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Eighty-eight variants highlight the role of T cell
regulation and airway remodeling in asthma
pathogenesis
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Asthma is one of the most common chronic diseases affecting both children and adults. We

report a genome-wide association meta-analysis of 69,189 cases and 702,199 controls from

Iceland and UK biobank. We find 88 asthma risk variants at 56 loci, 19 previously unreported,

and evaluate their effect on other asthma and allergic phenotypes. Of special interest are two

low frequency variants associated with protection against asthma; a missense variant in

TNFRSF8 and 3‘ UTR variant in TGFBR1. Functional studies show that the TNFRSF8 variant

reduces TNFRSF8 expression both on cell surface and in soluble form, acting as loss of

function. eQTL analysis suggests that the TGFBR1 variant acts through gain of function and

together with an intronic variant in a downstream gene, SMAD3, points to defective

TGFβR1 signaling as one of the biological perturbations increasing asthma risk. Our results

increase the number of asthma variants and implicate genes with known role in T cell

regulation, inflammation and airway remodeling in asthma pathogenesis.
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Asthma is one of the most common chronic diseases and
has a substantial impact on the quality of life of both
children and adults. Currently, it is estimated that around

300 million people have asthma worldwide and those numbers
are predicted to rise in the coming years1. Asthma is a syndrome
with heterogeneous pathophysiology and different asthma phe-
notypes differ in age of onset, environmental risk factors, clinical
presentation, prognosis, and response to therapies2. To further
characterize the distinct mechanistic pathways underlying the
disease, asthma endotypes have been defined and can broadly be
regarded as type 2 (T2) high or T2 low. T2 high asthma is
characterized by increased activation of T helper cells of type 2
(Th2), innate lymphoid cells of type 2 (ILC2), and eosinophils. In
contrast to T2 high, T2 low endotype is less well defined and is
typically characterized by the absence of markers of T2 high
disease and has rather been linked with activation of neutrophils,
Th1 and/or Th17 cells3. This heterogeneity may explain why
fewer asthma loci have been identified through genome-wide
association studies (GWAS) than in other diseases of similar
prevalence4. In total, 44 sequence variants (36 in Europeans and 8
in other ancestries) have been reported to associate with asthma
in 27 independent GWAS5–7. We have previously discovered
common sequence variants in IL33 and it’s receptor IL1RL1
conferring risk of asthma8, followed by an identification of a rare
loss of function variant in IL33 that protects against asthma9,
thereby supporting its relevance as pharmacological target for
asthma.

Comorbidity between asthma and other allergic diseases
(especially allergic rhinitis and atopic dermatitis) has been
reported10 and recent publications have focused on shared risk
variants and genetic links between these traits6,11.

Here we describe a large meta-analysis of asthma and report 88
independent associations at 56 loci. We perform a series of
functional analysis to explore the biological effect of a low fre-
quency missense variant in a gene of the tumor necrosis receptor
family, TNFRSF8. We also report a low frequency 3 prime
untranslated region (UTR) variant in TGFBR1 that changes a
microRNA (miR) recognition site and associates with increased
TGFBR1 expression in blood. Further, we report evidence of a
single candidate gene for 8 of the 19 previously unreported
asthma variants by extensive study of coding variants, expression
quantitative trait loci (eQTLs) as well as enhancer and promoter
signals. Lastly, we investigate association of the asthma variants
with asthma sub-phenotypes (early-/late-onset and allergic
asthma) as well as related traits (eosinophil count and allergic
diseases).

Results and discussion
Genome-wide meta-analysis. We performed a meta-analysis
combining asthma GWAS results from Iceland (n= 16,247 cases,
n= 346,486 controls) and the UK biobank (n= 52,942 cases, n=
355,713 controls). The asthma phenotype in both sets was based
on physician diagnoses and/or self-reported doctor’s diagnosis of
asthma. Association between genotype and phenotype was tested
by logistic regression, assuming a multiplicative model (see
methods). We used genome-wide significant thresholds depen-
dent on variant annotation and found association with asthma at
55 loci (>1Mb apart) in addition to the extended HLA region
(chr6: 25,000,000–35,000,000, build hg38). Conditional analysis
revealed one or more secondary signals (P < 5 × 10−8) at 17 of the
56 loci thus yielding 88 independent signals (Fig. 1, Supple-
mentary Data 1). Based on number of cases and controls, we note
that the effective sample size is four times bigger for the UK
biobank samples (N= 84,396) than the Icelandic (N= 22,689),
hence most of the power comes from the UK biobank samples.

The estimated genomic inflation in the two studes (estimated
using LD-score regression)12 is 1.368 for the Icelandic dataset and
1.092 for the UK biobank dataset, reflecting the relatedness of
individuals in Iceland which is also the most likely explanation of
genomic inflation in UK biobank where 30% of the participants
have a relative (third degree or closer) in the UK biobank
dataset13.

We note that only 4 out of the 88 variants showed significant
heterogeneity in effect sizes based on the number of variants
tested (P < 0.05/8= 5.62 × 10−4) and 28 showed nominal hetero-
geneity (P < 0.05) between the two sample sets demonstrating a
good consistency of effect for vast majority of the variants. The
observed heterogeneity of the effect estimates is likely due to
difference in the phenotype definition and/or ascertainment
between the studies, coherent with retrospective studies as
reported here. Further, 85 out of the 88 variants (P < 1 × 10−16)
had effect size in the same direction in the two cohorts and 44
were at least nominally significant in Iceland showing good
replication of effects (Supplementary Data 1).

