["ia?d"] . (...)
The parallel composition allows for arbitrary interleavings of the actions in ‘A, but it does
not enforce the communication over the ports ab and ac. Hiding these ports so that other
processes cannot interfere with the internal communications is desirable. This can be done
with the help of a generalization of the restriction operator dgq presented in Section 7.1,
denoted by dsq, that preserves the imposed restrictions on actions throughout the whole
computation, not only for the first step. Forbidding independent send and receive actions
over the ports ab and ac is denoted by the term g{pld,p?d \petabac),0(T). In PREG Axiomatizer
we use %%[B;Q] as a syntactic notation for dsa:

> reduce %%[a["ab?d"] a["ab!d"] a["ac?d"] a["ac!d"] ; empty](
(C a["ia?d"] . (a["ab!d"] . k[P] || a["ac!d"] . k[P1)) ||
a["ab?d"] . k[P]) || a["ac?d"] . a["co!d"] . k[P]) .

result PTerm: a["ia?d"] . (a["ab#d"] . a["ac#d"] . a["co!d"] . k[P] +

a["ac#d"] . (a["ab#d"] . a["co!d"] . k[P] +
a["cold"] . a["ab#d"] . k[P]))

We also tested our tool by generating the normal form of a°.xc || b%.x| || ¢.x; and obtained

the same “2 page long” execution tree showed in [28], consisting of 6927 states. Maude

derives this execution tree in less than 500 milliseconds on a machine with a 2.53GHz

processor and 4GB of RAM.

Example 7.2.3. We now show how PREG Axiomatizer is used in order to perform

equational proofs when working with predicates that have implicit behaviour. Consider,

for instance, the case of the eventual successful termination predicate 4. It represents

the extension of |, introduced in the previous examples, with the requirement that if t 4

holds for a term t, then a.t 4 holds for any action a.

Recall from Section 7.1 that our approach is based on denoting the property % by using the
explicit process constant k. as a summand of the analyzed term. The above characterization
of % is given by the axiom a.(t + x.) = a.(t + ;) + x5. With this in mind, one could check,
for instance, if a process t “eventually terminates” by checking if it is bisimilar to t + x.

In order to prove that a.x. || b.x. is bisimilar to (a.x, || b.x.) + x, we need to let the tool
“know” that it should treat 4 (denoted by Q in the specification) as an implicit predicate

Eugen Ioan Goriac 165

by using the operation expandImplicit. This operation receives a term and the set of
implicit predicate names:

> reduce expandImplicit(a . k[Q] || b . k[Q], Q ==
expandImplicit(a . k[Q] || b . k[Q] + k[Q], Q .
result Bool: True

> reduce expandImplicit(a . k[Q] || b . k[Q], Q .
result PTerm: k[Q] + a . (k[Q] + b . k[Q]) + b . (k[Q] + a . k[Q])

Predicates with implicit behaviour, like 4, can only be used during the normalization
process if the operators whose definition involves these predicates are given by rules that
satisfy certain sanity constraints mentioned in Chapter 3. The tool does not currently
support the automated checking for those constraints, so the user needs to do it manually
before using the feature presented above. The parallel composition operator does meet
those constraints.

7.3 Discussion and Future Work

Aside from the features mentioned in Section 7.2, an important part of the PREG
Axiomatizer engine is dedicated to checking for the conformance of specified

operations and rules to the various formats presented in Chapter 3.

There are many areas in which the tool and the theory behind it can be improved.
First and foremost, an important feature would be to allow the user to specify
guarded recursively defined terms therefore greatly increasing the complexity of
the case studies our tool can handle. The most natural way to extend our approach
in order to reason about the bisimilarity of such terms is to integrate the technique
presented in [6], which is also based on generating complete axiomatizations for
a class of GSOS languages generating regular behaviours. The main difficulty of
this task will be the search for good strategies for applying the axioms and the

unique fixed-point induction rule.

Another tool development direction is concerned with the ability to automati-
cally check if the specification meets certain complex requirements. One of these
requirements is, as presented in Section 7.1, the syntactic well-foundedness of

the given system. Without this feature the user needs to be careful not to spec-
a 4
: . X— X
ify operators such as the reentrant server |_, defined by the rule EErE— for
Ix— x ||!x
which non-normalizing axioms are derived: !x =!"(x,x) , !(a.x’,x) = a.(x"||x).

166 Axiomatizations from SOS

Another requirement the tool could check for consists of the sanity constraints we

mentioned in Example 7.2.3.

167

Chapter 8

Meta SOS - A Maude Based SOS
Meta-Theory Framework

8.1 Introduction

Structural Operational Semantics [122] is a well known approach for intuitively
specifying the semantics of programming and specification languages by means
of rules. These rules can be analyzed using meta-theoretic results in order to
infer certain properties about language constructs by purely syntactic means.
Research on SOS meta-theory has at its core the development of rule formats that,
if respected, will guarantee that some language constructs have certain properties,
such as commutativity, associativity, and idempotence. We refer the reader to [23]
for an overview on how to derive these properties as well as axiomatizations.
Rule formats can also be used to obtain congruence properties for behavioural
equivalences (see, e.g., [14]) and semantic properties such as determinism of
transition relations [5].

Despite the large body of research on the meta-theory of SOS, to the best of our
knowledge, there currently does not exist an extensible software tool integrating
the results obtained so far in that research area. (We briefly review some of the
existing software tools below.) This is an unsatisfactory state of affairs since such
a software framework would allow language designers to benefit from the re-
sults in the meta-theory of SOS while experimenting with their language designs.
The design of programming and specification languages is a highly non-trivial
endeavour and tool support is needed in order to support prototyping of lan-

guage designs, their algorithmic analysis and early checking of desired semantic

168 Axiomatizations from SOS

properties. The meta-theory of SOS provides, for example, syntactic criteria guar-
anteeing the validity of semantic properties, but checking such criteria by hand is
error prone and quickly becomes infeasible.

Contribution In this paper we introduce Meta SOS!, a framework for han-
dling SOS specifications, with the purpose of performing simulations, deriving
axiomatizations, and checking for rule formats. Though it has a different line
of implementation, Meta SOS continues the work we started with a prototype
named PREG Axiomatizer (see Chapter 7), dedicated to deriving axiom systems
from SOS specifications.

We are aware of other software tools that are somewhat related to Meta SOS. In
[114] the authors show how to prototype SOS meta-theory in Maude [59]. That
paper was a good point of reference for us both for implementation details and
future work ideas. The Process Algebra Manipulator (PAM) [99] is designed to
perform algebraic reasonings on programs written only in CCS [106], CSP [95]
and LOTOS [54]. PAM does not allow the user to define their own language.
The Maude MSOS Tool (MMT) [57] does provide this facility, however it does
not focus on axiomatizations or rule formats, and, unfortunately, neither does
it facilitate a natural extension with new features. LETOS [87] is a lightweight
tool to aid the development of operational semantics, which supports execution
and tracing, as well as quality rendering using IKIgX. LETOS makes some first
steps towards checking operational conservativity along the lines proposed in the

paper [86].

Structure The rest of the paper is organized as follows. In Section 8.2 we present
some preliminaries on SOS, Maude and Meta SOS. Section 8.3 describes the
three components the framework currently provides: a simulator and bisimilar-
ity checker (Section 8.3.1), a sound and ground-complete axiom schema deriver
(Section 8.3.2), and a commutativity format checker (Section 8.3.3). It also includes
Section 8.3.4, where we present a case study that integrates all the previously men-
tioned components, and Section 8.3.5, where we briefly show how to extend the
framework with more functionalities. Finally, Section 8.4 concludes the paper and
points out possible directions for future research.

1 The framework is downloadable from http://goriac.info/tools/meta-sos/.

http://goriac.info/tools/meta-sos/

Eugen Ioan Goriac 169

8.2 Preliminaries

Maude [59] is a high-level language providing support for specifying multi-sorted
signatures, equational and rewrite theories. Not only is it an excellent environ-
ment to perform reasonings with these theories at object level, but also, due to
its reflective capabilities, to analyze and operate with them at meta-level. Pre-
vious efforts from [57, 114, 130, 137] and Chapter 7 have shown its suitability in
facilitating SOS specifications.

Meta SOS is implemented in Maude as a metalanguage application [83]. This
means that the framework extends Maude with capabilities such as providing
SOS specifications and operating with them. After opening the Maude environ-
ment and loading the framework by using the command load metasos.maude, a
specification is given using the standard syntax for inputting functional modules:
(fmod SPECIFICATION is ... endfm), where “...” consists of constructs that are

discussed in the remainder of the paper.

We assume a signature X, which is a set of function symbols with fixed arities
(typical members: f, g). Function symbols with arity 0 are referred to as constants.
Moreover, we assume an infinite set of variables V (typical members: x,).

Open terms are inductively built using variables and function symbols by respect-
ing their arities. The set of open terms is denoted by T(X) (typical members:
s, t). By T(X) we denote the set of terms formed without variables, referred to as
closed terms (typical members: p,q). Substitutions, which are functions of the type
o : V — T(X), have the role of replacing variables in an open term with other
(possibly open) terms.

Meta SOS has a basic set of sorts. One of them represents the domain of process
terms T(X) and has the name PTerm. It is important to note that we did not use the
name Term due to it being reserved for operating at meta-level with general terms
formed using Maude multi-sorted signatures. In order to have access to the sort
PTerm one needs to include a core Meta SOS module named RULES in the spec-
ification: including RULES . Operations are given using a standard syntax. For
instance, the following construct declares a binary operation f over process terms:
op f : PTerm PTerm -> PTerm [metadata "sos"] . Notice the use of the attribute
in square brackets, which makes it possible for f to be used in SOS specifications.

Variables are also given using a standard syntax: var x y : PTerm .

170 Axiomatizations from SOS

8.2.1 Transition System Specifications in Meta SOS

We will now describe how transition system specifications are expressed in
Meta SOS.

Definition 8.2.1 (Transition System Specification). Consider a signature X. and a set
of labels L (with typical members I,I'), t,t' € T(X) and | € L. A positive transition
formula is a triple (t,1,1'), written t KN t', with the intended meaning: process t performs
the action labelled as | and becomes process t'. A negative transition formula is a tuple
(t,1), written t b, with the meaning that process t cannot perform the action labelled as 1.

A transition rule is a pair (H, o), where H is a set of formulae and « is a formula. The

formulae from H are called premises and the formula « is called the conclusion. A

transition rule is often denoted by — and has the following generic shape:
!

. 1
St liel Ut |je])

tS e
where 1,] are index sets, t,t',t;, t,t; € T(X), and 1;,1; € L. A transition system
specification (abbreviated TSS) is a triple (X, L, R) where T is a signature, L is a set of
labels, and R is a set of transition rules of the provided shape.

In Meta SOS, positive and negative formulae are denoted by expressions such as
t -(1)-> t’ and t -(1)/>, respectively. Here t, t’ are variables of sort PTerm and

H
1 is a variable of another provided sort, PLabel. A transition rule — is declared as
c
H === ¢, where H consists of a (possibly empty) list of comma-separated formulae.
The entire set of transition rules is given as a list of rules wrapped in a Maude

membership axiom declaration: mb ... : PAllRules .

To exemplify a full Meta SOS specification, consider the BCCSP system from [79].
Its signature Ypccsp includes the deadlock process 0, a collection of prefix operators
I._(I € L) and the binary choice operator _+_. Fora fixed L = {a, b, c}, the deduction
rules for these operators are:

i I
X—Xx y—=y

z z , wherel € L.
lx—>x x+y—->x x+y->y

Eugen Ioan Goriac 171

(fmod SPECIFICATION is including RULES . mb

op ©® : -> PClosedTerm . 1 . x-(D—>x
op _._ : PLabel PTerm -> PTerm
[metadata "sos"] . x -(L-> x’
op _+_ : PTerm PTerm -> PTerm ===
[metadata "sos"] . Xx+y -(D->x’
ops a b ¢ : -> PAction . y -(D->y’
var X y x' y’ : PTerm . X +y -(1)->y’ : PAllRules .
var 1 : PLabel . endfm)

As illustrated, Maude provides good support for working with operators in infix
notation. As an improvement over PREG Axiomatizer (see Chapter 7), we use the
generic label 1 of sort PLabel as syntactic sugar, instead of writing rules for each
of the three concrete actions. These actions are declared as constants — operations
without a domain, of sort PAction, which is a subsort of PLabel described later
starting with Section 8.3.1. (We can have other types of labels, not just actions.)
The deadlock process is also declared as a constant of sort PClosedTerm, which
stands for T(X) and is declared internally as a subsort of PTerm.

