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Abstract: Design of antennas for the Internet of Things (IoT) applications requires taking into
account several performance figures, both electrical (e.g., impedance matching) and field (gain,
radiation pattern), but also physical constraints, primarily concerning size limitation. Fulfillment of
stringent specifications necessitates the development of topologically complex structures described
by a large number of geometry parameters that need tuning. Conventional optimization procedures
are typically too expensive when the antenna is evaluated using high-fidelity electromagnetic (EM)
analysis, otherwise required to ensure accuracy. This paper proposes a novel surrogate-assisted
optimization algorithm for computationally efficient design optimization of antenna structures. In the
paper, the optimization of antenna input characteristic is presented, specifically, minimization of the
antenna reflection coefficient in a given bandwidth. Our methodology involves variable-fidelity EM
simulations as well as a dedicated procedure to reduce the cost of estimating the antenna response
gradients. The latter is based on monitoring the variations of the antenna response sensitivities along
the optimization path. The procedure suppresses the finite-differentiation-based sensitivity updates
for variables that exhibit stable gradient behavior. The proposed algorithm is validated using three
compact wideband antennas and demonstrated to outperform both the conventional trust region
algorithm and the pattern search procedure, as well as surrogate-based procedures while retaining
acceptable design quality.

Keywords: antenna design; internet of things; surrogate-based optimization; trust-region framework;
variable-fidelity EM simulations

1. Introduction

Design of antennas for the Internet of Things (IoT) poses specific challenges. These include the
necessity of integrating the structures into various objects [1], maintaining low profile and low cost.
Other requirements are dependent on particular applications and may include: (i) multi-band or
wideband operation [2–4], (ii) excellent matching (e.g., for energy harvesting [5]), (iii) multiple-input
multiple-output (MIMO) functionality to ensure transmission channel capacity (e.g., for high data
rate wireless access points and mobile users [6,7]), as well as (iv) close-to-isotropic radiation pattern
(e.g., to maintain orientation insensitive communication [8]. Another important requirement, common
to the majority of IoT applications, is a small size of the device [9,10]. This is a serious issue because
the reduction of the antenna footprint normally results in degradation of both electrical and field
characteristics. In order to maintain small size and acceptable performance, various topological
modifications are being incorporated into the antenna structures which leads to more and more
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complex designs [11–13] described by a large number of geometry parameters. Appropriate tuning of
these parameters is a difficult and time-consuming process, especially when conventional methods,
such as parameter sweeping guided by engineering experience, are employed. Considerably better
results, including effective control over several performance figures and constraints, can be achieved
through rigorous numerical optimization. The bottleneck of either approach is a computational cost,
which is generated by massive electromagnetic (EM) analyses associated with the use of standard
optimization algorithms, especially the global ones (e.g., evolutionary algorithms [14], particle swarm
optimizers [15], but also recent population-based metaheuristics [16–18]).

Efficient numerical algorithms are fundamental to make antenna optimization more practical in
computational terms. There has been a considerable research effort directed towards this objective,
and several promising techniques have been developed. Perhaps the most straightforward approach is
the utilization of adjoint sensitivities [19,20] to accelerate gradient-based algorithms over the versions
involving numerical derivatives (estimated through finite differentiation) [21]. This is, however,
not widespread due to the limited accessibility to the adjoint technology through commercial EM
solvers [22]. An alternative is to replace the expensive high-fidelity EM model by a faster representation
(or a surrogate model) of the system under design, which is a keystone of so-called surrogate-based
optimization (SBO) techniques [23,24]. SBO uses the surrogate as a prediction tool that guides the search
process towards the optimum design at a lower computational cost as compared to doing so directly at
the level of the high-fidelity model. There are various types of surrogates available that can be roughly
split into two groups: data-driven models [25] and physics-based ones [26]. The data-driven surrogates
are simply constructed by approximating sampled high-fidelity data, and the popular techniques
include kriging interpolation [27], polynomial regression [28], support vector regression [29], or neural
networks [30]. These models are generic and fast but not suitable for handling complex antenna
structures due to the curse of dimensionality (rapid growth of the number of training data samples
required to build the model as a function of the number of parameters) and high nonlinearity of the
antenna responses. Practical applications are often limited to rather low-dimensional cases [31,32].
Physics-based SBO methods construct the surrogates using underlying low-fidelity models (such as
equivalent circuits in case of microwave components [33]). This makes them less generic but also
more immune to dimensionality issues. Unfortunately, fast low-fidelity models are rarely available for
antenna structures: the only versatile way of creating these is coarse-mesh EM simulation. Relatively
expensive low-fidelity models do not allow for the efficient use of some well-established SBO techniques,
such as space mapping [34], but leave some room for other variable-fidelity approaches, e.g., response
correction methods [35,36].