Of the 88 independent signals, 47 are at 24 previously reported
asthma loci, 22 variants at 16 loci have previously been reported
for a combined allergic phenotype11 and 19 variants at 16 loci are
previously unreported asthma signals. We note that while this
manuscript was under consideration two independent reports
published association of asthma with 9 of those 19 variants as
indicated in Table 114,15.

Out of the 47 variants at previously reported loci, 24 were
represented by previously reported variants (r2 ≥ 0.2; Supplemen-
tary Data 2) and 23 by previously unreported signals at those loci
(r2 < 0.2; Supplementary Data 3). Furthermore, we replicated 31
out of the 36 reported European asthma loci7,16 when adjusting
for the 36 variants tested (P < 0.05/36= 1.4 × 10−3). For two of
five non-replicating variants we found other genome wide
significant (GWS) variants at the respective loci (Supplementary
Data 4).

Forty-one of our 88 variants at 32 loci have not been previously
associated with asthma, although 22 variants at 16 loci have
previously been reported for a combined allergic phenotype of
asthma, hay fever and eczema11 (Supplementary Data 5).

Altogether, we identified 19 independent signals at 16 loci not
previously reported to associate with asthma or the combined
allergic phenotype11 (Table 1). Sixteen of the previously unreported
variants were common (Effect Allele Frequency (EAF) ≥ 5%) and
three were low frequency variants. None of those variants showed
significant (P < 0.05/88= 5.62 × 10−4) heterogeneity of effects in
the two sample sets (Table 1).

Loss of function variant in TNFRSF8. One of the low frequency
variants (EAF= 1.2% (ICE)/1.5% (UK)) rs2230624_A is a mis-
sense variant p.Cys273Tyr in TNFRSF8 (alias CD30) that
associates with reduced asthma risk. The p.Cys273Tyr variant had
the greatest protective effects (OR= 0.82, P= 8.27 × 10−13) of the
19 previously unreported variants and in fact there were only 4
out of the 88 asthma variants with greater effect on asthma risk;
rs72782676 (intergenic on chr10, OR= 0.63), rs149045797
(intron variant at IL33 locus, OR= 0.65), rs12722502 (intron
variant at IL2RA locus, OR= 0.80 and rs61816761 (stop-gained
variant at FLG locus, OR= 1.24). The rs2230624_A variant is a
singleton (all LD < 0.4; Fig. 2a) and is predicted by PROSITE
database17 to disrupt a disulfide bond between Cys in positions
273 and 259 in the extracellular domain of the protein. CD30 is
expressed on the surface of activated lymphocytes and eosinophils
and has been implicated in activation, proliferation and apoptosis
via NFκB activation18–21. p.Cys273Tyr has been reported to
associate with reduced eosinophil count22 and reduced mosquito
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bite size23. Increased soluble CD30 (sCD30) in serum has been
associated with increased severity of asthma in children24 and
CD30 knock-out mice are protected against asthma25. Therefore,
we postulate that the missense p.Cys273Tyr in TNFRSF8 that
associates with decreased asthma risk reduces the function of
CD30. In order to investigate this, we over-expressed wild-type
(WT) CD30 or the p.Cys273Tyr variant in HeLa cells and com-
pared levels of CD30 protein generated. CD30 is expressed as a
precursor protein that undergoes post-translational modification,
that turns it into the mature form of the protein26,27. Lysates from
cells expressing the p.Cys273Tyr variant had higher ratio of the
precursor form to the mature form than that observed in cells
expressing the WT CD30 (P= 4.2 × 10−7, two-tailed paired t-test;
Fig. 2b and Supplementary Fig. 1). Moreover we observed both a
lower cellular surface expression on p.Cys273Tyr than WT CD30
cells (P= 7.4 × 10−5, two-tailed paired t-test, Fig. 2c) and a sig-
nificantly lower amount of sCD30 in the culture supernatants of
cells expressing the p.Cys273Tyr variant (P= 5.5 × 10−4, two-
tailed paired t-test, Fig. 2d). In line with this, cell surface
expression of CD30 was significantly lower on in vitro stimulated
peripheral blood mononuclear cells (PBMCs) derived from p.
Cys273Tyr heterozygote carriers (P= 1.5 × 10−2, two-tailed
Wilcoxon matched-pairs signed rank test; Fig. 2e). We recruited
six p.Cys273Tyr homozygotes and matched non-carriers and
measured CD30 surface expression both on stimulated PBMCs
and Epstein-Barr virus transformed lymphoblasts. Surface
expression of CD30 tended to be lower on EBV transformed
lymphoblasts from homozygous carriers than from matched non-
carriers (P= 0.063, two-tailed Wilcoxon matched-pairs signed
rank test), whereas no difference was detected when comparing
stimulated PBMCs from homozygous carriers to matched non-
carriers (P= 0.22, two-tailed Wilcoxon matched-pairs signed
rank test) (Supplementary Fig. 2). However, these results warrant

further investigation with larger number of homozygotes espe-
cially because of the inherent variance of the PBMC stimulation
assay. Together our data suggest that the missense variant, lead-
ing to the disruption of a disulfide bond between Cys in positions
273 and 259, reduces trafficking of the protein to the cell surface.
Furthermore, reduced levels of sCD30 were observed in the cell
culture supernatant of in vitro stimulated PBMCs from hetero-
zygote carriers (P= 3.1 × 10−5, two-tailed Wilcoxon matched-
pairs signed rank test) compared with those from non-carriers
(Fig. 2f). This is consistent with reduced surface-expression
although an effect of the variant on the CD30 shedding itself
cannot be excluded28.

