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Abstract 

This study develops a new simulation model by ASPEN Plus for gasification integrated with 

water-gas shift reactors and product recovery unit for hydrogen production. Timber and wood 

waste (T&WW) as a lignocellulosic biomass was also considered as the input feedstock to the 

system. Then, the model is applied to investigate the effect of two agents of air and a mixture 

of air-steam under different operating conditions of temperature and steam to biomass ratio 

(SBR). The results reveal that the produced hydrogen through the air-steam gasification is at 

the highest points for all studied temperatures and it would be maximum (44.37 Kmol/hr per 

1 ton T&WWs) at 700 ˚C. The hydrogen production efficiency (HPE) can be also raised, 

stemming from the growth of H2. It values 39.2% at SBR = 0.1 that grows to 70% at SBR = 0.9. 

The optimum SBR lies between 0.7-0.8 that specific mass flow rate of hydrogen would be 

higher than 0.1 kghydrogen/kgT&WW. 

Keywords: Hydrogen production, Biomass gasification, Water-gas shift reactor, Process simulation, 

Gasifying agents.  

Introduction 

Growing concerns about the depletion of fossil fuels, energy security and environmental 

impacts due to burning of the fossil fuels have encouraged the decision makers in the energy 

sector to substitute fossil fuels with renewable and sustainable energy alternatives [1-5]. 

Among the renewable energies, biomass and hydrogen have received significant attention as 

they can increase the global energy sustainability and reduce greenhouse gas emissions [6-

10]. Globally, biomass has the third widest energy source after coal and oil [11] and it includes 

plenty advantages such as it is inexhaustible, it can be easily stored, and its CO2 emissions is 

considered climate-neutral, since the CO2 released through the biofuel combustion is almost 

equal to the CO2 value absorbed by biomass during its lifetime [12,13]. 

There are various technologies for conversion of biomass to product gas, including 

thermochemical, biochemical and mechanical extraction methods. Thermochemical 

conversion methods can be classified into: combustion, gasification, pyrolysis and liquefaction 

[14,15]. Among these methods, biomass gasification is a promising technology to convert 

different feedstocks for various energy purposes [16-18]. This complex thermochemical 

process converts the lignocellulosic materials into a more valuable gas known as syngas by a 

series reactions at high temperatures [19-21]. The gasification process takes place in the 

presence of gasification agents such as air, steam, oxygen, or a mixture of them. Air 

gasification produces syngas with LHV in the range of 4-7 MJ/Nm3 and if steam is used instead 

of air the syngas produced has a LHV in the range of 10-15 MJ/Nm3 and the hydrogen yield is 

higher, as a result of water gas shift reaction [22,23]. However, it would be more beneficial to 

consider a mixture of air and steam as the oxidizing agent because biomass steam gasification 

requires external heat due to the endothermic steam reforming reactions involved [24]. 

The gasification process consists different steps of drying of the wet feedstocks, pyrolysis of 

the dried feedstocks and the reaction part containing oxidation, reduction and cracking 

[15,25]. Syngas as a result of biomass gasification, contains mainly carbon monoxide, 
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hydrogen, carbon dioxide, methane and traces of higher hydrocarbons, can be used for 

polygeneration purposes such as thermal heat, power generation or to produce hydrogen fuel 

[26-28]. Hydrogen has the highest energy density among all hydrocarbons fuels which is about 

122 kJ/kg [29] and it can be used as a clean energy source for fuel cells, clean energy carrier 

for heat supply, and transportation purposes [30-32]. Several technologies were developed to 

produce hydrogen, like conventional methane steam reforming, biological processes, biomass 

gasification, biomass pyrolysis, electrolysis, and thermochemical water splitting [19,33].  

Biomass gasification as an attractive technology for conversion of various types of biowastes 

to energy, has been known as a clean and efficient way of producing hydrogen [34,35]. 

Biomass gasification is of significant interests due to the facts that (a) the process is fast, (b) 

the process is efficient, (c) biomass is environmentally friendly, (d) biomass is renewable, etc. 

[36,37]. Performance analysis of biomass gasification systems has been studied in many 

researches [4,27,38-46]. However, there are just a few studies on performance analysis of 

integrated gasification-hydrogen production [10,28,47].  

