
Approximation Algorithms for
Independent Set Problems on Hypergraphs

Elena Losievskaja
Doctor of Philosophy
December 2009
School of Computer Science
Reykjavík University

Ph.D. DISSERTATION
ISSN 1670-8539

Approximation Algorithms for
Independent Set Problems on Hypergraphs

by

Elena Losievskaja

Thesis submitted to the School of Computer Science
at Reykjavík University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

December 2009

Thesis Committee:

Magnús Már Halldórsson, Supervisor
Professor, Reykjavík University, Iceland

Sven Þórarinn Sigurðsson
Professor, University of Iceland, Iceland

Bjarni Vilhjálmur Halldórsson
Associate Professor, Reykjavík University, Iceland

Mario Szegedy
Professor, Rutgers University, USA

Hadas Shachnai, Examiner
Associate Professor, Technion, Israel

Copyright
Elena Losievskaja
December 2009

Approximation Algorithms for
Independent Set Problems on Hypergraphs

Elena Losievskaja

December 2009

Abstract

This thesis deals with approximation algorithms for the Maximum Indepen-
dent Set and the Minimum Hitting Set problems on hypergraphs. As a hyper-
graph is a generalization of a graph, the question is whether the best known
approximations on graphs can be extended to hypergraphs.

We consider greedy, local search and partitioning algorithms. We introduce
a general technique, called shrinkage reduction, that reduces the worst case
analysis of certain algorithms on hypergraphs to their analysis on ordinary
graphs. This technique allows us to prove approximation ratios for greedy
and local search algorithms for the Maximum Weak Independent Set problem
on weighted and unweighted bounded-degree hypergraphs. For the weighted
case we improve bounds using a simple partitioning algorithm. We also con-
sider two variations of the max-greedy algorithms for the Maximum Strong
Independent Set problem.

We describe an SDP-based approach for the Maximum Weak Independent
Set problem on bounded-degree hypergraphs. Our approach is to use semi-
definite technique to sparsify a given hypergraph and then apply combina-
torial algorithms to find a large independent set in the resulting sparser in-
stance. Using this approach we obtain the first performance ratio that is
sublinear in terms of the maximum or average degree of the hypergraph. We
extend this result to the weighted case and give a similar bound in terms
of the average weighted degree in a hypergraph, matching the best bounds
known for the special case of graphs.

We present several randomized and deterministic algorithms for the Maxi-
mum Weak Independent Set problem in a semi-streaming model. All our
semi-streaming algorithms require only one pass over the stream and most
of them resemble on-line algorithms in maintaining a feasible solution at all
times. We introduce the on-line minimal space semi-streaming model and
give lower and upper bounds for deterministic and randomized algorithms in
this model.

Nálgunarreiknirit fyrir
óháð mengi í ofurnetum

Elena Losievskaja

Desember 2009

Útdráttur

Þessi ritgerð fjallar um bestunaraðferðir fyrir ofurnet, eða nánar tiltekið um
nálgunarreiknirit fyrir verkefnin stærsta óháða mengi (e. maximum inde-
pendent set) og minnsta skurðmengi (e. minimum hitting set) á ofurnetum.
Ofurnet eru útvíkkun á netum, og því er spurningin hvort þekktar nálgu-
naraðferðir fyrir net megi einnig útvíkka fyrir ofurnet.

Við skoðum fyrst reiknirit sem byggja á gráðugu vali, staðbundinni bestu,
og skiptingu. Við kynnum nýja almenna smækkunaraðferð sem gerir okkur
kleift að yfirfæra nálgunarniðurstöður fyrir net sem byggja á gráðugu vali
og staðbundinni bestun yfir á vegin og óvegin ofurnet með takmarkaða há-
marksgráðu. Fyrir vegin ofurnet bætum við nálgunina enn frekar með því að
nota einfalda skiptingaraðferð. Við skoðum einnig tvær útgáfur af gráðugri
aðferð til að finna stærsta sterka óháð mengi í ofurneti.

Við lýsum síðan aðferð sem beitir hálfákveðinni bestun til að gera ofur-
netið fyrst rýrara og nýtir síðan samtektareiknirit á rýra netið. Með þessari
aðferð fáum við út fyrstu nálgunarniðurstöður sem vaxa hægar en línulega
sem fall af hámarks- eða meðaltalsgráðu ofurnetsins. Við útvíkkum þessar
niðurstöður fyrir vegin ofurnet, og fáum sambærilegar niðurstöður sem fall
af veginni meðalgráðu.

Í síðasta hluta ritgerðarinnar snúum við okkur að bunuvinnslu (e. stream-
ing algorithms). Þá koma leggir netsins í runu, en reikniritið getur aðeins
geymt lítinn hluta netsins. Við leiðum út ýmis slembin og ákvörðunarbundin
reiknirit fyrir stærsta óháða mengi í netum og ofurnetum. Allar aðferðirnar
krefjast aðeins einnar yfirferðar yfir strauminn og eru flestar raðbundnar (e.
online) að því leyti að gildri lausn er sífellt viðhaldið. Við kynnum nýtt líkan
fyrir bunuvinnslu á netum sem krefst raðbundinnar vinnslu með lágmarks
plássþörf, og gefum efri og neðri mörk fyrir reiknirit í því líkani.

To my parents

vii

Acknowledgements

I would like to thank all people who were with me through all these years of hard work
for their support, encouragement and belief in me.

First of all, it is my supervisor, Magnús Már Halldórsson, without his guidance, inspira-
tion, gentle criticism and enormous support it would be impossible for me to complete
this dissertation. I’m infinitely grateful to him for sharing with me his knowledge and
wisdom, for his valuable advice, comments and suggestions, for many interesting discus-
sions related to research and beyond, for his ability of being demanding and patient at the
same time, for teaching me to follow high standards in research and never give up.

I would like to thank the members of my PhD committee and the examiner, Sven Sig-
urðsson, Bjarni Halldórsson, Mario Szegedy and Hadas Shachnai, whose comments and
suggestions helped me in improving my dissertation. I am also thankful to all my coau-
thors and colleagues at Reykjavík University, University of Iceland, University of Bergen
and University of Rome "La Sapienza" for their collaboration and great work experi-
ence.

I would like to acknowledge the Iceland Research Fund for supporting my work with
grants 50006022 and 70009021, and the Research Fund of University of Iceland.

Finally, I express my endless gratitude and love to my family and friends. To my parents,
Nina and Lev, for their infinite love and belief in me, for wise thoughts and advise, for
huge support and encouragement in everything I do - for all this and much more I am
forever grateful to them. To my husband, Tómas Davíð, for being a very special person
in my life, for always making me smile and reminding me to look on the bright side of
life, for sharing all wonderful and difficult moments with me, it would be tremendously
hard to accomplish this work without him. I am a very fortunate person to have truly
good friends, and I am enormously grateful to all of them for their support and love, for
all moments of fun we have together. Many thanks to all of you.

viii

ix

Publications

The following work was published during my Ph.D. studies. This dissertation is partially
based on papers 1, 4, 5 and 6 below:

1. G. Agnarsson, M. M. Halldórsson and E. Losievskaja, SDP-Based Algorithms for
Maximum Independent Set Problems on Hypergraphs, In Proc. of 36th Interna-

tional Colloquium on Automata, Languages and Programming (ICALP), 12-23,
2009.

2. M. R. Fellows, F. V. Fomin, D. Lokshtanov, E. Losievskaja, F. A. Rosamond and S.
Saurabh, Parameterized Low-distortion Embeddings - Graph metrics into lines and
trees CoRR abs, 0804.3028, 2008.

3. M. R. Fellows, F. V. Fomin, D. Lokshtanov, E. Losievskaja, F. A. Rosamond and
S. Saurabh, Distortion Is Fixed Parameter Tractable, In Proc. of 36th International

Colloquium on Automata, Languages and Programming (ICALP), 463-474, 2009.

4. M. M. Halldórsson and E. Losievskaja, Independent Sets in Bounded-Degree Hy-
pergraphs, In Proc. of 10th International Workshop on Algorithms and Data Struc-

tures (WADS), 263-274, 2007.

5. M. M. Halldórsson and E. Losievskaja, Independent sets in bounded-degree hyper-
graphs, Discrete Applied Mathematics, 157(8): 1773-1786, 2009.

6. B. V. Halldórsson, M. M. Halldórsson, E. Losievskaja and Mario Szegedy, Semi-
streaming algorithms on hypergraphs, Manuscript, 2009.

x

xi

Contents

List of Figures xiii

List of Abbreviations xv

1 Introduction 1
1.1 Definitions . 1
1.2 Optimization Problems . 4

1.2.1 Definitions . 4
1.2.2 Applications . 6
1.2.3 Hardness . 7

1.3 Algorithmic Approaches . 8
1.3.1 Approximation Algorithms . 9
1.3.2 Algorithmic Techniques . 9

1.4 Computational Models . 14
1.4.1 Off-line Model . 14
1.4.2 On-line Model . 14
1.4.3 Streaming Model . 15

1.5 Related Work . 16
1.5.1 Inapproximability . 16
1.5.2 Approximations . 17

1.6 Original Contribution of the Thesis . 19
1.7 Structure of the Thesis . 22

2 Combinatorial Algorithms 25
2.1 Shrinkage Reduction . 25
2.2 Local Search . 26
2.3 Greedy . 30

2.3.1 Weak Independent Set . 30
2.3.2 Strong Independent Set . 40

xii

2.4 Partitioning . 45
2.5 Conclusions . 46

3 SDP Algorithms 47
3.1 Semidefinite Programming . 47

3.1.1 Preliminaries . 47
3.1.2 Sparsifying Algorithm . 48
3.1.3 Analysis . 48

3.2 Greedy Algorithm . 51
3.3 Randomized Algorithm . 54
3.4 Conclusions . 56

4 Streaming Algorithms 57
4.1 Permutation-based Algorithms . 57
4.2 Partitioning Algorithms . 62
4.3 Minimal Space Algorithms . 66
4.4 Conclusions . 72

5 Conclusions 73

xiii

List of Figures

1.1 Example of a solution to V P − IS . 12
1.2 Example of vector rounding . 12
1.3 Summary of the results for IS in off-line model 21
1.4 Summary of the results for IS in semi-streaming model 22

2.1 The algorithm HSIC . 28
2.2 The algorithm HSQUAREIMP . 29
2.3 The algorithm MAXDEGREEGREEDY . 30
2.4 The algorithm MINDEGREEGREEDY . 36
2.5 Example of a hard 3-regular hypergraph for MINDEGREEGREEDY 37
2.6 Example of a hard 4-regular hypergraph for MINDEGREEGREEDY 38
2.7 Example of a hard hypergraph for MAXDEGREEGREEDYSIS 41
2.8 Example of a hard regular hypergraph for MAXNEIGHBORGREEDYSIS . . 42
2.9 Part of a hard regular uniform hypergraph for MAXNEIGHBORGREEDYSIS 44

3.1 The sparsifying algorithm SPARSEHYPERGRAPH 49

4.1 The algorithm RANDOMOFFLINE . 58
4.2 The off-line algorithm RANDOMONFLYPERMUTE 58
4.3 The algorithm RANDOMPARTIALPERMUTE 60
4.4 The algorithm RANDOMPARTITIONAPRIORI 62
4.5 The algorithm RANDOMPARTITIONONLINE 64
4.6 The algorithm DETSPARSEHYPERGRAPH 65
4.7 The algorithm DETPARTITIONS . 66
4.8 The algorithm RANDOMDELETE . 69
4.9 The algorithm RANDOMSELECT . 71

xiv

xv

List of Abbreviations

G graph
H hypergraph
G a collection of graphs
H a collection of hypergraphs
V a vertex set
E a set of edges
n number of vertices
m number of edges
r rank of a hypergraph

d(v) the degree of a vertex v

D(v) the weighted degree of a vertex v

d∗(v) the hyperdegree of a vertex v

D∗(v) the weighted hyperdegree of a vertex v

d the average degree
D the weighted average degree
d∗ the average hyperdegree
D∗ the weighted average hyperdegree
∆ the maximum degree

∆∗ the maximum hyperdegree
N(v) the neighborhood of a vertex v

IS Maximum (Weak) Independent Set
SIS Maximum Strong Independent Set

WIS Maximum Weighted (Weak) Independent Set
V C Minimum Vertex Cover
HS Minimum Hitting Set

α(H) the size of a maximum independent set
α(H,w) the weight of a maximum independent set

ln n natural logarithm of n

log n binary logarithm of n

xvi

1

Chapter 1

Introduction

A hypergraph H consists of a set V of vertices and a set E of edges, where an edge
connects an arbitrary number of vertices. As an edge in H is a subset of V , hypergraphs
are sometimes referred to as set systems or set collections. In this work we consider a
hypergraph as a generalization of a graph (a graph is defined by a set V of vertices and a
set E of edges, where an edge connects a pair vertices).

The generalization often leads to simplification and provides an insight why some prob-
lems are hard to solve or approximate. A single statement on hypergraphs can unify sev-
eral theorems on graphs [8] and gives a new tool in exploring different graph properties.
Moreover, studying hypergraph properties helps to reveal the hard part of the problems
on graphs, improve existing results and design new solutions to known combinatorial
problems.

This thesis deals with optimization problems on hypergraphs using various algorithmic
approaches and computational models. We begin by introducing the main definitions,
approaches and models.

1.1 Definitions

A hypergraph H is a pair (V,E), where V = {v1, . . . , vn} is a discrete set of vertices
and E = {e1, . . . , em} is a collection of subsets of V , or (hyper)edges. If V and E are
finite sets, then a hypergraph H(V,E) is finite, otherwise H is infinite. Edges in E are
arbitrary subsets of V , and therefore can contain arbitrary number of vertices. The size,
or the cardinality, |e| of an edge e ∈ E is the number of vertices in e. An edge of size t is
called a t-edge. Then, the rank r of a hypergraph H is the maximum edge size in H . A

2 Approximation Algorithms for Independent Set Problems on Hypergraphs

hypergraph is r-uniform if all edges have the same cardinality r. A graph G is a special
case of hypergraphs, more precisely graphs are 2-uniform hypergraphs.

There exist several types of hypergraphs depending on how the set E of edges is de-
fined. A hypergraph H is directed, if every edge in E is an ordered set, otherwise H is
undirected. A hypergraph H is a multihypergraph, if E is a multiset of (not necessar-
ily distinct) vertices, i.e. E contains multiple edges and an edge in E may contain the
same vertex more than once. Sometimes, a multihypergraph also allows loops, which are
sets containing a single vertex. As opposed to a multihypergraph, a simple hypergraph
contains only unique edges of size at least 2, every edge is a set of distinct vertices and
no edge is a subset of another edge. In this work we consider undirected simple finite

hypergraphs.

The hypergraphs can be "dense" (have many edges) and "sparse" (have few edges), the
"density" of a hypergraph H(V,E) is described by the degrees of the vertices in V . Let
dt(v) = |{e|v ∈ e, |e| = t}| be t-degree of a vertex v, or the number of t-edges incident
on v. We denote by ∆t = max

v∈V
dt(v) and d̄t = (

∑
v∈V

dt(v))/|V | the maximum and the

average t-degree in a hypergraph, respectively. The degree d(v) =
r∑

t=2
dt(v) of a vertex

v is then the total number of edges incident on v. We denote by ∆ = max
v∈V

d(v) and

d̄ = (
∑

v∈V
d(v))/|V | the maximum and the average degree in a hypergraph, respectively.

A hypergraph H is regular, if every vertex in E is of the same degree ∆.

Further, we can refine the degrees in hypergraphs to reflect the fact that edges in a hyper-
graph can be of different sizes. Let d∗(v) =

r∑
t=2

dt(v)
1

t−1 be the hyperdegree of a vertex v.

We denote by ∆∗ = max
v∈V

d∗(v) and d̄∗ = (
∑

v∈V
d∗(v))/|V | the maximum and the average

hyperdegree in a hypergraph, respectively. Note, in a hypergraph d(v) ≥ d∗(v) always
holds for any vertex v, with equality holding only in graphs.

A hypergraph H(V,E) is weighted if every vertex in V is assigned a weight, such weights
might represent costs, lengths, capacities or any other quantity depending on the problem.
The weight of a hypergraph w(H) is then the total weight of the vertices. Formally,
given a function f : V → R that assigns weights to the vertices of H , let w(H) =

w(V) =
∑

v∈V
w(v). We define D(v) = w(v)d(v) and D̄ =

∑
v∈V

w(v)d(v)/
∑

v∈V
w(v) to

be the weighted degree of a vertex v and the average weighted degree in H , respectively.
Similarly, we define D∗(v) = w(v)d∗(v) and D∗ = (

∑
v∈V

D∗(v))/(
∑

v∈V
w(v)) to be the

weighted hyperdegree of a vertex v and the weighted average hyperdegree in H , respec-
tively.

Elena Losievskaja 3

A vertex u is a neighbor of a vertex v, if there exist an edge e ∈ E that includes both u

and v. Given a vertex v ∈ V , we denote by N(v) a set of neighbors of v. Let Nt(v) =

{u ∈ V : ∃e ∈ E, {u, v} ⊆ e, |e| = t} be the set of neighbors of v in edges of size t.
Given a set U ⊆ V , let N(U) = {v ∈ V \U : ∃u ∈ U,∃e ∈ E, {u, v} ⊆ e} be the set of

neighbors of vertices in U .

A hyperclique is a hypergraph in which each vertex is a neighbor of all other vertices.
Note, that a hyperclique need not be a uniform hypergraph. By analogy with a graph
being a 2-uniform hypergraph, a clique is a 2-uniform hyperclique.

An n-star is a tree on n + 1 nodes with one node of degree n (the root of the star) and the
others of degree 1 (the endpoints of the star).

Finally, we introduce some operations on vertices and edges in a hypergraph. By deleting

a vertex v from an edge e we mean the operation of replacing e by e \ {v}. By deleting a

vertex v from a hypergraph H we mean just one operation: V = V \{v}, and by deleting

v with all incident edges we mean two operations: V = V \{v} and E = E\{e ∈ E|v ∈
e}.

We say that a hypergraph H ′(V ′, E ′) is induced in H(V,E) on V ′ ⊆ V , if E ′ = {e ∈
E|e ⊆ V ′}. A subhypergraph H(V ′) is a hypergraph H ′(V ′, E ′) induced in H(V, E)

on the vertex set V ′ ⊂ V . The dual of a hypergraph H is a hypergraph H∗ where for
each edge in H there is a vertex in H∗ and for each vertex v in H there is an edge
e∗ in H∗ formed by the vertices in H∗ corresponding to the edges incident on v, i.e.
e∗ = {ei ∈ E|v ∈ ei}.

There are several subsets of vertices in hypergraphs with special properties, namely: in-

dependent sets and hitting sets. An independent set in H is a subset of V that doesn’t
contain any edge of H , also referred to as a weak independent set [8].

WEAK INDEPENDENT SET: a set Iw ⊆ V such that ∀e ∈ E : |e ∩ Iw| < |e|.
If an independent set in H intersects any edge in E in at most one element, then it is said
to be a strong independent set [8].

STRONG INDEPENDENT SET: a set Is ⊆ V such that ∀e ∈ E : |e ∩ Is| ≤ 1.

It follows from these definitions that a strong independent set is a special case of a weak
independent set. In the case of graphs (2-uniform hypergraphs), there is no distinction
between weak and strong independent sets. In the remainder of the thesis, when we say
an independent set, we mean a weak independent set, unless otherwise is stated.

4 Approximation Algorithms for Independent Set Problems on Hypergraphs

The vertices not contained in a weak independent set form a vertex cover, or a hitting set.
In other words, a hitting set is a subset of V that intersects every edge of H in at least one
vertex.

HITTING SET: a set S ⊆ V such that ∀e ∈ E : |e ∩ S| ≥ 1.

A hitting set in graphs is usually referred to as a vertex cover. A hitting set is closely
related to a set cover, which is a subset of E that covers all vertices in V .

SET COVER: a set C ⊆ E such that ∀v ∈ V ∃e ∈ C : v ∈ e.

Thus, a hitting set in H is equivalent to a set cover in the dual H∗.

In the remainder, we letH and G be the collections of all hypergraphs and graphs, respec-
tively. We denote by H a hypergraph in H and by G a graph in G, respectively.

1.2 Optimization Problems

1.2.1 Definitions

A computational problem Π =< I,S > consists of a set I of problem instances and a set
S of feasible solutions, where for each problem instance I ∈ I there is a feasible solution
S ∈ S . The problem instance I is a particular input string to Π and the feasible solution
S is the output string corresponding to I .

A decision problem Πd =< I, {0, 1} > is a computational problem where a feasible
solution to a given instance I of Π can be either 1 (’yes’) or 0 (’no’). In other words, Πd is
a problem of deciding whether I has a required property or not. For example, the decision
problem k-INDEPENDENT SET asks whether a given hypergraph H has an independent
set of size k, and if there exist an independent set of size k in H , then the answer is 1

(’yes’), otherwise - 0 (’no’).

An optimization problem Πo =< I,S, w, goal > is a computational problem which also
has a function w : S → R that assigns a cost to every solution in S (usually we assume
that costs are non-negative), and a goal that defines whether Πo is a minimization or a
maximization problem. In other words, Πo is a problem of finding a feasible solution to
a given problem instance I of maximum or minimum cost depending on the goal. For
example, the optimization problem MAXIMUM INDEPENDENT SET asks for a maximum
independent set in a given hypergraph H , in this case a set of feasible solutions con-

Elena Losievskaja 5

sists of all independent sets in H and the goal is to find an independent set of maximum
cardinality or weight.

In this work we consider the following computational problems:

The decision problem k-(WEAK) INDEPENDENT SET:
given a hypergraph H(V,E) and an integer k,
does H have a (weak) independent set of size k?

and the optimization problems MAXIMUM (WEAK) INDEPENDENT SET (IS):
given a hypergraph H(V,E),
find a maximum cardinality (weak) independent set in H .

MAXIMUM WEIGHTED (WEAK) INDEPENDENT SET (WIS):
given a weighted hypergraph H(V, E),
find a (weak) independent set in H of maximum weight.