In this paper, a novel algorithm for cost-efficient optimization of electrically small antennas,
including antennas for IoT applications, is proposed. Our methodology exploits the SBO concepts
in the form of variable-fidelity EM simulation models as well as a suitably modified version of the
trust-region gradient search algorithm with numerical derivatives. The major mechanisms developed
to reduce the computational cost of antenna sensitivity updates through finite differentiation are
(i) estimation of the response derivatives at the level of a low-fidelity model as well as (ii) monitoring of
the gradient stability in the course of the optimization process. The latter permits us to suppress finite
differentiation for selected antenna parameters. The resulting algorithm is validated using a benchmark
set of three compact wideband antennas and demonstrated to yield considerable computational
savings as compared to both the reference trust-region algorithm and its accelerated versions working
at the level of high-fidelity EM model, along with the pattern search procedure [37]. The savings
are obtained without compromising the design quality in a significant manner. The remaining part
of the paper is organized as follows. Section 2 introduces the proposed optimization framework.
The outcome of numerical validation and benchmarking as well as discussion of the results are provided
in Sections 3 and 4, respectively. Section 5 concludes the paper.
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2. Expedited Antenna Optimization Using Variable-Fidelity Trust-Region Search with
Gradient Monitoring

In this section, the antenna design problem is formulated as a nonlinear minimization task, and the
trust-region gradient search algorithm is recalled as a basis of the optimization framework proposed
here. A few comments are also made about variable-fidelity antenna models. The main part of the
section is devoted to an exposition of the variable-fidelity gradient search procedure with gradient
change monitoring. The comprehensive numerical verification of the method and the benchmarking
are provided in Section 3.

2.1. Antenna Design as Optimization Task

As briefly discussed in the introduction, the design of antenna structures requires handling various
performance figures and constraints. If numerical optimization routines are to be employed in the
process, it is mandatory to formulate the cost function that quantifies the quality of the design. In the
case of single-objective algorithms, by far the most popular and convenient to use, the cost function
should be scalar. For this work is concerned with the development of an optimization framework that
exhibits certain features, specifically, computational efficiency, a simple yet frequently addressed task
of matching improvement is considered. The problem is to minimize the antenna reflection coefficient
within a frequency range of interest, corresponding to the intended operating ranges of the structure.
The cost function can be defined as

U(x) = max
f∈F

∣∣∣∣∣∣S11(x, f )

∣∣∣∣∣∣ (1)

In (1), the vector x represents the tunable parameters of the antenna, whereas f is the frequency
within the frequency range of interest F. The reflection coefficient S11(x,f ), evaluated through
high-fidelity EM analysis is shown to be explicitly dependent on both parameter vector x and
frequency f. For the UWB antenna structures considered in Section 3, F is a continuous range from
3.1 GHz to 10.6 GHz.

With the use of (1), the design task may be formulated as

x∗ = min
x

U(x) (2)

which is a minimax problem, with U being the cost function defined by (1). This formulation is
a popular way of handling many performance figures pertinent to antennas (e.g., minimizing in-band
gain variability and reducing sidelobes).