Meramo-Hurtado et al., [48] addressed the modeling and evaluation of a biomass gasification 

topology for hydrogen production, employing process simulation along with an environmental 

and inherent safety analysis. The presented pathway considered for cassava and rice waste as 

renewable raw materials based on their vast availability in north Colombia regions. they 

employed Aspen Plus process simulation software to model the process, setting biomasses 

and ash content as nonconventional solids in the software and inclusion of FORTRAN 

subroutines for handling solid properties. However, their focus is mainly on environmental 

evaluation applying based on the waste reduction algorithm (WAR) and safety assessment 

that involve a comprehensive approach based on the inherent safety index (ISI) and the 

process route index (PRI) methods. Marcantonio et al., [28] studied the gasification of 

hazelnut shells within a circulating bubbling fluidized bed gasifier through a quasi-equilibrium 

approach developed in the Aspen Plus environment and used to validate and improve an 

existing bubbling fluidized bed gasifier model. The gasification unit was integrated with a 

water-gas shift (WGS) reactor to increase the hydrogen content in the outlet stream and with 

a pressure swing adsorption (PSA) unit for hydrogen separation. The amount of dry H2 

obtained out of the gasifier was 31.3 mol%, and this value increased to 47.5 mol% after the 

WGS reaction. Shayan et al., [10] investigated the hydrogen production from biomass 

gasification using various agents and compared theoretically, from the viewpoints of the first 

and second thermodynamics laws. Gasification of wood and paper, were assessed using four 

gasification agents of air, oxygen-enriched air, oxygen and steam. A parametric study was also 

conducted to assess the effects of key operating parameters on the hydrogen concentration 

and calorific value of product gas, energy and exergy efficiencies of the process and exergy 

destruction rate at different operating conditions. The results indicate that the higher values 

of hydrogen production is associated respectively with using steam, oxygen, oxygen-enriched 

air and air as the gasification agents. Also, it is concluded that for the gasification process the 

highest value of sensible energy efficiency is obtained for air gasification, while the highest 

exergy efficiency, as a rational criterion, is obtained for steam gasification for which the 

calorific value of the producer gas can reach to higher than 11 MJ/Nm3. Nakyai et al., [49] 

studied, the effects of various types of gasifying agent, i.e., air and steam for the biomass 
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gasification with/without methane co-feeding through an exergoeconomic analysis. It is 

observed that the methane co-feeding can improve the energy and exergy efficiency. In 

exergoeconomic analysis, the specific exergy cost method was applied to investigate the unit 

cost of hydrogen. The economic reveal that the biomass gasification using air-steam as an 

agent with methane co-feeding presented the lowest unit hydrogen cost of 2.69 $/kg and the 

unit exergy cost of hydrogen is 0.068 $/kWh. Although there have been several studies on 

hydrogen production by using biomass gasification, the authors are not aware of  any reported 

works on effect evaluation and sensitivity analysis of different agents and critical operating 

parameters on gasification performance and hydrogen production. Therefore, the objective 

of the present study is development of a new simulation model by using ASPEN Plus for the 

integrated gasification with hydrogen production from timber and wood waste (T&WW) as 

the feedstock. Then, the model is used to investigate the effect of two agents of air and a 

mixture of air-steam on the system performance. Moreover, two sensitivity analyses are 

carried out to study the impacts of the gasifier temperature and the steam to biomass ratio 

(SBR) on the syngas composition, low heating value (LHV) of syngas, hydrogen production and 

its efficiency. Thus, this study could provide a framework for defining the gasification, and 

hydrogen production plants to support equipment specification, and will be the basis for a 

future comprehensive environmental and techno-economic assessments. 

 

Material and methods 

System description 

The system considered in this work is shown in Fig. 1. Timber and wood wastes (T&WW) were 

used as the biomass feedstock. The characteristics of T&WWs are brought in Table 1. Typically, 

the moisture in the biomass ranges from 5–60% that during drying, it is reduced to below 5%. 