8.3 Meta SOS Components

Though Meta SOS is conceived as a general SOS framework, we have so far
limited our development to case studies involving only GSOS systems [49]. These
systems have certain desirable properties and, in spite of their restricted format,
they cover most of the operations in the literature [14].

Definition 8.3.1 (GSOS rule format). Consider a process signature ©.. A GSOS rule p
over ¥ has the shape:

{xiiyiﬂiel,]'eli}u{xi‘lf‘i’ lielje]i
f@ S Clz

where all variables are distinct, f is an operation symbol from X with arity n, I,] C

7

{1,...,n}, I,]; are finite index sets, the l;;’s and | are labels standing for actions ranging
over the set L, and C[X, /] is a Z-context with variables including at most the x;’s and
ij's.

A GSOS system is a TSS (X, L, R) such that ¥ and L are finite, and R is a finite set of
rules in the GSOS format.

172 Axiomatizations from SOS

The operational semantics of a TSS in the GSOS format is given in terms of a
labelled transition system (LTS), whose transition relations are defined by struc-
tural induction over closed terms using the rules. An essential property we make
use of is that LTS’s induced by GSOS systems are finitely branching [49]. It is easy
to see that BCCSP respects the GSOS format.

In what follows we present three main features provided by the Meta SOS frame-

work.

8.3.1 Simulator and Bisimilarity Checker

The purpose of the simulator associated to a TSS is to find all transitions for a
given closed term. Formally, the simulator finds, for a given closed term p, all
the labels [and closed terms p’ such that p 5 p’. This is a slightly more general
approach than the one in [114], where the user needs to give not only the initial
term, but also the label as input.

To illustrate how to use the simulator, consider _ ||_, the interleaving parallel
composition without communication. We want to also define its behaviour in
the context of the termination predicate |. As Meta SOS does not currently
provide direct support for working with predicates, unlike PREG Axiomatizer, we
model predicate satisfiability by means of transitions. By adding the termination
predicate trigger as a label, the rules for the prefix and choice operators remain

the same. The rules for interleaving parallel composition are:

a ., a , ! ’ { /
X—X y—>y X—X y_)y

ySclly xlySxlly xlly>o0

Here a stands for any of the considered actions from the set {1, b, c}, but not for
the termination predicate trigger. Also, we want to make sure that the last rule
is applied only for |, but for none of the actions. To specify this we enhance the
previous specification with a new sort for predicates as a subset of labels, add the

termination predicate, a variable ranging only over actions, and the rules:

Eugen Ioan Goriac 173

sort PPredicate . op | : -> PPredicate .
subsort PPredicate < PLabel . var alpha : PAction .

x -(alpha)-> x’ y -(alpha)-> y’

x || y -(alpha)-> x’ || ¥y x || y -(alpha)-> x || y’

,y Yy (D> vy’
x|y -()->0

We first need to set up a simulator (derive simulator SPECIFICATION .). Not
only does this prepare the metalanguage application to perform simulations, but
also outputs a pure Maude specification that can be used outside the Meta SOS
environment for simulations within the specified system. The advantage of using
this generated simulator is a minor gain in performance due to the elimination
of the overhead that comes with any metalanguage application. In addition, this
allows for the use of Maude tools such as the reachability analyzer and the LTL

model checker.

To perform a one step simulation for a given term we use the command (simulate

.). For instance, the concrete call to observe how p = .0 || 2.0 is simulated is
(simulate | . ® [| a . 0 .). The outputis a list of pairs of the shape <[#p" >,
where [is a label of a provable transition and p’ is the resulting term. In our case
the outputis: Possible steps: < a # | . 0 || 8 > Note that due to our making
a clear distinction between actions and predicates only one of the rules involving
actions is applicable. The term (] .0 + 0.0) || (c.0+ | .0), on the other hand, does

involve all the specified rules:

> (simulate | . O +b . 0 || c .0+ | .0 .)

Possible steps:

<b#0 || c .0+]| . 0 >
<c# | .09+b .0 |] 0>
< | #0 >

From the implementation perspective we tackled one of the issues suggested as
future work in [114]. The caveat of the tool presented in that paper is that the
user needs to provide term matching and substitution definitions by hand for
every operator. Our approach uses and extends Maude’s meta-level functionality
of working with substitutions in such a way that it becomes transparent to the

user.

As the idea of rewrite-based SOS simulators has already been explored in [57,

114, 137], we focused only on performing one step simulations. Having that

174 Axiomatizations from SOS

functionality, it was natural to derive a strong bisimilarity checker that implements
the following definition.

Definition 8.3.2 (Strong Bisimilarity [120]). Consider a TSST = (X, L, R). A relation
R € T(X) X T(X) is a strong bisimulation if and only if it is symmetric and

l ’ l ’ /7
Voulp,9) ER= (Vipp—p = Apg—q A (q,9) €R).

Two closed terms p and q are strongly bisimilar, denoted by p <7 q, if there exists a
strong bisimulation relation R such that (p,q) € R. Whenever T is known from the
context, we simply write p £ q.

In [49] it is shown that bisimilarity is a congruence for GSOS systems and that
the labelled transition systems defined using these systems are finitely branching.
These properties are necessary when checking for strong bisimilarity by means of
the axiom schema that we will present in Section 8.3.2. Before that, let us present
how to check strong bisimilarity using Meta SOS.

In order to check if, for instance, 2.0 || b.0 < a.b.0 + b.a.0 holds, we use the
command

> (check (a . ® || b.®® ~CG.b.0+b.a. 0O .)
result: true.Bool
The algorithm is a straightforward Maude implementation of Definition 8.3.2.

The Maude specification output when setting up the simulator also includes the
bisimilarity checker. Running this specification allows one to directly use the
functions that implement the simulator and bisimilarity checker features, which
have the same name as the user interface commands. These are called using

reduce in the core Maude environment: reduce simulate and reduce check

~

The bisimilarity checker does not currently handle process terms with infinite
behaviour. The module presented in the next section, however, can check if two

terms from Xpccsp, defined using guarded recursion, are bisimilar.

8.3.2 Axiom Schema Deriver

As an alternative method for reasoning about strong bisimilarity, Meta SOS in-
cludes a component for generating axiom schemas that are sound and ground-

Eugen Ioan Goriac 175

complete modulo bisimilarity. There has been a notable amount of effort put into
developing algorithms for axiomatizations for GSOS-like systems [6, 35] (also see
Chapter 3), yet all involve several transformations of the original system before
deriving the axioms. After implementing one such algorithm in the tool PREG
Axiomatizer (see Chapter 7), a simpler method was developed in Chapter 4. We
slightly adapt that approach here by using an extended version of the prefix op-
eration and by also showing how to axiomatize operations defined using rules

with negative premises, not just positive ones.

When given a signature L that includes Zpccsp, the purpose of an axiomatization
of strong bisimilarity is to rewrite each term t € T(X), that is semantically well
founded in the sense of Definition 5.1 from [6], to another term ' such that t &t/
and t' € T(Xpccsp). This reduces the problem of axiomatizing bisimilarity over
T(X) to that of axiomatizing it over BCCSP. It is well known [92] that the following
axiomatization (denoted by Epccsp) is sound and ground-complete for bisimilarity
on BCCSP:

X+y=y+x X+x=x

x+y)+z=x+(y+2) x+0=x
In order to set up Maude to perform equational reasoning using Egccsp, we can de-
clare that_+_is associative and commutative so that rewrites are performed mod-
ulo these two properties: op _+_ : PTerm PTerm -> PTerm [assoc comm metadata
"sos"] . Also, even though we could specify idempotence and identity element
as attributes, for performance reasons we add the last two equations explicitly
to the specification: eq x + x = x . eq x + 0 = x . For convenience Meta SOS
already includes a module with the signature and equations for BCCSP named
ET-BCCSP that can be included in the specification. For this reason, the names . and
+ are reserved, which means that if the user wants to specify his/her own version
of the prefix and choice operations some other names need to be used.
Definition 8.3.3 (Head Normal Form). Let X be a signature such that Lpccsp € L. A
term t in T(X) is in head normal form (for short, h.n.f.) if t = }.;; li.ti. The empty sum
(I = 0) is denoted by the deadlock constant 0.
Definition 8.3.4 (Disjoint extension). A GSOS system G’ is a disjoint extension of a
GSOS system G, written G C G, if the signature and the rules of G’ include those of G,
and G’ does not introduce new rules for operations in G.
Definition 8.3.5 (Axiomatization schema). Let 7 = (X,L,R) be a TSS in GSOS
format such that BCCSP E 7. By Eq we denote the axiom system that extends Epccsp

176 Axiomatizations from SOS

with the following axiom schema for every operation f in T, parameterized over the vector
of closed process terms ff in h.n.f.:

H
f@:Z%Qiﬂ‘:——————
PP R S

where v is defined as (i, p) = Npep ¥ (r ks p),

€ R p=0(x),q=o(y) and V(7 P)}/

and V| v, k,

l,“ . . li' . .
iy lieljeli b licjel|
1 > B
f@ 5 CIZ, 71
if k € I then Ve, Iy prer(sy) Pr = ljop’ +p” and
ifk € [then ¥e;, Yy prerep) Pr Z Ljp’ + 17,
where = denotes equality up to Epccsp.

Intuitively, the axiom transforms f(p) into a sum of closed terms covering all its
execution possibilities. This is akin to Milner’s well known expansion law for
parallel composition of head normal forms. In order to obtain them we iterate
through the set of f-defining rules and check if {/ satisfies their hypotheses by
means of V. The predicate v/ makes sure that, for a given rule, every component
of 7/ is a term with enough action prefixed summands satisfying all the positive
premises that involve the component, and no summands prefixed with the actions
from any of the corresponding negative premises.

Theorem 8.3.1. Consider a TSS T = (X, L, R) that is semantically well founded in the
sense of [6, Definition 5.1], such that BCCSP C 7. Eg is sound and ground-complete
for strong bisimilarity on T(Xp).

Proof. Soundness follows in the standard fashion. Every transition f(p) can per-
form is matched by the right hand side of the equation and vice versa due to the

natural derivation of the execution tree according to the defining rules.

As shown in [6], in order to prove ground-completeness of an axiom system, it is
sufficient to show that it is head normalizing, which means that it can bring any
closed term to a h.n.f. Note that the axiomatization presented in Definition 8.3.5

always derives terms in h.n.f. O

In order to generate a Maude equational theory for the operations in a specifi-
cation we use the command (derive axiom schemas SPECIFICATION .). Just like
in the case of the simulator component, the command both prepares the envi-
ronment to perform equational reductions according to the generated axioms,

and outputs a Maude specification that can be used externally, independently

Eugen Ioan Goriac 177

of the environment. The generated equational theory has the name of the spec-
ification with the suffix “-SCHEMA” and is selected using the command (select
SPECIFICATION-SCHEMA .).

The standard command reduce derives the normal form of a given closed term.
For example, having loaded the specification of _||_ from Section 8.3.1, this is how

we obtain the normal form of 4.0 || b.0:

> (reduce a . ® || b . 0 .)
result PClosedTerm : a . b . ®+b . a . 0

To illustrate what the axiomatizations look like, consider a general binary opera-

tion between labels mix and an operation g defined as:

ko, 1, 1k |
x—=>x" y—=>y x-» y-» x—->x y—oy

mix(k,) , l
g y) = X +y 80, y)—0
The first equation derives a sum of new operations, g; and g, one for each rule
defining g. These new operations have the same domain as g, only extended with
one parameter that will ultimately hold the tree of all execution paths that start
with the corresponding rule — its head normal form. Initially this parameter is set
to 0.

eq g(x,y) = g1(x,y,®) + 92(x,y,0) .

Let us first present the axiom for g;, which is given as a standard Maude condi-
tional equation, and then discuss all of its aspects.

ceq g1(x,y,SOLUTION) = g1(x,y,SOLUTION’) --- (0)
if k. x + x1 := x + dummy -—— (D
/N1 .y + x2 =y + dummy -——— ()
/\ not(x can 1) -—— (3
/\ not(y can k) -——— (D)
/\ NEW-SUMMAND := mix(k, 1).(x’ + y’) (D
/\ SOLUTION’ := SOLUTION + NEW-SUMMAND --- (6)

/\ SOLUTION =/= SOLUTION’ --- (7)

Condition (1) requires that the first parameter satisfies the formula x 5 ¥, The
variable x needs to be matched by a term that has k.x’ as a summand (x; is a
generic variable of sort PTerm). If x is exactly of the shape k._ then Maude cannot
find a match between k.x” + x; and x, not knowing that it can assign 0 to x;, which
explains the use of a constant of sort PTerm denoted by dummy added as a summand
on the right hand side.

