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Difference in learning among students doing pen-and-paper

homework compared to web-based homework in an

introductory statistics course

Abstract

A repeated crossover experiment comparing learning among students handing in pen-and-paper

homework (PPH) with students handing in web-based homework (WBH) has been conducted. The
system used in the experiments, the tutor-web, has been used to deliver homework problems to

thousands of students in mathematics and statistics over several years. Since 2011 experimental
changes have been made regarding how the system allocates items to students, how grading is done

and the type of feedback provided. The experiment described here was conducted annually from
2011 to 2014. Approximately 100 students in an introductory statistics course participated each

year. The main goals were to determine whether the above mentioned changes had an impact on
learning as measured by test scores in addition to comparing learning among students doing PPH

with students handing in WBH.

The difference in learning between students doing WBH compared to PPH, measured by test
scores, increased significantly from 2011 to 2014 with an effect size of 0.634. This is a strong

indication that the changes made in the NAMEOFSYSTEM have a positive impact on learning.
Using the data from 2014 a significant difference in learning between WBH and PPH for 2014 was

detected with an effect size of 0.416 supporting the use of WBH as a learning tool.

Key Words: Web-based homework (WBH), pen-and-paper homework (PPH), learning environ-
ments, repeated crossover experiments, statistics education.

1 Introduction

Enrolment to universities has increased substantially in the past decade in most OECD (Organi-

sation for Economic Co-operation and Development) countries. In COUNTRYOFAUTHORS, the
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increase in tertiary level enrolment was 40% between 2000 and 2010 (OECD, 2013). This in-

crease has resulted in larger class sizes at the University of COUNTRYOFAUTHORS, especially in

undergraduate courses. As stated in Black and Wiliam (1998), several studies have shown firm evi-

dence that innovations designed to strengthen the frequent feedback that students receive about their

learning yield substantial learning gains. Providing students with frequent quality feedback is time

consuming and in large classes this can be very costly. It is therefore of importance to investigate

whether web-based homework (WBH), that does not require marking by teachers but provides feed-

back to students, can replace (at least to some extent) traditional pen-and-paper homework (PPH).

To investigate this, an experiment has been conducted over a four year period in an introductory

course in statistics at the University of COUNTRYOFAUTHORS. About 100 students participated

each year. The experiment is a repeated crossover experiment so the same students were exposed to

both methods, WBH and PPH.

The learning environment NAMEOFSYSTEM (http://NAMEOFSYSTEM.net) used in the

experiments has been under development during the past decade in the University of COUNTRY-

OFAUTHORS. Two research questions are of particular interest:

1. Have changes made in the NAMEOFSYSTEM had an impact on learning, as measured by

test performance?

2. Is there a difference in learning, as measured by test performance, between students doing

WBH and PPH after the changes made in the NAMEOFSYSTEM?

In this section, an overview of different learning environments in the context of the functionality

of the NAMEOFSYSTEM is given (Section 1.1), focusing on how to allocate exercises (problems)

to students. A literature review of studies, conducted to investigate a potential difference in learning

between WBH and PPH, is given in Section 1.2 followed by a brief discussion about formative

assessment and feedback (Section 1.3). Finally a short description of the NAMEOFSYSTEM is

given in Section 1.4.
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1.1 Web-based learning environments

A number of web-based learning environments are available on the web, some open and free to

use, others commercial products. Several types of systems have emerged, including the learning

management systems (LMS), learning content management systems (LCMS) and adaptive and in-

telligent web-based educational systems (AIWBES). The LMS is designed for planning, delivering

and managing learning events, usually adding little value to the learning process nor supporting

internal content processes while the primary role of a LCMS is to provide a collaborative authoring

environment for creating and maintaining learning content (Ismail, 2001). In AIWBES the focus is

on the student. Such systems adapt to the needs of each and every student (Brusilovsky & Peylo,

2003) in contrast to many systems that are merely a network of static hypertext pages (Brusilovsky,

1999).

A number of web-based learning environments use intelligent methods to provide personalized

content or navigation such as the one described in Own (2006). However, only few systems use

intelligent methods for exercise item allocation (Barla et al., 2010). The use of intelligent item

allocation algorithms (IAA) is, however, a common practice in testing. Computerized Adaptive

Testing (CAT) (Wainer, 2000) is a form of computer-based tests where the test is tailored to the

examinees ability level by means of Item Response Theory (IRT). IRT is the framework used in

psychometrics for the design, analysis and grading of computerized tests to measure abilities (Lord,

1980). As Wauters, Desmet, and Van Den Noortgate (2010) argue, IRT is potentially a valuable

method for adapting the item sequence to the learners knowledge level. However, the IRT methods

are designed for testing, not learning, and as shown in AUTHREF and AUTHREF the IRT models

are not appropriate since they do not take learning into account. New methods for IAA in learning

environments are therefore needed.

