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Abstract 

The aim of genome-wide association studies (GWAS) is to identify sequence variants that 

influence human traits or diseases. Previous GWAS have mostly focused on finding 

variants that affect the mean of a trait or disease risk under an additive model. However, 

variants can contribute to traits in different ways, such as under a recessive mode of 

inheritance and by affecting the variance of quantitative traits. In this thesis we use 

different statistical models to detect variants associating with sensory traits and explore 

relationships between correlated phenotypes. Furthermore, we implement a variance model 

to detect sequence variants that affect the variance of quantitative traits and we explore the 

effect of variants on the variance of glucose levels.  

In Paper I we estimate the effect of 36 glucose variants on the between subject and within 

subject variance of glucose levels. We found that some variants that affect the mean also 

affect the variance. The trend was that variants that increased mean and between subject 

variance of fasting glucose increased type 2 diabetes (T2D) risk, while variants that 

increase the mean but reduce the variance do not. We found that the effect of variants on 

the between subject variance of glucose levels are as important for genetic risk prediction 

of T2D as the effect of variants on the mean. Furthermore, the variants that increased 

between subject variance created correlation between close relatives and will thus increase 

heritability estimates.  

In Paper II we conduct a GWAS on structural measures of the corneal endothelium that are 

used in clinic to evaluate the health of the cornea. We detected associations at 7 novel loci, 

one of which is an intergenic variant near ANAPC1 that strongly associates with decreased 

endothelial cell density and accounts for a quarter of the population variance of cell 

density. The variant near ANAPC1 does not affect risk of corneal diseases or glaucoma in 

our data, which shows that even though low endothelial cell density is associated with 

ocular diseases, low cell density does not in and of itself lead to the development of 

disease. 

In Paper III we conduct GWAS meta-analysis of age-related hearing impairment (ARHI) 

using both the additive and recessive models. Previous GWAS on ARHI have reported 

common variants with small to moderate effects, while in this study, 13 of the 21 novel 

variants have rare genotypes with large effects. Six of the novel variants associate with 

ARHI under the recessive model, some of which would not have been detected under the 

additive model. We constructed an ARHI genetic risk score (GRS) using common variants 

and show that individuals in the top GRS decile develop ARHI 10 years earlier than those 

in the bottom decile, and their risk of ARHI is comparable to carriers of rare highly 

penetrant ARHI variants while the rare ARHI variants predispose to more severe ARHI 

than the common variants.  

Our findings shed a new light on the genetics of glycemic traits, the corneal endothelium 

and ARHI and highlight the importance of applying different statistical models when 

analyzing the effects of variants on phenotypes. 





 

 

 

Útdráttur 

Markmið víðtækra erfðamengisleita er að finna erfðabreytileika sem hafa áhrif á mannlega 

eiginleika og sjúkdóma. Hingað til hafa víðtækar erfðamengisleitir lagt áherslu á að finna 

erfðabreytileika sem hafa áhrif á meðaltal mælanlegra eiginleika eða áhættu á sjúkdómum 

með því að nota samleggjandi líkan. Breytileiki í erfðamenginu getur einnig haft áhrif á 

mannlega eiginleika á mismunandi hátt, til dæmis með víkjandi hætti eða með því að hafa 

áhrif á dreifni mælanlegra eiginleika í stað meðaltals. Í þessari ritgerð er notast við 

mismunandi tölfræðilíkön til að finna erfðabreytileika sem hafa áhrif á eiginleika 

hornhimnunnar og heyrn, ásamt því að rannsaka orsakasambönd milli tengdra svipgerða. 

Einnig eru útfærð dreifnilíkön til að finna sambönd milli erfðabreytileika og dreifni 

mælanlegra gilda og skoðuð áhrif erfðabreytileika á dreifni glúkósa í blóði.  

Í grein I voru metin áhrif 36 þekktra glúkósa erfðabreytileika á dreifni glúkósamælinga 

milli einstaklinga og innan einstaklinga. Í ljós kom að sumir erfðabreytileikar sem hafa 

áhrif á meðaltal glúkósa hafa einnig áhrif á dreifnina. Einnig sást að erfðabreytileikar sem 

hafa áhrif á aukið meðaltal af glúkósa og aukna dreifni milli einstaklinga auka einnig líkur 

á sykursýki, á meðan þeir sem juku meðtalið en drógu úr dreifni hafa ekki áhrif á 

sykursýki. Einnig var sýnt fram á að erfðabreytileikar sem auka dreifni glúkósa milli 

einstaklinga búa til fylgni milli skyldra einstaklinga og hafa þar af leiðandi áhrif á mat á 

arfgengni. 

Í grein II var framkvæmd víðtæk erfðamengisleit fyrir hornhimnumælingar og fundust 7 

erfðabreytileika sem voru áður óþekktir. Einn af þeim er erfðabreytleiki nálægt ANAPC1 

sem hefur veruleg áhrif á frumuþéttleika í innþekju hornhimnunnar og útskýrir fjórðung af 

heildardreifni frumuþéttleika í þýðinu. Þessi erfðabreytileiki hefur hinsvegar ekki áhrif á 

hornhimnusjúkdóma eða gláku, sem sýnir að þrátt fyrir fylgni milli frumuþéttleika 

innþekjunnar og augnsjúkdóma, þá veldur lítill frumuþéttleiki ekki auknum líkum á 

þessum augnsjúkdómum.  

Í grein III var framkvæmd safnrannsókn víðtækra erfðamengisleita á aldurstengdri 

heyrnarskerðingu þar sem notað voru bæði samleggjandi og víkjandi líkön. 21 áður 

óþekktir erfðabreytileikar fundust, þar af 13 sjaldgæfir. Sex af áður óþekktu 

erfðabreytileikunum hafa áhrif á aldurstengda heyrnarskerðingu með víkjandi hætti. 

Reiknað var fjölgena áhættuskor út frá algengu erfðabreytileikunum og sýnt að 

einstaklingar í efstu tíund áhættuskorsins fá aldurstengda heyrnarskerðingu að meðaltali 10 

árum fyrr en þeir sem eru í neðstu tíund áhættuskorsins. Einnig sást að áhætta þeirra sem 

eru í efstu tíund áhættuskorsins er sambærileg áhættu þeirra sem hafa sjaldgæfar 

stökkbreytingar sem valda aldurstengdri heyrnarskerðingu en sjaldgæfu 

erfðabreytileikarnir valda þó verri heyrnarskerðingu en þeir algengu.  

Niðurstöður þessara rannsókna varpa nýju ljósi á erfðafræði glúkósa í blóði, innþekju 

hornhimnunnar og aldurstengdrar heyrnarskerðingar, ásamt því að sýna fram á mikilvægi 

þess að nota fjölbreytt tölfræðilíkön til að meta áhrif erfðabreytileika á svipgerðir. 
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Part I - Thesis 





1 

1 Introduction 

Genome-wide association studies (GWAS) aim to identify association between phenotypes 

and sequence variation in the genome. Understanding the phenotypic effects of sequence 

variation can give insight into how to prevent and treatment of diseases.  

GWAS based on chips containing hundreds of thousands of single nucleotide 

polymorphisms have transformed the study of human genetics and thousands of genotype-

phenotype associations have been discovered. Advances in sequencing technologies have 

considerably reduced the cost of whole genome sequencing human genomes and allowed 

sequencing to be performed on a large scale. This has resulted in a rapid increase in the 

number of individuals with their whole genomes sequenced, allowing the identification of 

most of their sequence variation and discovery of associations with rare variants with large 

effects. Currently, around 50,000 Icelanders have been whole genome sequenced by 

deCODE genetics which allowed the identification of over 34 million high quality 

sequence variants that have been imputed into over 110,000 additional chip typed 

Icelanders
1,2

. 

Vast amount of phenotypic data is available in the deCODE database. A recent addition of 

phenotypes is being obtained in the deCODE health study, an ongoing population-based 

study, which involves a comprehensive phenotyping of the recruited subjects. 

Measurements include audiometric tests and various ocular measures which have not been 

analyzed before in large GWAS. 

Sequence variants can affect phenotypes in different ways and we therefore need to 

consider what statistical model is best suited to find genotype-phenotype associations. The 

additive model is easy to interpret and is therefore the most commonly used model, but 

other models include the recessive, dominant, parent-of-origin and full genotypic models. 

Most quantitative trait GWAS to date have focused on discovering sequence variants that 

affect the trait mean. However, variants can also affect the variability of quantitative traits, 

both within-subject variance and between-subject variance. Assessing these variance 

effects may lead to the discovery of novel genotype-phenotype associations and has the 

potential of improving our understanding of previously associated sequence variants.  

This thesis is based on the three papers listed in the Abstract. The goals of this research can 

be divided into two main categories: 

1. Implementing a variance model to test for an association between sequence variants 

and the variance of glucose levels and investigate how the effect of these variants on 

variance affect heritability estimates (Paper I).  

2. Using different statistical models to search for sequence variants associating with 

sensory measurements (auditory and ocular) obtained from the deCODE health 

study and exploring the causal relationship between correlated traits and diseases 

(Papers II and III). 



 

 

2 

This thesis consists of two parts. Part I contains introduction and a summary of the three 

papers and Part II contains two published peer-reviewed journal papers (Paper I and Paper 

II) and a submitted paper (Paper III). In part I, chapter 2 provides an overview of the 

genetic, phenotypic and statistical background for this thesis. The specific aims of this 

project are listed in Chapter 3 and Chapter 4 contains a summary of the materials and 

methods used in these studies. In Chapter 5 the main results from the three papers are 

summarized and in Chapter 6 the results are discussed. 



3 

2 Background 

2.1 Genetics 

Human cells have 23 pairs of chromosomes that carry the individual’s genetic information. 

The chromosomes are made of histones and deoxyribonucleic acid (DNA) molecules. The 

genetic information is carried by the DNA which is a long ladder-like macromolecule that 

twists to form a double helix made up of four nucleobases; adenine (A), thymine (T), 

cytosine (C) and guanine (G). The nucleobases bind together to make base pairs, A with T 

and C with G. The genetic information is then coded in the linear sequence of the bases. 

DNA is decoded to make ribonucleic acid (RNA) in a process call transcription. Genes are 

segments of DNA that serve as a template for making a functionally important RNA 

molecule which is used to make polypeptides that form proteins in a process called 

translation. Examples of proteins are enzymes, antibodies, structural components and 

hormones which have various different roles in the body. 

A sequence variant is defined as a DNA locus with at least one base being different 

between individuals. The simplest form of a sequence variant is when a single base varies 

and is called a single-nucleotide polymorphisms (SNP). Different variations of sequence 

variants are known as alleles. SNPs have two alleles, and the allele that is less common is 

called a minor allele and the other is called a major allele. The minor allele frequency 

(MAF) of a sequence variant is then the frequency of the minor allele in the population. A 

genotype of an individual is the alleles of the sequence variant that the individual carries. 

For instance, if we use A to represent the minor allele and a to represent the major allele in 

the population, there are four possible genotypes, aa, Aa, aA and AA, where the first letter 

represents the paternally inherited allele and the second letter represents the maternally 

inherited allele. An individual with genotype aa is a homozygous non-carrier of the minor 

allele. Individuals with genotype Aa or aA are heterozygous carrier of the minor allele, 

while an individual with genotype AA is a homozygous carrier of the minor allele. The 

genotype is usually coded as the allele count; 0 for non-carriers, 1 for heterozygotes and 2 

for homozygotes.  

Sequence variants that are located close together can be correlated because during meiosis, 

alleles on the same chromosome are inherited together, except when a crossover occurs. 

The crossover is often called recombination. The non-random association of alleles at 

different loci is called linkage-disequilibrium (LD). If 𝑝𝐴𝐵 is the frequency of individuals 

carrying the pair of alleles A and B, 𝑝𝐴 is the frequency of A and 𝑝𝐵 is the frequency of B, 

then two different measures of LD are  

𝐷´ = (𝑝𝐴𝐵 − 𝑝𝐴𝑝𝐵) / 𝐷𝑚𝑎𝑥, 

where 𝐷𝑚𝑎𝑥 = 𝑚𝑖𝑛{𝑝𝐴(1 − 𝑝𝐵), 𝑝𝐵(1 − 𝑝𝐴)} if 𝐷 > 0 and 𝐷𝑚𝑎𝑥 = 𝑚𝑖𝑛{𝑝𝐴𝑝𝐵, (1 −
𝑝𝐴)(1 − 𝑝𝐵) if 𝐷 < 0, and 
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𝑟2 =
(𝑝𝐴𝐵−𝑝𝐴𝑝𝐵)2

𝑝𝐴(1−𝑝𝐴)𝑝𝐵(1−𝑝𝐵)
. 

The correlation, 𝑟2, is the more commonly used measure of LD because it is a convenient 

measure to identify variants that have information about the effects of other variants due to 

correlation, often called tagging variants. 

When the genotypes of a sequence variant are not known, we use imputed genotype 

probabilities which are calculated using knowledge about LD between variants and 

haplotype sharing between individuals
1,2

.  

Genetic variation in humans ranges from SNPs to loss or gain of whole chromosomes. 

Other types of variants are for example deletions, insertions, duplications, inversions and 

short tandemly repeated sequences called microsatellites. Genes have regions that code for 

amino acids called exons and regions between exons that are removed after transcription 

called introns. Protein-coding regions account for less than 2% of the whole genome. 

Sequence variants located in protein-coding regions are called coding variants and they are 

categorized by the effect they have on the translated amino acids. For example, when a 

SNP in a coding region alters the amino acid, it is called a missense variant. A variant that 

results in reduced or complete loss of protein function is called a loss-of-function (LOF) 

variant. Examples of LOF variants are stop gained variants, which result in a premature 

termination codon, and frameshift variants, which shift the way a sequence is read. Coding 

variants are more likely to affect phenotypes than intronic or intergenic variants. 

2.2 GWAS models 

GWAS aims to identify association between sequence variation in the genome and an 

observable trait or disease of interest. Through the whole-genome sequencing (WGS) of 

around 50,000 Icelanders, over 34 million high quality sequence variants have been 

identified in the population. When conducting a GWAS, for each variant a statistical test is 

performed to see if the variant is affecting the trait of interest. When analyzing millions of 

variants, correcting for multiple testing is necessary and a Bonferroni corrected P-value 

threshold for one million independent tests (5×10
-8

) is commonly used in GWAS assigning 

equal prior probability to all variants. However, because variants that are in coding regions 

are more likely to affect phenotypes, using a weighted Bonferroni method where genome-

wide significance thresholds are dependent on variant annotation increases the power to 

detect associations
3
.  

When the trait of interest is a quantitative trait, the trait is usually normalized and adjusted 

for confounding variables before performing the association. A linear regression model is 

then used to test for association between the trait and sequence variants, which may be 

written as 

yi  ∽ 𝛼 + 𝛽𝑔𝑖 + 𝜀 (*) 

where 𝑖 indexed the individual, yi is the normalized traits and 𝑔𝑖 is the genotype. 
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When the trait of interest is a binary trait, for instance a disease status, a logistic regression 

is used to test for association between the trait and sequence variants. The disease status is 

treated as the response variable and genotype as a covariate. In order to adjust for variables 

that correlate with disease status, such as age and sex, they are included in the model as 

nuisance variables.  

2.2.1 Inheritance models  

The most commonly used model in GWAS is the additive model (sometimes also called 

the multiplicative model for binary traits). The additive model assumes that the association 

depends additively on the minor allele, i.e. that the mean of a trait increases or decreases 

by β for each extra copy of the minor allele. To assume an additive model we can 

parameterize the genotype covariate in the regression model (*) as the allele count; 0 for 

non-carriers of the minor allele, 1 for heterozygous carriers and 2 for homozygous carriers. 

Then, for quantitative traits we are assuming that the mean of the trait changes linearly 

with the allele count and similarly for binary traits, that the risk on the log scale (log(OR)) 

changes linearly with the allele count. 

However, traits and diseases can be inherited in different ways, for instance under a mode 

of recessive or dominant inheritance. The recessive model assumes that having two copies 

of the minor allele has an effect on the trait, while the dominant model assumes that having 

either one or two copies of the minor allele has an effect on the trait. Another form of 

inheritance is parent-of-origin mode of inheritance. The maternal model assumes that only 

the maternally inherited allele has an effect and conversely the paternal model assumes that 

only the paternally inherited allele has an effect.  

 

Figure 1. Coding of genotypes under different models. The blue color represents alleles on 

the paternally inherited chromosome, and orange on the maternally inherited 

chromosome. A represents the minor allele and a the common allele. 

To implement tests for these models, we code the genotypes in different ways (Figure 1). 

When information is incomplete, the true genotypes of individuals are not known and we 

instead have allele probabilities ranging from 0 to 1. Assuming that the parental origin of 

the alleles can be determined with high accuracy, e.g. using long-range phasing and 

genealogy information
4
, we let 𝑔𝑚𝑖 and 𝑔𝑝𝑖 be the allele probabilities for the maternally 

and paternally inherited alleles, respectively. Then the genotype used as a covariate in the 

additive model is coded as the sum of the probabilities; 𝑔𝑚𝑖 + 𝑔𝑝𝑖. For the recessive 

model, the genotype is coded as the probability of individuals being homozygous carriers, 
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i.e. the product of the allele probabilities, 𝑔𝑚𝑖𝑔𝑝𝑖. When testing for maternal transmission, 

the genotype is defined as 𝑔𝑚𝑖 and when testing for paternal transmission, the genotype is 

defined as 𝑔𝑝𝑖. 

Sometimes, variants associating with phenotypes do not follow exactly the additive, 

recessive, dominant or parental model. For instance, a variant can have a small effect β on 

heterozygous carriers and a large effect γ on homozygous carriers, where γ is greater than 

2β, as is assumed by the additive model. A full genotypic model can be used to assess the 

effect for heterozygous and homozygous carriers separately. In the full genotypic model 

we use two genotype covariates in the association model, 𝑔ℎ𝑒𝑡 which is 1 for heterozygotes 

and 0 otherwise, and 𝑔ℎ𝑜𝑚 which is 1 for homozygotes and 0 otherwise. 

2.2.2 Genetic effect on the variance of traits 

For quantitative traits, GWAS usually aims to detect sequence variants that influence the 

mean of the trait. However, the variability of the trait can also be under genetic control, i.e. 

the variance of the trait can differ between different genotype groups. A sequence variant 

that associates with the mean of the trait can also affect the variance (Figure 2.a) and 

analyzing the effect of variants on the variance of traits can therefore improve our 

understanding of previously known variants. Furthermore, variants that do not affect the 

mean can affect the variance and searching for variants affecting the variance can 

potentially lead to the discovery of novel genotype-phenotype associations (Figure 2.b).  

 

Figure 2. Examples of sequence variants affecting the variance of a quantitative trait. The 

grey solid line shows the density of a trait for non-carriers and the grey dotted line shows 

the mean. The orange and red lines show the same for heterozygotes and homozygotes 

carriers, respectively. The examples are for a) a variant that associates with both 

increased mean and variance of a quantitative trait and b) a variant that associates with 

increased variance but does not affect the mean. 

While thousands of loci affecting the mean of complex traits have been discovered, 

analyzing the genetic effect on phenotypic variance is still rare and little is known about 

how commonly loci affect the variance of traits. However, increasing interest on the 

subject has led to identification of variance loci for several human traits, including the 
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major histocompatibility complex (MHC) region for rheumatoid arthritis
5
, FTO for body 

mass index
6
, SLC2A9 for serum urate

7
, LEPR for C-reactive protein and ICAM1 for soluble 

ICAM-1 levels
8
. More recently, few studies have reported loci affecting phenotypic 

variance, using the extensive UK Biobank data
9,10

. 

Methodologically, detecting sequence variants affecting phenotypic variance is performed 

with statistical tests for heteroscedasticity or variance heterogeneity. A distribution is said 

to be heteroscedastic if its variance is dependent on some variable, for example if the 

variance is unequal between some groups. A standard statistical test for heteroscedasticity 

is the Levene’s test
11

. The Levene’s test is a non-parametric F-test which compares the 

variable 𝑧𝑖𝑗 = |𝑦𝑖𝑗 − 𝑦̅𝑖| between groups 𝑖 ∈ (1, … , 𝑘), where 𝑦𝑖𝑗 is the trait value for 

individual 𝑗 in group 𝑖 and 𝑦̅𝑖 is the mean of the trait for group 𝑖. The test statistic is  

𝑊 =
(𝑁 − 𝑘) ∑ 𝑛𝑖(𝑧𝑖̅.  − 𝑧.̅.)

2𝑘
𝑖=1

(𝑘 − 1) ∑ (𝑧𝑖𝑗 − 𝑧𝑖̅.)
2𝑛𝑖

𝑘−1

, 

where N is the total sample size and 𝑛𝑖 is the sample size for group 𝑖, 𝑧𝑖̅. is the mean of all 

𝑧𝑖𝑗 in group 𝑖 and 𝑧.̅. is the mean of all 𝑧𝑖𝑗. Under the null hypothesis of equal variance 

across the k groups, W follows an F distribution with 𝑘 − 1 and 𝑁 − 𝑘 degrees of freedom. 

Several studies have used Levene’s test, or the similar Brown-Forsythe test (replacing 𝑦̅𝑖 

with median as opposed to the mean), to test for genetic effect on the variance of 

traits
8,10,12

. Other statistical tests have been proposed to detect genetic effect on variance, 

such as the two stage double generalized linear model (DGLM)
13

, and tests that allow for 

estimation of  mean and variance effects jointly with a likelihood ratio test
14

 and linear 

mixed models
9
.  

Previous studies have not taken into account that when multiple measurements are 

available per person, the total phenotypic variance is both due to between-subject (BS) 

variance and within-subject (WS) variance. In this thesis we suggest using variance models 

that estimate the effect of variants on the BS and WS variance by using a likelihood-ratio 

test and assuming the variance changes multiplicatively with the genotype. 

2.3 Genetic epidemiology 

2.3.1 Heritability 

Heritability of a phenotype is the fraction of phenotypic variation in a population that is 

due to genetic inheritance. If we assume that a quantitative phenotype y may be partitioned 

into a genetic component, G, an environmental component, E, and a random noise, 𝜀, such 

that 

𝑦 = 𝐺 + 𝐸 +  𝜀, 

then  

𝑉𝑎𝑟(𝑦) = 𝑉𝑎𝑟(𝐺) + 𝑉𝑎𝑟(𝐸) + 2𝐶𝑜𝑣(𝐺,  𝐸) + 𝑉𝑎𝑟(𝜀). 
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If the covariance between the genetic and environmental component is zero; 𝐶𝑜𝑣(𝐺,  𝐸) =

0, then the broad-sense heritability of the phenotype y is defined as: 

𝐻2 =
𝑉𝑎𝑟(𝐺)

𝑉𝑎𝑟(𝑦)
. 

If we let 𝐴 be the additive genetic component of y, then the narrow-sense heritability is 

defined as: 

ℎ2 =
𝑉𝑎𝑟(𝐴)

𝑉𝑎𝑟(𝑦)
. 

Most heritability estimates are based on comparing phenotypic similarities, or correlations, 

between relative pairs to the genetic sharing between relatives. Most commonly, twin 

studies are used to estimate heritability. For instance, Falconer‘s formula uses twice the 

difference between the phenotypic correlation of monozygotic and dizygotic twins to 

estimate broad-sense heritability
15

: 

𝐻̂2 = 2(𝐶𝑜𝑟𝑀𝑍 − 𝐶𝑜𝑟𝐷𝑍). 

A sequence variant with allele count 𝑔, allele frequency 𝐸𝑔 = 𝑓, and mean effect β, 

𝐸𝑦|𝑔 = (𝑔 − 𝑓)𝛽,  will create narrow-sense heritability that amounts to 

𝑉𝑎𝑟(𝛽𝑔) = 𝛽2Var(g) = 2𝑓(1 − 𝑓)𝛽2. 

However, it is not clear what effect a sequence variant that associates with phenotypic 

variance has on heritability. In this thesis we explore how genetic effect on variance affect 

heritability estimates.  

2.3.2 Mendelian randomization methods 

Genetics can be a useful tool to explore the causal relationship between correlated 

phenotypes, using a method called Mendelian randomization (MR)
16

. Identifying 

modifiable causes to diseases are an important focus in many epidemiological studies. The 

existence of confounding variables that affect both the disease and the risk factor being 

explored can cause a spurious association. This can be problematic in observational 

epidemiological studies where adjusting for all confounding variables is usually 

impossible.  

In MR methods, genetic variants are used as instruments, i.e. variables that associate with 

the risk factor of interest, are independent of possible confounders and associate with the 

disease outcome only through that risk factor. Genetic variants are often appropriate 

instrumental variables because genotypes are randomly assigned at birth and are not 

affected by environmental risk factors and are therefore independent of possible 

confounders. 

In the simplest form, a single genetic variant can be used as an instrumental variable. 

When several sequence variants affect the risk factor of interest, one type of a MR method 

is to fit a regression model with their effect on the risk factor against their effect on the 
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disease or outcome. A correlation between the effects suggests a causal relationship 

between the two traits. Another way is to aggregate the risk of the variants together into a 

genetic risk score (GRS) and use the GRS as an instrumental variable.  

2.4 Phenotypes 

A vast amount of phenotypic data is available in the deCODE database, that have been 

obtained from various sources. This section provides background information about the 

phenotypes used in this thesis. 

2.4.1 Glucose levels and type 2 diabetes 

Type 2 diabetes (T2D) is the form of diabetes that is characterized by high glucose levels 

in blood and insulin resistance. At the time Paper I was written, GWAS on T2D and 

glycemic traits had found 54 sequence variants associating with T2D and 36 variants 

associating with fasting glucose levels
17

. There is an overlap of 22 variants in these sets of 

associating variants, but surprisingly, the effect of the glucose variants on glucose does not 

predict their effect on T2D
17

. In particular, some variants strongly associate with glucose 

levels without increasing the risk of T2D.  

2.4.2 The cornea 

The cornea is the clear layer that covers the front part of the eye and corneal diseases are 

among the most common causes of visual loss
18

. The corneal endothelium is composed of 

a single layer of cells at the inner surface of the cornea (Figure 3). Its role is to maintain 

balance of fluids within the cornea and through a pump function it moves excess water and 

ions to and from the stroma
19

. The endothelial cells are hexagonally shaped and changes in 

the cell structure can lead to endothelial dysfunction, which is the most common cause for 

corneal transplantation
20

. The density of the cells is important and a minimum of 400-500 

endothelial cells per square millimeter, is needed for the endothelium to function 

properly
21

.  
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Figure 3. A schematic figure of the cornea. 

