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Abstract: Nowadays, advancements in the oncology sector regarding diagnosis methods allow
us to specifically detect an increased number of cancer patients, some of them in incipient stages.
However, one of the main issues consists of the invasive character of most of the diagnosis protocols
or complex medical procedures associated with it, that impedes part of the patients to undergo routine
checkups. Therefore, in order to increase the number of cancer cases diagnosed in incipient stages,
other minimally invasive alternatives must be considered. The current review paper presents the
value of rare RNA species isolated from circulatory exosomes as biomarkers of diagnosis, prognosis
or even therapeutic intervention. Rare RNAs are most of the time overlooked in current research in
favor of the more abundant RNA species like microRNAs. However, their high degree of stability,
low variability and, for most of them, conservation across species could shift the interest toward
these types of RNAs. Moreover, due to their low abundance, the variation interval in terms of the
number of sequences with differential expression between samples from healthy individuals and
cancer patients is significantly diminished and probably easier to interpret in a clinical context.
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1. Introduction

Cancer represents the second leading cause of death caused by non-communicable diseases.
Due to the immense burden that this pathology places on modern society, many of the latest discoveries
in molecular and cellular biology have focused on cancer [1].

Exosomes (30–150 nm diameter) are membrane-bound vesicles framed within the group of
extracellular vesicles (EVs) and are distinguished based on their density, size and origin. These vehicles
are loaded with proteins, lipids and a heterogenous profile of ribonucleic acids and are ubiquitously
present in most bodily fluids (e.g., plasma, serum, urine, saliva, cerebrospinal fluid and breast milk).
Exosomes are able to survive in circulation and even cross anatomical barriers of blood vessels in order
to exchange molecular information between different types of secretory and recipient cells, with the
final purpose of maintaining the homeostatic balance [2]. In cancer, this mechanism is recapitulated
under a pathological context, where exosomes function as active shuttles that influence the behavior of
recipient cells in the context of enhanced carcinogenesis, invasion and metastasis, along with drug
resistance. In addition to oncogenic cargo, in malignant pathologies, the rate of exosome production
and trafficking is significantly increased [3]. Their wide availability in body fluids concomitant with
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signature cargo for pathological states is promoting the use of these EVs as diagnostic/prognostic
biomarkers in oncology and as possible therapeutic targets [4].

One of the most studied types of exosome cargo is represented by RNA species, coding and
non-coding, that are captured in a controlled and differential manner in these vehicles with further
active influence upon the recipient cell. In this context, it was shown that exosomal-shuttle RNAs
(esRNAs) are packed into exosomes via RNA binding proteins (RBPs) that form complexes with the
RNA species and mediate the transfer during exosome biosynthesis. Exosome analysis showed the
presence of 30 RBPs that interact with both exosomal and cellular RNAs; silencing of some of the genes
responsible for the translation of RBPs, especially the major vault protein (MVP) transcript, correlates
with a reduced presence of esRNAs, showing the functionality of RBP–RNA complexes in exosome
shuttling [5].

Nowadays, multiple studies on non-coding RNAs are focusing on microRNAs (miRNAs),
long-noncoding RNAs (lncRNAs), small-interfering RNAs (siRNAs) and, lately, circular RNAs
(circRNAs) [6–8]. However, this approach narrows the perspective of the molecular changes in
cancer and ignores many other RNA species with higher potential of becoming future biomarkers or
therapeutic targets. The term “rare RNAs”, which we use in this manuscript, refers to RNA species of
either long or short sequence length that are less frequent in the human genome or that are largely
ignored by experts analyzing cancer transcriptomics. Each subtype of rare RNA has specific functions
and was proven to be essential in the progression of various cancer types, such as lung cancer [9],
head and neck cancer [10,11], breast cancer [12] and colon cancer [13,14] (Table 1).

The rare RNAs represent a variety of RNA species in terms of biogenesis and mechanisms of
action. For our review, we decided to focus on the RNAs that fall into the above-mentioned category
and that are found in exosomes. These are yRNAs, transfer RNA (tRNA) fragments (tRF), tRNA
halves (tiRNA), small nucleolar RNA (snoRNA), small nuclear RNA (snRNA), vault RNA (vRNA)
and piwi-interacting RNA (piRNA) (Table 1). These RNAs are increasingly correlated with cancer
exosomal loading, they are generally highly conserved across species, and they participate in essential
biological processes.

yRNAs consist of a group of four RNAs that are transcribed, in humans, from specific yDNA
regions, named hY1, hY3, hY4 and hY5. As single units, yRNAs are involved in DNA replication.
When bound to the Ro60 protein, they participate in maintaining RNA stability [15]. yRNAs can be
fragmented into smaller particles, named small yRNAs (s-RNYs), that have the function of translation
repression [16].

tRNA is a well-known non-coding RNA with an essential role in translation; however, it was
later discovered that this RNA species can be fragmented into tiRNAs and tRFs that regulate gene
expression at the epigenetic level and participate in translation repression [17].

snRNAs are encoded by special regions of the DNA called U1, U2, U4, U5 and U6 that also give
their name. snRNAs have low variability and are an essential part of the spliceosome machinery
during processing of primary messenger RNA (mRNA) [18]. snoRNAs are encoded in the introns and
intergenic regions of the DNA. snoRNAs are also part of the spliceosome machinery. In addition to
this, snoRNAs can also participate in the 2′-O-methylation or pseudouridylation of ribosomal RNA
(rRNA) [19,20].

vRNAs are found in the cytoplasm in ribonucleoprotein complexes called vaults. These are highly
conserved sequences across species and have been known for many years to be involved in viral
replication and cytoplasmic/plasma membrane trafficking of biomolecules. In cancer, vRNAs are
involved specifically in autophagy and in the extracellular export of cytotoxic therapeutics during the
process of acquired drug resistance [21,22].