Several systems can be found that are specifically designed for providing content in the form

of exercise items. Examples of systems providing homework exercises are the WeBWork system

(Gage, Pizer, & Roth, 2002), ASSiSTments (Razzaq et al., 2005), ActiveMath (Melis et al., 2001),

OWL (Hart, Woolf, Day, Botch, & Vining, 1999), LON-CAPA (Kortemeyer, Kashy, Benenson,

& Bauer, 2008) and WebAssign (Brunsmann, Homrighausen, Six, & Voss, 1999). None of those
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systems use intelligent methods for item allocation, instead a fixed set of items are submitted to the

students or drawn randomly from a pool of items.

1.2 Web-based homework vs. pen-and-paper homework

A number of studies have been conducted to investigate a potential difference in learning between

WBH and PPH. In most of the studies reviewed, no significant difference was detected (Bon-

ham, Deardorff, & Beichner, 2003; Cole & Todd, 2003; Demirci, 2007; Gok, 2011; Kodippili &

Senaratne, 2008; LaRose, 2010; Lenz, 2010; Palocsay & Stevens, 2008; Williams, 2012). In three

of the studies reviewed, WBH was found to be more effective than PPH as measured by final exam

scores. In the first study, described in Dufresne, Mestre, Hart, and Rath (2002), data was gathered

in various offerings of two large introductory physics courses taught by four lecturers over a three

year period. The OWL system was used to deliver WBH. The authors found that WBH lead to

higher overall exam performance, although the difference in average gain for the five instructor-

course combinations was not statistically significant. In the second paper, VanLehn et al. (2005)

describe Andes, a physics tutoring system. The performance of students working in the system was

compared to students doing PPH homework for four years. Students using the system did signifi-

cantly better on the final exam than the PPH students. However, the study has one limitation; the

two groups were not taught by the same instructors. Finally, Brewer and Becker (2010) describe a

study in multiple sections of college algebra. The WBH group used an online homework system

developed by the textbook publisher. The authors concluded that the WBH group generally scored

higher on the final exam but no significant difference existed between mathematical achievement

of the control and treatment groups except in low-skilled students where the WBH group exhibited

significantly higher mathematical achievement.

Even though most of the studies performed comparing WBH and PPH show no difference in

learning, the fact that students do not do worse than students doing PPH makes WBH a favourable

option, especially in large classes where correcting PPH is very time consuming. Also, students’

perception towards WBH has been shown to be positive (Demirci, 2007; Hauk & Segalla, 2005;

Hodge, Richardson, & York, 2009; LaRose, 2010; Roth, Ivanchenko, & Record, 2008; Smolira,
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2008; VanLehn et al., 2005).

All the studies reviewed were conducted using a quasi-experimental design, i.e. students were

not randomly assigned to the treatment groups. Either multiple sections of the same course were

tested where some sections did PPH while the other(s) did WBH or the two treatments were assigned

on different semesters. This could lead to some bias e.g. due to difference in the student groups

or lecturers participating in the two treatment arms of the experiments. The experiment described

in this paper is a repeated randomized crossover experiment so the same students were exposed to

both WBH and PPH, resulting in a more accurate estimate of the potential difference between the

two methods.

1.3 Assessment and feedback

Assessments are frequently used by teachers to assign grades to students (assessment of learning)

but a potential use of assessment is to use it as a part of the learning process (assessment for learning)

(J. Garfield et al., 2011). The term summative assessment (SA) is often used for the former and

formative assessment (FA) for the latter. The concepts of feedback and FA overlap strongly and,

as stated in Black and Wiliam (1998), the terms do not have a tightly defined and widely accepted

meaning. Therefore, some definitions will be given below.

Taras (2005) defines SA as ”... a judgement which encapsulates all the evidence up to a given

point. This point is seen as a finality at the point of the judgement” (p. 468) and about FA she

writes ”... FA is the same process as SA. In addition for an assessment to be formative, it requires

feedback which indicates the existence of a ‘gap’ between the actual level of the work being assessed

and the required standard” (p. 468). A widely accepted definition of feedback is then provided in

Ramaprasad (1983): ”Feedback is information between the actual level and the reference level of a

system parameter which is used to alter the gap in some way” (p. 4).

