
materials

Article

Structural Materials: Identification of the Constitutive
Models and Assessment of the Material Response in
Structural Elements Strengthened with
Externally-Bonded Composite Material

Todor Zhelyazov 1,2

1 Structural Engineering and Composites Laboratory-SEL, Reykjavik University, Reykjavik IS-101, Iceland;
elovar@yahoo.com

2 Department of Mechanics, Technical University of Sofia, Sofia 1000, Bulgaria

Received: 5 February 2020; Accepted: 4 March 2020; Published: 11 March 2020
����������
�������

Abstract: This article investigates the material behavior within multiple-component systems.
Specifically, a structural concrete element strengthened to flexure with externally-bonded
fiber-reinforced polymer (FRP) material is considered. Enhancements of mechanical performances of
the composite structural element resulting from synergies in the framework of the multiple-component
system are studied. The research work comprises the determination of the constitutive relations for the
materials considered separately as well as the investigation of materials’ response within a complex
system such as the composite structural element. The definition of the material models involves
a calibration of the model constants based on characterization tests. The constitutive relations are
integrated into the finite element model to study the material behavior within the multiple-component
system. Results obtained by finite element analysis are compared with experimental results from the
literature. The finite element analysis provides valuable information about the evolution of some
internal variables, such as mechanical damage accumulation. The material synergies find expression
in the load-carrying capacity enhancement and the delay in the damage accumulation in concrete.

Keywords: FRP; concrete; damage; synergy; strengthening; finite element analysis

1. Introduction

This article investigates the structural response of materials considered either separately or as
constituencies of a multiple-component composite system. The prediction of the behavior of a complex
system is not always a straightforward task and requires the implementation of sophisticated techniques.

For the identification of multiple-component systems, one of the available approaches is the study
of the mechanical wave propagation. The velocities of the compressional and shear waves depend on
the elastic moduli of the continuum. Therefore, the estimation of these velocities is a basis of evaluation
and testing of engineered materials (e.g., concrete) [1]. Specifically, the estimate of the ultrasound
velocity provides information about material properties such as rigidity [2] stress state [3], and damage
state [4].

For soft elastic materials, the study of wave propagation also has a number of practical applications.
Among others, these are non-destructive defect detection [5,6] and acoustic tomography [7]. Some
sources in the literature also report the investigation of inclusions-induced scattering of sound waves
within the modeling of fiber-reinforced composites [8,9]. The mechanical properties of fiber-reinforced
polymers (FRP) depend strongly on the inclusions, specifically on the volume fraction and spatial
orientation of the fibers in the polymer matrix. The evaluation of the effective dynamic mass density of
composites implies in-depth discussions [10–13]. Recently developed analytical frameworks [14,15],
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modeling the interaction and propagation of acoustic waves in soft, elastic material with scatterers
(inclusions), allow for taking into account the form of the inclusions as well as their arrangement in the
medium. Some literature sources report finite element analyses of the interaction between propagating
sound waves and elastic structures embedded in the continuum [16,17]. Generally, the inclusions are
either hard (steel, carbon) [18] or voids [19].

Given the complexity of the problem, reliable characterization procedures are necessary for the
definition of the material models and the constitutive laws.

The behavior of the multiple-component system can be characterized by a remarkable synergy of
the constituent materials. This hypothesis should be verified for different cases. On the one hand, the
material synergies enhance the performances of an FRP-strengthened reinforced concrete beam in terms
of increased load-carrying capacity and stiffness. One the other hand, negative effects due to material
interaction might be also present in some cases. A well-known example is the so-called premature
failure of FRP-strengthened structural elements [20–25]. Global failure might result from a local failure
in concrete and might occur even if the FRP reinforcement still has significant reserves in strength.
In this case, the prediction of the material response based on a characterization test of the composite
material considered separately appears to be not adequate within the multiple-component system.

Adding external FRP reinforcement (i.e., increasing the number of bonded FRP plates) leads to an
increase in the load-carrying capacity. The flexural performance enhancement of concrete/reinforced
concrete beams strengthened with externally bonded FRP plates pioneered by [26], has been investigated
in numerous research works (see among others [21,22,27–35]). Recently, researchers also focus on
the investigation of optimal design of FRP strengthened beams [36] and on new solutions, such as
near-surface mounted FRP reinforcement [37]. Another novelty is the adding of discreet steel fibers in
concrete: the materials’ synergies inhibit cracking and lead to further enhancement of the mechanical
performances of the composite structural element [38]. In these techniques, material synergies enhance
the mechanical performances of the composite structural elements. For a quasi-static loading, synergies
result in a “delayed” global failure. They possibly modify the time rate of change of the damage
accumulation. The verification of such a hypothesis requires quantification of degradation in concrete.
The damage-based approach used in this study provides such an estimate.