Alu-containing RNAs (Alu-RNAs) are transcribed from transposable element, containing Alu
repeats that offer new promoter/enhancer sites for transcription. Alu-RNAs have also been found to
participate in the modulation of miRNA expression [23–26].
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piRNAs have been initially discovered in the male gonadal cells, with the primary role of protecting
germinal cells from transposable elements, especially those of viral origin [27]. piRNAs are specifically
bound to piwi proteins and form the ping pong pathway. In malignant cells, they participate in the
epigenetic regulation of DNA [28] and are essential for maintaining cancer stemness [29].

The pseudogenes are formed from protein-coding genes that have acquired new loss-of-function
mutations. These DNA areas were for a long time believed to be transcriptionally inactive; however,
the transcripts of these pseudogenes are now known to form endogenous siRNAs or act as decoys for
miRNA-mediated repression of translation, especially miRNA interaction with their gene-of-origin
transcripts [30].

In the present manuscript, we decided to focus on the role of rare RNA species as biomarkers of
various cancers, due to their presence in the circulating exosomes and differential expression between
healthy controls and cancer patients.

2. Exosomal Loading of Rare RNAs in Cancer

2.1. Exosomal Loading of Rare RNAs in Breast Cancer and Their Roles in Development and Progression

Breast cancer is the second most common type of cancer in women and the leading cause of
cancer-related death in women [31]. This type of cancer has both genetic [32] and lifestyle causes [33].

In the case of RNASeq analysis of MCF-7 (human double positive breast cancer) and MCF-10A
(human mammary epithelial cells) cell lines, miRNAs were the most common RNA species, comprising
43% of the total analyzed small reads from the intracellular environment and approximately 11% of
the total RNA species in the intracellular environment. In contrast to this, in exosomes released by
these two cell lines, miRNAs represent less than 1% of the analyzed transcripts. In exosomes, rRNA
and tRNA fragments are the dominant components of the mapped reads, constituting approximately
10% and 62%, respectively. yRNAs have a uniform distribution in the two compartments: intracellular
and extracellular vesicles. vRNAs are present in very low levels in the intracellular space and only
have modest representation in the exosomes; the difference was not significant in this case [34].
RNA profiles of MCF-7 and MCF-10 cell lines identified over 100 piRNAs, with some of them being
differentially expressed between the breast cancer cell line and the immortalized breast epithelial cell
line, MCF-10A [35]. The existence of these RNA species within the intercellular space is raising the
possibility of piRNA transfer in exosomes derived from breast cancer cells and dynamic differential
expression between healthy and malignant tissue [35,36]; however, further investigations are necessary
to confirm this hypothesis. tRNA fragments (tiRNAs and tRFs) can form dimers or G-quadruplex
structures that confer on them more stability during exosomal transport. In a study by Gámbaro F. et al.,
the double positive breast cancer cell line MCF-7 was transfected with 5′ tiRNAGly. This tiRNA was later
found to be exported through exosomes and successfully received in the recipient cells. The intracellular
level of 5′ tiRNAGly was positively correlated with the exosomal level in a dose-dependent manner,
thus showing specificity for the exosomal loading of this non-coding RNA [37].

2.2. Exosomal Loading of Rare RNAs in Lung Tumors and Their Roles in Development and Progression

Lung cancer represents the cancer with the highest mortality rate, affecting especially the male
population, with more than 1.7 million deaths worldwide [31]. This disease is very hard to diagnose
in incipient stages, even in the context of modern day advances in clinical diagnostics. Even a small
tumor can rapidly migrate and metastasize to novel sites within the body [38]. Therefore, there is an
urgent need to discover reliable biomarkers that are detectable through minimally invasive procedures.

Savelyeva A.V et al., through differential centrifugation of blood samples from patients, revealed
an array of biomarkers. In the 160,000× g fraction pellet enriched with EVs isolated from the
blood of non-small cell lung cancer (NSCLC) patients and healthy donors, in NSCLC, the following
snoRNAs were upregulated: SNORD113 and SNORD78. Meanwhile, the following snoRNAs were
downregulated: SNORA33 and SNORD1B. In the supernatant of the 160,000× g fraction of NSCLC
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samples, SNORD113 was again upregulated and SNORD50D, SNORD18A, SNORD59B, SNORD48,
SNORD81 and SNORD29 were downregulated [39]. snRNAs U1, U5 and U6 were also enriched in the
160,000× g fraction containing circulating exosomes from NSCLC patients [39].

2.3. Exosomal Loading of Rare RNAs in Oral Tumors and Their Roles in Development and Progression

Oral cancer comprises the malignant transformation of epithelial cells from the oral cavity.
The main risk factors for this disease are betel quid chewing, alcohol consumption, smoking tobacco
and human papilloma virus (HPV) infection [40,41].