178 Axiomatizations from SOS

Condition (3) requires that x satisfies the formula x-». The natural inductive
definition of the operation can is included in the module ET-BCCSP:

op _can_ : PTerm PLabel -> Bool .

eq 0 can 1 = false .

eq x+y)canl = (xcan 1) or (y can 1) .
eq (1 . x) can 1 = true .

ceq (1 . x) can k = false if 1 =/=k .

If conditions (1) — (4) are satisfied, then the premises of ¢’s first rule are met. This
means that mix(k, [).(x’ +1’), set at line (5) as the value for the variable NEW-SUMMAND,
has to be a summand of the resulting head normal form. This head normal form is
computed incrementally, by finding such summands individually, using the third
parameter of g;: SOLUTION and SOLUTION’ hold the head normal forms computed
before and, respectively after the current call of g;. The aforementioned summand
is added only if it is not already part of SOLUTION (conditions (6)—(7)). Should all
conditions hold, a recursive call of g; is initiated (line (0)).

An important fact to keep in mind is that, in the specification, for any given rule,
the labels of negative transitions given as variables need to also appear on some
of the positive ones. For instance, had we not had the premise x L ¥, wherekisa
variable over the set of labels L = {a, b, c}, it would have been impossible to tell if
condition (4) is met due to the missing assignment for k that should have resulted
when evaluating condition (1). Itis possible, however, to have a rule with negative
premises labelled directly with constants, without the need for those constants to

appear in other premises of the same rule.

If any of the conditions (1) - (4) does not hold, or if no new solution is found, then
the following base-case equation is called:

eq gl(x,y,SOLUTION) = SOLUTION [owise]

The equations for g, are generated in a similar fashion:

ceq g2(x,y,SOLUTION) = g2(x,y,SOLUTION’)
if 1 . x" + x1 := x + dummy

/N1 .y + x2 :=y + dummy

/\ NEW-SOLUTION :=1 . O

/\ SOLUTION’ := SOLUTION + NEW-SOLUTION
/\ SOLUTION =/= SOLUTION’

eq 92(x,y,SOLUTION) = SOLUTION [owise]

In Meta SOS one can also specify recursive processes. If two such processes are
given in BCCSP with guarded recursion in order to determine whether they are

Eugen Ioan Goriac 179

bisimilar, the user can call a decision procedure implementing a unique fixed point
induction algorithm. Currently the user needs to make sure that the guardedness
condition is met.

By way of example, consider the following transition systems.

OUEB @G
D

We specify this behaviour in Meta SOS by means of the reserved operation
def:

ops pl p2 p3 ql g2 : -> PClosedTerm . ops i o : -> PAction .

eq def(pl) =i . p2 . eq def(ql) =i . g2 .
eq def(p2) =i . p3 +o0 . pl . eq def(g2) =i .93 +o0 . g4 .
eq def(p3) = o . p2 . eq def(g3) = o . g2 .

eq def(g4) =i . g2 .

The command (reduce areEqual(pl, q1) .) checks whether p; and ¢; are bisim-
ilar. The output in this case is the pair < true ; < pl ; ql > < pl ; g4 > < p2
; 92 > < p3 ; q3 > >, where the first element of the pair indicates whether the
processes are bisimilar, and, if this is indeed the case, the second one is a repre-
sentation of the found bisimulation.

8.3.3 Commutativity Format Checker

Besides automatically deriving sound and ground-complete axiomatizations, the
focus of Meta SOS is also to check for algebraic properties of operations, by
design. We have implemented a component that analyzes the provided SOS
specification in order to find binary operations that are commutative. We adapt
the format for binary operations from [117] to GSOS systems that may have
negative premises.

Definition 8.3.6 (Commutativity). Given a TSS and a binary process operator f in its
process signature, f is called commutative w.r.t. a relation ~, if the following equation
is sound w.r.t. ~:

f(xo,x1) = f(x1,%0).

180 Axiomatizations from SOS

Definition 8.3.7 (Commutativity format [117]). A transition system specification over
signature X. is in comm-form format with respect to a set of binary function symbols
COMM C X if all its f-defining transition rules with f € COMM have the following
form

{xiiyi]‘ |l€ {0,1},j€1i}u{xi_l£) |Z€ {0,1},j€]i}
(o)

f(xo, x1) St
where I; and J; are finite index sets for each i € {0, 1}, and variables appearing in the source
of the conclusion and target of the premises are all pairwise distinct. We denote the set of
premises of (¢) by H. Moreover, for each such rule, there exist a transition rule (¢’) of the
following form in the transition system specification

20
(c) z

flgx) =t
and a bijective mapping (substitution) i on variables such that (1) h(xy) = x; and
hi(x}) = xo, (2) B(t') ~ tand (3) (k') € H, for each i’ € H'. Here ~ .. means equality up
to swapping of arguments of operators in COMM in any context. Transition rule (c’) is
called the commutative mirror of (c).
Theorem 8.3.2 (Commutativity for comm-form [117]). If a transition system spec-
ification is in comm-form format with respect to a set of operators COMM, then all

operators in COMM are commutative with respect to strong bisimilarity.

We implement an algorithm that, for a given operation, searches for all of its
rules that are commutative mirrors. It is well known that parallel composition
is commutative. To check this using our tool we load the specification presented
in Section 8.3.1 and call (check formats SPECIFICATION .). The output shows
that the first two rules defining _||_ are commutative mirrors, and that the third
rule involving the termination predicate | is a commutative mirror of itself, by
pointing out the bijective mapping:

|ll is commutative:

x -(alpha)-> x’ y -(alpha)-> y’

=== mirrors ===

x || 'y -(alpha)-> x’ || y x ||y -(alpha)-> x || y’
with: alpha <- alpha x’ <-y’ x<-y y <-Xx' y<-X

x -(D->x" , y -(D->y’ x -(D->x" , y-(D>y’

=== mirrors ===
x[ly-(D->0 x|[ly-C()->0

Eugen Ioan Goriac 181

with: x’ <-y’ x<-y y <-x" y<-xX

What Meta SOS does internally is to generate a Maude theory that has the name
of the specification with the suffix “~-FORMATS”. It is the same as the initial specifi-
cation, only that all the "sos" operators that are found commutative are enhanced
with the attribute comm. This is of use both when having to perform rewrites mod-
ulo commutativity involving those operations, and as meta-information for future
components that may need it. One of these components could, for instance, be
dedicated to optimizing axiomatizations, using the approach presented in Chap-
ter 5.

An important thing to remark is that the label mapping alpha <- alpha appears
amongst the process variables mapping. The reason we extend the mapping to
labels too is the fact that the user should not be forced to use the same variable
name for matching premises of different rules. We would thus find that the first
two rules are commutative mirrors even if they had different variables for actions,

e.g. alpha and beta, respectively.

Aside from giving the user more freedom when choosing names for label vari-
ables, extending the mapping to labels is actually necessary for proving that some
operators are commutative. Consider, for example, the operation g introduced in
Section 8.3.2 and assume that the operation mix over labels is declared as commu-
tative. Suppose label variables were not taken into account when searching for
commutative mirrors. Then there would be no way of directly proving that g is
commutative, unless the user specified the 6 instantiations of the first rule for g,
involving the concrete action labels 4, b, c.

> (check formats SPECIFICATION .)
g is commutative:

x-k)—>x7,y-(D->y’ ,x-(D) />,y-Kk) />

g(x,y) -(mix(k,1))-> x’ +y’
mirrors

x-K)—>x7,y-(D->y’ ,x-) />,y-Kk) />

gx,y) -(mix(k,1))-> x’ + y’

with: k<-1 1<-k x" <-y’ x<-y y’ <-%x" y<-xX

x -D->x" , y -W->y’ x -D—>x" , y -W->y’
=== mirrors ===

182 Axiomatizations from SOS

g(x,y) -(1)-> 0 g(x,y) -(1)-> 0
with: 1 <-1 x' <-y’" x<-y y <-x y<-Xx

If we look at the first rule, note that when applying the substitution on labels, in
order to check for the commutativity format, we need to make sure that mix(k,1)
and mix(1,k) stand for the same label. This holds in our case because we do not
merely check for syntactic equality, but for equality within the algebra defined for

labels. Recall that we consider mix to be commutative.

The first rule is found as a mirror of itself based on the commutativity of _+_.
Had the consequent of the rule been of the shape x’ * y’ (_*_ being a new
binary operation), Meta SOS would have attempted to prove first that _*_ is

commutative.

8.3.4 Linda - Integrating Components

In this section we present another case study and show how easy it is to make
use of the functionality provided by all the previously described components. Let
us focus on the tuple-space based coordination language Linda [55] and its SOS

semantics, as given in [116].

Consider a minimalistic signature for the data component, Xp, that consists of
constants for tuples (typical members u,v) and two operations for working with
multisets of tuples: @ for the empty multiset and __ (blank) as a commutative and
associative binary separator for the elements from the multiset. The operation
__has 0 as identity element. We prefer to use constructs instead of the standard
mathematical ones (braces “{”, “}” for set separators, commas “,” for separating
elements within a set, and set union operator “U”) for implementation purposes.
For instance, the multiset {u, v} U {u} U 0 is written as u v u) in T(Xp), which
is the same as u v u because 0 is the identity element. (That is actually the
standard Maude notation for sets and multisets.) This is how we declare the
above mentioned signature:

sort PData PClosedData . subsort PClosedData < PData
op empty : -> PData .

op __ : PData PData -> PData [assoc comm id: empty]
ops u v : -> PClosedData .

Linda has several constructs for manipulating a shared data component of the

language:

Eugen Ioan Goriac 183

e ask(u) and nask(u) check, respectively, whether tuple u is (or is not) in the
data space,

o tell(u) adds tuple u to the data space,
e get(u) removes tuple u from the data space.

The ask(u) and get(u) operations are blocking, in the sense that a process executing
them blocks if u is not in the data space. nask(u) is also blocking if u is in the data

space.

In Chapter 4 we show how to use labels for operating with the data component.
For Linda, the set of labels L is extended to triples of the from (d, —,d"), where d, d’
are open data terms from T(Xp), standing for the store before and, respectively,
after the transition. The language does not have actions, hence the use of the

1" 4

placeholder within the triple. As shown later, in order to have a finite set
of labels and rules, which is necessary to have a proper GSOS system, we use

symbolic names instead of open data terms.

Besides the four constructs for operating with the store, the language includes
the prefix operation I._ (for every [in L), nondeterministic choice _ +_, parallel
composition _ ||_, and sequential composition _;_, all in the context of the al-
ready introduced termination predicate |. Linda also comes with a successfully

terminated process, which we denote by | .0.

In order to handle the store, our approach of extending the prefix operation to
triples is slightly different from the one in Chapter 4. Though less intuitive, it is
easier to implement than the one involving two new operations, check and update,
because it requires no extra core axioms aside from those in Epccsp.

op < > : PData PAction PData -> PLabel . op - : -> PAction .

We first make sure that the SOS specification disjointly extends BCCSP, as required
by Theorem 8.3.1. The rules for Xpccsp are declared as presented in Section 8.2
because they are the same both for the extended labels and the termination pred-
icate.

Given that p is a variable to be replaced by any considered constant tuple, the

rules for the operations manipulating the data component are:

(Xp,~Xp W (XD W,~XxD)

1o el ™0 get(w) ™™ 0

(Xp u,~xp W)
ﬁ

ask(t)

184 Axiomatizations from SOS

Linda also has a basic operation named nask that checks if a tuple is not in the tuple
space. The operation, however, is defined using side conditions, and currently
we provide no support for such rules.

For the purpose of demonstration, we will only implement a limited and artificial

version of Linda:

ops ask tell get : PClosedData -> PTerm [metadata "sos"]
op d : -> PData .
var mu : PClosedData .

tell(mu) -(<d, -, (d mw)>)-> |.0
;;ﬂ(mu) -(<d mw), -, (dmw>)-> |.0
égz(mu) -(<dmuw), -, d>)-> |.0

The limitation consists in the use of a symbolic constant d, denoting a data term,
instead of a variable of the same sort. This is because in [77] it is presented
how to derive a sound and ground-complete axiomatization modulo a notion of
bisimilarity only for systems with a data component whose domain is a finite
set of constants, and not a (possibly infinite) set of open terms. In our case the
domain of the data component can be thought of as a set of constants, limited to

the number of tuples taken into account plus one (for the symbolic constant).

