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Abstract: Parameter optimization, also referred to as design closure, is imperative in the development
of modern antennas. Theoretical considerations along with rough dimension adjustment through
supervised parameter sweeping can only yield initial designs that need to be further tuned to
boost the antenna performance. The major challenges include handling of multi-dimensional
parameter spaces while accounting for several objectives and constraints. Due to complexity of
modern antenna topologies, parameter interactions are often involved, leading to multiple local
optima as well as difficulties in identifying decent initial designs that can be improved using local
procedures. In such cases, global search is required, which is an expensive endeavor, especially if
full-wave electromagnetic (EM) analysis is employed for antenna evaluation. This paper proposes
a novel technique accommodating the search space exploration using local kriging surrogates and
local improvement by means of trust-region gradient search. Computational efficiency of the
process is achieved by constructing the metamodels over appropriately defined affine subspaces
and incorporation of coarse-mesh EM simulations at the exploratory stages of the optimization
process. The resulting framework enables nearly global search capabilities at the costs comparable to
conventional gradient-based local optimization. This is demonstrated using two antenna examples
and comparative studies involving multiple-start local tuning.

Keywords: antenna design; parametric optimization; EM-driven design; global search; principal
component analysis; variable-fidelity simulations

1. Introduction

Full-wave electromagnetic (EM) simulations play a crucial role in the design of modern antennas.
Their employment is imperative to secure evaluation reliability, especially for situations where simpler
(e.g., analytical or network equivalent) models are not available or lack accuracy. The examples include
compact antennas with tightly arranged layouts [1], the presence of connectors and radomes [2],
as well as mutual coupling of radiators [3]. At the same time, the necessity of handling several
performance figures (e.g., antenna reflection, gain, axial ratio, footprint area) and carrying out the
tuning process over multi-dimensional parameter spaces leads to a more and more widespread
utilization of numerical optimization routines. Notwithstanding, the computational costs of EM-driven
design may be considerable even in the case of local optimization [4], let alone global search procedures
which might be required when sufficiently good initial designs are not available or the problem

Electronics 2020, 9, 673; doi:10.3390/electronics9040673 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0003-4844-7728
https://orcid.org/0000-0003-2319-6782
https://orcid.org/0000-0002-9063-2647
http://dx.doi.org/10.3390/electronics9040673
http://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/9/4/673?type=check_update&version=2


Electronics 2020, 9, 673 2 of 14

at hand is a multi-modal one [5]. Common examples include design of compact antennas [6],
wideband-antennas [7–9], array pattern synthesis [10], or optimization of MIMO systems [11].

Population-based metaheuristics belong to the most widely used global optimization methods [12–20],
typically mimicking certain biological [12] or social phenomena [13]. Within these algorithms, it is the
cooperation and exchange of information between individuals (agents, particles, etc.) that permits
design space exploration, identification of the promising regions, and escaping from local minima. Some
popular techniques include not only genetic algorithms [14], particle swarm optimizers [15], differential
evolution [16], and firefly algorithm [17] but also numerous recent variations, often being slight
variations of the existing methods featuring fancy names (e.g., Strawberry Algorithm [18], Monarch
Butterfly Algorithm [19], Bat Flower Pollination [20]). Unfortunately, the CPU cost of these algorithms
is very high due to processing sets of candidate solutions in each iteration, which may be prohibitive
when directly handling EM simulation models. A possible way of alleviating this issue are machine
learning methods combining metaheuristics with iterative construction of fast surrogate models [21,22],
incorporation of gradient-based procedures [23], or variable-fidelity simulations [24]. Other methods
include multiple start local optimization or the Taguchi method that involves experimental design
using orthogonal arrays [25]. Nevertheless, these variations are of rather limited popularity with
mainstream metaheuristics remaining—despite their high cost—the most popular solution approaches
for global optimization in high-frequency design.