A specular microscopy performs a non-invasive analysis of the corneal endothelium by 

capturing an image of the endothelial cell layer and provides measures of its structure 

including cell density (cells/mm
2
), coefficient of cell size variation (CV), percentage of 

hexagonally shaped cells (HEX) and central corneal thickness (CCT). Examples of images 

of the corneal endothelium provided by the specular microscopy are shown in Figure 4. A 

healthy endothelium has high cell density and evenly sized and shaped cells (Figure 4.a). 

The example in Figure 4.b shows an endothelium with normal cell density, but high CV 

and low HEX since the cells vary more in size and shape. The example in Figure 4.c shows 

an endothelium with more evenly sized cells but extremely low cell density.  

 

Figure 4. Images of the corneal endothelium obtained with a specular microscopy.  

While cell density, HEX and CV are structural measures of the corneal endothelium, CCT 

is a measure of the thickness of all 5 layers of the cornea. Out of these four traits, CCT is 

the only one that has been explored in GWAS before, and then it was measured using other 
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equipment
22–29

. Cell density, CV and HEX, are used in clinic as an indicator of the health 

of the cornea and to diagnose corneal endothelial diseases. Example of corneal diseases 

that are known to associate with the structure of the endothelial cells are Fuchs endothelial 

corneal dystrophy (FECD) and macular corneal dystrophy (MCD). It has also been 

observed that cell density can be reduced in patients with glaucoma
30

. However, our 

understanding of how these structural measures of the corneal endothelium relate to these 

diseases is still limited. 

2.4.3 Hearing 

Hearing loss is often categorized by age of onset. Prelingual hearing loss is present in 1-2 

for every 1000 infants
31

 and over 100 genes have been linked with prelingual or childhood-

onset nonsyndromic hearing loss, 75% of which are inherited in a recessive manner 

(Hereditary Hearing Loss homepage). The most common type of hearing loss is age-

related hearing impairment (ARHI) defined as the gradual decline of auditory function 

with age. It is usually caused by damage to the hair cells in the inner ears’ cochlea, which 

are specialized receptors that receive sound waves and convert them into nerve signals that 

are transmitted to the brain by the auditory nerve
32

. Less is known about the genetics of 

ARHI and up until recently, only a few loci had been identified at the genome-wide 

significant level
33–38

. However, a recent study found 44 loci associating with self-reported 

hearing impairment obtained from UK Biobank
39

.  

The most common test used to measure auditory function is a pure tone audiometric test. 

Then an audiometer delivers pure tones at different frequencies or pitch measured in Hertz 

(Hz) and different intensity or loudness measured in decibels hearing levels (dB HL). This 

results in hearing thresholds per frequency for 0.5, 1, 2, 4, 6 and 8 kHz, which is the lowest 

intensity levels a subject hears the sound and a normal hearing threshold is ≤25 dB HL. 

ARHI is more common in men than women and is more common at the higher frequencies 

4-8 kHz than at the lower frequencies 0.5-2 kHz. Pure tone average is defined as the 

average hearing threshold at the frequencies 0.5, 1, 2 and 4 kHz and represent the speech 

range.  

Those who have ARHI are at more risk of tinnitus, the perception of a phantom sound 

often described as ringing or buzzing
40

. Despite the fact that 1-3% of the general 

population experience incessant tinnitus that severely affects their lives, treatments for 

tinnitus are lacking
41

. The heritability of tinnitus has been estimated to be 56% in a twin 

study
42

 but several GWAS have not found variants associating with tinnitus
43

 and the 

shared genetic causes between ARHI and tinnitus have not been broadly explored.  
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3 Aim 

The main goals of this project are: 

(i) Estimating the effect of known glucose variants on the BS and WS variance of glucose 

levels and examine the relationship between their effect on glucose levels and their effect 

on T2D. Furthermore, we explored how the effect of these variants on variance affect 

heritability estimates. 

(ii) Using different statistical models to search for sequence variants associating with 

sensory measurements (auditory and ocular) obtained in the deCODE health study and 

explore the causal relationship between correlated traits and diseases. 
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4 Materials and Methods 

The following chapter described the methods used for carrying out the aims of this thesis 

listed in Chapter 3. The appended papers provide further description of all methodologies 

used.  

4.1 Study Subjects 

4.1.1 The deCODE health study 

The deCODE health study (DHS) is an ongoing population-based study in Iceland that is 

designed to improve our understanding of rare LOF mutations and other potentially high 

impact mutations. The participants in the study are a mixture of volunteers and carriers of 

rare predicted high impact mutations. Recruitment started in 2016 and in January 2020, the 

study included 11,484 Icelanders. The subjects were between 18 and 97 years of age at 

time of recruitment (43.6% men, mean age = 55.4, standard deviation (SD) = 14.5). 

Participants in the DHS go through a 3-hour baseline visit which includes verbal 

interviews about health and lifestyle, blood sample collection and several physical 

measurements. Additionally, they answer an online questionnaire and give permission to 

access health-related information including hospital data. A part of the collected 

measurements are various ocular measures and an air conduction audiometric test to 

measure hearing. 

4.1.2 Paper I 

The Icelandic study subjects in Paper I were 117,548 chip-typed individuals with glucose 

measurements obtained from three different laboratories; the National University Hospital 

of Iceland, Akureyri Hospital and Mjodd Laboratory. The Iranian study subjects were 

10,437 chip-typed individuals with fasting glucose measurements obtained as a part of the 

Tehran Lipid and Glucose Study
44

. 

4.1.3 Paper II 

The primary study subjects in Paper II were 6,266 Icelanders with endothelial images from 

a specular microscopy and measures of ocular biomechanics using an ocular response 

analyzer obtained from the DHS. When testing variants for association with ocular 

diseases, the glaucoma and corneal dystrophy cases were based on six ICD diagnostic 

codes obtained from Iceland and the UK Biobank study
45

. 

4.1.4 Paper III 

The Icelandic study subjects in Paper III were from two non-overlapping datasets. Firstly, 

11,484 individuals had air conduction audiometric measures obtained from the DHS where 
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4,140 were defined as cases (PTA>25 dB HL) and 7,344 as controls. Secondly, air 

conduction audiometric measures were obtained for 22,212 individuals from the National 

Institute of Hearing and Speech in Iceland (NIHSI). Around 44% of the measures were 

performed on children and since individuals with hearing problems are referred to the 

NIHSI, the dataset is highly skewed towards those with hearing impairment. We therefore 

defined, 9,619 individuals as AHRI cases (PTA>25 dB HL) and selected 298,609 

population controls with no available hearing data, excluding all subjects that had 

participated in the DHS. The study subjects from the UK Biobank, were 108,175 

individuals that reported hearing difficulty and 285,746 controls.  

4.1.5 Ethical statement 

The studies were approved by the Icelandic Data Protection Authority and the National 

Bioethics Committee (VSN-18-186 and VSNb2015120006/03.01 with amendments). 

Personal identifiers of the subjects were encrypted by a third-party system which is 

monitored by the Data Protection Authority. UK Biobank’s scientific protocol and 

operational procedures were reviewed and approved by the North West Research Ethics 

Committee (REC Reference Number: 06/MRE08/65). The Tehran Lipid and Glucose 

Study has been approved by the National Research Council of the Islamic Republic of Iran 

(No. 121) and the Human Research Review Committee of the Endocrine Research Center, 

Shahid Beheshti University (M. C). All participating subjects, from Iceland, UK and Iran, 

provided written consent.  

4.2 Genotypic data 

The DNA samples from Iceland used in this thesis have been collected by deCODE 

through various studies since 1996. 

4.2.1 Iceland 

The number of WGS individuals at deCODE increases rapidly. At the time when Paper III 

was written, 49,708 Icelanders had been WGS and 34 million high quality sequence 

variants had been identified and imputed into 166,281 chip-typed individuals as well as 

relatives of the chip-typed. The process for WGS and the subsequent imputation has been 

described in previous reports
46–48

.  

4.2.2 UK Biobank 

Two available sets of genotypes form the UK Biobank were used in this study. The first 

dataset consists of 26.5 million high quality variants from the Haplotype Reference 

Consortium (HRC) reference panel, imputed into chip-typed individuals of European 

ancestry
49

. The second dataset consists of 922 thousand variants which had been identified 

through whole exome sequencing (WES) of 49,960 study participants
50

 and imputed into 

chip-typed individuals of European ancestry. 
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4.3 Association testing 

4.3.1 Binary traits  

A logistic regression is used to test for association between sequence variants and binary 

traits such as disease status. The trait is treated as the response variable and allele count as 

a covariate. To adjust for variables that correlate with the binary trait, such as age and sex, 

they are included in the model as nuisance variables. Let 𝑦𝑖 be the disease status for 

individual 𝑖 ∊ {1, 2,…,n}, 1 if the individual has the disease and 0 otherwise, and 𝑔𝑖 be the 

allele count. To test for an association between a sequence variant and the trait we assume 

that 

𝐿𝑖(𝛼, 𝛽, 𝛾) = 𝑃(𝑦𝑖|𝑔𝑖, 𝑥𝑖) 

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑦𝑖|𝑔𝑖, 𝑥𝑖)) ∽ 𝛼 + 𝛽𝑔𝑖 + 𝛾𝑇𝑥𝑖 , 

where 𝑥𝑖 are the nuisance variables and α, β and γ are regression coefficients. We then use 

a likelihood ratio test where the null hypothesis assumes no effect, 𝐻0: 𝛽 = 0, and use the 

asymptotic assumption that the likelihood ratio test statistic follows a 𝜒2 with one degree 

of freedom: 

−2log (
𝑚𝑎𝑥𝛼,𝛽,𝛾 𝐿(𝛼,𝛽,𝛾)

𝑚𝑎𝑥𝛼,𝛾 𝐿(𝛼,0,𝛾)
) ~𝜒1

2. 

The estimated odds ratio (OR) is then exp(𝛽̂) where 𝛽̂ is the maximum likelihood 

estimator of 𝛽. In our analysis, the allele counts are either from genotyping or integrates 

over all possible genotypes based on the phased imputations
1
. 

4.3.2 Quantitative traits 

A generalized form of linear regression is used to test for association between sequence 

variants and quantitative traits. Before performing the association, the trait is adjusted for 

confounding variables and normalized. In particular, separately for each sex we adjust for 

age and other relevant variables using a generalized additive model
51

 and then use rank-

based inverse normal transformation to standardize the residuals. If an individual has 

multiple measures, the average of all measures, after standardization, is used. Let 𝑦 be a 

vector of the normalized quantitative trait and 𝑔 be a vector of the genotypes for the 

variant being tested. Then we assume that 𝒚 is normally distributed with a mean that 

depend linearly on the genotype and a variance covariance matrix proportional to the 

kinship matrix: 

𝑦  ∽ 𝑁(𝛼 + 𝛽𝑔,  2𝜎2𝛷), 

where 

𝛷𝑖𝑗 = {
1/2, 𝑖 = 𝑗
2𝑘𝑖𝑗 , 𝑖 ≠ 𝑗

 



 

 

18 

is the kinship matrix estimated from the Icelandic genealogy
46

. Then we use a likelihood 

ratio test to test for association and the maximum likelihood estimator of 𝛽 is the estimated 

effect of the sequence variant on the trait. Obtaining the maximum likelihood estimators 

involve inverting the kinship matrix which is computationally intensive. We therefore split 

the individuals into smaller clusters for the calculations as described previously
46

. 

4.3.3 Variance model 

The variance of the measurements of a quantitative trait 𝑦 can be partitioned into between 

subject (BS) variance, within subject (WS) variance and residual variance.  

Let N be the total number of subjects and for each subject 𝑖 ∈  {1, … , 𝑁} we have 𝜐𝑖 

measurments. We let 𝑔𝑖 ∈ (0,1,2) be the allele count of the variant being tested for 

individual 𝑖, and 𝑛𝑔 be the number of individuals with genotype 𝑔. Testing for genetic 

effect on the BS variance we assume the following model 

 

𝑦̅𝑖 =  𝑁(µ𝑔𝑖
, 𝛼𝑔𝑖𝜎2) ,  (model 1) 

 

where 𝑦̅𝑖 =
1

𝜐𝑖
∑ 𝑦𝑖𝑗

𝜐𝑖
𝑗=1  is the average trait for individual 𝑖, µ𝑔𝑖

 is a nuisance parameter, 

since the mean is not of interest here, and α is the genetic effect on the BS variance. Under 

this model, the BS variance changes with the genotype multiplicatively in the following 

manner:  

 

𝑉𝑎𝑟(𝑦̅𝑖|𝑔𝑖 = 0) = 𝜎2, 

𝑉𝑎𝑟(𝑦̅𝑖|𝑔𝑖 = 1) = 𝜎2𝛼, 

𝑉𝑎𝑟(𝑦̅𝑖|𝑔𝑖 = 2) = 𝜎2𝛼2.  

 

We then use a likelihood ratio test to test for genetic effect on the BS variance where the 

null hypothesis assumes no variance effect, 𝐻0: 𝛼 = 1, and the alternative is 𝐻1: 𝛼 ≠ 1.  

The log likelihood function of 𝛼 and 𝜎2 is   

 

𝑙(𝛼, 𝜎2) ∝  −
1

2
[(𝑛0 + 𝑛1 + 𝑛2) log(𝜎2) + (𝑛1 + 2𝑛2) log(𝛼) +

1

𝜎2
(𝑅0 +

𝑅1

𝛼
+

𝑅2

𝛼2
)] 

where 

𝑅𝑔 = ∑ (𝑦̅𝑖 − 𝑦̅∗
𝑔

)
2

𝑖:𝑔𝑖=𝑔

, 𝑛𝑔 = ∑ 𝐼(𝑔𝑖 = 𝑔)

𝑁

𝑖=1

, 𝑦̅∗
𝑔

=  
1

𝑛𝑔
∑ 𝑦̅𝑖

𝑖:𝑔𝑖=𝑔

. 

 

To find the maximum likelihood estimators, 𝜎2̂ and 𝛼̂, we solve 

 
𝜕𝑙

𝜕𝜎2
= 0 

⟺   −
1

2
[
(𝑛0 + 𝑛1 + 𝑛2)

𝜎2
− (𝑅0 +

𝑅1

𝛼
+

𝑅2

𝛼2
)

1

(𝜎2)2
] = 0 

⟺  (𝑛0 + 𝑛1 + 𝑛2)  − (𝑅0 +
𝑅1

𝛼
+

𝑅2

𝛼2
)

1

𝜎2
= 0 
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⟺  𝜎2  =  
𝑅0 +

𝑅1

𝛼 +
𝑅2

𝛼2

𝑛 + 𝑛1 + 𝑛2
 

 

assuming that 𝜎2 ≠ 0. And then we solve  

 

𝜕𝑙(𝛼, 𝜎2̂)

𝜕𝛼
= −

1

2
[(𝑛0 + 𝑛1 + 𝑛2) log (

𝑅0 +
𝑅1

𝛼 +
𝑅2

𝛼2

𝑛 + 𝑛1 + 𝑛2
) + (𝑛1 + 2𝑛2) log(𝛼)

+ (𝑛0 + 𝑛1 + 𝑛2)] = 0 

⟺   −
1

2
[
(𝑛0 + 𝑛1 + 𝑛2) ∙ (−

𝑅1

𝛼2 − 2
𝑅2

𝛼3)

𝑅0 +
𝑅1

𝛼 +
𝑅2

𝛼2

+
(𝑛1 + 2𝑛2)

𝛼
] = 0 

 

⟺   −
𝛼3

2
[𝛼2𝑅0(𝑛1 + 2𝑛2) + 𝛼𝑅1(𝑛2 − 𝑛0) − 𝑅2(𝑛1 + 2𝑛0)] = 0 

 

⟺   𝛼 =  
−𝐵 + √𝐵2 − 4𝐴𝐶

2
, 

 

where 𝐴 = 𝑅0(𝑛1 + 2𝑛2), 𝐵 = 𝑅1(𝑛2 − 𝑛0), 𝐶 = −𝑅2(𝑛1 + 2𝑛), assuming 𝛼 > 0. We 

note that −4𝐴𝐶 = 4𝑅0(𝑛1 + 2𝑛2)𝑅2(𝑛1 + 2𝑛) is always positive and since 𝑛0 > 𝑛2 we 

have that 𝐵 > 0. Therefore, we have that √𝐵2 − 4𝐴𝐶 > 𝐵 ⇒  
−𝐵+√𝐵2−4𝐴𝐶

2
> 0 and 

−𝐵−√𝐵2−4𝐴𝐶

2
< 0. 

 

Then the maximum likelihood estimators are:  

 

𝜎2̂ =  
𝑅0 +

𝑅1

𝛼̂
+

𝑅2

𝛼̂2

𝜐0 + 𝜐1 + 𝜐2
 

𝛼̂ =  
−𝐵 + √𝐵2 − 4𝐴𝐶

2
. 

 

The test statistic is 𝐷 = 2(𝑙(𝛼̂, 𝜎2̂) − 𝑙(1, 𝜎2̂
𝛼=1)) and the asymptotic distribution of 𝐷 is 

𝜒1
2. 

Similarly, we test for a WS variance effect by fitting a model where the WS variance is 

allowed to change multiplicatively with the genotype.  

Let N be the total number of subjects and for each subject 𝑖 ∈  {1, … , 𝑁} we have 𝜐𝑖 

measurments. We let 𝑔𝑖 ∈ (0,1,2)  be the allele count of the variant being tested for 

individual 𝑖, and 𝑛𝑔 be the number of individuals with genotype 𝑔. We assume that 

 

𝑦𝑖𝑗 =  𝑁(µ𝑔𝑖
, 𝛼𝑔𝑖𝜎2),   (model 2) 
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where 𝑦𝑖𝑗 is the 𝑗th measure of the trait for individuals 𝑖, and use a likelihood ratio test to 

test for genetic effect on the WS variance where the null hypothesis is 𝐻0: 𝛼 = 1 and the 

alternative is 𝐻1: 𝛼 ≠ 1.  

The log likelihood function of 𝛼 and 𝜎2 is   

 

𝑙(𝛼, 𝜎2) =  −
1

2
[(𝑛0 + 𝑛1 + 𝑛2) log(𝜎2) + (𝑛1 + 2𝑛2) log(𝛼)

+
1

𝜎2
(𝑅𝑆𝑆0 +

𝑅𝑆𝑆1

𝛼
+

𝑅𝑆𝑆2

𝛼2
)] 

where, 

𝑅𝑆𝑆𝑔 = ∑ ∑(𝑦𝑖𝑗 − 𝑦̅𝑖)
2

𝜐𝑖

𝑗=1𝑖:𝑔𝑖=𝑔

 , 𝑦̅𝑖 =
1

𝜐𝑖
∑ 𝑦𝑖𝑗

𝜐𝑖

𝑗=1

, 𝑛𝑘 = ∑ 𝜐𝑖 − 1

𝑖:𝑔𝑖=𝑘

. 

 

We can then derive the maximum likelihood estimators in the same way as for model 1:  

 

𝜎̂ =  
𝑅𝑆𝑆0 +

𝑅𝑆𝑆1

𝛼 +
𝑅𝑆𝑆2

𝛼2

𝑛0 + 𝑛1 + 𝑛2
 

𝛼̂ =  
−𝐵 + √𝐵2 − 4𝐴𝐶

2
, 

 

where 𝐴 = 𝑅𝑆𝑆0(𝑛1 + 2𝑛2), 𝐵 = 𝑅𝑆𝑆1(𝑛2 − 𝑛0) and 𝐶 = −𝑅𝑆𝑆2(𝑛1 + 2𝑛0). The test 

statistic is 𝐷 = 2(𝑙(𝛼̂, 𝜎2̂) − 𝑙(1, 𝜎2̂
𝛼=1)) and 𝐷~𝜒1

2. 

 

The BS and WS variance models are sensitive to the distribution assumptions of the data. 

Before fitting the BS variance model, 𝑦̅𝑖 =  𝑁(µ𝑔𝑖
, 𝛼𝑔𝑖𝜎2), then for 𝜐 = 1, … , 𝑡 − 1, ≥ 𝑡 

we re-standardize the subset of individuals that have the same number of measurements to 

follow a standard normal distribution. Here 𝑡 is a threshold, chosen to be 𝑡 = 15 in the data 

including only fasting glucose levels and 𝑡 = 50 in the data including all glucose levels. 

Before fitting the WS variance model, 𝑦𝑖𝑗 =  𝑁(µ𝑔𝑖
, 𝛼𝑔𝑖𝜎2), then for 𝜐 = 1, … , 𝑡 − 1, ≥ 𝑡 

we re-standardize the subset of residual sum of squares ∑ (𝑦𝑖𝑗 − 𝑦̅𝑖)
2𝜐𝑖

𝑗=1  where 𝜐𝑖 = 𝜐 to fit 

a chi-squared distribution with 𝜐 − 1 degrees of freedom. 

 

We use simulations to examine the performance of the BS and WS variance models, in 

terms of the rate of true and false positive associations and compare it to the performance 

of the Levene’s test.  

 

For evaluating the BS variance test, we simulate the phenotype 𝑦̅𝑖 for different sample size 

𝑁 ∈ {10000, … ,500000}, using the model 𝑦̅𝑖 =  𝑁(0, 𝛼𝑔𝑖𝜎2), where 𝜎2 was 1 and the BS 

variance effect 𝛼 ranged from 1 to 1.06 in increments of 0.01. The genotype 𝑔𝑖 was 

simulated from a binomial distribution with the probability parameter as the MAF of 0.3. 

For each N and each 𝛼, 1000 independent phenotypes and genotypes were simulated. To 

investigate the false positive rate of the variance models when the phenotype is not 

normally distributed, we additionally performed phenotype simulation assuming the 

phenotype to have a 𝜒2-distribution with 1 and 10 degrees of freedom. Further, to 

investigate if variance effects show up artificially for variants with large mean effects, we 
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simulate phenotypes assuming a normal distribution with mean effects ranging from 0.1 to 

0.7 SD for different minor allele frequencies and test for BS variance effect. 

When evaluating the WS variance test, for each 𝑖 we first simulate 𝜐𝑖, the number of 

measurements per person, and then for each 𝑖 and 𝑗 ∈ {2, . . , 𝜐𝑖} we simulate the phenotype 

using the model 𝑦𝑖𝑗 =  𝛿𝑖 + 𝜀𝑖𝑗, where 𝛿𝑖~𝑁(0, 𝜎𝐵𝑆
2 ) and 𝜀𝑖𝑗~𝑁(0, 𝜎𝑊𝑆

2 ). We assume no 

effect on the BS variance and let 𝜎𝐵𝑆
2 = 1, while we assume genetic effect on the WS 

variance and that the WS variance is smaller than the BS variance and let 𝜎𝑊𝑆
2 = 𝛼𝑔𝑖 ∙ 0.2. 

As for the BS variance model we perform the simulation for different sample size 𝑁 ∈
{10000, … ,100000} and for different WS variance effects 𝛼 ∈ {1,1.01, … ,1.06}. 

4.3.4 Meta-analysis 

In Papers II and III, when we meta-analyze GWAS results from different cohorts, we use a 

fixed-effects inverse variance method
52

. Sequence variants from deCODE and the UK 

Biobank were matched on position and alleles and the method is based on standard errors 

and effect estimates from the GWAS. 

4.3.5 Adjusting for population stratification  

We use LD score regression
53

 to account for distribution inflation in the datasets that can 

be due to relatedness and population stratification. The χ
2
 statistics from the GWAS were 

regressed against the LD score for a set of 1.1 million variants. The intercept from the 

regression was used as correction factors.   

4.4 Genetic effect on variance and heritability  

How variants affecting the BS variance of traits affect heritability estimates is unclear. To 

investigate this, we assume the following model 

 

𝑦𝑖 = 𝛽(𝑔𝑖 − 𝑓) + 𝑔𝑖
′𝐹𝑖 + 𝜀𝑖 ∼ 𝑁(0,1) (∗) 

𝐹𝑖 ∼ 𝑁(0, 𝜎𝐹
2) 

𝜀𝑖~𝑁(0, 𝜎0
2) 

 

where 𝑦𝑖 is the trait measure for individual i, 𝑔𝑖 is the genotype or allele count, 𝑓  is the 

allele frequency, β is the mean effect and 𝑔𝑖
′ = 0,1, √2 for each genotype 0,1 or 2. We 

assume that 𝑔𝑖, 𝐹𝑖, and 𝜀𝑖, are all pairwise independent for each i and that different 

variables are independent between different individuals. However, all the variables may be 

correlated between individuals.  

 

We note that under this model (*) the phenotypic variance partitions as follows: 

1 = 𝑉𝑎𝑟(𝑦𝑖𝑗) = 𝑉𝑎𝑟(𝛽(𝑔𝑖 − 𝑓)) + 𝑉𝑎𝑟(𝑔𝑖
′𝐹𝑖) + 𝑉𝑎𝑟(𝜀𝑖𝑗)

= 𝛽2𝑉𝑎𝑟(𝑔𝑖) + 𝐸(𝑔𝑖
′2)𝑉𝑎𝑟(𝐹𝑖) + 𝑉𝑎𝑟(𝜀𝑖𝑗)

= 2𝑓(1 − 𝑓)𝛽2 + 2𝑓𝜎𝐹
2 + 𝜎0

2. 
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Under the (*) model, the BS variance increases linearly with the genotype: 

 

𝑉𝑎𝑟(𝑦𝑖𝑗|𝑔𝑖 = 0) = 𝜎0
2 

𝑉𝑎𝑟(𝑦𝑖𝑗|𝑔𝑖 = 1) = 𝜎0
2 + 𝜎𝐹

2 

𝑉𝑎𝑟(𝑦𝑖𝑗|𝑔𝑖 = 2) = 𝜎0
2 + 2𝜎𝐹

2 

 

When estimating the BS variance effects before we used the model 𝑦𝑖𝑗 ∼  𝑁(µ𝑔𝑖
, 𝛼𝑔𝑖𝜎0

2) 

(**) for convenience. When 𝛼 ∈ [0.9; 1.1], then (𝛼2 − 1) ≅  2(𝛼 − 1) and: 

 

𝑉𝑎𝑟(𝑦𝑖𝑗|𝑔𝑖 = 0) = 𝜎0
2 

𝑉𝑎𝑟(𝑦𝑖𝑗|𝑔𝑖 = 1) = 𝜎0
2𝛼 =  𝜎0

2 + 𝜎0
2(𝛼 − 1) 

𝑉𝑎𝑟(𝑦𝑖𝑗|𝑔𝑖 = 2) = 𝜎0
2𝛼2 = 𝜎0

2 + 𝜎0
2(𝛼2 − 1) ≅  𝜎0

2 + 𝜎0
22(𝛼 − 1) 

 

so that these models, (*) and (**), are equivalent up to the first order around the null with 

 

𝜎𝐹
2 ≅ 𝜎0

2(𝛼 − 1). 
 