Stobart (2008) suggests making the following distinction between the complexity of feedback;

knowledge of results (KR) only states whether the answer is incorrect or correct, knowledge of cor-

rect response (KCR) where the correct response is given when the answer is incorrect and elaborated

feedback (EF) where, for example, an explanation of the correct answer is given.
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The terms formative assessment, feedback and the distinction between the different types of

feedback will be used here as defined above.

1.4 The NAMEOFSYSTEM

The NAMEOFSYSTEM (http://NAMEOFSYSTEM.net) project is an ongoing research project.

The functionalities of the system have changed considerable during the past decade. A pilot version,

written only in HTML and Perl, is described in AUTHREF. A newer version, implemented in Plone

(Nagle, 2010), is described in detail in AUTHREF. The newest version, described in AUTHREF, is

a mobile-web site and runs smoothly on tablets and smart phones. Also, users do not need to be

connected to the Internet when answering exercises, but only when downloading the item banks.

The NAMEOFSYSTEM is an LCMS including exercise item banks within mathematics and

statistics. The system is open and free to use for everyone having access to the web. At the heart

of the system is the formative assessment. Intelligent methods are used for item allocation in such

a way that the difficulty of the items allocated adapts to the students’ ability level. Since the fo-

cus of the experiment described here is on the effect of doing exercises (answering items) in the

system, only functionalities related to that will be described. A more detailed description of the

NAMEOFSYSTEM is given in the above mentioned papers.

1.4.1 Item allocation algorithm

In the systems used for WBH named in Section 1.1 a fixed set of items are allocated to students or

drawn randomly, with uniform probability, from a pool of items. This was also the case in the first

version of the NAMEOFSYSTEM. A better way might be to implement an IAA so that the difficulty

of the items adapts to the students’ ability. As discussed in Section 1.1, current IRT methods are not

appropriate when the focus is on learning, therefore a new type of IAA has been developed using

the following basic criteria:

• Increase the difficulty level as the student learns

• select items so that a student can only complete a session with high grade by completing the
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most difficult items

• select items from previous sessions to refresh memory.

Items are grouped into lectures in the NAMEOFSYSTEM system where each lecture covers a spe-

cific topic. This could be discrete distributions in material used in an introductory course in statistics

or limits in a basic course in calculus. Within a lecture, the difficulty of an item is simply calcu-

lated as the ratio of incorrect responses to the total number of responses. The items are then ranked

according to their difficulty, from the easiest item to the most difficult one.

The implementation of the first criterion (shown above) has changed over the years. In the first

version of the NAMEOFSYSTEM all items within a lecture were assigned uniform probability of

being chosen for every student. This was changed in 2012 with the introduction of a probability

mass function (pmf) that calculates the probability of an item being chosen for a student. The pmf

is exponentially related to the ranking of the item and also depends on the student’s grade:

p(r) =



qr

c
· m− g

m
+

g

N ·m
if g ≤ m,

qN−r+1

c
· g −m

1−m
+

1− g

N · (1−m)
if g > m,

(1)

where q is a constant (0 ≤ q ≤ 1) controlling the steepness of the function, N is the total number

of items belonging to the lecture, r is the difficulty rank of the item (r = 1, 2, ...N ), g is the grade

of the student (0 ≤ g ≤ 1) and c is a normalizing constant, c =
∑N

i=1 q
i. Finally, m is a constant

(0 < m < 1) so that when g < m, the pmf is strongly decreasing and the mass is mostly located

at the easy items, when g = m the pmf is uniform and when g > m the pmf is strongly increasing

with the mass mostly located at the difficult items. This was changed in 2013 in such a way that the

mode of the pmf moves to the right with increasing grade which is achieved by using the following

pmf based on the beta distribution:

p(r) =
1

N∑
i=1

(
i

N + 1

)α

·
(
1− i

N + 1

)β

(
r

N + 1

)α

·
(
1− r

N + 1

)β

, (2)
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Figure 1: The different probability mass functions used in the item allocation algorithm. Left:
uniform. Middle: exponential. Right: beta.

where r is the ranked item difficulty (r = 1, 2, ..., N ) and α and β are constants controlling the

shape of the function. The three different pmfs used over the years (uniform, exponential and beta)

are shown in Figure 1. Looking at the last figure, showing the pmf currently used, it can be seen

that a beginning student (with a score 0) receives easy items with high probability. As the grade

increases the mode of the probability mass functions shifts to the right until the student reaches a

top score resulting in a high probability of getting the most difficult items. Using this pmf, the first

two of the criteria for the IAA listed above are fulfilled.