The complex mechanical behavior of a composite structural element, specifically, a reinforced
concrete beam strengthened to flexure with adhesively-bonded composite material, is the research
object of this study. Assuming that the behavior of the composite structural element essentially depends
on failure mechanisms in concrete, the investigation focuses on the strain-softening concrete response
against a background defined by the other materials’ (FRP, adhesive, steel) responses.

Finite element simulation can provide valuable insight into the evolution of some internal variables
(e.g., the accumulated damage), which are difficult to measure experimentally. Material models, needed
as an input for the finite element analysis, are generally defined based on experimental data. Model
constants are identified in numerical procedures designed to search for the set of constants providing
the best fit with experimental data. The following materials characterization tests are required to
build a numerical model of an FRP-strengthened structural element: (a) compression tests on concrete
cylindrical specimens; (b) tension by flexure tests on concrete prismatic specimens; (c) tension tests
on steel specimens (for the internal steel reinforcement); (d) tension tests on specimens made of the
adhesive; (e) tension tests on specimens of the composite material plate. The identification of the
response of the composite material/concrete interface requires additional tests, such as the single-lap
shear test [39–41].

Complex systems may include “unknown” parameters [42]. In the context of the present study,
the term system, or a “multiple-component system,” means a composite structural element made
of components (i.e., materials) which exhibit various types of behavior but which complement each
other to form the overall response of the structural element. From a certain point of view, the
strengthened structural element can also be referred to as a “complex system.” For example, the
premature failure modes that prevent the full utilization of the externally bonded FRP reinforcement
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are experimentally identified, typically, for specific geometry and external reinforcement arrangement.
Also, the “delay” in the damage accumulation in concrete (within the multiple-component system),
leading to an enhancement of the mechanical performances of the composite structural element, needs
more in-depth analysis.

A numerical model is built to predict the complex behavior of the composite structural element.
The model assumes experimentally identified constitutive laws to simulate constituent materials.
The model is verified through a comparison of numerical results with experimental data. For an
illustrative example, the experimentally-obtained data on the evolution of the mid-span deflection
is compared with predictions on the evolution of the same parameter obtained by finite element
analysis. In this context, the finite element analysis sheds light on the interaction between different
components of the system (i.e., the different materials). A constitutive relation defined based on
damage mechanics fundamentals is chosen to model the behavior of concrete and to investigate the
synergy effect improving structural performance. This approach provides an insight into the evolution
of some internal (or non-observable) variables, such as the damage accumulated in the representative
volume element. On the basis of the distribution of this variable obtained (for example) by finite
element analysis, an accurate assessment of the resources remaining in the material subjected to a
specified loading history can be assessed.

2. Materials’ Behavior: Constitutive Relations

The behavior of materials is defined through the stress-strain relationship:

σi =
6∑

j=1

Ci jε j, i = 1 . . . 6 (1)

In Equation (1), σi are the stress components, Ci j is the stiffness matrix, and ε j are the strain
components. The stress-strain relationships, in their turn, are defined on the basis of empirical
data obtained by identification tests on standard specimens. Therefore, to identify the response of
an FRP-strengthened structural element, as a minimum, material characterization tests should be
performed on specimens made of composite material, concrete, steel, and adhesive.

The formulation of the employed material models, as well as the identification tests used as a
basis for their definition, are discussed in this section.

2.1. Composite Material

The FRP materials can be used as external reinforcement (sheets and plates externally bonded to
the tensioned surfaces) or as internal reinforcement (reinforcing bars of filament in composite material
analogous to the traditional steel reinforcement).

It is known from experiments that the mechanical response of the FRP materials is linear and
elastic until failure. However, there might be some nuances in the modeling of the FRP material’s
behavior in the function of the material symmetries. For example, the unidirectional FRP sheets should
be modeled by employing transverse isotropy. Thus, for a material in which the y–z plane is a plane of
symmetry (x-, y- and z- are material directions: see Figure 1), the stiffness matrix is given by [43]:

Ci j =



C11 C12 C12

C12 C22 S23

C12 C23 C22

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

C22−C23
2 0 0
0 C55 0
0 0 C55


(2)
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Figure 1. A model of unidirectional FRP plate.

