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Coding variants in epigenetic regulators are emerging as causes of neurological dysfunction and cancer. However, a com-

prehensive effort to identify disease candidates within the human epigenetic machinery (EM) has not been performed; it is

unclear whether features exist that distinguish between variation-intolerant and variation-tolerant EM genes, and between

EM genes associated with neurological dysfunction versus cancer. Here, we rigorously define 295 genes with a direct role in

epigenetic regulation (writers, erasers, remodelers, readers). Systematic exploration of these genes reveals that although in-

dividual enzymatic functions are always mutually exclusive, readers often also exhibit enzymatic activity (dual-function EM

genes). We find that the majority of EM genes are very intolerant to loss-of-function variation, even when compared to the

dosage sensitive transcription factors, and we identify 102 novel EM disease candidates. We show that this variation intol-

erance is driven by the protein domains encoding the epigenetic function, suggesting that disease is caused by a perturbed

chromatin state. We then describe a large subset of EM genes that are coexpressed within multiple tissues. This subset is

almost exclusively populated by extremely variation-intolerant genes and shows enrichment for dual-function EM genes.

It is also highly enriched for genes associated with neurological dysfunction, even when accounting for dosage sensitivity,

but not for cancer-associated EM genes. Finally, we show that regulatory regions near epigenetic regulators are genetically

important for common neurological traits. These findings prioritize novel disease candidate EM genes and suggest that this

coexpression plays a functional role in normal neurological homeostasis.

[Supplemental material is available for this article.]

The chromatin landscape of any cell is shaped and maintained by
the epigenetic machinery (EM), hereafter defined as the group of
proteins that can catalyze the addition or removal of epigenetic
marks (writer or erasers, respectively), bind to preexisting marks
(readers), or use the energyof ATPhydrolysis to alter the local chro-
matin environment via mechanisms such as nucleosome sliding
(remodelers) (Fahrner and Bjornsson 2014; Allis and Jenuwein
2016). Recently, some EM genes have been associated with human
diseases, with the most prevalent disease phenotypes falling
broadly under the categories of neurological dysfunction (De
Rubeis et al. 2014; McCarthy et al. 2014; Bjornsson 2015; Singh
et al. 2016; Deciphering Developmental Disorders Study 2017),
and cancer (Garraway and Lander 2013; Vogelstein et al. 2013;
Feinberg et al. 2016); those associations have indicated that the
vast majority of known disease-causing EM genes are haploinsuffi-
cient (Garraway and Lander 2013; Bjornsson 2015).

This study addresses three main questions. First, how many
additional disease candidate EM genes are there? Existing esti-

mates (Khare et al. 2012; Medvedeva et al. 2015) suggest that EM
genes with ascribed roles in disease only form a minority of the
whole group. Thus, the number of additional disease candidates
that a comprehensive EM gene list will harbor is unclear. It is
also unknownwhether disease genes tend to be evenly distributed
among classes (e.g., erasers versus remodelers) and subclasses (e.g.,
histone methyltransferases versus histone acetyltransferases) of
the machinery; such patterns could reflect the relative contribu-
tion of those categories to normal cellular function. Second, is
the lost epigenetic function of these genes the most likely cause
of disease? Studies in model systems have indicated that the do-
mains mediating the epigenetic function can sometimes be dis-
pensable (Dorighi et al. 2017; Rickels et al. 2017). This raises the
possibility that, even among known EM disease genes, the pheno-
type might have some alternative mechanistic basis. Third, are
there expression signatures characteristic of disease candidates?
In other words, are the expression patterns of EM genes that are in-
tolerant to variation different from those of variation-tolerant EM
genes? Related to this question, it would be of particular interest if
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there also exist expression signatures that distinguish between
EM genes associated with neurological dysfunction versus those
associated with cancer. Such signatures could not only prioritize
candidate genes for specific phenotypes, but also provide insights
into novel disease mechanisms. To answer these questions, we
performed a systematic investigation of the human epigeneticma-
chinerywith respect to its composition, tolerance to variation, and
expression in a diverse set of tissues.