We will now show that the (*) model predicts that siblings sharing identical high variance 

genotypes have higher covariance than siblings that share identical low variance genotypes 

and that the difference between their covariances may be used to estimate the covariance 

between the Fs of siblings. 

 

Under the (*) model, the covariance between a pair of siblings i and j, given their 

genotypes, is  

 

𝐶𝑜𝑣𝑠𝑖𝑏(𝑦𝑖, 𝑦𝑗|𝑔𝑖, 𝑔𝑗) = 𝐶𝑜𝑣𝑠𝑖𝑏(𝜀𝑖, 𝜀𝑗) + √𝑔𝑖𝑔𝑗𝐶𝑜𝑣𝑠𝑖𝑏(𝐹𝑖 , 𝐹𝑗).  

 

In particular: 

𝐶𝑜𝑣𝑠𝑖𝑏(𝑦𝑖 , 𝑦𝑗|𝑔𝑖 = 𝑔𝑗 = 0) = 𝐶𝑜𝑣𝑠𝑖𝑏(𝜀𝑖, 𝜀𝑗) 

𝐶𝑜𝑣𝑠𝑖𝑏(𝑦𝑖 , 𝑦𝑗|𝑔𝑖 = 𝑔𝑗 = 1) = 𝐶𝑜𝑣𝑠𝑖𝑏(𝜀𝑖, 𝜀𝑗) + 𝐶𝑜𝑣𝑠𝑖𝑏(𝐹𝑖, 𝐹𝑗) 

𝐶𝑜𝑣𝑠𝑖𝑏(𝑦𝑖 , 𝑦𝑗|𝑔𝑖 = 𝑔𝑗 = 2) = 𝐶𝑜𝑣𝑠𝑖𝑏(𝜀𝑖, 𝜀𝑗) + 2𝐶𝑜𝑣𝑠𝑖𝑏(𝐹𝑖 , 𝐹𝑗).   

Therefore, we used how the correlation between the phenotypes of siblings differs between 

genotype groups to estimate 𝐶𝑜𝑣𝑠𝑖𝑏(𝐹𝑖, 𝐹𝑗) in the following way. 

 

For N sibling pairs where both siblings in pair i are carrying genotype gi and have 

phenotypes y1i and y2i, we calculated the mean phenotype for each genotype group g: 

𝑦̅𝑔 =
1

2𝑁𝑔
∑ 𝑦1𝑖+𝑦2𝑖

𝑖:𝑔𝑖=𝑔

, 

 

where Ng was the number of sibling pairs sharing genotype g. Then we defined  
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𝑐𝑖 = (𝑦1𝑖 − 𝑦̅𝑔𝑖
)(𝑦2𝑖 − 𝑦̅𝑔𝑖

). 

 

For each genotype g 

𝐶𝑔 =
1

𝑁𝑔
∑ 𝑐𝑖

𝑖:𝑔𝑖=𝑔

 

 

is then an estimate of the covariance between siblings that share the genotype g, i.e. and 

estimate of 𝐶𝑜𝑣𝑠𝑖𝑏(𝑦𝑖 , 𝑦𝑗|𝑔𝑖 = 𝑔𝑗 = 𝑔).  

We then performed a weighted linear regression 𝐶𝑔 =  𝛾𝑔 + 𝛿 where we weight by 

𝑁𝑔/𝑉𝑎𝑟(𝑦𝑖𝑗|𝑔)2. Then 𝛾 is an estimate of 𝐶𝑜𝑣𝑠𝑖𝑏(𝐹𝑖 , 𝐹𝑗).  

To obtain a P-value, we estimate the covariance trend for all sequence variants in the 

genome, and for each variant we want to test, we compare its trend 𝛾 to the distribution of 

trends for all variants with similar frequency, i.e. all variants in the interval (f-0.025, 

f+0.025), where f is the frequency of the variant we are testing. This method may also be 

used to estimate the covariance between Fs of other relative pairs such as parent offspring 

pairs.  

 

The correlation between relative pairs is the ratio of their covariance and the geometric 

mean of their phenotypic variances. If we assume model (**) and that the covariance given 

the genotype changes multiplicatively, 

 

𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗|𝑔𝑖 = 𝑔𝑗 = 𝑔) =  𝛾𝑔𝐶𝑜𝑣(𝑦𝑖 , 𝑦𝑗|𝑔𝑖 = 𝑔𝑗 = 0), 

 

then the correlation given the genotype is:  

 

𝐶𝑜𝑟(𝑦𝑖, 𝑦𝑗|𝑔𝑖 = 𝑔𝑗 = 𝑔) =
𝛾𝑔 𝐶𝑜𝑣(𝑦𝑖,𝑦𝑗|𝑔𝑖=𝑔𝑗=𝑔)

𝛼𝑔 𝑉𝑎𝑟(𝑦|𝑔=0) 
=

 𝐶𝑜𝑣(𝑦𝑖,𝑦𝑗|𝑔𝑖=𝑔𝑗=𝑔)

 𝑉𝑎𝑟(𝑦|𝑔=0) 
(

𝛾

𝛼
)

𝑔

  

 

Therefore, 𝛾/𝛼 is the correlation trend. Therefore, if the covariance increase 𝛾 is larger 

than the variance increase 𝛼, the correlation is also increasing with the genotype. 

Variants that effect the WS variance do not influence the covariance between subjects. But 

the total variance is affected, and therefore the correlation between subjects. If we assume 

𝑦𝑖𝑗 =  𝛽(𝑔𝑖 − 𝑓) + 𝜀𝑖𝑗, where , 𝜀𝑖𝑗~𝑁(0, 𝛼𝑔𝑖𝜎2) and 𝛼 is the WS variance effect then 

 

𝐶𝑜𝑟(𝑦𝑖𝑗, 𝑦𝑘𝑙|𝑔𝑖, 𝑔𝑘) =
𝐶𝑜𝑣(𝑦𝑖𝑗, 𝑦𝑘𝑙|𝑔𝑖 , 𝑔𝑘)

√𝑉𝑎𝑟(𝑦𝑖𝑗|𝑔𝑖)𝑉𝑎𝑟(𝑦𝑘𝑙|𝑔𝑘)
=

𝐶𝑜𝑣(𝑦𝑖𝑗 , 𝑦𝑘𝑙)

𝛼(𝑔𝑖+𝑔𝑘)/2𝑉𝑎𝑟(𝑦|𝑔 = 0) 
 

 

So if the within subject variance increases with the genotype, and there is no genetic effect 

on the covariance, then the correlation decreases with the genotype. 

4.5 Correlation between effect sizes 

When assessing the relationship between the effect of genetic variants on two different 

traits, we use a simple weighted linear regression model, where each variant is weighted by 

f(1-f) where f is the MAF for that variant. In that way, rare variants have less weight in the 

regression model than common variants.  
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4.6 Genetic risk score 

Genetic risk scores were constructed by combining the effect allele count for each variant, 

weighted by its effect. I.e. if we let 𝑚𝑣𝑖 and 𝑝𝑣𝑖 be the genotype probability for individual 𝑖 
and sequence variant v at the maternally and paternally inherited chromosomes, then the 

GRS, based on n variants, for individual i is 

𝑔𝑟𝑠𝑖 = ∑(𝑚𝑣𝑖 + 𝑝𝑣𝑖)𝛽𝑣

𝑛

𝑣=1

, 

where 𝛽𝑣 is the genetic effect of variant v. For the variance GRS, the effect on the variance 

are used instead of the effects on the mean.  

In Paper III, a genetic risk score is constructed for n variants associating under the additive 

model and m variants associating under the recessive model. As was described in section 

2.2.1, the genotype used as a covariate in the additive model is coded as the sum of the 

probabilities; 𝑚𝑣𝑖 + 𝑝𝑣𝑖 and for the recessive model, the genotype is coded as the 

probability of individuals being homozygous carriers, i.e. the product of the allele 

probabilities, 𝑚𝑣𝑖 × 𝑝𝑣𝑖. We therefore define the GRS for individual i as: 

𝑔𝑟𝑠𝑖 = ∑(𝑚𝑣𝑖 + 𝑝𝑣𝑖)𝛽𝑣

𝑛

𝑣=1

+ ∑(𝑚𝑣𝑖 × 𝑝𝑣𝑖)𝛾𝑣

𝑚

𝑣=1

, 

where β are the effects of the variants detected with the additive model and γ are the effects 

of the variants detected with the recessive model.  

We note that this definition of the GRS relies on determination of parental origin, e.g. 

using long-range phasing and genealogy information
4
. If no parental information is 

available, one can define the GRS as 

𝑔𝑟𝑠𝑖 = ∑ 𝑔𝑣𝛽𝑣

𝑛

𝑣=1

+ ∑ 𝑚𝑎𝑥(𝑔𝑣 − 1,0)𝛾𝑣

𝑚

𝑣=1

, 

where 𝑔𝑣 is the allele count for sequence variant v. 
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5 Summary of key results 

The following chapter summarizes the main findings of this project. The appended papers 

provide more detailed results.  

5.1 Paper I - Sequence variants affecting the 

variance of glucose levels 

5.1.1 Performance of the variance models 

We performed simulations to estimate the power and false positive rates of the BS and WS 

variance models, as described in section 4.3.3.  

Figure 5 shows the power of the BS variance and Levene’s test, defined as the rate of 

associations with P<0.05 divided by the total number of tests across 1000 simulations. The 

power is shown for different sample sizes (x axis) and different true variance effect (shown 

in different colors). As the figure shows, the BS variance test is more powerful than the 

Levene’s test. For each sample size, the null model with no variance effect was also 

simulated and the false positive rate of the BS variance test was on average 0.048 (0.006 

SD), similarly to the Levene´s test; 0.049 (0.006 SD).  

 

Figure 5. The power of detecting BS variance effect for different simulation scenarios 

using the BS variance model (round dots) and the Levene’s test (triangles) for different 

true variance effects (between 1.01 and 1.06) and different sample sizes. Figure a) shows 

the results for the simulated phenotype using sample sizes from 10,000 to 100,000 

individuals and b) shows additionally the sample sizes from 200,000 to 500,000 

individuals.  
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To evaluate the false positive rate of the BS variance test when the phenotype does not 

follow a normal distribution, we additionally simulated the phenotypes using 𝜒2- 

distribution with 1 and 10 degrees of freedom. For this analysis we simulated phenotypes 

for 50,000 individuals. The BS variance test is sensitive to distribution assumptions and the 

false positive rate is high if no standardization is performed (Table 1). But after 

standardizing the phenotype, so that subsets of individuals with the same number of 

measurements follow a standard normal distribution, the false positive rate is well 

calibrated (Table 1). 

Table 1. The FPR of the BS variance test and Levene’s test for different phenotype 

distributions estimated from 1000 simulations for 50,000 individuals. 

Phenotype 

distribution 

Levene’s 

test 

BS variance 

test 

BS variance test 

after standardization 

𝜒1
2 0.045 0.459 0.049 

𝜒10
2  0.051 0.113 0.039 

To evaluate if large mean effects can cause artificial variance effects, we furthermore 

simulated phenotypes assuming a normal distribution with constant variance and mean 

effects ranging from 0.1 to 0.7 SD for different minor allele frequencies. We tested the 

simulated phenotypes for BS variance effect for 1000 simulations and computed the 

fraction of significant BS variance effects (Figure 6). For mean effects below 0.5 SD, the 

fraction of significant variance tests for 1000 simulations was around 5%. For mean effects 

larger than 0.5 SD, a variance effect artificially shows up alongside the mean effects. We 

note, that the vast majority of reported mean effects for common variants are below 0.5 

SD.  

 

Figure 6. The fraction of significant BS variance effects for a simulated normal phenotype 

for 100,000 individuals using different mean effects (between 0.1 and 0.7 SD) and different 

minor allele frequency (MAF) of the simulated variants. The fraction was computed as the 

number of BS variance associations with P<0.05 divided by the total number of tests 

across 1000 simulations for each simulation scenario. 



 

27 

Testing the WS variance model, we first simulate the number of measurements per person 

(Figure 7.a) and then perform 1000 simulations of the phenotype assuming genetic effect 

on the WS variance ranging from 1.01 to 1.06 (Figure 7.b). The false positive rate for the 

WS variance model was 0.049 for 1000 simulations under the null model. We note that the 

Levene’s test does not capture the WS variance effects (Figure 7.b).  

 

Figure 7. a) The distribution of the simulated number of measurements per person. b) The 

power of detecting WS variance effect for different simulation scenarios using the WS 

variance model (round dots) and the Levene’s test (triangles) for different true WS 

variance effects (between 1.01 and 1.06) and different sample sizes.  

5.1.2 Data summary 

In total, 941,087 glucose measures were available for 117,548 individuals, out of which 

69,142 individuals had fasting glucose measures. The average number of measurements 

per person was 8 for all glucose measures (Figure 8) and 3 for fasting glucose measures. 
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Figure 8. A histogram that shows the number of all glucose measurements per person.  

Figure 9 shows how glucose levels are higher for men than women and that both the mean 

and variance of glucose levels increases with age. Of the subjects, 7.5% had T2D diagnosis 

or were on diabetes medication
54

 and 0.3% had type 1 diabetes (T1D). All data analysis 

was performed on the subjects with fasting glucose measurements (dataset I) and for 

secondary analysis we used individuals with any glucose measurements (dataset II).  

 

Figure 9. Mean and variance of glucose levels against age. (a) The average and (b) the 

variance of fasting and not fasting glucose (mmol/L) levels per age group for both sexes.  
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5.1.3 Effect of glucose variants on variance in glucose levels 

For the 36 variants that have been previously reported to associate with the mean of fasting 

glucose levels
17

, we estimated their effect on the BS variance of fasting glucose levels. 

Three of the variants associated with BS variance (Table 2). To investigate whether their 

effect on BS variance was due to diabetic individuals and medication intake, we estimated 

the effects using datasets I and II after removing individuals with T2D and T1D and the 

effects remained significant. Interestingly, among the sequence variants that increase 

glucose levels on average, some associate with increased BS variance and others with 

decreased BS variance. The variant in TCF7L2 is the strongest common T2D associating 

variant.  

Table 2. The association of three glucose variants on the BS variance of glucose levels.  

 
Diabetic subjects removed 

  
 

Glucose Fasting Glucose Glucose Fasting Glucose 

Gene MAF Effect P-value Effect P-value Effect P-value Effect P-value 

G6PC2 0.30 -0.075 2.0×10
-28

 -0.076 7.5×10
-18

 -0.048 3.5×10
-12

 -0.060 2.2×10
-11

 

GCK 0.14 -0.075 1.8×10
-16

 -0.078 4.9×10
-11

 -0.058 1.6×10
-10

 -0.059 6.4×10
-7

 

TCF7L2 0.30 0.052 2.5×10
-14

 0.055 4.5×10
-10

 0.036 1.7×10
-7

 0.041 5.2×10
-6

 

 

We also tested the 36 glucose variants for association with the WS variance of fasting 

glucose levels. Three variants associated significantly with decreased WS variance (Table 

3) in all datasets. Two of them, variants in GCK and G6PC2, are the same variants that 

associated with BS variance.  

Table 3. The association of three glucose variants on the WS variance of glucose levels.  

 
Diabetic subjects removed 

  
 

Glucose Fasting Glucose Glucose Fasting Glucose 

Gene MAF Effect P-value Effect P-value Effect P-value Effect P-value 

G6PC2 0.30 -0.040 7.9×10
-50

 -0.048 1.0×10
-13

 -0.041 1.6×10
-42

 -0.049 4.1×10
-12

 

GRB10 0.34 -0.018 2.3×10
-12

 -0.026 2.8×10
-5

 -0.016 7.6×10
-9

 -0.0273 8.0×10
-5

 

GCK 0.14 -0.020 4.1×10
-8

 -0.029 5.2×10
-4

 -0.022 1.7×10
-8

 -0.032 7.0×10
-4

 

 

The fasting glucose mean effects of the 36 mean effect variants are only weakly correlated 

with their effects on variance (correlation with BS effect: r
2
=0.11, P=0.026, correlation 

with WS effect: r
2
=0.11, P=0.026), while the BS variance effects and the WS variance 

effects are highly correlated (r
2
=0.47, P=2.4×10

-6
). 

When testing for variance effects genome wide, we did not observe any variants that 

associate with glucose variance but not mean glucose levels. For the fasting glucose data 

set, the correction factors were λ = 1.14 and λ = 1.21 when estimating between-subject and 

within-subject variance effects, respectively. 
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5.1.4 Replication of variance effects 

To validate the observed variance effects, we analyzed fasting glucose measures from 

10,574 Iranians with 1 to 4 available measurement per person. We replicated 5 out of 6 

associations (Table 4). 

Table 4. The association of glucose variants on the BS and WS variance of glucose levels 

in the Icelandic and Iranian datasets. 

    
 

Iceland Iran 

   Glucose Fasting Glucose Fasting Glucose 

Variance 

model 
Gene MAF Effect P-value Effect P-value Effect P-value 

BS G6PC2 0.30 -0.075 2.0×10
-28

 -0.076 7.5×10
-18

 -0.111 7.0×10
-6

 

BS GCK 0.14 -0.075 1.8×10
-16

 -0.078 4.9×10
-11

 -0.117 2.7×10
-5

 

BS TCF7L2 0.30 0.052 2.5×10
-14

 0.055 4.5×10
-10

 0.095 8.3×10
-6

 

WS G6PC2 0.30 -0.040 7.9×10
-50

 -0.048 1.0×10
-13

 -0.036 2.1×10
-2

 

WS GRB10 0.34 -0.018 2.3×10
-12

 -0.026 2.8×10
-5

 -0.012 4.1×10
-1

 

WS GCK 0.14 -0.020 4.1×10
-8

 -0.029 5.2×10
-4

 -0.073 2.4×10
-5

 

 

5.1.5 Effect on glucose levels vs. effect on T2D risk 

Out of the 36 glucose variants, 22 also associate with T2D in a T2D meta-analysis of 

European ancestry with 12,171 cases and 56.862 controls. However, their effect on glucose 

does not predict their effect on T2D, where the effects are only weakly correlated (r
2
=0.02, 

P=0.21). For instance, the variants in GCK and G6PC1 that increase glucose levels 

substantially, do not have any effect on the risk of T2D.  

Interestingly, when we look at the relationship between BS variance effect and T2D risk, 

we see that BS variance effect predicts the effect on T2D quite well (r
2
=0.38, P=3.3×10

-5
). 

By fitting a regression model where the T2D effect is regressed against the mean and BS 

variance effect of fasting glucose, we get r
2
=0.61 (P for adding effect on BS variance 

=5.7×10
-8

). The TCF7L2 variant has the greatest positive BS variance effect and the 

greatest effect on the risk of T2D and as such carries substantial weight in the regression. 

However, when we remove it from the analysis, the mean and BS variance effects of the 

other variants still predict T2D risk (r
2
=0.46, P=7.1×10

-6
 for adding the BS effect) and the 

remaining variants predict the T2D effect of the TCF7L2 variant to be high, although not 

as high as the observed OR (observed OR = 1.33 (95% CI: 1.29-1.37), predicted OR = 

1.17). Performing the regression of T2D effect against the mean and BS effect using all 

glucose measurements instead of only fasting glucose gives consistent prediction (r
2
=0.70 

and P=4.1×10
-10

). These results show that sequence variants that increase both the mean 

and BS variance tend to increase the risk of T2D more than variants that increase the mean 

but reduce the variance.  

The effect on WS variance is a worse predictor of T2D effect than the effect on BS 

variance and adding the effect on WS variance to the regression model does not improve 

the prediction (P=0.091 for adding effect on WS variance).  
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5.1.6 Possible interaction 

A possible explanation to why a sequence variant could affect the BS variance of a trait is 

an interaction between the variant and some environmental factor. BMI measures was 

available for 39,986 individuals and to investigate a possible interaction between the 

glucose variants and BMI on fasting glucose, we fitted the following model for each of the 

36 variants: 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 = 𝛾1𝑔 + 𝛾2𝐵𝑀𝐼 + 𝛾3(𝑔 × 𝐵𝑀𝐼) + 𝜀. 

Seven variants had nominally significant interactions effect 𝛾3 with BMI (P < 0.05), 

including the TCF7L2 variant (P = 3.6×10
-3

) and for the 36 variants, the interaction effects 

correlated with the effects on BS variance (r
2
=0.12, P=0.020). That suggests that the effect 

of these variants on glucose levels are affected by the environment, but only a small 

fraction of their effect on BS variance are explained by interaction with BMI.  

5.1.7 Genetic risk score 

We constructed mean and variance GRSs for the 36 glucose variants, by using the mean 

effects and BS variance effects as weights (see section 4.6). Both GRSs associated with 

T2D (P<3.1×10
-39

). Further, in joint analysis of the fasting glucose risk scores, adding the 

variance GRS to the mean GRS increased the residual Nagelkerke’s
55

 pseudo r
2
 from 0.4% 

to 1.0% (P=5.4×10
-67

).  

Figure 10 shows the percentage of T2D cases in each quintile of the GRSs and how the 

effect of variants on BS variance have an impact on genetic risk prediction of T2D 

comparable to their effect on the mean. 

 

Figure 10. Fasting glucose (FG) GRS based on the 36 fasting glucose variants. 

 



 

 

32 

5.1.8 Heritability 

Fasting glucose measures and genotype information was available for 35,965 sibling pairs 

and 38,527 parent-offspring pairs. For each of the 36 glucose variants, we computed the 

covariance for the pairs that shared the same genotype and estimated the trend between the 

genotype and the covariance. This was done for sibling pairs and parent-offspring pairs 

separately and then we computed the mean covariance trend. The mean covariance trend 

for the 36 variants was correlated with the BS variance effect (r
2
=0.22, P=2.1×10

-3
). 

The variant with the strongest covariance trend was the variant in TCF7L2 with 17.6% 

increased covariance per allele (P=4.1×10
-4

). The effect of the TCF7L2 variant on the BS 

variance of glucose levels was estimated to be 5.7% increase per allele. Therefore, the 

correlation between relative pairs was increased by 11.3% per allele, showing that the 

variant is increasing estimated heritability based on correlation between relative pairs.  

5.2 Paper II - A GWAS on structural measures 

of the corneal endothelium 

The second paper of this theses reports results of a GWAS on four quantitative corneal 

measures; corneal endothelial cell density (cells/mm
2
), coefficient of cell size variation 

(CV), percentage of hexagonal cells (HEX) and central corneal thickness (CCT).  

Corneal endothelial images of 6,125 Icelanders were analyzed in the study, obtained as a 

part of the DHS (see section 4.1.3). 

5.2.1 Sex and age effect on corneal traits 

Corneal endothelial cells are incapable of mitosis and the number of cells in the 

endothelium decreases with age. Due to the loss of cells, the remaining cells grow larger 

and more irregular in shape. Therefore, cell density and HEX decreases with age while CV 

increases (Figure 11). We also tested if these traits were different between the sexes and 

found that women have considerably lower HEX values than men (48.3% vs 50.6%, 

P=8.4×10
−43

), while women have slightly higher CV and cell density (30.3 vs 29.6, 

P=2.6×10
−6

, and 2663 vs 2639 cells/mm
2
, P=1.8×10

−3
). As has been reported before, CCT 

values do not associate with age, and men have higher values than women on average 

(565.4 vs 561.5 μm, P=1.9×10
−4

). 
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Figure 11. The mean of the trait by age groups for women in red and men in blue. The 

gray lines show 95% confidence intervals.  

5.2.2 Study design 

We tested 34 million sequence variants (section 4.2.1) for association under the additive 

model with the four corneal traits. Ten sequence variants were genome-wide significant 

according to the significance thresholds that are dependent on sequence variant annotation 

(Figure 12). Seven of the variants are novel and two of them associate most strongly with 

cell density. Three other variants associated with CV and five variants associated with 

CCT. The estimated correction factors from the LD score regression were 1.05, 1.03, 1.03 

and 1.06 for cell density, CV, HEX, and CCT, respectively. 
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Figure 12. Manhattan plots showing the association results for the GWAS of the four 

corneal traits. The −log10 P-values are shown for each variant against their chromosomal 

position. 

We further explored the associating variants, by assessing their effect on several ocular 

biomechanics such as corneal hysteresis (CH), corneal resistance factor (CRF), Goldmann 

correlated intraocular pressure (IOPg), and corneal compensated intraocular pressure 

(IOPcc). Additionally, we assessed their effect on ocular diseases such as glaucoma and 

corneal dystrophies.  

5.2.3 GWAS results 

In this thesis, we will focus on the key results regarding the two variants that associate with 

cell density (see Paper II for further results). 

Two sequence variants associated with cell density; an intronic variant, rs78658973[A], 

located 0.4 kb downstream of ANAPC1 and a microsatellite in TCF4. 
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The strongest association is represented by the intronic variant, rs78658973[A], near 

ANAPC1 that associates with decreased cell density (β=−0.77 SD, P=1.8×10
−314

, 

MAF=28.3%). The variant is highly correlated with 113 variants in the region, but none of 

them are protein coding. The variant also associates with CV (β=0.23 SD, P=2.8×10
−28

) 

and HEX (β=−0.16 SD, P=2.6×10
−19

). Since CV and HEX correlate with cell density (r=-

0.33 and r=0.15), the effects of the variant on CV and HEX are mostly driven by the strong 

association between the variant and cell density. When we adjust for cell density, the 

effects on CV and HEX are no longer significant (CV adjusted for cell density: β = −0.04 

SD, P = 0.049; HEX adjusted for cell density: β = −0.04 SD, P = 0.072).  

