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Abstract 

This study is a novel attempt in developing of an Artificial neural network (ANN) model 

integrated with a thermodynamic equilibrium approach for downdraft biomass gasification 

integrated power generation unit. The objective of the study is to predict the net output 

power from the systems derived from various kinds of biomass feedstocks under atmospheric 

pressure and various operating conditions. The input parameters used in the models are 

elemental analysis compositions (C, O, H, N and S), proximate analysis compositions (moisture, 

ash, volatile material and fixed carbon) and operating parameters (gasifier temperature and 

air to fuel ratio). The architecture of the model consisted of one input, one hidden and one 

output layer. 1032 simulated data from 86 different types of biomasses in various operating 

conditions were used to train the ANN. The developed ANN shows agreement with simulated 

data with absolute fraction of variance (R2) higher than 0.999 in the case of product power. 

Moreover, the relative influence of biomass characteristics and some specific operating 

parameters on output power are determined. Finally, to have a more detailed assessment, 

the variations of all input variables with respect to carbon content are compared and analyzed 

together. The suggested integrated ANN based model can be applied as a very useful tool for 

optimization and control of the process through the downdraft biomass gasification 

integrated with power generation unit. 
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1. Introduction 

Growing concerns about energy security and environmental impacts have encouraged/ 

compelled the decision makers in the energy sector to consider renewable and sustainable 

energy alternatives to meet the increasing energy demands [1-5]. Biomass, as a naturally 

available and abundant renewable energy sources, is considered for energy extraction in the 

sustainable energy supply [6, 7]. Biomass is the only renewable energy source that can be the 

best substitution for fossil fuels since it is widely available and allows continuous power 

production and synthesis of various products as transportation fuels or chemicals [8-13]. 
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In order to extract energy from biomass, gasification as a highly efficient and clean conversion 

technology is applied to converts various biomass feedstocks to a wide variety of products for 

various applications [8]. Biomass gasification systems produce much lower levels of air 

pollutants. The by-products of gasification are also non-hazardous and readily marketable. 

Much important, biomass gasification plants can be integrated with power production units 

and then it can be implemented as a more reliable energy supply technology for regions that 

are far from the central energy networks and need to have a district heat and power system 

[14, 15]. 

Biomass gasification is a thermochemical conversion in which through a high-temperature 

partial oxidation, a solid carbon based feedstock by using gasifying agents (like air, pure 

oxygen, steam, carbon dioxide, nitrogen or their mixtures) is converted to syngas (a gasses 

mixture including H2, CO, CO2, CH4, light hydrocarbons, tar, char, ash and minor contaminates). 

H2 and CO contain only around 50% of the energy in the gas while the remained energy is 

related to CH4 and higher (aromatic) hydrocarbons [16]. 

The gasification process consists of the five stages: drying, pyrolysis, oxidation (combustion), 

reduction (char gasification), and cracking (Fig. 1) [17, 18]. 

 

Fig. 1. Gasification process stages (Reprinted from www.allpowerlabs.com, Copyright 2018 All Power 

Labs, with permission from All Power Labs)  

All the processes are temperature dependent; generally, the moisture content in the biomass 

ranges from 5–35% that through the drying step, it is reduced to under 5%. In the pyrolysis 

stage, the biomass is heated from 200 up to 700 °C with limited oxygen or air. Under these 

conditions the volatile components in the biomass are vaporized. The volatile vapor is a 

mixture of H2, CO, CO2, CH4, tar (heavier hydrocarbon) gases, and water vapor. Moreover, char 

as a solid residue mainly containing carbon is produced from pyrolysis. The oxygen supplied 

to the gasifier reacts with the combustible substances, producing CO2 and H2O. Some of this 

CO2 and H2O subsequently are reduced to CO and H2 upon contact with the char produced 
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during pyrolysis. Hydrogen in the biomass can be also oxidized, generating water. The 

reduction reactions occurring inside the gasifier are endothermic, and the energy required for 

these reactions is provided by the combustion of char and volatiles. Reduction of the biomass 

yields combustible gases such as hydrogen, carbon monoxide, and methane through a series 

of reactions [18]. 