Results

The modular composition of the epigenetic machinery

We defined EM genes as genes whose protein products contain
domains classifying them as chromatin remodelers, or as writers/
erasers/readers of DNA or histone methylation, or histone acetyla-
tion. Then, we utilized the UniProt database (The UniProt
Consortium 2015), combined with InterPro domain annotations
(Hunter et al. 2009), to systematically compile a list of all such hu-
man genes (Methods; a full list of the domains used for classifica-
tion is provided in Supplemental Table S1). This stringent,
domain-based definition minimizes the risk of false positives.
We found a total of 295 EM genes (Fig. 1A,B; Supplemental
Table S2; http://www.epigeneticmachinery.org/), the vast majori-
ty ofwhich belong to the histonemachinery, and only a small frac-
tion are remodelers or components of the DNA methylation
machinery (Fig. 1A). The two latter categories overlap the histone
machinery; most remodelers are also readers of either histone
methylation or acetylation, whereas the overlap between the
DNA methylation and histone components is multifaceted
(Supplemental Results).

Considering the categorization of EMgenes into readers, writ-
ers, erasers and remodelers, we found that the readers make up the
biggest group (n =211) and the remodelers the smallest (n =18) (Fig.
1B). Thewriter and eraser groups are comparable in size (n=62 and
n= 55, respectively) (Fig. 1B).Weobserved that the three enzymatic
categories (writers, erasers, and remodelers) are pairwise mutually
exclusive (Fig. 1B). In contrast, we saw a subgroup of 51 genes en-
coding proteins that harbor both an enzymatic and a reader
domain (Fig. 1B), suggesting that these factors have dual epigenetic
function; wewill refer to these genes as dual-function EMgenes. In
general, dual-function writers tend to catalyze the addition of the
same mark they read; this is also true for dual-function histone

demethylases, the only eraser category with some members that
have reading activity. However, there are exceptions: histone
methylation readers that enzymatically only function as remodel-
ers (n=11; nine of these are members of the CHD family), or DNA
methyltransferases (n=2), and one dual-function histone methyl-
transferase that only reads DNAmethylation. Furthermore, within
the reader category, there are 32 genes capable of recognizingmore
than one type of mark, indicating their participation in crosstalk
between different parts of the machinery; we termed those dual
readers, and found that some of them (n=7) also have enzymatic
activity. Moreover, we observed that the same reading function
can be mediated by different domains within a single protein;
among the 178 readers of histone methylation we found 23 pro-
teinswhich contain two distinct reading domains.We also observe
that nine of the domains defining EMgenes can be present inmul-
tiple copieswithin the same gene, with the exactmultiplicity rang-
ing from two to eight (calculated for the EMgenes in Supplemental
Table S3). Finally, using a previously generated, high-confidence
list of 1254 human transcription factors (Vaquerizas et al. 2009;
Barrera et al. 2016), we found that 20 EM genes (12 of which are
members of the PRDM family of histone methyltransferases)
have a DNA-binding domain found in transcription factors, sug-
gesting their involvement inmore thanoneaspectof transcription-
al regulation (Supplemental Table S4).