A popular optimization technique utilized to solve (2) in a local sense is discussed in Section 2.2.
Section 2.4 introduces its accelerated version proposed in this work, partially based on variable-fidelity
EM simulation models (cf. Section 2.3).

2.2. Trust-Region Gradient Search

The reference algorithm is the conventional trust-region (TR) gradient-based routine (e.g., [38]).
It solves the problem (2) in a local sense by producing a series of approximations to x*, denoted as x(i),
i = 0, 1, . . . These are obtained by optimizing a linear expansion model SL

(i) of the reflection coefficient
S11(x,f ) defined at the parameter vector obtained in the i-th algorithm iteration x(i) as

S(i)
L (x, f ) = S11(x(i), f ) + GS(x(i))·(x− x(i)) (3)

In (3), GS denotes the reflection gradient i.e., the antenna reflection S11(x,f ) sensitivities w.r.t its
parameters. We have

x(i+1) = arg min
x;−d(i)≤x−x(i)≤d(i)

US(x) (4)



Sensors 2019, 19, 1806 4 of 12

The objective function US in (4) is defined as

US(x) = max
{

f ∈ F : S(i)
L (x, f )

}
(5)

i.e., it is an equivalent of (1) at the level of linear expansion model SL. Typically, the gradient
GS is evaluated through finite differentiation, which is the major contributor to the computational
cost of the optimization process: each evaluation of GS requires n additional EM simulations of
the antenna, n being the number of the antenna geometry variables. A comment should be made
about the search region which is defined here as an interval −d(i)

≤ x – x(i)
≤ d(i) (the inequalities are

understood component-wise). The trust region size vector d(i) is adjusted using the standard rules
based on the gain ratio [39]. This definition eliminates the need for variable scaling as the initial
size vector d(0) is made proportional to the antenna parameter ranges. The gain ratio is defined
as % = [U(S11(x(i+1))) – U(S11(x(i)))]/[US(SL(x(i+1))) – US(SL(x(i)))], and quantifies the actual versus
(linear-model-) predicted objective function improvement. The iteration is considered successful, if
% is positive, i.e., the improvement of the objective function was obtained, and the candidate design
attained by solving (4) is accepted. The gain ratio value influences the trust region size d(i+1) in the next
(i + 1)th iteration in the following manner: d(i+1) is increased, if % > 0.75, and it is reduced, if % < 0.25.

2.3. Variable-Fidelity Simulation Models

In this work, following some of the surrogate-based optimization frameworks (e.g., [23]),
a low-fidelity EM antenna model denoted as S11.c(x,f ) is used to reduce the cost of sensitivity
estimation. The low-fidelity model is normally obtained by manipulating the discretization density of
the structure at hand, which results in faster simulation but also a certain loss of accuracy. Practical
realization of this concept depends on the simulation environment utilized for implementing the
computational model. For the examples considered in this work, CST Microwave Studio (Dassault
Systemes, Vélizy, France) is used, where the major factor controlling the discretization density is
LPW (lines per wavelength). By changing the value of this parameter, the overall number of mesh
cells can be adjusted. The high-fidelity model is obtained upon performing grid convergence study,
i.e., setting up LPW at the value that ensures stable simulation results (independent of small LPW
alterations). The low-fidelity model is then obtained by selecting the lowest LPW that still ensures visual
similarity of the antenna responses (at both low- and high-fidelity simulation levels). In particular,
both models should properly account for the major features of the response, such as resonances [23].
An example of a well-chosen low-fidelity model can be found in Figure 1a. The accuracy loss is a reason
that the low-fidelity model cannot be directly used as a replacement of the original model (unless
appropriate corrections are made [23]), but correlations between the models can still be explored
towards yielding computational advantages. Here, the low-fidelity model is used for the purpose of
gradient estimation. Figure 1 shows low- and high-fidelity model responses for one of the antenna
structures considered in Section 3 as well as the corresponding gradients (as functions of frequency).
It can be observed that despite certain discrepancies between the responses, the gradients are quite well
aligned, which indicates that the sensitivity estimated at the low-fidelity model level can be reliably
utilized as a replacement of the high-fidelity ones within the gradient-based search procedures.