Performance analysis of biomass gasification systems has been studied in many researches [2, 

10, 14, 15, 19-25]. The biomass characteristics, the reactor design and the operating 

parameters are the effictive variables in the gasification process which influence the gasifier 

performance, syngas composition and system overal efficiency [26]. The influencing feedstock 

characteristics are moisture content (MC), volatile matter (VM), ash content, fixed carbon 

(FC), thermal conductivity, organic constituents and inorganic constituents. It has been also 

reported that there are very complex thermo-chemical phenomena occuring inside the 

gasifier. As a result, experiments can practically provide information regarding the optimum 

conditions and appropriate feedstock for a reactor, but these lessons can be more time-

consuming and expensive compared with modelling [18, 26]. 

Different kinds of models have been employed for biomass gasification systems, including 

thermodynamic equilibrium, kinetic, computational fluid dynamic (CFD) and artificial neural 

network (ANN). Thermodynamic equilibrium calculations are simple compared with kinetic 

models and independent of the gasifier design, and in the simplest, most ideal case, general 

thermodynamic properties can be used for equilibrium modelling, while a larger set of hard-

to-come-by and accurate kinetic parameters is needed for kinetic modelling. These points 

grants equilibrium approach the more convenient method with which to study the general 

relations between fuel and process parameters as well as syngas composition and yield. In 

CFD models, a set of simultaneous equations are solved to conserve energy, momentum, 

mass, and species over a distinct region of the gasifier and then predict the distribution of 

various parameters such as temperature and concentration. Artificial neural networks (ANN) 

is based on a wide number of experimental data and utilize a series of mathematical 

regression to correlate between input and output streams [6, 18, 27]. 

Modeling derived from ANN approach can approximate nonlinear functions and does not 

need mathematical description of phenomena regarding to the system. Hence, ANNs become 

handy in the case of outcome prediction when significant interactions of complex 

nonlinearities exist in a data set, like in biomass gasification [8, 26]. However, there are very 

few studies reported about modeling of biomass gasification relied on ANN method in general 

and even fewer in the field of fixed bed downdraft gasifiers. 

It is worth to mention that in all of the reported studies carried on ANN modeling of biomass 

gasification, the neural network learns by itself from sample experimental data that are 

described for that as inputs. However, the models will be able to predict the gasification 

process parameters precisely when adequate amount of experimental data in wide range of 

various biomasses and different operating conditions are defined for that. Although, data 
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inadequacy results in poor prediction, large scale experiments for these purposes could often 

be expensive or problematic in terms of safety.  

Combination of ANN method with thermodynamic equilibrium approach could solve this 

problem that authors are not aware of any published study on this matter. By using 

mathematical models or simulation models based on thermodynamic equilibrium, it would be 

possible to analysis large variety of biomass feedstocks and then extract different kinds of 

outputs like syngas yield, concentrations, power production and etc. At the next step, biomass 

characteristics and operating parameters as features matrix and thermodynamic equilibrium 

model`s outputs as output matrix could be defined as inputs for ANN model. 

In fact, the purpose of using ANN when the process can be modelled using thermodynamic 

relations are as follows: 

 Firstly, due to huge variety of feedstocks and operating conditions; Although, we tried 

to gather so many and different kinds of biomasses from various groups to have a rich 

database, there are still a wide number of biomasses with different elemental and 

proximate analysis. Apart of various types of feedstocks, biomass properties are mostly 

dependent on geographical location and other constraints. For example, many types 

of perennial grasses, such as sugarcane and cereals like wheat and maize, have widely 

different yields, depending on the growing conditions or have different moisture 

depending on the climatic conditions. 