The decision problem k-STRONG INDEPENDENT SET:
given a hypergraph H(V,E) and an integer k,
does H have a strong independent set of size k?

and the optimization problems MAXIMUM STRONG INDEPENDENT SET (SIS):
given a hypergraph H(V,E),
find a maximum cardinality strong independent set in H .

MAXIMUM WEIGHTED STRONG INDEPENDENT SET (WSIS):
given a weighted hypergraph H(V, E),
find a strong independent set in H of maximum weight.

The decision problem k-HITTING SET:
given a hypergraph H(V,E) and an integer k,
does H have a hitting set of size k?

6 Approximation Algorithms for Independent Set Problems on Hypergraphs

and the optimization problem MINIMUM HITTING SET (HS):
given a hypergraph H(V,E),
find a minimum cardinality hitting set in H .

The decision problem k-SET COVER:
given a hypergraph H(V,E) and an integer k,
does H have a set cover of size k?

and the optimization problem MINIMUM SET COVER (HS):
given a hypergraph H(V,E),
find a minimum cardinality set cover in H .

As mentioned above, in graphs there is no distinction between strong and weak indepen-
dent sets, and the MAXIMUM INDEPENDENT SET problem on graphs is denoted by IS.
For a unweighted hypergraph H , we denote by α(H) the size of a maximum independent
set in H . For a weighted hypergraph H , we denote by α(H, w) the weight of a maximum
independent set in H .

1.2.2 Applications

IS, HS, SC are all of fundamental interest, both in practical and theoretical aspects. They
arise in various applications in data mining, image processing, database design, parallel
computing and many others.

An example of the MAXIMUM INDEPENDENT SET problem is the problem of scheduling
the poster presentation. Suppose the students are going to present the posters of their
work, where each poster can have more than one student as an author and each student
can have more than one poster. The goal is to assign as many posters as possible to
the same time slot conditioning that each student can present at most one poster in the
same time slot. We construct a hypergraph with a vertex for each poster and an edge for
each student, then a maximum strong independent set represents the maximum number
of posters that can be presented at the same time.

An example of the MINIMUM HITTING SET problem is the problem of hiring teachers
at the school. Suppose teachers apply for positions with the lists of courses they can
teach, the school administration then tries to hire the least possible number of teachers so
that each course in the school program is taught by at least one teacher. We construct a

Elena Losievskaja 7

hypergraph with a vertex for each teacher and an edge for each course, then a minimum
hitting set represents the minimum group of teachers that need to be hired to teach all
courses at this school.

An example of the MINIMUM SET COVER problem is the virus testing problem. Suppose
we have a set of viruses and a collection of strings of 20 or more consecutive bytes from
viruses specific only for viruses, each such string may be common in several viruses.
The goal is to find a minimum set of strings that need to be searched for to confirm the
presence of viruses. We construct a hypergraph with a vertex for each virus and an edge
for each string of bytes, then a minimum set cover represents the minimum set of strings
such that each virus is presented by at least one string in this set.

1.2.3 Hardness

All computational problems can be divided into classes depending on how much time
or/and space is needed to find an optimal solution. One of the fundamental complexity
classes, P or PTIME, contains all decision problems that can be solved in time poly-
nomial in the size of the problem instance using deterministic Turing machine. Turing

machine is a computational model which can simulate the logic of any algorithm. In a
deterministic Turing machine for any given configuration (described by the current state
and the input symbol) there is at most one possible transition (described by the next state,
output symbol and the move of the tape). It means that for any given input to a determin-
istic Turing machine there is at most one possible output. In a non-deterministic Turing

machine for any given configuration there may be more than one possible transition. It
means that for any given input to a non-deterministic Turing machine there may be more
than one possible output. Non-deterministic Turing machine accepts a problem instance,
i.e. outputs the answer ’yes’, if at least one of possible outputs of its computational pro-
cess results in ’yes’. All decision problems that can be solved in time polynomial in the
size of the problem instance using non-deterministic Turing machine form the complexity
class NP . Alternatively, the class NP is defined as the class of decision problems, so-
lutions to which can be verified in polynomial time using deterministic Turing machine.
It follows that, P is a subset of NP ; the question whether P = NP is one of the most
important question in computer science and it still remains open.

Among all problems in NP there is a special class of problems, so called NP-complete

problems. NP -complete problems have a special property, namely: if any single NP -
complete problem can be solved in polynomial time by deterministic Turing machine,
then so can be solved every problem in NP . By this reason, NP -complete problems are

8 Approximation Algorithms for Independent Set Problems on Hypergraphs

considered to be the hardest problems in NP . All problems we consider in this work, k-
INDEPENDENT SET, k-HITTING SET, k-SET COVER and k-VERTEX COVER, are known
to be NP -complete [41]. A decision problem only answers the question whether a given
problem instance has a solution of size k, while the corresponding optimization problem
has to find an optimal solution (not only its size), it means that the above optimization
problems are at least as hard as their decision versions.

Given that no algorithm finds an optimal solution for NP-complete problems in polyno-
mial time under the assumption P 6= NP , the question is then how well we can ap-
proximate an optimal solution to the corresponding optimization problem. Numerous
results in approximation area can be split into two categories: approximation algorithms
and inapproximability results. Let us first discuss approximation algorithms and then the
inapproximability results.

1.3 Algorithmic Approaches

Many fundamental problems on graphs and hypergraphs are difficult to solve in polyno-
mial time, among them are the MAXIMUM INDEPENDENT SET, the MINIMUM HITTING

SET, the MINIMUM SET COVER and the MINIMUM VERTEX COVER problems. Unless
P = NP , it is very unlikely that there exist an algorithm that solves any of these problems
in time less than exponential in the size of the problem instance (i.e. graph or hypergraph
size).

The computational challenge of solving hard computational problems gave rise to two
main approaches in computation: approximation and exact algorithms. The difference
between these two approaches is the tradeoff between the running time of the algorithm
and the quality of the solution it outputs.

Approximation algorithms find a feasible solution fast (usually in polynomial time), but
the solution is not guaranteed to be optimal; we are interested in bounding the approxi-
mation ratio of such algorithms, which is a relationship between the cost of the solution
found by the algorithm on a given instance and the cost of an optimal solution on that
instance maximized over all problem instances.

Exact algorithms always find an optimal solution, usually in exponential time; in this case
we are interested in reducing the running time of the algorithm.

In this work we focus on approximation algorithms.

Elena Losievskaja 9

1.3.1 Approximation Algorithms

Approximation algorithms are algorithms that find approximate solutions to optimization
problems (usually in polynomial time). As opposed to approximation algorithms, optimal

algorithms find optimal solutions. Approximation algorithms are essential for problems in
NP\P , since these problems are unlikely to admit polynomial-time optimal algorithms,
unless P = NP . However, approximation algorithms are also very useful for problems
that do have polynomial-time optimal algorithms, but where these optimal algorithms
may take too long for large inputs.

Approximation algorithms are characterized by their approximation ratio and absolute

error. Suppose we have a maximization problem Π. For a given problem instance I and
a given approximation algorithm A, let OPT (I) and ALG(I) be the costs of an optimal
solution and the cost of the solution produced by A, respectively. The approximation al-
gorithm A has a approximation ratio ρ for Π if OPT (I)

ALG(I)
≤ ρ for any problem instance I . In

other words, the approximation ratio ρ of A is defined as ρ = max
∀I

OPT (I)
ALG(I)

. An approxima-
tion ratio is sometimes called a relative performance guarantee or a performance ratio.
The approximation algorithm A has an absolute error % for Π if OPT (I)−ALG(I) ≤ %

for any problem instance I . In other words, the absolute error % of A is defined as
% = max

∀I
(OPT (I) − ALG(I)). An absolute error is sometimes called an absolute per-

formance guarantee.

For a minimization problem Π the approximation ratio and absolute error are defined as
ρ = max

∀I
ALG(I)
OPT (I)

and % = max
∀I

(ALG(I)−OPT (I)), respectively.

In what follows, we will consider only the approximation ratio. An algorithm A is said to
be a ρ-approximation algorithm for a problem Π, if the approximation ratio of A for Π is
ρ.

There are several techniques used in algorithm design. Let us give a brief outline of the
techniques used in this work.

1.3.2 Algorithmic Techniques

Greedy

A greedy algorithm is an algorithm that obtains a solution to a problem by making a se-
quence of locally optimal choices, i.e. choices that seem to be the best at the moment.
The idea is that a locally optimal choice will hopefully lead closer to a globally opti-
mal choice. A greedy algorithm is somewhat "shortsighted" in the sense that it makes

10 Approximation Algorithms for Independent Set Problems on Hypergraphs

a decision based only on the information at hand without considering the effect of these
decisions in the future. The disadvantage of a greedy algorithm is that it never reconsiders
its decision no matter how bad it may look later. As a result, many optimization problems
can not be solved optimally with this approach. On the other hand, greedy algorithms are
simple, straightforward, easy to invent and implement, and usually time efficient, which
make them very useful in attacking hard problems in real-life applications. Even if in
general greedy algorithms are not optimal, there are examples when greedy algorithms
always find optimal solutions such as Kruskal’s and Prim’s algorithms for finding mini-
mum weight spanning tree.

Local Search

A local search algorithm is an algorithm which starts with an (arbitrary) feasible solution
and continually replaces it by a better solution while possible. The idea is that an algo-
rithm searches for a better solution in the restricted "local" set of feasible solutions, called
the search space, and therefore it takes polynomial time to find a better solution (if the
algorithm would search in unrestricted search space, then it will essentially perform an
exhaustive search, which may take exponential time). The search space depends on the
current solution, and so it changes from iteration to iteration. Usually, the search space is
defined to be a neighborhood of the current solution S, where the neighborhood of S is
a set of solutions Γ (S) produced by a neighboring function Γ . In other words, a neigh-
boring function Γ defines which feasible solutions can be obtained from a solution S by
changing some components of S. Hence, a local search algorithm iteratively improves
a current solution by moving to a better solution in its neighborhood. The search for a
better solution terminates either (i) when the current solution is the best possible in the
current search space, and so no improvement can be made or (ii) when the improvement
over several iterations is negligibly small or (iii) after predetermined number of iterations.
Essentially, a local search algorithm finds a local optimal solution which might not be a
global optimal solution. Nevertheless, the local search approach is usually very efficient
in terms of time, and therefore is widely applied to tackle hard problems in various fields
such as, for example, artificial intelligence, engineering, bioinformatics.

Partitioning

A partitioning algorithm is an algorithm which splits a given instance of a problem Π into
disjoint partitions, finds solution in each partition and outputs the best solution found.
Usually, but not necessarily, the partitions are all of the same size. Often the size of

Elena Losievskaja 11

partitions is such that Π can be solved optimally on each partition in polynomial time.
Surprisingly, this simple approach gives one of the best approximation algorithms for
some hard optimization problems [29, 30]. Partitioning is also often used in combination
with other approximation algorithms.

Semidefinite Programming

Semidefinite programming refers to an optimization problem that can be expressed as:

SEMIDEFINITE PROGRAM SDP
MAXIMIZE W •X

SUBJECT TO Aj •X = bj, 1 ≤ j ≤ m

X º 0

where the variable X ∈ Sn, and Sn is the space of real symmetric n × n matrices; the
vector b ∈ Rm and the matrices W,Aj ∈ Sn, for all j = 1 . . . m, are given problem pa-
rameters [52]. The inequality X º 0 means that X is positive semidefinite, and W •X de-
notes the inner product of matrices W and X , which is defined as W •X =

n∑
i=1

n∑
j=1

wijxij .

SDP can be solved within an additive error of ε for any ε > 0 in time polynomial in n

and log (1/ε) [25].

One of the properties of positive semidefinite matrices states that if X is positive semidef-
inite, there exists a n× n matrix U such that X = UUT , where U can be found using an
incomplete Cholesky factorization of X (in general this factorization is not polynomial
time computable, but can be approximated to any desired degree in polynomial time). Let
u1, . . . ,un be the columns of U (we might need to normalize them to obtain unit-length
vectors). Then, SDP can be rewritten as a vector program [57]:

VECTOR PROGRAM V P
MAXIMIZE W •X

SUBJECT TO Aj •X = bj, 1 ≤ j ≤ m

|ui| = 1, 1 ≤ i ≤ n

ui ∈ Rn, 1 ≤ i ≤ n

where xij = {ui · uj} for all 1 ≤ i ≤ j ≤ n. V P is equivalent to SDP [57].

We use vector programs to solve optimization problems on hypergraphs. For example,
consider the MAXIMUM INDEPENDENT SET (IS). Given a hypergraph H(V,E), let I

be an independent set in H . We introduce a unit-length vector ui for every vertex vi ∈ V ,

12 Approximation Algorithms for Independent Set Problems on Hypergraphs

1 ≤ i ≤ n, and a unit-length vector u0 such that ui = u0 if vi ∈ I , and ui = −u0,
otherwise. Then, IS can expressed as a vector program as following:

V P − IS
MAXIMIZE

∑
vi∈V

1+ui·u0

2

SUBJECT TO
∑

vi, vj ∈ V

1 ≤ i < j ≤ |V |

ui · uj +
∑

vi∈V
ui · u0 ≤ |e|(|e|−3)

2
, ∀e ∈ E

|ui| = 1, 1 ≤ i ≤ |V |
ui ∈ Rn, 1 ≤ i ≤ n

An example of a solution to V P − IS is given in Fig.1.1.

Figure 1.1: Example of a solution to V P − IS.

Given vectors u1, . . . ,un as a solution to V P − IS, we need to obtain a integer solution
y1, . . . , yn such that yi = 1, if vi ∈ I , and yi = −1, otherwise, for 1 ≤ i ≤ n. This can be
done using a vector rounding or a hyperplane rounding [24, 32, 42]. In vector rounding

we take a random unit-length vector r ∈ Rn and some positive constant c, and for each
i we let yi = 1 if ui · r > c, and yi = −1, otherwise. An example of vector rounding is
shown in Fig. 1.2.

Figure 1.2: Example of vector rounding, all vertices above the hyperplane (marked by
bigger circles) defined by the vector r are included in the independent set.

Elena Losievskaja 13

In hyperplane rounding we take log c random hyperplanes through the origin in Rn, and
for each i we let yi = 1 if ui · rj > 0 for all 1 ≤ j ≤ log c, where rj is the normal of the
hyperplane j, and yi = −1, otherwise.

Semidefinite programming is a relatively new approach in optimization algorithms, but
has turned out to be a very powerful technique that gives some of the best approximation
algorithms for several optimization problems [32, 42].

Randomized Algorithms

A randomized algorithm is an algorithm whose input consists of two parts: an instance of
a problem and a sequence of random bits; where the random bits determine the choices
made by the algorithm and the output solution. It means that if we run the same random-
ized algorithm A on the same input several times, the behavior of A may differ between
runs. The difference between runs is either in the found solution (if the algorithm does
not guarantee to always find an optimal solution) or in the complexity of the algorithm (if
the algorithm always finds an optimal solution), for example in the running time or in the
working space used by the algorithm. Hence, the performance of a randomized algorithm
(the output, the running time or the working space) is a random variable. For the opti-
mization problems considered in this work there is no randomized algorithm that always
produces an optimal solution, and so we deal with randomized algorithms whose output
solutions are random variables. The aim is then to design such a randomized algorithm
that produces a good approximation of an optimal solution with high probability. It is also
important to note that the error probability of a randomized algorithm can be significantly
reduced by running the algorithm on the same input a number of times with a new random
sequence in each run.

Randomized algorithms can be more efficient in terms of time and space and simpler
to design and implement than deterministic algorithms. For some problems (for exam-
ple, primality testing) randomized algorithms are so efficient that they have become some
of the most popular and widely used approaches in every day applications. Some ran-
domized algorithms can be turned into deterministic algorithms using derandomization

procedures, as for example in [47].

14 Approximation Algorithms for Independent Set Problems on Hypergraphs

1.4 Computational Models

A computational or processing model defines how a problem instance (called input) is
presented to an algorithm, how much time and space are available to the algorithm to
make a decision on the final solution and whether the algorithm can revise its decisions.
In this work we consider off-line, on-line and streaming models of computation.

1.4.1 Off-line Model

In an off-line model the algorithm is given the whole input data in the beginning. Usually
an off-line model does not imply any limitations on working space and time, it is allowed
to revise taken decisions at any step and it is not required to keep a feasible solution at any
time during the execution. An off-line algorithm is an algorithm processing data according
to an off-line model. An off-line algorithm A is characterized by its approximation ratio
(as defined in Section 1.3.1).

1.4.2 On-line Model

In an on-line model the input data are presented to the algorithm piece-by-piece, the
algorithm is forced to take decisions on-fly without a possibility to revise them later.
On-line models represent situations when requests come in a sequence and each request
needs to be handled as fast as possible, for example, in scheduling problems, booking and
renting systems.

One of the important features of the on-line model is that an algorithm never knows what
is going to come next, and so it has to take decisions based on the data that has arrived so
far. Another important feature of on-line algorithms is that an on-line algorithm always
maintains a feasible solution for the input data it has received so far. If the behavior of
an on-line algorithm is predetermined, we call such an algorithm deterministic on-line
algorithm. If an on-line algorithm uses a sequence of random bits to guide its behavior,
then we call such an algorithm randomized on-line algorithm.

The order in which input data are presented to an on-line algorithm when analyzing its
behavior is determined by an adversary. The goal of adversary is to present the input data
in such a way that will force an on-line algorithm to take bad decisions most of the time.
In this thesis we consider only oblivious adversaries. The oblivious adversary orders the
input data in advance, before presenting them to the on-line algorithm.

Elena Losievskaja 15

The performance ratio of an on-line algorithm is evaluated via competitive analysis, the
performance ratio is then called the competitive ratio. An on-line algorithm with the com-
petitive ratio ρ is referred to as a ρ-competitive algorithm. The idea of competitive anal-
ysis is to compare the solution found by an on-line algorithm with a given adversary to a
solution found by an optimal off-line algorithm with the same adversary. Let E[ALG(I)]

be the expected cost of the solution produced by an algorithm A on the input data I gener-
ated by the oblivious and E[OPT (I)] be the expected cost of the solution produced by an
optimal off-line algorithm on the same input data I , with the expectation taken over the
random choices made by A. Then, the competitive ratio ρ of an on-line algorithm A with
the oblivious adversary is defined as ρA = max

∀I
OPT (I)

E[ALG(I)]
(for a minimization problem the

ratios are reversed).

1.4.3 Streaming Model

In the classical streaming model [36, 48, 49], the data is presented sequentially in form
of a data stream, one item at a time, and the working space (the memory used by the
algorithm), is significantly less than the size of the data stream. Streaming algorithms are
similar to on-line algorithms in the sense that the input data is revealed one item at a time,
but are restricted by space rather than the maintenance of a single feasible solution.

The main parameters of the streaming model are the size of the working space S (in bits),
the number P of passes over the stream and the time T needed to process each data item
in the stream. In the classical model the space S as well as the time T are required to be
sublinear in N , the size of the data stream, preferably logt(N) for some small constant t;
the number P of passes is required to be a constant, preferably one or two.

The motivation for the streaming model comes from practical application related to the
management of massive data sets such as, for example, real-time network traffic, on-line
actions, telephone call records [23], where the input data are huge and arrive at a very
high rate. It means that it is impossible to store the entire input and for each data item in
the stream the decision has to be made quickly.

There are a number of results for algorithms in the classical streaming model, mostly
on computing statistics for a stream, such as frequency moments [4] and Lp norms [38].
There have been attempts to study classical graph problems, where the graph (or the hy-
pergraph) is presented as a stream. In this case, a data item in the stream often represents
an edge or a vertex along with its neighbors. In the former case the data stream is called an
adjacency stream; in the latter case the data stream is called an incidence stream [5]. The
data items in the stream usually arrive in an arbitrary order. However, there has not been

16 Approximation Algorithms for Independent Set Problems on Hypergraphs

much success with solving graph problems in the classical streaming model, an exception
being the problem of counting triangles in a graph [5]. In fact, it was proven that for many
graph properties it is impossible to determine whether a given graph has the property in
single pass using o(n) of space, where n is the number of vertices in the graph [22].

Difficulties with solving most problems on graphs (and hypergraphs) led to the extensions
of the classical streaming model. One such extension is the semi-streaming model [48]. In
the semi-streaming model the constraint on the working space is relaxed to O(n logt n),
where n is the number of vertices in the graph (hypergraph) and t is a constant. It means
that the algorithm has enough memory to store the vertices with some limited informa-
tion about them, but not necessarily the edges in the graph (hypergraph). Many struc-
tural graph problems can be solved or approximated within one or two passes in a semi-
streaming model, for example determining whether a graph is connected [17] and finding
a maximum matching [46].

1.5 Related Work

1.5.1 Inapproximability

Inapproximability results define how well a given NP -complete problem can be approx-
imated if P 6= NP . These results are more on the negative side, because essentially they
state the impossibility of getting a better approximation unless P = NP . However, in-
approximability results are as important as approximation algorithms because for a given
optimization problem corresponding to NP -complete decision problem Π and an approx-
imation algorithm A for Π, they tell us if A is the best possible for Π if P 6= NP .

For our problems the following inapproximability results have been shown, where all the
results assume that P 6= NP . The MAXIMUM INDEPENDENT SET problem is not ap-
proximable within |V |1−ε for any ε > 0 [35]. In bounded-degree hypergraphs the MAX-

IMUM INDEPENDENT SET problem is not approximable within ∆/2
O

(√
log ∆

)
[56]. As

we mentioned before, the MINIMUM HITTING SET problem is equivalent to the MINI-
MUM SET COVER problem in the dual hypergraph. Thus, both the MINIMUM HITTING

SET and the MINIMUM SET COVER problems are equivalent in terms of optimization, in
particular inapproximability results hold for both problems. Namely, the MINIMUM HIT-
TING SET and the MINIMUM SET COVER problems are not approximable within c log n

for some c [50]. In hypergraphs of rank r the MINIMUM HITTING SET problem is not
approximable within r

1
19 and the MINIMUM HITTING SET problem is not approximable

Elena Losievskaja 17

within ln r − O(ln ln r) [56]. As for the VERTEX SET problem, it is not approximable
within 1.1666 [34], the same bound holds in case of bounded-degree hypergraphs if ∆ is
sufficiently large [16].