Human whole saliva (WS) is abundant in clinically discriminatory RNA species that can become
useful in the minimally invasive diagnosis of oral cancers; these RNA species are found in free form,
inside cancer circulating cells or loaded into exosomes [42]. RNA sequencing and genome mapping
derived from WS exosomes versus WS showed a high abundance of miRNA species but also highlighted
the presence of piRNAs and snoRNAs. Interestingly, exosomes were associated with a significant
abundance of piRNAs in comparison with the other biological samples. piR-39980 is upregulated in
exosomes, while piR-61648 is overexpressed in WS. In the WS, two types of exosome (exosome 1 and
exosome 2) with different sizes and proteome profiles were identified. piRNAs and snoRNAs also
have specific profiles between these two types of exosome. piR-39980, piR-48209, piR-52207, piR-38581
and piR-36095 and U78, U44, U21, U31 and U104 are the most abundant piRNAs and snoRNAs from
exosome 1. piR-39980, piR-59293, piR-61648, piR-55361 and piR-41405 and U78, U21, U44, U31 and
U27 have the highest levels in exosome 2 [42].

These initial observations demonstrate that WS is abundant in exosomes that contain rare RNA
species, a fact that can be extrapolated to possible studies regarding the minimally invasive diagnosis of
oral malignancies through assessment of differential types of exosomal rare RNA cargo. A later study
showed that piRNAs are surprisingly predominant in human cell-free saliva (CFS) in comparison with
other fluid samples or intercellular ones, while the level of miRNAs was found to be similar between
CFS, serum and cerebrospinal fluid [43].

2.4. Exosomal Loading of Rare RNAs in Gastrointestinal Tumors and Their Roles in Development
and Progression

Gastrointestinal tumors comprise 26% of new cases globally and 35% of cancer-related deaths
worldwide. This group of malignancies places a major burden on public health and, often, cases are
preventable through lifestyle changes [44].

In hepatocellular carcinoma (HCC), miRNAs and yRNAs are the most abundant RNA types
in plasma exosomes; however, the most differentially expressed RNA species in HCC patients
versus healthy controls were lncRNAs and snoRNAs. SNORD3A, SNORD91B, SNORD65 and
SNORD55 were upregulated in HCC, while SNORD116-3 and SNORD116-24 were downregulated [45].
The signal recognition particle RNA (srpRNA) is the RNA component of the signal recognition particle,
a ribonucleoprotein (RNP) that control cotranslational protein targeting, through which proteins
are send to the endoplasmic reticulum for processing [46]. srpRNA RN7SL1S was identified as the
most upregulated RNA species in the extracellular vesicles from HCC patients. The overexpression
of this srpRNA enhances the proliferation and colony formation capacity of HCC cells in vitro [45].
In the culture media from the SK-Hep1 liver cancer cell line, in the exosomes, the predominant
non-coding RNA type is rRNA (30%), followed by miRNA (22%), snRNA (9%), tRNA (5%) and
snoRNA with less than 1%. tRNA fragments show differential expression between liver cancer patients,
with 35 upregulated and 11 downregulated transcripts. Liver cancer patients have higher expression
of tRNA-ValTAC-3, tRNA-GlyTCC-5, tRNA-ValAAC-5 and tRNA-GluCTC-5, in comparison with
exosomes from plasma of healthy donors [47].

Five snoRNAs (SNORA14B, SNORA18, SNORA25, SNORA74A and SNORD22), present in
the culture media from pancreatic cell lines, were encapsulated in the exosomes. During an
observational clinical trial comparing the expression of circulating encapsulated RNAs between
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27 pancreatic cancer patients and healthy controls, it was discovered that SNORA74A and SNORA25
have greater power to distinguish between the two groups compared with the commonly used
biomarker, CA19-9, thus rendering these two snoRNAs potential biomarkers of pancreatic cancer [48].
piRNAs and tRNAs have a low level of representation in plasma from pancreatic cancer patients.
However, they have a higher potential of becoming disease biomarkers that could be more
specific than miRNAs. tRNAs and piRNAs from plasma exosomes can differentiate between
healthy individuals and pancreatic cancer patients and between different types of pancreatic cancer,
such as intraductal papillary mucinous neoplasm (IPMN) and pancreatic ductal adenocarcinoma
(PDAC). The following tRNAs are overexpressed in pancreatic cancer versus healthy individuals:
tRNA125-Thr CGT, tRNA21- Ser TGA, tRNA15-Cys GCA, tRNA55-Ile-TAT, tRNA5-ILE TAT. With a
fold change (FC) above 15, in pancreatic cancer versus healthy individuals, tRNA125-Thr CGT can be
a biomarker for this disease. At the same time, tRNA21-Ser TGA can discriminate between the two
pancreatic cancer types (PDAC and IPMN). It is significantly overexpressed in PDAC versus IPMN
(FC = 6.73). The same study also found that the following piRNAs are upregulated in pancreatic
cancer: hsa-piR-52959, hsa-piR-53108, hsa-piR-30690, hsa-piR-54479, hsa-piR-56621, hsa-piR-54888,
hsa-piR-42185, hsa-piR-46410, hsa-piR-58897, hsa-piR-58897. The overexpression of these piRNAs is
more specific for PDAC than IPMN [49].