The last criterion for the IAA is related to how people forget. Ebbinghaus (1913) was one of

the first to research this issue. He proposed the forgetting curve and showed in his studies that

learning and the recall of learned information depends on the frequency of exposure to the material.

It was therefore decided in 2012 to change the IAA in such a way that students are now occasionally

allocated items from previous lectures to refresh memory.

1.4.2 Grading

Although the main goal of making the students answer exercises in the NAMEOFSYSTEM is learn-

ing there is also a need to evaluate the students’ performance. The students are permitted to continue

to answer items until they (or the instructor) are satisfied, which makes grading a non-trivial issue.

In the first version of the NAMEOFSYSTEM, the last eight answers counted (with equal weight)

towards the NAMEOFSYSTEM grade. Students were given one point for a correct answer and mi-
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nus half a point for an incorrect one. The idea was that old sins should be forgotten when students

are learning. This had some bad side effects with students often quitting answering items after seven

correct attempts in a row AUTHREF, which is a perfectly logical result since a student who has a

sequence of seven correct and one incorrect will need another eight correct answers in sequence to

increase the grade. The NAMEOFSYSTEM grade was also found to be a bad predictor of students’

performance on a final exam, the grade being too high AUTHREF. It was therefore decided in 2014

to change the grading scheme (GS) and use min(max(n/2, 8), 30) items after n attempts when

calculating the NAMEOFSYSTEM grade. That is, use a minimum of eight answers, then after

eight answers use n/2, but no more than 30 answers. Using this GS, the weight of each answer is

less than before (when n > 8), thus eliminating the fear of answering the eighth item incorrectly,

simultaneously making it more difficult for students to get a top grade since more answers are used

when calculating the grade.

1.4.3 Feedback

The quality of the feedback is a key feature in any procedure for formative assessment (Black

& Wiliam, 1998). In the first version of the NAMEOFSYSTEM, only KR/KCR type feedback

was provided. Sadler (1989) suggested that KR type feedback is insufficient if the feedback is

to facilitate learning so in 2012 an explanation was added to items in the NAMEOFSYSTEM item

bank, thus providing students with EF. A question from a lecture covering inferences for proportions

is shown in Figure 2. Here the student has answered incorrectly (marked by red). The correct answer

is marked with green and an explanation given below.

1.4.4 Summary of changes in the NAMEOFSYSTEM

In the sections above, changes related to the IAA, grading and feedback were reviewed. A summary

of the changes discussed is shown in Table 1.
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Figure 2: A question from a lecture on inferences for proportions. The students are informed what
the correct answer is and shown an explanation of the correct answer.

Table 1: Summary of changes in the NAMEOFSYSTEM.

Year IAA IAA Grading Feedback Mobile-web
difficulty refresh memory

2011 uniform no last 8 KR/KCR no
2012 exponential yes last 8 EF no
2013 beta yes last 8 EF no
2014 beta yes min(max(n/2,8),30) EF yes

2 Material and methods

The data used for the analysis was gathered in an introductory course in statistics in the University of

COUNTRYOFAUTHORS from 2011-2014. Every year some 200 first year students in chemistry,
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biochemistry, geology, pharmacology, food science, nutrition, tourism studies and geography were

enrolled in the course. The course was taught by the same instructor over the timespan of the

experiment. About 60% of the students had already taken a course in basic calculus the semester

before while the rest of the students had much weaker background in mathematics. Around 60%

of the students were females and 40% males. The students needed to hand in homework four

times during the course. The subjects of the homework were: discrete distributions, continuous

distributions, inference about means and inference about proportions. The students were told in the

beginning of the course that there would be several in-class tests during the semester but they were

not told how many, at what timepoints or from which topics they would be examined in. The final

grade in the course consisted of four parts, the final exam (50%), the four homework assignments

(10%), in-class tests (15%) and assignments in the statistical software R (25%).

The experiment conducted is a repeated randomized crossover experiment. The design of the

experiment is shown in Figure 3.