1.5.2 Approximations

Hypergraph problems tend to be more difficult to solve than the corresponding graph
problems, with the MAXIMUM INDEPENDENT SET problem being a typical case.

The SIS problem in hypergraphs can be turned into an independent set problem in graphs
by replacing each hyperedge with a clique (assuming that the hypergraph has no single-
tons which cannot belong to any independent set). The reason for considering the problem
as a hypergraph problem is that the degrees in the hypergraph can be much smaller than
in the corresponding clique graph. If the hypergraph is of degree ∆, then the correspond-
ing clique graph contains no ∆ + 1-claw, where a k-claw is an induced star on k edges.
The work of Hurkens and Schrijver [37] established that a natural local improvement
method attains an approximation ratio of k/2 + ε, for any fixed ε > 0, on k + 1-claw
free graphs, see also [26]. Another local search algorithm by Berman [9] approximates
weighted IS in (k+1)-claw free graphs within a factor of (k+1)/2, which implies also a
∆/2-approximation. A strong hardness result of Ω(∆

ln∆
) is known for SIS, due to Hazan,

Safra and Schwartz [33]. The focus of our study of SIS is to consider natural greedy
methods and establish tight bounds on their approximation ratio.

For the IS problem, the best approximation ratio known in general graphs, in terms of
the number n of vertices, is O(n(log log n)2/ log3 n) [20], while in hypergraphs the ratio
is only O(n/ log n), which has a rather trivial argument [27]. In terms of the maximum
degree ∆, a ratio of ∆ is trivial for both graphs and hypergraphs, This ratio was slightly
improved by greedy and local search algorithms, and the best improvement is achieved
by SDP algorithms.

One of the most popular heuristics for IS, HS and SC is the max-greedy algorithm. For
IS the max-greedy algorithm repeatedly deletes a vertex of maximum degree with all
incident edges from a hypergraph, until the edge set of the hypergraph is empty. This
algorithm approximates unweighted IS in graphs within a factor of ∆+2

3
[31]. For SC

the max-greedy algorithm repeatedly adds to the cover the set with the largest number of
uncovered elements. In spite of its simplicity, it is in various ways also one of the most
effective. Johnson [40] and Lovász [45] showed that it approximates the MINIMUM SET

COVER problem within Hn ≤ ln n + 1 factor, which was shown by Feige [19] to be the
best possible up to a lower order term. Generalizations to weights [15] and submodular

18 Approximation Algorithms for Independent Set Problems on Hypergraphs

functions [60] also yield equivalent ratios, and under numerous variations on the objective
function the max-greedy algorithm does still achieve the best known/possible approxima-
tion ratio, e.g. Sum Set Cover [21] and Entropy Set Cover [14]. Bazgan, Monnot, Paschos
and Serrière [6] studied a differential approximation ratio of the max-greedy algorithm,
which measures how many sets are not included in the cover. When viewed on the dual
hypergraph, this is equivalent to studying the approximation ratio of the greedy set cover
algorithm for IS. They proved that when modified with a post-processing phase, it has
a approximation ratio of at most ∆/1.365 and at least (∆ + 1)/4. Caro and Tuza [13]
showed that the max-greedy algorithm applied to IS in r-uniform hypergraphs always
finds a weak independent set of size at least Θ

(
n/∆

1
r−1

)
. Thiele [55] extended their re-

sult to non-uniform hypergraphs and gave a lower bound on the size of an independent set
found by a similar greedy algorithm as a complicated function of the number of edges of
different sizes incident on each vertex in a hypergraph. Somewhat opposite to the max-

greedy algorithm is the min-greedy algorithm, which for IS adds a vertex of minimum
degree to the solution, deletes this vertex from the hypergraph, and if there are vertices
with loops, deletes such vertices with all edges incident on them; this process is repeated
until the vertex set is empty. This algorithm approximates unweighted IS in graphs within
a factor of ∆+1

2
[31], and has until now not been studied on hypergraphs.

Another popular algorithm design technique is local search. Local search gives the best
approximations known of weighted and unweighted IS in bounded-degree graphs for
small values of ∆, due to Berman [9] and Berman and Fujito [10]. Bazgan, Monnot,
Paschos and Serrière [6] considered a simple 2-OPT local search algorithm to approxi-
mate IS in hypergraphs and proved a tight bound of (∆ + 1)/2. To our best knowledge
there have been no results on local search algorithm in hypergraphs.

Yet another simple approach in approximation algorithm design is partitioning. This ap-
proach yields d(∆ + 1)/3e approximation to the weighted IS in graphs, as shown in
[26]. In spite of its simplicity, partitioning has not been used before to approximate IS in
hypergraphs.

One of the most powerful approximation approach for hard optimization problems in-
volves the use of semi-definite programming (SDP). It is responsible for the best ratio
known for IS in graphs of O(∆ log log ∆/ log ∆) [26]. It is also involved in the com-
plementary vertex cover problem [32], both in graphs and in hypergraphs. Yet, it has
failed to yield much success for IS in hypergraphs, except for some special cases. One
intuition may be that hyperedges result in significantly weaker constraints in the semi-
definite relaxation than the graph edges. The special cases where it has been successful
— 2-colorable r-uniform hypergraphs [26] and 3-uniform hypergraphs with a huge in-

Elena Losievskaja 19

dependence number [43] — have properties that result in strengthened constraints. The
usefulness of SDP for general IS has remained open.

One of the earliest works on graph problems in streaming models considered finding a
vertex with the largest number of neighbors and the maximum local degree [36], counting
the number of triangles [5] and estimating common neighborhoods [12] using the classi-
cal streaming model. These results were the first ones to show that most graph problems
are unlikely to be solved in the classical streaming model due to the restricted working
space. The attention then turned to the semi-streaming model. There is a number of
approximation algorithms for the maximum bipartite graph matching (weighted and un-
weighted cases), diameter and shortest paths [22] and min-cut [1]. Harder problems, such
as IS, HS and SC are yet to be considered in the semi-streaming model.

1.6 Original Contribution of the Thesis

In this work we mainly focus on the MAXIMUM INDEPENDENT SET problem. Known ap-
proximation algorithms suggest several directions and research questions. A key question
is to what extent approximation ratios for IS in graphs can be matched in hypergraphs.
This can be asked in terms of different degree parameters, such as maximum degree,
average degree, hyperdegree, etc. Given that graphs are 2-uniform hypergraphs and r-
uniform hypergraphs have certain nice properties, the question is also how well we can
handle uniform and non-uniform hypergraphs. Our main results are on the MAXIMUM

INDEPENDENT SET problem.

Shrinkage reduction.
First, we describe a general technique that reduces the worst case analysis of certain
algorithms on hypergraphs to their analysis on ordinary graphs. Given an approximation
algorithm A, this technique, called shrinkage reduction, truncates a hypergraph H to a
graph G such that an optimal solution on H is also an optimal solution in G, and A

produces the same worst case approximate solution on H and G. This technique can be
applied to a wide class of algorithms and problems on hypergraphs.

Greedy algorithms.
Using the shrinkage reduction technique we show that the max-greedy algorithm for IS

has a approximation ratio of (∆ + 1)/2 on hypergraphs, improving the bounds obtained
by Bazgan et al. [6]. In addition, while their analysis required a post-processing phase,
our bound applies to the greedy algorithm alone. This bound is slightly worse than the
approximation ratio of the max-greedy algorithm on graphs. We also give the analysis of

20 Approximation Algorithms for Independent Set Problems on Hypergraphs

the mix-greedy algorithm on hypergraphs, showing that it achieves only a ratio of ∆− 1,
significantly worse than on graphs. In r-uniform hypergraphs the approximation ratio of
the greedy algorithms is improved to Θ

(
∆

1
r−1

)
(the max-degree greedy algorithm) and

1 + ∆−1
r

(the min-degree greedy algorithm).

Local search algorithms.
We extend several local search graph algorithms to the hypergraph case. In particular,
using shrinkage reduction technique, we show that the t-OPT algorithm, which repeatedly
tries to extend the current solution by deleting t elements while adding t + 1 elements,
approximates IS on hypergraphs within ∆/2 + ε(t), where lim

t→∞ ε(t) = 0. We also extend
the local search graph algorithm of Berman and Fürer [11] for unweighted IS and the
local search graph algorithm of Berman [9] for weighted IS to the hypergraph case and
obtain a (∆ + 1)/2 approximation for weighted IS and (∆ + 3)/5 + ε approximation for
unweighted IS. All these local search algorithms achieve the same approximation ratio
on hypergraphs as on graphs.

Partitioning algorithms.
We apply a simple partitioning approach [29, 30] to IS on hypergraphs and prove the
bound of d(∆ + 1)/3e for WIS.

Semidefinite programming algorithms.
We derive the first o(∆)-approximation for IS in hypergraphs matching the
O(∆ log log ∆/ log ∆)-approximation for the special case of graphs. Our approach is to
use an SDP formulation to sparsify the part of the instance formed by 2-edges, followed
by a combinatorial algorithm on the resulting sparser instance. This is extended to obtain
an identical bound in terms of the average degree d̄ of an unweighted hypergraph. As part
of the method, we also obtain a k5/2−1/kd̄1−1/k+o(1)-approximation for hypergraphs with
independence number at least n/k. We generalize the results to weighted hypergraphs. In
that case, no non-trivial bound is possible in terms of the average degree alone, so we turn
our attention to a weighted version. We give a O(D̄ log log D̄/ log D̄)-approximation for
IS. We apply two combinatorial algorithms to hypergraphs with few 2-edges. One is a
greedy algorithm analyzed by Caro and Tuza [13] for the r-uniform case and Thiele [55]
for the non-uniform case. The bound obtained in [55] is in general unwieldy, but we can
show that it gives a good approximation when the number of 2-edges has been reduced.
The other is a simple randomized algorithm analyzed by Shachnai and Srinivasan [54]
achieving the same ratio as the greedy algorithm. This randomized algorithm can be
derandomized as shown in [47].

The summary of the main results for IS in off-line model is given in Fig. 1.3.

Elena Losievskaja 21

Previous results Our results

Algorithm Graphs Hypergraphs Bound Remarks

Max-degree greedy ∆+2
3

[31] ∆
1.365

[6] ∆+1
2

unweighted

Min-degree greedy ∆+1
2

[31] – ∆− 1 unweighted

Local search 2-OPT ∆+1
2

[26] ∆+1
2

[6] ∆+1
2

unweighted

Local search t-OPT ∆
2

+ ε(t) [26] – ∆
2

+ ε(t) unweighted

Berman, Fujito [10] ∆+3
5

[10] – ∆+3
5

unweighted

Berman [9] ∆+1
2

[9] – ∆+1
2

weighted

Partitioning d(∆ + 1)/3e [26] – d(∆ + 1)/3e weighted

SDP-based O
(

d̄ log log d̄
log d̄

)
[26, 32] – O

(
d̄ log log d̄

log d̄

)
unweighted

SDP-based O
(

D̄ log log D̄
log D̄

)
[26, 32] – O

(
D̄ log log D̄

log D̄

)
weighted

Figure 1.3: Summary of the results for IS in off-line model.

Streaming algorithms.
We consider algorithms in the semi-streaming model that use one pass over the stream and
at most O(r) time to process every edge in the stream. First, we describe two randomized
algorithms: the permutation-based algorithm finds an independent set of expected weight
Ω

(
w(V)

D∗

)
in bounded-degree hypergraphs using O(n log n) bits of total working space;

the partition-based algorithm approximates IS within O
(

n
c log n

)
for any constant c > 0

in unbounded-degree hypergraphs using O(nc log n) total working space. The working
space of the first algorithm can be improved to O(n log r) bits. The second algorithm can
be modified to be a variation of on-line randomized preemptive algorithm with the same
approximation factor and the same size of the working memory. Next, we present two
deterministic algorithms: the first one works for bounded-degree hypergraphs and finds an
independent set of size Ω

(
pn
∆2

)
using O(n log n) space, where p is the smallest edge size in

a given hypergraph; the second algorithm works for unbounded-degree hypergraphs and
approximates IS within O

(
n

c log n

)
for any constant c > 0 using O(nc+1) space.

Finally, we define an on-line minimal space streaming model, in which the working space
is limited to two bits per vertex and the algorithm must maintain a feasible solution at
all times. We prove lower bounds for randomized and deterministic algorithms in this
model and present a randomized online minimal space streaming algorithm that finds an

22 Approximation Algorithms for Independent Set Problems on Hypergraphs

independent set of expected weight Ω
(

w(V)

D̄

)
using two bits of memory per vertex , i.e. in

total 2n bits of working memory.

The summary of the main results for IS in semi-streaming model is given in Fig. 1.4. All
algorithms use one pass over the stream.

Algorithm Bound Space (in bits) Time Type Remarks

RANDOMONFLYPERMUTE O
(
D∗

)
O(n log n) O(r) randomized weighted

RANDOMPARTIALPERMUTE O
(
D∗

)
O(n log r) O(r) randomized weighted

RANDOMPARTITIONAPRIORI O
(

n
c log n

)
O(nc log n) O(r) randomized unweighted

RANDOMPARTITIONONLINE O
(

n
c log n

)
O(nc log n) O(r) randomized unweighted

DETSPARSEHYPERGRAPH O
(

∆2

p

)
O(n log n) O(1) deterministic unweighted

DETPARTITIONS O
(

n
c log n

)
O(nc+1) O(r) deterministic unweighted

RANDOMSELECT O
(
D

)
2n O(r) randomized weighted

Figure 1.4: Summary of the results for IS in semi-streaming model.

Strong independent sets.
For SIS we describe two greedy algorithms: one constructs an independent set by select-
ing vertices of minimum degree; the other selects vertices with the fewest neighbors. We
show that both algorithms have a approximation ratio of ∆ and that this bound is tight. In
r-uniform hypergraphs the approximation ratio of both greedy algorithms is improved to
∆− ∆−1

r
.

1.7 Structure of the Thesis

The remainder of the thesis is organized as follows:

- Chapter 2 introduces the shrinkage reduction technique and gives the analysis of
max-greedy, min-degree, local search and partitioning algorithms. The greedy al-
gorithms for SIS on uniform and non-uniform hypergraphs are presented there as
well.

Elena Losievskaja 23

- Chapter 3 describes SDP -based algorithms. First, it is explained how the number
of 2-edges in hypergraphs can be reduced using SDP technique. Next, approxi-
mation ratio for the greedy and randomized algorithms are proved on hypergraphs
with few 2-edges. Finally, the combination of SDP and combinatorial algorithms is
outlined.

- Chapter 4 presents semi-streaming algorithms. First, we analyze several random-
ized permutation and partition-based algorithms. We prove approximation ratios for
bounded and unbounded hypergraphs. Next we describe deterministic algorithms
for bounded and unbounded hypergraphs. Finally, we define an online streaming
model and we prove lower bounds for online streaming randomized and determin-
istic algorithms.

- Chapter 5 summarizes the results and outlines open problems and possible direc-
tions for further research.

24

25

Chapter 2

Combinatorial Algorithms

We describe three different approaches to weighted and unweighted IS in bounded-
degree hypergraphs: local search, greedy and partitioning. First, we introduce a general
reduction technique for the worst case analysis of approximation algorithms on hyper-
graphs, and then apply it to local search and greedy algorithms. Next, we present a par-
titioning algorithm for IS on bounded-degree hypergraphs. Finally, we discuss greedy
algorithms for SIS on uniform and non-uniform hypergraphs.

2.1 Shrinkage Reduction

Shrinkage reduction is a general technique that reduces the worst case analysis of algo-
rithms on hypergraphs to their analysis on graphs. It is based on a shrinkage hypergraph,
or shrinkage for short.

Definition 2.1.1 A hypergraph H ′ is a shrinkage of H if V (H ′) = V (H), |E(H ′)| =

|E(H)| and for any edge e ∈ E(H) there exist an edge e′ ∈ E(H ′) such that e′ ⊆ e.

In other words, the edges of H might be truncated in H ′ into sets of smaller size (and at

least 2).

Shrinkage reduction works for hereditary optimization problems. Given a hypergraph H

and any optimization problem Π, let SH be a feasible solution to Π in H .

Definition 2.1.2 An optimization problem on hypergraphs is hereditary, if for any shrink-

age H ′ of a hypergraph H it satisfies SH′ ⊆ SH .

26 Approximation Algorithms for Independent Set Problems on Hypergraphs

Many problems on hypergraphs are hereditary, including the MINIMUM HITTING SET,
the MAXIMUM INDEPENDENT SET, the Minimum Coloring and the Shortest HyperPath1.
An example of non-hereditary problem is the Longest HyperPath. Given a hereditary
problem, the essence of shrinkage reduction is the following.

Proposition 2.1.3 Let A be an approximation algorithm for a hereditary problem. Sup-

pose we can construct a shrinkage graph G of a hypergraph H such that an optimal

solution in H is also an optimal solution in G and A produces the same worst approxi-

mate solution on H and G, then the approximation ratio of A on hypergraphs is no worse

than on graphs.

Note, that Proposition 2.1.3 applies also to non-deterministic (and randomized) approxi-
mation algorithms.

It is not easy to give a general rule on how to construct a shrinkage for an arbitrary
approximation algorithm. In the following sections we describe reductions for the greedy
set cover and local search algorithms for weighted and unweighted IS in bounded-degree
hypergraphs. The comparison of the MAXDEGREEGREEDY and the MINDEGREEGREEDY

algorithms, described in Sections 2.3.1, suggests the following conjecture.

Conjecture 2.1.4 The shrinkage reduction technique is applicable only to algorithms

that do not alter edge sizes during the execution.

2.2 Local Search

The idea of the local search approach is to start with a (arbitrary) solution and continually
replace it by a better solution found in its neighborhood while possible. We need formal
definitions to determine what a "better solution" and a "neighborhood" mean.

A neighborhood function Γ maps a solution S ∈ SI into a set of solutions ΓI(S) ⊆ SI ,
called the neighborhood of S. A feasible solution S̃ is locally optimal w.r.t. Γ , or Γ -

optimal for short, if it satisfies w(S̃) ≤ w(S) (w(S̃) ≥ w(S)) for all S ∈ ΓI(S) for
a minimization (maximization) problem. A feasible solution S∗ is globally optimal, or
optimal for short, if it satisfies w(S∗) ≤ w(S) (w(S∗) ≥ w(S)) for all S ∈ SI for
a minimization (maximization) problem. To specify more precisely the neighborhood
functions used in our local search algorithms, we need the following definition.

1 A (hyper)path in a hypergraph is a sequence of edges e1, e2, . . . , ep such that ei ∩ ei+1 6= ∅ for any
1 ≤ i ≤ p− 1 and ei ∩ ej = ∅ for any i, j such that |i− j| > 1.

Elena Losievskaja 27

Definition 2.2.1 A neighborhood function Γ is said to be edge-monotone for a hereditary

problem on hypergraphs if for any shrinkage H ′ of a given hypergraph H and any solution

S ∈ SH′ the neighborhood of S satisfies ΓH′(S) ⊆ ΓH(S).

In other words, edge-monotonicity means that edge reduction can only decrease the neigh-
borhood size.

A Γ -optimal algorithm is a local search algorithm that given an instance I , starts with a
(arbitrary) solution S and repeatedly replaces it by a better solution found in ΓI(S) until
S is Γ -optimal. The approximation ratio %Γ,I of a Γ -optimal algorithm on a instance I is
the maximum ratio between the weights of Γ -optimal and optimal solutions over all Γ -

optimal solutions on I , i.e. %Γ,I = max
∀S̃∈SI

w(S̃)
w(S∗)

(
%Γ,I = max

∀S̃∈SI

w(S∗)
w(S̃)

)
for a minimization

(maximization) problem. The approximation ratio ρΓ,I of a Γ -optimal algorithm is the
worst approximation ratio over all instances I in the class of instances I.

In the following theorem we show that if a neighborhood function Γ is edge-monotone,
then for the Minimum Cover problem the analysis of a Γ -optimal algorithm on hyper-
graph reduces to the analysis of this algorithm on graphs. The reduction is based on the
construction of a shrinkage graph with special properties. Note, that a shrinkage graph is
needed only for the analysis, but not for the Γ -optimal algorithm itself.

Theorem 2.2.2 Given an edge-monotone neighborhood function Γ and a hypergraph H

with an optimal cover S∗ and a Γ -optimal cover S̃, there exists a shrinkage graph G of

H on which S∗ and S̃ are also optimal and Γ -optimal covers, respectively.

Proof: Given H , S∗ and S̃, we construct a shrinkage G as follows. From each edge e in
E(H), we arbitrarily pick vertices u and v such that {u, v} ∩ S̃ 6= ∅ and {u, v} ∩ S∗ 6= ∅,
and add (u, v) to E(G).

Any edge in E(G) contains at least one vertex from S̃ and at least one vertex from S∗,
and so S̃ and S∗ are covers in G, i.e. S̃, S∗ ∈ SG. Since G is a shrinkage of H and the
Minimum Cover problem is hereditary, SG ⊆ SH by definition. For all S ∈ SH we have
w(S∗) ≤ w(S), and so w(S∗) ≤ w(S) for all S ∈ SG. Thus, S∗ is an optimal cover in
G. The local optimality of S̃ in G follows by the same argument and the fact that Γ is
edge-monotone.

Corollary 2.2.3 If a neighborhood function Γ is edge-monotone for IS, then ρΓ,H ≤
ρΓ,G .

Proof: Given a hypergraph H(V,E), the vertices not contained in a weak independent
set I form a vertex cover S in H , i.e. I = V \S. Given an edge-monotone neighborhood

28 Approximation Algorithms for Independent Set Problems on Hypergraphs

function Γ for IS, we define a new neighborhood function Γ ′(S) = {S ′ : V \S ′ ∈
Γ (V \S)}. Note, that Γ ′(S) is edge-monotone for the MINIMUM HITTING SET problem.
Moreover, if I∗ and Ĩ are optimal and Γ -optimal weak independent sets in H , then S∗ =

V \Ĩ∗ and S̃ = V \Ĩ are optimal and Γ -optimal covers in H , respectively. The claim then
follows from Theorem 2.2.2.