Gain of function variant in TGFBR1. Another low frequency
variant of special interest, is a 3 prime UTR variant, rs41283642_T
(EAF= 1.9% (ICE)/3.4% (UK)), in TGFBR1 that associated with
reduced asthma risk (P= 2.16 × 10−10, OR= 0.89). eQTL analysis
showed that in blood the variant associated with 15.2% increase in
TGFBR1 expression per allele (P= 7.24 × 10−101, effect= 1.18 SD,
which is the most significant eQTL for TGFBR1; Fig. 3a, b, Sup-
plementary Data 6). rs41283642_T changes a recognition site for
microRNA (miR) miR-142-3p (Fig. 3c). miR-142-3p has previously
been shown by others29 to bind to the 3 prime UTR site in TGFβR1
and therby repress TGFβR1 expression at both RNA and protein
levels. Interestingly, miR-142-3p is one of only three miRs reported
to have an increased expression in severe asthmatic lungs30.
Together these data suggest that rs41283642_T reduces the binding
of miR-142-3p to TGFβR1 transcripts leading to increased TGFβR1
expression and through that protection against asthma.

Unreported common asthma risk variants. Four of the 16 pre-
viously unreported common variants are missense, rs2228552_T in
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Fig. 1 Sequence variants associating with asthma. Manhattan plot for the Iceland-UK BB meta analyses of asthma (Ncases= 69,189). In all, 56 regions
harbor genome-wide significant signals. Variants are plotted by chromosomal position (x-axis) and −log10P values (y-axis). Dotted line indicate the
different P value thresholds applied based on variant annotation. The adjusted significance thresholds are represented by horizontal dashed line from
bottom to the top in the following order: 2.6 × 10−7 for variants with high impact (N= 8,464), 5.1 × 10−8 for variants with moderate impact (N= 149,983),
4.6 × 10−9 for low-impact variants (N= 2,283,889), 2.3 × 10−9 for other variants in DNase I hypersensitivity sites (N= 3,913,058) and 7.9 × 10−10 for all
other variants (N= 26,108,038).
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COL16A1 (Thr62Lys/Thr52Met) and rs34173062_A in SHARPIN
(Ser17Phe) (Table 1) or highly correlated (r2 > 0.8) with coding
variants in NSMCE1 (rs34939984) or SYMPK, SIX5 and BHMG1
(rs8103278) (Supplementary Data 7). COL16A1 encodes the α-
chain of type XVI collagen, involved in integrity of the extracellular
matrix in association with fibril forming collagens type I and II31.
Increased local collagen type I production has been reported in
asthma patients, possibly mediated by TGFβ secreting eosino-
phils32. The rs2228552_T associated with increased asthma risk
(P= 2.6 × 10−8, OR= 1.04) and was highly correlated (r2 > 0.8)
with the top eQTL for increased COL16A1 expression in fibroblasts
(Supplementary Data 8). Thus the COL16A1 association with
asthma may be through its role in airway remodeling. SHARPIN
encodes a component of the LUBAC complex, which plays a role in
NFκB activation and regulation of inflammation33. The SHARPIN
missense variant, Ser17Phe, associated with increased risk of asthma
(P= 1.00 × 10−8, OR= 1.08) and increased eosinophil count in
blood22. Furthermore, homozygous loss of function mutations in
Sharpin mice induce extensive eosinophilic inflammation in mul-
tiple organs, including lung, esophagus and skin34,35.

We found four independent signals at the IL4 receptor alpha
(IL4Rα)/IL21R locus, including the intronic variant rs6498021_G
in IL21R that was highly correlated (r2 > 0.8) with the top eQTL
signal for decreased IL21R expression in blood (Supplementary
Data 6). Polymorphisms at the IL4Rα locus have been associated
with asthma in candidate gene studies but not in GWAS36–39.
Biologicals targeting IL4Rα show promise in the treatment of
persistent asthma40 but the role of IL21R in asthma has been less
studied. Other loci of interest include NPNT, TNFAIP8, FADS1,
GNA15, and IL6. Taken together, based on analysis of coding
variants, eQTLs in different tissues, enhancer and promoter
signals in CD4+ Th cells we found evidence of a single candidate
gene for 8 out of the 19 previously unreported asthma variants
(Supplementary Data 9).

Signals at known asthma loci. Among the 24 previously iden-
tified loci were IL1RL1/IL18R1, GATA3, TLR1, TSLP, HLA, IL4/
IL5/IL13, RORA, GSDMB, SMAD3, and IL339,41. Our top signal
at the SMAD3 locus, rs72743461_A, correlated with reported
asthma signals16,42,43 (Supplementary Data 2) but we further
identified 3 secondary signals (Supplementary Data 3), includ-
ing rs117683492_A, that associated with increased asthma risk
and was the top eQTL reducing SMAD3 expression in blood
(Supplementary Tables 1 and 6). SMAD3 is a signaling molecule
downstream of TGFβR and Smad3 KO mice show defective
TGFβ-mediated repression of cytokine production and cell
proliferation44. Together, the TGFBR1 3 prime UTR variant
rs41283642_T described above and rs117683492_A at the
SMAD3 locus point to increased risk of asthma in individuals
with defective TGFβR1 signaling in line with its known role in
immunosuppression45. rs6926894 is the top variant in the HLA
region (P= 2.5 × 10−126, OR= 1.16). Given the complicated LD
in the HLA region we tested association of HLA alleles with
asthma in the Icelandic dataset finding strongest association
with HLA-DRB1*04 (P= 2.06 × 10−25) that largely explains the
rs6926894 association (Supplementary Data 10).