2.4. Proposed Optimization Framework

The core of the optimization framework proposed in this work is the trust-region gradient search
algorithm of Section 2.2. Reduction of the computational cost of the optimization process is achieved
by monitoring the changes of the antenna response gradients between iterations, using an appropriate
metric. Small changes are an indication to omit the update of particular gradient components through
finite differentiation. The second mechanism is to use the low-fidelity antenna model, instead of the
high-fidelity one, for the purpose of sensitivity estimation.
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As mentioned in Section 2.1, the problem of antenna matching improvement is considered here.
The figure of interest is antenna reflection coefficient S11(x,f ), which is a complex-valued function of
antenna geometry parameter vector x and the frequency f. The gradient GS is a row vector, 1 × n.
We denote by Gk the k-th element of GS, k = 1, . . . , n. The gradient components are compared between
subsequent iterations using the following metric

d(i+1)
k = mean

f∈F

2·

∣∣∣∣G(i)
k ( f )

∣∣∣∣− ∣∣∣∣G(i−1)
k ( f )

∣∣∣∣∣∣∣∣G(i)
k ( f )

∣∣∣∣+ ∣∣∣∣G(i−1)
k ( f )

∣∣∣∣
 (6)

where Gk
(i)(f ) and Gk

(i–1)(f ) refer to the k-th component of GS in the ith and (i–1)th iteration, respectively.
Dependence of the gradient on the frequency f is shown explicitly. In (5), the averaging is performed
over the frequency range of interest f.

The following notation is introduced for the purpose of subsequent considerations:

• d(i) = [d1
(i) . . . dn

(i)]T—a vector of gradient difference factors (cf. (5)) used in the i-th iteration,
• dmin

(i) = min{k = 1, . . . ,n: dk
(i)}, dmax

(i) = max{k = 1, . . . ,n: dk
(i)}.

Furthermore, in the i-th iteration, a vector N(i) = [N1
(i) . . . Nn

(i)]T of the numbers of future iterations
without FD is introduced. Its entries Nk

(i) are determined by the affine conversion function

N(i)
k = Nmax + a(i)(d(i)k − d(i)min) (7)

where a(i) = (Nmax – Nmin)/(dmin
(i) – dmax

(i)) and [[.]] denotes the nearest integer function. Where Nmax and
Nmin denote the algorithm control parameters: the maximum and the minimum number of omitted FD
calculations. For the k-th parameter, the function (6) describes the relation between the number of iterations
without FD Nk

(i) and the gradient difference coefficients dk
(i), which is based Nmin and Nmax, respectively.

The vector N(i+1) is established as follows: if, for a given variable, FD was performed, the respective
component Nk

(i+1) is determined using (6), otherwise the previous number of iterations (from the i-th
iteration) is decremented, i.e., Nk

(i+1) = Nk
(i) – 1. Clearly, for the variables characterized by the smallest

gradient variation Nk
(i) = Nmax is assigned, and in consequence, the sensitivity update through FD is

omitted for no more than Nmax iterations. As for the difference factors dk
(i), their values are retained

through all the iterations without FD. Thus, they are utilized to determine dmin
(i) and dmax

(i), and they
are also involved in assessing the values of Nk

(i) for other parameters.
In the course of the reference algorithm of Section 2.2, the entire gradient is estimated using FD

in each iteration. Whereas in the proposed optimization procedure, gradient GS is estimated solely
through FD only in the first two iterations. Moreover, the gradient is exclusively computed using the
low-fidelity EM model. In the succeeding iterations, the kth component Gk of the gradient vector is
established according to N(i+1): if Nk