In a study comparing the exosomal RNA content from plasma of gastric cancer patients versus
healthy controls, it was proven that tRF-25, tRF-38 and tRF-18 have significantly higher expression in
gastric cancer; it follows that these RNAs can accurately predict the diagnosis of this malignancy [50].
The exosomes from four gastric cancer cell lines, MKN45, SGC7901, NCI-N87 and AGS, compared to
the ones obtained from a normal cell line, GES-1, were analyzed through deep sequencing in order to
classify the abundance of RNA species found in extracellular vesicles. As expected, miRNAs accounted
for approximately 25% of the mappable counts, followed by rRNA, tRNA, snRNA, snoRNA, piRNA
and yRNA [51]. In the context of a diagnosis proposal, the limited range of variation of specific rare
RNA, implication in various molecular processes and high stability (due to secondary structures or by
being part of RNPs) in circulation favor the use of these RNAs as minimally invasive disease biomarkers.
For instance, the use of piRNAs (piR_651 overexpression) [52] or tiRNAs (tiRNA-5034-GluTTC-2
downregulation) [53] as circulating gastric cancer biomarkers can be proposed.

Even the same cell line of colon cancer can produce different kinds of extracellular vesicles (EVs)
in terms of RNA profile. LIM1863 cell line releases two types of exosome: from the apical part
(Ep-CAM-Exo) and from the basolateral part (A33-Exo). The pseudogene transcripts are especially
located in the A33-Exo. Of these, the most abundant are RPL41P1, RPL39P3, EEF1A1P5, CTD-2031P19.4,
CTB-63M22.1, RP11-742N3.1, RP11-122C9.1, RPL9P8, RPL9P9 and RP11-466H18.1. In these exosomes,
a type of RNA with a yRNA-like sequence was enriched; however, its exact function is still unknown.
snRNA U6 has a significantly higher level in EpCAM-Exos compared with A33-Exos. In regard to
snoRNAs, SNORA18, SNORA27, SNORA57, SNORA62, SNORA68, SNORA70, SNORA77, SNORD23
and snoU13 are overexpressed in the A33-Exos, while SNORA14B, SNORA31, SNORA76, SNORA77,
U3 and snoU13 are enriched in the Ep-CAM-Exos [54].

2.5. Exosomal Loading of Rare RNAs in Billary Tract Tumors and Their Roles in Development and Progression

Gall bladder carcinoma (GBC) and cholangiocarcinoma (CCA), both cancers of the biliary tract,
are associated with poor prognosis and a high recurrence rate. In this sense, the identification of
minimally invasive diagnosis strategies by means of circulatory biomarkers able to discriminate
incipient stages becomes especially important. RNA sequencing of exosomes from plasma of GBC
(n = 4) and CCA (n = 5) patients compared to healthy ones shows 514 and 730, respectively, altered
piRNAs, with most of the sequences found to be overexpressed. Some of the rare RNAs were
upregulated in both malignancies, demonstrating a general role of these piRNAs in carcinogenesis or
specificity for biliary tract cancers. Importantly, piR-10506469 was further validated in blood samples
from a large cohort of patients with GBC and CCA as being significantly increased compared to healthy
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controls. The same analysis of patients that underwent resection therapy showed that this specific
piRNA decreases after tumor removal, together with piR-20548188 [55].

2.6. Exosomal Loading of Rare RNAs in Brain Tumors and Their Roles in Development and Progression

The most common brain tumors originate in glial cells and form gliomas, among which the most
aggressive forms are represented by glioblastomas. The tumors do not invade new sites of the body but
are highly aggressive due to their location and the rapid degradation of brain function, with associated
accelerated decrease in the quality of life [56,57].

There is a difference in the non-coding RNAs’ cargo from microvesicles and parent glioma cell
lines (U251) that alters the behavior of recipient cells (vascular endothelial cells). Besides miRNAs,
which represent more than 90% of exosome cargo, there are vRNAs and antisense intron-derived RNAs.
EVs are enriched in the following vRNAs: VTRNA1-1 (the most abundant), VTRNA2-1, VTRNA1-2,
VTRNA1-3, VTRNA3-1p [58].

From the total levels of RNA cargo from glioma cells, piRNAs represent the second most frequent
RNA species, followed by snRNAs, snoRNAs and rRNAs. From these, the following piRNAs
were enriched in EVs from glioma cell lines: hsa_piR_019675, hsa-piR_020388, hsa_piR-020829,
hsa_piR_020381, has_piR_016735, has_piR_020365, ha_piR_004153, hsa-piR_019825, has_piR_015249,
has_piR_009059, has_piR_000753, has_piR_008488. SNORD20 occupies the eighth place among the
most expressed RNAs in glioblastoma cell lines [59]. When comparing the RNA content of exosomes
in four glioma cell lines, it was proven that their exosomes and extracellular ribonucleoproteins have
different RNA species patterns. yRNAs are among the dominant RNA types (along with snRNA and
repeat RNA) in exosomes isolated from GBM4 (grade 4 glioblastoma); however, they were almost absent
in the exosomes from GBM8 (glioblastoma stem cells) and had overall low expression compared to the
mean expression of all exo-glioma cell lines. Upon analysis of RNPs versus intracellular components,
yRNAs were significantly overexpressed in the RNPs versus intracellular components and showed
uniform distribution throughout all cell lines. snRNA had uniform overrepresentation in all glioma
cell exosomes, except for MGG75 (intracranial glioma), which showed slight underrepresentation.
tRNAs were also very underrepresented in glioma exosomes, whereas in RNPs, they were the most
abundant RNA species [60].