In the pyrolysis step, the biomass is heated from with limited oxygen or air and under these 

conditions the volatile components in the biomass are vaporized. The oxygen supplied to the 

gasifier reacts with the combustible substances, producing CO2 and H2O. Some of this CO2 and 

H2O subsequently are reduced to CO and H2 upon contact with the char produced from 

pyrolysis [50]. Moreover, the hydrogen in the biomass can be oxidized, generating water. The 

reduction reactions occurring inside the gasifier are endothermic, and the energy required for 

these reactions is provided by the combustion of char and volatiles. Reduction of the biomass 

yields combustible gases such as hydrogen, carbon monoxide, and methane through a series 

of reactions; the main reactions in this category are as follows (Table 2) [51,52]: 

After gasification, the produced syngas undergoes the water-gas (W-G) shift reaction: 

2 2 2CO H O H CO      (1) 

Which occurs in two reactors of high temperature shift and low temperature shift [53]. The 

gas from the W-G shift contains mainly H2, CO2, residual steam, and traces of CH4 and CO; then 

to produce pure hydrogen, these gases is fed into the PSA system to obtain pure hydrogen. 
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Fig.1: Structure of the biomass gasification-hydrogen production process. 

Table 1. Ultimate and proximate analysis of feedstock [4,39] 

 Timber & wood waste 

Proximate analysis  

Proximate analysis (wt%)  

Moisture 5.01 

Volatile matter (VM) 93.06 

Fixed carbon (FC) 6.38 

Ash 0.56 

Ultimate analysis  

Elemental analysis (wt%- 
dry basis) 

 

C 56.8 

H 7.28 

N 0.18 

Cl 0.82 

S 0.07 

O 34.29 

 

Table 2: Main gasification reactions [51,52] 

Heterogeneous reactions  

2 2 +394 kJ/molC O CO   Complete combustion R1 

20.5 +111 kJ/molC O CO   Partial combustion R2 

2 2 -172 kJ/molC CO CO   Boudouard R3 

2 2-131 kJ/molC H O CO H    Water-gas R4 

2 42 +75 kJ/molC H CH   Methanation R5 

Homogeneous reactions 

2 20.5 +283 kJ/molCO O CO   CO partial combustion R6 

2 2 20.5 +242 kJ/molH O H O   H2 combustion R7 

2 2 2+ +41 kJ/molCO H O CO H   Water-gas shift (WGS) R8 

4 2 2+3 -206 kJ/molCH H O CO H   Reforming R9 

H2S and NH3 formation reactions 

2 2H S H S   H2S formation R10 

2 2 33 2H N NH   NH3 formation R11 
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Simulation model 

An equilibrium simulation model has been developed for biomasses gasification integrated 

with W-G shift unit and separation unit for ethanol production by using ASPEN Plus version 

10. Penge Robinson equation of state with Boston-Mathias alpha function (PR-BM) was 

applied to calculate physical properties of the conventional components in the gasification 

process. HCOALGEN and DCOALIGT models were also employed for enthalpy and density of 

biomass and ash which are non-conventional components. MCINCPSD stream comprising 

three substreams of MIXED, CIPSD and NCPSD class, was also considered to define the biomass 

structure and ash streams which are not available in Aspen Plus component database 

[27,39,41,54,55]. The flow chart of the system simulated by using ASPEN Plus is shown in Fig. 

2. 

 

Fig. 2: Aspen Plus flow chart of the system. 

Gasification module 

The BIOMSS stream was defined as a nonconventional stream and it was created by specifying 

the elemental and gross compositions of feedstock obtained from proximate and elemental 

analyses given in Table 1. Drying occurs at 150 °C to achieve the moisture reduction to 5 wt.% 

of the original sample. This step is directed by the stoichiometric reactor RSTOIC in the Aspen 

Plus. This particular module is used to perform chemical reactions of known stoichiometry 

[42]. After drying, RYIELD, the yield reactor is brought to simulate the feed pyrolysis. In this 

step, the feedstock is converted to volatile materials (VM) and char. VM contains carbon, 

hydrogen, oxygen and nitrogen; Char is also converted into ash and carbon, by specifying the 

product distribution based on the proximate and ultimate analysis of the feedstock. Then 

RGibbs is used to simulate the biomass gasification. The decomposed feed, and gasifying agent 

(air or air-steam) enter to the RGibbs reactor where partial oxidation and gasification reactions 

occur. The reactor calculates the syngas composition by minimizing the Gibbs free energy and 

assumes complete chemical equilibrium [56]. 

Water-gas shift module 

For this part, two water-gas shift reactors were considered because W-G shift reaction is 

moderately exothermic, and it tends to shift to the left side at high temperature. One at higher 

temperature (HTWGS) and the other at lower temperature (LTWGS). In the HTWGS reactor, 

there is a first low conversion of CO with quick kinetics, but it is not possible to go beyond the 

equilibrium curve, thus the LTWGS reactor was used [57]. In the LTWGS reactor, by reducing 
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the operation temperature, it was possible to obtain higher conversion. HTWGS and LTWGS 

have been simulated at 400 °C and 200 °C with two Requil reactors, respectively [28]. Requil 

is equilibrium reactor for which the chemical and phase equilibrium are determined by 

stoichiometric calculations.  