Association of asthma variants with eosinophil count. We have
previously used the well-established link between eosinophilic
airway inflammation and asthma to discover common sequence
variants in IL1RL1 and IL33 that associate strongly with blood
eosinophil counts and risk of asthma8. Therefore, we tested the
association of our 88 asthma variants with eosinophil blood
counts in Iceland and UK biobank. Of those, 69 associate sig-
nificantly with eosinophil count after adjusting for the number ofT
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variants tested, with the asthma risk allele associating with higher
eosinophil count for 67 of the variants (P < 0.05/93= 5.4 × 10−4;
Supplementary Data 11). Among the 20 variants that did not
associate with eosinophil count and deviate from the overall
correlation between asthma risk and eosinophil count are variants
at the filaggrin family member FLG/HRNR locus, suggesting their
role in non-eosinophilic asthma (Supplementary Fig. 3).

Effect of asthma variants on different asthma sub-phenotypes.
Given the known heterogeneity of asthma we tested the effect of
the asthma variants on three asthma sub-phenotypes, allergic
asthma (AA), early (EOA) and late (LOA) onset asthma. Overall,
the effects of the 88 asthma variants were similar on the sub-
phenotypes although for some of the variants (e.g at FLG/HRNR
locus) the effect was stronger on EOA than LOA (Fig. 4a). Fur-
ther, the effect of IL33 (rs149045797) variant was largest on EOA
(OR= 0.53, P= 3.8 × 10−9) followed by LOA (OR= 0.71, P=
5.1 × 10−9) with smallest effect on AA (OR= 0.93, P= 0.70;
Fig. 4 and supplementary Data 12). This variant is fully correlated
(r2= 1) with a loss of function variant (rs146597587) previously
reported to associate with reduced IL33 mRNA expression and
asthma risk and in line with the results reported here, the largest
effect was observed in young children who were hospitalized at
least 4 times before the age of 6 years due to asthma exacerbation
(OR= 0.24, P= 0.04)9. However, 58% of those young children
had atopic diagnosis before 6 years of age46 indicating that the
IL33 association is driven by severe asthma rather than non-AA

exclusively. We note that we lack information on AA for a large
part of our samples, especially in the UK biobank samples where
only 542 (1% of all asthma cases) have this diagnosis and there is
an overlap both with the early and late onset asthma cases.
Therefore, the IL33 association with asthma severity in AA and
non-AA warrants further investigation.

Conversely, the effect of the FLG variant was stronger on AA
than on LOA and the effect of a variant at the GATA3 locus was
stronger on AA than on either EOA or LOA (Fig. 4c). These
results point to a partly distinct genetic architecture behind
the three asthma phenotypes tested in our analysis in line with the
clinical hetereogeneity. Our results show that certain sequence
variants have stronger effect in EOA than LOA indicating that
genetics may play a larger role in EOA.

Genetic correlation between asthma and allergic phenotypes.
Recently, 136 variants were reported to associate with a combined
allergic phenotype (asthma, hay fever and/or eczema)11. The
overall effects of these 136 allergy variants correlated well with the
effects in our asthma meta-analysis, although several markers
(e.g. TSLP, GATA3, SMARCE1) demonstrated weak correlation
(Supplementary Fig. 4). This is in line with reported genetic
correlation between asthma and allergic diseases (hay fever/
allergic rhinitis or eczema)6.

We also tested the 88 independent asthma variants for
association with different allergic phenotypes, (Supplementary
Table 1). Interestingly, the effects of these variants on asthma
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Fig. 2 Variant associating with reduced asthma risk affects protein expression and shedding of CD30. a Locus plots showing association with asthma
where the lead variant p.Cys273Tyr (rs2230624) is colored in purple. Other variants are colored by degree of correlation (r2) with the lead variant.
b Protein simple WES analysis of CD30 expression in cell lysates from HeLa cells overexpressing CD30 wild-type or variant p.Cys273Tyr CD30; graph
showing ratio of CD30 precursor/mature intensity. c Surface expression of CD30 on HeLa cells over-expressing wild-type or p.Cys273Tyr CD30 measured
by flow cytometry, displayed as geometric mean of fluorescense intensity (gMFI). Histogram showing a representative CD30 surface expression p.
Cys273Tyr (red) and CD30 WT (blue). d sCD30 levels (ng/ml) in cell culture supernatant from HeLa cells over-expressing wild-type or p.Cys273Tyr
CD30. e Surface expression of CD30 on stimulated PBMCs from heterozygous p.Cys273Tyr carriers and age and gender matched non-carriers, measured
by flow cytometry, displayed as gMFI. Histogram showing a representative CD30 surface expression from one pair of PBMCs in heterozyogus CD30
p.Cys273Tyr carrier (red) and age and gender matched non-carrier (blue). f sCD30 levels (ng/ml) in cell culture supernatant of PBMCs from p.Cys273Tyr
heterozygotes and non-carriers. The dots in plots b–d represent individual experiments. The dots in plots e and f represent individual donors. Lines in panel
b–d indicate median level. In plots e and f the line between carriers and non-carriers indicated age and gender matched pairs.. Two-tailed Wilcoxon
matched-pairs signed rank test was used to test for significant differences in PBMCs. Two-tailed paired t-test was used to test for significant differences in
HeLa cells. Source data are provided as a Source Data file.
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correlated significantly with their effects on allergic rhinitis (AR;
P= 3.1 × 10−13, r2= 0.68; Supplementary Fig. 5a) but not with
atopic dermatitis (AD; P= 9.80 × 10−2, r2= 0.18; Supplementary
Fig. 5b). Out of the 88 asthma loci, two variants at the same locus,
a loss of function variant in FLG (rs61816761) and intergenic
variant (rs12123821,close to HRNR) had greatest effect on AD
(Supplementary Data 12). Further, significant correlation was
observed between effects of the asthma variants on asthma and on
nasal polyps (NP) as well as on chronic rhinosinusitis (CRS) with
NP (CRSwNP) but not with CRS without NP (CRSsNP) in
agreement with differences in the pathogenesis of these closely
related phenotypes47 (Supplementary Fig. 5c–f). Variants at IL33,
GATA3, BACH2, HLA and TSLP loci significantly associated with
>3 asthma/allergic phenotypes ((P < 0.05/(88 × 9)= 5.7 × 10−5),
adjusted for number of variants and phenotypes tested;
Supplementary Data 12), most of which are important for
generation and function of ILC2 and Th248. Taken together, the
correlation of effects of the 88 asthma variants was stronger with
respiratory allergic phenotypes of T2 than with AD or the Th1
driven CRSsNP. However, we observed substantial overall genetic
correlation between asthma and AD as well as between asthma
and allergic rhinitis indicating that other variants than the 88
reported here play a significant role in the genetic link between