 Secondly, operating conditions applied to the system could be varied in different 

ranges. We studied some different temperature and air mass flow rates (in term of air 

flow ratio (AFR)) however, the operating conditions applied to the biomass gasification 

system could be varied. Hence, instead of the running again and again a simulation 

model for each case that is time consuming and needs separate models/runs for each 

one, we can have an ANN model to conclude the final results for all considered cases 

in a single run. 

 Thirdly, due to specific requirements inputs in simulation model; if we want to use 

thermodynamic equilibrium simulation model for a specific case in biomass 

gasification system integrated with power production plant (BG-PPP), firstly before 

running the model, we need to extract and enter proximate and elemental analysis of 

biomass and then calculate diffident yields of components for pyrolysis part and mass 

flow rate of air entering to the gasifier (more in Section 2.1).  

 Fourthly, we have to calculate how much air is required for combustion operation in 

power production part that is depending on syngas compositions coming from gasifier 

output. In fact, to obtain the output power from the BG-PPP, we have to run the 

simulation model two times. Firstly, we need to run the model without considering 

power plant to get gasifier outputs. Then the required amount of air for combustion is 

calculated based on syngas composition and finally the model is run to reach the 

output power from overall system.  

 More important is that for each biomass, these running and calculations need to be 

done specifically that to have correct and feasible results. However, by having a 
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verified ANN model, all these steps are eliminated. It is just required to enter basically 

inputs (biomass compositions and two operating conditions) and it is not required to 

have knowledge of relations and different parts in BG-PPP. 

Another matter that has not explicitly addressed by prior published works on ANN based 

modeling of biomass gasification is that they all focused on single gasifier with objective to 

predict the end gas composition but no one has worked on power production from gasification 

integrated with power generation unit. Hence, the primary objective of this research is 

development of a simulation model based on thermodynamic equilibrium for biomass 

gasification integrated power production unit by using ASPEN Plus. Then, an attempt is made 

to develop an ANN model for downdraft biomass gasification based on features matrix and 

output matrix that come from the simulation model. The objective of the study is to develop 

ANN model integrated with a thermodynamic equilibrium for prediction of power production 

for 86 biomass feedstocks in various operating conditions. Further, it is attempted to 

determine the relative influence of biomass characteristics and some specific operating 

parameters on output power. Finally, to have a more detailed assessment, the variations of 

all input variables with respect to carbon content are compared and analyzed together. 

2. Material and methods 

2.1. Simulation model and input selection 

An equilibrium simulation model is developed for downdraft biomass gasification integrated 

with power production unit by using ASPEN Plus. Penge Robinson equation of state with 

Boston-Mathias alpha function (PR-BM) is applied to calculate physical properties of the 

conventional components in the gasification process. HCOALGEN and DCOALIGT models are 

also employed for enthalpy and density of biomass and ash which are non-conventional 

components. MCINCPSD stream comprising three substreams of MIXED, CIPSD and NCPSD 

class, is also considered to define the biomass structure and ash streams which are not 

available in Aspen Plus component database [10, 14]. 

The flow chart of the system simulated by using ASPEN Plus is shown in Fig. 2. The BIOMSS 

stream was defined as a nonconventional stream and it was created by specifying the 

elemental and gross compositions of feedstock obtained from proximate and elemental 

analyses. In this work to have a comprehensive study we consider 86 different types of 

biomasses from different groups (e.g. wood and woody biomasses, herbaceous and 

agricultural biomasses, animal biomasses, mixed biomasses and contaminated biomasses) 

[28], as feedstock for gasifier. The proximate and elemental analysis of these biomasses are 

listed in Table 1 [28-56]. Drying occurs at 150 °C to achieve the moisture reduction to 5 wt.% 

of the original sample. This step is directed by the stoichiometric reactor RSTOIC in the Aspen 

Plus. This particular module is used to perform chemical reactions of known stoichiometry 

[21]. After drying, RYIELD, the yield reactor is brought to simulate the feed pyrolysis. In this 

step, the feedstock is converted to volatile materials (VM) and char. VM contains carbon, 

hydrogen, oxygen and nitrogen; Char is also converted into ash and carbon, by specifying the 
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product distribution based on the proximate and ultimate analysis of the feedstock [10]. Then 

RGibbs is used to simulate the biomass gasification. The reactor calculates the syngas 

composition by minimizing the Gibbs free energy and assumes complete chemical equilibrium. 