Separation unit module 

In order to reach a high purity of hydrogen, a PSA unit is applied [58,59]. A separation 

efficiency of 70% for hydrogen and an input pressure of 7 bar for simulation of PSA were 

considered from the optimal values found in the literature [60-63]. Pressurization was 

achieved with a compressor, COMP in Fig. 2, before the PSA. The PSA outlet stream, denoted 

as HYDROGEN in Fig. 2. 

Methodology 

The developed model for waste biomass gasification integrated W-G shift and separation unit 

for hydrogen production is used to investigate the gasification performance of timber and 

wood waste as a lignocellulosic biomass. The effect of gasifier temperature, and steam to 

biomass ration (SBR) on syngas composition, lower heating value (LHV) of produced gas, 

hydrogen production efficiency (HPE) and the amount of hydrogen production are 

investigated. The lower heating value of product gas is calculated as [22,64]:  

2 4
3( ) 4.2 (30 25.7 85.4 )syngas CO H CH

KJLHV y y y
Nm

        (2) 

where y is the mole fraction of gas species in the syngas (dry basis) that can be extracted from 

the simulation results. 

The hydrogen production efficiency (HPE) is an important index to account for the 

performance of biomass gasification for H2 production that it is calculated by using equation 

(3): 

2 2(%) 100
H H

Biomass Biomass

m LHV
HPE

m HHV






 


    (3) 

Where 
2Hm  is the mass flow rate of hydrogen (kg/hr) that comes from the simulation results, 

2HLHV  is lower heating value of hydrogen that is 120.1 MJ/kg, 
Biomassm  is the mass flow rate 

of input biomass (kg/hr), BiomassHHV  is the higher heating value of the biomass (MJ/kg); It is 

calculated by using the following equation [38,65]: 

( ) 0.312 ( ) 0.1534 ( )fuel
MJHHV FC VM

kg
       (4) 

According to the equation (4), heating value is a function of weight fractions of fixed carbon 

and volatile matter in the dry and ash-free conditions. 
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Specific mass flow rate of the produced hydrogen ( SHP ) is the ratio of the mass flow rate of 

the product hydrogen per mass flow rate of the entering biomass into the system, calculated 

as below: 

2
( / )

( / )

H

biomass

m kg hr
SHP

m kg hr




       (5) 

Validation 

To validate the developed simulation model, the syngas compositions gained from ASPEN 

simulations were compared with the experimental results of Jayah et al., [66]. In their work, 

rubber wood was fed in a down draft gasifier operated at atmospheric pressure and 

gasification temperature of 900 ˚C. Six different air to fuel mass flow rate ratios (AFRs) were 

took in account and the comparisons of CO2, H2, CO, and N2 concentrations are shown in Fig. 

3. It can be seen that the present model shows very great agreement with the experimental 

results. The deviation of the model results from experimental values is quantified by mean 

absolute error that is around 6.5% for all data. 

 

Fig. 3: Comparison of CO2, H2, CO, and N2 concentrations between the simulation model (M) and 

experimental results (E) 

Results and discussion 

Effect of temperature on gasification performance and hydrogen production 

At the first of this part the effects of the gasification temperature on the syngas compositions 

under different gasifying agents of air and mixing of air-steam are investigated. In fact, syngas 

compositions in the form of molar flow rates are evaluated. Temperature varies in the span of 

500 to 1500 °C, while the mass flow rate of air to fuel ratio (AFR), steam to biomass ratio (SBR) 

and biomass feeding rate are fixed at points of 1.8, 0.4, and 1000 kg/hr, respectively. The 

considered range of 500 to 1500 °C for temperature is based on different literatures focusing 
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on biomass gasification [23,67,68] as well as our previous works that were properly confirmed 

and evaluated [27,38,41]. Moreover, 1.8 was considered as AFR for the gasification system 

derived by timber and wood waste (T&WW) since this value is the optimal AFR for this 

biomass. This matter has been studied and proved in our pervious works [27,39]. The selection 

of 0.4 as a fixed point through the temperature analysis is also based on the research work 

conducted by Marcantonio et al., (2019) [28]. 