Taking into account that the stiffness matrix is the inverse of the compliance matrix:

Ci j = S−1
i j (3)

the components of the stiffness matrix can be expressed in terms of the components of the compliance
matrix as follows:

C11 =
S22S33−S2

23
S , C12 =

S13S23−S12S33
S ,

C22 =
S33S11−S2

13
S , C23 =

S12S13−S23S11
S ,

C55 = 1
S55

(4)

where S = S11S22S33 − S11S2
23 − S22S2

13 − S33S2
12 + 2S12S23S13. It should be noted that the elements

of the compliance matrix are determined more directly than those of the stiffness matrix (see, for
example, [44]).

The components of the compliance matrix are identified by performing tension tests on specimens
made of composite material. Loading in different material directions is simulated by varying the angle
between the applied load direction and the orientation of the fiber. Figure 2 shows a test specimen made
of carbon fiber reinforced polymer (CFRP) and loaded in a direction parallel to the fiber orientation.
The identified components of the elasticity tensor of the transversely isotropic profile are summarized
in Table 1.

Materials 2019, 12, x FOR PEER REVIEW 4 of 15 

 

 
Figure 1. A model of unidirectional FRP plate. 

Taking into account that the stiffness matrix is the inverse of the compliance matrix: ࢐࢏࡯ = ૚ (3)ି࢐࢏ࡿ

the components of the stiffness matrix can be expressed in terms of the components of the compliance 
matrix as follows: ࡯૚૚ = ࡿ૛૜૛ࡿ૜૜ିࡿ૛૛ࡿ ૚૛࡯  , = ࡿ૜૜ࡿ૚૛ࡿ૛૜ିࡿ૚૜ࡿ ૛૛࡯  , = ࡿ૚૜૛ࡿ૚૚ିࡿ૜૜ࡿ ૛૜࡯  , = ࡿ૚૚ࡿ૛૜ࡿ૚૜ିࡿ૚૛ࡿ ૞૞࡯ , = ૚ࡿ૞૞ 

(4)

where S = SଵଵSଶଶSଷଷ − SଵଵSଶଷଶ − SଶଶSଵଷଶ − SଷଷSଵଶଶ + 2SଵଶSଶଷSଵଷ. It should be noted that the elements of 
the compliance matrix are determined more directly than those of the stiffness matrix (see, for 
example, [44]). 

The components of the compliance matrix are identified by performing tension tests on 
specimens made of composite material. Loading in different material directions is simulated by 
varying the angle between the applied load direction and the orientation of the fiber. Figure 2 shows 
a test specimen made of carbon fiber reinforced polymer (CFRP) and loaded in a direction parallel to 
the fiber orientation. The identified components of the elasticity tensor of the transversely isotropic 
profile are summarized in Table 1. 

 
Figure 2. A test specimen of composite material: identification test [45]. Figure 2. A test specimen of composite material: identification test [45].



Materials 2020, 13, 1272 5 of 15

Table 1. CFRP mechanical properties [45].

Ex Ey = Ez υxy = υxz υyz Gxz

(MPa) (MPa) - - (MPa)

120,000 27,800 0.35 0.18 4860

2.2. Concrete

Two approaches are possible to model the inelastic concrete response through the assessment of
the accumulated damage. The elasticity tensor can be directly related to the current damage state, or
the compliance matrix can be considered as a variable characterizing of the state of damage [46].

Within the first of the above-mentioned approaches, the inelastic mechanical response of concrete
is modeled based on the stress-strain relationship of a linear, elastic material:

σi, j =
ν

(1 + ν)(1− 2υ)
Eεkkδi j +

1
(1 + υ)

Eεi j (5)

by adding a damage variable [47,48]:

σi, j =
ν

(1 + ν)(1− 2υ)
E(1−D)εkkδi j +

1
(1 + υ)

E(1−D)εi j. (6)

In Equations (5) and (6), E and ν denote, respectively, Yong’s modulus and the Poisson’s ratio
respectively, εkk is the trace of the strain tensor, and δi j is the unit tensor. The evolution of the damage
variable in tension (Dt) and compression (Dc) is defined as follows [49]:

Dt = 1−
εin f (1−At)