asthma and AD (Supplementary Table 2). Since this is a
retrospective study, not designed to study co-morbidities of
asthma and allergic diseases, we cannot exclude that some of the
overlapping association of certain sequence variants with e.g.
asthma and AD might be due to overlap of the two phenotypes.
However, only 980 out of 16,247 asthma cases in Iceland had the
AD diagnosis (6%) while AD was hardly reported as a single
disease in UK biobank, making it impossible to accurately define
asthmatics without AD.

Pathway analysis. Pathway analysis was performed using
DEPICT49 to search for the biological connectivity between the
asthma association signals. DEPICT prioritized 71 (FDR < 0.05)
known genes (Supplementary Data 13) and identified 787 sig-
nificantly (FRD < 0.01) enriched gene sets, the majority involved
in T cell biology, mainly implicating CD4+ T cells, regulation of
their activation, responses and physiology (Supplementary
Data 14).

In summary, our study considerably expands the number of
asthma susceptibility loci and confirms many previous findings.
The results highlight the role of Th cells in asthma in line with
imbalanced T cell regulation reported to play a critical role in
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asthma pathogenesis50,51. We show evidence that two low
frequency variants in TNFRSF8 and TGFBR1 associate with
decreased asthma risk through loss of function and gain of
function, respectively. Other susceptibility loci point to genes
involved in inflammation and airway remodeling.

Methods
Study sample sets for asthma, allergy phenotypes, and eosinophil count.
Asthma in the UK biobank was defined as ICD10 diagnoses in fields 41202 or
41204, including anyone of J45.0, J45.1, J45.8, J45.9, and J46 and/or self-reported
by the non-cancer illness code, self-reported during verbal interview (data-field
20002) with a code for asthma (1111).

Icelandic asthma patients over 18 years of age were recruited who attended an
asthma clinic or emergency rooom at the National University Hospital of Iceland
or the Icelandic Medical Center (Laeknasetrid) during the years 1977 to 2017.
Asthma diagnosis was based on a combination of physician’s diagnosis and ICD10
diagnosis, including anyone of J45.0, J45.1, J45.8, J45.9, and J46 and/or self-
reported by a positive reply to the question: has a doctor confirmed your asthma
diagnosis. Atopy status determined by skin prick testing and age of onset was
available for part of the asthma cohort both in Iceland and UK biobank. Early onset
was defined as first diagnosis ≤17 years of age and late onset as first diagnosis
>17 years of age. Late onset asthma diagnosis from Iceland contains both where the
first diagnosis was at or after 18 years of age and where the first diagnosis is
unknown. In total we had 16,247 asthma cases and 346,486 controls from Iceland
and 52,947 cases and 355,713 controls from the UK biobank. Estimating the
effective number of cases as 2 × Na × Nc / (Na+Nc)/GC, where Na and Nc are the
number of cases and controls, respectively, and GC is the genomic adjustment
factor, estimated using LD-score regression12, we can calculate the effective sample
size for Iceland to be Neff= 22,689 and UK biobank to be Neff= 84,396. GC=
1.368 in Iceland and GC= 1.092 in UK biobank. Characteristics of Icelandic and
UK biobank asthma cohorts is further given in Supplementary Table 3.

Allergic rhinitis combines doctoral diagnosis of allergic rhinitis from Iceland
and a questionnare data from UK biobank on hayfever or allergic rhinitis (Non-
cancer-illness code 1387). As only 42 individuals had the ICD10 code for Atopic
dermatitis (L20) in UK biobank we ran meta-anlysis with our Icelandic list (N=
8325) derived both from physician’s diagnosis and ICD10 code (L20) together with
published meta-analysis on AD52 downloaded from the GRASP database [https://
grasp.nhlbi.nih.gov/FullResults.aspx], to study this phenotype. Other allergy
diagnosis were based on ICD10 codes from UK biobank and either physician’s
diagnosis or ICD10 codes from Iceland. The allergy phenotypes used were: Nasal
polyps (ICD10:J33), chronic sinusitis (ICD10:J32), chronic sinusitis with nasal
polyps (combined: ICD10:J32 and J33), and chronic sinusitis without nasal polyps
(ICD10:J32 without ICD10:J33). Number of genotyped individuals in each cohort
are listed in Supplementary table 1. Icelandic controls were participants from
various deCODE genetics programs.