(i) = 1, FD is performed, otherwise the most recent value estimated
with FD is kept. The above-described mechanisms allow for a significant reduction of the computational
cost, expressed as the overall number of EM simulations, as it is verified by the results from the next
section. This is achieved with an insignificant degradation of the design quality. Figure 2 shows the
flow diagram of the algorithm. Table 1 highlights the main features of algorithms compared in the
paper: the conventional trust region algorithm (single- and variable-fidelity setup), the pattern search
algorithm (single-variability) and the proposed procedure (single- and variable-fidelity setup).
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Figure 1. Exemplary reflection responses and reflection sensitivities of Antenna I of Section 3:
(a) high-fidelity electromagnetic (EM) model reflection response (-o-o) and low-fidelity EM model
response (—), (b) sensitivity with respect to selected antenna geometry parameters: high-fidelity EM
model (··o··o··, - o - o, - o - o)) and low-fidelity model (·····, - - -, —).

Figure 2. Flow diagram of the proposed sensitivity update routine with gradient change monitoring.
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3. Verification Case Studies and Benchmarking

This section provides a comprehensive numerical validation of the proposed optimization
framework. Three compact wideband antennas were utilized as test cases. Our algorithm is also
benchmarked against the conventional trust-region algorithm of Section 2.2 as well as the accelerated
version working entirely with the high-fidelity EM simulations. The contribution of both acceleration
mechanisms into computational savings is discussed in detail.

3.1. Case Studies

The algorithm of Section 2.4 has been verified using three wideband antennas shown in Figure 3.
The first structure, Antenna I, [40] was implemented on Taconic RF-35 substrate (εr = 3.5, h = 0.762 mm).
It is described by parameters x = [l0 g a l1 l2 w1 o]T, w0 = 2o + a, and wf = 1.7 mm. Antenna II [41] was
also implemented on RF-35, and its independent geometry parameters were x = [L0 dR R rrel dL dw Lg

L1 R1 dr crel]T. Antenna III [42] was implemented on FR4 substrate (εr = 4.3, h = 1.55 mm). The design
parameters were x = [Lg L0 LS WS d dL dS dWS dW a b]T.

Table 1. Main features of the optimization procedures utilized in this work (including benchmarking).

Algorithm Models
Utilized

Operating
Principle

Initial
Gradient Estimation

Sensitivity
Updates

1 Reference
(high-fidelity) high-fidelity gradient finite differentiation finite

differentiation

2 Pattern search
[37] high-fidelity derivative-free

(stencil based) N/A N/A

3 Reference
(variable-fidelity)

high-fidelity
low-fidelity gradient finite differentiation finite

differentiation

4
Alg. of

Section 2.4
(high-fidelity)

high-fidelity gradient finite differentiation sparse

5 Alg. of Section 2.4
(variable-fidelity)

high-fidelity
low-fidelity gradient finite differentiation sparse

All three antennas were supposed to operate within the UWB frequency range of 3.1 GHz to
10.6 GHz. The computational models were implemented in CST Microwave Studio and evaluated
using its time domain solver. The model setups were the following:

1. Antenna I: high-fidelity model (~800,000 mesh cells, simulation time 3.8 min = 230 s), low-fidelity
model (~180,000 mesh cells, simulation time 77 s).

2. Antenna II: high-fidelity model (~830,000 mesh cells, simulation time 3.5 min = 210 s), low-fidelity
model (~280,000 mesh cells, simulation time 88 s).

3. Antenna III: high-fidelity model (~520,000 mesh cells, simulation time 2.9 min = 176 s), low-fidelity
model (~170,000 mesh cells, simulation time 79 s).

The computational models incorporated SMA connectors.