εeqv
−

At

eBt(εeqv−εin f )
, (7)

DC = 1−
εin f (1−AC)

εeqv
−

AC

eBC(εeqv−εin f )
. (8)

As can be seen, the evolution of either of the components of the damage variable is governed by
the so-called equivalent strain:

εeqv =

√∑
〈εi〉2. (9)

The equivalent strain retains only the positive components of the principal strains εi by employing
the Macaulay brackets:

〈εi〉 =

{
0 i f εi < 0
εi i f εi ≥ 0

. (10)

This feature of the model is in line with the phenomenological observation that cracking in
concrete takes place in regions where tensile strains (stresses) are present. From a physical standpoint,
the equivalent strain is related to the crack opening mode I [50]. In other words, cracking is generally
related to tensile strains and stresses.

The behavior of concrete in compression was identified by testing standard cylindrical specimens
(80 mm in radius and 320 mm in height) whereas the behavior of concrete in tension—by testing
prismatic concrete specimens (400 mm in length and a cross-section of 100 × 100 mm; tension by
flexure test).

The identification tests are used to characterize the concrete response not only by determining
compression strength, tensile strength, and maximum strain, but also to identify the model constants
in Equations (7) and (8). These constants are identified through the curve fitting procedure. To this
end, finite element models designed to simulate identification tests, specifically compression tests on
cylindrical concrete specimens and tension by flexure tests on prismatic concrete specimens (Figure 3a),
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are built. The model constants are calibrated with respect to the experimental data. The constants εin f
(i.e., the damage threshold, see Figure 3b), Ac, and Bc are needed for the evaluation of the compression
component of the damage variable (see Equation (8) and Figure 3c). The constants At and Bt are
employed to define the evolution of the tensile component of the damage variable (Equation (7) and
Figure 3d).Materials 2019, 12, x FOR PEER REVIEW 6 of 15 

 

 
Figure 3. (a) Finite element model employed in the material characterization procedure and 
identification of the model constants; (b) dependency of the force-strain relationship on the damage 
threshold εୈ,଴ (FE simulation of a compression test); for the simulation of the four-point bending 
tests, a value of the damage threshold is set to 5e-6.; (c) tuning of the material constants Ac and Bc (FE 
simulation of a compression test); (d) calibration of the constants At and Bt (tension by flexure test). 

2.3. Steel 

Steel response is characterized by an initial elastic phase as long as stress remains within the 
elastic domain. Upon reaching the yield stress, plastic flow is initiated. For common grades of steel 
reinforcement, it is followed by a hardening phase. A standard model based on the plasticity theory 
fundamentals is used [51,52]. In the large-displacements domain, a plastic behavior of steel 
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Figure 3. (a) Finite element model employed in the material characterization procedure and
identification of the model constants; (b) dependency of the force-strain relationship on the damage
threshold εD,0 (FE simulation of a compression test); for the simulation of the four-point bending
tests, a value of the damage threshold is set to 5e-6.; (c) tuning of the material constants Ac and Bc (FE
simulation of a compression test); (d) calibration of the constants At and Bt (tension by flexure test).

2.3. Steel

Steel response is characterized by an initial elastic phase as long as stress remains within the
elastic domain. Upon reaching the yield stress, plastic flow is initiated. For common grades of
steel reinforcement, it is followed by a hardening phase. A standard model based on the plasticity
theory fundamentals is used [51,52]. In the large-displacements domain, a plastic behavior of steel
reinforcement is expected. In this context, a true stress-strain curve is used, as a more representative
measure of the state of the material, compared to the engineering stress-strain curve. The employed
constitutive relation for steel uses an additive decomposition of the strain tensor into an elastic (εel)
and plastic (εpl) part:

ε = εel + εpl. (11)
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The strain tensor increment can be obtained as a sum of elastic and plastic increments:

dε = dεel + dεpl. (12)

The yield criterion is a scalar function of the stress (σ) and a set of internal variables (ξ):

f (σ, ξ ) = 0 (13)

The state variables at the mesoscale can be divided into observable (such as the total strain
tensor) and internal (i.e., the elastic strain tensor, the plastic strain tensor, and the back strain tensor)
variables [53].