Having in mind that the antenna optimization process needs to be carried out at the level of
full-wave EM analysis in most situations, the development of more efficient procedures that exhibit—to
a certain extent—global search capabilities while offering practically acceptable computational cost
seems to be of paramount importance. This paper presents an algorithm for globalized design
optimization of antennas. Its key components include parameter space exploration using local kriging
surrogates and trust-region gradient search for local tuning. The kriging metamodels are established
over low-dimensional affine subspaces spanned by the most relevant directions corresponding to
the maximum variability of antenna characteristics (averaged over the frequency range of interest).
The latter are established using principal component analysis of antenna response Jacobians. To further
reduce the cost of the optimization process, low-fidelity (coarse-mesh) EM model is employed at the
exploration stage, whereas the local tuning replaced costly finite differentiation by rank-one Broyden
formula for sensitivity updates. The combination of variable-fidelity surrogate-assisted exploration
and expedited trust-region algorithm enables quasi-global search capability at the cost comparable
to local optimization. This is demonstrated using two antenna examples, a wideband monopole
and a triple-band uniplanar dipole. The efficacy of the proposed approach is further validated by
comprehensive statistical studies and benchmarking against multiple-start local search.

2. Variable-Fidelity Globalized Optimization Using Principal Components and Kriging Surrogates

This section recalls the formulation of the antenna optimization task, discusses variable-fidelity
simulation models, and explains the basic components of the proposed globalized search procedure.
The entire framework is subsequently summarized, also in a form of the flow diagram. Numerical
verification of the method and benchmarking can be found in Section 3.

2.1. Formulation of Design Optimization Task

The output of the EM-simulation model of the antenna at hand will be denoted as Rf(x) and
represents any relevant characteristics (e.g., reflection or gain versus frequency). Here, x = [x1 . . . xn]T

ε X is a vector of adjustable variables, typically, geometry parameters. The subscript f is to distinguish
the high-fidelity (or fine) model to be optimized, from an auxiliary low-fidelity (coarse) one which will
be discussed in Section 2.2. The parameter space X is delimited by the lower and upper bounds l = [l1
. . . ln]T and u = [u1 . . . un]T, i.e., we have lk ≤ xk ≤ uk, k = 1, . . . , n.

The design quality is quantified using a scalar cost function U, which depends on a particular
problem to be solved. One of the most common tasks is minimization of the antenna reflection over
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a frequency range of interest F, in which case, we may define U(Rf(x)) = U(S11.f(x,f)) = max{f ε F:
|S11.f(x,f)|}.

Given U, the optimization problem is then defined as

x∗ = argmin
x∈X

U(R f (x)) (1)

In general, the problem one can be constrained, i.e., additional conditions of the form gk(x) ≤ 0,
k = 1, . . . , Nineq (inequality constraints) and hk(x) = 0, k = 1, . . . , Neq (equality constraints) may be
imposed. In the following, we focus on box-constrained domain as defined above.

2.2. Variable-Fidelity Simulation Models

Utilization of variable-fidelity models is one of widely used means to accelerate all sort of
EM-driven design procedures. In the case of antennas, low-fidelity models, here denoted as Rc,
are normally obtained from coarse-mesh simulation [26], which might be supplemented by other
simplifications of the computational models (e.g., the use of discrete sources rather than waveguide
ports, ignoring dielectric and metal losses, etc.) [27]. When applied to local search using methods such
as space mapping [28], response correction [29], or feature-based optimization [30], good correlation
between the low- and high-fidelity model is of paramount importance to ensure reliability of the
optimization process [31]. This imposes limitation on the coarseness of the low-fidelity model. In this
work, however, the Rc will be used at the exploratory stages of the search process, where the main
objective is to identify the promising regions of the parameter space. In this context, excellent model
correlations are not critical, so that coarser models may be potentially used to improve the computational
efficiency of the optimization process but without compromising the design quality. This aspect will
be investigated in Section 3. Figure 1 shows the high- and low-fidelity model reflection responses at
the selected designs for the two antenna structures considered later in the paper as the test cases. It can
be observed that both low-fidelity models retain certain level of correlation with the high-fidelity one,
but the coarsest version would be definitely insufficient for local optimization purposes.

1 
 

 

1 

 

5 
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Figure 1. Exemplary reflection responses of (a) wideband monopole and (b) uniplanar triple-band
dipole antenna at random designs: high-fidelity model (— blue), (finer) low-fidelity model (- - -
black), (coarser) low-fidelity model (···· green). Note that the finer version of the low-fidelity model
retains good correlation with the high-fidelity one, but the correlation is not as good for the coarser
version. Thus, the coarser low-fidelity model is insufficient for local search purposes (e.g., within space
mapping or feature-based optimization frameworks), yet it might be still applicable for global design
space exploration.