The simplest local search algorithm for IS is t-Opt, which repeatedly tries to extend the
current solution by deleting t elements while adding t + 1 elements. It is easy to verify
that the corresponding neighborhood function Γ (S) = {S ′ ∈ SH : |S ⊕ S ′| ≤ t} defined
on SH is edge-monotone (where ⊕ is the symmetric difference). Then, the following
two theorems are straightforward from Corollary 2.2.3 and the results of Hurkens and
Schrijver on graphs [37].

Theorem 2.2.4 t-Opt approximates IS within ∆/2 + ε, where lim
t→∞ ε(t) = 0.

Theorem 2.2.5 2-Opt approximates IS within (∆ + 1)/2.

Theorem 2.2.6 For every ε > 0, IS can be approximated within (∆ + 3)/5 + ε for even

∆ and within (∆ + 3.25)/5 + ε for odd ∆.

Proof: We extend the algorithm SIC(G, ∆, k) of Berman and Fürer [11] for IS in bounded
degree graphs to the hypergraph case. Let us call this algorithm HSIC. Given a hyper-
graph H(V, E) and a weak independent set I in H , let BI equal V − I if the maximum
degree of H is three, and otherwise equal the set of vertices that have at least two incident
edges with vertices in I . Let Comp(I) be the subhypergraph induced by BI . The formal
description of the algorithm is given in Fig. 2.1.

ALGORITHM HSIC(H, ∆, k)
INPUT: a hypergraph H(V,E) with maximum degree ∆ and k > 0

If ∆ ≤ 2 then compute a maximum independent set I exactly
Else

Let I be any maximal weak independent set
Repeat

Do all possible local improvements of size O(k log n)
If ∆ = 3 then l = 1 else l = 2
Recursively apply HSIC(Comp(I), ∆− l, k)
and select the resulting weak independent set if it is bigger

Until I has no improvements
Output I

Figure 2.1: The algorithm HSIC

Elena Losievskaja 29

There are two neighborhood functions in HSIC. The first function which maps a solution
I to a set of all possible local improvements of size O(k log n), is t-optimal with t =

O(k log n), and therefore edge-monotone. The second function, which maps a solution I

to a set of weak independent sets in CompH(I), is edge-monotone, because shrinking H

to H ′ reduces the degree of some vertices, implying BI(H
′) ⊆ BI(H). Consequently, a

weak independent set in CompH′(I) is also a weak independent set in CompH(I). Thus,
both neighborhood functions are edge-monotone and the approximation ratio of HSIC is
no worse than the approximation ratio of SIC(G, ∆, k) by Corollary 2.2.3.

Theorem 2.2.7 Weighted IS is approximable within (∆+1)/2 on hypergraphs of a con-

stant rank r.

Proof: We extend the algorithm SQUAREIMP of Berman [9] for weighted IS in bounded
degree graphs to the hypergraph case. Let us call this algorithm HSQUAREIMP. Let I be a
weak independent set in H . We say that (B,C) is an improvement of I , if there is a vertex
v ∈ I such that B ⊆ N(v) ∩ (V \I), C ⊆ N(B) ∩ I , (I\C) ∪ B is a weak independent
set and w2((I\C)∪B) > w2(I). The formal description of the algorithm is given in Fig.
2.2.

ALGORITHM HSQUAREIMP (H)
INPUT: a hypergraph H(V, E)

I ← ∅
While there exist an improvement (B,C) of I
I ← (I \ C) ∪ B

Output I

Figure 2.2: The algorithm HSQUAREIMP

The neighborhood function in HSQUAREIMP is edge-monotone. Shrinking H to H ′ re-
duces the degree of some vertices and so every improvement B, C of I in H ′ is also an
improvement of I in H . Hence, the approximation ratio of HSQUAREIMP is no worse
than the approximation ratio of SQUAREIMP by Corollary 2.2.3.

Note, that finding an improvement (B, C) takes O(n2∆2(r−2)(r−1)) steps. Namely, in the
worst case we check every vertex v ∈ I , every possible subset B ⊆ N(v) ∩ (V \I) and
every possible subset C ⊆ N(B) ∩ I to see whether (I\C) ∪ B is a weak independent
set and w2((I\C) ∪ B) > w2(I). Since |N(v) ∩ (V \I)| ≤ ∆(r − 2), there are at most
2∆(r−2) possible B-sets. Similarly, since |N(B) ∩ I| ≤ ∆(r − 2)(∆(r − 1) − 1), there

30 Approximation Algorithms for Independent Set Problems on Hypergraphs

are at most 2∆(r−2)(∆(r−1)−1) possible C-sets. In total, we consider at most 2∆2(r−2)(r−1)

possible pairs (B, C) for every vertex v ∈ I until an improvement is found.

2.3 Greedy

2.3.1 Weak Independent Set

The idea of the greedy approach is to construct a solution by repeatedly selecting the best
candidate on each iteration. There are two variations, called MAXDEGREEGREEDY and
MINDEGREEGREEDY, depending on whether we greedily reject or add vertices.

The MAXDEGREEGREEDY Algorithm

The MAXDEGREEGREEDY algorithm constructs a cover S by adding a vertex of maximum
degree, deleting it with all incident edges from the hypergraph, and iterating until the
edge set is empty. It then outputs the remaining vertices as a weak independent set I . The
formal description of the algorithm is given in Fig. 2.3.

ALGORITHM MAXDEGREEGREEDY (H)
INPUT: a hypergraph H(V, E)

S = ∅
While the edge set of H is not empty
Add a vertex v of maximum degree to S
Delete v with all incident edges on v from H

Output I = V \ S

Figure 2.3: The algorithm MAXDEGREEGREEDY

Given a hypergraph H(V, E), let S∗ be a minimum cover. Then, the approximation ratio
of MAXDEGREEGREEDY is:

ρ = max
∀H

n− |S∗|
n− |S| . (2.1)

The analysis has two parts. First we prove that the worst case for MAXDEGREEGREEDY

occurs on graphs. Namely, we describe how to reduce any hypergraph to a graph (actually,
a multigraph) G for which MAXDEGREEGREEDY has no better approximation ratio. We
then show that the bound actually holds for (multi)graphs.

Elena Losievskaja 31

Lemma 2.3.1 Given a hypergraph H with a minimum cover S∗, there exists a shrinkage

G of H on which S∗ is still a cover and where MAXDEGREEGREEDY constructs the same

cover for G as for H .

Proof: The proof is by induction on s, the number of iterations of MAXDEGREEGREEDY.
For the base case, s = 0, the claim clearly holds for the unchanged empty graph.

Suppose now that the claim holds for all hypergraphs for which MAXDEGREEGREEDY

selects s − 1 ≥ 0 vertices. Let u1 be the first vertex chosen by MAXDEGREEGREEDY,
E(u1) be the set of incident edges, and H1 be the remaining hypergraph after deleting
u1 with all incident edges. Based on E(u1), we form a set E ′(u1) of ordinary edges as
follows. If u1 is contained in both S and S∗, then for each edge e in E(u1) we pick an
arbitrary vertex v from e and add (u1, v) to E ′(u1). If u1 is only in S and not in S∗, then
for each edge e in E(u1) we pick an arbitrary vertex u from e that is contained in S∗ and
add (u1, u) to E ′(u1); such a vertex u must exist, since e is covered by S∗. This completes
the construction of E ′(u1).

By the induction hypothesis, there is a shrinkage G1 of H1 with a greedy cover of S\{u1}
and G1 is still covered by S∗. We now form the multigraph G on the same vertex set as H

with the edge set E ′(u1) ∪ E(G1), and claim that it satisfies the statement of the lemma.
Since G1 is covered by S∗ and all edges of E ′(u1) are also covered by vertices of S∗,
S∗ covers all edges of G. The edge shrinkage only decreases the degrees of vertices,
but does not affect the degree of u1. Therefore, u1 remains the first vertex chosen by
MAXDEGREEGREEDY and, by induction, the vertices chosen from G1 are the same as
those chosen from H1. Hence, MAXDEGREEGREEDY outputs the same solution on G as
on H , completing the lemma.

From Lemma 2.3.1 it follows immediately that the approximation ratio of MAXDEGREE-

GREEDY on hypergraphs is no worse than on graphs. Sakai, Togasaki, and Yamazaki [53]
obtained a lower bound on the size of weighted independent set I produced by a weighted
generalization of MAXDEGREEGREEDY on graphs. In unweighted case this bound reduces
to a Caro-Wei improvement of the Turan bound on graphs |I| ≥ ∑

v∈V

1
d(v)+1

. For com-

pleteness we give below the proof from [53] adapted for unweighted multigraphs.

Lemma 2.3.2 Given a (multi)graph G = (V, E), MAXDEGREEGREEDY finds an indepen-

dent set of size at least
∑

v∈V

1
d(v)+1

.

Proof: Let s be the number of iterations of MAXDEGREEGREEDY on G. For 0 ≤ i ≤ s, let
Gi be the remaining (multi)graph after i iterations. We denote by dGi

(v) and NGi
(v) the

degree and the neighborhood of a vertex v ∈ V (Gi). Note, that since Gi is a multigraph,

32 Approximation Algorithms for Independent Set Problems on Hypergraphs

NGi
(v) is a multiset and dGi

(v) = |NGi
(v)|. For a vertex u ∈ NGi

(v) let eGi
(v, u) be

the number of multiple edges (v, u) in Gi. Let f(Gi) =
∑

u∈V (Gi)

1
dGi

(u)+1
be a potential

function on a graph Gi. We show that f(Gi+1) ≥ f(Gi) for 0 ≤ i ≤ s. Consequently,
f(Gs) ≥ f(G0), where G0 is the original graph G and Gs is a collection of isolated ver-
tices. Then, MAXDEGREEGREEDY outputs a weak independent set of size at least:

|I| = f(Gs) ≥ f(G) =
∑

u∈V (G)

1

dG(u) + 1
. (2.2)

Let vi be the vertex chosen by MAXDEGREEGREEDY on the iteration i. Then,

f(Gi+1) =
∑

u∈V (Gi+1)

1

dGi+1
(u) + 1

=
∑

u∈V (Gi)

1

dGi
(u) + 1

− 1

dGi
(vi) + 1

+
∑

u∈V (Gi)∩NGi
(vi)

(
1

dGi+1
(u) + 1

− 1

dGi
(u) + 1

)

= f(Gi)− 1

dGi
(vi) + 1

+ Y , (2.3)

where

Y =
∑

u∈V (Gi)∩NGi
(vi)

(
1

dGi+1
(u) + 1

− 1

dGi
(u) + 1

)

=
∑

u∈NGi
(vi)

1

eGi
(v, u)

(
1

dGi
(u)− eGi

(v, u) + 1
− 1

dGi
(u) + 1

)
(2.4)

≥ |NGi
(vi)| min

u∈NGi
(vi)

1

(dGi
(u)− eGi

(v, u) + 1) (dGi
(u) + 1)

≥ |NGi
(vi)| min

u∈NGi
(vi)

1

dGi
(u) (dGi

(u) + 1)

≥ |NGi
(vi)|

dGi
(vi) (dGi

(vi) + 1)
(2.5)

=
1

dGi
(vi) + 1

(2.6)

and (2.4) follows from dGi+1
(u) = dGi

(u)−eGi
(v, u), which is minimized when eGi

(v, u) =

1; (2.5) holds by the greedy rule dGi
(vi) ≥ max

u∈Gi

dGi
(u). It follows from (2.3) and (2.6)

that f(Gi+1) ≥ f(Gi) completing the proof.

Lemma 2.3.3 The approximation ratio of MAXDEGREEGREEDY on (multi)graphs is at

most ∆+1
2

.

Elena Losievskaja 33

Proof: We show that MAXDEGREEGREEDY attains its worst approximation ratio on reg-
ular graphs. First we refine d as follows: let k ∈ [0, 1] be the value so that kn vertices
are of degree ∆ and the remaining (1 − k)n vertices have average degree d

′ ≤ ∆ − 1.
Then,

d = k∆ + (1− k)d
′
. (2.7)

Since each vertex can cover at most ∆ of the m edges of the graph, any optimal cover S∗

is of size at least

|S∗| ≥ m

∆
=

dn

2∆
=

n
(
k∆ + (1− k)d

′)

2∆
. (2.8)

We also rewrite (2.2) as

|I| ≥ ∑

v∈V

1

d(v) + 1
≥ kn

∆ + 1
+

∑

v∈V : d(v)<∆

1

d(v) + 1
. (2.9)

Since f(d) = 1
d+1

is a convex function, we can apply Jensen’s inequality2 to (2.9):

|I| ≥ kn

∆ + 1
+

(1− k)n

d′ + 1
. (2.10)

Note, that the same result follows from the harmonic-arithmetic mean inequality applied
to (2.9). Combining (2.1), (2.8) and (2.10) we obtain an upper bound on the approxima-
tion ratio of MAXDEGREEGREEDY:

ρ = max
∀H

n− |S∗|
n− |S| = max

∀H
n− |S∗|
|I| ≤ 2∆− k∆− (1− k)d

′

2∆
(

k
∆+1

+ 1−k
d′+1

)

=
(∆ + 1)(d

′
+ 1)

2∆

(
1 +

∆− d
′ − 1

∆ + 1− k(∆− d′)

)
, (2.11)

where (2.11) is clearly maximized when k = 1, yielding a bound of ∆+1
2

.

Theorem 2.3.4 The approximation ratio of MAXDEGREEGREEDY on hypergraphs is ∆+1
2

.

Proof:

The upper bound is straightforward from Lemmas 2.3.1 and 2.3.3, because G and H have
the same number of edges and the same maximum degree. The edge reduction in E(H)

might create multiple edges in E(G), but they do not affect the approximation ratio of
MAXDEGREEGREEDY.

2 Jensen’s inequality for a convex function f :
∑n

i=1 f(xi) ≥ nf
(

1
n

∑n
i=1 xi

)

34 Approximation Algorithms for Independent Set Problems on Hypergraphs

For the lower bound, consider the graph G∆+1,∆+1, formed by the complete bipartite
graph K∆+1,∆+1 missing a single perfect matching. MAXDEGREEGREEDY may remove
vertices alternately from each side, until two vertices remain as a maximal weak indepen-
dent set. The optimal solution consists of one of the bipartitions, of size ∆+1. By taking
independent copies, this can be extended to hold for arbitrarily large instances.

Theorem 2.3.5 The approximation ratio of MAXDEGREEGREEDY in r-uniform hyper-

graphs is at most
(

r−1
r

) ∆∏
i=1

(1 + 1
i(r−1)

) = Θ
(
∆

1
r−1

)
.

Proof: We assume that r ≥ 3 since 2-uniform hypergraphs are ordinary graphs and the
analysis of the greedy algorithm on graphs is given in Lemma 2.3.3.

Caro and Tuza [13] showed that MAXDEGREEGREEDY finds an independent set I of size
at least:

|I| ≥ ∑

v∈V

d(v)∏

i=1

(
1− 1

i(r − 1) + 1

)
=

∑

v∈V

d(v)∏

i=1

i

i + 1
r−1

=
∑

v∈V

d(v)!
(
d(v) + 1

r−1

)d(v)
, (2.12)

where xy = x(x−1) . . . (x−y+1). The function f(d) = d!

(d+ 1
r−1)

d =
(

d+ 1
r−1

d

)−1
is convex

because its first derivative is monotonically increasing on the interval [1, ∆]. Therefore,
we can apply Jensen’s inequality to (2.12):

|I| ≥ n

(
d + 1

r−1

d

)−1

.

A maximum independent set in a hypergraph on n vertices contains n−|S| vertices, where
S is a minimum hitting set. Since there are at most dn/r edges in a r-uniform hypergraph
and each vertex from S covers at most ∆ edges, there are at least dn

r∆
vertices in S. The

approximation ratio of MAXDEGREEGREEDY is then at most

ρ ≤ n− dn
r∆

n
(

d+ 1
r−1

d

)−1 =

(
1− d

r∆

) (
d + 1

r−1

d

)
≤

(
1− 1

r

) (
∆ + 1

r−1

∆

)

since f
(
d
)

=
(
1− d

r∆

) (
d+ 1

r−1

d

)
is maximized when d = ∆.

Theorem 2.3.6 The approximation ratio of MAXDEGREEGREEDY in r-uniform hyper-

graphs is at least
(

r−1
r

) ∆∏
i=1

(
1 + 1

i(r−1)

)
= Θ

(
∆

1
r−1

)
.

Elena Losievskaja 35

Proof: Let n be a multiple of
∆∏

j=1
(j(r − 1) + 1) and for any 1 ≤ i ≤ ∆ let xi =

n
i(r−1)

∆∏
j=i

j(r−1)
j(r−1)+1

. We define a chain of regular r-uniform hypergraphs H(1) ⊂ H(2) . . . ⊂
H(∆−1) ⊂ H(∆), where our hypergraph H(V,E) = H(∆).

The first hypergraph H(1) is defined on rxi vertices and consists of x1 disjoint edges, i.e
V (1) = {v(1)

1 , · · · , v(1)
rx1
} and E(1) = {e(1)

1 , · · · e(1)
x1
}, where e

(1)
j = {v(1)

(j−1)r+1 · · · v(1)
jr } for

any j ∈ [1, x1]. Let T (1) = E(1) and U1 = {v(1)
r , v

(1)
2r , · · · , v(1)

rx1
}. It is easy to see that H(1)

is a 1-regular and r-uniform.

For 2 ≤ i ≤ ∆, let yi = ixi. The hypergraph H(i) consists of H(i−1), an additional set
of vertices U (i) = {u(i)

1 , . . . , u(i)
xi
} and an additional set of edges T (i) = {t(i)1 , . . . , t(i)yi

},
connecting U (i) to H(i−1), i.e V (i) = V (i−1) ∪U (i) and E(i) = E(i−1) ∪T (i). The first yi−1

edges in T (i) are the copies of the edges in T (i−1) with the last vertex in each copy replaced
by a vertex from U (i), i.e t

(i)
j = t

(i−1)
j \{v(i−1)

jr } ∪ {u(i)
dj/ie}, for each j ∈ [1, yi−1]. Let the

replaced vertices form the set W (i) = {v(i−1)
r , v

(i−1)
2r , . . . , v(i−1)

yi−1r} = w1, w2, . . . , wyi−1r.
The last yi− yi−1 edges in T (i) are formed by the vertices in U (i) and W (i): t

(i)
j = u

(i)
dj/ie ∪

{w(i)
j , w

(i)
j+(yi−yi−1), . . . , w

(i)
j+(r−2)(yi−yi−1)}, for each j ∈ [yi−1+1; yi]. The hypergraph H(i)

is i-regular by induction: each vertex in U (i) is a root of a hyperstar with i edges, while
each vertex in H(i)\U (i) has i− 1 incident edges in E(i−1) and one incident edge in T (i).
Then, the hypergraph H(V,E) = H(∆) is ∆-regular and r-uniform.

We show now that MAXDEGREEGREEDY finds a cover S of size
∆∑

i=1
xi in H , while an

optimal cover S∗ in H is of size |E|/∆. Thus, the ratio between the sizes of the optimal
independent set I∗ = V \S∗ and the greedy independent set I = V \S is the one defined
in (2.12). Since the hypergraph H = H(∆) is ∆-regular, MAXDEGREEGREEDY might start
by selecting all vertices in U (∆) and deleting all edges in T (∆). The remaining hypergraph
is H(∆−1) and MAXDEGREEGREEDY might continue by selecting all vertices in U (∆−1)

and deleting T (∆−1). Inductively, MAXDEGREEGREEDY might select all vertices in U (∆)∪
. . .∪U (1) as a minimal cover S of size

∆∑
i=1

ixi and output the remaining (r− 1)x1 vertices

as a maximal independent set I .

Let z1 = x1 and zi = xi − zi−1/i, for any 2 ≤ i ≤ ∆. An optimal cover S∗ includes
all vertices from U (1) and the last zi vertices from each U (i) for 2 ≤ i ≤ ∆ (note that
by definition xi is multiple of any j ∈ [i + 1, ∆], so zi is also a multiple of any j ∈
[i + 1, ∆]). The vertices in U (1) cover all edges in T (1), and the first x1 edges in every
T (i) for 2 ≤ i ≤ ∆. By induction, the last zi vertices in U (i) cover the remaining edges
in T (i) and zi edges in every T (j), where j ∈ [i + 1, ∆]. Consequently, all edges in H

are covered by the vertices from S∗. Since H is ∆-regular and no two vertices from S∗

36 Approximation Algorithms for Independent Set Problems on Hypergraphs

appear in the same edge (by construction of H), S∗ is an optimal cover of size |E|/∆.
Then, an optimal independent set is of size |I∗| = n − |E|/∆ = n(r − 1)/r, because
|E| = n∆/r in a ∆-regular r-uniform hypergraph. Finally, the ratio in (2.12) can be
simplified to n

rx1
= n(r−1)

r
1

(r−1)x1
, which is exactly |I∗|/|I|.

The MINDEGREEGREEDY Algorithm

The MINDEGREEGREEDY algorithm iteratively adds a vertex of minimum degree into the
weak independent set and deletes it from the hypergraph. If the vertex deletion results in
loops (edges containing only one vertex), then the algorithm also deletes the vertices with
loops along with all edges incident on such vertices. The algorithm terminates when the
vertex set is empty. In Fig. 2.4 is the formal description of the algorithm.

ALGORITHM MINDEGREEGREEDY(H)
INPUT: a hypergraph H(V, E)

I = ∅
While the vertex set V is not empty
Add a vertex v of minimum degree to I
Delete v from H
Delete all vertices with loops along with all edges incident on them from H

Output I

Figure 2.4: The algorithm MINDEGREEGREEDY

Theorem 2.3.7 The approximation ratio of MINDEGREEGREEDY is at most ∆− 1.

Proof: Let I and I∗ be the greedy and the optimal solutions. We split the sequence of
iterations of the algorithm into epochs, where a new epoch starts when the algorithm
selects a vertex of degree ∆. Clearly, if the algorithm always selects a vertex of degree
less than ∆, the whole sequence of iterations is just one epoch. Let It and I∗t be the set
of vertices from the greedy and the optimal solutions, respectively, deleted during epoch
t. Then, |I| = ∑

t
|It| and |I∗| = ∑

t
|I∗t |. We show that |I∗t |/|It| ≤ ∆− 1 for every epoch

t.