3.2. Experimental Setup

The antennas of Figure 3 were optimized for best matching (cf. Section 2.1) within the UWB
frequency range, using the proposed algorithm. For the sake of benchmarking, four other algorithms
were compared: (1) the reference trust-region algorithm of Section 2.2 working with a high-fidelity
model, (2) the pattern search algorithm [37], (3) the reference algorithm working with variable-fidelity
models (low-fidelity model used for sensitivity estimation), and (4) the algorithm of Section 2.4 working
with the high-fidelity model only. For each algorithm, ten runs were executed using random initial
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designs. The statistics of the results were used to determine the optimization process reliability as
explained in Section 3.3. The algorithm of Section 2.4 was executed with the following values of
its control parameters: Nmin = 1, and Nmax = 5. Table 1 gathers the relevant numerical data for
the algorithm (1) through (4), as well as for the proposed algorithm (5). For illustration purposes,
Figure 4 shows the initial and optimized antenna responses at the selected designs. The optimal
geometry parameter values for the designs shown in Figure 4 are presented in Table 2.

Figure 3. Benchmark antennas for verification of the proposed optimization algorithm: (a) Antenna
I [40], (b) Antenna II [41], (c) Antenna III [42]. Ground plane marked using light gray shade.

Figure 4. Initial (- - -) and optimized (—) responses of the antennas found using the proposed
variable-fidelity algorithm, shown for the representative runs of the procedure: (a) Antenna I,
(b) Antenna II, (c) Antenna III. Horizontal lines mark the design specifications.

Table 2. Optimal geometry parameter vectors for the representative algorithm runs of Figure 4.

Antenna Geometry Parameter Values [mm]

I
l0 g a l1 l2 w1 o

25.76 19.92 11.00 7.38 6.55 2.92 2.84

II
L0 dR R rrel dL dw Lg L1 R1 dr crel

10.08 0.08 5.42 0.52 2.05 5.84 10.09 5.05 2.28 0.58 0.44

III
Lg L0 Ls Ws d dL ds dW s dW a b

8.54 12.41 8.74 0.57 4.13 10.95 1.54 1.42 2.39 0.33 0.55

3.3. Results and Benchmarking

The results obtained for the four considered algorithms are presented in Table 3: the reference
algorithm with a high-fidelity model and the reference algorithm working with variable-fidelity models
(Algorithm 1, Algorithm 3, respectively), as well as the algorithm of Section 2.4 with a high-fidelity
model and its variable-fidelity modification (the Algorithms 4 and 5, respectively). The simulation time
of the coarse model of Antenna I is three times shorter as compared to its high-fidelity model, whereas for
Antennas II and III, it is 2.4 and 2.2 times shorter, respectively. During the optimization process, for the
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algorithms with variable-fidelity models (Algorithms 3 and 5), the expensive high-fidelity model is
simulated only around 13 times for all the antennas. The results confirm that adopting variable-fidelity
approach allows for achieving good design quality and significant cost savings for all antennas. In the
case of the reference algorithm, the savings come from the use of the coarse model for estimating the
gradient of the model response. This allows for reducing the overall optimization time for all antennas
by a factor of around two. For Algorithm 5, the savings are also due to omitting the update of some
part of the response gradients through finite differentiation. In that case, the reduction of the overall
optimization time is as high as four times for the Antenna II (it is decreased from around 390 min for
the reference algorithm with a high-fidelity model to around 96 min for the proposed algorithm in the
variable-fidelity framework, i.e., Algorithm 5). It should also be mentioned that the pattern search
algorithm is the most expensive one in the entire benchmark set and the quality of obtained designs is
worse compared to both the reference algorithm and the accelerated versions.

Table 3. Performance statistics of the proposed algorithm in the variable-fidelity framework.