2.3. Principal Components. Affine Subspace for Exploration Stage

The primary prerequisite for design space exploration, i.e., identification of the promising regions
that might contain high-quality designs, is that it does not incur significant computational expenses.
In this work this is achieved in two ways: (i) using low-fidelity EM models (cf. Section 2.2) and (ii)
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conducting exploration over the selected, low-dimensional affine subspaces, spanned by the principal
components of the antenna response Jacobians.

We denote by x(i) the current design obtained as a result of the i − 1 iteration of the optimization
algorithm. For the sake of maintaining low cost of the process, it is reasonable to restrict the exploration
to directions that correspond to the maximum variability of the antenna responses. Here, such directions
are found using the Jacobian matrix JR(x(i)). Assuming the most typical situation, i.e., that the output
of the high-fidelity EM model Rf(x(i)) represents frequency characteristic (e.g., antenna reflection) over
a discrete set of frequencies fk, k = 1, . . . , m, we have Rf(x(i)) = [Rf(x(i),f 1) . . . Rf(x(i),fm)]T and

JR(x
(i)) =

[
∇1(x

(i)) . . . ∇m(x
(i))
]T

(2)

The gradients in (2) are defined as

∇
T
k (x

(i)) =

∂R f (x(i), fk)

∂x1
. . .

∂R f (x(i), fk)

∂xn

 (3)

Note that the vector ∇k(x(i)) determines the direction of the maximum antenna response variability
at the frequency fk. In order to get an idea of the overall response variability, i.e., over the entire
frequency range of interest, we consider the set {∇k(x(i))}k = 1,..,m and its covariance matrix [32]

C = (m - 1)-1STS (4)

where
S = |JR| -1µT (5)

In (5), |JR| is a matrix of the gradient moduli, µ = [µ1 . . . µn]T represents the means of the gradient
moduli, and 1 stands for the m × 1 vector of all ones. We have [32]

C = VEV−1 (6)

where V = [v1 . . . vn] is a matrix of eigenvectors and E is a diagonal matrix of the corresponding
eigenvalues λi. The eigenvalues are assumed to be arranged in a descending order, i.e., λ1 ≥ . . . ≥ λn.
They represent the variances of the observable set {∇k(x(i))}k = 1,..,m projected onto one-dimensional
subspaces spanned by the corresponding eigenvectors. In plain words, the eigenvectors vk determine
(in the descending order) the directions of the maximum antenna response variability averaged over
the frequency range of interest. This becomes a basis for setting up the affine subspace S(i), which will
be subsequently used to carry out design space exploration. The subspace is defined as [32]

S(i) = x(i) +
Ns∑
j=1

a jv j (7)

where aj are real-valued coefficients. As mentioned before, in practice, a small number of directions
is used, e.g., Ns = 2 in order to reduce the computational cost of the exploration stage, in particular,
the construction and optimization of an auxiliary kriging interpolation metamodel (cf. Section 2.4).

2.4. Surrogate Model Construction

Another component of the proposed globalized optimization is a fast surrogate model Rs
(i)

established over the subspace S(i) (Section 2.3). More specifically, the surrogate is rendered within the
union S(i)

∩ X using kriging interpolation [33]. The training data is allocated using sequential sampling
with the primary objective being the improvement of the model predictive power. The design of
experiment scheme works as follows:
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1. Use Latin Hypercube Sampling (LHS) [34] to distribute the initial set of Ninit training samples
xt

(k);
2. If card({xt

(k)}) < N1, find a new sample that maximizes the mean square error (MSE) [35] of the
current surrogate and add it to the training set.

Maximization of MSE has to be conducted globally, which is normally arranged using
population-based metaheuristics [36]. In our case, it can be realized at almost negligible cost because of
low dimensionality of S(i). More specifically, it is carried out as a two-step process: (i) exhaustive search
over the dense structured grid superimposed on S(i)

∩ X, and (ii) local refinement using gradient-based
optimization. It should be noted that global optimization of the surrogate model (one of the stages of
the proposed optimization framework) is realized in a similar manner.