We obtained eosinophil counts from three of the largest laboratories in Iceland
(measurements performed between the years 1993 and 2015). The circulating
eosinophil counts were standardized to a standard normal distribution using
quantile-quantile standardization and then adjusted for sex, year of birth, and age
at measurement, as previously described8,9. A total of 251,307 Icelanders with
eosinophil counts were included in the study. In the UK biobank we had eosinophil
counts for a total of 396,822 individuals that were adjusted for sex, year of birth,
age at measurement, and the first 40 principal components, then inverse normal
transformed.

All participating individuals who donated blood signed informed consent. The
personal identities of participants were encrypted using a third-party system
approved and monitored by the Icelandic Data Protection Authority53. The study
was approved by the National Bioethics Committee in Iceland (Approval no. VSN
14-099).

Whole-genome sequencing and imputation. The GWASs in Iceland were per-
formed with 32.5 million markers identified through whole-genome sequencing of
15,520 Icelanders to an average genome-wide coverage of 34X and subsequently
imputed into 151,677 chip-typed individuals, as well as their first and second
degree relatives. The imputation has been extensively described in recent pub-
lications54. Genotyping of UK biobank samples was performed using a custom-
made Affymetrix chip, UK BiLEVE Axiom55, and with the Affymetrix UK Biobank
Axiom array56. Imputation was performed by the Wellcome Trust Centre for
Human Genetics, using the Haplotype Reference Consortium (HRC) and the
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Source data are provided as a Source Data file.
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UK10K haplotype resources. This yields a total of 96 million imputed variants,
however only 27 million variants imputed using the HRC reference set passed the
quality filters used in our study.

Association testing and meta-analysis of disease phenotypes. Logistic
regression was used to test for association between variants and disease, assuming a
multiplicative model, treating disease status as the response and expected genotype
counts from imputation as covariates. We used LD score regression12 to account
for inflation in test statistics due to cryptic relatedness and stratification. We chose
to include related individuals in the analysis as removing related individuals in the
heavily genotyped Icelandic population would lead to the removal of most parti-
cipants. Including related individuals while accounting for genomic control has
proven to be a robust method9,57,58 that does not create false positives as observed
in the QQ plots (Supplementary Fig. 6; especially stratified on frequency). Software
developed at deCODE genetics57 was used to test for association in both popula-
tions. Sex, age, and county of origin were included in the logistic regression for the
Icelandic dataset, and sex, age and the first 40 principal components for the UK
biobank dataset. Imputation information criteria was set so that variants below 0.8
were excluded from the analysis.

Variants were mapped to NCBI Build38 positions and subsequently variants in
the UK biobank imputation dataset were matched to the variants in the Icelandic
dataset based on allele variation. Mantel-Haenszel model59 was used to combine
the results from the different study groups in which the groups were assumed to
have a common OR but were allowed to have different population frequencies for
alleles and genotypes. A likelihood ratio test was used to test heterogeneity by
comparing the null hypothesis of the effect being the same in all populations to the
alternative hypothesis of each population having a different effect. Heterogeneity
was quantified by I2 statistics which lies between 0 and 100% and describes the
proportion of total variation in study estimates that is due to heterogeneity.

Variants were split into five classes based on their genome annotation and
associations were considered significant if the p-value in the combined dataset was
below a weighted genome-wide significance threshold based on variant annotation.
With 32,463,443 sequence variants being tested the weights given in
Sveinbjornsson et al. were rescaled to control the family-wise error rate (FWER)60.
The adjusted significance thresholds are 2.6 × 10−7 for variants with high impact
(N= 8,464), 5.1 × 10−8 for variants with moderate impact (N= 149,983), 4.6 ×
10−9 for low-impact variants (N= 2,283,889), 2.3 × 10−9 for other variants in
DNase I hypersensitivity sites (N= 3,913,058) and 7.9 × 10−10 for all other variants
(N= 26,108,038). Approximate conditional analyses (COJO), implemented in the
GCTA software61 were performed on lead variants, defined by lowest P value at
each genomic region (locus), to identify possible secondary signals. LD between
variants was estimated using a set of 8700 whole-genome –sequenced Icelandic
individuals. The analysis was restricted to variants within 1 Mb from the index
variants and that were present in both the Icelandic and the UK biobank datasets.
Based on the number of variants tested within the 55 loci (excluding the HLA
region, N= 3,993,179), we chose a conservative P value threshold of <5 × 10−8 for
secondary signals.

Association testing and meta-analysis of eosinophil counts. Linear mixed
model implemented by BOLT-LMM62 was used to test for association between
sequence variants and eosinophil counts, assuming an additive genetic model. We
assume that the quantitative measurements follow a normal distribution with a
mean that depends linearly on the expected allele at the variant and a
variance–covariance matrix proportional to the kinship matrix63. We used LD
score regression12 to account for inflation in test statistics due to cryptic relatedness
and stratification. To combine the deCODE and UK biobank results, we used a
fixed-effect inverse variance method based on effect estimates and standard
errors59. We used a likelihood-ratio test to compute all P values.