Using the constant d is also useful during the axiomatization process because
it helps avoiding generating equations with fresh variables on the right hand
side. For instance, according to the schema from Definition 8.3.5, the following
axiom tell(u) = {d,—,d p). | .0 is generated, and here it is required that 4 is not a

variable.
The rules for _||_ are very similar to those shown in Section 8.3.1, and those for
, are:
Xp,=Ap) L, (p,=Ap) L, L,
X — X x—=>x 'y =y x—=>x" Yoy
(xp,~xp) (xp,~xp) l
X5y D—>Dx’;y X5y D—>Dy’ x;y=>0

The rules for the last two operations do not introduce new names for data terms
on the consequent transitions (all the names are known from the premises), which

means that no axioms with fresh variables on the right hand side can be generated.

Eugen Ioan Goriac 185

Therefore it is safe to declare them using variables of sort PData instead of symbolic

constants.
op _;_ : PTerm PTerm -> PTerm [metadata "sos"]
var xD xD’ : PData .

x -(<xD,-,xD’>)-> x’

x;y -(<xD,-,xD’>)-> (x’;y)
x -(|)->x", y -(<xD,-,xD’>)-> vy’
x;y -(<xD,-,xD’>)-> y’

x -(D->x", y -(D->y’

A use case scenario involving all the components illustrated so far may start
with loading the specification for Linda and checking which operations are com-
mutative (check formats LINDA .). Remark that _;_'s commutativity cannot be

proven:

Could not prove commutativity for: _;_
Could not find commutative mirrors within:
x -(<xD,-,xD’>)-> x’

x;y -(<xD,-,xD’>)-> (x’;¥y)

x -(D->x", y -(<xD,-,xD’>)-> vy’

;:; -(<xD,-,xD’>)-> y’
x -(D—>x", vy -C(H->y’

x5y -(D—>vy

We could continue by deriving the axiom schema and determining the normal
form of a term such as ask(u) ; tell(v). Finally we can check if indeed the found

normal form is bisimilar to the initial term.

> (derive axiom schemas LINDA-FORMATS .)
> (select LINDA-FORMATS-SCHEMA .)
> (reduce ask(u) ; tell(v) .)

result PClosedTerm : <du,-,du>.<d,-,dv>. 1] .0
> (derive simulator LINDA-FORMATS .)
> (check (ask(u) ; tell(v)) ~ (<du,-,du>.<d,-,dv>.1.0) .)

result: true.Bool

186 Axiomatizations from SOS

8.3.5 Adding Components

Meta SOS is conceived in a way to be easily extended with new components.
Besides the three components presented in Sections 8.3.1, 8.3.2 and 8.3.3 the tool
includes a file named component-sample.maude which the user can adapt to imple-

ment a new desired functionality by following the patterns presented in [83].

In what follows, the name “sample” is generic and is meant to be replaced by some
other name suggesting the functionality of a new component. Each component
has two modules SAMPLE-LANG-SIGN and SAMPLE-STATE-HANDLING, dedicated for
the signature of the implemented commands and, respectively, their semantics.
Once implemented, the functionality is included in the Meta SOS framework by
following these steps: (1) in the file metasos-interface.maude the signature for the
new commands needs to be included in the METASOS-LANG-SIGN module and their
semantics needs to be included in the module METASOS-STATE-HANDLING, (2) in the
file metasos.maude the new component needs to be loaded just like the others: load

component-sample.maude.

It is worth mentioning that, in order to ease the development cycle, the framework
provides support for unit testing. It is beyond the scope of this chapter, though,

to present how to make use of this facility.

8.4 Conclusion and Future Work

Meta SOS addresses many of the extensions foreseen in [114]. Namely, it repre-
sents a core framework dedicated to implementing SOS meta-theorems, it pro-
vides support for generating axiomatizations, and it frees the user from imple-
menting matching procedures for specified language constructs. In its present
form, Meta SOS can handle languages whose operational specification is in the
GSOS format, such as most classic process calculi and Linda. Another aspect
addressed in [114] is the support for more general SOS frameworks that allow for
terms as labels, as well as multi-sorted and binding signatures. This would allow
the framework to handle name-passing and higher-order languages such as the
ni-calculus [129]. Though Meta SOS does not provide this kind of support yet,
the general way in which it handles labels is a good step towards that goal.

There are, naturally, many ways to improve and extend the tool. Besides checking
for the commutativity format, there are many other formats to check for: deter-

Eugen Ioan Goriac 187

minism and idempotence [5] (see also Chapter 6), zero and unit elements [10],
associativity [61], and distributivity [9]. Adapting PREG Axiomatizer and adding
it as a component to Meta SOS as presented in Section 8.3.5 would also be of
value due to its different approach to generating axiomatizations, and because it
includes a GSOS format checker. The axiomatization process could be enhanced
using the technique presented in Chapter 5. This would lead to smaller and more

natural axiom systems.

188

189

Chapter 9
Conclusions and Future Work

The theory of SOS has been evolving for over three decades, serving as a natural
way of providing and analyzing language semantics. The purpose of this work
was to continue this evolution by considering SOS rules with predicates and data,
and analyzing these rules in order to derive axiomatizations and properties of

language constructs.

In Chapter 2 we proposed a sound and ground-complete axiomatization modulo
stateless bisimilarity for Linda. This served as an introductory case study of a
language that has a data component, as well as a predicate. It also highlighted the
power of equational reasoning and the structure of ground-completeness proofs

in a concrete setting.

Chapters 3 and 4 then presented the context of extending GSOS systems with
arbitrary predicates and, respectively, data components, and how to automati-
cally generate ground-complete axiomatizations modulo strong and, respectively,
stateless bisimilarity for these systems. The work on predicates also includes a
thorough analysis on different types of predicates that can be specified, depending
on process execution paths. While considering systems with the store component
we also present how to lift already existing rule formats for algebraic properties

to this setting.

In Chapter 5 we presented an extension of the format for automatically identifying
operations with commutative arguments, and showed how to use it in order
to obtain smaller and more natural axiomatizations of bisimilarity over GSOS

languages.

190 Axiomatizations from SOS

Chapter 6 gave a contribution to the meta-theory of SOS rule formats for idem-
potence, and consists of a rule format for automatically identifying unary and

binary idempotent terms.

Chapters 7 and 8 represent the practical aspect of the current thesis. One presents
a tool for deriving axiomatizations for GSOS with predicates, while the other is
a core framework dedicated to integrating results from the meta-theory of SOS.
The framework currently includes modules for deriving axiomatizations for basic
GSOS specifications, performing simulations and identifying binary operators
that comply to a commutativity rule format.

Naturally, there are many ways to continue the development of the meta-theory

of SOS. We point out some important lines for future work.

e Axiomatizations for other notions of behavioural equivalence. Strong
bisimilarity is an instructive, but, in many cases, too a restrictive behavioural
equivalence relation. Weak bisimilarity, for instance, is a version of strong
bisimilarity that ignores silent moves and has more practical value. A viable
way of conceiving axiomatizations modulo weak bisimilarity is to begin
with formats for this notion of equivalence which guarantee that it is a
congruence, some of which are presented in [47, 80], and build upon the
results in [136], where an axiomatization for testing a preorder for arbitrary
De Simone languages is proposed.

e Considering other rule formats for optimizing axiomatizations. We have
shown that for commutative operations it is now easier to generate natural
axiomatizations that are close to those that already exist in the literature. The
question is whether other properties such as associativity or distributivity
can be used for the same purpose.

¢ Rule formats derived from laws. Much effort has been put into developing
rule formats for guaranteeing basic properties. It would be of interest to
investigate to which extent, for a given algebraic law, rule formats that

guarantee the law can automatically derived.

e Meta-theory of Nominal SOS. Many languages support concepts such as
variables, name abstraction (binding), or facilities for the recursive defini-
tion of processes. A line of research of considerable interest would be to
develop a meta-theory of SOS with these aspects, named nominal aspects
[71, 72, 121], building on [58, 67, 73, 97, 131]. So far there have been efforts

to integrate these in SOS meta-theories, which materialized in frameworks

Eugen Ioan Goriac 191

for establishing sufficient syntactic conditions guaranteeing the validity of a
semantic result (congruence in the case of [45, 67, 102, 140] and conservativ-
ity in the case of [103, 70]). However there are many aspects to be handled
before the meta-theory of Nominal SOS can reach that of classic SOS. De-
riving, for instance, a Nominal GSOS format that facilitates automatically
obtaining sound and ground-complete axiomatizations for suitable notions
of bisimilarity, as well as lifting already existing rule formats for algebraic

properties would be of great interest.

¢ Extending Meta SOS. Though the current features alone make Meta SOS a
useful tool, they represent but a fraction of the potential that the meta-theory
of SOS has. Checking for systems conformity to already existing rule for-
mats for pointing out the congruence of behavioural equivalences, algebraic
properties, or conservative extensions would be of value to language design-
ers and could be implemented within the framework by means of additional
modules. Optimizing axiomatizations and analyzing their performance is

also desirable.

192

193

Bibliography

[1]

2]

3]

[4]

[5]

[6]

[7]

Luca Aceto (1993): Deriving Complete Inference Systems for a Class of GSOS
Languages Generating Regular Behaviours. Report IR 93-2009, Institute for
Electronic Systems, Department of Mathematics and Computer Science,
Aalborg University, Aalborg. Also available as Computer Science Report
1/94, University of Sussex, January 1994. [cited at p. 119]

Luca Aceto (1994): Deriving Complete Inference Systems for a Class of GSOS
Languages Generating Regular Behaviours. In Bengt Jonsson & Joachim Par-
row, editors: Proceedings of the fifth International Conference on Con-
currency Theory (CONCUR’94), Lecture Notes in Computer Science 836,
Springer-Verlag, Berlin, Germany, pp. 449-464, doi:10.1007/BFb0015025.

[cited at p. 7, 32, 52, 53, 103, 106, 134]

Luca Aceto (1994): GSOS and finite labelled transition systems. Theoretical
Computer Science 131, pp. 181-195. [cited at p. 106, 134]

Luca Aceto (2007): Reactive systems: modelling, specification and verifica-
tion. Cambridge University Press. Available at http://books.google.
com/books?id=Ju®HM-2RIwgC. [cited at p. 1]

Luca Aceto, Arnar Birgisson, Anna Ingoélfsdéttir, Mohammad Reza
Mousavi & Michel A. Reniers (2012): Rule formats for determinism and
idempotence. Science of Computer Programming 77(7-8), pp. 889-907,
d0i:10.1016/j.scico.2010.04.002. [cited at p. 79, 95, 102, 132, 136, 140, 151, 167, 187]

Luca Aceto, Bard Bloom & Frits Vaandrager (1994): Turning SOS rules into
equations. Inf. Comput. 111, pp. 1-52, d0i:10.1006/inco.1994.1040. [cited atp.7,
31,32, 33, 38, 42, 43, 45, 48, 49, 50, 52, 53, 59, 60, 61, 62, 79, 84, 86, 87, 91, 103, 104, 106, 108, 115, 116, 117, 119, 120,

122,123,124, 125, 126, 134, 159, 161, 165, 175, 176]

Luca Aceto, Georgiana Caltais, Eugen-loan Goriac & Anna Ing6lfsdéttir
(2011): Axiomatizing GSOS with Predicates. In Michel A. Reniers & Pawel

http://dx.doi.org/10.1007/BFb0015025
http://books.google.com/books?id=Ju0HM-2RIwgC
http://books.google.com/books?id=Ju0HM-2RIwgC
http://dx.doi.org/10.1016/j.scico.2010.04.002
http://dx.doi.org/10.1006/inco.1994.1040

194

[8]

[9]

[10]

[11]

[12]

[13]

[14]

Axiomatizations from SOS

Sobocinski, editors: SOS, EPTCS 62, pp. 1-15, doi:10.4204/EPTCS.62.1.

[cited at p. 9, 33]

Luca Aceto, Georgiana Caltais, Eugen-loan Goriac & Anna Ing6lfsdéttir
(2011): PREG Axiomatizer — A Ground Bisimilarity Checker for GSOS with
Predicates. In: CALCO’11, pp. 378-385, doi:10.1007/978-3-642-22944-2_27.