2.5. Local Tuning by Accelerated Trust-Region Gradient Search

Local tuning is the second major step of the proposed optimization procedure. It is applied to
the design found at the exploratory stage and realized using accelerated trust-region gradient-based
algorithm. The algorithm generates a series of approximations x(i+1.j) to the next design x(i+1) as by
optimizing the linear expansion model L(i) of the the EM model Rf, established at point x(i+1.j) and
defined as [37]

L( j)(x) = R f (x(i+1. j)) + JR(x
(i+1. j)) · (x− x(i+1. j)) (8)

Using (8), the new design x(i+1.j) is obtained by solving [37]

x(i+1. j+1) = arg min
x;−d( j)

≤x−x(i+1. j)≤d( j)
U(L( j)(x)) (9)

For the sake of computational efficiency, the Jacobian matrix JR in (8) is estimated at the starting
point x(i+1.0) using finite differentiation; in the following iterations, it is updated using the rank-one
Broyden formula [38]. Consequently, the cost of the algorithm (9) is just one EM antenna simulation
per iteration. Note that the trust region in (9) is an interval defined as x(i+1.j)

− d(j)
≤ x ≤ x(i+1.j) +

d(j), where d(j) is the trust region size vector adaptively adjusted in each iteration using the standard
rules [37].

2.6. Optimization Framework

Having defined the basic components of the proposed optimization procedure, we are in a position
to formulate the entire algorithm. The primary objective is to permit a quasi-global search while
maintaining low computational complexity. The former is implemented by means of global optimization
of the kriging surrogate established over the affine subspaces S(i) as described in Sections 2.3 and 2.4.
The candidate designs identified this way are subject to local tuning using the methods of Section 2.5.

The algorithm operation is outlined in the remaining part of the section. The following notation is
used throughout: N0, N1, and Nmax are the control parameters (explained in the description below),
whereas card(Y) stands for the cardinality of the set Y):

The Algorithm 1 is initialized by rough exploration of the parameter space and executing the main
algorithm starting from the best point x(0) found at that stage of the process. In each iteration, the affine
subspace S(i) is defined using the principal components of the Jacobian matrix (evaluated at the level
of the high-fidelity EM model). As mentioned before, the principal components correspond to the
directions of the maximum antenna response variability (Steps 4 and 5). Because S(i) is low dimensional
(typically, only two eigenvectors are employed), it is possible to construct a reliable surrogate within
S(i)
∩ X using a small number of samples N1 (Steps 6 and 7). The primary role of the surrogate is

to determine the globally best design on S(i)
∩ X (Step 8). Note that the above exploration stage is

conducted at the level of the low-fidelity model. The next step is an expedited local optimization of the
high-fidelity EM model (Step 9). This concludes an iteration of the procedure, which is then repeated
until convergence or until the computational budget assigned for the procedure is exceeded. In the
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case of failure of an iteration, i.e., inability of finding a better design, the surrogate model is refined by
adding infill samples (Step 10). Figure 2 provides a graphical illustration of the essential Algorithm 1
stages. Note that Steps 1 and 2 can be replaced by employing a user-supplied initial design. The overall
flowchart of the Algorithm 1 can be found in Figure 3.

Algorithm 1 PCA-based optimization algorithm using variable-fidelity EM simulations

1. Initial sampling: Uniformly allocate N0 random samples xI
(k) ε X;

2. Identify the best design x(0) = min{k = 1, . . . , N0: U(Rc(xI
(k)))};

3. Set the iteration index i = 0;
4. Evaluate the high-fidelity response Rf(x(i)) and the corresponding Jacobian JR(x(i));
5. Use JR(x(i)) to identify the subspace S(i) of maximum antenna response variability (Section 2.3);
6. Allocate N1 samples x(i.k), k = 1, . . . , N1, within S(i)

∩ X;
7. Identify the kriging surrogate Rs

(i) therein using {x(i.k),Rc(x(i.k))} as the training set (Section 2.4);
8. Find the candidate design xtmp by (globally) optimizing the surrogate Rs

(i) [37]:

xtmp = arg min
x∈S(i)∩X

U(R(i)
s (x)) (10)

9. Starting from xtmp, find the new design x(i+1) through local optimization of the EM model Rf
(cf. Section 2.5) [37]

x(i+1) = argmin
x∈X

U(R f (x)) (11)

10. if U(Rf(x(i+1))) < U(Rf(x(i))) then
11. Accept x(i+1) and set i = i + 1;
12. else
13. if card({x(i.k)}) ≤ Nmax then
14. Allocate N2 additional (infill) samples within S(i)

∩ X; go to 7;
15. else
16. Return x* = x(i).
17. end
18. end
19. If the termination condition is not satisfied, go to 4; else return x* = x(i).
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Figure 2. Basic steps of the proposed quasi-global optimization procedure (illustrated for a three-
dimensional case): (a) parameter space X, initial sampling, and the best design x(0) over the sample set 
(Steps 1 and 2), (b) first iteration: subspace S(0) spanned by the first two principal directions (Steps 4 
and 5), (c) sampling of S(0) ∩ X (Step 6), construction of the surrogate (Step 7), subsequently optimized 
to find xtmp (Step 8), and the follow-up gradient-based refinement yielding the next design x(1) (Step 
9). 