Glioblastoma cells secrete, in vitro and under hypoxic conditions, exosomes that contain
protein-lysine 6-oxidase (LOX), thrombospondin-1 (TSP1), vascular endothelial growth factor (VEGF)
and metalloproteinase with thrombospondin motifs 1 (ADAMTS1). Upon delivery in targeted
glioblastoma cells, these exosomes induce upregulation of SNORD1 (SNORD116-21), along with other
lncRNAs. This causes increased viability of glioblastoma cells and, in endothelial cells receiving these
hypoxic exosomes, causes increased ability of tube formation, thus showing the malignant role of
exosomes containing SNORD1 [61]. yRNAs are many times enriched in exosomes because they are
involved in the degradation of misfolded RNAs. SnoRNAs are overall more common in cells than
in exosomes; however, some snoRNAs were found to be more abundant in exosomes isolated from
endothelial cells than in the cells of origin. These are SNORD78, SNORD93, SNORD114-22, SNORD43,
SNORD114-9, SNORD104, SNORD119, SNORD114-24, SNORD100, SNORD82, SNORD12, SNORD99,
SNORD69, SNORD66, SNORD12B [62]. vRNAs and yRNAs are the most common types of RNA in the
exosomes of endothelial cells, besides miRNAs. VRNA1-3 and VRNA2-1 are abundant in exosomes
and the 5′ fragment of RNY5 [62].

Medulloblastoma is a very aggressive type of brain tumor that originates in neuronal stem cells.
Medulloblastoma cells secrete exosomes in larger quantities than normal fibroblasts. In these exosomes,
transposable RNA/DNA elements, besides DNA fragments, were found. The retrotransposon elements
from HERV, Alu and L1 repeats had higher levels in exosomes than in the cells of origin [63].
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2.7. Exosomal Loading of Rare RNAs in Melanoma and Their Roles in Development and Progression

Melanoma develops from the malignization of melanocytes and is the most aggressive type of
skin cancer, with rapid progression toward metastatic phases and reduced survival rate. Half of the
metastatic patients have the BRAF somatic missense mutation, especially at the amino acid residue
V600 (BRAFV600) [64]. Development of BRAF inhibitors vemurafenib and dabrafenib has significantly
increased the survival rate of melanoma patients; however, the installation of drug resistance often
occurs. To assess the dynamic changes upon vemurafenib treatment, researchers analyzed the RNA
and protein content in EVs, including exosomes, after vemurafenib administration in melanoma cell
lines and patient-derived xenografts (PDX) [65]. Exosomes isolated from the cell media of treated
cells showed increased concentrations of total RNA and also misbalanced RNA/protein ratios (the
RNA content was also found to be increased in other EVs, namely microvesicles and apoptotic bodies,
but the RNA/protein ratio was not affected). Small RNA deep sequencing of exosomes, microvesicles
and apoptotic bodies showed the presence of yRNA, snRNA, tRNA, snoRNA, rRNA, lincRNA,
piRNA, miRNA and mRNA. The small RNA profile from exosomes was characterized by an increased
concentration of miRNAs compared with the other two EVs and a unique set of snoRNAs distinct
from microvesicles, apoptotic bodies and cells. Moreover, tRNAs were found to be mainly associated
with EV content, with valine tRNA increased in exosomes compared to cells and the other two types
of analyzed EVs. Finally, although the proportion of the ncRNA species did not significantly change
upon vemurafenib administration, the expression of individual ncRNAs was altered, e.g., miR-211–5p
upregulation in EVs [65].

2.8. Exosomal Loading of Rare RNAs in Bone Cancer and Their Roles in Development and Progression

Osteosarcoma is the most common and aggressive forms of bone cancer. It develops from
osteoblasts found in bones. One of the major challenges that this disease poses is frequent recurrence
and metastasis formation [66]. A theory was recently formed that, in p53 mutated (p53R172H)
osteosarcoma cells, the Ets2 transcription factor stimulates the transcription of over 24 snoRNAs,
which leads to further mutations in the tumor cells or, through exosomal transfer, they may play a
significant role in metastatic niche formation in lung tissue [67]. Ewing sarcoma is a type of rare bone
or soft tissue cancer that originates in mesenchymal stem cells. It was proven that the cancer cells of
Ewing sarcoma secrete exosomes loaded with retroelement RNA, which sustains inflammation and
migration [68].

2.9. Exosomal Loading of Rare RNAs in Hematological Malignancies and Their Roles in Development
and Progression

Hematological malignancies comprise a group of cancers that arise from the different progenitor
cells of hematopoiesis in the bone marrow and lymphoid organs [69,70]. The malignancies that originate
in the lymphoid lineage are represented by acute lymphoblastic leukemia (ALL), chronic lymphoblastic
leukemia (CLL), lymphoma and multiple myeloma (MM). The hematological cancers that arise from
myelogenous lineage are named myelodysplastic syndromes (MS), acute myelogenous leukemia
(AML), chronic myelogenous leukemia (CML) and myeloproliferative neoplasms. As opposed to
solid tumors, these groups of malignancies present high heterogeneity in terms of development and
treatment approaches [71].

yRNAs are the predominant small RNA species, besides miRNAs, found in exosomes isolated
from pediatric patients diagnosed with anaplastic large cell lymphoma (ALCL). A comparison was
made between the plasma of pediatric patients with NPM-ALK fusion gene and the plasma from
healthy donors. Five ALCL cell lines were also taken into consideration. Moreover, in relapsed patients,
the levels of full length RNY4 are significantly more abundant than in the case of ALCL patients in
complete remission [72].