Equation (13) defines the yield surface in the considered stress space. The evolution of the plastic
strain is determined by the flow rule:

dεpl = dλ
∂Q
∂σ

(14)

where Q is the plastic potential, and dλ is the plastic strain increment. For kinematic hardening, the
yield surface is defined by the following equation:

f (σ− α, ξ) = 0 (15)

In Equation (15), α denotes the back stress tensor (that can be interpreted as a vector XD pointing
to the origin of the yield surface in the stress space; see Figure 4).
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3. Behavior of Materials as Components of a System

The material constitutive relations, formulated based on characterization tests, are implemented
into the numerical model of a multiple-component system. In the present study, this is a reinforced
concrete beam strengthened to flexure by adhesively bonded composite material. The behavior of the
multiple-component system is also studied experimentally. The model reproduces the geometry and
the reinforcement arrangement (both internal steel reinforcement and external CFRP reinforcement) of
the test specimen. It is validated based on a comparison between numerical and experimental results
on the evolution of the mid-span deflection.

3.1. Finite Element Model

Figure 5 shows the geometry of the modeled (and of the experimentally tested) specimens.
The employed material models are listed in Table 2.
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Table 2. Constitutive laws for constituent materials.

Material Material Symmetries Constitutive Law

Concrete Isotropy Elasticity coupled with damage
Steel Isotropy Bilinear kinematic hardening
CFRP Transverse isotropy Linear elasticity

Taking into account the existing symmetries of the experimentally tested specimens, a
quarter-model space is considered. Appropriate symmetry boundary conditions are applied to
nodes located in the symmetry planes. In the finite element (FE) model, boundary conditions are
applied to lines (an idealized situation). Nodes attached to the line of the (idealized) contact between
the roller support and the beam, are constrained to move in the global y-direction. One of these nodes
is also constrained in global x-direction. Forces in the global y-direction are applied to nodes attached
to lines defined with respect to the application point of the concentrated load (the z-coordinates of
these nodes is equal to the z-coordinate of the applied load). The sum of the magnitudes of these forces
equals the current value of the applied load.

A perfect bond is assumed for all the interfaces (steel/concrete and concrete/CFRP).
In the 3-D FE model, the concrete, the steel bars, steel stirrups, and the adhesive layer, are meshed

with Solid 95 (3-D 20-node structural solid). Shell 186 (3-D 20-node layered structural solid) is used to
model the external CFRP reinforcement. The simulation of damage accumulation should take into
account the effect of localization (localization of damage). A possible option is to remesh damaged
regions with a finer mesh. With the implementation of higher-order elements containing mid-side
nodes, the need for mesh refinement during analysis can be avoided. On the other hand, higher-order
finite elements are a favorable option if the solution implies a refinement of the initial finite element
mesh in specified regions. Additionally, the use of finite elements with mid-side nodes is a prerequisite
for more accurate analysis results because of the improved shape function.

With the hypothesis that the global response of the composite structural element is influenced
mainly by the failure behavior of concrete, a finer mesh is generated for concrete. Additionally, the
finite element size should comply with the requirements of the representative volume element size
derived based on the energy balance in the framework of the continuum damage mechanics [53].
The sizes of the finite elements generated for CFRP reinforcement, the adhesive layer, and the steel
reinforcement is defined so that a coherent mesh is obtained (i.e., smooth transitions between regions
of different finite element sizes). Details on the generated finite element mesh, displayed in Figure 6,
are summarized in Table 3.
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Figure 6. RC beam strengthened to flexure with externally bonded FRP material: finite element mesh.

Table 3. Size of the finite element mesh.

Component Element Type Element # Node #

Concrete SOLID 95 158,717 238,920
Steel SOLID 95 4604 35,053

Adhesive layer SOLID 95 1890 14,228
CFRP SOLID 186 1890 14,868

The quasi-static loading is modeled by incrementally increasing the applied load. For each step of
the applied load, a nonlinear static solution is performed. The damage-based constitutive relation for
concrete is applied in the post-processing phase of each step. The damage variable is calculated based
on the stress and strain distributions obtained in the finite element solution for the current value of the
applied load. Before the next step of the solution, the material properties of the finite elements affected
by damage are modified. Moreover, the finite elements in which the critical damage is reached are
deactivated. In the next step, they don’t contribute to the overall rigidity. Thus, with the simulation of
the propagating cracks, the finite element model becomes eventually insufficiently constrained. It is no
more possible to perform nonlinear static analysis, and the numerical routine stops.

Finite element simulations reproduce force-controlled tests. From an experimental standpoint,
displacement-controlled tests generally provide more accurate and more reliable results. However, the
focus here is on the accuracy of the results obtained by finite element simulation, assessed through a
comparison with the experimental data.