Figure 2. Basic steps of the proposed quasi-global optimization procedure (illustrated for a
three-dimensional case): (a) parameter space X, initial sampling, and the best design x(0) over
the sample set (Steps 1 and 2), (b) first iteration: subspace S(0) spanned by the first two principal
directions (Steps 4 and 5), (c) sampling of S(0) ∩ X (Step 6), construction of the surrogate (Step 7),
subsequently optimized to find xtmp (Step 8), and the follow-up gradient-based refinement yielding the
next design x(1) (Step 9).
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3. Results

In this section, the proposed design optimization methodology is validated using two examples
of microstrip antennas, a wideband monopole and a uniplanar triple-band dipole. To verify the
quasi-global optimization capabilities, our algorithm is compared to multiple-start gradient search.
For meaningful performance determination, benchmarking is carried out based on the result statistics
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obtained for twenty independent algorithm runs. Furthermore, to corroborate the benefits of employing
variable-fidelity simulations, the comparative studies also include an algorithm version involving only
the high-fidelity model.

3.1. Example I: Wideband Monopole Antenna

Our first verification case is an ultra-wideband monopole antenna with quasi-circular radiator
and a modified ground plane for bandwidth enhancement [39]. The antenna geometry is shown in
Figure 4a. The design variables are x = [L0 dR R rrel dL dw Lg L1 R1 dr crel]T. The structure is implemented
on Rogers RO4350 substrate (εr = 3.5, tanδ = 0.0027, h = 0.76 mm). The computational models are
implemented in CST Microwave Studio and evaluated using its time-domain solver:

• High-fidelity model Rf: 1.588.000 mesh cells, simulation time 362.6 s;
• Low-fidelity model Rc1: 323.000 mesh cells, simulation time 66.9 s;
• Low-fidelity model Rc2: 185.000 mesh cells, simulation time 51.3 s.

The two versions of the low-fidelity models are used to run the algorithm independently for the
following combinations: Rc1-Rf and Rc2-Rf (as low- and high-fidelity models, respectively). The model
Rc1 is set at the discretization density normally used by variable-fidelity procedures, i.e., with retaining
good correlations with the high-fidelity version. The second model is much coarser and normally
of insufficient quality to be employed in the procedures such as space mapping [40]. The reason
for considering these two versions is to verify whether the application of the overly coarse model
at the exploratory stages of the optimization process is sufficient to ensure the overall reliability of
the algorithm.
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Figure 4. Verification case studies: (a) ultra-wideband monopole [39] (ground plane shown using
light-shade gray), and (b) triple-band uniplanar dipole [41].

The parameter space X for the problem is defined by the lower bounds l = [4.0 0.0 3.0 0.1 0.0 0.0
4.0 0.0 2.0 0.2 0.2]T and the upper bounds u = [15.0 6.0 8.0 0.9 5.0 8.0 15.0 6.0 5.0 1.0 0.9]T. The steps
for estimating the Jacobian through the finite differentiation are d = [0.1 0.1 0.1 0.02 0.1 0.1 0.1 0.1 0.1
0.02 0.1]T. The design objective is to minimize |S11| within the UWB frequency range of 3.1 GHz to
10.6 GHz.

The experimental setup adheres to the following rules:

• A total of 20 runs of the proposed algorithm are executed using new set of samples xI
(k) for

each run. The computational budget set to 300 (equivalent) high-fidelity EM simulations of the
antenna. The cost is calculated as Nf + Nc/T where Nf and Nc are the numbers of high- and
low-fidelity model evaluations, whereas T is the time evaluation ratio between the high- and
low-fidelity models;

• (Benchmark) 20 runs of local search using the trust-region algorithm with numerical derivatives
are executed with random initial points employed at each run;
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• (Benchmark) 20 runs of the proposed globalized search are executed with high-fidelity model
used at both the exploratory and local tuning stages.