Each year the class was split randomly into two groups. One group was instructed to do exer-

cises in the NAMEOFSYSTEM system in the first homework assignment (WBH) while the other

group handed in written homework (PPH). The exercises on the PPH assignment and in the NAME-

OFSYSTEM were similar and covered the same topics. Shortly after the students handed in their

homework they took a test in class. The groups were crossed before the next homework, that is, the

former WBH students handed in PPH and vice versa and again the students were tested. Each year

this procedure was repeated and the test scores from the four exams registered. The students were

not made aware of the experiment but were told that the groups were made to manage the number

PPH homework that needed to be corrected at a time. There were no indications that the students

Figure 3: The design of the experiment. The experiment was repeated four times from 2011-2014.

11

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



Table 2: Number of students taking the tests.

Discrete Continuous Means Proportions
2011 91 84 122 115
2012 113 113 100 65
2013 117 123 110 99
2014 129 130 111 110

were aware of the experiment. The number of students taking each exam is shown in Table 2.

To answer the first research question, stated in Section 1, the following linear mixed model is

fitted to the data from 2011-2014 and nonsignificant factors removed:

gmlhyi = µ+ αm + βl + γh + δy + (αγ)mh + (βγ)lh + (δγ)yh + si + ϵmlhyi (3)

where g is the test grade, α is the math background (m = weak, strong), β is the lecture mate-

rial (l = discrete distributions, continuous distributions, inference about means, inference about

proportions), γ is the type of homework (h = PPH, WBH), δ is the year (y = 2011, 2012, 2013,

2014) and s is the random student effect (si ∼ N(0, σ2
s)). The interaction term (αγ) measures

whether the effect of type of homework is different between students with strong and weak math

background and (βγ) whether the effect of type of homework is different for the lecture material

covered. The interaction term (δγ) is of special interest since it measures the effect of changes made

in the NAMEOFSYSTEM system during the four years of experiments.

To answer the second research question, only data gathered in 2014 is used and the following

linear mixed model fitted to the data:

gmlhi = µ+ αm + βl + γh + (αγ)mh + (βγ)lh + si + ϵmlhi (4)

with α, β, γ and s as above. If the interaction terms are found to be nonsignificant, the γ factor is of

special interest since it measures the potential difference in learning between students doing WBH

and PPH.

12

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



In addition to collecting the exam grades, the students answered a survey at the end of each

semester. 442 students in total responded to the surveys (121 in 2011, 88 in 2012, 131 in 2013

and 102 in 2014). Two of the questions are related to the use of the NAMEOFSYSTEM and the

students’ perception of WBH and PPH homework:

1. Do you learn by answering items in the tuto-web? (yes/no)

2. What do you prefer for homework? (PPH/WBH/Mix of PPH and WBH)

3 Results

3.1 Analysis of exam scores

In order to see which factors relate to exam scores the linear mixed model in Eq. (3) was fitted to the

exam score data using R (R Core Team, 2014). The lmer function in the lme4 package, which in-

cludes functions to fit linear and generalized linear mixed-effects models (Bates, Maechler, Bolker,

& Walker, 2014), was used. The interaction terms (mh) and (lh) were found to be nonsignificant

and therefore removed from the model. This indicates that the effect of homework type does not

depend on math background nor lecture material covered. However, the (yh) interaction was found

to be significant implying that the effect of the type of homework is not the same during the four

years. The resulting final model can be written as:

gmlhyi = µ+ αm + βl + γh + δy + (δγ)yh + si + ϵmlhyi (5)

The estimates of the parameters and the associated t-values are shown Table 3 along with p-values

calculated using the lmerTest package (Kuznetsova, Brockhoff, & Christensen, 2013). Estimates

of the variance components were σ̂2
s = 1.84 and σ̂2 = 3.33. The reference group (included in the

intercept) are students in the 2011 course with weak math background handing in PPH on discrete

distributions. Residual plots revealed no violation of model assumptions, such as non-normal errors

or random effects.
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Table 3: Parameter estimates for the final model used to answer research question 1. The reference
group are students in the 2011 course with weak math background handing in PPH on discrete
distributions. Grades were given on the 0 - 10 scale.