Consider an iteration i in epoch t. The algorithm selects a vertex vi, whose set of neigh-
bors in 2-edges we denote by N(vi). The vertices of N(vi) are deleted in the iteration
along with all incident edges. The maximum number of nodes removed in the iteration
i that can belong to I∗t is at most the degree of vi. If i is the first iteration in t, then

Elena Losievskaja 37

d(vi) = ∆; for any other iteration in the same epoch d(vi) < ∆ (by the definition of an
epoch).

Suppose one of the deleted edges is incident on a vertex u outside of N(vi). Then, in
iteration i + 1, the vertex u will have degree at most ∆ − 1, and therefore, the degree of
vi+1 is at most ∆ − 1. Thus, the iteration i + 1 will be in the same epoch as i, and the
maximum number of nodes removed in any such iteration that can belong to I∗t is at most
∆− 1.

The last iteration of an epoch occurs when a vertex vj is chosen whose neighborhood
is contained in N(vj) ∪ {vj}. This neighborhood then forms a hyperclique, because
any vertex in N(vj) has at least the degree of vj and all its neighbors are contained in
N(vj) ∪ {vj}. Notice that we may assume without loss of generality that the hypergraph
is simple, namely that no edge is a proper subset of any other edge. Therefore, since the
degree of vj is at most ∆, any edge of the hyperclique contains at most ∆ − 1 vertices,
and the maximum number of nodes removed in this iteration that can belong to an optimal
solution I∗t is at most ∆− 2.

We see that in any epoch t the maximum number of deleted vertices that belong to I∗t is
at most ∆ in the first iteration, at most ∆− 2 in the last iteration and at most ∆− 1 in any
intermediate iteration. Amortized, the maximum number of deleted vertices that belong
to I∗t in any iteration of epoch t is at most ∆−1, while exactly one deleted vertex belongs
to It. Therefore, |I∗t |/|It| ≤ ∆− 1 for every epoch t.

Theorem 2.3.8 The approximation ratio of MINDEGREEGREEDY is at least ∆ − 1 for

∆ = 3 and at least ∆− 2 + 2
∆+1

for any ∆ ≥ 4.

Proof: We consider two cases: ∆ = 3 and ∆ ≥ 4, and describe hard hypergraphs for
both cases. Let an n-star refer to a star with n + 1 vertices.

Case I: ∆ = 3. For any l ≥ 2 we construct a 3-regular hypergraph, composed of l 2-stars
(see Fig. 2.5).

Figure 2.5: Example of a hard 3-regular hypergraph for MINDEGREEGREEDY, where the
grey vertices represent an optimal solution, the black vertices represent the greedy solu-
tion.

38 Approximation Algorithms for Independent Set Problems on Hypergraphs

For 1 ≤ i ≤ l, each 2-star Hi has a root ti and two endpoints vi and ui, connected to
the root by the edges (ti, vi) and (ti, ui). The root ti of each star Hi is connected to the
endpoints of the preceding star by one edge (ti, ui−1, vi−1) (the root of the last star is
connected to the endpoints of the first star by an edge (tl, u1, v1)). The endpoints of all
stars are connected into one edge (u1, u2, . . . , ul, v1, v2, . . . , vl).

Since the hypergraph is regular, the algorithm might start by selecting the root of the
first star, adding it to the independent set and deleting it from the hypergraph. After this
deletion, the endpoints of the second star have loops, and so the algorithm deletes the
endpoints of the second star with all incident edges, reducing by one the degree of the
endpoints of all other stars and the root of the second star. The algorithm proceeds this
way, choosing all the roots of the stars for a solution of size l. On the other hand, an
optimal solution is of size l(∆ − 1) − 1 and includes the endpoints of all but one stars.
Therefore, the approximation ratio is ρ = ∆ − 1 − 1

l
, approaching ∆ − 1, when l is

large.

Case II: ∆ ≥ 4. We construct a ∆-regular hypergraph, composed of ∆ blocks and a vertex
s. For 1 ≤ i ≤ l, each block is a ∆-star Hi with a root ti and ∆ endpoints {v1

i , . . . , v
∆
i }

connected to the root by ∆ edges {(ti, v1
i), (ti, v

2
i), . . . , (ti, v

∆
i)}. In each block the ver-

tices {v1
i , . . . , v

∆−1
i } are connected to the vertex s by a single edge (s, v1

i , . . . , v
∆−1
i); the

vertex v∆
i is connected to the vertices {v1

i , . . . , v
∆−1
i } by ∆−1 edges of cardinality ∆−1

each (see Fig. 2.6).

Figure 2.6: Example of a hard 4-regular hypergraph for MINDEGREEGREEDY, where the
grey vertices represent an optimal solution, the black vertices represent the greedy solu-
tion.

The hypergraph is regular, and so the algorithm might start by selecting the vertex s.
The deletion of s doesn’t change the degree of the remaining vertices, because s has no

Elena Losievskaja 39

incident 2-edges and the algorithm doesn’t delete any edges. This leaves disjoint regular
∆-stars, where the greedy algorithm chooses only the roots of the stars for a solution of
size ∆+1. On the other hand, an optimal solution is of size ∆(∆−1) and includes ∆−1

endpoints from each star. Therefore, the approximation ratio is ρ = ∆−1
1+1/∆

= ∆−2+ 2
∆+1

.

Theorem 2.3.9 MINDEGREEGREEDY attains the approximation ratio of 1 + ∆−1
r

in r-

uniform ∆-regular hypergraphs.

Proof: We assume that r ≥ 3, because 2-uniform hypergraphs are ordinary graphs and
the analysis of the greedy algorithm on graphs can be found in [31].

Let Imax and Imin be the largest and the smallest maximal weak independent sets in H , re-
spectively. The approximation ratio of any non-trivial approximation algorithm for IS is
bounded by the maximum ratio between Imax and Imin taken over all hypergraphs:

ρ ≤ max
∀H

|Imax|
|Imin| . (2.13)

Any minimal cover S in H is of size at least

|S| ≥ |E|
∆

=
∆|V |
r∆

=
|V |
r

, (2.14)

where in the last equality we use the fact that the number of edges in r-uniform ∆-regular
hypergraph is exactly |E| = ∆|V |

r
. It is also easy to prove that any minimal cover is of

size at most:
|S| ≤ ∆|V |

∆ + r − 1
. (2.15)

For the reader’s convenience we include here the proof of (2.15) from [8]. Since S is a
minimal cover, for any vertex v ∈ S there is at least one edge in E covered only by v.
Consequently, each such edge includes r − 1 vertices from V \S and the total degree of
vertices in V \S is at least |S|(r − 1). On the other hand, the total degree of vertices in
V \S is at most ∆(|V | − |S|). From |S|(r − 1) ≤ ∆(|V | − |S|) the inequality (2.15)
follows immediately.

Any vertex in V belongs either to a minimal cover or to a maximal weak independent set.
Consequently, any maximal weak independent set is of size at least:

|Imin| ≥ |V | − ∆|V |
∆ + r − 1

(2.16)

40 Approximation Algorithms for Independent Set Problems on Hypergraphs

and at most
|Imax| ≤ |V | − |V |

r
, (2.17)

where the first inequality involves the upper bound on the size of a minimal cover in H

from (2.15), and the second inequality uses the lower bound from (2.14).

Finally, combining together (2.13), (2.16) and (2.17) we obtain the upper bound on the
approximation ratio of any non-trivial approximation algorithm for IS

ρ ≤ 1− 1
r

1− ∆
∆+r−1

=
∆ + r − 1

r
= 1 +

∆− 1

r
. (2.18)

For the lower bound, we construct a ∆-regular r-uniform hypergraph H composed of a
hyperclique B on ∆+1 vertices and a set A of r−1 vertices. The edges of the hyperclique
are all possible ∆-combinations of ∆ + 1 vertices. Each vertex of the hyperclique except
one is connected to the set A by one edge.

Since the hypergraph is regular, the MINDEGREEGREEDY algorithm might start by select-
ing vertices in the set A. The deletion of the first r − 2 vertices reduces the size of the
incident edges from r to 2 and doesn’t produce loops. The deletion of the last vertex in
A creates loops on all vertices in B, and the algorithm deletes the set B and all incident
edges. Thus, the greedy weak independent set includes r − 1 vertices from A and one
vertex from B, while an optimal weak independent set includes ∆ vertices from B and
r − 2 vertices from A. The approximation ratio is then r−2+∆

r
.

Remarks. We conjecture that it should be possible to prove that MINDEGREEGREEDY have
the worst approximation ratio in ∆-regular r-uniform hypergraphs, and so the result of
Theorem 2.3.9 applies to arbitrary r-uniform hypergraphs. In any case, the approxima-
tion ratio of MINDEGREEGREEDY in ∆-regular r-uniform hypergraphs is worse than the
approximation ratio MAXDEGREEGREEDY in r-uniform hypergraphs.

2.3.2 Strong Independent Set

There are two greedy algorithms for the SIS problem in hypergraphs. Both algorithms
iteratively construct a maximal strong independent set by selecting vertices either of
minimum degree (the MAXDEGREEGREEDYSIS algorithm) or with fewest neighbors (the
MAXNEIGHBORGREEDYSIS algorithm).

Lemma 2.3.10 Any maximal strong independent set is a ∆-approximation.

Elena Losievskaja 41

Proof: Each node in the optimal solution is dominated by a node in the maximal solution,
i.e. either by itself or by its neighbor. However, each node in the maximal solution can
dominate at most ∆ optimal vertices, as its neighborhood is covered by at most ∆ edges,
each containing at most one optimal vertex.

Lemma 2.3.11 There exist ∆-regular hypergraphs where the approximation ratio of MAXDE-

GREEGREEDYSIS is ∆.

Proof: For any l ≥ 2 we construct the hypergraph Hl(V,E), composed of a vertex s and
l cliques on l vertices each. The vertex s is connected to the cliques by l edges, so that the
i-th edge includes the vertex s and the i-th vertex from each clique (see Fig.2.7).

Figure 2.7: Example of a hard 4-regular hypergraph for MAXDEGREEGREEDYSIS, where
the grey vertices represent an optimal solution, the black vertex represents the greedy
solution.

Each vertex in the hypergraph has degree l, and so the hypergraph is regular with ∆ = l.
The maximum strong independent set is of size l and includes the i-th vertex from the
i-th clique. MAXDEGREEGREEDYSIS is a non-deterministic algorithm: in the worst case
the vertex s is selected first and no more vertices can be added to the solution. Thus, the
approximation ratio is ∆.

Lemma 2.3.12 There exist ∆-regular hypergraphs where the approximation ratio of MAXNEIGH-

BORGREEDYSIS approaches ∆.

Proof: For any m ≥ 2 and l ≥ 2, we construct the hypergraph Hm,l(V, E), composed
of m subgraphs on 3l vertices each. For 1 ≤ i ≤ m, each subgraph Hi consists of sets
Ui, Wi and Ti of l vertices each. Vertices in Wi and Ti form a complete bipartite graph
(Wi, Ti) without one matching. For each vertex in Wi there is an edge containing this

42 Approximation Algorithms for Independent Set Problems on Hypergraphs

vertex and the set Ui. All subgraphs are connected by one edge, containing all T sets (see
Fig. 2.8).

Figure 2.8: Example of a hard 3-regular hypergraph H4,3 for MAXNEIGHBORGREEDYSIS,
where the grey vertices represent an optimal solution and the black vertices represent the
greedy solution.

Each vertex in the hypergraph has degree l, and so the hypergraph is regular with ∆ = l.
We can easily verify that every vertex in U and W has the same number of neighbors,
namely 2l − 1, and every vertex in T has l(m + 1) − 2 neighbors. In each subgraph Hi

every vertex in Ui is a neighbor of l− 1 vertices in Ui and l vertices in Wi; every vertex in
Wi is a neighbor of l vertices in Ui and l−1 vertices in Ti; every vertex in Ti is a neighbor
of l − 1 vertices in Wi, l − 1 vertices in Ti and (m− 1)l vertices in T -sets from the other
m− 1 subgraphs.

A maximum strong independent set is of size ml and includes all W sets. MAXNEIGHBOR-

GREEDYSIS is a non-deterministic algorithm, and so it might start by selecting a vertex
from U1, delete U1 and W1 from the subgraph and reduce the number of neighbors of any
vertex in T1 to l(m− 1). Since m ≥ 2, the vertices in T1 have at least the same number of
neighbors as the vertices in any of the U and W sets of the remaining subgraphs. Thus,
the algorithm might proceed by selecting a vertex from U2 and so on until all U and W

sets are deleted. From the remaining edge composed of all T sets, the algorithm adds
only one vertex to the solution. Therefore, the greedy solution is of size m + 1 and the
approximation ratio is approximately l = ∆ provided m is large.

Theorem 2.3.13 In r-uniform hypergraphs the approximation ratio of MAXDEGREEGREED-

YSIS and MAXNEIGHBORGREEDYSIS is at most ∆− ∆−1
r

.

Proof: Let vi be the vertex chosen by the algorithm (MAXDEGREEGREEDYSIS or MAXNEIGH-

BORGREEDYSIS) on the i-th iteration; let di and ni denote the degree and the number of
neighbors of vi, respectively. The greedy algorithm terminates when the vertex set is

Elena Losievskaja 43

empty, say after t iterations:
t∑

i=1

(ni + 1) = n . (2.19)

Since the vertex vi has ni neighbors, its degree is at least:

di ≥ ni

r − 1
. (2.20)

Any neighbor vj of vi has degree ni

r−1
at least. The reason is simple: in MAXDEGREE-

GREEDYSIS the vertex vi has the smallest degree, and so the degree of vj is at least the
degree of vi; in MAXNEIGHBORGREEDYSIS the vertex vj has at least the same number of
neighbors as vi and consequently, it is degree is dj ≥ nj

r−1
≥ ni

r−1
. Then, the total sum of

degrees of all vertices in the hypergraph equals to dn:

dn ≥
t∑

i=1


di +

ni∑

j=1

dj


 ≥

t∑

i=1


 ni

r − 1
+

ni∑

j=1

ni

r − 1




=
1

r − 1

t∑

i=1

ni(ni + 1) =
1

r − 1

(
t∑

i=1

(ni + 1)2 − n

)
(2.21)

≥ 1

r − 1

(
n2

t
− n

)
(2.22)

where in (2.21) we use Cauchy-Schwarz inequality3. From (2.22) we can derive the lower
bound on the size of the greedy solution:

t ≥ n

d(r − 1) + 1
.

Let δ be the minimum degree in a given hypergraph. Since the number of edges in r-
uniform hypergraphs is dn/r and each edge includes at most one vertex from a maximum
strong independent set, the size of any maximum strong independent set is at most:

α ≤ dn

δr
.

Then, the approximation ratio of the greedy algorithm (MAXDEGREEGREEDYSIS or MAXNEIGH-

BORGREEDYSIS) is at most:

ρ = max
∀α,t

α

t
≤ d

δr
(d(r − 1) + 1) .

3 Cauchy-Schwarz inequality for one dimensional space:
∑n

i=1 x2
i ≥ 1

n (
∑n

i=1 xi)
2

44 Approximation Algorithms for Independent Set Problems on Hypergraphs

Let k be such that d = k∆+(1−k)δ. Then, it is easy to verify that f(k) = k∆+(1−k)δ
δr

((k∆+

(1 − k)δ)(r − 1) + 1) is maximized when ∆ = δ or k = 1, i.e. in regular hypergraphs.

Theorem 2.3.14 In r-uniform hypergraphs the approximation ratio of MAXDEGREEGREED-

YSIS and MAXNEIGHBORGREEDYSIS is at least ∆− ∆−1
r

.

Proof: We describe the construction for the MAXDEGREEGREEDYSIS algorithm; for
MAXNEIGHBORGREEDYSIS it is similar. The hypergraph H is composed of r subgraphs
on ∆r − ∆ + 1 vertices each. The first r − 1 subgraphs Hi are disjoint, each of them
consists of a vertex s, a set A of ∆ independent vertices and a set B of ∆(r− 2) vertices.
The r-th subgraph is connected to the first r − 1 subgraphs and contains a vertex s and a
set C of ∆(r− 1) vertices. In each subgraph the vertex s is connected to all other vertices
by ∆-edges: in the first r − 1 subgraphs each such edge includes one vertex from A and
r−2 vertices from B, while in the last subgraph each such edge includes r−1 C-vertices.
In each of the first r−1 subgraphs there are also ∆−1 edges incident on each vertex in A:
half of these edges includes (r − 1) vertices from B, the other half of the edges includes
(r − 3) vertices from B and two vertices from C. We can specify the edges such that all
edges have the cardinality r and all vertices in the hypergraph have the same degree ∆

(see Fig.2.9).

Figure 2.9: Part of a hard 3-regular 4-uniform hypergraph for MAXNEIGHBORGREEDYSIS,
where one of the first r − 1 subgraphs is connected to the last subgraph. The black ver-
tices represent the s-vertices, the grey vertices represent the set A and the white vertices
represent the sets B and C.

A maximum strong independent set is of size (r− 1)∆ + 1 and consists of all A-sets and
the vertex s from the last subgraph. The greedy algorithm might start by selecting the
vertex s from the first subgraph and deleting the sets A and B in the first subgraph. This
deletion reduces the size of one edge in the last subgraph by r − 2 vertices, but doesn’t

Elena Losievskaja 45

reduce the degree of any of the remaining vertices. Thus, on the next iteration the greedy
algorithm might repeatedly select vertices s from each subgraphs, and form a maximal
strong independent set of size r. Therefore, the approximation ratio is ∆− ∆−1

r
.

2.4 Partitioning

The idea of the partitioning approach is to split a given hypergraph into k induced sub-
hypergraphs so that IS can be solved optimally on each subhypergraph in polynomial
time. This is based on the strategy of [29] for ordinary graphs. Note, that the largest
of the solutions on the subhypergraphs is a k-approximation of IS, since the size of any
optimal solution is at most the sum of the sizes of the largest weak independent sets on
each subhypergraph.

We extend a partitioning lemma of Lovász [44] to the hypergraph case.

Lemma 2.4.1 The vertices of a given hypergraph can be partitioned into d(∆ + 1)/3e
sets, each inducing a subhypergraph of maximum degree at most two.

Proof: Start with an arbitrary vertex partitioning into d(∆ + 1)/3e sets. While a set
contains a vertex v with degree more than two, move v to another set that properly contains
at most two edges incident on v. A set with at most two edges incident on v exists, because
otherwise the total number of edges incident on v would be at least 3d(∆+1)/3e ≥ ∆+1.
Any such move increases the number of edges between different sets, and so the process
terminates with a partition where every vertex has at most two incident edges in its set.

The method can be implemented in time O(
∑

e∈E |e|) by using an initial greedy assign-
ment as argued in [29].

Lemma 2.4.2 Weighted IS in hypergraphs of maximum degree two can be solved opti-

mally in polynomial time.

Proof: Given a hypergraph H(V, E) we consider the dual hypergraph H ′(E, V), whose
vertices e1, . . . , em correspond to the edges of H and the edges v1, . . . , vn correspond to
the vertices of H , i.e. vi = {ej : vi ∈ ej in H}. The maximum edge size in H ′ equals
to the maximum degree of H , thus H ′ is a graph, possibly with loops. A vertex cover in
H is an edge cover in H ′ (where an edge cover in H ′ is defined as a subset of edges that
touches every vertex in H ′), and a minimum weighted edge cover in graphs can be found
in polynomial time via maximum weighted matching [18]. All edges not in a minimum

46 Approximation Algorithms for Independent Set Problems on Hypergraphs

cover in H ′ correspond to the vertices in H that form a maximum weak independent set
in H .

The following result is straightforward from Lemmas 2.4.1 and 2.4.2.

Theorem 2.4.3 Weighted IS is approximable within d(∆ + 1)/3e in polynomial time.

2.5 Conclusions

In this section we analyze several approaches to IS on bounded-degree hypergraphs. We
propose a general technique, called shrinkage reduction, that reduces the worst case anal-
ysis of certain algorithms on hypergraphs to their analysis on ordinary graphs. This tech-
nique allows us to show that the max-degree greedy algorithm for IS has a approximation
ratio of (∆ + 1)/2. It also allows us to apply results on local search algorithms on graphs
to obtain a (∆ + 1)/2 approximation for WIS and (∆ + 3)/5− ε approximation for IS.
We improve the bound in the weighted case to d(∆ + 1)/3e using a simple partitioning
algorithm. We also consider another natural greedy algorithm for IS that adds vertices of
minimum degree and achieves only a ratio of ∆− 1, significantly worse than on ordinary
graphs. For SIS, we give two variations of the basic greedy algorithm and describe a
family of hypergraphs where both algorithms approach the bound of ∆.

47

Chapter 3

SDP Algorithms

This section deals with approximations of IS in non-uniform hypergraphs of low degree.
Our approach is to use a semi-definite technique to sparsify a given hypergraph and then
apply combinatorial algorithms to find a large independent set in the resulting sparser
instance. We start by introducing the semi-definite sparsifying algorithm, and then show
how the sparsifying algorithm can be combined with greedy and randomized algorithms
to achieve an O(D log log D/ log D) approximation factor.

3.1 Semidefinite Programming

We use semidefinite programming to find large subgraphs with few 2-edges. More gen-
erally, we find subgraphs of large weight and small weighted average degree. This is
obtained by rounding the vector representation of a suitable subgraph; such a subgraph is
found by a result of Alon and Kahale [3]. Along the way, we twice eliminate vertices of
high-degree to ensure degree properties.

3.1.1 Preliminaries

Let us recall the definition of a vector coloring of a graph [42].

Definition 3.1.1 ([42]) Given a graph G and a real number h ≥ 1, a vector h-coloring of

G is an assignment of a |V (G)|-dimensional unit vector ~vi to each vertex vi of G so that

for any pair vi, vj of adjacent vertices the inner product of their vectors satisfies

~vi · ~vj ≤ − 1

h− 1
. (3.1)

48 Approximation Algorithms for Independent Set Problems on Hypergraphs

The vector chromatic number χ(G) is the smallest positive number h, such that there
exists a feasible vector h-coloring of G.