The effect of rs78658973[A] on cell density is unusually large for such a complex trait, and 

the fraction of variance of cell density explained by this one variant is 24%. The average 

cell density per age and genotype groups are shown in Figure 13). Homozygous carriers of 

rs78658973[A] have on average 455 fewer cells per mm
2
 compared to non-carriers and the 

mean cell density for 30-year old homozygous carriers is lower than the mean cell density 

for 70-year old non-carriers.  

 

Figure 13. The mean cell density per age group for non-carriers of the ANAPC1 variant in 

grey, heterozygous carriers in yellow and homozygous carriers in green.  

The other variant that associates with cell density is a microsatellite in TCF4, where the 

effect allele is defined as a CTG repeat of length at least 33 (MAF=6.1%) and corresponds 

to the expanded CTG 18.1 allele (OMIM: 602272, allelic variant 0.0007). This 

microsatellite is a known pathogenic variant, according to Clinvar, reported to cause 

autosomal dominant FECD
56–58

. FECD is a disease of the corneal endothelium and is the 

most common indication for corneal transplantation
20,59

. It affects around 4% of people 

over 40 years old (OMIM: 602272) and is characterized by premature loss of endothelial 

cells resulting in increased variability in cell shape and size which can cause corneal edema 

and visual loss. Consistent with these characteristics of the disease, the expanded CTG 

18.1 allele associates with lower cell density and HEX (β = −0.38 SD, P = 1.6 × 10
−19

 and 

β = −0.37 SD, P = 5.9 × 10
−18

, respectively).  
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5.2.4 The effect of cell density associating variants on diseases 

and other corneal metrics 

To estimate the effect of the cell density associating variants on ocular diseases, we 

performed a meta-analysis of the Icelandic and UK Biobank data using ICD codes for 

glaucoma and corneal diseases. The results for the variants at ANAPC1 and TCF4 are 

shown in Table 5. We replicate the known effect of the microsatellite in TCF4 on FECD 

using the ICD code for hereditary corneal dystrophies (OR=7.8, P=3.3×10
−31

). However, 

the variant near ANAPC1 does not associate with any of the diseases.  

Table 5. The association of the TCF4 and ANAPC1 variants with ocular diseases in a 

meta-analysis of GWAS results from Iceland and the UK Biobank. The number of cases 

and controls are shown for each disease. 

  N TCF4 ANAPC1 

Trait 
ICD10 

codes 
Cases Controls P-value OR P-value OR 

Disorders of cornea H18 1,236 663K 0.014 1.78 0.43 0.95 

Corneal degeneration H18.4 199 684K 9.9×10
-9

 3.98 0.86 0.98 

Hereditary corneal dystrophies H18.5 330 684K 3.3×10
-31

 7.77 0.030 0.81 

Glaucoma H40 8,432 641K 0.15 0.92 0.048 1.04 

Primary open angle glaucoma 

(POAG) 
H40.1 2,296 706K 0.51 0.94 0.24 0.96 

Primary angle closure glaucoma 

(PACG) 
H40.2 777 637K 0.24 0.61 0.19 0.92 

 

The participants of the DHS also had various ocular biomechanics measured, including 

corneal hysteresis (CH), corneal resistance factor (CRF), Goldmann correlated intraocular 

pressure (IOPg) and corneal compensated intraocular pressure (IOPcc). 

Interestingly, the ANAPC1 and TCF4 variants both associate strongly with CH (β=0.19 

SD, P=2.6×10
−19

 and β=−0.29 SD, P=3.1×10
−12

). The alleles that associate with decreased 

cell density have different direction of effect on CH, i.e. the ANAPC1 variant associates 

with increased CH while the TCF4 variant associates with decreased CH. CH is a measure 

of the cornea’s ability to absorb and dissipate energy
60,61

 and low CH has been associated 

with faster rate of glaucoma progression
62–64

. However, the variants do not associate with 

glaucoma in our data (Table 5).  

5.2.5 Glaucoma and corneal measures 

Of the DHS participants, 3.2% have glaucoma according to self-reported information. We 

estimated the effect of glaucoma disease status on the corneal measures and observed that 

CH and cell density are most strongly associated with glaucoma (Table 6) such that 

glaucoma patients have fewer cell in the endothelium and lower CH. 
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Table 6. The first two columns show the effect of glaucoma status on corneal traits, 

adjusting for age and sex. The other two columns show the correlation (R
2
) between the 

effect of glaucoma variants on glaucoma and their effect on the corneal traits. 

 Glaucoma status Glaucoma variants 

 β (SD) P-value R
2
 P-value 

CH -0.37 3.8‧10
-7

 0.03 0.51 

CD -0.35 2.1‧10
-6

 0.03 0.49 

IOPcc 0.29 7.3‧10
-5

 0.31 0.03 

CCT -0.25 4.7‧10
-4

 0.02 0.58 

IOPg 0.18 1.4‧10
-2

 0.22 0.06 

HEX -0.16 3.0‧10
-2

 0.02 0.57 

CV 0.13 6.9‧10
-2

 0.09 0.27 

CRF -0.07 0.34 0.02 0.63 

  

Because of these associations between glaucoma status and corneal measures, we estimate 

the effect of previously published glaucoma variants that replicate in our data on corneal 

measures (Figure 14). Despite the correlation between glaucoma and the corneal measures, 

the correlation between the glaucoma variants effect on glaucoma and their effect on the 

corneal traits was not significant for any trait (Table 6). This suggests that these glaucoma 

variants do not confer their risk of glaucoma through their effect on CH and cell density. 

Figure 14. Effect of previously reported glaucoma variants on corneal traits for the 

glaucoma risk increasing allele. Effects on the traits are shown for significant associations 

after adjusting for multiple testing with the Benjamini–Hochberg false discovery rate 

procedure for each variant. Effect are shown in red for positive effects and blue for 

negative effects. 
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5.3 Paper III – A GWAS meta-analysis of age-

related hearing impairment 

The third paper of this thesis reports results from a meta-analysis of three GWAS on 

ARHI, using audiometric measures from two non-overlapping Icelandic datasets (DHS and 

NIHSI) and self-reported hearing difficulty from the UK Biobank (see section 4.1.4). 

5.3.1 Demographics of ARHI in Iceland 

The DHS and NIHSI datasets are both based on audiometric measures. The DHS dataset 

was obtained as a part of a broad phenotype collection for a general population sample, 

while at the NIHSI, most of the subjects that have audiometric measurements have 

problems with their hearing (Figure 15).  

 

 

Figure 15.  Histograms of PTA hearing thresholds from a) DHS and b) NIHSI datasets.  

The DHS dataset therefore provides a good opportunity to analyze the prevalence of ARHI 

in Iceland, which was 36.1% for mild (PTA>25), 7.7% for moderate (PTA>40), 1.1% for 

severe (PTA>60) and 0.1% for profound (PTA>80) impairment. The prevalence of ARHI 

increases rapidly with age and ARHI is more common for men than women (Figure 16). 
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Figure 16. The prevalence of hearing impairment by age groups in the DHS dataset. 

Shown are the fraction of women (squares) and men (round dots) per age group with mild 

in grey, moderate in yellow and severe hearing impairment in red.   

 

5.3.2 Study Design 

In total, we tested 47 million variants for association with ARHI in a meta-analysis of three 

GWAS (Figure 17) using both the additive and recessive models. The estimated correction 

factors for ARHI were 1.05, 1.20 and 1.05, under the additive model, and 1.01, 1.09 and 

1.00, under the recessive model, in DHS, NIHSI and UKB datasets respectively. 
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Figure 17. A flowchart explaining the study design of the ARHI GWAS meta-analysis. The 

UK Biobank (UKB) GWAS was performed on two genotype datasets labelled in red and 

blue. WGS = Whole genome sequenced, HRC = Haplotype Reference Consortium, WES = 

Whole exome sequenced, PTA = Pure tone average, DHS = deCODE health study, NIHSI 

= National Institute of Hearing and Speech in Iceland. 

Fifty-five independent variants at 48 loci satisfied our genome-wide significance 

thresholds that are dependent on sequence variant annotation (Figure 18).  

 

Figure 18. Manhattan plots showing the association results for the ARHI meta-analysis 

under the a) the additive model and b) the recessive model. The −log10 P-values are shown 

for each variant against their chromosomal position. 

If a variant has MAF=f, the expected genotype frequency (EGF) is 2f(1-f) for heterozygous 

carriers and f
2
 for homozygous carriers. In this paper, we define rare variants as variants 

with EGF below 1%, i.e. variants detected with the additive model with MAF<0.5% and 

variants detected with the recessive model with MAF<10%. Twenty-one of the detected 

variants are rare. Due to the PTA based definition of ARHI cases in the Icelandic datasets 
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(PTA>25 dB HL), individuals that are completely deaf, or have prelingual or childhood-

onset hearing loss, are not excluded from the analysis. Therefore, the GWAS might detect 

variants that are causing deafness instead of ARHI. Because of this, for each rare variant 

we detected, we estimated whether they are associating with ARHI, by fitting a linear 

model using the PTA hearing threshold for the carriers as a response and age as a 

covariate. Four variants had predicted PTA over 25 dB HL at 10 years of age, and we 

therefore considered them to be causing childhood-onset hearing loss. Thus, 51 variants 

associated with AHRI, 41 under the additive model and 10 under the recessive model. We 

furthermore used a gene-based burden test, where LOF variants with MAF<2% were 

aggregated and tested together, yielding one additional ARHI gene; AP1M2. 

We explored the associating ARHI variants, by assessing their effect on tinnitus and on 

ARHI for each frequency; 0.5, 1, 2, 4, 6 and 8 kHz. We additionally analyzed their effects 

on ARHI for heterozygous and homozygous carriers separately by using the full genotypic 

model. Furthermore, we constructed a GRS for ARHI using the effect estimates from the 

UK Biobank and assessed its predictive abilities in the Icelandic datasets.  

5.3.3 GWAS results 

In this thesis, we will briefly report the key results (see Paper III for further results). 

Twenty-one of the ARHI variants are novel associations, and 16 are rare variants with EGF 

less than 1%. Five of the rare variants are in genes that have not been reported for hearing 

before, six are in Mendelian deafness genes and two are secondary signals at ARHI loci 

(Figure 19). 
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Figure 19. A flowchart showing a summary of the results for the ARHI GWAS meta-

analysis.  

In Iceland, 4.9% of the population are carriers of at least one of the 16 rare ARHI variants. 

Carriers of rare variants have a 2.2-fold (P=1.0×10
-12

) greater risk of mild hearing 

impairment compared to the rest of the population, 3.0-fold (P=1.4×10
-9

) greater risk of 

moderate impairment and 5.6-fold (P=1.9×10
-8

) greater risk of severe impairment (Figure 

20).  
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Figure 20. The cumulative risk of mild, moderate and severe hearing impairment in the 

DHS dataset among the 4.9% of subjects that are carriers of any of the 16 rare ARHI 

variants (round dots) and the 95% that are not carriers (squares). 

Of the 16 rare variants, 15 are in protein coding regions and 13 are novel. Of the novel 

variants, a missense variants in LOXHD1 and a tandem duplication in FBF1 associate most 

strongly with ARHI (OR=3.7, P=1.7×10
-22

 and OR=4.2, P=5.7×10
-27

, respectively). 

The missense variant, p.Arg1090Gln, in LOXHD1 (MAFIceland=2.96% and MAFUK=1.99%) 

was detected using the recessive model and is one of the six rare ARHI variants that are 

located in a Mendelian deafness genes. Out of the 62 homozygous carriers with 

audiometric measurements in the Icelandic datasets, 82.3% have at least mild hearing 

impairment and 48.4% have moderate to profound hearing impairment (Figure 21.a). The 

rare tandem duplication in FBF1 (MAFIce=0.22%) was detected in Iceland under the 

additive model and spans 7,282 base pairs and covers exons 4 to 7. For the duplication, 

81.5% of 162 carriers with audiometric measurements have at least mild hearing 

impairment and 48.4% have moderate to profound hearing impairment (Figure 21.b).  
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Figure 21. Changes in PTA hearing thresholds by age for carriers of the variants in a) 

LOXHD1 and b) FBF1.  In figure a, PTA means of non-carriers in the DHS dataset are 

represented with grey dots, means of heterozygotes in DHS dataset with orange dots and 

the PTA hearing threshold of the homozygous carriers in DHS and NIHSI datasets are 

indicated by red squares. In figures b PTA means of non-carriers in the DHS dataset are 

represented with grey dots and the PTA hearing threshold of the heterozygous carriers in 

DHS and NIHSI datasets are indicated by yellow squares. 

5.3.4 Genetic risk scores predict ARHI risk 

We constructed a GRS using the 35 common variants (EGF>1%) and effect estimates from 

the UK Biobank as weights and taking into account if the variants associated under the 

additive or recessive models (section 4.6). The GRS associates with ARHI in both 

Icelandic datasets (OR=1.31, P=4.1×10
-29

 and OR=1.18, P=7.5×10
-39

 in DHS and NIHSI 

datasets respectively) and the risk of ARHI for individuals increases over GRS deciles 

(Figure 22.a). Individuals in the top GRS decile have a 2.5-fold (P=6.1×10
-18

) greater risk 

of ARHI relative to those in the bottom decile in the DHS dataset. Furthermore, when 

looking at the fraction of ARHI cases for 5-year age groups, we see that individuals in the 

top GRS decile develop ARHI on average 10 years younger than those in the bottom decile 

(Figure 22.b). 
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Figure 22. a) The ORs for ARHI for each GRS decile in the DHS and NIHSI datasets 

relative to the bottom decile. b) The cumulative risk of ARHI among subjects in the DHS 

dataset in the bottom GRS decile in blue and the top GRS decile in red. 

If we compare the 4.9% that carry at least one of the 16 rare ARHI variant to the bottom 

GRS decile, the ORs are 3.4 for mild, 6.1 for moderate and 9.2 for severe hearing 

impairment (P=3.0×10
-19

, 8.4×10
-13

 and 1.0×10
-7

, respectively). Thus, relative to the 

bottom GRS decile, the risk of ARHI for carriers of rare ARHI variants is comparable to 

the risk of ARHI of individuals in top GRS decile (P heterogeneity=0.075), while the risk 

of moderate and severe hearing impairment for carriers of rare variants is substantially 

greater than the risk for the top GRS decile (P heterogeneity<0.05). 
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5.3.5 Association of ARHI variants with ARHI under the full 

genotypic model 

Ten out of the 51 ARHI variants, were detected under the recessive model. To further 

explore the effect of heterozygous and homozygous carriers separately on ARHI, we fit a 

full genotypic model for each of the ARHI variants using two parameters for heterozygotes 

and homozygotes. Four variants in TYR, KLHDC7B, SYNJ2 and CLRN2, that were 

detected using the additive model, had stronger effect of homozygous carriers than 

expected by the additive model (P<0.05, Table 7). Three variants in ILDR1, CHMP4C and 

CCDC68 that we detected using the recessive model, were reported by Wells et al. using 

the additive model. The results using the genotypic model shows that these variants are 

truly associating with ARHI under recessive mode of inheritance, showing no significant 

effects for heterozygous carriers (Table 7).  

Table 7. The effect of seven ARHI variants on ARHI per genotype, four that had stronger 

effect on homozygous carriers than expected by the additive model, and three recessive 

variants that have been reported under the additive model. The deviation column shows the 

P-value when comparing the full genotypic model to the additive model.  

    Full 

genotypic 

model  

P-value 

Heterozygote Homozygote  

Chr Position Gene MAF Effect P-value Effect P-value 
P 

deviation 

3 121993204 ILDR1 29.72 9.2‧10
-19

 1.01 0.40 1.13 8.5‧10
-20

 4.6‧10
-15

 

8 81753241 CHMP4C 6.83 3.6‧10
-16

 1.03 2.3‧10
-2

 1.53 7.9‧10
-15

 2.1‧10
-14

 

22 50549676 KLHDC7B 3.57 1.2‧10
-33

 1.13 1.8‧10
-20

 1.93 1.0‧10
-11

 1.9‧10
-6

 

6 158071628 SYNJ2 0.37 3.3‧10
-14

 1.29 8.3‧10
-11

 22.61 4.3‧10
-5

 2.2‧10
-4

 

18 54937957 CCDC68 21.12 3.1‧10
-9

 1.01 6.8‧10
-2

 1.11 9.4‧10
-8

 5.4‧10
-4

 

11 89284793 TYR 30.15 4.5‧10
-20

 1.03 2.3‧10
-5

 1.13 7.6‧10
-12

 2.3‧10
-3

 

4 17522947 CLRN2 12.79 4.2‧10
-11

 1.04 3.5‧10
-6

 1.16 6.6‧10
-5

 2.8‧10
-3

 

 

5.3.6 ARHI and tinnitus 

We estimated the effect of the ARHI variants on tinnitus by using self-reported 

information from DHS and UK Biobank (Ncases=47,657 and Ncontrols=111,607). For ARHI 

variants that were detected using the additive model, we estimated their effect on tinnitus 

with the additive model. Similarly, for variants that were detected under the recessive 

model, we used the recessive model when estimating their effect on tinnitus. Thirteen 

ARHI variants also associated with tinnitus when controlling the false-discovery rate at 

0.05 using the Benjamini-Hochberg procedure, and for all of them, the ARHI risk 

increasing allele associated with increased risk of tinnitus. For all ARHI variants, their 

effect on ARHI was highly correlated with their effect on tinnitus (Figure 23). 
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Figure 23. The effect of the ARHI variants on ARHI is plotted against their effect on 

tinnitus for a) all ARHI variants and b) zoomed-in on variants with ARHI OR <1.35. ARHI 

variants detected under the additive model are colored blue and ARHI variants detected 

under the recessive model are colored red. Variants that affect tinnitus, controlling the 

false discovery rate at 0.05, are plotted with darker color and labelled with their 

corresponding gene. The effects are shown for the ARHI risk increasing allele. Error bars 

represent 95% confidence intervals. The dotted lines represent results from a weighted 

linear regression using MAF(1-MAF) as weights, red for recessive variants and blue for 

additive, and the weighted correlation coefficients (r) and the corresponding P-values are 

shown in figure a. 
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6 Discussion 

6.1 Conclusions 

6.1.1 Paper I - Sequence variants affecting the variance of 

glucose levels 

In this study, we implemented variance association models to estimate the effect of 

sequence variants on the BS and WS variance of quantitative traits. We found that variants 

in TCF7L2, GCK, G6PC2 and GRB10, that are known to associate with mean glucose 

levels, also associate with the variance of glucose levels. The observation is robust to 

removing diabetics and individuals on diabetic medication from the dataset. We observed 

that variants that affect both the mean and the BS variance of glucose levels increase T2D 

risk more than variants that increase mean levels but reduce the BS variance. Furthermore, 

we found that the effect of variants on the BS variance of glucose levels are as important 

for genetic risk prediction of T2D as the effect of variants on the mean. Apart from 

increasing our understanding of the impact of genetics on glucose metabolism and control, 

this observation helps resolve the question of why sequence variants that associate with 

higher fasting glucose levels do not always associate with increased risk of T2D.  

The effects of these variants on the variance of glucose are so large that they are certain to 

be an important component in the creation of heritability. Indeed, we show that the 

covariance between first degree relative pairs is proportional to their variance effect and 

that for the TCF7L2 variant, the correlation between close relatives is greater for carriers 

than non-carriers. Thus, the effect of these variants on the variance contribute substantially 

to the missing heritability of glucose levels. 

6.1.2 Paper II - A GWAS on structural measures of the corneal 

endothelium 

In this study we described the first GWAS on structural measurements of the corneal 

endothelium including cell density, coefficient of cell size variation and percentage of 

hexagonal cells for which we observed several associating variants.  

Healthy corneal endothelium is necessary for visual perception and its dysfunction is the 

most common reason for corneal transplantation. A minimum number of endothelial cells 

is needed to maintain proper hydration of the cornea and lower cell density is found in 

patients with various eye diseases such as glaucoma and corneal dystrophies. Interestingly, 

we discovered a strong association between lower cell density and a sequence variant near 

ANAPC1 that accounts for a quarter of the population variance of cell density which is 

extremely high for such a complex human trait. No other variant in the GWAS catalog is 

close to explaining such a high fraction of variance of its associating quantitative 

phenotype, when the trait is not a direct measurement of the protein affected by the variant. 
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Despite correlations between cell density and ocular diseases, such as corneal dystrophies 

and glaucoma, the ANAPC1 variant does not associate with risk of eye diseases in our data. 

That shows that endothelial cell density is largely under genetic control without affecting 

the risk of disease. This finding is clinically relevant because abnormal loss of endothelial 

cells is usually the first sign of endothelial diseases and prior to intraocular surgery, cell 

density is used for assessing the risk of endothelial failure. 

6.1.3 Paper III – A GWAS meta-analysis of ARHI 

In this study we described the largest genome-wide association meta-analysis to date on 

age-related hearing impairment (ARHI), using audiometric measurements from two non-

overlapping Icelandic datasets and information on self-reported hearing difficulty from the 

UK Biobank. We observed 21 novel sequence variants associating with ARHI, using both 

the additive and recessive models. Previous GWAS on ARHI have reported on common 

variants with small to moderate effects, while in this study, 13 of the novel variants have 

rare genotypes with large effects. Five of the novel rare variants are at loci that have not 

been reported for hearing before, one of which is a tandem duplication that covers exons 4 

to 7 of FBF1.  

We constructed an ARHI GRS from common variants using effect sizes from the UK 

Biobank. We showed that using the GRS to stratify individuals into risk groups, can 

identify individuals at risk comparable to carriers of rare ARHI variants with high 

penetrance. However, the rare ARHI variants seem to cause more severe ARHI than the 

common variants.  

We explored the effect of the ARHI variant on tinnitus, a phenotype known to be 

correlated with ARHI. We found a high correlation between the effect sizes of ARHI 

variants on ARHI and tinnitus suggesting that these traits share genetic causes.  

Interestingly, 20% of the detected variants associated more strongly under the recessive 

model, which is unusual for age-related diseases. The missense variant in LOXHD1, which 

is genome-wide significant in the UK Biobank dataset, was not detected under the additive 

model in a previous study using the same dataset. Furthermore, variants that have been 

previously reported with additive effects, are truly associating with ARHI under recessive 

mode of inheritance. This illustrates the importance of also using the recessive model when 

searching for variants affecting the risk of ARHI.  

6.2 Future perspectives 

6.2.1 Paper I - Sequence variants affecting the variance of 
glucose levels 

In Paper I we implemented a variance model to detect the effect of variants on the BS and 

WS variance of quantitative traits. The variance models have some drawbacks and could 

be developed further in future research. For instance, the likelihood has a closed form 

solution if the genotype is 0, 1 or 2, but does not take into account genotype probabilities. 

Another issue is that an undetected secondary variant can lead to spurious variance 
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association at the primary variant. In Paper I, we examined secondary variant at the loci 

that associated with the variance of glucose levels and found that they had no impact on the 

variance effects. But in future studies, the model could be developed so that it accounts for 

the mean effects of secondary variants. 

In Paper I, we used the variance models to estimate the variance effects of known glucose 

variants on glucose levels. We also performed a genome-wide scan and found no 

additional variants associating with the variance of glucose levels. In this thesis we 

constricted the analysis to glucose levels, but there is great potential in exploring variance 

effects on other quantitative traits. Since larger sample sizes are needed to detect variance 

effects than mean effects, the advent of biobanks that have genetic data combined with 

high-dimensional phenotypic data obtained for a large number of subjects, provide an 

opportunity to analyze variance effects for several quantitative traits that can enhance our 

understanding of the biology and genetics of those traits as well as account for some of the 

missing heritability. 

6.2.2 Papers II and III – GWAS on corneal traits and age-
related hearing impairment 

In papers II and III, GWAS were performed to search for variants associating with sensory 

traits. Future research has the potential to further increase the understanding of the genetics 

of these traits.  

In Paper II, corneal measures obtained from a specular microscopy were analyzed that 

have not been analyzed in GWAS before. Increasing sample size would most likely lead to 

more associating variants that would further increase the knowledge about these corneal 

traits. Since Paper II was written, the sample size of the deCODE health study has almost 

doubled, and we already have an example of a missense variant in SLC4A11 that we found 

to associate with ARHI in Paper III, that also associates genome-wide significantly with 

endothelial cell density but was not detected at the time when Paper II was written. 

In Paper III, the largest to date GWAS meta-analysis on ARHI was performed. Increasing 

sample sizes by continuing collaboration of different study groups could further increase 

the predictive abilities of the GRS and likely identify even more rare variants associating 

with ARHI.  

Furthermore, GWAS studies on these traits and in general, will benefit from improved 

quality in genotype data by continuing to whole-genome sequence individuals on a large-

scale basis as well as better genotyping methods. For instance,  a novel method to genotype 

structural variants
65

 was used in the Icelandic datasets in Paper III, which led to the 

detection of the strongest associating ARHI variant in Iceland, a tandem duplication in 

FBF1. Applying this method on other datasets, such as the UK Biobank dataset, might 

result in more novel findings. 
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Sequence variants that affect mean fasting glucose levels 
do not necessarily affect risk for type 2 diabetes (T2D). 
We assessed the effects of 36 reported glucose-associated 
sequence variants1 on between- and within-subject variance 
in fasting glucose levels in 69,142 Icelanders. The variant in 
TCF7L2 that increases fasting glucose levels increases between-
subject variance (5.7% per allele, P = 4.2 × 10−10), whereas 
variants in GCK and G6PC2 that increase fasting glucose levels 
decrease between-subject variance (7.5% per allele, P = 4.9 
× 10−11 and 7.3% per allele, P = 7.5 × 10−18, respectively). 
Variants that increase mean and between-subject variance in 
fasting glucose levels tend to increase T2D risk, whereas those 
that increase the mean but reduce variance do not (r2 = 0.61). 
The variants that increase between-subject variance increase 
fasting glucose heritability estimates. Intuitively, our results 
show that increasing the mean and variance of glucose levels 
is more likely to cause pathologically high glucose levels than 
increase in the mean offset by a decrease in variance.

Despite recent advances in the genetics of T2D, understanding of the 
pathophysiology of the disease is still limited. Genome-wide associa-
tion studies have yielded over 80 variants that associate with T2D, 
fasting glucose levels and other glycemic traits2–6. Although there is 
overlap between loci that affect fasting glucose and those that affect 
T2D, the effects of variants on mean fasting glucose do not predict 
their effects on T2D1. Further, none of the eight variants that associ-
ate with hemoglobin A1c (HbA1c), but not fasting glucose, associate 
with T2D, although HbA1c values above 6.5% are used as a diagnostic 
criterion for T2D1.