The human epigenetic machinery is highly intolerant to variation

To identify novel EM disease candidates, we systematically investi-
gated the tolerance of the entire EM group to loss-of-function var-
iation. To achieve this, we used the ExAC database coupled with
the pLI score (Lek et al. 2016), a metric which ranges between
0 and 1 and measures the extent to which a given gene tolerates
heterozygous loss-of-function variants. In particular, genes with
a pLI of more than 0.9 have been described as highly dosage sensi-
tive (Lek et al. 2016), with virtually all known haploinsufficient
human genes belonging to this category (Lek et al. 2016). A similar
approach, focused only on the histone methylation machinery,
was very recently used to derive candidate genes for developmen-
tal disorders (Faundes et al. 2018). In total, ExAC provides a pLI for
18,225 human genes, of which 281 are EM genes. First, we ob-
served that EM genes have significantly higher pLI scores com-
pared to all other genes (Wilcoxon rank-sum test, P<2.2 ×10−16)
(Fig. 2A) and show substantial enrichment in the highly intolerant
category (Fisher’s exact test, P<2.2 ×10−16, odds ratio = 7.7).
We note that there are many EM genes with a pLI score between
0.7 and 0.9, a range which is almost absent for other genes.
Given that pLI is a measure of haploinsufficiency, genes encoded
on the X and YChromosomeswere not considered in this compar-
ison (for details on EM genes encoded on the sex chromosomes,
see Supplemental Results).

We next compared EM to TF genes; this is a natural compar-
ison, because EMproteins are usually recruited to target sites by TFs
(Lappalainen andGreally 2017) and TF genes have previously been
shown to be mostly haploinsufficient (Jimenez-Sanchez et al.
2001; Seidman and Seidman 2002). Using the 1155 TF genes in
ExAC, we first showed that they have significantly higher pLI com-
pared to other genes (Wilcoxon rank-sum test, P<2.2 ×10−16) (Fig.
2A), although they are less dosage sensitive than previously sug-
gested (Jimenez-Sanchez et al. 2001), illustrating the value of our
comprehensive approach. Comparing TF to EM genes, however,
we observed that EM genes have higher pLIs (Wilcoxon rank-
sum test, P<2.2 ×10−16) (Fig. 2A) and are more strongly enriched

BA

Figure 1. The modular composition of the epigenetic machinery.
(A) Venn diagram illustrating the three broad categories of the epigenetic
machinery (histone machinery, DNA methylation machinery, and remod-
elers), their relative sizes, and their mutual relationships. (B) Venn diagram
illustrating the four broad “action” categories of the machinery (writers,
erasers, remodelers, and readers), their relative sizes, and their mutual re-
lationships. Themodularity of this organization is evident, with some read-
er components exhibiting enzymatic functions and/or more than one
reading function. In contrast, the individual enzymatic component types
are pairwise mutually exclusive.
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in the highly dosage sensitive category (Fisher’s exact test, P<2.2 ×
10−16, odds ratio = 4.4).

Because it is known that many EM gene products function as
parts ofmulti-subunit complexes (Carrozza et al. 2003; Clapier and
Cairns 2009; Laugesen andHelin 2014; Rao andDou 2015), we rea-
soned that genes encoding for accessory subunits of these com-
plexes (which are not categorized as EM genes by our definition),
would also show a similar intolerance to variation.We thus assem-
bled a list of 95 non-EM accessory subunit genes and 46 EM sub-
unit genes, spanning a total of 19 complexes with chromatin
modifying activities (Methods; Supplemental Table S5). As expect-
ed, the 46 EM subunit genes are very dosage sensitive; 80%of these
genes have a pLI > 0.9. Considering the accessory subunits, their
pLI distribution confirmed that they are more constrained than
all other genes, as well as TF genes; however, they are slightly
less constrained than all EM genes (Fig. 2B). Amore detailed inves-
tigation revealed that in general, each complex contains multiple
accessory and EM subunits that are highly constrained (Supple-
mental Fig. S1). Specifically, across all 19 complexes, the median
percentage of accessory and EM subunits with a pLI > 0.9 was
64% and 100%, respectively.