Algorithm

Antenna I Antenna II Antenna III

Cost a
max
|S11|

b

[dB]

Opt.
timec

[min]
Cost a

max
|S11|

b

[dB]

Opt.
timec

[min]
Cost a

max
|S11|

b

[dB]

Opt.
timec

[min]

1 Reference
(high-fidelity) 97.6 −11.9

[−9.9] d 277.5 111.2 −14.9
[−12.2] d 389.2 111.0 −13.9

[−10.5] d 455.1

2 Pattern search 380.1 −11.9 1080.7 815.5 −14.5 2854.3 725.3 −12.5 2973.7

3
Reference coarse 60.0

−11.8 119.8
97.2

−14.8 199.5
109.2

−13.7 199.2(variable-fidelity) fine 13.9 13.4 14.4

4 Alg. of Section 2.4
(high-fidelity) 46.1 −11.4 135.2 58.6 −14.7 205.0 68.7 −13.5 281.7

5
Alg. of Section 2.4 coarse 36.4

−11.1 90.5
45.4

−14.2 96.4
58.6

−11.9 133.9(variable-fidelity) fine 14.5 12.7 14.3
a Number of EM simulations averaged over 10 algorithm runs (random initial points). b Maximum |S11| within
UWB frequency range (averaged over 10 algorithm runs). c Overall optimization time. d Maximum |S11| within
UWB frequency range (averaged over 10 algorithm runs) obtained by the reference algorithm within the overall
optimization time of Algorithm 5.

4. Discussion

The results gathered in Table 3 indicate that the introduction of the variable-fidelity framework
(Algorithm 3) allows for achieving approximately the same level of savings as the introduction of
the accelerated algorithm of Section 2.4 (Algorithm 4). For these algorithms, the overall optimization
cost is around 50 percent of that of the reference algorithm working at the level of high-fidelity EM
model (Antennas I and II). In addition, the design quality is almost the same for Algorithms 3 and 4
for all benchmark cases. Combining both mechanisms as implemented in Algorithm 5 yields further
savings accompanied by a minor reduction of the design quality for Antenna I and II (0.8 dB and 0.7 dB,
respectively, w.r.t. Algorithm 1). In the case of Antenna III, the design quality degradation is higher,
and it equals 2 dB. The most notable time savings of 75 percent are obtained for Antenna II. It should
be emphasized that such considerable reduction of the optimization cost was achieved despite the fact
that the time evaluation ratio between the high- and low-fidelity models is only between two and three
for the considered antenna structures. In many cases (e.g., [24]), that ratio can be made much higher,
consequently implying even more significant cost savings.

A remark on the accuracy-speed trade-off should be made. As it follows from Table 3, the proposed
variable-fidelity framework allows for obtaining an acceptable solution quality much faster than the
conventional trust-region procedure (Algorithm 1). Monitoring the objective function value throughout
the optimization run reveals that, given the same optimization time (required by Algorithm 5 for its
full convergence), Algorithm 1 arrives at a considerably higher maximum S11 within UWB frequency
range: –9.9 dB (Antenna I), –12.2 dB (Antenna II) and –10.5 dB (Antenna III). The corresponding values
for Algorithm 5 equal to: –11.1 dB, –14.2 dB and –11.9 dB, respectively. The above results indicate
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that the proposed algorithm produces better results than the reference algorithm assuming the same
computational budget. On the other hand, although the results of the reference algorithm are slightly
better (upon full convergence) than for the proposed method, the differences are minor from the
practical point of view. The designer may be willing to sacrifice the accuracy to a certain extent having
in return a considerable reduction of the computational cost.

5. Conclusions

The paper introduced a novel algorithm for accelerated gradient-based optimization of antenna
input characteristics. By utilizing the two major mechanisms, i.e., suppressing finite-differentiation-based
gradient updates for variables that exhibit stable sensitivity patterns, as well as utilizing
coarse-discretization EM simulations for gradient estimation, considerable computational savings have
been demonstrated over the conventional trust-region gradient algorithm. Furthermore, the reliability of
the approach has been verified through statistical analysis involving multiple runs with random initial
designs. The proposed framework can be applied to efficient design optimization of compact antennas,
including devices for IoT applications.
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