3.2. Prediction of the Transient Mechanical Response of the Composite Structural Element: Validation

Figure 7 shows experimental results and results obtained by finite element analysis. The numerical
models reproduce the geometry, the reinforcement arrangement, and the material properties of
experimentally-tested beams [45]. From the experimental data available, for finite element simulations
are selected the beams strengthened with three and five layers of CFRP. As shown in Figure 7, such a
difference in the amount of the externally bonded reinforcement illustrates well the effects of synergy
in the composite structural element.
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By assuming a specified value for the thickness of the FRP fabric (for example, tFRP = 0.2 mm), the
cross-section of the FRP plate would be:

AFRP = n× tFRP × bFRP (16)

where n is the number of FRP layers and bFRP stands for the thickness of the FRP plate. This cross-section
can be further used in the design of the FRP-strengthened concrete element. In the present
study, finite elements with the corresponding number of layers and material properties model
the CFRP reinforcement.

The compliance between the numerical and experimental results is estimated as follows [54]:

f =

1−

√∑N
i=1(Fn,i − Fe,i)

2√∑N
i=1

(
Fe,i − F(e)

m

)2

× 100 (17)

In Equation (17), “Fn” and “Fe” denote the vectors containing numerical and experimental results
respectively, N is the number of components of the compared vectors, and F(e)

m is the mean of the
components of the vector Fe:

F(n)
m =

∑N
i=1 Fe,i

N
. (18)

A higher value of f corresponds to a better fit with the experimental data. The comparison
between experimental and numerical results shows that for the beam strengthened with three layers of
CFRP, the value of f is 75%, and for the beam, strengthened with five layers of CFRP—93%.

The good agreement between experimental data and FE results (Figure 7) shows that the model
can be employed in the analysis of problems involving the interaction of multiple material models,
depending on a variety of factors. In a simplified analysis, for example, based on the effective moments
of inertia of the composite element’s cross-section, three phases can be identified in the evolution of
the mid-span deflection [55]. In the first phase, deflection develops until flexural cracks initiate in the
tensioned zone of the cross-section. Al materials behave linearly within the elastic domain. The second
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phase (initiated with cracking in concrete) continues until the yielding stress in the internal flexural
steel reinforcement is reached. The damage accumulation in concrete provokes nonlinearities in the
global response of the composite structural element: the smooth transition between phase 1 and phase
2 depicted in Figure 7. Damage accumulation results in crack initiation and propagation in concrete.
Cracks (upon intersection) activate the flexural steel reinforcement and the CFRP reinforcement.
Moreover, in the cracked regions, in the tensile zone, only steel and CFRP contribute to the overall
bending resistance. Between cracks, synergy provided by the concrete may be taken into account. With
the progressive cracking in concrete and the failure of the tensile steel reinforcement in the cracked
regions, only the CFRP reinforcement provides bending resistance in the tensile zone. The compression
zone was not considered in the analysis of the other two phases. Taking into account the highly
asymmetric (tension-compression) concrete response, at the beginning of phase three, concrete in the
compression zone still has significant reserves in load-carrying capacity. The overall behavior of the
structural element is governed by the composite material - linear and elastic until failure.

The analysis based on the effective moments of inertia is discussed here with the only purpose
to provide an intuitive classification of the different phases in the response of a composite structural
element subjected to a quasi-static loading.

The analysis of both experimental and numerical results (Figure 7) leads to the conclusion that the
performances of the FRP-strengthened structure element are enhanced in terms of load-carrying capacity
(delayed damage accumulation with the increase of the amount of the external FRP reinforcement).
The failure load increase demonstrates the enhancement of the load-carrying capacity. The delay in the
damage accumulation is associated with the increase in the load corresponding to the end of the initial
elastic phase. The synergy of materials can explain these observations.