[cited at p. 10]

Luca Aceto, Matteo Cimini, Anna Ing6lfsdéttir, Mohammad Reza Mousavi
& Michel A. Reniers (2011): Rule Formats for Distributivity. In Adrian Horia
Dediu, Shunsuke Inenaga & Carlos Martin-Vide, editors: Language and
Automata Theory and Applications - 5th International Conference, LATA
2011, Tarragona, Spain, May 26-31, 2011. Proceedings, Lecture Notes in
Computer Science 6638, Springer, pp. 80-91, doi:10.1007/978-3-642-21254-

3_5. [cited at p. 79, 95,102, 132, 136, 187]

Luca Aceto, Matteo Cimini, Anna Ingoélfsdétti, Mohammad Reza
Mousavi & Michel A. Reniers (2011): SOS rule formats for zero and
unit elements. Theoretical Computer Science 412(28), pp. 3045-3071,
doi:10.1016/j.tcs.2011.01.024. [cited at p. 79, 95, 102, 132, 136, 162, 187]

Luca Aceto, Wan Fokkink, Anna Ingélfsdéttir & Bas Luttik (2005): Finite
Equational Bases in Process Algebra: Results and Open Questions. In: Processes,
Terms and Cycles, Lecture Notes in Computer Science 3838, Springer, pp.
338-367, doi:10.1007/11601548_18. [cited at p. 104, 126]

Luca Aceto, Wan Fokkink, Anna Ing6lfsdéttir & Bas Luttik (2009): A finite
equational base for CCS with left merge and communication merge. ACM Trans.
Comput. Log. 10(1), d0i:10.1145/1459010.1459016. [cited at p. 126]

Luca Aceto, Willem Jan (Wan) Fokkink & Chris Verhoef (2001): Conservative
Extension in Structural Operational Semantics. In Gheorghe Paun, Grzegorz
Rozenberg & Arto Salomaa, editors: Current Trends in Theoretical Com-
puter Science - Entering the 21st Century, World Scientific, Singapore, pp.
504-524, doi:10.1007/11523468_98. [cited at p. 6]

Luca Aceto, Willem Jan (Wan) Fokkink & Chris Verhoef (2001): Struc-
tural Operational Semantics. In Jan A. Bergstra, Alban Ponse & Scott A.
Smolka, editors: Handbook of Process Algebra, Elsevier Science, Dordrecht,
The Netherlands, 2001, pp. 197-292, doi:10.1016/B978-044482830-9/50021-7.

[cited at p. 6,7, 105, 106, 133, 134, 135, 167, 171]

http://dx.doi.org/10.4204/EPTCS.62.1
http://dx.doi.org/10.1007/978-3-642-22944-2_27
http://dx.doi.org/10.1007/978-3-642-21254-3_5
http://dx.doi.org/10.1007/978-3-642-21254-3_5
http://dx.doi.org/10.1016/j.tcs.2011.01.024
http://dx.doi.org/10.1007/11601548_18
http://dx.doi.org/10.1145/1459010.1459016
http://dx.doi.org/10.1007/11523468_98
http://dx.doi.org/10.1016/B978-044482830-9/50021-7

Eugen Ioan Goriac 195

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Luca Aceto, Eugen-loan Goriac & Anna Ingo6lfsdéttir (2013): A Ground-
Complete Axiomatization of Stateless Bisimilarity over Linda. Technical Re-
port, Reykjavik University. Availableathttp://www.ru.is/faculty/luca/
PAPERS/axiomatizing_linda.pdf. [cited atp.9]

Luca Aceto, Eugen-loan Goriac & Anna Ingoélfsdéttir (2013): Meta SOS —
A Maude Based SOS Meta-Theory Framework. In: Proceedings Combined
20th International Workshop on Expressiveness in Concurrency and 10th
Workshop on Structural Operational Semantics, Lecture Notes in Computer
Science. To appear. [cited atp. 11]

Luca Aceto, Eugen-loan Goriac & Anna Ingoélfsdoéttir (2013): SOS Rule
Formats for Idempotent Terms and Idempotent Unary Operators. In P. van Emde
Boas et al., editor: Proceedings of SOFSEM 2013, Lecture Notes in Computer
Science 7741, Springer-Verlag, pp. 108-120. [cited at p. 10, 133]

Luca Aceto, Eugen-loan Goriac, Anna Ing6lfsdéttir, Mohammad Reza
Mousavi & Michel Reniers (2013): Exploiting Algebraic Laws to Improve Mech-
anized Axiomatizations. In: Proceedings of the 5th Conference on Algebra
and Coalgebra in Computer Science (CALCO 2013), Lecture Notes in Com-
puter Science 8089, Springer-Verlag, Berlin, Germany, 2013. [cited at p. 10, 105]

Luca Aceto & Matthew Hennessy (1992): Termination, Deadlock, and Di-
vergence. Journal of the ACM 39, pp. 147-187, doi:10.1145/147508.147527.

[cited at p. 7]

Luca Aceto & Anna Ingolfsdottir (1996): CPO Models for Compact
GSOS Languages. Information and Computation 129(2), pp. 107-141,
d0i:10.1006/inc0.1996.0077. [cited at p. 106, 134]

Luca Aceto, Anna Ingolfsdottir & Eugen-loan Goriac (2014): SOS
Rule Formats for Idempotent Terms and Idempotent Unary Operators. The
Journal of Logic and Algebraic Programming 83(1), pp. 64 - 80,
doi:10.1016/j.jlap.2013.07.003. [cited at p. 10]

Luca Aceto, Anna Ing6lfsdéttir, Bas Luttik & Paul van Tilburg (2008): Fi-
nite Equational Bases for Fragments of CCS with Restriction and Relabelling. In
Giorgio Ausiello, Juhani Karhumiki, Giancarlo Mauri & C.-H. Luke Ong,
editors: Fifth IFIP International Conference On Theoretical Computer Sci-
ence - TCS 2008, IFIP 20th World Computer Congress, TC 1, Foundations of

http://www.ru.is/faculty/luca/PAPERS/axiomatizing_linda.pdf
http://www.ru.is/faculty/luca/PAPERS/axiomatizing_linda.pdf
http://dx.doi.org/10.1145/147508.147527
http://dx.doi.org/10.1006/inco.1996.0077
http://dx.doi.org/10.1016/j.jlap.2013.07.003

196 Axiomatizations from SOS

Computer Science, September 7-10, 2008, Milano, Italy, IFIP 273, Springet,
pp- 317-332, d0i:10.1007/978-0-387-09680-3_22. [cited at p. 126]

[23] Luca Aceto, Anna Ing6lfsdéttir, MohammadReza Mousavi & Michel A. Re-
niers (2009): Algebraic Properties for Free! Bulletin of the European Associa-
tion for Theoretical Computer Science (BEATCS) 99, pp. 81-104. [cited at p. 84,

103, 125, 132, 136, 138, 151, 167]

[24] Franz Baader & Tobias Nipkow (1999): Term Rewriting and All That. Cam-
bridge University Press. [cited atp. 79]

[25] J. C. M. Baeten, T. Basten & M. A. Reniers (2010): Process Algebra: Equational
Theories of Communicating Processes. Cambridge Tracts in Theoretical Com-
puter Science 50, Cambridge University Press, Cambridge. [cited atp.1,3, 16, 18,

79,92,117,119, 124, 131, 148, 163]

[26]]J. C. M. Baeten & J. A. Bergstra (1988): Global renaming operators in con-
crete process algebra. Information and Computation 78(3), pp. 205-245,
d0i:10.1016/0890-5401(88)90027-2. [cited at p. 150]

[27] J.C.M. Baeten, J. A. Bergstra & J. W.Klop (1986): Syntax and defining equations
for an interrupt mechanism in process algebra. Fundamenta Informaticae IX(2),

pp- 127-168. [cited at p. 132, 149]

[28] J. C. M. Baeten & W. P. Weijland (1990): Process Algebra. Cambridge Univer-
sity Press, New York, NY, USA. [cited at p. 31,48, 164]

[29]]J.C.M. Baeten & Jan A. Bergstra (1996): Discrete time process algebra. Formal
Aspects of Computing 8(2), pp. 188-208, d0i:10.1007/BF01214556. [cited at p. 114]

[30] J.C.M. Baeten & Chris Verhoef (1993): A Congruence Theorem for Structured
Operational Semantics with Predicates. In Eike Best, editor: International Con-
terence on Concurrency Theory (CONCUR’93), Lecture Notes in Computer
Science 715, Springer-Verlag, Berlin, Germany, pp. 477492, doi:10.1007/3-
540-57208-2_33. [cited at p. 7, 38]

[31] J.C.M. Baeten, editor (1990): Applications of Process Algebra. Cambridge
Tracts in Theoretical Computer Science, Cambridge University Press. Avail-
able at http://books.google.is/books?id=dPmyAAAATAA]. [cited atp.1]

[32] Jos C. M. Baeten (2003): Embedding untimed into timed process algebra: the case
for explicit termination. Mathematical Structures in Computer Science 13(4),
pp. 589-618, doi:10.1017/50960129503004006. [cited at p. 24]

http://dx.doi.org/10.1007/978-0-387-09680-3_22
http://dx.doi.org/10.1016/0890-5401(88)90027-2
http://dx.doi.org/10.1007/BF01214556
http://dx.doi.org/10.1007/3-540-57208-2_33
http://dx.doi.org/10.1007/3-540-57208-2_33
http://books.google.is/books?id=dPmyAAAAIAAJ
http://dx.doi.org/10.1017/S0960129503004006

Eugen Ioan Goriac 197

[33] Jos C. M. Baeten (2005): A brief history of process algebra. Theor. Comput. Sci.

335(2-3), pp. 131-146, d0i:10.1016/j.tcs.2004.07.036. [cited at p.1, 3]

[34] Jos C. M. Baeten & Jan A. Bergstra (1997): Process Algebra with Proposi-

[35]

[36]

[37]

[38]

[39]

[40]

[41]

tional Signals. Theoretical Computer Science (TCS) 177(2), pp. 381405,
doi:10.1016/S0304-3975(96)00253-8. [cited at p. 80]

Jos C. M. Baeten & Erik P. de Vink (2004): Axiomatizing GSOS
with termination. J. Log. Algebr. Program. 60-61, pp. 323-351,
doi:10.1016/j.jlap.2004.03.001. [cited at p. 7, 32, 103, 104, 106, 125, 134, 159, 161, 175]

Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking. MIT
Press. [cited at p. 79]

Falk Bartels (2002): GSOS for Probabilistic Transition Systems. In: Proceedings
of the 5th International Workshop on Coalgebraic Methods in Computer
Science (CMCS’02), Electronic Notes in Theoretical Computer Science 65,
pp- 29-53, doi:10.1016/S1571-0661(04)80358-X. [cited at p. 6]

D. A. van Beek, Ka Lok Man, Michel A. Reniers, J. E. Rooda & Ramon R. H.
Schiffelers (2006): Syntax and consistent equation semantics of hybrid Chi. J.
Log. Algebr. Program. 68(1-2), pp. 129-210, doi:10.1016/j.jlap.2005.10.005.