The decomposed feed and air enter to the RGibbs reactor where partial oxidation and 

gasification reactions occur. Another RGibbs reactor is also simulated for combustion section 

with minimum air mixing. Principally, this process is also based on minimization of Gibbs free 

energy. The combustion chamber is followed by a gas turbine [57, 58]. The thermal content 

of the gas, obtained as the combustion heat is recovered to preheat the entering air to the 

combustion chamber and  also to meet the heat required in dryer. The recovered heat can be 

also consumed to convert water to high pressure steam though a HEATER and then the 

generated steam drives a steam turbine and produces additional power [59, 60]. However, we 

did not consider this part in our study. The solid lines in the Fig. 2 stand for the mass streams 

whereas the dashed lines are for the heat streams. The system is assumed to be auto-thermal 

so that a part of the biomass is combusted inside the gasifier in order to provide the heat 

required in situ. Heat is also provided by the hot product gas as well as the combustion 

chamber and utilized wherever needed. 

Table 1: Characteristics of input and output variables in the ANN model for downdraft gasifiers 

integrated with power unit 

Input variables to the ANN Range 

Moisture Content (%) 2.5-62.9 

Volatile Materials (%) 47.8-86.3 

Fixed Carbon (%) 0.5-37.9 

Ash (%) 0.1-46.3 

C (%) 23.3-55.8 

O (%) 11.18-46.9 

H (%) 2.9-9.7 

N (%) 0.096-9.3 

S (%) 0-1.29 

Gasifier Temperature (˚C) 600-1500 

Air to Fuel Ration (kg/kg) 1.8-2.3 

Output variable for the 
ANN 

Range 

Net Output Power (kW) 0-436.8 
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Fig. 2. Flow chart of gasification simulation in Aspen Plus 

As it mentioned above, 86 different types of biomasses from different groups of wood and 

woody biomasses, herbaceous and agricultural biomasses, animal biomasses, mixed 

biomasses and contaminated biomasses were considered to be gasified in a downdraft 

gasifier. It is important to say that all analysis is directed based on a functional unit of 1 ton 

for each input feedstock under atmospheric pressure and different operating conditions. (i) 

Proximate analysis of feedstocks: moisture content (M), volatile materials (VM), fixed carbon 

(FC) and ash (A), (ii) elemental analysis of feedstocks: carbon (C), oxygen (O), hydrogen (H), 

nitrogen (N), sulphur (S) along with (iii) operating parameters: gasifier temperature (T) and air 

to fuel ratio (AFR) were took in account to be the input variables in the formulation of the ANN 

model. Table 1 lists the characteristics of the inputs and net output power (

 net gas turbine compressorW W W  ) obtained from the simulation model results. The detailed input 

and output variables were brought in Data in Brief [61]. 

2.2. ANN modeling concept 

An ANN based model for downdraft gasifiers integrated with power production unit is 

developed to study system behavior in term of net output power. An ANN is an architecture 

consisting of a large number of neurons organized in different layers and the neurons of one 

layer are connected to those of another layer by means of weights and it can be trained to 

perform a particular task by making proper adjustment of its connecting weights, bias and 

architecture [62]. In this work, ANN model were developed in the MATLAB® environment 

using the Neural Network Toolbox (nntool). Fig. 3 represents the architecture of the ANN 

model developed for output (net output power (kW)). Each ANN has one input layer with 11 

variables, M (wt%), VM (wt% dry basis), FC (wt% dry basis), ash (wt% dry basis), C (wt% dry 

basis), O (wt% dry basis), H (wt% dry basis), N (wt% dry basis), S (wt% dry basis), gasifier 

temperature, T (°C) and air to fuel ratio (kgair/kgdrybiomass) with one hidden layer and one 
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output. Indeed, there no clear rule to determine totally optimal structure for ANN and most 

of researchers in this field have been developed ANN models only with one hidden layer [6, 8, 