Most reports on analysis of loci associated with quantitative traits 
have been confined to the effects of variants on the means of traits. 

However, variants can also affect the variability of traits (variance 
heterogeneity)7. Such loci have been reported for some human traits, 
including the major histocompatibility complex (MHC) region for 
rheumatoid arthritis8, FTO for body mass index (BMI)9, SLC2A9 for 
serum urate10, LEPR for C-reactive protein and ICAM1 for soluble 
ICAM1 (ref. 11), as well as for traits in other species like rats12, flies13 
and plants14. Further, variants can also affect the variability in meas-
urements taken from the same individual. We refer to these two types 
of variability as between-subject and within-subject variance. Here we 
estimate the variance effects of variants that have been associated with 
fasting glucose levels1 and examine how their effects on variance cor-
relate with their effects on T2D risk. We also estimate how the effects 
of these variants on variance affect heritability estimates.

We chip genotyped 117,548 Icelanders with glucose measurements 
performed at three laboratories (Fig. 1, Table 1, Supplementary Fig. 
1 and Supplementary Tables 1–4). Of the subjects, 8,797 (7.5%) had 
T2D or were on diabetes medication15. Furthermore, 366 individuals 
had type 1 diabetes (T1D). The primary glucose variance association 
analysis was performed on individuals with fasting glucose levels (set 
I). Additionally, we generated three data sets for secondary analysis; 
one comprising individuals with fasting and/or non-fasting glucose 
levels (set II) and the previously listed data sets I and II after excluding 
T2D and T1D cases and individuals on diabetes medication.

Of the 36 known variants associated with glucose levels1, 3 associ-
ated with between-subject variance consistently in all four analyses 
(P < 0.05/36 = 0.0014) (Fig. 1a and Supplementary Tables 3–5).  
One variant, rs7903146 in TCF7L2, is the strongest common T2D- 
associated variant2,16. The allele at this SNP associating with higher 
glucose levels and increased T2D risk was associated with greater 
between-subject glucose variance. In contrast, the alleles of rs560887 
in G6PC2 and rs2908289 in GCK that are associated with increased 
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glucose1 associated with less between-subject variance. The variant in 
G6PC2 does not associate significantly with T2D whereas the variant  
in GCK slightly increases T2D risk in the DIAGRAM Consortium  
(odds ratio (OR) = 1.04, P = 0.018; Supplementary Table 2).

We also estimated the effects of the 36 variants on the within-sub-
ject variance in glucose levels (Fig. 1b). The glucose-increasing alle-
les of three variants—rs560887 in G6PC2, rs6943153 in GRB10 and 
rs2908289 in GCK—associated consistently with less within-subject 
variance in all four analyses (Supplementary Tables 3–5).

On the basis of a T2D meta-analysis (12,171 cases and 56,862 controls  
of European ancestry)2, 22 of the 36 variants with an effect on mean 
fasting glucose levels also associate with T2D. However, their effects 
on fasting glucose levels and T2D risk were weakly correlated (r2 = 0.02  
between the effect on the mean (β) and log(OR), P = 0.21; an F test 
was performed in all regression analysis) (Fig. 2a). Interestingly, 
the effect of a variant on between-subject variance in fasting glu-
cose combined with its effect on mean fasting glucose predicted the 
effect of this variant on T2D much better than the effect on the mean 
alone (r2 = 0.61, P value for adding effect on between-subject vari-
ance = 5.7 × 10−8). Even on its own, the effect on between-subject  

variance predicted the T2D effect reasonably well (r2 = 0.38,  
P = 3.3 × 10−5) (Fig. 2b). Therefore, variants that increase both the 
mean and between-subject variance of glucose levels increase the 
risk of T2D more than variants that increase the mean but reduce the 
between-subject variance.

The effect on within-subject glucose variance was a worse predic-
tor of T2D risk than the effect on between-subject variance (r2 = 0.24) 
(Supplementary Table 6), and it did not improve prediction of T2D 
beyond the mean and between-subject effects (P = 0.091).

Interaction between sequence variants and environmental fac-
tors such as nutrition is a possible source of between-subject vari-
ance11. It has previously been reported that heterogeneity in T2D 
associations is introduced by BMI17,18. We estimated the interac-
tion effects between the 36 glucose-associated variants and BMI 
on fasting glucose (n = 39,986). The interaction effects were 
correlated with the between-subject variance effects (r2 = 0.12,  
P = 0.020) (Supplementary Fig. 2 and Supplementary Table 7). 
These results show that the effects of variants are affected by envi-
ronment, although only a small fraction of the effects on between-
subject variance are mitigated through interaction with BMI.

Table 1  Summary of the data
n measurements T2D T1D Age YOB

n Mean Q1 Median Q3 Mean Range n % n % Mean s.d. Mean s.d.

Fasting glucose levels (set I)

  Male 28,981 5.8 5.0 5.5 6.2 3.0 1–55 3,296 11.4 76 0.3 61.6 15.2 1947.4 16.1

  Female 40,161 5.4 4.8 5.2 5.7 3.0 1–94 3,059 7.6 78 0.2 59.0 17.1 1950.5 18.1

All glucose levels (set II)

  Male 51,911 6 5 5.6 6.5 8.2 1–234 4,676 9.0 185 0.4 62.9 16.2 1943.9 16.7

  Female 65,637 5.6 4.8 5.3 6.0 7.8 1–280 4,121 7.3 181 0.3 60.3 18.2 1946.6 18.7

HbA1c (first measurement)

  Male 18,107 5.8 5.2 5.5 5.9 – – 3,041 16.8 56 0.3 60.1 15.1 1948.9 15.8

  Female 22,945 5.6 5.2 5.5 5.8 – – 2,676 11.7 47 0.2 56.9 17.2 1952.1 17.7

T2D, type 2 diabetes; T1D, type 1 diabetes; YOB, year of birth; Q1, first quartile; Q3, third quartile.
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Figure 1  Effects of 36 published fasting-glucose-associated variants on between-subject and within-subject variance in fasting glucose levels and 
between-subject variance in HbA1c levels. Effects on variance are given for the allele that increases fasting glucose levels (Supplementary Table 3). 
Variants are colored blue if they significantly decrease the variance and red if they significantly increase it (likelihood-ratio test, P < 0.05/36 = 0.0014). 
(a) Effects on between-subject variance in fasting glucose (log(αBS)) and 95% confidence intervals for the estimated effects. (b) Effects on within-
subject variance in fasting glucose levels (log(αWS)) and 95% confidence intervals for the estimated effects. (c) Effects on between-subject variance in 
HbA1c (log(αBS)) and 95% confidence intervals for the estimated effects.
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An undetected secondary variant can create a variance effect for 
the primary variant. However, secondary signals at the loci associ-
ated with between-subject variance had no impact on variance effects 
(Supplementary Table 8). Another possible source of effects on 
between-subject variance is interaction between loci. For the three 
variants associated with between-subject variance, we found no inter-
action (Supplementary Table 9).

To validate these variance effects, we analyzed a sample of 10,437 
Iranians with 44,470 fasting glucose measurements from the prospec-
tive Tehran Lipid and Glucose Study19. We replicated the association 
of the variants in TCF7L2, GCK and G6PC2 with between-subject 
variance and the association of the G6PC2 and GCK variants with 
within-subject variance (Supplementary Tables 5 and 10).

HbA1c reflects the average plasma glucose concentration over 3 
months, and an HbA1c value above 6.5% is used as a diagnostic cri-
terion for T2D15. HbA1c measurements were available for 41,052 
Icelanders with genotype information (Table 1 and Supplementary 
Table 1). The number of measurements per subject was correlated 
with HbA1c. Therefore, we only used the first measurement for each 
subject in our analysis.

The pattern of effect for the 36 markers on between-subject 
HbA1c variability is consistent with the results for fasting glucose  
(Fig. 1, Supplementary Fig. 3 and Supplementary Table 11). Of  
the 36 variants, the variants in TCF7L2 and G6PC2 were associ-
ated with between-subject variance (4.5% increase per allele, P =  
4.5 × 10−5 and 6.9% decrease per allele, P = 4.0 × 10−10, respectively;  

a likelihood-ratio test was performed in all genome-wide associa-
tions). As for fasting glucose, the effect on between-subject variance 
in HbA1c increased the prediction accuracy of the effect on T2D  
(r2 = 0.54 for the mean only, r2 = 0.77 for the mean and between- 
subject variance effect, P value for adding the between-subject vari-
ance effect = 1.4 × 10−6) (Fig. 2c,d and Supplementary Table 6e).

Eight variants have been reported to affect HbA1c without affect-
ing fasting glucose, none of which have an effect on T2D1,20. These 
variants associate with red blood cell homeostasis and iron metabo-
lism (Supplementary Table 12). Interestingly, the HbA1c-increasing  
allele for all eight markers lowered between-subject variance 
(Supplementary Figs. 4 and 5, and Supplementary Table 13), of 
which two were significantly associated with lower between-subject 
variance (P < 0.05/8 = 0.0063): rs10159477[G] in HK1 was associated 
with 5.1% lower variance per allele (P = 0.0024) and rs6474359[T] in 
ANK1 was associated with 8.0% lower variance per allele (P = 0.0044). 
The increase in the mean was offset by lower variance for carriers of 
these variants, and these individuals are therefore less likely to have 
high HbA1c measures. This may explain why carriers of these HbA1c-
increasing variants are not likely to be misclassified as diabetic20.

We constructed genetic risk scores (GRSs), based on the 36 variants, 
for both mean and between-subject variance of fasting glucose levels. 
Both GRSs were associated with T2D (P < 3.1 × 10−39; Fig. 3 and 
Supplementary Table 14). Adding the GRS for between-subject vari-
ance to the GRS for the mean increased residual Nagelkerke’s pseudo-
r2 from 0.4% to 1.0% (P = 5.4 × 10−67; Supplementary Table 14).  
Similarly, GRSs based on the 36 variants for glucose levels and the 
8 variants for HbA1c measures were associated with T2D (P < 3.4 
× 10−28; Fig. 3 and Supplementary Table 14). This shows that the 
effects of variants on between-subject variance have an impact on 
genetic T2D risk prediction that is comparable to that from their 
effects on the mean.

The heritability of a trait is the fraction of variance attributable to 
genetics. Classical estimates of heritability ignore the impact of vari-
ants on phenotypic variance. Most heritability estimates are based on 
relating the correlation between relative pairs to the genetic sharing 
between relatives21. Correlation between relatives corresponds to the 
ratio of their covariance and the geometric mean of their phenotypic 
variances. Variants that affect variance will have a substantial impact 
on the denominator. However, their effect on covariance is unpredict-
able. In our data, we had fasting glucose measures and genotypic infor-
mation for 35,965 sibling pairs and 38,527 parent–offspring pairs. To 
investigate the effect of variants on the covariance between relatives, 
we calculated the covariance for genotype-concordant relative pairs 
and estimated the relationship between genotype and covariance. For 
the 36 variants associated with glucose levels, the mean covariance 
trend in siblings and parent–offspring pairs correlated positively with 
the between-subject variance effect (r2 = 0.22, P = 2.1 × 10−3) (Fig. 4a 
and Supplementary Table 15). If the increase in covariance per allele 
was higher than the variance effect, the correlation was also increased 
and the variants therefore also increased the estimated narrow-sense 
heritability. The variant in TCF7L2 had the strongest trend of 17.6% 
increased covariance (P = 4.1 × 10−4) (Fig. 4b). The between-subject 
variance effect of TCF7L2 was 5.7% per allele, and the correlation was 
therefore increased by 11.3% per allele.

We have shown that variants in TCF7L2, GCK, G6PC2 and GRB10 
that affect mean fasting glucose levels also associate with variance 
in glucose. The variance effects remain after the removal of diabetic 
cases and individuals on diabetes medication. The two variants that 
lower between-subject variance do not associate with T2D risk, and 
their variance effect is thus not driven by a diabetes medication. 
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Figure 2  Effects of 36 published fasting-glucose-associated variants 
on fasting glucose and HbA1c, and between-subject variance in fasting 
glucose and HbA1c versus their effects on type 2 diabetes risk. Effects on 
fasting glucose were estimated in the Icelandic data, while effects on T2D 
risk were obtained from a T2D meta-analysis2 (T2D-GENES Consortium, 
GoT2D Consortium, DIAGRAM Consortium; see URLs) (Supplementary 
Tables 2, 3 and 11). Effects are given for the allele that increases fasting 
glucose levels. Variants are colored blue if they significantly decrease 
variance and red if they significantly increase it (P < 0.05/36 = 0.0014). 
(a) Fasting glucose mean effect (β) against log(T2D OR). (b) Fasting 
glucose between-subject variance effect (log(αBS)) against log(T2D OR). 
(c) HbA1c mean effect (β) against log(T2D OR). (d) HbA1c between-
subject variance effect (log(αBS)) against log(T2D OR).
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Conversely, removal of diabetic cases could create a variance effect in 
the presence of an effect on the mean, although we do not observe this 
phenomenon in our data. It is, however, likely that variants’ effects on 
variance are at least partly due to their interaction with other variants 
and/or with environmental factors. This hypothesis is supported by 
the correlation between the variants’ between-subject variance effects 
and their interaction with BMI.

We have also shown that variants that increase both mean fasting 
glucose levels and between-subject glucose variance increase T2D 
risk more than variants that increase fasting glucose but reduce the 
between-subject variance. These results largely account for the appar-
ent discrepancy between the effects of variants on fasting glucose and 
their effects on T2D risk. This result is intuitively appealing, as T2D is 
primarily a disease of too high glucose; variants that increase both the 
mean and variance for glucose are more likely to be associated with 
pathologically high glucose levels than variants that only increase the 
mean or even have an increase in the mean offset by lower variance.

The variants in GCK, G6PC2 and TCF7L2 all affect fasting glu-
cose levels, but their effects on T2D risk are not proportionate to 
their effects on glucose22. This may reflect different roles in glucose 
regulation. GCK and G6PC2 encode enzymes that regulate glucose 
homeostasis, effectively establishing the glucose set point. Variants 
that increase mean glucose through these proteins will be countered 
by pressure to keep the glucose level within the physiological range, 
leading to reduced variance associated with these variants both within 
and between subjects. Similarly, variants that associate with increased 
HbA1c but not fasting glucose or T2D all associate with erythro-
cyte physiology and iron homeostasis and, where significant, lower 
HbA1c variance. Overall, this indicates low tolerance for variability 
in homeostatic regulation. In contrast, the variant associated with 
the highest variance in glucose levels is located in TCF7L2, which 
encodes a transcription factor that is thought to affect glucose levels 
through complex regulation of beta cell mass and function23. This 
variant affects beta cell response to glucose, leading to greater sen-
sitivity to the environment and, thus, greater variability in glucose 
levels among carriers.

Only 2% of the heritability of fasting glucose levels is attributable 
to the effect of the 36 glucose-associated variants on mean levels. 
We have shown that variants that increase between-subject variance 
create positive covariance between individuals beyond their effects 
on the mean, increasing heritability estimates based on correlation 
between relative pairs. The effect of these markers on heritability is 

substantial and so is their contribution to the missing heritability of 
fasting glucose levels. Further, the effects of variants on the variability 
between individuals in glucose and HbA1c levels are as important for 
genetic risk prediction as the effects of variants on the mean.

URLs. T2D-GENES Consortium, GoT2D Consortium, DIAGRAM 
Consortium (2016-09-12), http://www.type2diabetesgenetics.org/.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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(a) Effects of 36 published fasting-glucose-associated variants on 
between-subject variance in fasting glucose levels and their glucose level 
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are given for the allele that increases fasting glucose levels. Variants are 
colored blue if they significantly decrease the variance and red if they 
significantly increase it (P < 0.05/36 = 0.0014). (b) Estimated covariance 
and correlation of fasting glucose measurements among pairs of relatives 
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ONLINE METHODS
Study subjects. Iceland. Measurements of glucose levels were available 
for a total of 117,548 Icelanders genotyped using Illumina chips. All study  
participants provided informed consent, and the study was approved by  
the Data Protection Commission of Iceland and the Icelandic National 
Bioethics Committee.

Iran. The Iranian subjects are part of the ongoing Tehran Lipid and Glucose 
Study19, including 10,437 Iranians with 44,470 fasting glucose measurements 
genotyped using Illumina chips. All study participants provided informed 
consent. The study has been approved by the National Research Council of the 
Islamic Republic of Iran (no. 121) and has been performed with the approval 
of the Human Research Review Committee of the Endocrine Research Center, 
Shahid Beheshti University (M.C.).

SNP selection. The 36 fasting-glucose-associated variants were identified 
in a genome-wide association meta-analysis of up to 133,010 individuals of 
European ancestry without diabetes, including individuals genotyped using 
the Metabochip1.

Whole-genome sequencing. The process used for whole-genome sequencing 
of the 8,453 Icelanders and the subsequent imputation have been described 
in a recent publication24.

Association testing. Mean effect. Both fasting and non-fasting glucose 
measurements were transformed to a standard normal distribution using a 
rank-based inverse-normal transformation within each sex and each source 
separately and adjusted for age at measurement using a generalized additive 
model25. For each SNP, a classical linear regression, using the genotype as an 
additive covariate and mean glucose levels per subject as a response, was fit 
to test for association.

Between-subject variance effect. For each SNP, we fit a normal model where 
the mean glucose level per subject was regressed against the genotype and 
the between-subject variance was assumed to change multiplicatively with 
the genotype so that for non-carriers, heterozygotes and homozygotes the 
between-subject variance was assumed to be σ2, αBSσ2 and a sBS

2 2, respectively 
(Supplementary Note).

Within-subject variance effect. For each SNP, we fit a normal model 
where glucose level measurements were regressed against the genotype and 
the within-subject variance was assumed to change multiplicatively with 
the genotype so that for non-carriers, heterozygotes and homozygotes the 
within-subject variance was assumed to be σ2, αWSσ2 and a sWS

2 2, respectively 
(Supplementary Note).

Subjects in the data sets were related, causing the χ2 test statistic to have 
mean >1 and median >0.675. We used a subset of 640,250 common SNPs to 
estimate the inflation factor λ and computed all P values by dividing the corre-
sponding χ2 values by λ to adjust for both relatedness and potential population 
stratification26. For the fasting glucose data set (I), λ = 1.14, and λ = 1.21 when 
estimating between-subject and within-subject variance effects, respectively.

BMI interaction effect. For each SNP, we fit an interaction regression model, 
using the genotype, BMI and the interaction term between the genotype and 
BMI as covariates and mean fasting glucose levels as the response. Both glu-
cose levels and BMI measurements were transformed to a standard normal 
distribution using a rank-based inverse-normal transformation within each 
sex and each source separately and adjusted for age at measurement using a 
generalized additive model25.

Thresholds for significance. In the set of 36 variants, significance thresholds for 
between-subject and within-subject variance effect were set to control the false dis-
covery rate at 5% using standard Bonferroni correction (P < 0.05/36 = 0.0014).

Trend analysis. We assessed the relationship between the effects of sequence 
variants on mean and variance effects on glucose levels and their effect on T2D 
(log(OR)) using the following models:

A. T2D effect versus glucose mean effect: log(OR) = y1β + ε;
B. T2D effect versus glucose between-subject variance effect: log(OR) = 

y2log(αBS) + ε;
C. T2D effect versus glucose mean and between-subject variance effect: 

log(OR) = y1β + y2log(αBS) + ε;
D. T2D effect versus glucose mean effect, between-subject variance effect 

and the interaction between glucose mean and between-subject variance 
effect: log(OR) = y1β + y2log(αBS) + y3(β × log(αBS)) + ε;

E. T2D effect versus glucose within-subject variance effect: log(OR) = 
y4log(αWS) + ε;

F. T2D effect versus glucose mean and within-subject variance effect: 
log(OR) = y1β + y4log(αWS) + ε;

G. T2D effect versus glucose mean, between-subject variance and within-
subject variance effect: log(OR) = y1β + y2log(αBS) + y4log(αWS) + ε

where β is the glucose mean effect, αBS is the between-subject variance 
effect and αWS is the within-subject variance effect. All models were fitted 
with a simple weighted linear regression where each variant was weighted 
by f(1 − f), where f is the minor allele frequency of the variant, such that 
rare variants have less weight in the computation than common variants. 
The estimates and measures of goodness of fit are given in Supplementary 
Table 6.

Genetic risk scores. GRSs were constructed for both fasting glucose and 
HbA1c levels by combining the effect allele counts for the selected variants 
weighted by either the estimated mean effect or the between-subject variance 
effect of each allele on the trait.

Heritability. The correlation between close relative pairs is usually used to 
estimate heritability21. To assess how much variants effecting between-subject 
variance can contribute to heritability estimates, for each SNP, we estimated 
the covariance between siblings having the same genotype. Then, we per-
formed a weighted linear regression between the estimated covariance and 
the genotype to assess the covariance trend. We weighted by the number of 
siblings having the genotype divided by the squared phenotypic variance given 
the genotype (Supplementary Note). This was repeated for parent–offspring 
pairs. The correlation between relatives is the ratio of their covariances and 
the geometric mean of their phenotypic variances. The correlation trend was 
therefore computed as the ratio of the covariance trend and variance trend 
(Supplementary Note).

A Life Sciences Reporting Summary for this paper is available.

Code availability. The code used to detect between-subject and within-subject 
variance effects is available as Supplementary Code.

Data availability. The authors declare that the data supporting the findings 
of this study are available within the article, its supplementary information 
files and upon request.

24.	Gudbjartsson, D.F. et al. Large-scale whole-genome sequencing of the Icelandic 
population. Nat. Genet. 47, 435–444 (2015).

25.	Hastie, T. & Tibshirani, R. Generalized additive models. Stat. Sci. 1, 297–310 
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ARTICLE

Sequence variation at ANAPC1 accounts for 24%
of the variability in corneal endothelial cell density
Erna V. Ivarsdottir 1,2, Stefania Benonisdottir1, Gudmar Thorleifsson1, Patrick Sulem 1,

Asmundur Oddsson 1, Unnur Styrkarsdottir 1, Snaedis Kristmundsdottir1, Gudny A. Arnadottir 1,

Gudmundur Thorgeirsson1,3,4, Ingileif Jonsdottir1,3,5, Gunnar M. Zoega6, Unnur Thorsteinsdottir1,3,

Daniel F. Gudbjartsson 1,2, Fridbert Jonasson3,6, Hilma Holm1 & Kari Stefansson 1,3

The corneal endothelium is vital for transparency and proper hydration of the cornea. Here,

we conduct a genome-wide association study of corneal endothelial cell density (cells/mm2),

coefficient of cell size variation (CV), percentage of hexagonal cells (HEX) and central

corneal thickness (CCT) in 6,125 Icelanders and find associations at 10 loci, including 7 novel.

We assess the effects of these variants on various ocular biomechanics such as corneal

hysteresis (CH), as well as eye diseases such as glaucoma and corneal dystrophies. Most

notably, an intergenic variant close to ANAPC1 (rs78658973[A], frequency= 28.3%)

strongly associates with decreased cell density and accounts for 24% of the population

variance in cell density (β=−0.77 SD, P= 1.8 × 10−314) and associates with increased

CH (β= 0.19 SD, P= 2.6 × 10−19) without affecting risk of corneal diseases and glaucoma.

Our findings indicate that despite correlations between cell density and eye diseases, low cell

density does not increase the risk of disease.
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Corneal diseases are among the most common causes of
visual loss worldwide and endothelial cell failure is the
leading indication for corneal transplantation1. The corneal

endothelium is the monolayer of cells at the innermost surface of
the cornea. Through an ion pump function, the endothelium is
responsible for balanced corneal hydration, thus maintaining
transparency by preventing edema and disruption of lamellar
spacing of the collagen fibrils in the corneal stroma2. Maintaining
proper function of the endothelium requires a minimum number
of endothelial cells, around 400–500 cells/mm2 3. The cells are
generally thought to be incapable of mitosis after birth but are
halted in the G1 phase of the cell cycle and their number decreases
with age2. The cell division is thought to be blocked by contact
inhibition, high concentration of negative growth factors in the
anterior chamber and by accumulation of reactive oxygen species
promoting state of stress-induced senescence3,4. The response to
cell loss includes spreading and/or migration of adjacent cells
which increase in size and become more variable in both cell size
and shape3,5.

Non-contact auto-tracking and focusing specular microscopy
provides a non-invasive analysis of the structure of the corneal
endothelium6. The equipment captures an image of the endo-
thelial cell layer and provides measures of its structure including,
cell density (cells/mm2), coefficient of cell size variation (CV),
percentage of hexagonally shaped cells (HEX) and central corneal
thickness (CCT). CCT has been studied extensively in large
genome-wide association studies (GWAS) where the measure-
ments are obtained using different types of instruments7–13.
Several CCT associating loci have been identified including
WNT10A, COL5A1, and ZNF46911. To our knowledge, however,
there are no reports of sequence variants influencing other
direct measures of endothelial structure such as cell density,
CV and HEX.

The measures of endothelial structure are used to diagnose
corneal diseases. Several corneal diseases including Fuchs endo-
thelial corneal dystrophy (FECD) and macular corneal dystrophy
(MCD) are known to have genetic components14,15. FECD is a
leading cause of corneal transplant surgery and is characterized
by premature loss of endothelial cells resulting in increased
variability in cell shape and size leading to corneal edema and
visual loss16,17. MCD is characterized by progressive spotted
corneal opacities leading to severe visual impairment, caused by
homozygous or compound heterozygous variants in the CHST6
gene (OMIM: 605294). MCD is a rare condition worldwide, but
because of the founder effect18, MCD is unusually common in
Iceland where it accounts for approximately one-third of corneal
transplantations19.

Cell density in the corneal endothelium may be reduced in
glaucoma patients20. Glaucoma is an ocular disease that affects

~3.5% of people over 40 years of age, and is a major cause of
irreversible blindness worldwide21,22. Commonly, elevated
intraocular pressure (IOP) leads to progressive damage of the
optic nerve causing visual loss and it has been postulated that
elevated IOP affects the endothelium23. The relationship between
different corneal measures and glaucoma have been investigated,
especially the role of IOP, CCT and more recently corneal hys-
teresis (CH) and corneal resistance factor (CRF)24. CH and CRF
are measures of corneal response to a rapid jet of air, where CH
is a measure of the elasticity of the cornea and CRF is an
overall indicator of the resistance of the cornea25. Lower CH has
been associated with faster rate of glaucoma progression26–28.