Parameter estimates Estimate Std. Error df t value Pr(>|t|)
(Intercept) 4.416 0.211 1123.789 20.957 0.000
year2012 0.326 0.244 1039.348 1.336 0.182
year2013 0.785 0.234 1039.243 3.349 0.001
year2014 0.540 0.234 1013.152 2.313 0.021
WBH −0.228 0.186 1206.998 −1.229 0.219
strongMath 1.680 0.146 580.124 11.515 0.000
test2 1.255 0.126 1236.322 9.924 0.000
test3 0.015 0.128 1250.851 0.117 0.907
test4 1.337 0.133 1268.752 10.057 0.000
year2012:WBH 0.519 0.267 1220.682 1.942 0.052
year2013:WBH 0.201 0.259 1244.169 0.774 0.439
year2014:WBH 0.634 0.252 1189.315 2.515 0.012

By looking at the estimate for the year2014:tw term it can be noticed that the difference be-

tween the WBH and PPH groups is significantly different in 2011 (the reference group) and 2014

(p = 0.012), indicating that the changes made to the NAMEOFSYSTEM had a positive impact on

learning. The difference in effect size between WBH and PPH in 2011 and 2014 is 0.634. It should

also be noted that the effect size of math background is large (1.680).

In order to answer the second question, the model in Eq. 4 was fitted to the data from 2014. The

interaction terms were both nonsignificant and therefore removed from the model. The final model

can be written as:
gmlhi = µ+ αm + βl + γh + si + ϵmlhi (6)

The estimates of the parameters, the associated t- and p-values are shown Table 4. Estimates of the

variance components were σ̂2
s = 1.48 and σ̂2 = 2.84. The reference group (included in the inter-

cept) are students with weak math background handing in PPH on discrete distributions. By looking

at the table it can be noted that the difference between the WBH and PPH groups is significant (p =

0.009) and the estimated effect size is 0.416 indicating that the students did better after handing in

WBH than PPH. Again, the effect size of math background is large (1.379).
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Table 4: Parameter estimates for the final model used to answer research question 2. The refer-
ence group (included in the intercept) are students with weak math background handing in PPH on
discrete distributions. Grades were given on the 0 - 10 scale.

Paramter estimates Estimate Std. Error df t value Pr(>|t|)
(Intercept) 5.080 0.239 349.520 21.279 0.000
mathStrong 1.379 0.251 158.556 5.502 0.000
test2 0.137 0.216 347.434 0.633 0.527
test3 1.254 0.228 360.445 5.493 0.000
test4 1.719 0.228 358.667 7.538 0.000
WBH 0.416 0.158 336.485 2.640 0.009

3.2 Analysis of student surveys

In general, the students’ perception of the NAMEOFSYSTEM system is very positive. In student

surveys conducted over the four years over 90% of the students feel they learn using the system.

Despite the positive attitude towards the system about 80% of the students prefer a mixture of PPH

and WBH over PPH or WBH alone.

It is interesting to look at the difference in perception over the four years shown in Figure 4. As

stated above, the GS was changed in 2014 making it more difficult to get a top grade for homework

in the system and more difficult than in PPH. This lead to a general frustration in the student group.

The fraction of students preferring only handing in PPH, compared to WBH or mix of the two, more

than tripled compared to the previous years.
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Figure 4: Results from the student survey. Left: ”Do you learn from the NAMEOFSYSTEM?”.
Right: ”What is you preference for homework”?

15

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



4 Conclusion and future work

The learning environment NAMEOFSYSTEM has been under development during the past decade

at the University of COUNTRYOFAUTHORS. An experiment has been conducted to answer the

following research questions:

1. Have changes made in the NAMEOFSYSTEM had an impact on learning as measured by test

performance?

2. Is there a difference in learning, as measured by test performance, between students doing

PPH and WBH after the changes made in the NAMEOFSYSTEM?

The experiment was conducted over four years in an introductory course on statistics. It is a repeated

crossover experiment so students were exposed to both methods, WBH and PPH.

The difference between the WBH and PPH groups was found to be significantly different in

2011 and 2014 (p = 0.012), indicating that the changes made to the NAMEOFSYSTEM have made

a positive impact on learning as measured by test scores. The difference in effect size between WBH

and PPH in 2011 and 2014 is 0.634. Several changes were made in the system between 2011 and

2014 as shown in Table 1. As can be seen in the table the changes are somewhat confounded but

moving from uniform probability to the pmf shown in Eq. 2 when allocating items, allocating items

from old material to refresh memory, changing the grading scheme so that min(max(n/2, 8), 30)

items count in the grade instead of eight, providing EF instead of KR/KCR type feedback and having

a mobile version appears to have had a positive impact on learning.