Genetic correlation. The cross-trait LD score regression method12 was used to
estimate the genetic correlation between pairs of traits using the summary statistics
from the Icelandic and UK biobank datasets. Results for about 1.2 million variants,
well imputed in both datasets,were used in this analysis. and pre-computed LD
scores for European populations (downloaded from [https://data.broadinstitute.
org/alkesgroup/LDSCORE/eur_w_ld_chr.tar.bz2] were used for LD information.
Genetic correlation between Icelandic GWAS summary statistic was calculated for
one trait and the UK biobank GWAS summary statistic for the other traits, and the
vice versa, and those results subsequently meta-analyzed, to avoid bias due to
overlapping samples. For AD, we also calculated genetic correlation based on the
external meta-analysis dataset downloaded from the GRASP database [https://
grasp.nhlbi.nih.gov/FullResults.aspx].

Cis-eQTL analysis. Cis-eQTL effects were analyzed using RNA sequencing data
from Icelandic samples. The generation of poly(A)+ cDNA sequencing libraries,
RNA sequencing, and data processing were carried out as described before64,65.
Two tissue types were available for this analysis: whole blood and adipose tissue. In
total, whole blood from 7,007 individuals and adipose tissue from 686 individuals
were used. To estimate the association between sequence variant and gene
expression, a generalized linear regression assuming additive genetic effect was

used on rank-transformed gene expression estimates. GTEx eQTL´s for relevant
tissue types (whole-blood, lung, esophagus mucosa, spleen, lymphocytes and
fibroblasts) were intersected with lead GWAS association variants, and those in LD
(r2 > 0.80) with the lead variant. We then report eQTLs where the top eQTL signal
is in LD with lead GWAS association variants.

Enhancer and transcription start site analysis. Variants in linkage dis-
equilibrium (LD) with the lead variants at the previously unreported loci were
identified on the basis of in-house genotype data using r2 > 0.8 for pairwise com-
parison of the nearest 100,000 variants to define an LD class. These variants were
then annotated, see results in Supplementary Data 9. Chromatin states for CD4+
T-cells were obtained through ChromHMM analyses of available epigenome data
from NIH Roadmap Epigenome Mapping Consortium for 11 histone marks
analyzed by ChIP-seq, together with open chromatin regions analysed by DNase-
seq, integrated into 25 discrete chromatin states66 downloaded from [http://www.
roadmapepigenomics.org]. The association variants were then annotated for
chromatin states involving enhancers (EnhA1, A2, W1, or W2) or DHS sites (DNA
hypersensitivity sites, reflecting open chromatin configuration). To identify
enhancer-gene targets, we made use of the joint effect of multiple enhancers
(JEME) resource67. Variants within or proximal (±25 bp) to transcriptional start
sites were annotated on the basis of CAGE sequencing data derived from the
Fantom5 project68 downloaded from [fantom.gsc.riken.jp/5/data]. 3′UTR variants
in predicted miRNA target sites were annotated by making use of data derived
from Targetscan v7.269 targetscan.org.

Generation of CD30 variants. Full-length CD30 cDNA (NM_001243) in
pCMV6-Entry Myc-DDK tagged mammalian expression vector was obtained from
Origene (RC219819). Cys273Tyr mutant plasmid was generated using Q5 Site-
directed mutagenesis kit (New England BioLabs, E0554S) with mutagenesis pri-
mers F-5′-AAGACGCCATATGCATGGAAC-3′ and R-5′-CTCCACAAGGTCAT
CTCG-3′ (Supplementary Table 4). Plasmids were transformed into NEB Stable
Competent E.coli (New England BioLabs, C3040H) and spread on LB agar plates
containing 25 µg/ml kanamycin. Colonies were expanded in LB medium con-
taining 25 µg/ml kanamycin. Plasmids were purified using Qiagen plasmid maxi kit
(Qiagen, 12163), following the manufacturer’s protocol. The sequences of WT and
Cys273Tyr plasmids were confirmed by Sanger sequencing.

Over expression of CD30 and CD30 Cys273Tyr in Hela cells. One day prior to
transfection 0.1 × 106/ml Hela cells (Public Health England 93021013) were seeded
in DMEM medium (ThermoFisher 11995-065) supplemented with 10% fetal
bovine serum (ThermoFisher 10500-064) and 50 units/ml penicillin and 50 µg/ml
streptomycin (ThermoFisher 15070-063). Cells were incubated at 37 °C with 5%
CO2 in a humidified incubator.

After 24 hours cells were transfected using FuGENE®HD reagent (Promega
E2312) following manufacture’s protocol. In short DNA was diluted in OptiMem
medium (ThermoFisher 31985-047) and FuGENE®HD reagent was added at a
FuGENE®HD reagent: DNA ratio 3:1.

48 hours after transfection media was removed from cells and they were washed
once with PBS. Cells were dislodged from wells by incubation for 5 min at 37 °C
using PBS+ 2 µM EDTA. Cells were collected and spun down at 300 × g for 5 min,
resuspended in 1 ml PBS+ 2% FBS and spun down again. Cell pellet was snap
frozen and kept in −80 °C for subsequent lysis preparation.

Hela lysis preparation. Cells were lysed using 100 µl of RIPA buffer with 1:100
Halt protease and inhibitor cocktail (Thermo Scientific 78430). Lysates were kept
on ice for 10 min and subsequently spun down at 4 °C for 15 min at 14,000 × g.
Total protein concentration in lysates was estimated using the Pierce BCA protein
assay kit (ThermoFisher 23227).