A vector representation given by a vector coloring is used to find a sparse subgraph by the
means of vector rounding [42]: choose a random vector ~b, and retain all vertex vectors
whose inner product with ~b is above a certain threshold. The quality (i.e. sparsity) of
the rounded subgraph depends on the vector chromatic number of the graph. In order to
approximate independent sets we need to use this on graphs that do not necessarily have
a small vector chromatic number but have a large independent set.

A graph with a large independent set contains a large subgraph with a small vector chro-
matic number, and there is a polynomial time algorithm to find it. This comes from the
following variation of a result due to Alon and Kahale [3]:

Theorem 3.1.2 ([27]) Let G = (V, E, w) be a weighted graph and `, p be numbers such

that α(G,w) ≥ w(G)/` + p. Then, there is a polynomial time algorithm that gives an

induced subgraph G1 in G with w(G1) ≥ p and χ(G1) ≤ l.

3.1.2 Sparsifying Algorithm

Let us now present the algorithm for finding a large-weight low 2-degree hypergraph. It
assumes that it is given the size α of the maximum independent set in the graph. We can
sidestep that by trying all possible values for α, up to a sufficient precision (say, factor
2).

The algorithm SPARSEHYPERGRAPH (see Fig. 3.1) can be implemented to run in polyno-
mial time. The subgraph G1 in G0 with small vector chromatic number and large inde-
pendent set can be found in polynomial time [3]. A vector representation can be found
within an additive error of ε in time polynomial in ln 1/ε and n using the ellipsoid method
[25] and Choleski decomposition.

3.1.3 Analysis

Lemma 3.1.3 The graph G0 has weight at least w(H)(1−1/2k) and independence num-

ber at least α(H)/2.

Proof: The graph G has the same weight as H , or w(V). The independence number
of G is also at least that of H , since it contains only a subset of the edges. Let X =

Elena Losievskaja 49

ALGORITHM SPARSEHYPERGRAPH (H, α)
INPUT: Hypergraph H(V, E), and its independence number α
OUTPUT: Induced hypergraph Ĥ in H of maximum degree 2kD and maximum 2-

degree
√

2kD

Let k = w(H)/α and a = 1 + 1
ln ln D−1

.
Let G be the graph induced by the 2-edges of H.
Let G0 be the subgraph of G induced by nodes of degree at most 2kD in H.
Find an induced subgraph G1 in G0 with w(G1)≥ (a−1)w(G)

2ak
with a vector 2ak-coloring.

Choose a random |V (G1)|-dimensional vector ~b.
Let G2 be the subgraph of G1 induced by vertices {v ∈ V (G1) : ~v · ~b ≥ c},

where c =
√

ak−2
ak ln (2kD).

Let V̂ be the set of vertices of degree at most
√

2kD in G2.
Output Ĥ, the subhypergraph in H induced by V̂ .

Figure 3.1: The sparsifying algorithm SPARSEHYPERGRAPH

V (G)− V (G0) be the high-degree vertices deleted to obtain G0. Then,

∑

v∈X

w(v)d(v) ≥ ∑

v∈X

w(v) · 2kD = 2kDw(X) . (3.2)

Since
D · w(V) =

∑

v∈V

w(v)d(v) ≥ ∑

v∈X

w(v)d(v) , (3.3)

we get from combining (3.3) with (3.2) that the weight w(X) of the deleted vertices is at
most w(V)/2k. Thus, w(G) ≥ (1− 1/2k)w(H). Also, G0 has a maximum independent
set of weight at least α(G0, w) ≥ α(G,w) − w(X) ≥ α(H, w) − w(X) ≥ w(H)/2k.

Observe that α(G0, w) ≥ w(H)/2k ≥ w(G0)/2k = w(G0)/2ak + w(G0)(a − 1)/2ak.
Then, Theorem 3.1.2 ensures that a subgraph G1 can be found with w(G1) ≥ w(G0)(a−
1)/2ak and χ(G1) ≤ 2ak. From that, a vector 2ak-coloring of G1 can be found.

The main task is to bound the properties of the rounded subgraph G2. Karger et al. [42] es-
timated the probability that G2 contains a given vertex or an edge. Let N(x) denote the tail
of the standard normal distribution: N(x) =

∫∞
x φ(z)dz, where φ(z) = 1√

2π
exp

(
−x2

2

)
is

the density function. Let τ =
√

2(ak−1)
ak−2

.

Lemma 3.1.4 ([42]) A graph G2 induced in G1(V1, E1) after vector-rounding contains a

given vertex in V1 with probability N(c) and a given edge in E1 with probability N (cτ).

The following lemma states well-known bounds on the tail of the normal distribution.

50 Approximation Algorithms for Independent Set Problems on Hypergraphs

Lemma 3.1.5 ([51]) For every x > 0, φ(x)
(

1
x
− 1

x3

)
< N(x) < φ(x) 1

x
.

We can now bound the weight of the subgraph found.

Lemma 3.1.6 V̂ has expected weight Ω

(
w(G1)

(kD)
1
2−

1
k

√
ln(kD)

)
. This can be derandomized

to obtain an induced subgraph V̂ with this much weight and maximum 2-degree at most√
2kD.

Proof: First, for any edge (u, v) in G1 and G2 we define a weight function w(u, v) =

w(u) + w(v). Let w(V1) =
∑

v∈V (G1)
w(v) and w(E1) =

∑
(v,u)∈E(G1)

(w(v) + w(u)) be the

weight of vertices and edges in G1. Similarly, let w(V2) and w(E2) be the weight of
vertices and edges in G2. Let Xi be an indicator random variable with Xi = 1, if V2

contains vi ∈ V1 and Xi = 0 otherwise. Then, w(V2) =
∑

vi∈V1

w(vi)Xi. Using Lemma

3.1.4 and linearity of expectation we bound E[w(V2)] by

E[w(V2)] = w(V1)N(c) . (3.4)

Similarly, we bound E[w(E2)] by

E[w(E2)] = w(E1)N(cτ) ≤ 2kDw(V1)N(cτ) , (3.5)

where in the last inequality we use the fact that maximum degree in G1 is bounded by
2kD (since we deleted the high-degree vertices from G and G1 is an induced subgraph in
G). Combining (3.4) and (3.5), we get that

E

[
w(V2)− w(E2)√

2kD

]
= w(V1)N(c)−

√
2kDw(V1)N(cτ) . (3.6)

Observe that

cτ =

√
2(ak − 1)

ak
ln(2kD) =

√
2

(
1− 1

ak

)
ln(2kD)

and
exp(−(cτ)2/2) = (2kD)−1+1/ak .

Then, by Lemma 3.1.5

N(cτ) < φ(cτ)
1

cτ
=

(2kD)−1+1/ak

√
2π ·

√
2(ak−1)

ak
ln(2kD)

(3.7)

Elena Losievskaja 51

and

N(c) > φ(c)
1

c

(
1− 1

c2

)
=

(2kD)−1/2+1/ak

√
2π ·

√
ak−2

ak
ln(2kD)

(
1− ak

(ak − 2) ln(2kD)

)
. (3.8)

Combining (3.6), (3.7) and (3.8), we deduce that

E

[
w(V2)− w(E2)√

2kD

]
> w(V1)

(2kD)−1/2+1/ak

√
2π ·

√
ak−2

ak
ln(2kD)

(
1− ak

(ak − 2) ln(2kD)
−

√
ak − 2

2(ak − 1)

)

= Ω


 w(V1)

(kD)1/2−1/k
√

ln(kD)


 , (3.9)

where in the last line we use a = 1 + 1
ln ln D−1

.

The weight of vertices with degree greater than
√

2kD is at most
∑

vi∈V2

w(vi)d(vi)/
√

2kD =

w(E2)/
√

2kD. After deleting all such vertices from G2, the expected weight of V̂ is

E
[
w(V2)− w(E2)√

2kD

]
which is bounded by (3.9).

Finally, we can apply derandomization technique from [47] to derandomize the vector
rounding in polynomial time. In our algorithm an elementary event corresponds to an
edge in G2 and involves only two vectors corresponding to the endpoints of the edge.
This completes the proof.

We can bound the weight of the resulting hypergraph Ĥ in terms of the original hyper-
graph. We have that w(V̂) = Ω

(
w(G1)

(kD)
1
2−

1
k

√
ln kD

)
, while using a = 1 + 1

ln ln D−1
, we have

that

w(G1) =
(a− 1)w(G)

2ak
=

w(G)

2k ln ln D
=

w(H)
(
1− 1

2k

)

2k ln ln D
= Ω

(
w(H)

k ln ln D

)
.

Theorem 3.1.7 Let H be a hypergraph with average weighted degree D. The SPARSEHY-

PERGRAPH algorithm finds an induced hypergraph in H of weight Ω
(

w(H)

k3/2−1/kD
1/2−1/k

ln ln D
√

ln(kD)

)
,

maximum 2-degree at most
√

2kD, and maximum degree at most 2kD.

3.2 Greedy Algorithm

Given a hypergraph H on n vertices with average degree d, our GREEDYSDP algorithm
first finds a sparse induced hypergraph H ′ in H using the SPARSEHYPERGRAPH algorithm
and then uses the GREEDY algorithm to find an independent set in H ′.

52 Approximation Algorithms for Independent Set Problems on Hypergraphs

The GREEDY algorithm is a natural extension of the max-degree greedy algorithm on
graphs and uniform hypergraphs and was analyzed by Thiele [55]. Given a hypergraph
H(V,E) with rank r, for any vertex v ∈ V let d(v) = (d1(v), . . . , dr(v)) be the degree

vector of v, where di(v) is the number of edges of size i incident on v. Then, for any
vertex v ∈ V let

f(d(v)) =
d1(v)∑

i1

d2(v)∑

i2

· · ·
dr(v)∑

ir

∏ (
d1

i1

) ∏ (
d2

i2

)
· · ·∏

(
dr

ir

)
(−1)

r∑
j=1

ij

r∑
j=1

(j − 1)ij + 1

and let F (H) =
∑

v∈V
f(d(v)). The GREEDY algorithm iteratively chooses a vertex v ∈ V

with F (H\v)≥F (H) and deletes v with all incident edges from H until the edge set is
empty. The remaining vertices form an independent set in H .

Caro and Tuza [13] showed that in r-uniform hypergraphs the GREEDY algorithm always
finds a weak independent set of size at least Θ

(
n/∆

1
r−1

)
. Thiele [55] extended their

result to non-uniform hypergraphs and gave a lower bound on the independence number
as a complicated function of the degree vectors of the vertices in a hypergraph. Using
these two bounds, we prove the following lemma.

Lemma 3.2.1 Given a hypergraph H on n vertices with maximum 2-degree
√

d and max-

imum degree d, the GREEDY algorithm finds an independent set of size Ω(n/
√

d).

Proof: First, we truncate edges in H to a maximum size three by arbitrarily deleting ex-
cess vertices. The resulting hypergraph H ′ still has maximum 3-degree d and maximum
2-degree

√
d, and is now of rank 3. Moreover, an independent set in H ′ is also indepen-

dent in H . Thus, to prove the claim it is sufficient to bound from below the size of an
independent set found by the greedy algorithm in H ′.

As shown in [55], GREEDY finds an independent set in a rank-3 hypergraph of size at
least

α(H ′) ≥ n
d∑

j=0

√
d∑

i=0

(
d

j

)(√
d

i

)
(−1)(j+i)

i + 2j + 1
. (3.10)

By using the equality
∑
k

(
n
k

)
(−1)k

x+k
= x−1

(
x+n

n

)−1
we can simplify (3.10) as:

α(H ′) ≥ n

√
d∑

i=0

(−1)i

(√
d

i

)
1

2




d∑

j=0

(
d

j

)
(−1)j

j + (i + 1)/2




=
n

2(d + 1)

√
d∑

i=0

(−1)i

(√
d

i

)(
(i + 1)/2 + d

d + 1

)−1

. (3.11)

Elena Losievskaja 53

We show that for any value of d

Fd =

√
d∑

i=0

(−1)i

(√
d

i

)(
(i + 1)/2 + d

d + 1

)−1

(3.12)

is lower bounded by x
√

d for some x > 0. Then, from (3.11) the GREEDY algorithm finds
an independent set of size at least Ω(n/

√
d).

Let fd(i) =
(√

d
i

)(
(i+1)/2+d

d+1

)−1
. Abusing binomial notation, we assume that

(√
d

i

)
= 0, for

any i >
√

d and
√

d integral. Then,

Fd =

√
d∑

i=0

(−1)ifd(i) . (3.13)

We define
qd(i) =

(i + 2)(i + 4) · · · (i + 2d + 2)

(i + 3)(i + 5) · · · (i + 2d + 1)
(3.14)

for any i ≥ 0. Using Stirling’s approximation for the factorial function1 we obtain

qd(0) =
22d+1(d + 1)d

(2d + 1)
=
√

πd
(
1 + O

(
1

d

))

and

qd(1) =
(2d + 3)

22d+1(d + 1)(d + 1)
=

√
d

π

(
1 + O

(
1

d

))
.

Note that qd(i + 2) = (i+3)(i+2d+4)
(i+2)(i+2d+3)

qd(i) > qd(i), and so qd(i) >
√

d for any i ≥ 0. Then,

from the definition of fd(i) and (3.14) we have that fd(i+1)
fd(i)

=
√

d−i
qd(i)

< 1. From (3.12) and
(3.13) it follows that Fd > fd(0)− fd(1) and fd(0) = qd(0), then

Fd > fd(0)− fd(1)

= fd(0)

(
1−

√
d

qd(0)

)

= qd(0)−
√

d

= (
√

π − 1)
√

d
(
1 + O

(
1

d

))
. (3.15)

Thus, from (3.11), (3.12) and (3.15) the GREEDY algorithm finds an independent set of
size at least Ω(n/

√
d).

1 Stirling’s approximation: N ! =
√

2πN
(

N
e

)N (
1 + O

(
1
N

))

54 Approximation Algorithms for Independent Set Problems on Hypergraphs

The bound on the approximation ratio of GREEDYSDP then follows from Lemma 3.2.1,
Theorem 3.1.7 and the fact that truncating edges in SPARSEHYPERGRAPH doesn’t increase
the weight of a maximal independent set in a hypergraph.

Theorem 3.2.2 Given a hypergraph H on n vertices with average degree d and the in-

dependence number α(H) = n/k, the GREEDYSDP algorithm finds an independent set of

size at least Ω
(

n

k5/2−1/kd
1−1/k

ln ln d
√

ln(kd)

)
.

From Theorem 3.2.2 it is easy to see that if the maximum independent set in H is rela-
tively big, say Ω

(
n ln ln d

ln d

)
, i.e. k = O

(
ln d

ln ln d

)
, then GREEDYSDP obtains an approxima-

tion ratio of O
(

d
ln d

)
. However, if the maximum independent set is at most Ω

(
n ln ln d

ln d

)
,

then GREEDY alone is within a factor of O
(

d ln ln d
ln d

)
. Therefore, we run both GREEDY

and GREEDYSDP and output the larger independent set found. We call this algorithm
GREEDYSDP-IS.

Theorem 3.2.3 Given a hypergraph H with average degree d, the GREEDYSDP-IS ap-

proximates the maximum independent set within a factor of O
(

d ln ln d
ln d

)
.

Corollary 3.2.4 For small k the approximation factor of GREEDYSDP-IS is O
(
d

1− 1
k
+o(1)

)
.

The implication is the first approximation factor for the independent set problem in hy-
pergraphs that is sublinear in the average degree.

Corollary 3.2.5 The independent set problem in hypergraphs is o(∆)-approximable.

3.3 Randomized Algorithm

The RANDOMIS algorithm extends the randomized version of Turán bound on graphs
and was analyzed by Shachnai and Srinivasan in [54]. Given a hypergraph H(V, E), the
algorithm creates a random permutation π of V and adds a vertex v to the independent set
I , if there is no edge e such that e contains v and v appears last in π among the vertices
of e. Clearly, RANDOMIS outputs a feasible independent set I , since it never contains the
last vertex in any edge under the permutation π.

Shachnai and Srinivasan [54] analyzed RANDOMIS on weighted hypergraphs. They gave
a lower bound on the probability that a vertex v ∈ H is added by the algorithm to the
independent set, using conditional probabilities and the FKG inequality. In uniform hy-
pergraphs the lower bound on the size of a independent set found by RANDOMIS follows
by summing the probabilities over the vertices and applying linearity of expectation, giv-
ing a bound identical to that of Caro and Tuza [13].

Elena Losievskaja 55

Theorem 3.3.1 ([54], Theorem 2) For any r ≥ 2 and any r-uniform hypergraph H ,

RANDOMIS finds an independent set of size at least
∑

v∈V

(
d(v)+1/(r−1)

d(v)

)−1
= Ω

(
∑

v∈V

w(v)

(d(v))
1

r−1

)
.

To extend the bound to non-uniform weighted hypergraphs, Shachnai and Srinivasan in-
troduced the following potential function on a vertex v:

f(v) = min
j=1,2,···,a(v)

(dj(v))
− 1

rj(v)−1 ,

where a vertex v lies in edges of a(v) different sizes: rj(v), for j = 1, 2, · · · , a(v), and
dj(v) is the number of edges of size rj(v). Using similar analysis as in Theorem 3.3.1,
they proved the following bound:

Theorem 3.3.2 ([54], Theorem 3) Given a weighted hypergraph H(V, E), the expected

weight of the independent set produced by RANDOMIS is at least Ω

(
∑

v∈V

w(v)

a(v)1/b(v) f(v)

)
,

where b(v) = (minj(rj(v)− 1)).

Shachnai and Srinivasan also show in [54] how to derandomize RANDOMIS for hyper-
graphs with bounded maximum degree, or logarithmic degree and sparse neighborhoods.

Our algorithm RANDOMSDP first uses SPARSEHYPERGRAPH to find an induced hypergraph
H ′ in H with maximum 2-degree at most

√
2kD and maximum degree at most 2kD; and

then uses RANDOMIS to find an independent set in H ′.

The bound on the approximation ratio of RANDOMSDP follows from Theorem 3.1.7 and

Theorem 3.3.2, using that Ω

(
∑

v∈V

w(v)

a(v)1/b(v) f(v)

)
= Ω




∑
v∈V

w(v)
r∑

i=2

d
1

i−1
i


 by the definitions

of a(v), b(v) and f(v).

Theorem 3.3.3 Given a weighted hypergraph H with average weighted degree D, the

RANDOMSDP algorithm finds an independent set of weight at least Ω
(

w(H)

k2−1/kD
1/2−1/k

ln ln D
√

ln(kD)

)
.

From Theorem 3.3.3 it follows that the RANDOMSDP algorithm approximates IS within
a factor of O

(
D

ln D

)
if α(H,w) = Ω

(
w(V) ln ln D

ln D

)
, whereas RANDOMIS alone finds an

approximation within a factor of O
(

D ln ln D
ln D

)
if α(H,w) = O

(
w(V) ln ln D

ln D

)
. Therefore,

given a hypergraph H , we run both RANDOMIS and RANDOMSDP on H and output the
larger of the independent sets. We call this algorithm RANDOMSDP-IS.

Theorem 3.3.4 Given a hypergraph H(V,E) with average weighted degree D, the RANDOMSDP-

IS approximates the weight of a maximum independent set in H within a factor of O
(

D ln ln D
ln D

)
.

56 Approximation Algorithms for Independent Set Problems on Hypergraphs

3.4 Conclusions

In this section we introduce an SDP-based approximation technique, which first uses
an SDP formulation to sparsify the hypergraph and then applies a combinatorial algo-
rithm on the resulting sparser instance. Using this technique we derive the first o(∆)-
approximation for IS in hypergraphs matching the O(∆ log log ∆/ log ∆)-approximation
for the special case of graphs. We then extend our results to obtain an identical bound in
terms of the average degree d of an unweighted hypergraph. As part of the method, we
also obtain a k5/2−1/kd

1−1/k+o(1)-approximation for hypergraphs with independence num-
ber at least n/k. We generalize the results to the weighted case and give a O(D log log D/ log D)-
approximation for WIS.

57

Chapter 4

Streaming Algorithms

In this section we present algorithms for WIS on bounded and unbounded-degree hy-
pergraphs in a semi-streaming model. We start by introducing randomized permutation-
based algorithms for bounded-degree hypergraphs. We continue by analyzing several
randomized and deterministic partitioning algorithms for bounded and unbounded-degree
hypergraphs. Finally, we define an online streaming model, prove lower bounds for ran-
domized and deterministic algorithms in this model and give a randomized online stream-
ing algorithm for bounded-degree hypergraphs.

4.1 Permutation-based Algorithms

The idea of permutation-based algorithms is to randomly permute vertices and use this
random permutation to decide which vertices to include in the independent set. Our
streaming algorithms are based on the results for the off-line randomized algorithm RAN-

DOMOFFLINE from [54]. Given a set of vertices V , RANDOMOFFLINE creates a permuta-
tion π on V . In every edge e the last vertex v according to the permutation π is added to
the set S. When the algorithm terminates, S forms a hitting set and V \S is an indepen-
dent set. For convenience, in Fig. 4.1 we give the description of the RANDOMOFFLINE

algorithm.

Shachnai and Srinivasan [54] proved the following approximation ratio for the RANDO-

MOFFLINE algorithm for IS on hypergraphs.

Theorem 4.1.1 ([54]) Given a hypergraph H , the off-line algorithm RANDOMOFFLINE

finds an independent set of expected weight Ω
(

w(H)

D∗

)
.

58 Approximation Algorithms for Independent Set Problems on Hypergraphs

ALGORITHM RANDOMOFFLINE (H)
INPUT: a hypergraph H(V,E)

S ← ∅
Let π be a random permutation of the vertices in V
For every edge e ∈ E(H)

Let v be the last vertex in e with respect to π
S ← S ∪ {v}

Output I = V \S

Figure 4.1: The algorithm RANDOMOFFLINE

Observation 4.1.2 The bound of Ω
(

w(H)

D∗

)
on hypergraphs corresponds to Turán bound

on graphs, which is the best possible bound in terms of D∗.