The variation of molar flow rate of syngas and its compositions by increasing temperature 

under two agents of air and air-steam mixture, were shown in Fig. 4 and Fig. 5, respectively. 

For both systems by growing the gasifier temperature, H2 and CO flow rates are also increased. 

However, in such this condition, the flow rates of CO2 and CH4 show a reverse trend. 

Moreover, growth of the flow rates of CO and H2 in the range of 500 to 800 °C is because of 

the combined effect of boudouard, steam methane reforming and water-gas reaction. These 

are endothermic reactions in nature, hence they are favored with higher temperature. 

Obviously, H2 flow rate lessens after 800 °C that it can be attributed to the combined effect of 

all the reactions occurring in the reduction zone. At low temperatures, water gas shift reaction 

contributed to hydrogen production, but this reaction was hindered at high temperatures. 

In fact, at the higher temperature, the reactions of water gas shift and steam methane 

reforming contribute majorly to H2 production. However, the steam methane reforming 

reaction is limited due to the absence of CH4 as the main reactant. Therefore, it can be 

concluded that water gas shift reaction mainly controls the H2 production.  

Furthermore, reduction in CO2 flow rate by increasing of temperature is due to the boudouard 

reaction which utilizes CO2 to produce CO and it is endothermic in nature that is favored at 

higher temperatures. Methane is also produced through the methanation reaction that is an 

exothermic reaction and it is favored at lower temperatures. Thus, decrease in CH4 flow rate 

is observed when the temperature is increased. 

Referring to Fig. 5, the value of hydrogen product from the system derived by air-steam agent 

is at the highest statues for all studied temperatures. It can be also observed that over the 

temperature range of 800-1500 °C, the hydrogen production by applying the air-steam based 

gasification decreases from a maximum value of 44.3 to 38.3 Kmol/hr. Moreover, this 

indicator for the air based system decreases from 34.4 to 33.7 Kmol/hr. 

https://www.sciencedirect.com/science/article/pii/S0196890419309604#f0030
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Fig. 4: Effect of gasification temperature on molar flow rates of syngas constituents- air is only gasifying 

agent. 

 

Fig. 5: Effect of gasification temperature on molar flow rates of syngas constituents- mixing of air-

steam is gasifying agent. 

The variation of the syngas LHV by increasing of the gasification temperature under two 

gasifying agents were drawn in Fig. 6. Abruptly, LHV increases from 3.7 to 7.05 MJ/Nm3 in span 

of 500 to 800 ˚C for the air-based system. The increasing trend of this factor for air-steam 

gasifications is from 4.9 to 6.3MJ/Nm3 in temperature range of 500 to 700 °C. However, for 

both conditions it almost became constant. At lower temperatures (500-700 °C), syngas LHV 

obtained from the air-steam gasification is much higher than the air gasification. However, by 

increasing the temperature, this indicator for the air agent based system goes upper than the 

system derived by air-steam agent. This is due to the sum of hydrogen and carbon monoxide 

content is mainly responsible for the LHV value of the syngas. According to equation (2), the 

LHV of syngas is function of H2, CO, and CH4 mole fractions, so it increases till 700 °C because 

of the increase in H2, CO, and CH4 concentrations. After 700 °C, LHV does not show so much 

variation due to decreasing in H2 concentration and slightly increasing of CO concentration.  
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Fig. 6: Effect of gasification temperature on syngas LHV under two different agents. 

At the next step, the effect of the gasifier temperature on the hydrogen production efficiency 

(HPE) and the specific mass flow rate of hydrogen production (SHP) are evaluated. The results 

of this part based on the functional unit of 1000 kg/hr from timber and wood waste entering 

to the system have been brought in Fig. 7 and Fig. 8.  

As the gasifier temperature is grown (till 800 ˚C), the syngas production is also increased; then 

it approximately became constant. Hydrogen production also follows such this trend since it 

is affected mainly by the input syngas to its process. Fig. 7 reveals that, the HPE values by the 

air-steam gasification show the highest statues for all the studied temperatures. HPE is also 

maximum for both systems over the temperature of 800°C, it values 54 and 33% for the air-

steam gasification and the air based system, respectively. Moreover, Fig. 8 shows the process 

of the air-steam gasification yields 33 kg/hr hydrogen product from 1000 kg/hr timber and 

wood waste at 500 ˚C, then it can be increased to 83 kg/hr at 800 ˚C. However, the SHP for 

the gasification based on only air agent varies from 0.022 to 0.052 kghydrogen/kgT&WW in the 

considered range of temperature. 