To answer the second research question, only data gathered in 2014 was used. The difference

between the WBH and PPH groups was found to be significant (p = 0.009) with effect size 0.416

indicating that the students did better after handing in WBH than PPH. In both models the effect

size of math background was large (1.680 and 1.379).

The NAMEOFSYSTEM project is an ongoing research project and the NAMEOFSYSTEM

team will continue to work on improvements to the system. Improvements related to the exercise

items are quality of items and feedback, the grading scheme (GS) and the item allocation algorithm

(IAA).
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4.1 Quality of items and feedback

As pointed out in J. B. Garfield (1994), it is important to have items that require student understand-

ing of the concepts, not only test skills in isolation of a problem context. It is therefore important to

have items that encourage deep learning rather than surface learning (Biggs, 1987).

One goal of the NAMEOFSYSTEM team is to collect metadata for each item in the item bank.

One classification of the items will reflect how deep an understanding is required using e.g. the

Structure of the Observed Learning Outcomes (SOLO) taxonomy (Biggs & Collis, 1982). Accord-

ing to SOLO the following three structural levels make up a cycle of learning. “Unistructural: The

learner focuses on the relevant domain, and picks one aspect to work with. Multistructural: The

learner picks up more and more relevant or correct features, but does not integrate them. Relational:

The learner now integrates the parts with each other, so that the whole has a coherent structure and

meaning” (p.152).

In addition to the SOLO framework, to reflect difficulty of items in statistics courses, items could

also be classified based on cognitive statistical learning outcomes suggested by delMas (2002);

J. Garfield and Ben-Zvi (2008); J. Garfield and delMas (2010).These learning outcomes have been

defined as (J. Garfield & Franklin, 2011): “Statistical literacy, understanding and using the basic

language and tools of statistics. Statistical reasoning, reasoning with statistical ideas and making

sense of statistical information. Statistical thinking, recognizing the importance of examining and

trying to explain variability and knowing where the data came from, as well as connecting data

analysis to the larger context of a statistical investigation” (p.4-5). Items measuring these concepts

could be ranked in hierarchical order in terms of difficulty, starting with statistical literacy items as

less difficult and ending with most difficult items measuring statistical thinking.

4.2 Grading scheme

The GS used in a learning environment such as the NAMEOFSYSTEM influences the behaviour of

the students AUTHREF. The GS used in the NAMEOFSYSTEM was changed in 2014 eliminating

some problems but introducing a new one; the students found it unfair. The following criteria will

be used to develop the GS further.
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Figure 5: The weight function for a student that has answered 30 items for different values of the
parameters. Left: α = 0.15, s = 1, ng = 15. Right: α = 0.10, s = 2, ng = 30.

The GS should:

• Entice students to continue to request items, thus learning more

• reflect current knowledge well

• be fair in students’ minds.

Currently a new grading scheme is being implemented. Instead of giving equal weight to items used

to calculate the grade, newer items are given more weight using the following formula:

w(l) =



α when l = 1,

(1− α) ·

(
1− l

ng+1

)s

ng∑
i=2

(
1− i

ng+1

)s
when 1 < l ≤ ng

0 when l > ng

(7)

where l is the lagged item number (l = 1 being the most recent item answered), α is the weight given

to the most recent answer, ng is the number of answers included in the grade and s is a parameter

controlling the steepness of the function. Some weight functions for a student that has answered 30

items are shown in Figure 5. As can be seen by looking at the figure, the newest answers get the

most weight and old (sins) get less.

The students will be informed of their current grade as well as what their grade will be if they
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answer the next item correctly to entice them to continue requesting items. Studies investigating the

effect of the new GS will be conducted in 2016 - 2017.

4.3 Item allocation algorithm

In the current version of the IAA, the items are ranked according to difficulty level, calculated as the

ratio of incorrect responses to the total number of responses. This is, however, not optimal since the

ranking places the items with equal distance apart on the difficulty scale. A solution to this problem

could be to use directly the ratio of incorrect responses to the total number of responses in the IAA

instead of the ranking. Another solution would be to implement a more sophisticated method for

estimating the difficulty of the items using IRT but as mentioned earlier those methods are designed

for testing not learning. However, it would be interesting to extend the IRT models by including a

learning parameter which would make the models more suitable in a learning environment. Finally,

it is of interest to investigate formally the impact of allocating items from old material to refresh

memory.
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