RANDOMOFFLINE leads easily to a semi-streaming algorithm, which creates a permutation
of V in advance and then process edges one by one as they come in the stream. In this
case we need O(n log n) working space to store the whole permutation. It means that this
semi-streaming algorithm finds an independent set of expected weight Ω

(
w(H)

D∗

)
using

O(r) time to process each eadge and O(n log n) total working space.

In fact, we do not need to know the set of vertices in advance. We can construct a random
permutation π on-the-fly, starting with an empty set. For each edge in the stream, if
the edge contains a new vertex v, we randomly place v among the vertices in π, and
then process the edge the same way as in RANDOMOFFLINE. Let us call this algorithm
RANDOMONFLYPERMUTE (Fig. 4.2).

ALGORITHM RANDOMONFLYPERMUTE (E)
INPUT: a stream E of edges

S ← ∅
Let π = ∅ be an ordered set
For every edge e in the stream E such that e ∩ S = ∅

For every vertex u ∈ e such that u /∈ π
Randomly place u among the vertices in π

Let v be the last vertex in e with respect to π
S ← S ∪ {v}

Output I = V \S

Figure 4.2: The off-line algorithm RANDOMONFLYPERMUTE

The permutation π is random, because inserting a new vertex v in the ordered set π is
equivalent to sampling xv ∈ [0, 1) using the uniform distribution on [0, 1) and placing v in

Elena Losievskaja 59

π so that the numbers xu corresponding to the vertices in π form an increasing sequence.
Then, RANDOMONFLYPERMUTE finds an independent set within the same approximation
factor as RANDOMAPRIORIPERMUTE.

Theorem 4.1.3 The RANDOMONFLYPERMUTE algorithm finds an independent set of ex-

pected weight Ω
(

w(V)

D∗

)
using O(r) time to process each edge and O(n log n) total work-

ing space.

We can significantly reduce the space in RANDOMONFLYPERMUTE by constructing only
a partial random permutation. Each vertex v is associated with a finite sequence bv of
random bits, where each bit in bv is independently set to 0 or 1 with equal probability.
A partial random permutation of the vertex set V is then a lexicographic order of the
corresponding bit sequences {bv}v∈V . Consider an edge e ∈ E. Let {bv|v ∈ e} be the
set of bit sequences associated with the vertices in e. For vertices u, v ∈ e, we say that
u Â v if bu follows bv in the lexicographical order. We define the vertex u ∈ e to be the
last in e, if bu is lexicographically last in the set {bv|v ∈ e}. Let us call this algorithm
RANDOMPARTIALPERMUTE.

The idea of RANDOMPARTIALPERMUTE is that for each vertex v ∈ e we use the minimal
number of bits to determine if bv is the last in {bv|v ∈ e}. In other words, we just need to
determine which vertex in e is the last one, and the relative order of other vertices in e is
not important.

The formal description of this algorithm is given in Fig. 4.3. The algorithm maintains a
hitting set S. At the termination of the algorithm the difference V \S forms an independent
set. Let bv[j] be the j-th bit in bv.

Theorem 4.1.4 The RANDOMPARTIALPERMUTE algorithm finds an independent set of ex-

pected weight Ω
(

w(V)

D∗

)
using expected O(n log r) space and O(r) time to process each

edge.

Proof: First, we show that the partially ordered set B = {bv|v ∈ V } forms a partial
permutation of V . Let xv ∈ [0, 1) be a random number from the uniform distribution on
[0, 1). A random permutation π of V is then an ordering of V such that if u follows v in π,
then xu > xv. Each xv can be viewed as an infinite sequence of random bits, where each
bit in xv is independently set to 0 or 1 with equal probability. To create a bit sequence
bv the RANDOMPARTIALPERMUTE algorithm sets each bit in bv to 0 or 1 independently
with equal probability and uses as many bits of xv in bv as needed to determine if bv is
lexicographically last in {bv|v ∈ e} for every edge e such that v ∈ e. Hence, bv is a
prefix of xv. It means that the set {bv|v ∈ V } forms a partial permutation of V and we

60 Approximation Algorithms for Independent Set Problems on Hypergraphs

ALGORITHM RANDOMPARTIALPERMUTE (E)
INPUT: a stream E of edges

V ← S ← ∅
For each edge e in the stream E do

For each vertex v ∈ e such that v /∈ V
V ← V ∪ {v}
bv ← ∅

If the edge e is not covered by a vertex from S
U ← {e}
j ← 1
While |U | 6= 1 do

For every v ∈ U such that bv[j] is not defined
bv[j] = 1 with probability 1

2 , otherwise bv[j] = 0
If ∃v ∈ U such that bv[j] = 1

Delete from U all vertices with bv[j] = 0
j ← j + 1

S ← S ∪ U
Output I = V \S

Figure 4.3: The algorithm RANDOMPARTIALPERMUTE

can apply the same argument as in the proof of Theorem 4.1.1 to show that the bound of
RANDOMPARTIALPERMUTE corresponds to T’uran bound on graphs.

Now we show that the algorithm uses an expected O(n log r) space to store the sets V , S

and the set of bit sequences {bv}. Given a vertex v, we say that we open the j-th bit in
bv, if the algorithm assign bv[j] its value, i.e. sets bv[j] to 0 or 1 with equal probability.
To simplify the analysis we slightly change the process of opening the bits for a vertex
v: instead of gradually opening the bits in bv as needed, we open bits in blocks of 3 log r

bits, i.e. when the vertex first appears in the stream we open the first block of 3 log r bits,
and then every time we need to open more bits, we open next block of 3 log r bits. This
modification might result in opening more bits than we actually need for some vertices,
but it allows us to show that with high probability 6 log r bits for any vertex v would be
sufficient to decide if v belongs to the independent set or to the hitting set.

Consider a vertex v. We open the first 3 log r bits in bv, when v first appears in the stream.
Let us count how many more bits we need to open in bv until v is put in the independent
set or in the hitting set. Consider an edge e incident on v such that e is not covered by a
vertex from S at the time e appears in the stream. Let bv,e be the bit sequence bv at the
time e appears in the stream. Let UÂv(e) = {u ∈ e|u Â v}, U≺v(e) = {u ∈ e|v Â u} and
U=v(e) = {e}\ (UÂv(e) ∪ U≺v(e)). We need to open more bits in bv,e only if UÂv(e) = ∅
and U=v(e) 6= ∅, because in this case the vertices in U=v(e) have the highest bit sequences

Elena Losievskaja 61

and these bit sequences are exactly the same as bv,e. In any other case the opened bits in
bv,e are sufficient to decide which vertex covers e, namely e is covered either by a vertex
u ∈ UÂv(e) if UÂv(e) 6= ∅ or by the vertex v if UÂv(e) = ∅ and U=v(e) = ∅. We say
that an edge e is problematic for v, if UÂv(e) = ∅ and U=v(e) 6= ∅. In other words, e

is problematic for v, if v has a chance to cover e, but we need to open more bits in bv,e

to decide if v covers e. Hence, we open more bits in bv only when we consider an edge
problematic for v.

We compute the expected number of vertices in e that have the same bit sequence as
v. To simplify the analysis we only consider those bits that have not been considered
for previous problematic edges and further at the beginning of the algorithm, and each
time we have finished considering a problematic edge we open 3 log r new bits. This
guarantees that each time we consider an edge to be problematic we have 3 log r bits that
we can consider to be random. This simplification does not decrease chances of v to be in
S, because if bv has low previous bits, considering new random bits increases the chance
of v being in S; and if bv has high previous bits, then v is likely to be in S already.

Consider an edge e problematic for v. We compute the expected number of vertices that
have the same bit sequence as v and condition the computation of this expectation over all
the values that v can take. The bit sequence of v is random, but the bit sequences of other
vertices in e are conditioned on being less than or equal to the bit sequence for v. Then,
the expected number of vertices that have the same bit sequence as v in e at the 3 log r

bits under consideration can be determined by: summing over all the r3 possible values
that the bit sequence for v can take, and multiplying the probability that v has a given bit
sequence b(i)

v with the expected number of vertices in e that have the same bit sequence as
v. The probability that v has a given bit sequence i is 1

r3 . The expected number of other
vertices in e with the same bit sequence as v is bounded by (r−1)

i+1
if v has the bit sequence

b(i)
v . This can be seen by noting that (r − 1) is the maximum number of nodes in e− {v}

and i + 1 is the number of bit sequences preceding b(i)
v . Then, we get an expression

r3∑

i=0

1

r3
(r − 1)

1

i + 1
≤ 3 log r

r2
≤ 1

r
.

Each time we encounter a problematic edge e we open 3 log r bits and then as many bits
as needed to determine which of the vertices in U=v(e) has the highest bit sequence. The
expected number of bits we open at a problematic edge in addition to 3 log r is less than
log

(
1 + 1

r

)
, as in expectation less than 1 + 1

r
nodes belong to U=v(e), the node v and the

62 Approximation Algorithms for Independent Set Problems on Hypergraphs

nodes equal to v bounded in 4.1. In total we open in expectation

∞∑

i=0

(
3 log r + log

(
1 +

1

r

)) (
1

r

)i

≤
∞∑

i=0

(
3 log r +

1

r

) (
1

r

)i

≤ 6 log r + o(1)

bits, where we used the fact that log
(
1 + 1

r

)
≤ 1

r
and

∑∞
i=0

(
1
r

)i
= r

r−1
≤ 2 for any

r ≥ 2. This concludes the proof.

4.2 Partitioning Algorithms

We now consider unbounded-degree graphs and hypergraphs. The algorithms of pre-
ceding sections do not offer non-trivial guarantees when degrees can be arbitrarily large.
Even off-line approximation is known to be extremely difficult in this case.

The idea of partitioning algorithms is to partition a given hypergraph into disjoint sub-
hypergraphs, find a solution in one (some, or all) partition and output the best solution
found. First, we describe the RANDOMPARTITIONAPRIORI algorithm (in Fig. 4.4) for
unbounded-degree hypergraphs. In this algorithm we use partitioning approach from the
off-line algorithm [26] which approximates IS within a factor of O (n/ log n). The num-
ber of vertices is known in advance and the edges arrive in a random order. Let c be a
positive number.

ALGORITHM RANDOMPARTITIONAPRIORI (V, c, E)
INPUT: a vertex set V , a constant c and a stream E of edges

Randomly select a set V ′ ⊆ V of c log n nodes
E′ ← ∅
For each edge e in the stream E do:

If e ⊆ V ′ then E′ ← E′ ∪ {e}
Let I be a maximum independent set in H(V ′, E′)
Output I

Figure 4.4: The algorithm RANDOMPARTITIONAPRIORI

Theorem 4.2.1 The RANDOMPARTITIONAPRIORI algorithm approximates IS within O
(

n
c log n

)

using O(r) time to process each edge and O(nc log n) total working space for any con-

stant c > 0.

Proof: Let OPT be a maximum independent set in a given stream with n vertices and
let OPT ′ be a maximum independent set in the subhypergraph H ′ induced by the vertex

Elena Losievskaja 63

set V ′. Obviously, |OPT ′| ≥ |OPT ∩ V ′|. Then, the expected size of the independent
set output by the algorithm is E[OPT ′] ≥ E[OPT ∩ V ′] =

∑
v∈V

Pr[v ∈ V ′ ∩ OPT] =
∑

v∈OPT
Pr[v ∈ V ′] =

∑
v∈OPT

c log n
n

= OPT
n/(c log n)

. It means that RANDOMPARTITIONAPRIORI

approximates IS within O
(

n
c log n

)
. The algorithm requires O(r) time to process each edge

in the stream.

Now we show that the total working space of RANDOMPARTITIONAPRIORI is O(nc log n)

bits. Every edge in H(V ′, E ′) can be represented as a bit sequence of length c log n, where
j-th bit equals 1, if the vertex vj belongs to the edge, and 0, otherwise. The number of
edges in E is at most nc, which is the number of all possible subsets over c log n vertices.
It means that the algorithm needs at most ncc log n bits to store all edges in H(V ′, E ′).

Further, we modify the RANDOMPARTITIONAPRIORI algorithm to be a variation of an on-
line randomized preemptive algorithm (see Fig. 4.2). The algorithm works as follows.
Let c be a positive constant. We define N to be un upper bound on the number of vertices
in a hypergraph. We start with N = 2 and every time the number of vertices in the stream
exceeds N , we double N . The algorithm selects a subset V ′ of vertices of expected size
c log N and stores the set of edges E ′ formed by the vertices in V ′. Everytime N is
doubled, we update V ′ to insure that the expected size of V ′ is c log N . In order to update
V ′, we associate a number yv with each vertex v in the stream. If yv ≥ c log N , then
v ∈ V ′, and v /∈ V ′ otherwise. Then, every time N is doubled, we exclude those vertices
from V ′ which have yv < c log N . The numbers yv are calculated in the following way.
When a new vertex v appears in the stream, we sample xv ∈ [0, 1) using the uniform
distribution on [0, 1) and define yv = max

xv≤ y
2y

y. After all edges in the stream are seen, the

algorithm finds an optimal independent set in the graph formed by the set of vertices V ′

and the set of edges E ′.

Theorem 4.2.2 The algorithm RANDOMPARTITIONONLINE approximates IS within O
(

n
c log n

)

using O(r) time to process each edge and the total working space of O(nc log n) bits.

Proof: Let OPT be a maximum independent set in a given stream with n vertices. The
approximation guarantee follows by the same argument as in 4.2.1.

Now we show that the algorithm uses O(nc log n) bits to space to store the sets V and V ′

and the set of edges E ′. Every vertex in V ′ has yv ≥ c log N , hence xv ≤ c log N
N

. Let zv

be an indicator random variable such that zv = 1, if xv ≤ c log N
N

and 0, otherwise. Since
the total number of vertices appeared in the stream is at most N , the expected size of V ′

64 Approximation Algorithms for Independent Set Problems on Hypergraphs

ALGORITHM RANDOMPARTITIONONLINE (c, E)
INPUT: a constant c and a stream E of edges

N ← 2
V ← V ′ ← E′ ← ∅
For each edge e in the stream E do:

For each vertex v ∈ e such that v /∈ V
V ← V ∪ {v}

If |V | > N then
N ← 2 ∗N
For each vertex v ∈ V ′

If yv < c log N then V ′ ← V ′\{v}
E′ ← E′ ∩ V ′

For each vertex v ∈ e such that v /∈ V
Sample xv ∈ [0, 1) using the uniform distribution on [0, 1)
Let yv = max

xv ≤ y
2y

y

If yv ≥ c log N then V ′ ← V ′ ∪ {v}
If e ⊆ V ′ then E′ ← E′ ∪ {e}

Let I be a maximum independent set in H(V ′, E′)
Output I

Figure 4.5: The algorithm RANDOMPARTITIONONLINE

is E[V ′] =
∑
N

zv =
∑
N

c log N
N

= c log N . Thus, we need O(log N) bits to store the sets V

and V ′ on expectation. To store the edges in E ′ it is sufficient to use O(N c log N) bits by
the same argument as in the proof of 4.2.1. Since N ≤ 2n, the total expected working
space is O(nc log n).

Now we turn our attention to deterministic algorithms. The first algorithm, DETSPARSE-

HYPERGRAPH, works for bounded-degree hypergraphs and uses O(n log n) space. In the
DETSPARSEHYPERGRAPH algorithm the idea is to store a subhypergraph H(V ′, E ′) such
that E ′ contains at most n edges, where n is the number of vertices. The algorithm as-
sumes that the vertex set V is not known in advance and vertices are coming with edges in
the stream. The algorithm starts by storing all coming vertices along with incident edges
until the number of edges in E ′ exceeds n. Once the number of edges in E ′ exceeds n,
the algorithm deletes the vertex with the largest index from V ′ and deletes all edges in-
cident on it from E ′. After going through the stream, DETSPARSEHYPERGRAPH uses the
MAXDEGREEGREEDY to find an independent set in H(V ′, E ′). The formal description of
DETSPARSEHYPERGRAPH is given in Fig. 4.6.

The MAXDEGREEGREEDY algorithm is given in Fig.2.3.

Elena Losievskaja 65

ALGORITHM DETSPARSEHYPERGRAPH (n, E)
INPUT: a number n of vertices and a stream E of edges

E′ ← S ← V ′ ← ∅
For each edge e in the stream E do:

If e ∩ S = ∅ then
V ′ ← V ′ ∪ {e}
E′ ← E′ ∪ e

If |E′| > n then
Let vj ∈ V be the vertex with the maximum index in V ′

V ′ ← V ′\{vj}
S ← S ∪ {vj}
E′ ← E′\{e|vj ∈ e}

Let I = MaxDegreeGreedy(H(V ′, E′))
Output I

Figure 4.6: The algorithm DETSPARSEHYPERGRAPH

Theorem 4.2.3 The DETSPARSEHYPERGRAPH algorithm finds an independent set of size

Ω
(

pn
∆2

)
using O(1) time to process each edge and O(n log n) space, where p is the small-

est edge size in a given hypergraph.

Proof: First, we estimate how much of working memory DETSPARSEHYPERGRAPH uses
to store H(V ′, E ′). For each of at most n edges in H(V ′, E ′) we need O(log n) bits by
the same argument as in 4.2.1. Thus, the total working space is O(n log n).

Next, we show that DETSPARSEHYPERGRAPH finds an independent set of size Ω
(

n
∆2

)
.

Throughout the algorithm the hypergraph H always contains at least n−∆ edges, because
we delete a vertex with all incident edges from H whenever the number of edges exceeds
n and this deletion reduces the number of edges in E ′ by at most ∆. Since each vertex is
of degree at most ∆, the hypergraph H always contains at least p(n−∆)

∆
= pn

∆
− p vertices.

The MAXGREEDY finds an independent set in hypergraphs of size at least 2n
∆+1

as proven
in Theorem 2.3.4. It means that DETSPARSEHYPERGRAPH finds an independent set of size
2p(n−∆)
∆(∆+1)

= Ω
(

pn
∆2

)
, which completes the proof.

Next, we consider a deterministic algorithm for unbounded-degree hypergraphs. The
DETPARTITIONS algorithm works for unbounded-degree hypergraphs and uses O(nc+1c log n)

space. It knows the vertex set V apriori, and so it starts by splitting V into disjoint subsets,
each of c log n nodes, where c > 0 is some constant. Then the algorithm stores only the
edge within each partition. After seeing the whole stream, the algorithm finds a maximum
independent set in each partition and outputs the largest independent set found.

66 Approximation Algorithms for Independent Set Problems on Hypergraphs

ALGORITHM DETPARTITIONS (V, c, E)
INPUT: a set of vertices V , a constant c and a stream E of edges

Split V into sets {V1, V2, . . . , V n
c log n

} each of c log n nodes
For each j = 1 to n

c log n do:
Ej ← ∅

For each edge e in the stream E do:
If ∃ Vj such that e ⊆ Vj :

Ej ← Ej ∪ e
For each j = 1 to n

c log n do:
Let Ij be a maximum independent set in H(Vj , Ej)

Output maxj Ij

Figure 4.7: The algorithm DETPARTITIONS

Theorem 4.2.4 The DETPARTITIONS algorithm approximates IS within O
(

n
c log n

)
factor

using O(r) time to process each edge and O(nc+1) space, for any constant c > 0.

Proof: Each partition H(Vj, Ej) contains c log n and at most nc edges (which is the num-
ber of all possible subsets over c log n vertices). By the same argument as in 4.2.1, we
need O(nc log n) bits to store each partition H(Vj, Ej), and in total O(nc+1) bits to store
all partitions.

Let OPT be a maximum independent set in the stream H(V, E). Let OPT ′ be the
largest independent set over all partitions {H(Vj, Ej)}. By pigeonhole principle, OPT ′ =

max
j
|OPT ∩ Vj| ≥

∑
j

|OPT∩Vj |

n/c log n
= |OPT |

n/c log n
. It means that DETPARTITIONS approximates

IS within O
(

n
c log n

)
, which completes the proof.

4.3 Minimal Space Algorithms

We consider here two related questions. One is how well we can compute independent
sets from a stream if the space allowed is the absolute minimum possible? The other
relates to the situation where the algorithm is at all times constrained to maintain a valid
independent set.

Any algorithm that finds a non-trivial feasible independent set must be able to output a
solution. The simplest setup for a minimal space consumption is to allow the algorithm
only one bit per vertex, recording whether the vertex is in the current solution or not. The
amount of additional space can be restricted to a constant. Since there is no space to store

Elena Losievskaja 67

information about the edges previously seen, the assignment of nodes as being outside the
solution must be irrevocable: no vertex can be reintroduced into the solution.

We build on these ideas to introduce the following model.

Definition 4.3.1 In the online streaming model, the algorithm must maintain a specific

feasible solution at all times. Initially, the solution consists of all vertices. Vertices can

be removed from the solution, but cannot be added back.

This model captures an irrevocability property that is similar to online algorithms. In the
online independent set problem, vertices arrive one by one, along with all incident edges
to previous vertices. The online algorithm must irrevocably determine whether the node
is to be included in the constructed feasible independent set solution. In the above online
streaming problem, nodes can change their state, but only in one direction: a selected
vertex can be deselected, but once omitted from the current independent set, it can never
be readmitted. The online problem is therefore incomparable, since edges are presented
in a special order determined by the vertex ordering.

The online independent set problem is known to be very hard to approximate [28, 2];
e.g., a competitive factor of n− 1 is the best possible for a deterministic algorithm, even
when restricted to trees. However, bounded-degree graphs are comparatively easy, since
a factor of ∆ is trivial for a deterministic greedy algorithm.

We consider deterministic and randomized algorithms for the independent set problem
in the online streaming model, and obtain matching upper and lower bounds in terms of
degree parameters.

First, we give a lower bound for deterministic streaming algorithms.

Theorem 4.3.2 The performance ratio of any deterministic algorithm in the online stream-

ing model is Ω(n), even for trees of maximum degree log n. This holds even if the algo-

rithm is allowed to use arbitrary extra space.

Proof: Assume that n = 2k. Let A be any deterministic algorithm.