Here we describe our search for sequence variants associating
with measures of corneal structure, finding 10 sequence variants,
nine common and one low-frequency (minor allele frequency
(MAF) <5%), associating with CCT, cell density, CV, or HEX.
Two of these variants satisfy thresholds for genome-wide sig-
nificance for more than one trait. Seven of the associations are
novel, two are represented by coding variants and one is located
in a gene known to cause a Mendelian disorder (ADAMTS17,
OMIM: 607511). We assess the effects on ocular biomechanics,
including IOP and CH, and various eye diseases. We find a
variant near ANAPC1 that strongly associates with cell density
but not with risk of eye disease, which indicates that low cell
density alone does not affect disease development directly.

Results
Summary of the data. Endothelial images from a specular
microscopy of 6125 Icelanders were used in the analysis, pro-
viding measures of cell density, CV, and HEX. The equipment
also produced CCT measurements. These images were obtained
as a part of a comprehensive phenotyping of a general population
sample (the deCODE health study), currently including 6300
Icelanders that were between 18 and 94 years of age at the time
of recruitment (44.6% men; mean age= 55.9, standard deviation
(SD)= 15.1). We also measured several ocular biomechanics
such as CH, CRF, Goldmann correlated intraocular pressure
(IOPg), and corneal compensated intraocular pressure (IOPcc)
(Supplementary Figures 1–6).

The number of endothelial cells declines with age and
remaining cells enlarge to compensate for the cell loss.
Consequently, cell density and HEX decrease with age while
CV increases (Table 1, Fig. 1a–c and Supplementary Figure 7).
Women have considerably lower HEX than men (50.6% vs 48.3%,
P= 8.4 × 10−43; F test), while cell density and CV are slightly
higher for women (2663 vs 2639 cells/mm2, P= 1.8 × 10−3 (F
test) and 30.3 vs 29.6, P= 2.6 × 10−6 (F test), respectively). To
our knowledge, the gender differences of HEX, cell density and

Table 1 Summary of data

Mean (SD) Men’s mean (SD) Women’s mean (SD) Sex effect Sex P-value Glaucoma effect [SD] Glaucoma P-value

CD 2652 (296) 2639 (296) 2663 (294) 23.83 1.8 × 10−3 −0.35 2.1 × 10−6

CV 30.0 (5.9) 29.6 (6.7) 30.3 (5.1) 0.71 2.6 × 10−6 0.13 0.069
CCT 563 (40) 565 (40) 562 (39.5) −3.82 1.9 × 10−4 −0.25 4.7 × 10−4

HEX 49.3 (6.5) 50.6 (6.6) 48.3 (6.3) −2.29 8.4 × 10−43 −0.16 0.030
CH 10.4 (1.2) 10.2 (1.2) 10.5 (1.1) 0.28 5.7 × 10−22 −0.37 3.8 × 10−7

IOPg 14.7 (3.4) 14.6 (3.5) 14.7 (3.4) 0.13 0.15 0.18 0.014
IOPcc 15.3 (3.1) 15.4 (3.2) 15.2 (3.0) −0.19 0.015 0.29 7.3 × 10−5

CRF 13.1 (1.5) 13.0 (1.5) 13.3 (1.5) 0.29 5.7 × 10−14 −0.07 0.34

The mean and standard deviation (SD) is shown for each corneal trait obtained from the specular microscopy equipment and the ocular response analyzer, overall and separately for each sex. The effect
of sex and glaucoma status on each trait and the corresponding P-values (F test) are shown. The sample size was 6125 in total, 2733 men and 3392 women
CD cell density, CV coefficient of cell size variation, CCT central corneal thickness, HEX percentage of hexagonal cells, CH corneal hysteresis, IOPg Goldmann correlated intraocular pressure, IOPcc corneal
compensated intraocular pressure, CRF corneal resistance factor
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CV have not been reported before. Consistent with previous
reports29, CCT does not change with age and is higher for men
than women (565.4 vs 561.5 μm, P= 1.9 × 10−4; F test) (Fig. 1d).
The measurements of corneal structure are correlated, also after
adjusting for sex and age (Supplementary Table 1). The strongest
correlations are between CV and HEX (r=−0.65) and between
CV and cell density (r=−0.33).

Study design. To search for sequence variants associating with
corneal structure, we analyzed 35.2 million sequence variants
identified through whole-genome sequencing of 28,075 Icelanders
that were subsequently imputed into 155,250 chip-typed indivi-
duals, as well as their first- and second-degree relatives30,31

(Supplementary Figures 8–11). Ten sequence variants, satisfied
our genome-wide significance thresholds that are dependent on
sequence variant annotation32 (Table 2, Supplementary Table 2).

To determine whether the associating variants affect the risk of
eye diseases we performed a meta-analysis of GWAS results from
Iceland and the UK Biobank (Supplementary Table 3 and 4). We
tested the variants for association with glaucoma (8432 cases and
641,353 controls) and the sub-categories: primary open-angle
glaucoma (2296 cases and 705,937 controls), and primary angle

closure glaucoma (777 cases and 637,017 controls). We also tested
the variants for association with disorders of cornea (ICD10
code H18, 756 cases and 663,218 controls) and the sub-
categories; corneal degeneration (ICD10 code H18.4, 199 cases
and 684,021 controls), hereditary corneal dystrophies (ICD10
code H18.5, 330 cases and 683,652 controls) and keratoconus
(ICD10 code H18.6, 127 cases and 659,503 controls). We applied
a Bonferroni corrected P-value threshold based on testing ten
corneal structure variants for association with seven phenotypes
(P < 0.05/(7*10)= 7.1 × 10−4).

GWAS results. Two sequence variants associate with cell density
(Fig. 2a, Table 2). The strongest association is represented by a
common intergenic variant located 0.4 kb downstream of ANAPC1,
rs78658973[A] (MAF= 28.3%), that associates with decreased cell
density (β=−0.77 SD, P= 1.8 × 10−314; a likelihood-ratio test was
performed in all genome-wide associations) (Fig. 1e, Supplementary
Figure 12). rs78658973 is highly correlated with 113 variants (r2 >
0.8) in the region, none of which is protein coding. The most highly
correlated coding variants are two splice region variants in ANAPC1;
rs201128688 and rs142711068 (r2= 0.72 and 0.73, respectively).
The effect of rs78658973[A] conditioning on the two splice region
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Table 2 Association results

Trait Chr:Position rs-name Allele (min/maj) MAF (%) Gene/ [Locus] Coding effect LD class P-value β [SD] (95% CI) Ref.

CD 2:111726948 rs78658973 (A/T) 28.3 [ANAPC1] Intergenic 112 1.8 × 10−314 −0.77 (−0.77,−0.77)
CD 18:55586154 − CTG repeat > 33 6.1 TCF4 3 1.4 × 10−20 −0.41 (−0.49,−0.32) 35

CV 2:111726948 rs78658973 (A/T) 28.3 [ANAPC1] Intergenic 112 2.8 × 10−28 0.23 (0.19,0.27)
CV 17:14650919 rs2323458 (A/G) 36.1 17p12 Intergenic 47 6.9 × 10−13 0.14 (0.10, 0.18)
CV 8:9943404 rs10094779 (G/A) 24.1 8p23.1 Intergenic 4 7.6 × 10−12 0.15 (0.11, 0.19)
CV 11:122029470 rs76561503 (C/T) 17.9 11q24.1 Intergenic 29 3.3 × 10−10 0.16 (0.11,0.21)
CCT 16:88302168 rs12719930 (G/A) 39.4 [ZNF469] Intergenic 21 1.9 × 10−14 −0.15 (−0.19,−0.11) 13

CCT 2:218890289 rs121908120 (A/T) 2.6 WNT10A Missense 6 4.5×10−11 −0.39 (−0.51,−0.28) 9

CCT 9:134545337 rs943423 (G/A) 27.2 [COL5A1] Intergenic 0 6.1 × 10−11 −0.14 (−0.19,−0.10) 13

CCT 15:100152748 rs72755233 (A/G) 13.8 ADAMTS17 Missense 0 1.3 × 10−10 0.18 (0.12, 0.23)
CCT 12:104015054 rs117801489 (C/T) 4.3 GLT8D2 Missense 2 3.9 × 10−10 0.30 (0.20, 0.39)
HEX 18:55586154 − CTG repeat > 33 6.1 TCF4 3 5.9 × 10−18 −0.37 (−0.45,−0.28) 35

HEX 2:111726948 rs78658973 (A/T) 28.3 [ANAPC1] Intergenic 112 2.8 × 10−13 −0.16 (−0.20,−0.11)

The 10 variants identified in the GWAS on cell density (CD), CV, HEX, and CCT. Effects are shown for the minor allele. Minor allele frequency in the Icelandic population is presented. The LD class
column shows the number of highly correlated variants (r2 > 0.8). The imputation information for all these variants is > 0.99
CD cell density, CV coefficient of cell size variation, CCT central corneal thickness, HEX percentage of hexagonal cells, MAF minor allele frequency, LD linkage disequilibrium, CI confidence interval
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variants is still significant (β=−0.78 SD, P= 7.8 × 10−85), while the
effect of the splice region variants are completely explained
by rs78658973. rs78658973[A] also associates with CV (β= 0.23 SD,
P= 2.8 × 10−28) and HEX (β=−0.16 SD, P= 2.6 × 10−19), but this
is largely driven by the strong effect on cell density (CV adjusted for
cell density: β=−0.04 SD, P= 0.049; HEX adjusted for cell density:
β=−0.04 SD, P= 0.072). Interestingly, rs78658973[A] also associ-
ates with CH (β= 0.19 SD, P= 2.6 × 10−19) (Supplementary
Table 4, Fig. 3) which reflects the cornea’s ability to absorb and
dissipate energy25,33. CH and cell density are only weakly correlated
after adjusting for sex and age (r=−0.03) and the effect of
rs78658973[A] on CH is not affected by adjustment for cell density
(βadjusted= 0.21 SD, Padjusted= 1.5 × 10−18). CH is lower in patients
with glaucoma or corneal disorders like keratoconus34. However,
rs78658973 does not associate with corneal diseases or glaucoma
in our data (P > 0.03, Supplementary Table 4).

The other variant associating with cell density is a common
allele of a microsatellite at TCF4 (MAF= 6.1%), a CTG repeat of
length ≥ 33, corresponding to the expanded CTG 18.1 allele
(OMIM: 602272, allelic variant 0.0007). This microsatellite is
pathogenic according to Clinvar and has been reported to
strongly predispose to autosomal dominant FECD35–38, a disease
of the corneal endothelium that affects roughly 4% of people over
40 years old (OMIM: 602272). Consistent with the characteristics
of FECD, the expanded CTG 18.1 allele associates with lower cell
density and HEX (β=−0.38 SD, P= 1.6 × 10−19 and β=−0.37
SD, P= 5.9 × 10−18, respectively). Interestingly, it also associates
with decreased CH, CRF and IOPg (β=−0.29 SD, P= 3.1 ×
10−12, β=−0.30 SD, P= 7.9 × 10−13 and β=−0.18 SD, P=
1.7 × 10−5, respectively) while not affecting glaucoma risk (OR=
0.92, CI= (0.82;1.03), P= 0.15). Consistent with previous
reports, the expanded CTG 18.1 allele associates with hereditary
corneal dystrophies in our data (OR= 7.7, P= 3.3 × 10−31,
Supplementary Table 4).

The GWAS on HEX revealed only the two variants at ANAPC1
and TCF4 (Table 2, Fig. 2b), both of which associate more
strongly with cell density.

We identified three loci associating most strongly with CV
(Fig. 2c, Table 2). At 17p12, an intergenic variant rs2323458[A]
located ~ 300 kb downstream of HS3ST3B1, associates with
increased CV (AF= 36.1%, β= 0.14 SD, P= 6.9 × 10−13).
rs2323458 is in moderate linkage disequilibrium (LD) with
rs2323457 (r2= 0.61) which has been reported to associate
with CCT11. In our data, rs2323457 also associates with CV (β=
0.14 SD, P= 1.4 × 10−10) but conditional analysis revealed
that the effect is driven by rs2323458 (βadjusted= 0.043 SD,
Padjusted= 0.21). We did not replicate the effect of rs2323457 on
CCT (β=−0.033 SD, P= 0.13), even though the power for
replication is 94% at a two-sided significance level of 0.05.
Two more variants associate with CV: rs10094779[G] at 8p23.1
~ 40 kb upstream of MIR124-1 and rs76561503[C] at 11q24.1
~ 60 kb downstream of MIR100HG (AF= 24.2%, β= 0.15 SD,
P= 7.6 × 10−12 and AF= 17.9%, β= 0.16 SD, P= 3.3 × 10−10,
respectively). Variants at 8p23.1, between MIR124-1 and MSRA,
have been reported to associate with high myopia39. rs10094779
is only moderately correlated with the reported variants
(r2 < 0.25). Interestingly, a variant in MIR100HG, rs577948, has
also been reported to associate with myopia40. However,
rs76561503 is not correlated with the reported variant (r2= 0.03).
Five variants associated with CCT in our data (Fig. 2d,

Table 2). Three are at established CCT loci: ZNF469, WNT10A,
and COL5A18,9,41. The two novel CCT associations are with
the missense variants p.Thr446Ile in ADAMTS17 (MAF=
13.8%, β= 0.18 SD, P= 1.3 × 10−10) and p.Tyr24Cys in
GLT8D2 (MAF= 4.3%, β= 0.30 SD, P= 3.9 × 10−10). P.
Thr446Ile in ADAMTS17 has been associated with decreased
intraocular pressure42 and decreased height43. P.Thr446Ile
associates with decreased intraocular pressure in our data
(β= 0.14 SD, P= 5.8 × 10−7), but after adjusting for CCT the
association is much weaker (βadjusted= 0.06 SD, Padjusted=
0.024). Rare sequence variants in ADAMTS17 cause autosomal
recessive Weill-Marchesani syndrome, a rare connective tissue
disorder with features including microspherophakia, severe
myopia, glaucoma, cataract, and short stature (OMIM:
607511). Notably, p.Tyr24Cys in GLT8D2 associates with
increased height in a meta-analysis of the Icelandic and UK
Biobank data (β= 0.06 SD, P= 1.4 × 10−11, N= 490,381). To
understand the relationship between height and CCT, we
evaluated the correlation between the effect on height in the
Icelandic and UK Biobank data (N= 490,381) of 693 reported
adult height variants44 and their effects on CCT, but found
no correlation (r2= 0.006; P= 0.038; F test) (Supplementary
Figure 13). To validate the CCT association of the two novel
variants, we tested them in a non-overlapping sample of
1459 Icelanders with CCT measurements from the Reykjavik
Eye Study45. At a significance threshold of P < 0.05, we
replicated the associations for both p.Thr446Ile in ADAMTS17
and p.Tyr24Cys in GLT8D2 with CCT (β= 0.25 SD, P= 7.3 ×
10−3 and β= 0.11 SD, P= 0.045, respectively) (Supplementary
Table 5).

Gene expression. We examined the expression levels of the genes
at the 10 associating loci using the publicly available Ocular
Tissue Database46. For non-coding variants we looked for all
genes in a 500 kb region around the associating variant. We found
that 13 of the 15 genes at the 10 loci are expressed in all ocular
tissues (Supplementary Data 1). MIR124-1 and MIR100HG were
not found in the database, but previous studies have reported that
MIR124-1 is expressed in the human lens47 and both MIR124-1
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and MIR100HG are expressed in the human retina40,48. Expres-
sion levels varied across tissues for some genes, e.g., GLT8D2
is most highly expressed in the cornea, TCF4 in the sclera and
ANAPC1 in the optic nerve head.

Disease variants affect corneal structure. Two different muta-
tions in CHST6 are known to cause MCD in Iceland; a missense
variant p.Ala128Val (MAF= 0.66%) and a frameshift variant p.
Val6MetfsTer106 (MAF= 0.07%)15. The prevalence of MCD in
Iceland is ~ 1/13,00049. We observed that 11 out of 16 homo-
zygous carries of p.Ala128Val, and two out of three homozygous
carriers of p.Val6MetfsTer106, have been diagnosed with her-
editary corneal dystrophies (ICD10 code H18.5). We investigated
the effect of these known disease variants on the corneal measures
from the specular microscopy. P.Val6MetfsTer106 associates
with cell density and HEX (β=−3.02 SD, P= 4.5 × 10−4 and
β=−2.00 SD, P= 9.3 × 10−3, respectively) under the recessive
model. The association is due to two homozygote carriers
showing extremely low values (Supplementary Table 6.a). No
homozygote carriers of p.Ala128val participated in the deCODE
health study. We did not observe an effect of the two variants
among heterozygous carriers (Supplementary Table 6b).

Out of the 6125 study participants, 194 (3.2%) had primary
open-angle glaucoma (POAG). Among our corneal measures
from the specular microscopy, POAG correlates most strongly
with cell density (glaucoma patients have 104 cell/mm2 lower cell
density than controls, P= 2.1 × 10−6; F test). It also correlates
with CH, IOPcc and CCT (Table 1).

Due to the correlation between various corneal measures and
glaucoma status we assessed the effects of all 15 variants reported
to associate with POAG50 (Supplementary Data 2). First, we
replicated the association of 11 out of the 15 variants with POAG
(P < 0.05). The estimated replication power for the remaining
four variants at GMD2, ZFPM2, ATXN2, and PMM2 was > 99.7%
at two-sided significance level of 0.05. We investigated the effects
of the 11 replicated variants on different corneal measures
(Fig. 4a). Five of the 11 variants associate with IOPg, where the
POAG risk increasing allele associates with increased IOPg. Even
though the strongest relationship of glaucoma is with CH (CH is
lower in glaucoma patients), only two of the POAG variants
associate with CH. Counter-intuitively, the TMCO1 allele that
increases glaucoma risk associates with lower CH but the
FNDC3B allele that increases glaucoma risk associates with
greater CH. The variant in FOXC1 is the only POAG variant that
also affects cell density. The correlation between the variants’
effect on POAG and their effect on available corneal measures
were not significant for any trait, controlling the false discovery
rate at 0.05 (Supplementary Table 7).

Previously reported variants for CCT and IOP. GWASs have
been published for two corneal traits, CCT and IOP. For CCT, 49
variants have been reported7,11 and we replicate 28 of them (P <
0.05) (Supplementary Data 3). The CCT effects of these variants,
and the two novel CCT variants in ADAMTS17 and GLTD82,
correlate with their effects on CH, CRF, and IOPg (Supplemen-
tary Table 7, Supplementary Figure 14). The effects on different
corneal measures by the CCT increasing allele is shown in
Fig. 4b. A recent study using participants from the UK Biobank
(N= 115,486) identified 209 variants at 175 novel loci associating
with IOPg51. We replicate 56 out of these 209 variants in the
much smaller Icelandic data (P < 0.05) (Supplementary Data 4).
The effects on different corneal measures by the IOPg increasing
allele is shown in Fig. 4c. The effects of the IOP variants on
IOPg correlate with their effects on CH, CRF, IOPcc, and POAG
(Supplementary Table 7, Supplementary Figure 15).

Discussion
Using measurements from a specular microscopy, we discovered
seven novel variants associating with measurements of corneal
structure, i.e., CCT, cell density, CV, and HEX. We further
examined their effect on ocular biomechanics, such as CH,
CRF, and IOP, as well as examining their effects on the risk of
glaucoma and corneal diseases.

The most significant finding is the association of rs78658973
near ANAPC1 with cell density. ANAPC1 encodes the Anaphase
Promoting Complex Subunit 1, a cell cycle-regulated E3 ubiquitin
ligase that controls progression through mitosis and the G1 phase
of the cell cycle52. The complex is composed of 15–17 subunits,
which are highly conserved from yeast to humans. Mutations in
the orthologous gene in the fruitfly, shattered (shtd), result in
defective eye development53 because of disruption of the G1 cell
cycle arrest and progression through mitosis. Interestingly,
rs78658973 also strongly increases CH, independently of its effect
on cell density. CH measures ability of the corneal tissue to
dampen pressure changes; such mechanical properties of most
tissues are dominated by an extracellular matrix (ECM), in which
the connective tissue fibers provide mechanical strength54. Many
rare connective tissue disorders are characterized by both skeletal
and eye abnormalities, such as Marfan syndrome, Ehlers-Danlos
syndrome, dermatosparaxis type and Weill-Marchesani syn-
drome (OMIM: 154700, 225410, and 607511, respectively). An
intron variant in ANAPC1, rs17040773[G], in complete LD with
rs78658973[A] (r2= 1.00), has been reported to associate with
decreased bone mineral density55 and ANAPC1 is expressed in
bone (Hs.436527). A possible mechanism explaining the asso-
ciation of rs78658973 with cell density in the corneal endothelium
may be the role ANAPC1 has in controlling proliferation of the
developing corneal endothelial cells, and likewise, proliferation of
bone cells influencing bone density. However, a direct relation-
ship between rs78658973 and ANAPC1, or any other gene at the
locus, remains to be shown. The estimated fraction of variance of
cell density explained by rs78658973 is 24% which is extremely
high for such a complex human trait. In comparison, no other
variant listed in the GWAS catalog56 explains higher fraction of
variance of a quantitative phenotype available in the extensive
deCODE database (Supplementary Table 8). This finding has
clinical importance, since reduction in endothelial cell density
along with more variable cell size and shape is usually the first
sign of corneal endothelial diseases and cell density is important
when assessing risk of corneal endothelial failure prior to
intraocular surgery57. Corneal graft survival studies found cell
density lower than 1700 cells/mm2, 6 months after graft surgery
to be associated with increased risk of graft failure58. Thirty-year-
old homozygote carriers of the ANAPC1 variant have on average
2637 endothelial cells per mm2, which is less than the average
70-year old noncarriers (Fig. 1e). Further studies could assess
if carriers of the variant are more likely to suffer endothelial
decompensation after intraocular surgery or if their cornea is
associated with increased risk of corneal graft failure when
used as donors.

We also found association of variants at known disease loci,
TCF4 and CHST6 (FCED and MCD, respectively), with cell
density and HEX, demonstrating how these structural measure-
ments are affected by corneal diseases. The TCF4 variant also
strongly associates with CH and it is interesting to note that the
TCF4 and ANAPC1 variants control almost the same quantitative
corneal traits (Fig. 3) but have very different associations with
corneal disease. Furthermore, glaucoma risk is strongly associated
with lower cell density, while for example the ANAPC1 variant
that controls a quarter of the cell density variance does not
associate directly with POAG or PACG. These findings suggest
that the pathogenic processes that cause corneal diseases and
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Fig. 4 The effect of reported POAG, CCT, and IOP variants on corneal measures. Red color represents a positive effect on the corneal measures and
blue color represents a negative effect. a Effect of previously reported POAG variants on corneal traits for the POAG risk increasing allele. Effects on
the traits are shown for significant associations after adjusting for multiple testing with a false discovery rate procedure for each variant. b Effect of
previously reported CCT variants that replicate in our data (P < 0.05) and novel CCT variants on corneal measures for the CCT increasing allele.
Effects on other traits are shown for significant associations after adjusting for multiple testing with a false discovery rate procedure for each variant.
c Effect of previously reported IOPg variants that replicate in our data (P < 0.05) on corneal measures for the IOPg increasing allele. Effects on other
traits are shown for significant associations after adjusting for multiple testing with a false discovery rate procedure for each variant
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glaucoma may also lower the cell density, but low cell density in
and of itself does not increase risk of disease. In addition, we
evaluated the effects of reported POAG variants on corneal
structure to further explore the relationship between these traits.
Even though CH, cell density, and CCT are lower in POAG
patients, the effects of POAG associating variants on POAG
risk do not correlate with their effects on these traits in our data.
This suggests that these variants do not confer risk of POAG
through their effect on these corneal metrics.

Healthy corneal endothelium is necessary for visual perception
and its dysfunction is the most common reason for corneal
transplantation. Our understanding of the structure and function
of corneal endothelial cells and how they relate to diseases is
limited. The work presented here constitutes a contribution
toward shedding a light on this.

Methods
Study Subjects. Endothelial images from non-contact auto-tracking and -focusing
Konan CellCheck SL specular microscopy (Konan Medical USA Inc., Irvine, CA)
and measures of ocular biomechanics using the Reichert ocular response analyzerR

(ORA G3, Reichert Technologies, Depew, NY, USA) were obtained for 6266 Ice-
landers as a part of the deCODE health study. Participation in the deCODE health
study also includes an online questionnaire and verbal interviews about health and
lifestyle, a number of physical measurements, blood sample collection, and per-
mission to access health-related information from a range of registries and records,
including hospital data. We defined subjects in the study to have glaucoma if they
reported history of glaucoma or had a hospital discharge diagnosis of primary
open-angle glaucoma (ICD10 code H40.1). CCT associations were replicated in a
previously described dataset from the Reykjavik Eye Study59. Testing variants for
association with ocular diseases, we defined the glaucoma and corneal disorder
populations based on six different ICD diagnoses; glaucoma information was
obtained from participants in the Reykjavik Eye Study and from Icelandic oph-
thalmologists as described previously60 (ICD10 H40.1, 4004 cases and 237,214
controls), primary open-angle glaucoma (ICD10 code H40.1, 1261 cases and
303,388 controls), primary angle-closure glaucoma (ICD10 code H40.2, 78 cases
and 229,149 controls), disorders of cornea (ICD10 code H18, 133 cases and
255,274 controls), corneal degeneration (ICD10 code H18.4, 81 cases and 287,394
controls), and hereditary corneal dystrophies (ICD code H18.5, 119 cases and
301,665 controls). Written informed consent was obtained from all participants, in
accordance with the Declaration of Helsinki, the study was approved by the Ice-
landic Data Protection Authority and the National Bioethics Committee
(VSNb2015120006/03.01 with amendments).