The specific setup of the control parameters (the same for this and the next test problem) was
the following: N0 = 50 (initial number of training data samples for surrogate model construction),
N1 = 30 (the number of infill samples assigned using sequential sampling, cf. Section 2.4), N2 = 20
(the maximum number of additional samples, Step 10 of the algorithm), which gives Nmax = 100 (the
maximum overall budged for surrogate model construction). The dimensionality of the subspace
for surrogate model construction was two. The latter was chosen to ensure a construction of reliable
surrogate using relatively small number of data samples but also the fact that the eigenvalues of the
covariance matrix C are quickly descending (i.e., only a few principal directions really matter).

The result statistics are shown in Table 1. Note that the algorithm presented in this work yields
satisfactory results (i.e., with the maximum in-band reflection below –10 dB) in all runs. At the same
time, the benchmark algorithm (multiple-start gradient search) only exhibits about forty percent success
rate. The computational cost of our methodology is very low, especially for the version working
with the coarser low-fidelity model Rc2. It should be noted that involving variable-fidelity models
does not lead to a reliability degradation which can be observed by comparison with the algorithm
version using high-fidelity model at all stages of the optimization process. Figure 5 shows the antenna
reflection responses at the design x(0) (cf. Step 2, Section 2.6) and upon optimization for a selected
algorithm run, along with the realized gain at the optimum design.

Table 1. Optimization results for wideband monopole antenna.

Algorithm Cost Success
Rate ## max|S11|

$ std max|S11|
*

Number of
High-Fidelity

Evaluations Nf

Number of
Low-Fidelity

Evaluations Nc

Total Cost #

Multiple-start
gradient search 90.4 N/A 90.4 0.4 –6.6 dB 5.9 dB

Quasi-global search
(Rf only) 287.1 N/A 287.1 1.0 –14.5 dB 1.5 dB

Quasi-global search
(Rc1 + Rf) [This work] 95.2 247.0 140.7 1.0 –14.4 dB 0.8 dB

Quasi-global search
(Rc2 + Rf) [This work] 93.1 266.6 135.4 1.0 –14.6 dB 0.94 dB

# EM simulation count averaged over twenty algorithm runs with random initial points. The cost is calculated at Nf
+ Nc/T where T is the time evaluation ratio between the high- and low-fidelity model. ## Proportion of runs where
maximum |S11| within frequency range was at least –10dB. $ Maximum |S11| within frequency range averaged over
twenty runs. * Standard deviation of max in-band gain in dB across the set of twenty algorithm runs.

3.2. Example II: Triple-Band Uniplanar Dipole Antenna

The second verification case is a triple-band uniplanar dipole antenna shown in Figure 4b.
The structure is based on the design of [41], implemented on RO4350 substrate, and fed through a
50-ohm coplanar waveguide (CPW). The design variables are x = [l1 l2 l3 l4 l5 w1 w2 w3 w4 w5]T. Other
parameters are fixed: l0 = 30, w0 = 3, s0 = 0.15 and o = 5 (all dimensions in mm). The computational
models are implemented in CST Microwave Studio and evaluated using its time-domain solver:

• High-fidelity model Rf:: 185.000 mesh cells, simulation time 222.1 s;
• Low-fidelity model Rc1: 70.000 mesh cells, simulation time 51.0 s;
• Low-fidelity model Rc2: 40.000 mesh cells, simulation time 32.0 s.

The parameter space X is defined by l = [35 10 25 10 18 0.5 0.5 0.5 0.5 0.5]T and u = [40 15 30 15 22
2 1 1 1 1]T. The steps for estimating the Jacobian through the finite differentiation are d = [0.1 0.1 0.1 0.1
0.1 0.05 0.05 0.05 0.05 0.05]T. The design objective is to minimize |S11| within the following bands: 2.4
GHz to 2.5 GHz, 3.55 GHz to 3.65 GHz, and 5.25 GHz to 5.35 GHz.
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Figure 5. Ultra-wideband monopole antenna: reflection responses at x(0) (- - -) and at the optimized
design (—) for the selected run of the proposed algorithm. The horizontal line indicates design
specifications, i.e., –10 dB acceptance level for antenna reflection within 3.1 GHz to 10.6 GHz frequency
range. The bottom plot illustrates realized gain at the optimum design.