Identification of new disease candidate epigenetic regulators

After splitting EM genes into those with existing disease associa-
tions and those with no reported link to disease (the latter consti-
tuting ∼70%) (Methods), we discovered that in both the disease-
and the non-disease-associated groups there exist many EM genes
with elevated pLI scores (Fig. 2C), although the disease-associated
ones exhibit higher skewing. It is notable that EM genes which are
only associated with cancer have high pLIs (median pLI = 0.98,

percentage with pLI > 0.9 =65%). There
is no a priori reason to expect this for
somatic cancer driver genes, because pLI
scores were derived after only excluding
individuals with severe pediatric disease
(Lek et al. 2016). Overall, this result sug-
gests the existence of additional EM dis-
ease genes. Among 162 EM genes in
ExAC with no reported link to disease,
78 have a pLI greater than 0.9 (percent-
age with pLI > 0.9 =78/162=48%). Addi-
tionally, there are 24 EM genes that
have only been associated with cancer
but whose pLI is greater than 0.9, sug-
gesting that they also cause some other
disease phenotype. In total, this leads to
102 novel EMdisease candidates (Supple-
mental Table S6). Finally, the same ap-
proach for the EM accessory subunits
(Methods) highlighted 39 new disease
candidate genes whose phenotypic con-
sequences are likely to arise through sim-
ilar mechanisms as in the case of EM
genes (Supplemental Table S7).

Dual-function epigenetic regulators

and remodelers are the most variation-

intolerant categories

We next explored the loss-of-function
variation tolerance of the different types
of machinery components. Chromatin

remodelers are an extremely intolerant group, whereas both the
writers and the erasers are equally distributed among the high
and low pLI groups (Fig. 2D,E). Collectively, the three enzymatic
EM classes show high mutational constraint (Fisher’s exact test,
P=9.82×10−9, odds ratio = 4.1 for enrichment of EM genes with
enzymatic but not reading function in the pLI > 0.9 category).
This is unusual since enzymes are in general haplosufficient
(Jimenez-Sanchez et al. 2001). Readers are more skewed toward
the high pLI category than writers and erasers (Fig. 2D,E). The 20
EM genes that also contain TF DNA-binding domains show a pLI
distribution which mirrors that of the whole EM group (Fig. 2D,
E). Despite the differences between the single-function classes,
dual-function EM genes are extremely constrained, regardless of
the specific enzymatic function; this underscores the importance
of this unique category (Fig. 2D,E). Consistentwith this, amore de-
tailed breakdown into EM categories (Fig. 2F,G; Supplemental
Results) highlighted dual readers as a very intolerant group (Fig.
2F,G). Finally, we found that multiple histone modifiers with
seemingly redundant biochemical activities (same amino acid sub-
strate specificity) (Methods; Supplemental Table S8) can be highly
constrained (Supplemental Results; Supplemental Fig. S2), as also
observed for DNA methylation writers/erasers (Fig. 2F).

The intolerance to variation is primarily driven by the domains

mediating the epigenetic function

A recent study showed thatDrosophila embryos with a catalytically
inactive version of Trr (a homolog of the mammalian histone
methyltransferases KMT2C and KMT2D) develop normally, de-
spite altered histone methylation patterns (Rickels et al. 2017).
This example shows that in some cases the inactivation of an

A C

F

D

B

E

G

Figure 2. A large subset of epigenetic regulators are very intolerant to variation. (A) The pLI distribu-
tions of EM genes (red curve), TF genes (green curve), and all other genes (blue curve). (B) The pLI dis-
tributions of EM genes (red curve), genes encoding for accessory subunits of EM protein complexes
(black curve), and TF genes (green curve). (C) The pLI distribution of disease-associated EM genes versus
non-disease–associated EM genes. (D–G) The pLI distributions (D,F ) and percentage of genes with pLI >
0.9 (E,G) of individual classes of EM genes. The shaded gray area (A–D,F) indicates highly constrained
genes (>0.9). The vertical dashed gray line (E,G) corresponds to the percentage of all other genes
with pLI > 0.9.
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epigenetic domain (in this case, the SET domain) might not have
severe, easily detectable consequences.Our previous analysis is un-
able to determine if the observed variation intolerance is driven by
the presence of epigenetic, or other nonepigenetic domains. We
therefore asked if the EM-specific domain(s) in an EM gene had a
different local mutational constraint than other domains in the
same gene. To answer this, we used the constrained coding region
(CCR) model (Havrilla et al. 2019) to examine the mutational
constraint of EM genes at the domain level. Specifically, we classi-
fied a given domain as constrained or not; this classification re-
flects how devoid a domain is of missense or loss-of-function
mutations in the gnomAD database (Lek et al. 2016) compared
to other similar regions (Methods). We were able to study 237
out of 295 EM genes.