The UK Biobank study is a large prospective cohort study of ~ 500,000 individuals
from across UK, aged between 40 and 69 at recruitment61. Extensive phenotypic and
genotypic information has been collected for the participants, including ICD coded
diagnoses from inpatient and outpatient hospital episodes. In this study, we defined
the glaucoma and corneal disorder populations based on six different ICD diagnoses;
glaucoma (ICD10 code H40, 4428 cases and 404,139 controls), primary open-angle
glaucoma (ICD10 code H40.1, 1035 cases and 402,449 controls), primary angle-
closure glaucoma (ICD10 code H40.2, 699 cases and 407,868 controls), disorders of
cornea (ICD10 code H18, 623 cases and 407,868 controls), corneal degeneration
(ICD10 code H18.4, 118 cases and 396,627 controls), and hereditary corneal
dystrophies (ICD code H18.5, 211 cases and 378,987 controls). Diagnoses were
obtained from primary or secondary diagnoses codes a participant had recorded
across all their episodes in hospital. Self-reported diagnoses were excluded from our
analysis and we only included individuals determined to be of white British
ancestry62. We did not exclude related individuals from the analysis but use LD score
regression63 to account for inflation in test statistics due to relatedness. In addition,
height measurements were available for 407,825 individuals. UK Biobank’s scientific
protocol and operational procedures were reviewed and approved by the North West
Research Ethics Committee (REC Reference Number: 06/MRE08/65), and informed
consent was obtained from all participants.

Images from Konan CellCheck SL specular microscopy. The specular micro-
scopy images were taken by specially trained nurses. One image was taken per eye.
The nurse made a visual assessment of the image and selected automated analysis
with auto trace for all normal images. Before automatic analysis, the size of cells (S,
M, L, or XL) was determined and the cell border lines were compared with the cell
borders visually.

All automated analysis were reviewed by a cornea specialist (G.M.Z.) and if
found acceptable the automated analysis was used.

Images with any abnormalities, e.g., black areas, highly irregular cell size or
shape, or poor quality images, were marked for manual analysis. These images were
reviewed and analysed with the Center Method or in a few cases with the Flex
Center Method. Images, where no cell structure was seen, were marked ungradeble.
All analysis was done by a cornea specialist (G.M.Z.).

We excluded 415 low-quality images for 276 subjects prior to the analysis by
regressing cell count against estimated cell density and removed images where the
residuals from the fitted model where <−15. Thus, the sample size reduced from
N= 6266 to N= 6125.

Whole-genome sequencing. The process used to whole-genome sequence the
28,075 Icelanders, and the subsequent imputation has been described in a recent
publication30,31. In summary, we sequenced the whole genomes of 28,075 Ice-
landers using Illumina technology to a mean depth of at least 10 × (median 32 ×).
SNPs and indels were identified and their genotypes called using joint calling with
Graphtyper64. In total, 155,250 Icelanders were genotyped using Illumina SNP
chips and their genotypes were phased using long-range phasing65. All sequenced
individuals were also chip-typed and long-range phased, which provided infor-
mation about haplotype sharing that was used to improve genotype calls. Geno-
types of the 37.6 million high quality sequence variants were imputed into all chip-
typed Icelanders. Using genealogic information, the sequence variants were also
imputed into relatives of the chip-typed to further increase the sample size for
association analysis and increased the power to detect associations. All of the
variants that were tested had imputation information over 0.8.

In UK Biobank genotyping was performed using a custom-made Affimetrix
chip, UK BiLEVE Axiom in the first 50,000 individuals66, and with Affimetrix UK
Biobank Axiom array in the remaining participants67; 95% of the signals overlap
in both chips. Imputation was performed by Wellcome Trust Centre for Human
Genetics using a combination of 1000Genomes phase 368, UK10K69 and HRC
reference panels70, for up to 92,693,895 SNPs62.

Association analysis. All quantitative ocular measurements were averaged for
both eyes, rank-based inverse normal transformed to a standard normal dis-
tribution separately for each sex and adjusted for age using a generalized additive
model71. For each sequence variant, a linear regression model, using the genotype
as an additive covariate, the transformed quantitative trait as a response and
assuming the variance–covariance matrix to be proportional to the kinship matrix,
was used to test for association.

We used LD score regression to account for distribution inflation in the dataset
due to cryptic relatedness and population stratification63. With a set of 1.1 million
variants we regressed the χ2 statistics from our GWASs against LD score and used
the intercepts as a correction factors. The estimated correction factors were 1.05,
1.03, 1.03, 1.06, 1.06, 1.05, 1.05, and 1.05 for cell density, CV, HEX, CCT, CH, CRF,
IOPg, and IOPcc, respectively.

We used logistic regression to test for association between sequence variants
and binary traits, regressing trait status against expected genotype count. In the
Icelandic data, we adjusted for sex, age or age at death, county of birth, blood
sample availability and an indicator function for the overlap of the subject’s lifetime
with the time span of phenotype collection, by including these variables in the
logistic regression model. In the UK Biobank data, we adjusted for sex and age, as
well as 40 principle components in order to adjust for population stratification.

For the meta-analysis we used a fixed-effects inverse variance method72 based
on effect estimates and standard errors from deCODE and the UK Biobank study.
Sequence variants from deCODE and the UK Biobank imputation were matched
on position and alleles.

Significance thresholds. The thresholds for genome-wide significance were esti-
mated from the Icelandic data and corrected for multiple testing with a weighted
Bonferroni adjustment using the enrichment of variant classes as weights with
predicted functional impact among association signals32. With 37.6 million
sequence variants in the Icelandic data, the weights given in Sveinbjornsson et al.
were rescaled to control the family-wise error rate. This resulted in significance
thresholds of 2.5 × 10−7 for loss-of-function variants, 5.0 × 10−8 for moderate-
impact variants, 4.5 × 10−9 for low-impact variants, 2.3 × 10−9 for other variants
within DHS sites, and 7.5 × 10−10 for remaining variants. We evaluated false dis-
covery rate, assessed with the q-value package in R. The P value cutoff of 5.0 × 10−8

corresponded to q-values of 0.0014 for cell density, 0.0035 for CV, 0.0117 for CCT,
and 0.0116 for HEX, which add up to 3.4%.

When assessing, if associating variants have an effect on other corneal trait,
we used the Benjamini–Hochberg false discovery rate (FDR) procedure controlling
the FDR at 0.05 at each variant to account for multiple testing.

Correlation between effect sizes. We assessed the relationship between the
effects of sequence variant on any two different traits by fitting a weighted linear
regression model where the effects sizes for trait 1 was regressed on effect sizes
for trait 2 and each variant was weighted by f 1� fð Þ where f is the minor allele
frequency of the variants, so that rare variants have less weight in the computation
than common variants. For binary traits we used log(OR) as effect size.

Fraction of variance explained. The fraction of variance explained is calculated
using the formula 2f 1� fð Þa2 where f is the minor allele frequency and a is the
additive effect73. Calculating the fraction of variance explained for variants in the
GWAS catalog, we estimated the effects of published variants with corresponding
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phenotypes available in the deCODE data and calculated the fraction of variance
explained using f and a obtained from the Icelandic population.

Code availability
We used the following publicly available software for the whole-genome sequencing
process:
for BWA 0.7.10 mem, see https://github.com/lh3/bwa; for Picard tools 1.117, see https://
broadinstitute.github.io/picard/; for SAMtools 1.3, see http://samtools.github.io/; for
Bedtools v2.25.0-76-g5e7c696z, see https://github.com/arq5x/bedtools2/; for GraphTyper
1.3, see https://github.com/DecodeGenetics/graphtyper; for Variant Effect Predictor, see
https://github.com/Ensembl/ensembl-vep.

Data availability
The sequence variants from the Icelandic population whole-genome sequence data have
been deposited at the European Variant Archive under accession PRJEB15197, GWAS
summary statistics for association with P < 1 × 10−6 are available in Supplementary
Data 5. The authors declare that the data supporting the findings of this study are
available within the article, it supplementary files, and upon request.
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Abstract 

Age-related hearing impairment (ARHI) is the most common sensory disorder in older adults. 

We conducted a genome-wide association meta-analysis of 121,934 ARHI cases and 591,699 

controls from Iceland and the UK. We detected associations with 51 sequence variants, under 

either additive or recessive models. Twenty-one of the variants are novel, of which 13 are 

rare. Of special interest are a missense variant in LOXHD1 (MAF=1.96%) and a tandem 

duplication in FBF1 covering 4 exons (MAF=0.22%) associating with ARHI (OR=3.7 for 

homozygotes, P=1.7×10
-22

 and OR=4.2 for heterozygotes, P=5.7×10
-27

, respectively). We 

constructed an ARHI genetic risk score (GRS) using common variants. Individuals in the top 

GRS decile are at 2.5-fold greater risk than those in the bottom decile and develop ARHI 10 

years earlier. Furthermore, we found that 13 ARHI variants also associate with tinnitus, and 

the effects of ARHI variants on ARHI and tinnitus are highly correlated, suggesting that these 

phenotypes have shared genetic causes. This study sheds a new light on the genetic 

architecture of ARHI, identifying several novel rare variants in both novel hearing genes and 

in Mendelian deafness genes, and showing that a common variant GRS can identify 

individuals with risk comparable to carriers of rare high penetrance variants. 

Introduction 

Hearing impairment is a common sensory defect, affecting 1-2 out of every 1000 infants and 

over 50% of people over 80 years old
1,2

. Around 80% of prelingual hearing loss is caused by 

variants in the sequence of the genome
3
, most commonly in the GJB2 gene encoding the 

connexin 26 protein involved in inner ear homeostasis
4
. Over 100 genes have been identified 

that cause prelingual or childhood-onset non-syndromic hearing loss, and 75% of those are 

inherited in a recessive manner (Hereditary Hearing Loss homepage, URLs).  
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Less is known about the genetics of age-related hearing impairment (ARHI), defined as a 

gradual decline of auditory function. ARHI is one of the most common chronic conditions 

affecting the elderly
5
 and is associated with communication difficulties and reduced quality of 

life
6
. ARHI is usually caused by degeneration of the hair cells in the cochlea. The hair cells 

are specialized receptors that detect auditory stimuli and convert them into nerve signals that 

are transmitted to the brain
7
. ARHI can be treated, for instance with hearing aids or cochlear 

implants in severe cases. The heritability of ARHI has been estimated to be around 50% in 

twin studies
8
. The genetics of ARHI are complicated by the variability in onset, severity and 

progression, as well as the effect of environmental factors such as noise-exposure that can 

lead to hearing impairment
9
. Genome wide association studies (GWAS) on ARHI have been 

performed
10–16

 and a recent study based on UK Biobank self-reported hearing difficulty, 

reported 44 ARHI loci
17

. 

The standard type of hearing test is performed with an audiometer that delivers pure tones at 

different frequencies (measured in hertz (Hz)) and different intensities (measured in decibels 

hearing level (dB HL)). During the test, a sound is played at frequencies of 0.5, 1, 2, 4, 6 and 

8 kHz, and each frequency at different intensity levels. The lowest intensity of sound 

detection for each individual is defined as their hearing threshold. According to the WHO 

classification of hearing loss, subjects with a hearing threshold above 25 dB HL are 

considered to have hearing impairment and the severity of the impairment increases with 

higher thresholds
18

 (Supplementary Table 1). Hearing thresholds at frequencies 0.5, 1, 2 and 4 

kHz were used in a pure tone average (PTA). These frequencies represent the range of speech.  

Individuals with ARHI are at increased risk of tinnitus, the perception of a sound in the 

absence of an external sound. These phantom sounds are often described as ringing, buzzing 

or hissing
19

. Most people experience tinnitus at some point in their life, but for 5-15% of the 

general population the tinnitus is incessant
20

. Treatment for tinnitus is lacking, even though 1-
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3% of individuals experience severe tinnitus affecting their life substantially, including 

difficulty with concentration and sleep
21

. A twin study estimated the heritability of tinnitus to 

be 56%
22

, yet several genetic studies have failed to find associations of sequence variants with 

tinnitus
23

. 

To search for sequence variants associating with ARHI, we performed a GWAS meta-analysis 

of 121,934 cases and 591,699 controls from two non-overlapping Icelandic datasets and the 

UK Biobank (UKB). Subsequently, we assessed the effect of ARHI associating variants on 

tinnitus. Fifty-one independent sequence variants at 45 loci associate with ARHI, 41 under an 

additive model and 10 under a recessive model. Twenty-one of the associations are novel. 

Using the association results, we furthermore constructed a GRS for ARHI.   

Results 

Summary of the data and demographics of ARHI in Iceland 

We conducted a GWAS of ARHI in three datasets obtained from the deCODE health study 

(DHS)
24

, the National Institute of Hearing and Speech in Iceland (NIHSI) and the UKB 

(Figure 1, Supplementary Table 2).  

The DHS dataset is based on audiometric measures for 11,484 Icelanders, including 4,140 

ARHI cases (PTA>25 dB HL) and 7,344 controls, who are a part of a comprehensive 

phenotyping of a general population sample enriched for carriers of rare and potentially high 

impact mutations
25

. The subjects were between 18 and 97 years of age at time of recruitment 

(43.6% men; mean age = 55.4, SD = 14.5, Supplementary Figure 1.a). The NIHSI is a clinic 

where patients are referred to for hearing and speech difficulties, and the NIHSI dataset 

consists of 36,905 audiometric measures of 22,212 Icelanders (55.5% men; mean age = 48.0, 

SD = 32.4, Supplementary Figure 1.b), of which 43.7% were performed on children (<18 



5 

 

years old). The NIHSI dataset is highly skewed towards those with ARHI, with a prevalence 

among adults of 73.6% for mild (PTA>25 dB HL), 47.1% for moderate (PTA>40 dB HL), 

13.2% for severe (PTA>60 dB HL) and 3.1% for profound (PTA>80 dB HL) hearing 

impairment. Due to this bias, we defined the 9,619 subjects with PTA above 25 dB HL as 

ARHI cases and designated 298,609 Icelanders with no available hearing data as population 

controls (excluding individuals in the DHS dataset). The UKB dataset consists of 108,175 

cases with self-reported hearing difficulty and 285,746 controls of white British ancestry, at 

ages ranging between 40 and 69 years (45.6% men; mean age = 56.5, standard deviation (SD) 

= 8.1).  

The DHS dataset provides an opportunity to analyze the demographics of ARHI in Iceland, 

although we note that some individuals were recruited based on mutations causing or 

suspected to cause hearing impairment (Supplementary Table 3). The prevalence of hearing 

impairment was 36.1% for mild, 7.7% for moderate, 1.1% for severe and 0.1% for profound 

impairment. In line with previous studies
26,27

, the prevalence of moderate hearing impairment 

at 75 years is 34% for men and 22% for women. The audiometric measures show that hearing 

declines with age at all frequencies but more drastically at the higher frequencies of 4-8 kHz 

(Table 1, Supplementary Figure 2). The prevalence of mild hearing impairment reaches 5% 

shortly after 35 years and increases rapidly with age after 40; 18% at 50 years and 40% at 60 

years (Supplementary Figure 3). Consistent with previous reports
28

, women are at greater risk 

of ARHI at low-frequencies (0.5 and 1 kHz), while men are at more risk in the higher 

frequencies (≥2 kHz) (Table 1). Previous studies have observed an association between ARHI 

and short stature
29–31

. It has been postulated that the association is due to low levels of insulin-

like growth factor-1 (IGF-1), which has a role in the development of the cochlea
29–31

. 

Performing a logistic regression on mild ARHI (>25 dB HL) against sex, age and height, we 

observe that reduced height associates with increased risk of ARHI at the lower frequencies 
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0.5, 1 and 2 kHz (Table 1). After adjusting for height, the association with increased risk of 

ARHI in women at low-frequencies (0.5 and 1 kHz) is no longer significant (Table 1). This 

indicates that the greater risk of ARHI at low frequencies for women is driven by the 

association with reduced height. These results replicate in the NIHSI dataset (Supplementary 

Table 4). 

GWAS meta-analysis 

To search for sequence variants associating with ARHI, we performed a meta-analysis of the 

three GWASs from DHS, NIHSI and UKB, analyzing in total 46.9 million sequence variants 

under both additive and recessive models (Figure 1). The UKB GWAS was performed on two 

imputed genotype datasets, one based on variants from the Haplotype Reference Consortium 

(HRC) reference panel and the other based on variants identified through whole exome 

sequencing (WES) of 50K study participants (Methods). In total, 55 independent variants at 

48 loci satisfied our genome-wide significance thresholds that are dependent on sequence 

variant annotation
32

 (Methods, Supplementary Tables 5, 6 and 7, Supplementary Figure 4). 

Because we do not restrict the definition of ARHI cases with respect to age at measure or 

severity, we might detect rare variants in the meta-analysis that are causing prelingual or 

childhood-onset hearing loss instead of ARHI. Due to this, we used the audiometric measures 

in the Icelandic datasets to estimate the predicted hearing threshold of the carriers in 

childhood and observed that 4 of the 55 variants cause prelingual or childhood-onset hearing 

loss rather than ARHI (Methods, Supplementary Table 7 and Supplementary Note 1). The 

UKB dataset has the largest sample size of the three datasets and the ARHI associations for 

the common variants are largely driven by the results from that dataset. Fourteen of the ARHI 

variants did not associate with ARHI in the Icelandic datasets (P>0.05, Supplementary Table 

8). However, the effects show a consistent direction in the three datasets and the pair-wise 

correlation coefficients between effect sizes are >0.56 (Supplementary Figure 5). Thirty of the 
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associations correspond to previously reported ARHI variants
14,17,33,34

. At 6 of those loci, the 

previously reported variants are non-coding
17

, while we identified missense or splice region 

variants at these loci (r
2
>0.85 between our top variant and the reported variant) 

(Supplementary Table 6). Thirteen of the novel associations are represented by rare variants, 

of which five are at novel hearing loci, six are located in Mendelian deafness genes and two 

are secondary associations at previously reported ARHI loci (Figure 1). Through a gene-based 

burden test, where rare loss-of-function (LOF) variants (MAF<2%) in the same gene were 

aggregated and tested together, we identified one additional ARHI gene; AP1M2. 

Rare variants associating with risk of ARHI 

We found 16 ARHI variants that have rare genotypes with large effects (expected genotype 

frequency (EGF) <1.0%), either in the heterozygous state (N=10, MAF<0.5%) or 

homozygous state (N=6, MAF<10.0%). Thirteen of those are novel, of which 12 are coding 

variants (Table 2, Figure 1). In Iceland, 4.9% of the population carries at least one of the 16 

rare ARHI genotypes with large effects, and of those carriers that are older than 55, 72% have 

ARHI compared to 55% of non-carriers (DHS dataset). Overall, carriers of rare ARHI 

variants have a 2.2-fold (P=1.0×10
-12

) greater risk of mild hearing impairment than the rest of 

the population, 3.0-fold (P=1.4×10
-9

) greater risk of moderate and 5.6-fold (P=1.9×10
-8

) 

greater risk of severe impairment (DHS dataset, Figure 2.a).  

Five of the novel variants that have rare genotypes with large effects are at loci that have not 

been reported for any type of hearing impairment: FBF1, FSCN2, C10orf90, SH2D4B and 

TBX2 (Supplementary Note 2).  

A rare tandem duplication in FBF1, only detected in Iceland, associates strongly with ARHI 

(MAFIce = 0.22%, OR=4.2, P=5.7×10
-27

). The variant is highly penetrant, with 81.5% of the 

162 carriers having at least mild ARHI and 57.4% having moderate to profound hearing 
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impairment (Figure 3.a). The duplication spans 7,282 base pairs covering exons 4 to 7 of 

FBF1. To investigate the effects of the duplication on the transcription of the gene, we 

analyzed RNA sequencing data from whole-blood of heterozygous carriers and non-carriers 

(N=13,067) (Supplementary Note 3). Out of 60 heterozygous carriers we found evidence of 

transcripts containing duplication of exons 4 to 7 demarked by an extra splicing between exon 

7 and 4 (Figure 3.b). This transcript isoform was not detected in RNA sequences from any of 

the 13,007 non-carriers. We estimate that transcripts with splicing between exon 4 to 7 

represents 7.5% (95% CI 5.7-9.2) of FBF1 transcripts in carriers. Three other variants are 

correlated (r
2
>0.8) with the duplication but none of them are coding (Supplementary Figure 

6.a).  

Six of the novel variants with rare genotypes and large effects on ARHI, are coding variants 

located in Mendelian deafness genes: LOXHD1, MPZL2, SLC411, SLC26A5, TBC1D24 and 

TMPRSS3. Rare variants in these genes have been reported to cause severe to profound 

hearing impairment described as either prelingual or childhood-onset (DFNB77, DFNB111, 

DFNB61, DFNA65, DFNB86 and DFNB8; OMIM #613079, #618145, #217400, #613865, 

#616044, #614617 and #601072). However, apart from TMPRSS3, the ARHI associations we 

find in these genes are with missense variants that have milder effect than the prelingual or 

childhood-onset variants (Supplementary Note 4, Table 2, Figure 4.a-d).  

The missense variant in LOXHD1, p.Arg1090Gln, on chromosome 18q21.1, associates with 

increased risk of ARHI under the recessive model (OR=3.92, P=8.9×10
-22

). P.Arg1090Gln 

has a MAF of 2.96% in Iceland and 1.99% in the UK and is the only novel variant that 

reaches genome-wide significance in both Iceland and the UK (Supplementary Table 6). No 

other variants are correlated with p.Arg1090Gln (r
2
<0.4, Supplementary Figure 6.b). The 

variant has high penetrance, with 82.3% of the 62 homozygotes in the Icelandic datasets 

having ARHI and 48.4% having moderate to profound hearing impairment (Figure 4.a). We 
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had information on hearing aid usage and the age when hearing aid usage started for 8,211 of 

the 11,484 individuals in the DHS dataset and found that 15 out of 37 homozygous carriers 

use hearing aids and started using them earlier (mean age=46.3 years, SD=15.7) than 

heterozygotes and non-carriers (mean age=60.0 years, SD=14.8, P=0.031). Heterozygotes are 

also at increased risk of ARHI (OR=1.07, P=2.0×10
-4

). However, this risk is much lower than 

the risk of homozygotes and therefore the effect of this variant deviates from the additive 

model (P=3.3×10
-12

, Supplementary Table 9). 

A rare frameshift variant, c.208delC, in TMPRSS3 associates with ARHI under the additive 

model (OR=1.49, P=8.3×10
-8

, MAFIce=0.22%, MAFUK=0.07%). In the homozygous state, 

c.208delC has been reported to cause congenital deafness (OMIM # 601072), but the 

increased risk of ARHI of heterozygous carriers has not been reported. In the Icelandic 

datasets, the only homozygous carrier has profound hearing loss. In the heterozygous state, 

the variant shows variable expressivity (Figure 4.e); where some carriers have normal 

hearing, 52 carriers have moderate, 17 have severe and 4 have profound hearing loss. 

Battelino et al. reported a Slovenian family-trio with congenital profound hearing loss, where 

the mother and the son were homozygous carriers of c.208delC and the father was a 

heterozygous carrier of c.208delC in TMPRSS3 and c.35delG in GJB2
35

. Our results suggest 

that one copy of c.208delC in TMPRSS3 can cause profound hearing loss. 

A novel ARHI gene detected with a burden test  

Using a LOF variant gene-based burden test, the gene AP1M2, on chromosome 19p13.2, 

associates with ARHI under the recessive model in the Icelandic datasets (OR=28.9, 

P=4.6×10
-7

). Twelve homozygotes or compound-heterozygotes for LOF variants with 

MAF<2% in AP1M2 had been invited to participate in the deCODE health study. Nine of 

them participated, three homozygous carriers of a stop gained variant, p.Arg386Ter 
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(MAF=0.22%), three homozygous carriers for a splice donor variant, c.673+2T>C 

(MAF=0.37%), and three compound-heterozygous carriers of these two variants. One 

additional compound-heterozygous carrier had audiometric measures from the NIHSI. Four of 

the individuals have severe, two have moderate and two have mild ARHI. Five of them 

reported use of hearing aids, and their average age when starting using hearing aids 

(mean=27.8, SD=14.9) is substantially younger than that of other hearing aid users 

(mean=60.2, SD=15.1, P=0.022). RNA and protein expression analyses of inner-ear tissue
36–38

 

have shown that Ap1m2 is expressed 7-fold higher in hair cells than in non-hair cells in mice 

with a FDR of 3.4×10
-3

, suggesting a specific role in hair cell function (Supplementary Table 

10). Non-syndromic hearing loss has been linked to chromosome 19p13.2 in families from 

Pakistan
39

 and Germany
40

, without a specific gene being implicated.  

The effect of the variants on ARHI by genotype   

It is interesting that 20% of the variants associate with ARHI under the recessive model, a 

much higher fraction than other age-related diseases. To further explore the effect of all of the 

ARHI associating variants per genotype we tested them under the genotypic model estimating 

the effect of heterozygous and homozygous carriers separately (Supplementary Table 9). We 

found that p.Arg402Gln in TYR, p.Val504Met in KLHDC7B, p.Thr656Met in SYNJ2 and 

p.Leu113Val in CLRN2 have stronger effects on homozygotes than expected under the 

additive model (P<0.05). Furthermore, we found that the variants in ILDR1, CHMP4C and 

CCDC68, reported before as additive
17

, are better explained by the recessive model, only 

showing significant effects on homozygous carriers (Supplementary Table 9).   

Dimensions of the audiometric data 

In the Icelandic datasets, the subjects underwent an audiometric test providing more 

information about the severity of the ARHI and the affected frequencies than in the UKB 



11 

 

dataset. To further explore which hearing frequencies are affected by the ARHI variants, we 

tested each frequency (0.5, 1, 2, 4, 6 and 8 kHz) separately for association with the ARHI 

variants (Supplementary Table 8, Figure 5). Most of the ARHI variants have similar effects at 

all frequencies although some variants have stronger effects on lower frequencies and others 

on higher frequencies. For instance, p.Arg1090Gln in LOXHD1 affects the lower frequencies 

more than higher frequencies under a recessive model, with the greatest effect on 1 kHz 

(OR=8.4, P=1.6×10
-18

), which is different from its effect on ARHI at 6 and 8 kHz (Phet < 

0.02). Furthermore, six ARHI variants, that do not associate with PTA based ARHI in Iceland 

(P>0.05), associate nominally with ARHI for some particular frequency (Supplementary 

Table 8, Figure 5). 