26, 63-65]. Hence, we considered also one hidden layer but with various number of nodes to 

find the optimal structure by minimizing the Root Mean Square Error (RMSE) due to its 

capability to compare different ANN structure [66]. This comparison was brought in Table 2. 

As it is shown, the ANN model with one hidden layer with 40 neurons in the case of output 

power corresponding to the minimum value of RMSE. It is also found that RMSE value 

increases by applying more than 40 neurons in hidden layer that is due to over-fitting 

problems caused by using too many neurons in hidden layer.  

Table 2. Performance of ANN with differnet number of hidden neoruns 

Number of 
neurons 

RMSE 

7 4 
11 2.44 
18 1.24 
22 0.8 
28 0.87 
33 0.74 
40 0.496 
50 0.61 
60 0.69 

100 0.69 

 

 

Fig. 3. ANN architecture to predict the net output power for downdraft gasifiers integrated power 

production unit 
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2.3. Training and validation of ANN model 

In order to validate and check the prediction ability of the models, the database obtained from 

the simulation model (in Section 2.1) was divided into two parts as training (70%) and testing 

(30%) sub-sets. The simulation model used in this work has been developed, verified based on 

other experimental and modeling results from other researchers and it has been also 

employed for different assessments in our pervious works [2, 10, 14, 15, 19, 20]. So, it confirms 

the accuracy of both training and testing the ANN model with simulated data. 

The training function used in the models were based on the TRAINLM function which updates 

the weight and bias values according to Bayesian Regularization optimization. This function is 

often the fastest backpropagation algorithm. Moreover, the Gradient descent with 

momentum weight and bias learning function (LEARNGDM) was used to minimize the errors. 

This function calculates the weight change for a given neuron from the neuron's input and 

error, the weight (or bias), learning rate, and momentum constant, according to gradient 

descent with momentum backpropagation. Training and test subsets were randomly selected 

from the available database. In addition, for activation function, a hyperbolic tangent sigmoid 

and liner functions were applied in hidden and output layer, respectively. These functions 

have also performed accurately in previous works [6, 8, 26, 63-68]. 

The root mean square error (RMSE) and absolute fraction of variance (R2) were applied to 

evaluate the prediction ability of the ANN model. RMSE and R2 are calculated with the 

simulation results values and networks predictions by using equations (1) and (2), respectively 

[26]. 
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Where, p is the number of samples, Tj is the target value and Oj is the output (predicted) value. 

2.4. Relative influence of input variables on model output 

Relative influence is one of the most important indicators to assess the effects of input 

variables on output. In this work, the influence of the input variables on the outputs was 

evaluated by applying the Garson equation which is based on neural net weight matrix [62]. 

In this equation, the sums of absolute weights products for each input are defined as the 

numerator and the sum of all weights feeding into hidden unit are defined as the 

denominator, taking the absolute values. The Garson equation, adapted to the present ANN 

topology is given in equation (3). 
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        (3) 

Where, i is the input variables, j is the hidden layer neurons, Ii is the relative influence of the 

ith input variable on the output variable, IWj,i is the weight to jth neuron of hidden layer from 

ith input variable, LWj,i is the weight to output layer from jth neuron of hidden layer and n is 

the number of neurons (40 for output power). After calculation of the relative influence of the 

input variables on the output, the input variables are ranked in descending order of magnitude 

and then they are compared together. 