EBV cell culture. EBV transformed lymphoblasts from homozygous carrier and
non-carrier of Cys273Tyr were cultured in RPMI1640 (ThermoFisher 61870-036)
supplemented with 10% fetal bovine serum (ThermoFisher 10500-064), 50 units/
mL penicillin, 50 µg/mL streptomycin (ThermoFisher 15070-063) and 20 mM
HEPES (ThermoFisher 15630-056). Cells were incubated at 37 °C and 5% CO2 in a
humidified incubator. The cells were seeded at 5 × 105 cells/ml in fresh media
2 days prior to harvesting.

Simple Western by size quantification of CD30 signal in Hela. Total of
0.05 mg/ml Hela lysate was run in WES from Protein Simple following manu-
facture’s protocol using WES 12-230 kDa separation module (Biotechne SM-
W002-1). Antibody used: Purified mouse anti human CD30 (clone BerH8) (BD
Biosciences cat: 555827) 1:100 dilution. Precursor CD30 signal was quantified as a
143 kDa peak and mature CD30 signal as a 207-kDa peak. As a normalization for
total protein we used WES Biotin detection module (Biotechne DM-004) and
followed manufacture’s protocol. CD30 precursor and mature signals were nor-
malized to total protein.
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Flow cytometry analysis on Hela, EBV, and stimulated PBMCs. EBV cells were
harvested, counted and diluted to 1 × 106 cell/ml plated in a 96 well V bottom plate.
Cells were then stained with primary antibodies against PE/Cy7 anti-human CD30
(Biolegend 333918), clone BY88 reported to bind at similar amino acid residues as
Ber-H670 that has been shown to bind epitope at the N-terminus of the peptide
chain up to amino acid residue 9371 thus unaffected by a possible effect of our
variant at amino acid 273. The cells were analyzed for expression of CD30 by FACS
(gating strategies shown in Supplementary Fig. 7). Cryopreserved PBMC were
thawed and and plated for culture in RPMI1640 (ThermoFisher 61870-036) sup-
plemented with 10% fetal bovine serum (ThermoFisher 10500-064), 50 units/mL
penicillin, 50 µg/mL streptomycin (ThermoFisher 15070-063), 20 mM HEPES
(ThermoFisher 15630056) and 30 IU/ml IL-2 (R&D Systems AFL202) in a 24-well
TCR plate and rested overnight. Cells were then stimulated for 48 hours with anti
CD3/CD28 dynabeads (ThermoFisher 11131D). At 48 hours cells were harvested
and stained with directly PE conjugated antibody (Biolegend 333906clone: BY88))
and analyzed for expression of CD30 by FACS. Two-tailed Wilcoxon matched-
pairs signed rank test was used to test for significant differences in cell surface
expression of CD30 on PBMCs and EBVs. Two-tailed paired t-test was used to test
for significant differences in cell surface expression of CD30 on HeLa cells.

Soluble CD30 measured by ELISA. Soluble CD30 was measured by sandwich
ELISA (ThermoFisher BMS240INST) in a 1/4 dilution and according to manu-
facturer’s instructions. Two-tailed Wilcoxon matched-pairs signed rank test was
used to test for significant differences in levels of sCD30 from PBMC cultures.
Two-tailed paired t-test was used to test for significant differences in levels of
sCD30 from HeLa cell cultures.

Pathway analysis. We used DEPICT49 to (1) prioritize candidate causal genes at
associated loci and (2) highlight enriched pathways where genes at associated loci
are highly expressed. DEPICT uses gene expression data derived from a panel of
77,840 mRNA expression arrays together with 14,461 existing gene sets based on
molecular pathways derived from experimentally verified protein–protein inter-
actions72, genotype–phenotype relationships from the Mouse Genetics Initiative73,
Reactome pathways74, KEGG pathways75, and Gene Ontology (GO) terms76.
DEPICT reconstitutes these 14,461 gene sets by calculating for each gene the
probability of membership in each gene set, based on similarities across the
expression data. Using these membership probabilities and a set of trait-associated
loci, DEPICT tests whether any of the 14,461 reconstituted gene sets are enriched
for genes at the trait-associated loci, and prioritizes genes that share predicted
functions with genes at other trait-associated loci. We ran DEPICT using all 88
asthma-associated variants.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The sequence variants from the Icelandic population whole-genome sequence data have
been deposited at the European Variant Archive under accession code PRJEB15197. The
GWAS summary statistics are available at [https://www.decode.com/summarydata].
The authors declare that the data supporting the findings of this study are available within
the article, its Supplementary Information file, and upon reasonable request. The source
data underlying Figs. 1–4 and supplementary Figs. 1–5 are provided as Source Data file.

Code availability
We used publicly available software (URLs listed below) in conjunction with the above
described algorithms in the sequencing processing pipeline (Whole-genome sequencing,
Association testing, RNA-seq mapping and analysis): BWA 0.7.10 mem [https://github.
com/lh3/bwa]; GenomeAnalysisTKLite 2.3.9 [https://github.com/broadgsa/gatk/]; Picard
tools 1.117 [https://broadinstitute.github.io/picard/]; SAMtools 1.3 [http://samtools.github.
io/]; Bedtools v2.25.0-76-g5e7c696z [https://github.com/arq5x/bedtools2/]; Variant Effect
Predictor [https://github.com/Ensembl/ensembl-vep]; BOLT-LMM [https://data.
broadinstitute.org/alkesgroup/BOLT-LMM/downloads/]; GTEX data [http://www.
gtexportal.org]; GWAS catalog [https://www.ebi.ac.u/gwas/home]; Uniprot [https://www.
uniprot.org]; Roadmap epigenomics project [http://www.roadmapepigenomics.org];
Fantom5 [fantom.gsc.riken.jp/5/data]
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