Association of ARHI variants with tinnitus 

We tested the ARHI variants for association with tinnitus using self-reported information 

from DHS and UKB (Ncases=47,657, Ncontrols=111,607, Supplementary Table 11). ARHI 

variants detected under the additive model were tested for tinnitus using the additive model 

and ARHI variants detected under the recessive model were tested for tinnitus using the 

recessive model. Thirteen ARHI variants associate with tinnitus, controlling the false 

discovery rate at 0.05 using the Benjamini-Hochberg procedure (Figure 6, Supplementary 

Table 11). Variants in CTBP2, CRIP3, AGO2, PHLDB1, LMX1A, SLC26A5, ACADVL, 

SYNJ2 and CLRN2 associated with tinnitus under the additive model and variants in ILDR1, 

ABCC10, SH2D4B and C10orf90 associated with tinnitus under the recessive model. For all 

of the 13 variants, the ARHI risk increasing allele increases the risk of tinnitus, and the effect 

of all the ARHI variants on ARHI risk and tinnitus risk are highly correlated (r = 0.72, P = 

6.2×10
-8

 and r = 0.86, P = 6.0×10
-4

 for the additive and recessive model respectively, Figure 

6). 
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Genetic risk score predicts ARHI risk 

We constructed a genetic risk score (GRS) for ARHI, based on the 35 ARHI variants with 

EGF>1%, using effect sizes from the UKB dataset. The GRS associates with ARHI in both 

Icelandic datasets (OR=1.31, P=4.1×10
-29

 and OR=1.18, P=7.5×10
-39

 in DHS and NIHSI 

datasets respectively) and the association is dose-dependent over GRS deciles (Figure 2.b). In 

the DHS dataset, individuals in the top decile of the GRS have 2.5-fold (P=6.1×10
-18

) greater 

risk of ARHI than those in the bottom decile. Comparing the cumulative risk of ARHI against 

age between the top and bottom GRS deciles, shows that individuals in the bottom decile have 

their ARHI 10 years later than those in the top decile (Figure 2.c). Furthermore, individuals in 

the top GRS decile have a 3.2-fold (P=2.1×10
-8

) and 2.7-fold (P=0.031) greater risk of 

moderate and severe hearing impairment respectively, than those in the bottom decile. If we 

compare the 4.9% who carry any of the 16 rare ARHI variants to the bottom 10% of the GRS, 

the ORs are 3.4 for mild, 6.1 for moderate and 9.2 for severe hearing impairment (P=3.0×10
-

19
, 8.4×10

-13
 and 1.0×10

-7
, respectively). Therefore, relative to the bottom GRS decile, the 

ARHI OR for carriers of rare variants is larger than the ARHI OR for individuals in the top 

GRS decile, but the ORs do not show significant heterogeneity (Phet=0.075). However, the 

risk of moderate and severe ARHI for carriers of rare variants is substantially greater than the 

risk for the top GRS decile (Phet<0.05). 

As we have described, the severity of the hearing impairment for carriers of the highly 

penetrant variants in LOXHD1 and FBF1 varies from mild to profound. We hypothesize that 

the GRS could act as a modifier on the expressivity, i.e. that some of the variable expressivity 

of these highly penetrant variants could be explained by the common variants associating with 

ARHI. We estimated the relationship between these variants and the GRS on the PTA hearing 

thresholds and found positive interaction for both LOXHD1 and FBF1 (P=6.8×10
-4

 and 

P=4.7×10
-3

, respectively). This shows that among carriers of these highly penetrant 
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genotypes, those who additionally have a high GRS are at a greater risk of a more severe 

ARHI than those that have a low GRS. 

Long-term exposure to occupational loud noises is a risk factor for ARHI
9,41

. We had 

information on the occupation the subjects had for the majority of their lives for 7,642 of the 

11,484 individual in the DHS dataset. Three occupational categories associated with increased 

risk of ARHI; plant and machine operators and assemblers (N=508, OR=1.88, P=8.4×10
-8

), 

craft and related trades workers (N=1,172, OR=1.56, P=1.3×10
-7

) and agricultural and fishery 

workers (N=783, OR=1.55, P=1.6×10
-6

). We tested for an interaction effect between long-

term occupational noise exposure and the ARHI GRS on the risk of ARHI but did not find a 

significant interaction (P=0.94). Among the individuals in the top GRS decile, noise exposure 

associates with increased risk of ARHI (OR=1.77, P=6.3×10
-3

) similar to the rest of the 

population (1.70, P=1.2×10
-12

, Phet=0.86).  

Discussion 

In the largest GWAS meta-analysis on ARHI to date, we found association with 51 variants, 

of which 21 are novel, using audiometric measurements from Icelanders and data on self-

reported hearing difficulty from the UKB. This study yielded more rare variants, both under 

additive and recessive models, than previous GWAS studies that have reported common 

variants associations with small to moderate effects on ARHI. The novel findings include 

variants in both known Mendelian deafness genes and genes not previously linked to hearing. 

We constructed an ARHI GRS and found that individuals in the top GRS decile are at 2.5-fold 

greater risk than those in the bottom decile, and on average, they develop ARHI 10 years 

earlier than the bottom decile. The 2.5-fold greater risk is comparable to the 3.4-fold greater 

risk of carriers of rare ARHI variants relative to the risk of those in the bottom GRS decile. 

However, carriers of rare ARHI variants have substantially greater risk of moderate and 
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severe ARHI than individuals in the top GRS decile, showing that the rare variants identified 

in this study predispose to more severe ARHI than the combination of common variants in the 

GRS.  

Despite the importance of hearing in everyday life, ARHI is often not recognized by patients 

and left untreated; only 22% of people with mild hearing impairment report a hearing 

handicap
6
. Because of this, ARHI is often not diagnosed until several years after onset and has 

then often already had many negative consequences such as effects on employment, social 

isolation and depressive symptoms
42

. Due to this, there is a need for better screening 

strategies, and using a GRS to stratify individuals into risk groups could enable enhanced 

screening. Identifying high risk individuals might also help with preventing or reducing the 

severity of the hearing impairment. We have shown that noise exposure increases the risk of 

ARHI among those that are already at a high genetic risk. It shows that avoiding loud noises 

is even more important for those who have a genetic predisposition to ARHI.  

Previous reports have claimed that over 70% of non-syndromic prelingual hearing loss is 

inherited in a recessive manner
43

. In this study, we found six novel variants that associate with 

ARHI under a recessive mode of inheritance. For instance, the variant in LOXHD1 is genome-

wide significant in the UKB data alone, but was not detected by Wells et al. with the same 

dataset under an additive model
17

. Additionally, we show that three variants previously 

reported to associate with ARHI under an additive model are truly recessive and four variants 

detected under an additive model in this study have stronger effects on homozygous carriers 

than expected under an additive model. These results highlight the importance of applying a 

recessive model when searching for variants associating with ARHI, which has not been done 

in previous GWASs.  
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A limitation of this work is that in the three datasets, the ARHI phenotype is defined in 

different ways. Because we did not restrict the definition of ARHI in terms of age of onset or 

severity, we performed follow-up analysis for all rare variants to make sure that the reported 

variants really associate with ARHI and not prelingual or childhood-onset deafness. Our 

results for common variants were mainly driven by the UK biobank dataset but 38 out of 51 

variants replicated in the combined Icelandic datasets. The lack of replication in the DHS 

dataset is most likely due to smaller sample size, while in the NIHSI dataset it might be due to 

differences in the phenotype ascertainment, where patients are referred to NIHSI for hearing 

problems. Using population controls in the NIHSI dataset that have not been specifically 

screened for hearing impairment, will also misclassify some cases as controls. However, the 

effect sizes from the UK are highly correlated with effect sizes from Iceland and have 

consistent direction of effects. The age of onset, severity and progression of ARHI is highly 

variable between individuals, and future GWAS could further analyze subtypes of ARHI. The 

Icelandic datasets provide more details regarding these factors as well as the measures of 

hearing at specific frequencies. Some ARHI variants have stronger effects on particular 

frequencies, while most affect all frequencies similarly.  

We found six loci that have not been reported to affect hearing in humans before; FBF1, 

FSCN2, TBX2, C10orf90, SH2D4B and AP1M2. Inner-ear protein expression analysis in 

mice
36

 have shown that the mouse homologs Fscn2, Tbx2, C10orf90, Sh2d4b and Ap1m2 

have higher expression, ranging from 5 to 43-fold, in hair cells versus non-hair cells 

(Supplementary Table 10), suggesting that these genes have specialized roles in the inner ear 

hair cells, but degeneration of the inner ear hair cells is the main cause of ARHI
5
.  

The two strongest novel associations were with the highly penetrant tandem duplication 

covering exons 4 to 7 in FBF1, detected under an additive model, and a missense variant in 

LOXHD1, affecting ARHI in homozygous state. FBF1 encodes Fas-binding factor 1, a 
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keratin-binding protein necessary for ciliogenesis
44,45

. We speculate that FBF1 may have a 

role in the cilia of the inner ear, but further studies are needed to determine the biological 

effect of the duplication and the mechanism behind the association of FBF1 with ARHI. 

LOXHD1 encodes lipoxygenase homology domain 1, which consists of 15 PLAT (polycystin‐

1, lipoxygenase, alpha‐toxin) domains
46

. Grillet et al. showed that LOXHD1 is expressed in 

the functionally mature mechanosensory hair cells in the inner ear and LOF mutations in the 

gene lead to auditory defects in mice and humans, indicating an essential role for normal hair 

cell function
46

. Homozygous carriers of p.Arg1090Gln in LOXHD1 report a younger age for 

hearing aid usage than the rest of hearing aid users, showing that the variant is associated with 

a severe form of ARHI. Given the frequency of p.Arg1090Gln (gnomAD, URLs), we estimate 

the number of homozygous carriers to be around 300 in Iceland, 24,000 in the UK and 

300,000 in the whole of Europe. 

We also tested the ARHI variants for association with tinnitus. Tinnitus is considered to have 

a broad etiology and can be caused by problems in the entire auditory pathway
47

. ARHI and 

tinnitus are correlated phenotypes, but shared genetic causes have not been broadly explored. 

We found that 13 of the 51 ARHI variants also associated with tinnitus, showing that some 

pathogenic processes that cause ARHI also increase the risk of tinnitus.  

Our knowledge of the pathogenesis of ARHI is still limited, but the work presented here 

reveals several novel loci, shedding a new light on the genetics underlying this common 

sensory defect. 
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Methods 

Phenotype datasets 

For the meta-analysis we conducted a GWAS of ARHI in three datasets under both additive 

and recessive models.  

The DHS dataset. Pure tone audiometric air conduction testing was performed for 11,484 

Icelanders as a part of a comprehensive phenotyping of a general population sample enriched 

for carriers of rare and potentially high impact mutations
25

 (the deCODE health study
24

). 

Homozygous carriers of p.Arg1090Gln in LOXHD1 were recruited, resulting in 37 carriers 

that participated (Supplementary Table 3). For the GWAS, 4,140 individual with PTA>25 

were defined as ARHI cases and the remaining 7,344 as controls. Participation in the 

deCODE health study includes blood sample collection, numerous physical measurements, 

permission to access a wide range of health-related information including hospital data, a 

verbal interview and an online questionnaire about health and lifestyle, including questions on 

hearing aid usage and tinnitus. All participants of the study gave written informed consent, in 

accordance with the Declaration of Helsinki, and the study was approved by the Icelandic 

Data Protection Authority and the National Bioethics Committee (VSNb2015120006/03.01 

with amendments). 

The NIHSI dataset. Pure tone audiometric air conduction testing was performed for 22,212 

Icelanders at the National Institute of Hearing and Speech in Iceland (NIHSI). For the GWAS, 

9,619 individuals were defined as ARHI cases (PTA>25) and 298,609 individuals were 

selected as population controls (excluding individuals in the DHS dataset). All participants 

who donated samples gave informed consent and the study was approved by the Icelandic 

Data Protection Authority and National Bioethics Committee (VSN-18-186).  
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The UKB dataset. The UKB study is a large prospective cohort study of around 500,000 

individuals from the UK
48

. Extensive phenotypic and genotypic information has been 

collected for the participants, including self-reported hearing difficulty and tinnitus. For the 

GWAS, we defined 108,175 ARHI cases as those who answered “Yes” or “I am completely 

deaf” to the question “Do you have any difficulty with your hearing?” and 285,746 controls as 

those who answered “No”. In our analysis we only included individuals determined to be of 

white British ancestry
49

 and we use LD score regression
50

 to account for inflation in test 

statistics due to relatedness. All participants of the UK Biobank study gave informed consent 

and the study was approved by the North West Research Ethics Committee (REC Reference 

Number: 06/MRE08/65). 

Audiometric test 

In DHS and NIHSI datasets, the pure tone air conduction audiometric test was performed by 

specially trained staff. The audiometer delivers pure tones at 0.5, 1, 2, 4, 6 and 8 kHz at 

different intensity levels, usually starting at 20 dB HL and increased if necessary. For each 

individual and each ear, the lowest intensity of sound detection is defined as their hearing 

threshold at that frequency. The pure tone average (PTA) was defined as the average hearing 

threshold at 0.5, 1, 2 and 4 kHz (according to the classification of the WHO).  We define 

ARHI cases as those with PTA>25. 

Genotype datasets 

In the Icelandic GWASs, using the DHS and NIHSI datasets, we analyzed high quality 34.0 

million sequence variants identified through whole-genome sequencing of 49,708 Icelanders 

which have been described in detail
51,52

. In summary, we whole-genome sequenced the 

Icelanders using Illumina technology to a mean depth of at least 17.8 × and median depth of 

36.9 ×. The sequence variants were jointly called using Graphtyper
53

, thereof 79.318 high-

confidence structural variants described previously
54

. We genotyped 166,281 Icelanders 
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using Illumina SNP chips and their genotypes were phased using long-range phasing
55

. 

Genotypes of the 34.0 million sequence variants were imputed into all chip-typed Icelanders 

as well as relatives of the chip-typed, to increase the sample size for association analysis. All 

tested variants had imputation information over 0.8. 

The UKB GWAS was performed with two sets of genotypes. The primary analysis was 

performed with 26.5 million high quality variants (imputation info > 0.8) from the Haplotype 

Reference Consortium (HRC) reference panel, imputed into chip-typed individuals of 

European ancestry
49

. The genotyping was performed using a custom-made Affimetrix chip, 

UK BiLEVE Axiom in the first 50,000 individuals
56

, and with Affimetrix UK Biobank 

Axiom array in the remaining participants
57

. Imputation was carried out by Wellcome Trust 

Centre for Human Genetics using a combination of 1000Genomes phase 3
58

, UK10K
59

 and 

HRC reference panels
60

, for up to 93 million variants
49

. Additionally, we performed a GWAS 

with 922 thousand variants identified through whole exome sequencing (WES) of 49,960 

study participants
61

, imputed into chip-typed individuals of European ancestry. 

Association analysis 

Logistic regression was used to test for association between sequence variants and binary 

traits. For the additive model, the expected allele counts were used as a covariate while for the 

recessive model, the product of the maternal and paternal genotype probabilities were used as 

a covariate. For the genotypic model, separate parameters were included for heterozygotes 

and homozygotes. Other available individual characteristics that correlate with the trait were 

additionally included in the model. In the DHS and NIHSI datasets, those were sex, county of 

birth, current age or age at death (including first and second order terms), blood sample 

availability and an indicator function for the overlap of the lifetime of the individual with the 

time span of phenotype collection. In the UKB dataset, those were sex, age and 40 principal 

components in order to adjust for population stratification.  



20 

 

We used LD score regression to account for distribution inflation in the dataset due to cryptic 

relatedness and population stratification
50

. Using 1.1 million variants, we regressed the χ2 

statistics from our GWASs against LD score and used the intercepts as a correction factors. 

The estimated correction factors for ARHI were 1.05, 1.20 and 1.05 in DHS, NIHSI and UKB 

datasets respectively.  

Because the UKB GWAS was performed on two sets of genotypes, we performed two 

separate meta-analysis. Both meta-analysis combined results from three GWAS using DHS, 

NIHSI and UKB datasets. In meta-analysis I, we used the UKB GWAS results based on the 

variants from the HRC reference panel and in meta-analysis II we used the UKB GWAS 

results based on the variants identified through WES. When meta-analyzing the three 

GWASs, we used a fixed-effects inverse variance method
62

 which is based on effect estimates 

and standard errors from all datasets. Sequence variants from Iceland and the UKB were 

matched on position and alleles. 

For the genotypic model P-values were computed by comparing the genotypic model to the 

null model. For the genotypic model meta-analysis, sample size approach was used based on 

P-values and sample size
63

.  

A Q-test
64

 was used to test for heterogeneity between effect sizes. 

Definition of ARHI variants 

The PTA based definition of ARHI used in the Icelandic datasets does not exclude individuals 

that are completely deaf or have child-hood onset hearing loss. The GWAS can therefore 

detect rare associating variants that cause prelingual or childhood onset hearing loss instead of 

ARHI. Due to this, for all the rare variants that satisfied the genome-wide significance 

thresholds, we fit a linear regression model, with the PTA hearing threshold of the carriers as 

response and age as covariate, to estimate the predicted PTA hearing threshold of the carriers 
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in childhood. Variants that had predicted hearing threshold of 25 dB HL at 10 years of age 

were considered to be causing childhood-onset hearing loss. 

Significance thresholds 

The genome-wide significance thresholds were corrected for multiple testing with a weighted 

Bonferroni adjustment
32

. The weights, based on enrichment of variant classes with predicted 

functional impact among association signals, were estimated from the Icelandic data, resulting 

in significance thresholds of 2.4×10
-7

 for loss-of-function variants, 4.9×10
-8

 for moderate-

impact variants, 4.4×10
-9 

for low-impact variants, 2.2×10
-9

 for other variants within DHS sites 

and 7.4×10
-10

 for remaining variants.  

We evaluated false discovery rate, assessed with the qvalue package in R. The P value cutoff 

of 5.0 × 10
-8

 corresponded to q-values of 0.0013 for the additive model and 0.0025 for the 

recessive model, which add up to 0.4%. 

In the burden test, a genome-wide significance threshold of 0.05/18,482 = 2.7×10
-6

 was used, 

correcting for the number of autosomal protein coding RefSeq genes
65,66

. 

Conditional analysis 

To search for secondary association signals at each locus, we applied a stepwise conditional 

analysis, adding the top variant as a covariate when testing all other variants in a 1 Mb 

window around the top variant. We used a Bonferroni adjusted significance threshold for 

secondary associations. We found independent secondary associations at 6 loci. 

RNA-sequencing 

The RNA sequencing from whole blood of 13,067 Icelanders has been described in previous 

publications
67,68

.  

Genetic risk score 

The GRS for ARHI was constructed using the 35 detected variants with EGF>1% and 

estimated effects from the UKB dataset. If we let mvi and pvi be the genotype probability for 
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individual i and sequence variant v at the maternally and paternally inherited chromosomes, 

the GRS for individual i is defined as  

𝑔𝑟𝑠𝑖 =∑(𝑚𝑣𝑖 + 𝑝𝑣𝑖)𝛽𝑣

𝑛

𝑣=1

+∑(𝑚𝑣𝑖 × 𝑝𝑣𝑖)𝛾𝑣

𝑚

𝑣=1

, 

where β are the effects of the n variants detected with the additive model and γ are the effects 

of the m variants detected with the recessive model. 

Correlation between effect sizes 

When assessing the relationship between effect sizes, we fitted a weighted linear regression 

model where each variant was weighted by 𝑓(1 − 𝑓) where 𝑓 is the minor allele frequency of 

the variants.  

Additional information 
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https://hereditaryhearingloss.org/ 

https://gnomad.broadinstitute.org/  
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Table 2. Association of sequence variants with ARHI. The table lists the 21 novel variants 

identified in the GWAS meta-analysis on ARHI. Gene names marked with * are novel 

hearing loci. For intergenic variants, the nearest genes are reported in brackets. 

 

OR=Odds ratio, Chrom=Chromosome, EA=Effect Allele, OA=Other allele, EAF=Effect 

allele frequency, Ice=Iceland, A=Additive model, R=Recessive model 

  

 

Model P-value OR rs name Chrom Position EA OA Gene 
Variant 

annotation 

EAF    

Ice (%) 

EAF    

UK 

(%) 

A 5.7×10
-27

 4.20 - 17 75927880 
  

FBF1* CDS tdup 0.22 0 

A 8.0×10
-14

 1.32 rs146694394 6 158071628 T C SYNJ2 missense  0.37 0.46 

A 1.8×10
-13

 1.28 rs141952919 7 103421378 G A SLC26A5 missense  0.33 0.52 

A 5.9×10
-13

 6.59 rs761934676 16 2497068 G A TBC1D24 missense  0 0.01 

A 5.1×10
-11

 1.08 rs113784020 11 118689022 T C [PHLDB1] intergenic  3.75 4.27 

A 2.5×10
-10

 1.92 rs749405486 22 50549067 A AG KLHDC7B frameshift  0.00 0.06 

A 4.9×10
-13

 0.95 rs72622588 3 182285702 T G [FLJ46066] intergenic  10.73 10.81 

A 6.5×10
-10

 1.20 rs143796236 17 81528943 T C FSCN2* missense  0.21 0.74 

A 7.6×10
-10

 1.03 rs13171669 5 149221680 G A ABLIM3 intron  42.92 42.34 

A 1.2×10
-9

 1.03 rs3014246 1 45620405 C T CCDC17 missense  27.01 29.64 

A 1.6×10
-9

 1.03 rs920701 13 75842965 C T LMO7 intron  34.91 36.67 

A 3.9×10
-9

 0.97 rs11881070 19 2389142 T C TMPRSS9 upstream gene  30.15 28.79 

A 4.9×10
-8

 1.81 rs764272881 20 3228565 G A SLC4A11 missense  0.45 0 

A 4.1×10
-8

 71.17 rs765488721 17 61403195 T C TBX2* stop gained 0.01 0 

A 8.3×10
-8

 1.49 rs727503493 21 42389042 T TG TMPRSS3 frameshift  0.22 0.07 

R 1.7×10
-22

 3.65 rs118174674 18 46557437 T C LOXHD1 missense  2.95 1.99 

R 3.2×10
-11

 1.05 rs9394952 6 43433367 G A ABCC10 splice region  49.99 48.13 

R 7.7×10
-11

 2.35 rs12784122 10 80649861 A G SH2D4B* downstream gene  2.66 2.29 

R 3.5×10
-10

 17.32 rs139123090 10 126459169 A G C10orf90* missense  0.89 0.47 

R 3.2×10
-9

 0.94 rs557563970 1 117960109 CGT C WDR3 3 prime UTR  21.76 41.74 

R 1.2×10
-8

 4.79 rs74543584 11 118262596 A T MPZL2 missense  1.47 0.83 
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Figures 

 

Figure 1. Study design and summary of results. The UK Biobank (UKB) GWAS was 

performed with two genotype datasets marked in red and blue. The gene names in bold are the 

loci where the association is represented by a coding variant.  

WGS = Whole genome sequenced, HRC = Haplotype Reference Consortium, WES = Whole 

exome sequenced, PTA = Pure tone average, DHS = deCODE health study, NIHSI = National 

Institute of Hearing and Speech in Iceland, EGF = Expected genotype frequency 
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Figure 2. ARHI risk for rare variants and a common variant GRS. a) The cumulative risk 

of mild, moderate and severe hearing impairment in the DHS dataset among the 4.9% of 

subjects that are carriers of any of the 16 rare ARHI variants (dots) and the 95% that are not 

carriers (squares). b) The ORs for ARHI for each GRS decile in the DHS and NIHSI datasets 

compared to the bottom decile. c) The cumulative risk of ARHI among subjects in the DHS 

dataset in the bottom GRS decile in blue and the top GRS decile in red.  

 

 

Figure 3. A tandem duplication in FBF1 associates with ARHI. a) The PTA hearing 

threshold of the heterozygous carriers of the tandem duplication in FBF1 in DHS and NIHSI 

datasets are indicated by yellow squares and the average PTA hearing thresholds of non-

carriers in the DHS dataset are represented with grey dots. b) The exon structure of the wild 

type and the tandem duplication variant in transcript ENST00000586717.5 of FBF1 on the 

reverse strand of chromosome 17. The exons of the transcripts are numbered, and solid black 

lines represent splicing between exons. The tandem duplication creates a longer transcript 

with extra sets of exons 4 to 7 that leads to novel splice junction starting at the end of exon 7 

and splicing into the beginning of exon 4. The adjacent sequences of the exons are shown, and 

together they form the 32bp sequence used for identification of the novel junction. 
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Figure 4. Changes in PTA hearing thresholds by age for carriers of rare ARHI variants 

in Mendelian deafness genes. Effects of variants in a) LOXHD1, b) MPZL2, c) SLC4A11, d) 

SLC26A5 and e) TMPRSS3 are shown.  In figure a and b, the average PTA in the DHS dataset 
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are represented with grey dots for non-carriers and orange dots for heterozygotes and the PTA 

hearing thresholds of the homozygous carriers in DHS and NIHSI datasets are represented 

with red squares. In figures c, d and e, the average PTA of non-carriers in the DHS dataset are 

represented with grey dots and the PTA hearing threshold of the heterozygous carriers in DHS 

and NIHSI datasets by yellow squares. A figure for TBC1D24 is not included because the 

variant was detected in UKB dataset only and therefore audiometric measures are not 

available for the carriers.  
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Figure 5. Effects of the ARHI variants on ARHI per frequency. Each row shows the 

estimated effect of the minor allele on ARHI for PTA, the average of 0.5,1,2 and 4kHz, and 

separately for each frequency, 0.5, 1, 2, 4, 6, and 8 kHz, for a) common variants with 

EGF>1% and b) rare variants with EGF<1%. The effect is shown only for associations with 

P-value<0.05. Red color represents increased risk of ARHI and blue color represents 

decreased risk.  

 

 

Figure 6. Effect of the ARHI variants on tinnitus. The effect of the ARHI variants on 

ARHI is plotted against their effect on tinnitus for a) all ARHI variants and b) zoomed-in on 

variants from a) with ARHI OR <1.35. ARHI variants detected under the additive model were 

tested for tinnitus using the additive model (colored blue) and ARHI variants detected under 

the recessive model were tested for tinnitus using the recessive model (colored red). Variants 

that affect tinnitus, controlling the false discovery rate at 0.05, are plotted with darker color 

and labelled with their corresponding gene. All effects are shown for the ARHI risk 

increasing allele. Error bars represent 95% confidence intervals. The dotted lines represent 

results from a weighted linear regression using MAF(1-MAF) as weights, red for recessive 
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variants and blue for additive, and the weighted correlation coefficients (r) and the 

corresponding P-values are shown in figure a. 
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