 
Fig. 7: Effect of gasification temperature on hydrogen production efficiency. 
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Fig. 8: Effect of gasification temperature on specific mass flow rate of hydrogen production. 

Effect of SBR on gasification performance and hydrogen production 

In this part, the effect of steam injection on syngas production is studied. It is assumed that 

the gasifier temperature is set on 800 ˚C and steam at 150 ˚C and 1 bar is injected to the 

system. The steam to biomass ratio (SBR) is varied from 0.1-0.9 and the result is shown in Fig. 

9. The overall behavior is that the molar flow rates of H2 and CO2 are increased with steam 

injection and that of CO decreases. This can be explained due to water gas reaction; steam 

injection leads to rise in the molar flow rate of H2 and CO in the syngas but stand on the CO 

shift reaction, the amount of H2 is increased further and that of carbon monoxide decreases. 

 

Fig. 9: Effect of SBR on molar flow rates of syngas constituents. 
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but its degree of increase is not enough that can cover impact of the degree of CO reduction. 

Referring to Fig. 10, hydrogen production efficiency raises, stemming from the growth of H2. 

It values 39.2% at SBR = 0.1 that grows to 70% at SBR = 0.9. 

 

Fig. 10: Effect of SBR on syngas LHV and HPE. 

 

Fig. 11 depicts the effect of the steam to biomass ratio on the specific mass flow rate of 

hydrogen production from timber and wood waste. As it can be seen, at lower SBR, the flow 

rate of hydrogen increases with a greater slope and then reaches to almost flatter shape. 

Hence, it is interesting to find the appropriate range of SBR for biomass gasification integrated 

with hydrogen production that has been studied in this work. As shown in Fig. 11 the optimum 

SBR lies between 0.7-0.8 that specific mass flow rate of hydrogen is higher than 0.1 

kghydrogen/kgT&WW. 

 

Fig. 11: Effect of SBR on specific mass flow rate of hydrogen production. 
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Conclusions 

In this study, a simulation model by using ASPEN Plus was developed for the gasification 

integrated with water-gas shift reactors and separation unit for hydrogen production. Timber 

and wood waste as a lignocellulosic biomass was also considered as the input feedstock to the 

system. Then, the model was applied to investigate the effect of two agents of air and a 

mixture of air and steam under different operating conditions of temperature and steam to 

biomass ratio (SBR) on the gasification performance and hydrogen production.  

The results show that the produced hydrogen through the air-steam gasification is at the 

highest points for all studied temperatures and it would be maximum (44.37 Kmol/hr per 1 

ton T&WWs) at 700 ˚C. At lower temperatures (500-700 °C), the syngas LHV obtained from 

the air-steam gasification is much higher than the air-based system. However, by increasing 

temperature, this indicator for the air agent based system goes upper than the system derived 

by air-steam agent. Moreover, the hydrogen production efficiency (HPE) of the air-steam 

gasification is at the highest statues for all considered temperatures in comparison to the air-

based system.  This index would be also maximum around the temperature of 800°C for both 

systems. It values 54 and 33% for the air-steam gasification and the air gasification, 

respectively. the process of the air-steam gasification yields 33 kg/hr hydrogen product from 

1 ton T&WWs at 500 ˚C, then it can be increased to 83 kg/hr at 800 ˚C. However, the specific 

hydrogen production (SHP) for the air agent gasification varies from 0.022 to 0.052 

kghydrogen/kgT&WW in the considered range of temperature. 

The LHV of the syngas product decreases from 6.9 Mj/Nm3 at SBR = 0.1 to 6.15 Mj/Nm3 at 

SBR = 0.9. It was explained that by increasing steam injection, the CO production in syngas is 

moved down due to the water gas shift reaction, so the heating value of the syngas is reduced. 

Furthermore, the hydrogen production efficiency can be raised, stemming from the growth of 

H2. It values 39.2% at SBR = 0.1 that grows to 70% at SBR = 0.9. The optimum SBR lies between 

0.7-0.8 that specific mass flow rate of hydrogen would be higher than 0.1 kghydrogen/kgT&WW. 
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