Analysis of exosomes isolated from bone marrow supernatant of MM patients highlighted the
abundant presence of another rare RNA species: piR-004800 (piRNA exosomal content represents
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approximately 20–30% of that of the total exosomal RNA). The same piRNA was found to be upregulated
also in primary MM cells. Functional studies involving the experimental inhibition of the piRNA
reduced cell proliferation rate both in in vitro and in vivo models, accompanied by increased apoptosis
rate. The pathological mechanism was positively associated with the sphingosine-1-phosphate receptor
(S1PR) signaling pathway, where S1PR is concomitantly expressed and functionally interconnected
with piR-004800, with further positive regulation of the PI3K/Akt/mTOR signaling pathway [73].

Stem cell isolation and manipulation is currently being explored in immunotherapy after allogeneic
stem cell transplantation in hematological malignancies. Importantly, researchers are investigating the
most suitable stem cells for specific applications by analyzing their molecular content and phenotypical
behavior. Bone marrow mesenchymal stem cells (BMMSCs) and stem cells from the apical papilla
(SCAP) of teeth were compared in terms of their piRNAs exosomal cargo content in order to highlight
the potential signaling pathways modulated by the secreted vesicles [74]. Previous studies have
shown that the exosomes secreted by MSCs exhibit synonymous functions with the cell itself in terms
of regeneration, inhibition of inflammation, immunoregulation and tissue repair [75–77]. piRNA
expression profiling revealed 593 and 920 piRNAs, with a median length of 21 nucleotides derived
from exosomes secreted by SCAP and BMMSCs, respectively. hsa-piR-020326, hsa-piR-016735 and
hsa-piR-017716 were identified as being highly expressed in SCAP, while hsa-piR-016735 demonstrated
high expression in BMMSCs; moreover, 21 miRNAs were identified as being differentially expressed
between the exosomes secreted by the two types of cells. Gene enrichment analysis associated the
differentially expressed piRNAs with metabolic processes, biological regulation, binding and catalytic
activity and cellular processes, all pathways being previously connected with the function of MSCs [74].
The RNA deep sequencing of plasma EVs revealed that indeed the miRNAs are the most abundant
RNA species loaded into these vesicles: they constituted 76.20% of mappable reads, followed by
piRNA (1.31%), tRNA (1.24%), snRNA (0.18%) and snoRNA (0.01%) [78]. However, these profiles
are highly dependent on the source cell. For instance, in the exosomes from mesenchymal stem cells
(MSCs), miRNAs represent only 2–5% of loaded RNAs. Other RNA species have significant fold
change differences between MSCs and their secreted exosomes: pseudogenes (3.83 FC), rRNA (3.13 FC),
tRNA (2.46 FC), snRNA (−3.41 FC), snoRNA (−6.65 FC). tRNA halves represent the dominant parts of
exosomes from MSCs from adipose tissue, while miscRNA is the dominant component in bone marrow
MSCs; it follows that this profile is dependent on the cell of origin [79]. MiscRNA is the term used
for miscellaneous RNA, referring to small RNA sequences that function as enzymes and translation
repressors and induce RNA degradation [80].

circRNAs were also considered one of the rare RNA species until recently, when the interest
in these RNA species was greatly enhanced. As a result of this, the focus of this review was not
circRNAs; however, there is a type of circRNA that is still widely ignored. The majority of circRNAs
studied are of nuclear origin, meaning that they are encoded by the nuclear genome. There is, however,
a type of circRNA that is encoded by the mitochondrial genome, namely the mitochondrial circRNA
(mcRNA). In chronic lymphocytic leukemia (CLL), the mcRNA, mcCOX2, left after the processing of
the COX2 gene, was found to be overexpressed in plasma exosomes from CLL patients compared with
normal controls. During in vitro simulation, the CLL cells overexpressing mcCOX2 have enhanced
proliferation and apoptosis resistance ability; thus, mcCOX2 stimulates leukemogenesis [81].

3. The Clinical Impact for New Biomarker and Therapeutic Target Discovery—Importance of
Deep Sequencing and Data Mining

All of the studies presented in this review, which discovered differential patterns of RNA species
loading in exosomes versus donor cells or exosomes from patients versus healthy controls (Figure 1),
have in common the use of next generation sequencing, especially deep sequencing, of the RNA and
data mining of publicly available databases.
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Figure 1. Exosomal rare RNA species as biomarkers in cancer patients’ samples. Exosomes are released
by cancer cells in the extracellular environment with the purpose of facilitating communication with
neighboring or distant cells. The vesicles can cross the blood barrier and enter the circulation; therefore,
liquid biopsies conducted by means of blood, plasma or serum samples can become reliable diagnostic
samples or even predictors of potential therapeutic targets. The context of exosomes (represented in
the figure by rare RNAs) is the actual substrate for differentiation of patients in terms of health status.

The sequence of events from sample collection to discovery of new biomarkers based on “rare”
RNA species from exosomes is presented in Figure 2.