3. Results and discussions 

A neural network with 11 inputs, 40 neurons for net output power in the hidden layer and one 

output, were found to be efficient in predicting product power. The parameters (IWj,i, LW1,j, 

b1j, b2) of the best fit for 40 neurons in the hidden layer for the ANN developed in the 

downdraft biomass gasification model are shown in Table 3 and 4. 

Table 3. Weights of the ANN model for predicting the output power 

neuron M VM FC A C O H N S T ARF 

1 0.01 -0.13 -0.29 0.00 0.23 -0.08 0.16 -0.23 -0.20 0.61 0.08 
2 0.36 0.16 -0.46 0.06 0.66 -0.63 0.13 -0.29 -0.35 -0.52 0.02 
3 -0.58 -0.38 0.42 -0.13 0.37 -0.18 -0.30 0.25 -0.44 0.39 0.01 
4 1.46 0.50 -0.49 0.16 -0.74 0.25 0.46 0.32 0.07 0.18 0.11 
5 -0.22 0.13 -0.77 -0.23 0.12 0.18 -0.02 0.57 0.66 -0.28 -0.36 
6 0.46 -0.52 -0.39 0.02 0.58 -0.57 0.21 -0.04 0.33 0.46 -0.04 
7 -0.09 0.00 0.05 0.16 -0.20 -0.14 0.22 0.03 0.17 0.06 0.39 
8 1.22 -0.01 0.38 -0.27 -0.74 0.48 0.88 0.18 -0.13 0.02 -0.05 
9 1.22 -0.10 -0.23 0.25 -0.07 0.12 -0.03 -1.06 -0.39 -0.12 0.03 

10 -0.39 0.41 -0.45 -0.49 0.71 -0.21 0.37 -0.22 0.48 1.03 -0.02 
11 0.31 0.03 0.36 -0.05 0.20 -0.20 0.07 -0.07 -0.59 -0.15 -0.16 
12 -0.96 -0.08 0.53 -0.13 0.45 -0.14 -0.22 0.25 0.17 0.20 -0.03 
13 0.00 1.04 0.73 0.53 -0.11 -0.49 0.05 -0.24 0.06 -1.49 -0.03 
14 -0.24 0.34 0.44 0.28 -0.31 0.12 -0.35 -0.20 0.27 -0.06 0.29 
15 0.18 -0.12 0.07 -0.02 -0.03 0.04 -0.15 0.06 0.05 0.01 0.17 
16 -0.19 -0.42 -0.68 -0.38 0.42 0.32 -0.21 -0.01 0.11 -0.58 -0.74 
17 -0.96 -0.40 0.30 0.29 1.04 -0.58 -0.65 -1.46 -0.42 0.03 -0.02 
18 0.20 -0.54 0.00 -0.18 -0.49 0.48 0.17 0.25 0.03 0.55 -0.16 
19 0.19 -0.44 0.00 -0.01 -0.04 -0.10 0.25 0.23 -0.38 0.36 0.21 
20 -0.38 -0.46 0.46 0.22 -1.06 1.13 -1.53 0.23 0.70 -1.04 0.17 
21 -0.01 0.44 -0.15 0.13 -0.25 -0.33 -0.35 1.49 -0.84 0.02 -0.02 
22 -0.09 -0.94 0.85 0.10 0.40 0.55 0.48 -4.42 1.65 0.00 0.00 
23 -0.54 -0.12 0.07 -0.11 0.66 -0.05 -0.15 -0.14 -1.15 -0.47 0.06 
24 0.22 -0.26 0.44 -0.25 0.26 -0.07 0.10 1.08 -0.22 -0.18 0.03 
25 0.49 -0.18 0.04 -0.13 -0.33 0.46 0.48 -0.29 -0.06 -0.14 -0.25 
26 -0.05 0.00 0.03 0.09 -0.07 0.17 -0.48 -0.11 -0.13 -0.19 0.28 
27 -0.09 0.10 0.33 -1.00 -0.08 0.30 0.44 2.30 0.32 0.04 -0.01 
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28 -0.53 0.29 0.65 -0.46 1.00 -0.04 -0.14 -0.12 1.11 0.02 -0.01 
29 -0.40 -0.23 -0.12 0.04 -0.80 0.63 -0.50 0.12 0.37 -0.41 0.07 
30 -0.02 0.03 0.45 -0.12 1.10 -0.70 -0.06 0.04 -1.15 -0.45 0.04 
31 0.29 -0.14 -0.03 -0.12 0.24 -0.14 -0.15 0.31 -0.45 0.17 0.63 
32 -0.96 0.06 0.10 0.02 0.06 -0.14 0.25 -0.26 0.20 -0.24 -0.10 
33 -0.34 0.49 -0.02 -0.76 0.90 -0.29 0.42 0.21 0.76 0.99 -0.04 
34 -0.23 0.61 0.27 0.20 0.10 -0.18 -0.37 -0.15 0.09 -0.62 -1.09 
35 0.54 0.13 0.06 0.14 -0.31 0.24 -0.86 0.03 0.46 -0.04 0.05 
36 0.00 0.81 0.14 0.21 -0.18 -0.27 -0.04 0.48 0.49 -0.27 -0.34 
37 0.12 -0.13 0.07 0.15 -0.41 0.22 -0.24 -0.27 -0.36 0.44 0.00 
38 0.05 -0.79 -0.97 -0.46 0.40 0.49 0.14 0.00 0.07 -1.41 -0.01 
39 -0.20 -0.28 -0.29 0.26 0.17 -0.64 0.17 0.01 -0.49 0.47 0.03 
40 0.45 -0.77 0.65 -0.20 -0.40 0.23 -0.03 0.39 -0.19 0.12 -0.03 