[cited at p. 80, 83]

D. A. van Beek, Michel A. Reniers, Ramon R. H. Schiffelers & J. E. Rooda
(2007): Foundations of a Compositional Interchange Format for Hybrid Systems. In
Alberto Bemporad, Antonio Bicchi & Giorgio C. Buttazzo, editors: Proceed-
ings of the 10th International Workshop on Hybrid Systems: Computation
and Control (HSCC’07), Lecture Notes in Computer Science 4416, Springer,
pp- 587-600, doi:10.1007/978-3-540-71493-4_45. [cited at p. 80, 83]

J. A. Bergstra & J. W. Klop (1985): Algebra of communicating processes with ab-
straction. Theoretical Computer Science 37(1), pp. 77-121, doi:10.1016/0304-
3975(85)90088-X. [cited at p. 143]

J A Bergstra &] W Klop (1986): Verification of an alternating bit protocol
by means of process algebra. In: Proceedings of the International Spring
School on Mathematical method of specification and synthesis of software
systems ‘85, Springer-Verlag New York, Inc., New York, NY, USA, pp. 9-23,
d0i:10.1007/3-540-16444-8_1. [cited at p. 48]

http://dx.doi.org/10.1016/j.tcs.2004.07.036
http://dx.doi.org/10.1016/S0304-3975(96)00253-8
http://dx.doi.org/10.1016/j.jlap.2004.03.001
http://dx.doi.org/10.1016/S1571-0661(04)80358-X
http://dx.doi.org/10.1016/j.jlap.2005.10.005
http://dx.doi.org/10.1007/978-3-540-71493-4_45
http://dx.doi.org/10.1016/0304-3975(85)90088-X
http://dx.doi.org/10.1016/0304-3975(85)90088-X
http://dx.doi.org/10.1007/3-540-16444-8_1

198

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

Axiomatizations from SOS

J. A. Bergstra & C. A. Middelburg (2007): Synchronous cooperation for explicit
multi-threading. Acta Informatica 44, pp. 525-569, doi:10.1007/s00236-007-
0057-9. [cited at p. 80, 83]

Jan A. Bergstra & J. W. Klop (1982): Fixedpoint semantics in process alge-
bra. Technical Report IW 206/82, Center for Mathematics, Amsterdam, The

Netherlands. [cited at p. 28,117, 123]

Jan A. Bergstra & J. W. Klop (1984): Process algebra for synchronous com-
munication. Information and Control 60(1-3), pp. 109-137. [cited at p. 114, 124,

137]

Karen L. Bernstein (1998): A congruence theorem for structured operational
semantics of higher-order languages. In: Proceedings of the 13th IEEE Sympo-
sium on Logic In Computer Science (LIC5’98), IEEE Computer Society, Los
Alamitos, CA, USA, pp. 153-164, d0i:10.1109/LICS.1998.705652. [cited at p. 191]

Bard Bloom (1989): Ready Simulation, Bisimulation, and the Semantics of CCS-
like Languages. Ph.D. thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of Technology. [cited at p. 104, 106, 107, 109,

115, 134, 135, 136, 151]

Bard Bloom (1995): Structural Operational Semantics for Weak Bisimula-
tions. Theoretical Computer Science (TCS) 146, pp. 25-68, d0i:10.1016/0304-
3975(94)00152-9. [cited at p. 6, 103, 190]

Bard Bloom, Willem Jan (Wan) Fokkink & Robert Jan (Rob) van Glabbeek
(2004): Precongruence formats for decorated trace semantics. ACM Transac-
tions on Computational Logic 5(1), pp. 26-78, doi:10.1145/963927.963929.

[cited at p. 6]

Bard Bloom, Sorin Istrail & Albert R. Meyer (1995): Bisimulation can’t be
traced. J. ACM 42, pp. 232-268, d0i:10.1145/200836.200876. [cited at p. 6, 7, 32, 33,

80, 85,104, 106, 107, 115, 134, 135, 151, 159, 161, 171, 172, 174]

Roland Bol & Jan Friso Groote (1996): The Meaning of Negative Premises
in Transition System Specifications. Journal of the ACM (JACM) 43(5), pp.
863-914, doi:10.1145/234752.234756. [cited at p. 6]

Marcello M. Bonsangue, Jan J. M. M. Rutten & Alexandra Silva (2009): An
Algebra for Kripke Polynomial Coalgebras. In: LICS, IEEE Computer Society,
pp. 49-58, d0i:10.1109/LICS.2009.18. [cited at p. 53]

http://dx.doi.org/10.1007/s00236-007-0057-9
http://dx.doi.org/10.1007/s00236-007-0057-9
http://dx.doi.org/10.1109/LICS.1998.705652
http://dx.doi.org/10.1016/0304-3975(94)00152-9
http://dx.doi.org/10.1016/0304-3975(94)00152-9
http://dx.doi.org/10.1145/963927.963929
http://dx.doi.org/10.1145/200836.200876
http://dx.doi.org/10.1145/234752.234756
http://dx.doi.org/10.1109/LICS.2009.18

Eugen Ioan Goriac 199

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Victor Bos & Jeroen].T. Kleijn (2003): Redesign of a Systems Engineering
Language — Formalisation of x. Formal Aspects of Computing 15(4), pp.
370-389, d0i:10.1007/s00165-003-0017-2. [cited at p. 13, 14, 17]

D. J. B. Bosscher (1994): Term Rewriting Properties of SOS Axiomatisations.
In: Proceedings of the International Conference on Theoretical Aspects of
Computer Software, TACS '94, Springer-Verlag, London, UK, pp. 425439,
d0i:10.1007/3-540-57887-0_108. [cited at p. 117, 161]

Ed Brinksma (1985): A Tutorial on Lotos. In Michel Diaz, editor: Proc. Pro-
tocol Specitication, Testing and Verification V, North-Holland, Amsterdam,
Netherlands, pp. 171-194. [cited at p. 8, 168]

Antonio Brogi & Jean-Marie Jacquet (1998): On the Expressiveness of Linda-
like Concurrent Languages. Electr. Notes Theor. Comput. Sci. 16(2), pp. 75-96,
do0i:10.1016/51571-0661(04)00118-5. [cited at p. 13, 15, 16,29, 92, 182]

Nicholas Carriero & David Gelernter (1989): Linda in Context. Communica-
tions of the ACM 32(4), pp. 444-458, d0i:10.1145/63334.63337. [cited at p. 9, 13, 15,

81]

Fabricio Chalub & Christiano Braga (2007): Maude MSOS Tool. Electron.
Notes Theor. Comput. Sci. 176, pp. 133-146, doi:10.1016/j.entcs.2007.06.012.

[cited at p. 8, 161, 168, 169, 173]

Matteo Cimini, Mohammad Reza Mousavi, Michel A. Reniers & Mur-
doch James Gabbay (2012): Nominal SOS. Electr. Notes Theor. Comput.
Sci. 286, pp. 103-116, doi:10.1016/j.entcs.2012.08.008. [cited at p. 190]

Manuel Clavel, Francisco Durdn, Steven Eker, Patrick Lincoln, Narciso
Marti-Oliet, José Meseguer & Carolyn L. Talcott, editors (2007): All About
Maude - A High-Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic. Lecture Notes in Computer Science 4350,
Springer, d0i:10.1007/978-3-540-71999-1_1. [cited at p. 8, 10, 11, 32, 125, 161, 168, 169]

Robert J. Colvin & Ian J. Hayes (2011): Structural Operational Semantics
through Context-Dependent Behaviour. Journal of Logic and Algebraic Pro-
gramming 80(7), pp. 392426, d0i:10.1016/j.jlap.2011.05.001. [cited at p. 80]

Sjoerd Cranen, Mohammad Reza Mousavi & Michel A. Reniers (2008): A
Rule Format for Associativity. In Franck van Breugel & Marsha Chechik,
editors: Proceedings of the 19th International Conference on Concurrency
Theory (CONCUR’08), Lecture Notes in Computer Science 5201, Springer-

http://dx.doi.org/10.1007/s00165-003-0017-2
http://dx.doi.org/10.1007/3-540-57887-0_108
http://dx.doi.org/10.1016/S1571-0661(04)00118-5
http://dx.doi.org/10.1145/63334.63337
http://dx.doi.org/10.1016/j.entcs.2007.06.012
http://dx.doi.org/10.1016/j.entcs.2012.08.008
http://dx.doi.org/10.1007/978-3-540-71999-1_1
http://dx.doi.org/10.1016/j.jlap.2011.05.001

200 Axiomatizations from SOS

Verlag, pp. 447461, doi:10.1007/978-3-540-85361-9_35. [cited at p. 50, 79, 94, 95, 102,

132,133, 136, 138, 139, 142, 145, 151, 187]

[62] Pieter J.L. Cuijpers & Michel A. Reniers (2005): Hybrid Process Alge-
bra. Journal of Logic and Algebraic Programming 62(2), pp. 191-245,
doi:10.1016/j.jlap.2004.02.001. [cited at p. 13, 14, 17, 98, 101]

[63] Rocco De Nicola & Matthew Hennessy (1984): Testing Equivalences for
Processes. Theoretical Computer Science 34, pp. 83-133, doi:10.1016/0304-
3975(84)90113-0. [cited at p. 13]

[64] Rocco De Nicola & Rosario Pugliese (2000): Linda-based applicative and imper-
ative process algebras. Theoretical Computer Science 238(1-2), pp. 389437,
doi:10.1016/S0304-3975(99)00339-4. [cited at p. 13]

[65] Pierpaolo Degano & Corrado Priami (2001): Enhanced operational semantics.
ACM Computing Surveys 33(2), pp. 135-176, doi:10.1145/384192.384194.

[cited at p. 80]

[66] Joost Engelfriet & Tjalling Gelsema (1999): Multisets and Structural Con-
gruence of the pi-Calculus with Replication. Theoretical Computer Science
211(1-2), pp. 311-337, doi:10.1016/50304-3975(97)00179-5. [cited at p. 137]

[67] Marcelo P. Fiore & Sam Staton (2009): A congruence rule format
for name-passing process calculi. Inf. Comput. 207(2), pp. 209-236,
d0i:10.1016/j.ic.2007.12.005. [cited at p. 190, 191]

[68] Wan Fokkink (1994): A complete equational axiomatization for prefix itera-
tion. Information Processing Letters 52(6), pp. 333-337, d0i:10.1016/0020-
0190(94)00163-4. [cited at p. 143]

[69] Wan Fokkink (1997): Axiomatizations for the Perpetual Loop in Process Algebra.
In Pierpaolo Degano, Roberto Gorrieri & Alberto Marchetti-Spaccamela,
editors: Automata, Languages and Programming, 24th International Col-
loquium, ICALP’97, Bologna, Italy, 7-11 July 1997, Proceedings, Lecture
Notes in Computer Science 1256, Springer, pp. 571-581, doi:10.1007/3-540-
63165-8_212. [cited at p. 142]

[70] Willem Jan (Wan) Fokkink & Chris Verhoef (1998): A Conservative Look at
Operational Semantics with Variable Binding. Information and Computation
(1&C) 146(1), pp. 24-54, d0i:10.1006/inc0.1998.2729. [cited at p. 6, 108, 191]

http://dx.doi.org/10.1007/978-3-540-85361-9_35
http://dx.doi.org/10.1016/j.jlap.2004.02.001
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1016/0304-3975(84)90113-0
http://dx.doi.org/10.1016/S0304-3975(99)00339-4
http://dx.doi.org/10.1145/384192.384194
http://dx.doi.org/10.1016/S0304-3975(97)00179-5
http://dx.doi.org/10.1016/j.ic.2007.12.005
http://dx.doi.org/10.1016/0020-0190(94)00163-4
http://dx.doi.org/10.1016/0020-0190(94)00163-4
http://dx.doi.org/10.1007/3-540-63165-8_212
http://dx.doi.org/10.1007/3-540-63165-8_212
http://dx.doi.org/10.1006/inco.1998.2729

Eugen Ioan Goriac 201

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

Murdoch J. Gabbay & Andrew M. Pitts (2002): A New Approach to Abstract
Syntax with Variable Binding. Formal Aspects of Computing (FAC) 13(3-5),
pp- 341-363, d0i:10.1007/s001650200016. [cited at p. 190]

Murdoch James Gabbay & Aad Mathijssen (2008): Capture-avoiding sub-
stitution as a nominal algebra. Formal Asp. Comput. 20(4-5), pp. 451479,
d0i:10.1007/s00165-007-0056-1. [cited at p. 7, 190]

Andrew Gacek, Dale Miller & Gopalan Nadathur (2009): Reasoning in Abella
about Structural Operational Semantics Specifications. Electr. Notes Theor.
Comput. Sci. 228, pp. 85-100, doi:10.1016/j.entcs.2008.12.118. [cited at p. 190]

Fabio Gadducci & Ugo Montanari (2000): The Tile Model. In Gordon D.
Plotkin, Colin Stirling & Mads Tofte, editors: Proof, Language and Inter-
action: Essays in Honour of Robin Milner, MIT Press, Boston, MA, USA,
2000, pp. 133-166. [cited at p. 80]

Vashti Galpin, Luca Bortolussi & Jane Hillston (2013): HYPE: Hybrid mod-
elling by composition of flows. Formal Asp. Comput. 25(4), pp. 503-541,
d0i:10.1007/s00165-011-0189-0. [cited at p. 80, 83]

M. Gazda & W.J. Fokkink (2010): Turning GSOS into equations for linear
time-branching time semantics. 2nd Young Researchers Workshop on Con-
currency Theory - YR-CONCUR’10, Paris. Available athttp://www.cs.vu.
nl/~wanf/pubs/gsos.pdf. [cted atp.32]

Daniel Gebler, Eugen-loan Goriac & Mohammad Reza Mousavi (2013):
Algebraic Meta-Theory of Processes with Data. In: Proceedings Combined
20th International Workshop on Expressiveness in Concurrency and 10th
Workshop on Structural Operational Semantics, Lecture Notes in Computer

Science. To appear. [cited atp.9,184]

David Gelernter (1985): Generative Communication in Linda. ACM
Transactions on Programming Languages and Systems 7(1), pp. 80-112,
do0i:10.1145/2363.2433. [cited at p. 9, 13, 15]