The technology of next generation sequencing has rapidly evolved in the last few years, concomitant
with decreased costs and time spent on the procedure. One direction is the increase in sequencing
depth and read length. Sequencing depth of coverage is the read length multiplied by the number of
reads and divided by the haploid genome length [82]. The most important aspect of increasing the
sequencing number of reads is that less frequent mutations from a small population of cells in a sample
or low represented cell clones are detected [83]. Single cell RNASeq also offers this great advantage
of detecting unique transcriptional profiles and thus new RNA species that also may follow linage
development and new correlations between genes [84]. However, for rare RNAs to be discovered in
exosomes, the option of deep RNASeq is the “gold standard”. Moreover, the increase in read length
can help scientists to find new cis- or trans- co-expression of genes, discovering longer transcriptionally
active sites of the DNA and sites of the DNA that are enriched in tandem repeats [83,85]. The advantage
of using advanced deep sequencing technologies that are able to process longer reads is that we can
discover new lncRNAs with unknown functions and roles in disease progression that will deepen our
current understanding of the molecular mechanisms of cancer development and progression, while
creating new therapeutic targets with future potential for drug discovery or repositioning.
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Figure 2. From the collection of samples from patients undergoing minimally invasive procedures until
the discovery of new biomarkers of a cancer type or for the assessment of cancer progression, there are 7
steps to be taken. (1) The samples are collected from patients and processed separately by centrifugation
at low speed for the separation of exosomes from other heavier particles, such as cells. Then, through
high speed ultracentrifugation or differential centrifugation, the next step is taken. (2) Exosome isolation.
(3) The purified exosomes are sequenced during RNASeq: first, the total or small RNA is purified; then,
it is reversed transcribed into cDNA, fragmented and labeled. The cDNA fragments are sequenced, and
the reads are mapped to the genome of reference. During deep sequencing technologies, the repetition
of sequencing is greater; thus, the genes that have a very low level of expression can be more easily
identified. (4) The RNA Seq or microarray data (the microarray technology was not presented) should
be made public by uploading the sequencing data along with clinical characteristics of the analyzed
samples on publicly available databases, such as the Cancer Genome Atlas (TCGA) or Gene Expression
Ominibus (GEO). In addition, if required, the authors should provide the RNASeq raw data. (5) Data
mining. By accessing the above-mentioned databases, other scientific groups may find new associations
between gene expression and clinical data. (6) In order to test for a causative correlation between RNA
species expression and function, the in vitro testing and collection of exosomes from supernatant are
needed. After definitive results in pre-clinical data, if the new RNA species show high sensitivity and
specificity, comparable with that of the current biomarkers, they will be introduced in common clinical
practice. (7) New biomarker discovery for wide application of a new diagnostic tool.

However, large quantities of data are difficult to process; thus, more and more advanced
bioinformatic tools that can keep up with this information will also be needed. The first step toward
understanding the newly discovered lncRNAs is to look at the RNAs that are the origin of short
non-coding RNAs and whose functions are easier to determine [86]. The sequencing technology can
provide valuable information, but it will be difficult to assess a single type of molecular interaction,
considering that cancer is a polyfactorial disease. Moreover, what is known so far is that these sequences
have very low levels of expression; thus, it is easy to assume that their function is not fundamental
for cancer cell survival. In addition to these, there is the financial aspect; if all this technological
development and financial investment in discovering the role of rare RNAs will lead to a dead end,
it will not be profitable to obtain funding for this area of research. To overcome this challenge, the
second approach to “rare RNA” function discovery, namely data mining, is important.

Data mining from public datasets, such as the Cancer Genome Atlas (TCGA) or Gene expression
omnibus (GEO), is essential for understanding the role of these rare RNAs and their specificity toward
certain types of cancer. For instance, the pan-cancer analysis of TCGA RNASeq data reveled a
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significant implication of snRNAs especially in cancers of the digestive tract. For instance, RNU6-101 P
is a risk factor for esophageal cancer, while RNVU1-4 is a protective factor for stomach cancer [87].
In prostate cancer, with the help of data mining from GEO, by means of re-analyzing raw data and
applying differential expression analysis between seminal fluid from controls and prostate cancer
patients, it was proven that 5′ tRNA halves have increased expression levels in seminal fluid from
prostate cancer patients, thus creating a new path for non-invasive biomarker discovery [88].

4. Final Remarks and Conclusions

The cancer-driven role of rare RNA loading in exosomes is becoming increasingly recognized with
the development of databases containing the specific expression of these RNAs (http://bioinformatics.
zju.edu.cn/OncotRF/index.html), such as OncotRF, a database based on TCGA analysis of various
cancer samples that can show the expression of tRFs in various cancers [89]. The “rare” RNA species
are often among the dominant RNAs in exosomes and some of them show clear specificity to a cancer
type. Due to the high degree of stability of these RNAs, low variability and, in most cases, conservation
across species, rare RNAs can be considered a more reliable source of biomarkers for non-invasive
investigation of cancer than commonly used miRNAs or lncRNAs.

http://bioinformatics.zju.edu.cn/OncotRF/index.html
http://bioinformatics.zju.edu.cn/OncotRF/index.html
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Table 1. Characteristics of rare RNA species included in the present narrative review.