Under the hypothesis that EM-specific domains are not con-
tributing to the observed variation intolerance of EM genes, there
should be no difference in the constraint of EM-specific domains
found in high pLI versus low pLI EM genes. In contrast to this,
we found that, collectively, the EM-specific domains of high pLI
genes (greater than 0.9 pLI) aremuchmore likely to be constrained
than thoseof lowpLIgenes (less than0.1pLI; 82%versus19%) (Fig.
3A). To explore this further, we restricted our analysis to high pLI
genes, and compared the contribution of EM-specific domains to
that of other domains. First, at the individual gene level, we found
that for most EM genes (65%), the number of EM-specific con-
strained domains exceeds that of other constrained domains (Fig.
3B). Furthermore, almost all high pLI EM genes (92%) have at least
one constrained EM-specific domain, whereas approximately half
(47%) have no other constrained domains (Fig. 3C). In fact, there
are 54 high pLI EM genes that do not contain other domains.
Notable exceptions in this analysis are four high pLI members of
the PRDM family, for which the C2H2-like zinc fingers are the
main drivers of variation intolerance (Supplemental Fig. S3).

We note that our approach is overall conservative, as there are
domains without catalytic or reading activity (which are thus
labeled as non-EM-specific), that are nevertheless found only
in EM genes (Methods). Returning to our initial example, in
KMT2D we see that the catalytic SET domain is constrained, as is
its associated post-SET domain, and five of the seven PHD-fingers.

Finally, we repeated this analysis using a quantitative version
of domain-specific constraint, in which each domain is assigned a
score from 0 to 100 (with greater values indicating more con-
strained domains) (Methods). The results we obtained regarding

the relative constraint of EM-specific versus other domains recapit-
ulated the findings described above (Supplemental Fig. S4A,B).
Additionally, this revealed that multiple identical copies of a
domain within a single gene can differ with respect to their con-
straint (Supplemental Figs. S4C, S5). This could reflect different
contributions of these identical copies to gene function, although
it is possible that this variability in domain constraint is a conse-
quence of inadequate sampling of variation (since it has been esti-
mated that evenwith500,000 individuals,∼10%ofprotein-coding
variation will be captured) (Zou et al. 2016; Havrilla et al. 2019).

A large subset of the epigenetic machinery is coexpressed

To identify functional properties specific to variation-intolerant
EM genes, we systematically explored the expression patterns of
the whole group across a spectrum of adult tissues, using publicly
available RNA-seq data (The GTEx Consortium 2015). We selected
28 tissues on the basis of sample size and diversity in physiological
function (Methods; Supplemental Table S9). First, we discovered
that virtually all EM genes are expressed in a non-tissue-specific
manner, similarly to what is observed for known housekeeping
genes (Supplemental Results; SupplementalMethods; Supplemen-
tal Fig. S6A,B; Supplemental Table S10), with the exception of a
small number that showed testis-specific expression (Supplemen-
tal Fig. S6C). Hence, tissue specificity cannot account for the differ-
ences in variation tolerance within the EM group; we also found
that it cannot explain the highmutational constraint of EM genes
versus TF genes and other genes, after restricting the pLI compari-
son to very broadly expressed genes fromboth groups (Supplemen-
tal Results; Supplemental Fig. S7). Similarly, we saw that the
absolute expression level does not robustly discriminate between
EM genes with high pLI (>0.9) and the rest of the machinery (Sup-
plemental Fig. S8).