The experimental setup is the same as for the first test case. Table 2 gathers the numerical results.
Overall, the performance of the proposed algorithm is consistent with what was observed for the
first verification case. In particular, satisfactory designs, i.e., ensuring appropriate allocation of the
antenna resonances, are found in almost all algorithm runs. At the same time, the success rate for the
benchmark algorithm is only about twenty five percent. This confirms that need for global search.
The reflection responses at x(0) and at the optimized design for a selected algorithm run are shown in
Figure 6.

Table 2. Optimization results for triple-band dipole antenna.

Algorithm Cost Success
Rate ## max|S11|

$ std max|S11|
*

Number of
High-Fidelity

Evaluations Nf

Number of
Low-Fidelity

Evaluations Nc

Total Cost #

Multiple-start gradient search 99.4 N/A 99.4 0.25 –5.68 dB 4.9 dB
Quasi-global search (Rf only) 274.81 N/A 274.1 0.95 –13.5 dB 1.2 dB

Quasi-global search (Rc1 +
Rf) [This work] 100.3 200.4 147.3 1.0 –13.5 dB 0.5 dB

Quasi-global search (Rc2 +
Rf) [This work] 99.7 209.7 129.4 1.0 –13.5 dB 0.5 dB

# EM simulation count averaged over twenty algorithm runs with random initial points. The cost is calculated at Nf
+ Nc/T where T is the time evaluation ratio between the high- and low-fidelity model. ## Proportion of runs where
maximum |S11| within frequency range was at least –10dB. $ Maximum |S11| within frequency range averaged over
twenty runs. * Standard deviation of max in-band gain in dB across the set of twenty algorithm runs.
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Figure 6. Triple-band uniplanar dipole antenna: reflection responses at x(0) (- - -) and at the optimized
design (—) for the selected run of the proposed algorithm. The vertical lines indicate the target
operating frequencies.

3.3. Discussion

The results presented in Sections 3.1 and 3.2 permit the following conclusions concerning the
presented quasi-global optimization procedure:

• Our approach significantly improves the reliability of the optimization process compared to
multiple-start local routines;

• The computational cost of the algorithm is very low (about 140 equivalent high-fidelity EM model
evaluation on the average), especially when taking into account its global search capabilities;

• Repeatability of results is excellent, which is demonstrated by low values of the standard deviation
of the final objective function values;

• Robustness of the method is retained even if the algorithm is executed with a coarser version of
the low-fidelity model. Clearly, a reduced performance sensitivity to the low-fidelity model setup
is a practically attractive feature. This is a consequence of separating the exploratory and local
tuning stages of the process;

• For the same reason, the quality of the designs rendered by the proposed procedure is similar
to that produced by the algorithm merely using the high-fidelity model; in comparison to that
version, the CPU cost is reduced by a factor of two.

Given the above properties, the proposed method can be considered a viable and low-cost
alternative to population-based metaheuristics, currently being the most widely used solution
approaches to global optimization tasks.

4. Conclusions

In the paper, a novel procedure for globalized design optimization of antenna structures has been
proposed. The methodology combines surrogate-assisted exploration of the parameter space as well as
expedited trust-region gradient-based local refinement. To ensure low cost of the parameter tuning
process, the exploration step is carried out over the low-dimensional affine subspaces spanned by
the principal components of the antenna response gradients, which determine the directions of the
maximum variability of antenna characteristics, averaged of the frequency range of interest. Further
improvement of the computational efficiency is achieved by incorporating variable-fidelity simulation
models. Our technique has been comprehensively validated using two examples of microstrip antennas,
a wideband monopole and a triple-band uniplanar dipole. The statistics computed from multiple
algorithm runs demonstrate reliability of the optimization process and superior result repeatability
with satisfactory designs found in almost all algorithm executions. The efficacy of multiple-start local
search employed as benchmark is significantly worse with only forty and twenty-five percent of success
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rate for the considered test cases, respectively. At the same time, the employment of variable-fidelity
simulations enables further computational savings as compared to the algorithm using only the
high-fidelity model. Our comparative studies indicate that the procedure delivers quality results
even if the underlying low-fidelity model is much coarser than what would normally be required by
variable-fidelity procedures (e.g., space mapping), which is achieved by a separation of the exploratory
and local tuning steps of the process. Quasi-global search capability, straightforward implementation,
and remarkably low CPU cost being a small fraction of expenses entailed by population-based
metaheuristics are the major advantages of the presented methodology. All of these can make it an
attractive alternative to the existing methodologies.
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