Type of RNA Sequence
Length (nt) Region of the DNA Type of

Polymerase

Degree of
Conservation
across Species

Function Biological Role Type of Cancer Cellular
Localization Ref.

yRNA 84, 98, 101, 112

From specific DNA
regions named hY1, hY3,
hY4 and hY5; there are

also pseudogenes of
these YDNA regions

RNA Pol III High degree of
conservation

DNA replication; RNA
stabilization (when

bound to Ro60 protein)

Cell proliferation;
cell cycle

progression

Lung cancer, prostate
cancer, colon cancer,
renal cancer, cervical

cancer, bladder cancer

Nucleus,
cytoplasm [90–92]

small yRNA 19–60
Represent fragments of
yRNAs, especially from

5′ end of yRNA
RNA Pol III High degree of

conservation Translation repression Cell death,
inflammation Oral cancer, breast cancer Cytoplasm [11,16,93–96]

tRF 14–30
It has 446 specific genes

in humans (for the
full-length tRNAs)

RNA Pol III

Full length
transcripts have
high degree of
conservation

Epigenetic control
through heterochromatin

modulation; competes
with Dicer for miRNA

binding; translation
repression of mRNA;

involved in RNA
degradation and control

of RNA stability

Cell cycle
progression, cell

proliferation,
change in metabolic

pathways,
metastasis
formation

Bladder cancer, lung
cancer, renal cancer,
colon cancer, breast

cancer, ovarian cancer,
liver cancer, lymphoma,

chronic lymphocytic
leukemia

Cytoplasm [97–102]

tiRNA 31–40
446 specific genes in

humans (for the
full-length tRNAs)

RNA Pol III

Full length
transcripts have
high degree of
conservation

Chromatin/epigenetic
modifications, translation
repression, miRNA-like

function; involved in
RNA degradation and

control of RNA stability

Cell cycle
progression, cell

proliferation

Breast cancer, prostate
cancer, lung cancer, renal

cancer
Cytoplasm [98,99,102,103]

snoRNA 60–300

It is generally encoded by
the introns or protein

coding sequences of the
DNA, but there it can

also be encoded by DNA
regions, where the

snoRNA host genes
(SNHGs) are located

RNA POL II
or RNA POL

III

snoRNAs in the
intronic region

show high degree
of conservation

rRNA processing
(2′-O-methylation or
pseudouridylation,
pre-rRNA cleavage)

(H/ACA box snoRNA);
mRNA splicing and

mRNA processing (C/D
box snoRNA), small Cajal

body RNA (scaRNA),
snoRNAs are origin for

miRNAs

Activated in
oxidative stress;

involved in glucose
metabolism; cell

death, proliferation,
invasion and

metastasis

Lung cancer, prostate
cancer, breast cancer,

acute myeloid leukemia,
acute promyelocytic
leukemia, colorectal

cancer, hepatocellular
carcinoma, glioblastoma,
osteosarcoma, pancreatic

cancer

Nucleus
(nucleolus),

cytoplasm (only
during cellular

stress)

[20,104–106]
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Table 1. Cont.

Type of RNA Sequence
Length (nt) Region of the DNA Type of

Polymerase

Degree of
Conservation
across Species

Function Biological Role Type of Cancer Cellular
Localization Ref.

snRNA 100–300
Encoded by 5 DNA

regions: U1, U2, U4, U5,
and U6

RNA POL III
(U6), RNA

POL II
(U1-U5)

High degree of
conservation pre-mRNA splicing

Cell cycle
progression,

Tumorigenesis,
oncogenic

development

Breast cancer, lung cancer

Nucleus (main
function), can

also be exported
into the

cytoplasm (U6)

[107–112]

vtRNA 88–100

Special sequence from
the DNA, vault DNA

sequences are located on
chromosome 5

RNA POL III High degree of
conservation

Associated with specific
proteins vault proteins in
the cytoplasm, forming

vault RNPs in the
cytoplasm

Autophagy,
intracellular and

membrane
trafficking,
multidrug

resistance (drug
export from the

cytoplasm)

Breast cancer, lymphoma,
lung cancer, multiple

myeloma
Cytoplasm [22,113–116]

Alu-element
RNA around 250

Alu-repeat containing
transposable elements,

comprises around 10% of
human genome

RNA POL II,
RNA POL III

The main genes
containing ALU

repeats are
conserved, but
there are also a

number of evolved
pseudogenes

through single base
substitution

They are involved in
protein translation, are

the ancestors of
epigenetic enhancers,

they offer new binding
sites for transcription

factors, impair mRNA or
miRNA transcription

Increased
expression in stress

conditions,
involved in the

epithelial-to-mesenchymal
transition, cell cycle

progression

Breast cancer, colorectal
cancer Nucleus [23–26]

piRNA 21–35

Encoded by
protein-coding genes

(untranslated regions of
messenger RNAs),

sequences form
intergenic regions (long

intergenic regions)

RNA POL III High degree of
conservation

It has a close interaction
with piwi protein and

together are involved in
RNA cleavage. It also has

epigenetic functions
through heterochromatin
regulation and induced

changes in DNA
methylation pattern.

Protects against
germline genome
stability and DNA

integrity; maintains
cancer stemness,

apoptosis
impairment,
involved in

telomerase activity,
cell cycle

progression and
metastasis

Gastric cancer, lung
cancer, cervical cancer,
hepatocellular cancer,

breast cancer, colorectal
cancer, ovarian cancer

Cytoplasm [117–120]
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