As can be seen in Figure 7, the model of the multiple-component system provides accurate
results in good agreement with experimental data for most of the loading history. The transitions
between the initial elastic phase and the subsequent phase of increasing displacements, without a
significant increase in the applied load, as well as the initiation of the hardening phase in the overall
time history, are well captured. However, in the numerical solution, the load-carrying capacity of
the CFRP-strengthened RC beam is underestimated. Indeed, Fmax,n = 0.9 × Fmax,exp where Fmax,n is
the failure load predicted by the numerical simulation and Fmax,exp is the failure load obtained in
the experiment. In the numerical analyses, the failure load and the maximum displacement are less
than those obtained in the experimental study. This underestimation is referred to as a “premature
numerical failure.” It can be attributed to excessive distortions in the initially generated finite element
mesh. One possible solution to this problem could be the generation of new finite element mesh
based on the current position of nodes, choosing one of the steps preceding the step at which the
routine stops. The development of such an algorithm is the subject of ongoing research. Possibly,
after testing, it will be possibly integrated into the analyses of structures’ responses within the large
displacement domain. On the other hand, a modification of the solution options (number of steps
and substeps) might increase the accuracy of the predictive results in the last phase of the loading
history. A detailed and in-depth explanation of the premature, numerical failure also requires the
extension of the database available. A conclusion made based on a large number of comparisons
between numerical and experimental results would be more relevant.

The strategy chosen to simulate the strain-softening concrete response, see Equations (6)–(8),
involves the calculation of damage variable for each increment of the driving force parameter and for
each finite element used to model concrete. Technically, the calculated damage variables are stored in
predefined arrays. This algorithm makes possible the simulation of the initiation and propagation
of the damage in an initially undamaged, homogeneous, and isotropic medium. In Figure 8, the
propagation of the damaged zone in concrete is visualized. For three consecutive values of the applied
load (F1 < F2 < F3), finite elements of a particular degree of mechanical damage are not displayed.
Damage is initiated in the vicinity of the mid-span of the strengthened beam and propagates towards
the supports.
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With the increase of the applied load, mechanical damage accumulates, and the damaged zone
propagates in concrete. When the damage variable, calculated for a given finite element, reaches a
predefined critical value, the procedure deactivates this finite element in the next step of the incremental
solution. As a result of the application of this algorithm, zones of zero rigidity nucleate and propagate
in concrete. In the finite element simulation, the behavior of the flexural steel reinforcement and the
externally bonded CFRP reinforcement intersecting a new-formed zone of zero rigidity (i.e., a crack)
is analogous to their responses within an experimental study. Strains in CFRP and steel, within the
regions of the intersection with cracks, are higher to resist the tensile force.

The finite element analysis sheds light on the debonding failure mechanism. Analysis of previous
(mainly experimental) research leads to a classification of the debonding failure modes into two
types [56]. Debonding of the external FRP reinforcement can be initiated at or near one of the plate
ends and then propagates away from the plate end. Alternatively, debonding failure mode initiates at
an intermediate flexural or flexural-shear crack and then propagates towards the plate end. Based
on the visualization of the damaged zone propagation obtained by finite element analysis, it can
be concluded that the failure mode triggered in the modeled beam is “intermediate crack induced
interfacial debonding.” The interface failure depends on a variety of factors, such as the roughness of
the surfaces in contact [57], exposure to aggressive environments [58], etc. With the hypothesis of a



Materials 2020, 13, 1272 13 of 15

perfect interface (what excludes the above mentioned two failure modes), debonding results from a
failure in concrete, in the vicinity of the adhesive joint.

4. Conclusions

The mechanical behavior of structural materials considered as elements of a multiple-component
system has been investigated. Material models have been defined based on empirical data obtained in
material characterization tests.

A finite element model has been built to shed light on the unknowns related to the composite
action: synergies in the materials’ response and material failure behavior within the structural
element. The numerical model has been validated through a comparison with experimental
data. The comparisons showed that the numerical model predicts with an adequate accuracy
the experimentally-obtained evolution of the observable variable. The verification results demonstrate
the capability of the numerical model to reproduce accurately the strain-softening concrete response
taking into account the behavior of the other materials (FRP, adhesive, steel). The discussion focuses on
concrete behavior since it is estimated that the global failure of the studied structural element results
from a local failure in concrete.

A specific feature of the proposed approach is the possibility to track the evolution of the damage
accumulation in concrete, which is directly related to the initiation and propagation of cracks on the
macroscopic scale. Based on this monitoring, the load-carrying capacity and stiffness of the composite
structural element remaining after a specified period of exploitation can be rationally estimated.

In the reported study, the enhancement of the mechanical performances of the composite structure
demonstrates the synergy of the constituent materials. The external adhesively bonded CFRP
reinforcement is a factor that enhances the load-carrying capacity of the strengthened beams. Also, it
results in the delay in the failure mechanisms taking place in concrete.
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