 

Table 4. Weights of hidden to output layer and biases of the ANN model for predicting the output 

power 

H
id

d
en

 la
ye

r 

neuron Weights to output layer bias 

1 -1.365400826 -0.208790169 
2 0.48 0.29246506 
3 -1.01 0.187257889 
4 0.68 -0.107065513 
5 0.66 -0.44 
6 0.66 0.109236253 
7 0.57 0.132557403 
8 -0.99 0.829973138 
9 1.26 -0.31261119 

10 -1.02 0.782156872 
11 1.11 0.418229656 
12 1.64 -0.265956467 
13 1.40 -0.195432414 
14 0.72 -0.395102066 
15 -0.35 0.06 
16 -1.13 -0.413681034 
17 1.57 -0.380586154 
18 0.62 0.165910912 
19 -0.59 0.17685421 
20 -0.25 -1.151836359 
21 -1.54 0.232946775 
22 -2.75 -0.046532151 
23 0.806408153 -0.729363678 
24 -1.063728305 -0.352199291 
25 0.474795076 -0.13245391 
26 -0.596876701 -0.35 
27 1.60323122 1.226945911 
28 -0.996344905 -0.451668773 
29 -0.937677285 0.02599315 
30 -0.661605924 0.092254468 
31 0.18663061 0.219096132 
32 0.862835425 0.252141573 
33 0.764702236 1.259868065 
34 0.664865911 -0.170177343 
35 0.980292534 -0.115372872 
36 -0.927908102 0.033664555 

 37 0.963584311 0.100437998 
 38 -1.559829217 -0.824027897 
 39 0.735497373 0.502309867 
 40 -0.53609804 0.87 
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The simulated and predicted values of each output power were compared satisfactorily 

through a linear regression model for training, testing and all targets as shown in Fig. 4. It is 

observed that R2 value is more than 0.999 in the case of product power from downdraft 

biomass gasifier integrated power generation plant for all target cases. Moreover, to 

guarantee more, the predicted and target values of output power for some sample data were 

brought in Fig. 5. The comparison of the predicted and target values and very low error of 

production in Fig. 5 confirm that whole ANN model has a satisfactory level of confidence. 