R.J. van Glabbeek (2001): The Linear Time - Branching Time Spectrum I. The Se-
mantics of Concrete, Sequential Processes. In A. Ponse S.A. Smolka J.A. Bergstra,
editor: Handbook of Process Algebra, Elsevier, pp. 3-99, doi:10.1007/3-540-
57208-2_6. [cited at p. 31,39, 85, 170]

Rob Van Glabbeek (2005): On cool congruence formats for weak bisimulations
(extended abstract). In: Proceedings of the 2nd International Colloquium on

http://dx.doi.org/10.1007/s001650200016
http://dx.doi.org/10.1007/s00165-007-0056-1
http://dx.doi.org/10.1016/j.entcs.2008.12.118
http://dx.doi.org/10.1007/s00165-011-0189-0
http://www.cs.vu.nl/~wanf/pubs/gsos.pdf
http://www.cs.vu.nl/~wanf/pubs/gsos.pdf
http://dx.doi.org/10.1145/2363.2433
http://dx.doi.org/10.1007/3-540-57208-2_6
http://dx.doi.org/10.1007/3-540-57208-2_6

202 Axiomatizations from SOS

Theoretical Aspects of Computing (ICTAC’05), Lecture Notes in Computer
Science 3722, Springer, pp. 318-333, doi:10.1007/11560647_21. [cited atp.6, 103,

190]

[81] Robert Jan (Rob) van Glabbeek (2001): The Linear Time - Branching Time
Spectrum 1. In Jan A. Bergstra, Alban Ponse & Scott A. Smolka, editors:
Handbook of Process Algebra, Chapter 1, Elsevier Science, Dordrecht, The
Netherlands, 2001, pp. 3-100. [cited at p. 4,107, 134]

[82] Robert Jan (Rob) van Glabbeek (2004): The Meaning of Negative Premises in
Transition System Specifications II. Journal of Logic and Algebraic Program-
ming (JLAP) 60-61, pp. 229-258, d0i:10.1007/3-540-61440-0_154. [cited atp.6,

107]

[83] Eugen-loan Goriac, Georgiana Caltais, Dorel Lucanu, Oana Andrei
& Gheorghe Grigoras (2009): Patterns for Maude Metalanguage Ap-
plications. ~ Electr. Notes Theor. Comput. Sci. 238(3), pp. 121-13§,
doi:10.1016/j.entcs.2009.05.016. [cited at p. 169, 186]

[84] Jan Friso Groote (1993): Transition system specifications with negative premises.
Theoretical Computer Science (TCS) 118(2), pp. 263-299, d0i:10.1016/0304-
3975(93)90111-6. [cited at p. 6,7]

[85] Jan Friso Groote & Alban Ponse (1994): Process Algebra with Guards: Com-
bining Hoare Logic with Process Algebra. Formal Aspects of Computing 6(2),
pp. 115-164, doi:10.1007/BF01221097. [cited at p. 13, 14, 17]

[86] Jan Friso Groote & Frits W. Vaandrager (1992): Structured Operational Seman-
tics and Bisimulation As a Congruence. Information and Computation 100(2),
pp- 202-260, d0i:10.1016/0890-5401(92)90013-6. [cited at p. 4, 6,7, 8, 80, 168]

[87] Pieter H. Hartel (1999): LETOS - a lightweight execution tool for
operational semantics. Software: Practice and Experience 29(15),
pp- 1379-1416, doi:10.1002/(SICI)1097-024X(19991225)29:15%3C1379::AID-
SPE286%3E3.0.CO;2-V. [cited at p. 8, 168]

[88] M. Hennessy (1981): A term model for synchronous processes. Information and
Control 51(1), pp. 58-75. [cited at p. 132, 143]

[89] Matthew Hennessy & Anna Ing6lfsdoéttir (1993): Communicating Processes
with Value-passing and Assignments. Formal Aspects of Computing 5(5), pp.
432-466, d0i:10.1007/BF01212486. [cited at p. 13]

http://dx.doi.org/10.1007/11560647_21
http://dx.doi.org/10.1007/3-540-61440-0_154
http://dx.doi.org/10.1016/j.entcs.2009.05.016
http://dx.doi.org/10.1016/0304-3975(93)90111-6
http://dx.doi.org/10.1016/0304-3975(93)90111-6
http://dx.doi.org/10.1007/BF01221097
http://dx.doi.org/10.1016/0890-5401(92)90013-6
http://dx.doi.org/10.1002/(SICI)1097-024X(19991225)29:15%3C1379::AID-SPE286%3E3.0.CO;2-V
http://dx.doi.org/10.1002/(SICI)1097-024X(19991225)29:15%3C1379::AID-SPE286%3E3.0.CO;2-V
http://dx.doi.org/10.1007/BF01212486

Eugen Ioan Goriac 203

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

Matthew Hennessy & Anna Ingolfsdoéttir (1993): A Theory of Communicating
Processes with Value Passing. Information and Computation 107(2), pp. 202-
236, doi:10.1006/inc0.1993.1067. [cited at p. 13]

Matthew Hennessy, Huimin Lin & Julian Rathke (2001): Unique fixpoint in-
duction for message-passing process calculi. Science of Computer Programming
41(3), pp. 241-275, d0i:10.1016/50167-6423(01)00008-9. [cited at p. 13]

Matthew Hennessy & Robin Milner (1985): Algebraic laws for nondeterminism
and concurrency.]. ACM32(1), pp. 137-161, d0i:10.1145/2455.2460. [cited at p. 116,

175]

Matthew Hennessy & Gordon D. Plotkin (1979): Full Abstraction for a Sim-
ple Parallel Programming Language. In Jiri Becvér, editor: Mathematical
Foundations of Computer Science 1979, Proceedings, 8th Symposium, Olo-
mouc, Czechoslovakia, September 3-7, 1979, Lecture Notes in Computer
Science 74, Springer, pp. 108-120, doi:10.1007/3-540-09526-8_8. [cited at p. 3]

Matthew Hennessy & Gordon D. Plotkin (1979): Full Abstraction for a Simple
Parallel Programming Language. In Jiri Becvér, editor: Proceedings of the 8th
Symposium on Mathematical Foundations of Computer Science (MFCS’79),
Lecture Notes in Computer Science 74, Springer-Verlag, Berlin, Germany,
1979, pp- 108-120, d0i:10.1007/3-540-09526-8_8. [cited at p. 103]

C.A.R. Hoare (1985): Communicating Sequential Processes. Prentice-Hall In-

ternational, Englewood Cliffs. [cited atp. 1,3, 8,31, 114, 131, 137, 143, 168]

S.C. Kleene (1956): Representation of events in nerve nets and finite automata.
In C.E. Shannon &]. McCarthy, editors: Automata Studies, Princeton Uni-
versity Press, pp. 3—41. [cited at p. 132, 141]

Matthew R. Lakin & Andrew M. Pitts (2007): A metalanguage for structural
operational semantics. In: In Symposium on Trends in Functional Program-

ming, pp. 1-16. [cited at p. 190]

Ruggero Lanotte & Simone Tini (2005): Probabilistic Congruence for Semis-
tochastic Generative Processes. In Vladimiro Sassone, editor: Proceedings
of the 8th International Conference on Foundations of Software Science
and Computational Structures (FOSSACS’05), Lecture Notes in Computer
Science 3441, Springer-Verlag, pp. 63-78, d0i:10.1007/978-3-540-31982-5_4.
[cited at p. 6]

http://dx.doi.org/10.1006/inco.1993.1067
http://dx.doi.org/10.1016/S0167-6423(01)00008-9
http://dx.doi.org/10.1145/2455.2460
http://dx.doi.org/10.1007/3-540-09526-8_8
http://dx.doi.org/10.1007/3-540-09526-8_8
http://dx.doi.org/10.1007/978-3-540-31982-5_4

204 Axiomatizations from SOS

[99] Huimin Lin (1995): PAM: A Process Algebra Manipulator. Formal Methods
in System Design 7(3), pp. 243-259, d0i:10.1007/BF01384078. [cited at p. 8, 168]

[100] Narciso Marti-Oliet & José Meseguer (2002): Rewriting Logic as a Logical
and Semantic Framework. In Dov M. Gabbay & Franz Guenthner, editors:
Handbook of Philosophical Logic, 9, Kluwer Academic Publishers, 2002,
pp- 1-87, d0i:10.1007/978-94-017-0464-9_1. [cited at p. 81]

[101] José Meseguer & Christiano Braga (2004): Modular Rewriting Semantics of
Programming Languages. In Charles Rattray, Savi Maharaj & Carron Shank-
land, editors: Proceedings of the 10th International Conference on Alge-
braic Methodology and Software Technology (AMAST’04), Lecture Notes
in Computer Science 3116, Springer-Verlag, Berlin, Germany, 2004, pp. 364—
378, doi:10.1007/978-3-540-27815-3_29. [cited at p. 81]

[102] Cornelis A. (Kees) Middelburg (2001): Variable binding operators in transition
system specifications. Journal of Logic and Algebraic Programming 47(1), pp.
15-45, d0i:10.1016/51567-8326(00)00003-5. [cited at p. 191]

[103] Cornelis A. (Kees) Middelburg (2003): An alternative formulation of oper-
ational conservativity with binding terms. Journal of Logic and Algebraic
Programming (JLAP) 55(1-2), pp. 1-19, doi:10.1016/51567-8326(02)00039-5.

[cited at p. 191]

[104] A.J.R.G. (Robin)Milner (1980): A Calculus of Communicating Systems. Lecture
Notes in Computer Science 92, Springer-Verlag. [cited at p. 107, 137]

[105] A.J.R.G (Robin) Milner (1983): Calculi for synchrony and asynchrony.
Theoretical Computer Science (TCS) 25, pp. 267-310, doi:10.1016/0304-
3975(83)90114-7. [cited at p. 132, 143]

[106] A.J.R.G. (Robin) Milner (1989): Communication and Concurrency. Prentice

Hall, Englewood Cliffs. [cited atp.1,3,7,8,14,21,31, 41, 42, 108, 114, 131, 135, 150, 160, 168]

[107] Faron Moller (1990): The Importance of the Left Merge Operator in Process Al-
gebras. In Mike Paterson, editor: Automata, Languages and Programming,
17th International Colloquium, ICALP90, Warwick University, England,
July 16-20, 1990, Proceedings, Lecture Notes in Computer Science 443,
Springer, pp. 752-764, doi:10.1007/BFb0032072. [cited at p. 29]

[108] Peter D. Mosses (1999): Foundations of Modular SOS. In Miroslaw Kuty-
lowski, Leszek Pacholski & Tomasz Wierzbicki, editors: MFCS, Lecture

http://dx.doi.org/10.1007/BF01384078
http://dx.doi.org/10.1007/978-94-017-0464-9_1
http://dx.doi.org/10.1007/978-3-540-27815-3_29
http://dx.doi.org/10.1016/S1567-8326(00)00003-5
http://dx.doi.org/10.1016/S1567-8326(02)00039-5
http://dx.doi.org/10.1016/0304-3975(83)90114-7
http://dx.doi.org/10.1016/0304-3975(83)90114-7
http://dx.doi.org/10.1007/BFb0032072

Eugen Ioan Goriac 205

Notes in Computer Science 1672, Springer, pp. 70-80, doi:10.1007/3-540-
48340-3_7 [cited at p. 8]

[109] Peter D. Mosses (2004): Exploiting Labels in Structural Operational Semantics.
Fundam. Inform. 60(1-4), pp. 17-31. [cited at p. 80]

[110] Peter D. Mosses (2004): Modular structural operational semantics. J. Log. Al-
gebr. Program. 60-61, pp. 195-228, d0i:10.1016/j.jlap.2004.03.008. [cited at p. 80,

98]

[111] Peter D. Mosses & Mark J. New (2009): Implicit Propagation in Structural
Operational Semantics. Electr. Notes Theor. Comput. Sci. 229(4), pp. 49-66,
doi:10.1016/j.entcs.2009.07.073. [cited at p. 94]

[112] Mohammad Reza Mousavi, Michel Reniers & Jan Friso Groote (2004): Con-
gruence for SOS with Data. In: Proceedings of the 19th Annual IEEE Sympo-
sium on Logic in Computer Science (LICS’04), IEEE Computer Society Press,
Los Alamitos, CA, USA, 2004, pp. 302-313, d0i:10.1109/LICS.2004.1319625.
[cited at p. 80]

[113] Mohammad Reza Mousavi & Michel A. Reniers (2005): Orthogonal Exten-
sions in Structural Operational Semantics. In: Proceedings of the 32nd Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’05),