We maintain the invariant that the independent set selected by A contains at most one
node in each connected component. We join the n vertices together into a single tree in
k rounds. In round i, for i = 1, 2, . . . , k, n/2i edges are presented. Each edge connects
together two components; in either component, we choose as endpoint the node that is
currently in A’s solution, if there is one, and otherwise use any node in the component.
This ensures that the algorithm cannot keep both vertices in its solution, maintaining the
invariant.

68 Approximation Algorithms for Independent Set Problems on Hypergraphs

In the end, the resulting graph is a tree of maximum degree at most k, and A’s solution
contains at most one node.

This result shows that no deterministic algorithm can attain a performance ratio in terms
of d alone, nor a ratio of 2o(∆).

We remark that a deterministic algorithm that is allowed no extra space has no means
of distinguishing between vertices in a meaningful way. This implies that no non-trivial
bound is then possible. We call the model memoryless if no additional space, beyond the
n bits to denote the solution, are allowed.

Observation 4.3.3 There is no deterministic memoryless online streaming algorithm that

attains a performance ratio that is a function of ∆ alone.

When allowing additional space, we can match the previous lower bound in terms of
∆.

Theorem 4.3.4 There is a deterministic algorithm in the online streaming model with a

performance ratio of O(2∆).

Proof: We consider an algorithm that maintains additional information in the form of a
counter cv for each node v, initialized as zero.

When an edge arrives between two nodes in the current solution I , we compare the coun-
ters of the nodes. The node whose counter is smaller, breaking symmetry arbitrarily, is
then removed from the current solution I . The counter of the other node, e.g. u, is then
increased. We then say that u eliminated v. We say that a node u is responsible for a
vertex x if u eliminated x, or, inductively, if u eliminated a node that was responsible for
x.

Let R(k) denote the maximum, for any node v with cv = k, of the number of nodes for
which v is responsible. We claim that R(k) ≤ 2k − 1. It then follows that the size of I

is at least n/2∆, since cv is at most the degree of v. For the base case R(0) = 0, since
the node never eliminated another vertex. Assume now that R(t) ≤ 2t − 1, for all t < k.
Consider a node with cv = k, and let u1, u2, . . . , uk denote the vertices eliminated by k

in order. On the i-th elimination, the value of cv was i − 1, hence the value of cui
was at

most i− 1. Once eliminated, the counter cui
for node ui stays unchanged. Hence, by the

inductive hypothesis, ui was responsible for at most R(i− 1) other nodes. We then have
that

R(k) ≤
k∑

t=1

(R(t− 1) + 1) =
k−1∑

t=0

2t = 2k − 1,

establishing the claim.

Elena Losievskaja 69

We now turn our attention to randomized algorithms in the online model. The algorithm
RANDOMDELETE given in Fig. 4.8 selects an endpoint at random from each edge in the
stream and removes it from the current solution.

ALGORITHM RANDOMDELETE (E)
INPUT: a stream E of edges

V ← S ← ∅
For each edge e in the stream E do:
For each u ∈ e such that u /∈ V

V ← V ∪ {u}
Randomly select a vertex v ∈ e
S ← S ∪ {v}

Output V \ S

Figure 4.8: The algorithm RANDOMDELETE

Note that RANDOMDELETE is memoryless.

Theorem 4.3.5 The performance ratio of RANDOMDELETE on graphs is 2O(d). Any

randomized memoryless algorithm in the online streaming model has performance ra-

tio 2Ω(d).

Proof: Upper bound. Each vertex v belongs to the final solution V \ S with probability
2−d(v). Therefore, the expected size of the V \ S is

∑
V

2−d(v) ≥ n/2d, using the linearity

of expectation and Jensen’s inequality.

Lower bound. A memoryless algorithm can do no better than randomly select the vertex
to be eliminated. It can improve on RandomDelete by not eliminating a vertex if its
neighbors are already in the hitting set, but when both endpoints are in the independent
set solution, it has no means for distinguishing the two.

Consider the graph with vertex set V = {v1, v2, · · · , vn} and edges {vi, vj} for any |i −
j| ≤ k. Edges arrive in the stream in lexicographic order: (v1, v2), (v1, v3), . . . , (v1, vk),

(v2, v3), . . . , (vk+1), (v3, v4), etc. Note, that all but the first and the last k vertices have
degree 2k. Thus, the average degree d ≤ ∆ = 2k.

Let I be the independent set constructed by the algorithm. Consider the first vertex v1.
There are two cases, depending on whether v1 ends up in I .

Case 1: v1 ∈ I . It means that all the neighbors of v1 are deleted. The probability of this
event is P [v1 ∈ I] = 2−k. The remaining stream is identical to the original one with
V = V \ {v1, v2, · · · , vk}.

70 Approximation Algorithms for Independent Set Problems on Hypergraphs

Case 2: v1 /∈ I . Suppose v1 was selected to cover the t-th edge incident on v1 for some
t ∈ [1, k]. Then, the first t− 1 neighbors of v1 were selected to cover the first t− 1 edges
incident on v1 and were deleted as well. The remaining stream is identical to the original
one with V = V \{v1, v2, · · · , vt}.

Thus, a vertex vi ∈ V is inserted in I only in Case 1 and the probability of this event is
2−k, for any vertex vi with i ∈ [1, n − k]. Note, that the last k vertices form a clique,
and so only one vertex from this clique contributes to I . Thus, the expected size of the
independent set found by the algorithm is n−k

2k +1 < n
2k +1 < n

2d/2
. On the other hand, an

optimal solution is of size at most n
∆
≥ n

2k
, which implies the performance ratio.

The algorithm has the special property of being oblivious in that the solution maintained,
or any other part of memory, is never consulted in the operation of the algorithm until it
is output.

Corollary 4.3.6 The RANDOMDELETE algorithm attains a 2θ(d) performance ratio on

graphs even in the oblivious model.

The permutation-based algorithms of Section 3 are all of the online streaming type. Thus,
we do know that reasonable approximation can be obtained by randomized online stream-
ing algorithms if we have modest amount of extra space. On the other hand, if we have
no extra space, Theorem 4.3.2 shows that the approximation is much worse. How much
extra space is then really needed to be successful?

Our next result suggests that one extra bit per vertex is sufficient. For this to work, we
need to know in advance the degree parameter (D or ∆).

Without loss of generality, we can assume that all vertices have positive weight and
w(v) ≥ 1 for any vertex v. Suppose we know D in advance (a constant factor approxi-
mation suffices), then we can use the following streaming algorithm (Fig. 4.9). The algo-
rithm maintains a hitting set S. When we receive an edge e, for every new vertex v ∈ e

we sample y ∈ [0, 1) using the uniform random distribution on [0, 1), and if y > 1/2D,
we include v in S. If S does not contain any vertex from e, then we randomly select a
vertex u in e and include it in S.

Theorem 4.3.7 The RANDOMSELECT algorithm finds an independent set of expected weight

Ω
(

w(V)

D

)
, using O(r) time to process each edge and 2 bits per vertex total working space,

i.e 2n bits.

Elena Losievskaja 71

ALGORITHM RANDOMSELECT (D, E)
INPUT: Average degree D, a stream E of edges

V ← S ← ∅
For each edge e in the stream E do

For each vertex v ∈ e such that v /∈ V
V ← V ∪ {v}
sample yv ∈ [0, 1) using the uniform random distribution
if yv > 1

2D
then

S ← S ∪ {v} [Phase 1]
If e ∩ S = ∅ then [Phase 2]

Randomly select a vertex v ∈ e
S ← S ∪ {v}

Output I = V \S

Figure 4.9: The algorithm RANDOMSELECT

Proof: For each vertex in the stream the algorithm uses only two bits of working memory:
one to mark if the vertex has been seen in the stream, and one to mark if the vertex is in S

or not. Thus, the algorithm needs O(n) space to store the sets V , S.

Now, we show that the expected weight of V \S is Ω
(

w(V)

D

)
. A vertex v is in V \S after

the termination of the algorithm if v was never included in S during the execution of the
algorithm. The vertex v is included in S either when it first appears in the stream (Phase
1) or when v is selected to cover some edge containing it (Phase 2). We say that an edge e

is covered in Phase 1 if there is a vertex v ∈ e, which was included in S in Phase 1.

To simplify the analysis we change Phase 2 of the RANDOMSELECT algorithm as follows:
instead of considering only edges e such that e ∩ S = ∅, we consider all edges e not
covered in Phase 1. Let Sorg and Smod be the covers found by the original and modified
algorithms, respectively. Consider a vertex v ∈ Sorg. If v is included in Sorg in Phase 1,
then v is included in Smod in Phase 1 as well. If v is included in Sorg in Phase 2, then v

covers some edge e not covered in Phase 1, and so is included in Smod in Phase 2. Thus,
Sorg ⊆ Smod.

The probability of v not being included in S during the Phase 1 is:

P [v /∈ S after Phase 1] =
1

2D
. (4.1)

Let Xv be an indicator random variable with Xv = 1, if v survives Phase 1, i.e. v is not
included in S during Phase 1, and Xv = 0 otherwise. Then, the total expected weight of

72 Approximation Algorithms for Independent Set Problems on Hypergraphs

vertices passed through the Phase 1

∑

v∈V

w(v)Xv =
w(V)

2D
. (4.2)

An edge is not covered in Phase 1 iff none of its vertices are in S during Phase 1, the
probability of such an event is

P [e is not covered in Phase 1] =
1

(
2D

)|e| ≤
1

(
2D

)2 . (4.3)

For any edge e in the stream we define a weight function w(e) =
∑
v∈e

w(v). The weight of
all edges in the stream is then

w(E) =
∑

e∈E

w(e) =
∑

e∈E

∑
v∈e

w(v) =
∑

v∈V

w(v)d(v) = w(V)D . (4.4)

Let Ye be an indicator random variable with Ye = 1, if e is not covered in Phase 1, and
Ye = 0 otherwise. Then, the total expected weight of edges not covered in Phase 1
is ∑

e∈E

w(e)Ye ≤ w(E)

4D
2 =

w(V)

4D
. (4.5)

In each edge that is not covered in Phase 1, the algorithm deletes one vertex. It means
that on expectation the weight of deleted vertices in modified Phase 2 is at most w(V)

4D
.

Thus, the total expected weight of vertices survived both Phase 1 and modified Phase 2 is
at least w(V)

2D
− w(V)

4D
= w(V)

4D
, which concludes the proof.

4.4 Conclusions

In this section we present semi-streaming algorithms that approximate WIS in one pass
using at most O(r) time to process every edge in the stream. We describe several ran-
domized and deterministic algorithms for bounded-degree and unbounded-degree hyper-
graphs, some of them are based on permutations and use at least O(n log r) and at most
O(n2 log n) space, the others are based on the partitions and use O(nc+1) space, where
c > 0 is an arbitrary constant. We also define an on-line minimal space streaming model
and prove lower bounds for randomized and deterministic algorithms in this model.

73

Chapter 5

Conclusions

In this work we present approximation algorithms for the MAXIMUM INDEPENDENT

SET problem, for both weak and strong variations of the problem, for weighted and un-
weighted cases. We introduce a shrinkage reduction technique, which allows us to ex-
tend several greedy, local search and partitioning graph algorithms to hypergraph case.
We also describe SDP-based approach which combines semidefinite programming with
greedy and randomized algorithms. This approach allows us to obtain the first o(∆)-
approximation for IS in hypergraphs, matching the bound on graphs. Finally, we con-
sider a semi-streaming model and give several deterministic and randomized algorithms
for bounded and unbounded-degree hypergraphs. We introduce online an semi-streaming
model and give lower and upper bounds on randomized and deterministic algorithms in
this model.

To conclude we outline possible directions for further work:

- Show the capabilities and limitations of the shrinkage reduction technique, in par-
ticular classify optimization problems and algorithms to which this technique can
be applied.

- Extend the SDP-based approach to coloring and covering problems on hypergraphs.

- Prove the results on greedy, local search, partitioning and SDP-based algorithms in
terms of average or maximum hyperdegree.

- Improve the approximation ratios and the size of working space of semi-streaming
algorithms.

74

75

Bibliography

[1] K.J. Ahn and S.Guha, Graph sparsification in the semi-streaming model, Proc. 36th

International Colloquium on Automata, Languages and Programming (ICALP),
5556: 328–338, 2009.

[2] N. Alon, U. Arad and Y. Azar, Independent sets in hypergraphs with applications
to routing via fixed paths, Approximation, Randomization and Combinatorial Op-
timization (APPROX-RANDOM), 16–27, 1999.

[3] N. Alon and N. Kahale, Approximating the independence number via the θ-
function, Mathematical Programming 80(3): 253–264, 1998.

[4] N. Alon, Y. Matias and M.Szegedy, The space complexity of approximating the
frequency moments, Journal of Computer and System Sciences 58(1): 1167–1181,
1999.

[5] Z. Bar-Yossed, R. Kumar and D.Sivakumar, Reductions in streaming algorithms,
with an application to counting triangles in graphs, Proc. 13th ACM-SIAM Sympo-

sium on Discrete Algorithms (SODA), 623–632, 2002.

[6] C. Bazgan, J. Monnot, V. Paschos and F. Serrière, On the differential approximation
of MIN SET COVER, Theoretical Computer Science, 332:497–513, 2005.

[7] S. Ben-David, A. Borodin, R. M. Karp, G.Tardos and A. Wigderson, On the power
of randomization in on-line algorithms, Algorithmica, 11:2–14, 1994.

[8] C. Berge, Hypergraphs, North-Holland, 1989.

[9] P. Berman, A d/2 approximation for Maximum Weight Independent Set in d-claw
free graphs, Nordic Journal of Computing, 7:178–184, 2000.

[10] P. Berman and T. Fujito, On approximation properties of the Independent Set
Problem for low degree graphs, Theory of Computing Systems, 32(2):115–132,
1999.

76 Approximation Algorithms for Independent Set Problems on Hypergraphs

[11] P. Berman and M. Fürer, Approximating maximum independent set in bounded
degree graphs, Proc. 5th Ann. ACM-SIAM Symp. on Discrete Algorithms (SODA),
365–371, 1994.

[12] A. L. Buchsbaum, R. Giancarlo and J.Westbrook, On finding common neighbor-
hoods in massive graphs, Theoretical Computer Science, 1-3(299):707–718, 2003.

[13] Y. Caro and Z. Tuza, Improved lower bounds on k-independence, Journal of Graph

Theory, 15(1):99–107, 1991.

[14] J. Cardinal, S. Fiorini and G. Joret, Tight results on Minimum Entropy Set Cover,
Algorithmica, 50(1):49–60, 2008.

[15] V. Chvátal, A greedy heuristic for the set-covering problem, Mathematics of Op-

erations Research, 4(3):233–235, 1979.

[16] A. Clementi and L. Trevisan, Improved non-approximability results for vertex
cover problems with density constraints, Proc. 2nd Ann. International Conference

on Computing and Combinatorics, 332–342, 1996.

[17] C. Demetrescu, I. Finocchi and A. Ribichini, Trading off space for passes in graph
streaming problems, Proc. of 17th ACM-SIAM Symposium on Discrete Algorithms

(SODA), 714–723, 2006.

[18] J. Edmonds, Paths, trees and flowers, Canadian Journal of Mathematics, 17:449–
467, 1965.

[19] U. Feige, A threshold of ln n for approximating set cover, Journal of the ACM,
45(4):634–652, 1998.

[20] U. Feige, Approximating maximum clique by removing subgraphs, SIAM Journal

of Discrete Mathematics, 18(2): 219–225, 2005.

[21] U. Feige, L. Lovász and P. Tetali, Approximating min-sum set cover, Algorithmica,
40(4):219–234, 2004.

[22] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri and J. Zhang, On graph problems
in a semi-streaming model, Theoretical Computer Science, 348(2): 207–216, 2005.

[23] A. Gilbert, Y. Kotidis, S. Muthukrishnan and M.Strauss, Quicksand: quick sum-
mary and analysis of network data, DIMACS Technical Report, 2001-43, 2001.

[24] M. X. Goemans and D. P. Williamson, Improved approximation algorithm for
maximum cut and satisfiability problems using semidefinite programming, Journal

of the ACM, 42: 1115–1145, 1995.

Elena Losievskaja 77

[25] M. Grötschel, L. Lovász and A. Schrijver, The ellipsoid method and its conse-
quences in combinatorial optimization, Combinatorica, 1(2): 169–197, 1981.

[26] M. M. Halldórsson, Approximations of independent sets in graphs, Approx-

imation, Randomization and Combinatorial Optimization (APPROX-RANDOM),
LNCS 1441:1–13, 1998.

[27] M. M. Halldórsson, Approximations of weighted independent set and hereditary
subset problems, Journal Graph Algorithms and Applications, 4(1), 1–16, 2000.

[28] M. M. Halldórsson, Kazuo Iwama, Shuichi Miyazaki, and Shiro Taketomi, Online
independent sets, Theoretical Computer Science, 289(2): 953–962, 2002.

[29] M. M. Halldórsson and H.-C. Lau, Low-degree graph partitioning via local search
with applications to Constraint Satisfaction, Max Cut, and 3-Coloring, Journal of

Graph Algorithms and Applications, 1:1–13, 1997.

[30] M.M. Halldórsson and E. Losievskaja, Independent sets in bounded-degree hyper-
graphs, Discrete Applied Mathematics, 157: 1773–1786, 2009.

[31] M. M. Halldórsson and J. Radhakrishnan, Greed is good: approximating inde-
pendent sets in sparse and bounded-degree graphs, Algorithmica, 18(1):143–163,
1997.

[32] E. Halperin, Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs, SIAM Journal on Computing, 31(5):1608–1623, 2002.

[33] E. Hazan, S. Safra and O. Schwartz, On the complexity of approximating k-
dimensional matching, Approximation, Randomization and Combinatorial Opti-

mization (APPROX-RANDOM), 59–70, 2003.

[34] J. Håstad, Some optimal inapproximability results, Proc. 29th Ann. ACM Sympo-

sium on Theory of Computing (STOC), 1–10, 1997.

[35] J. Håstad, Clique is hard to approximate within n1−ε, Acta Mathematica, 182:
105–142, 1999.

[36] M. Henzinger, P.Raghavan and S.Rajagopalan, Computing on data streams, In:

External Memory Algorithms, DIMACS series in Discrete Mathematics and Theo-

retical Computer Science, 50:107-118, 1999.

[37] C. A. J. Hurkens and A. Schrijver, On the size of systems of sets every t of which
have an SDR, with an application to the worst-case ratio of heuristics for packing
problems, SIAM Journal on Discrete Mathematics, 2(1):68–72, 1989.

78 Approximation Algorithms for Independent Set Problems on Hypergraphs

[38] P. Indyk, Stable distributions, pseudorandom generators, embeddings and data
stream computation, Proc. 41th IEEE Symposium on Foundations of Computer

Science (FOCS), 189–197, 2000.

[39] S. Jukna, Extremal combinatorics with applications in computer science, Springer-

Verlag, 2001.

[40] D. S. Johnson, Approximation algorithms for combinatorial problems, Journal of

Computer and System Sciences, 9:256–278, 1974.

[41] R. M. Karp, Reducibility among combinatorial problems, Complexity of Computer

Computations, 85–103, 1972.

[42] D. Karger, R. Motwani and M. Sudan, Approximate graph coloring by semidefinite
programming. Journal of the ACM, 45(2): 246–265, 1998.

[43] M. Krivelevich, R. Nathaniel and B. Sudakov, Approximating coloring and maxi-
mum independent set in 3-uniform hypergraphs, Journal of Algorithms, 41(1):99–
113, 2001.

[44] L. Lovász, On decomposition of graphs, Acta Mathematica Hungarica, 18(3-
4):359–377, 1967.

[45] L. Lovász, On the ratio of optimal integral and fractional covers, Discrete Mathe-

matics, 13:383–390, 1975.

[46] A. McGregor, Finding graph matchings in data streams, Approximation, Random-

ization and Combinatorial Optimization (APPROX-RANDOM) 170–181, 2005.

[47] S. Mahajan and H. Ramesh, Derandomizing semidefinite programming based ap-
proximation algorithms. SIAM Journal of Computing 28(5): 1641–1663, 1999.

[48] S. Muthukrishnan, Data streams: algorithms and applications,
http://athos.rutgers.edu/~muthu/stream-1-1.ps, 2003.

[49] I. Munro and M. Paterson, Selection and sorting with limited storage, Theoretical

Computer Science, 12:315-323, 1980.

[50] R. Raz and S. Safra A sub-constant error-probability low-degree test, and sub-
constant error-probability PCP characterization of NP, Proc. 29th Ann. ACM Sym-

posium on Theory of Computing (STOC), 475–484, 1997.

[51] A. Rényi, Probability theory, Elsevier, New York, 1970.

[52] R. Saigal, L. Vandenberghe and H. Wolkowicz, Handbook of semidefinite pro-
gramming: theory, algorithms and applications, Springer, 2000.

Elena Losievskaja 79

[53] S. Sakai, M. Togasaki and K. Yamazaki, A note on greedy algorithms for the max-
imum weighted independent set problem, Discrete Applied Mathematics, 126(2-
3):313–322, 2003.

[54] H. Shachnai and A. Srinivasan, Finding large independent sets of hypergraphs in
parallel, SIAM Journal on Discrete Mathematics, 18(3):488–500, 2005.

[55] T. Thiele, A lower bound on the independence number of arbitrary hypergraphs,
Journal of Graph Theory, 32:241–249, 1999.

[56] L. Trevisan, Non-approximability results for optimization problems on bounded
degree instances, Proc. 33rd Ann. ACM Symposium on Theory of computing

(STOC), 453–461, 2001.

[57] V. V. Vazirani, Approximation algorithms, Springer, 2001.

[58] S. Vishwanathan, Private communications, mentioned in [27], 1998.

[59] V. Voloshin, Coloring mixed hypergraphs: theory, algorithms and applications,
AMS, 2002.

[60] L. A. Wolsey, An analysis of the greedy algorithm for the submodular set covering
problem, Combinatorica, 2(4):385–393, 1982.

80

School of Computer Science
Reykjavík University
Menntavegi 1
101 Reykjavík, Iceland
Tel. +354 599 6200
Fax +354 599 6201
www.reykjavikuniversity.is
ISSN 1670-8539