 

Fig. 4. Comparison between simulated data and predicted data by the ANN model for downdraft 

gasifier integrated with power generation plant 

 

Fig. 5. Comparison of the predicted and target values and error of production for sample test data 
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The influences of the 11 input variables on the output prediction were calculated using the 

Garson's equation. Fig. 6 represents the relative influences of input variables on the net output 

power for the developed ANN. It can be seen that variables considered for biomass 

composition (C, H, O, S and N) represent between 8% to 12% and proximate analysis 

compositions (M, VM, FC and A) show between 7% to 11% of the influence on the output 

power. Further, gasifier temperature has the most important effect on output power 

prediction (with 13%). 

Reduction zone temperature has the most effective variable in conformation to the fact that 

increase in temperature favors H2 and CO production, leads to the improvement of heating 

value (LHV) of syngas. Then, improving LHV of syngas leads to enter gases with higher quality 

into the combustion chamber and following enter gasses at high temperature to the gas 

turbine. Finally, increasing the turbine inlet temperature enhances output power from the 

system. Carbon is also the second dominant variable influencing on the output power 

prediction, followed by moisture content, oxygen and sulphur occupying 11%. It may, 

however, be commented that each of the variables have a strong influence on the output. 

 

Fig. 6. Relative influence (%) of input variables on the net output power for the ANN model 

In this work to have a high accuracy and minimum uncertainty, a rich database from various 

biomasses from different groups were considered. So, if a new biomass is described to the 

model, its components will be in the range of pervious properties. Moreover, the considered 

operating conditions for the model are the most applied operating conditions on the real 

gasification systems. In addition, the required data for training and testing of the model are 

selected randomly that this matter decreases uncertainty. Moreover,in continue a sensitivity 

analysis is directed to have a more comprehensive comparison. The variations of all input 

variables with respect to carbon content are depicted by 10 contour plots in Fig. 7. Obviously, 

by increasing carbon content and decreasing moisture content in biomass, the higher amount 

of power will be produced by the gasification system. However, other proximate analysis 

compositions show the influencing trend similar to the carbon on output. On the other hand, 
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by increasing both variables, the generated power is also increased. From comparison of 

carbon and operating parameters can be found that for each amount of carbon content need 

to select the optimum ARF and gasifier temperature to have the maximum extractable power 

from the biomass. It is reported that if C/H ratio be in the range of 2.08 to 2.5 and C/O ratio 

in span of 5-7, the highest amount of power will be produced from the system. 

 

 

Fig. 7. Contour plots of sensitivity analysis results 
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4. Conclusions 

Generally, there are very few reported studies about modeling of biomass gasification relied 

on ANN method and even fewer in the field of fixed bed downdraft gasifiers. Moreover, 

authors are not aware of any published work on ANN based modeling of biomass gasification 

integrated with power production plant. Hence in this work, an ANN model integrated with a 

thermodynamic equilibrium approach for downdraft biomass gasification integrated power 

generation unit is developed. In fact, the objective of the study is to predict the net output 

power from the systems derived from various kinds of biomass feedstocks under atmospheric 

pressure and various operating conditions. 

The developed ANN shows agreement with target data with absolute fraction of variance (R2) 

higher than 0.999 in the case of product power. All of the variables have a strong influence on 

the output power. Generally, elemental compositions considered for biomass (C, H, O, S and 

N) represent between 8% to 12% and proximate analysis compositions (M, VM, FC and A) 

show between 7% to 11% of the influence on the output power. Further, gasifier temperature 

has the most important effect on output power prediction (with 13%). 

The results show how the generated power through the downdraft biomass gasification 

integrated with power production plant can be successfully predicted by applying a neural 

network with one hidden neurons in the hidden layer and using backpropagation algorithm. 

The model is applicable for a wide variety of feedstocks. The results also depict the relative 

importance of different compositions and operating parameters on the product power. The 

model has this potential to be used as a practical application in screening proper biomass 

feedstocks for energy extraction based on gasification technology integrated power unit. 
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