Lecture Notes in Computer Science 3580, Springer-Verlag, Berlin, Germany,
pp- 1214-1225, d0i:10.1007/11523468_98. [cited at p. 108]

[114] Mohammad Reza Mousavi & Michel A. Reniers (2006): Prototyping SOS
meta-theory in Maude. Electron. Notes Theor. Comput. Sci. 156, pp. 135-150,
doi:10.1016/j.entcs.2005.09.030. [cited at p. 161, 168, 169, 172, 173, 186]

[115] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote
(2004): Congruence for SOS with Data. In: LICS, pp. 303-312,
doi:10.1109/LICS.2004.1319625. [cited at p. 7, 95]

[116] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2005):
Notions of Bisimulation and Congruence Formats for SOS with Data. Information
and Computation 200(1), pp. 107-147, doi:10.1016/j.ic.2005.03.002. [cited at p.7,

9,13, 14,15, 17, 80, 83, 92, 96, 182]

[117] Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2005): A
syntactic commutativity format for SOS. Inf. Process. Lett. 93(5), pp. 217-223,
doi:10.1016/j.ipl.2004.11.007. [cited at p. 79, 104, 109, 110, 111, 112, 125, 132, 133, 136, 138, 139, 145,

151, 179, 180]

http://dx.doi.org/10.1007/3-540-48340-3_7
http://dx.doi.org/10.1007/3-540-48340-3_7
http://dx.doi.org/10.1016/j.jlap.2004.03.008
http://dx.doi.org/10.1016/j.entcs.2009.07.073
http://dx.doi.org/10.1109/LICS.2004.1319625
http://dx.doi.org/10.1007/11523468_98
http://dx.doi.org/10.1016/j.entcs.2005.09.030
http://dx.doi.org/10.1109/LICS.2004.1319625
http://dx.doi.org/10.1016/j.ic.2005.03.002
http://dx.doi.org/10.1016/j.ipl.2004.11.007

206

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

Axiomatizations from SOS

Mohammad Reza Mousavi, Michel A. Reniers & Jan Friso Groote (2007):
SOS Formats and Meta-Theory: 20 Years After. Theoretical Computer Science
373(3), pp. 238-272, d0i:10.1016/j.tcs.2006.12.019. [cited at p. 6,7, 103, 105, 133]

Scott Owens (2008): A Sound Semantics for OCamllight. In Sophia
Drossopoulou, editor: ESOP, Lecture Notes in Computer Science 4960,
Springer, pp. 1-15, d0i:10.1007/978-3-540-78739-6_1. [cited at p. 80]

David Michael Ritchie Park (1981): Concurrency and Automata on In-
finite Sequences. In Peter Deussen, editor: Theoretical Computer Sci-

ence, Lecture Notes in Computer Science 104, Springer, pp. 167-183,
doi:10.1007/BFb0017309. [cited at p. 14,21, 31, 83, 108, 131, 135, 174]

Andrew M. Pitts (2003): Nominal logic, a first order theory of names and binding.
Information and Computation (I&C) 186(2), pp. 165-193, d0i:10.1016/S0890-
5401(03)00138-)([cited at p. 190]

Gordon D. Plotkin (1981): A structural approach to operational semantics. Tech-
nical Report DAIMI FN-19, Computer Science Department, Aarhus Univer-
sity, Aarhus, Denmark. [cited at p. 167, 206]

Gordon D. Plotkin (2004): The origins of structural operational seman-
tics. Journal of Logic and Algebraic Programming (JLAP) 60, pp. 3-15,
doi:10.1016/j.jlap.2004.03.009. [cited at p. 3, 80, 103]

Gordon D. Plotkin (2004): A structural approach to operational semantics. Jour-
nal of Logic and Algebraic Progamming (JLAP) 60, pp. 17-139. This article

tirst appeared as [122]. [cited at p. 3,80, 103, 131, 159]

Michel A. Reniers, Jan Friso Groote, Mark B. van der Zwaag & Jos van
Wamel (2002): Completeness of Timed CRL. Fundamenta Informaticae 50(3-
4), PP 361-402. [cited at p. 92]

A. W. (Bill) Roscoe (1997): The Theory and Practice of Concurrency. Prentice
Hall. [cited at p. 137]

A. W. (Bill) Roscoe (2010): Understanding Concurrent Systems. Springer,
doi:10.1007/978-1-84882-258-0. [cited at p. 79]

Davide Sangiorgi (2011): Introduction to Bisimulation and Coinduction. Cam-
bridge University Press. [cited at p. 138, 144]

http://dx.doi.org/10.1016/j.tcs.2006.12.019
http://dx.doi.org/10.1007/978-3-540-78739-6_1
http://dx.doi.org/10.1007/BFb0017309
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://dx.doi.org/10.1016/j.jlap.2004.03.009
http://dx.doi.org/10.1007/978-1-84882-258-0

Eugen Ioan Goriac 207

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

Davide Sangiorgi & David Walker (2001): The nt-Calculus: A Theory of Mobile
Processes. Cambridge University Press, Cambridge. With a foreword by

Robin Milner. [cited at p. 132, 137, 186]

Traian-Florin Serbanuta, Grigore Rosu & José Meseguer (2009): A rewriting
logic approach to operational semantics. Information and Computation 207(2),
pp- 305-340, doi:10.1016/j.ic.2008.03.026. [cited at p. 169]

Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine,
Thomas Ridge, Susmit Sarkar & Rok Strnisa (2010): Ott: Effective tool
support for the working semanticist. J. Funct. Program. 20(1), pp. 71-122,
doi:10.1017/50956796809990293. [cited at p. 190]

Robert de Simone (1985): Higher-Level Synchronizing Devices in MEEIJE-SCCS.
Theoretical Computer Science (TCS) 37, pp. 245-267, doi:10.1016/0304-
3975(85)90093-3. [cited at p. 7]

Christopher Strachey (2000): Fundamental Concepts in Programming Lan-
quages. Higher-Order and Symbolic Computation 13, pp. 11-49,
doi:10.1023/A:1010000313106. [cited at p. 86]

Simone Tini (2004): Rule Formats for Compositional Non-interference Proper-
ties. Journal of Logic and Algebraic Progamming (JLAP) 60, pp. 353—400,
d01101016/]]1ap200403003 [cited at p. 6]

Daniele Turi & Gordon D. Plotkin (1997): Towards a Mathematical Op-
erational Semantics. In: LICS, IEEE Computer Society, pp. 280-291,
doi:10.1109/LICS.1997.614955. [cited at p. 96]

Irek Ulidowski (2000): Finite axiom systems for testing preorder and De Simone
process languages. Theoretical Computer Science (TCS) 239(1), pp. 97-139,
d0i:10.1007/BFb0014317. [cited at p. 32, 103, 104, 125, 190]

Alberto Verdejo & Narciso Marti-Oliet (2006): Executable structural opera-
tional semantics in Maude. The Journal of Logic and Algebraic Programming
67(1-2), pp. 226 — 293, d0i:10.1016/j.jlap.2005.09.008. [cited at p. 169, 173]

Chris Verhoef (1995): A congruence theorem for structured operational semantics
with predicates and negative premises. Nordic Journal of Computing 2(2), pp.
274-302, doi:10.1007/BFb0015024. [cited at p. 7, 50]

http://dx.doi.org/10.1016/j.ic.2008.03.026
http://dx.doi.org/10.1017/S0956796809990293
http://dx.doi.org/10.1016/0304-3975(85)90093-3
http://dx.doi.org/10.1016/0304-3975(85)90093-3
http://dx.doi.org/10.1023/A:1010000313106
http://dx.doi.org/10.1016/j.jlap.2004.03.003
http://dx.doi.org/10.1109/LICS.1997.614955
http://dx.doi.org/10.1007/BFb0014317
http://dx.doi.org/10.1016/j.jlap.2005.09.008
http://dx.doi.org/10.1007/BFb0015024

208 Axiomatizations from SOS

[139] J. L. M. Vrancken (1997): The Algebra of Communicating Processes With
Empty Process. Theoretical Computer Science 177(2), pp. 287-328,
d0i:10.1016/50304-3975(96)00250-2. [cited at p. 14, 18]

[140] Axelle Ziegler, Dale Miller & Catuscia Palamidessi (2006): A Congruence
Format for Name-passing Calculi. Electr. Notes Theor. Comput. Sci. 156(1),
pp- 169-189, d0i:10.1016/j.entcs.2005.09.032. [cited at p. 191]

http://dx.doi.org/10.1016/S0304-3975(96)00250-2
http://dx.doi.org/10.1016/j.entcs.2005.09.032

School of Computer Science
Reykjavik University
Menntavegi 1

101 Reykjavik, Iceland

Tel. +354 599 6200

Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

	1 Introduction
	1.1 Process Algebras
	1.2 Structural Operational Semantics
	1.3 Meta-theory of SOS
	1.4 Software tools
	1.5 Contributions
	1.5.1 Publications resulting while working on the thesis

	2 A Ground-Complete Axiomatization of Stateless Bisimilarity over Linda
	2.1 Introduction
	2.2 Preliminaries
	2.3 Axiomatization
	2.3.1 Adding the nask operations
	2.3.2 Adding parallel composition

	2.4 Conclusions

	3 Axiomatizing GSOS with Predicates
	3.1 Introduction
	3.2 GSOS with predicates
	3.3 Preliminary steps towards the axiomatization
	3.3.1 Finite trees with predicates
	3.3.2 Axiomatizing finite trees
	3.3.3 Axiomatizing negative premises

	3.4 Smooth and distinctive operations
	3.4.1 Axiomatizing smooth and distinctive preg operations

	3.5 Soundness and completeness
	3.6 Motivation for handling predicates as first-class notions
	3.7 Conclusions and future work
	3.A Proof of Lemma 3.3.2
	3.B Proof of Theorem 3.3.3
	3.C Axiom (A9), a schema with infinitely many instances
	3.D Proof of Theorem 3.3.6
	3.E From general preg to smooth and distinctive
	3.F A possible approach to handle implicit predicates
	3.G Proof of Theorem 3.4.7
	3.H Proof of Lemma 3.5.3
	3.I A thorough analysis on GSOS with Predicates
	3.I.1 Predicate classification
	3.I.2 The preg+ rule format
	3.I.3 Finite trees with predicates
	3.I.4 Axiomatizing arbitrary preg+ operations
	3.I.5 Consistency requirements
	3.I.6 Concluding remarks

	4 Algebraic Meta-Theory of Processes with Data
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Transition Systems Specifications
	4.2.2 Bisimilarity
	4.2.3 Rule Formats for Algebraic Properties
	4.2.4 Sound and ground-complete axiomatizations

	4.3 Currying Data
	4.4 Axiomatizing GSOS with Data
	4.5 Case Study: The Coordination Language Linda
	4.6 Conclusions
	4.A Proof of Theorem 4.3.1
	4.B The Hybrid Process Algebra HyPA

	5 Exploiting Algebraic Laws to Improve Mechanized Axiomatizations
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Transition System Specifications
	5.2.2 GSOS Format
	5.2.3 Bisimilarity and Axiom Systems

	5.3 Commutativity Format
	5.4 Mechanized Axiomatization
	5.4.1 Axiomatizing Good Operators
	5.4.2 Turning Bad into Good

	5.5 Axiomatizing Parallel Composition
	5.6 Conclusions and Future Work
	5.A Proving Theorem 5.3.10
	5.B Proof of Proposition 5.4.17

	6 SOS Rule Formats for Idempotent Terms and Idempotent Unary Operators
	6.1 Introduction
	6.2 Preliminaries
	6.3 A rule format for idempotent terms
	6.4 A rule format for idempotent unary operators
	6.4.1 Examples

	6.5 Conclusions
	6.A Proof of Theorem 6.3.7
	6.B Proof of Theorem 6.4.9

	7 PREG Axiomatizer – A Ground Bisimilarity Checker for GSOS with Predicates
	7.1 Introduction
	7.2 Case Studies
	7.3 Discussion and Future Work

	8 Meta SOS – A Maude Based SOS Meta-Theory Framework
	8.1 Introduction
	8.2 Preliminaries
	8.2.1 Transition System Specifications in Meta SOS

	8.3 Meta SOS Components
	8.3.1 Simulator and Bisimilarity Checker
	8.3.2 Axiom Schema Deriver
	8.3.3 Commutativity Format Checker
	8.3.4 Linda – Integrating Components
	8.3.5 Adding Components

	8.4 Conclusion and Future Work

	9 Conclusions and Future Work