However, although EM genes show ubiquitous expression,
within any given tissue there is inter-individual variability in their
expression levels (Supplemental Fig. S9).Wenoticed that in several
cases, EM genes show coordinated fluctuations in their expression
levels across individuals (Supplemental Fig. S9A). We reasoned
that thismight reflect the precise epigenetic regulation of the tran-
scriptional programs operating within each cell. Therefore, we hy-
pothesized that EM genes whose expression patterns display this
coordinated behavior (coexpression) would differ in their muta-
tional constraint from thosewho donot. To test this, we construct-

ed tissue-specific coexpression networks
and determined modules of coexpressed
genes using Weighted Correlation Net-
work Analysis (WGCNA) (Zhang and
Horvath 2005; Methods).

We noticed that for all tissues, EM
genes were grouped in a few large mod-
ules (median two modules across tissues,
range 0–4), with a substantial number of
genes not belonging to any module (sin-
gletons;median 106 singletons across tis-
sues, range 9–270). We asked if the
division of EM genes into genes belong-
ing to largemodules and genes being sin-
gletons was stable across tissues. Because
these modules were estimated separately
for each tissue, it is not obvious how to
compare them across tissues, and mod-
ules are affected by noise resulting from

A CB

Figure 3. The protein domains known tomediate epigenetic functions drive the observed constraint of
EM genes. (A) The number of constrained and unconstrained EM-specific protein domains of high pLI
(>0.9) EM genes versus low pLI (<0.1) EM genes. (B) The within-gene differences in the total number
of EM-specific constrained domains versus other constrained domains. Each dot corresponds to a
gene. Red dots indicate genes with more EM-specific constrained domains; blue dots indicate genes
with more other constrained domains; black dots indicate genes with an equal number of constrained
EM-specific and other domains. (C) The percentage of high pLI EM genes with at least one constrained
EM-specific domain versus the corresponding percentage with at least one constrained other domain.
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differences in sample size, and other sources. To perform the com-
parison, we defined two genes to be module partners if they be-
longed to the same module in at least 10 tissues, stable module
partners if they belonged to the samemodule in at least 14 tissues,
and not module partners if they belonged to the same module in
less than 10 tissues (light blue, orange, and dark gray squares, re-
spectively, in cartoon Fig. 4A).

For each gene, we computed the number of module partners
and then ordered EM genes according to this score (Fig. 4B). We
next collectively visualized the pairwise partnership statuses
among EM genes in a symmetric matrix, keeping this ordering
for both rows and columns (Fig. 4C, blue). We observed a distinct
clustering, with a set of genes that are predominately stable mod-
ule partners with each other (Fig. 4C, orange), a large set of genes
with no module partners (Fig. 4C, dark gray), and a transition be-
tween these two groups (Fig. 4C). We noted that the transition oc-
curs as the number ofmodule partners increases,meaning that EM
genes not only have more partners, but they are also stable part-
ners with the majority of them.

We then divided EMgenes into three groups: (1) a group of 74
genes with at least 75 module partners; we call this group of EM
genes “highly coexpressed”; (2) a group of 83 genes with between
15 and 74 module partners; we call this group “coexpressed”; and
(3) a group of 113 genes with fewer than 15 module partners; we
call this group “not coexpressed.” To assess the statistical signifi-
cance of the size of these groups, we compared our results to those
obtained with randomly chosen genes (Supplemental Fig. S10)

and found that the groups of highly coexpressed as well as coex-
pressed EM genes are much larger than expected by chance (Fig.
4D; Supplemental Fig. S11A,B).We also established that our results
are robust to the choice of cutoffs, the presence of sample outliers,
and the exact network reconstruction method used (Methods;
Supplemental Fig. S11C, Supplemental Fig. S12). Finally, we note
that our across-tissue coexpression analysis provides confidence
that our findings are not driven by the cell-type heterogeneity pre-
sent in these tissue samples.

Dual-function epigenetic regulators are enriched

in the highly coexpressed group and are coexpressed

with multiple other categories

Tobetterunderstand thecoexpressionphenomenon,weexamined
whether some EMcategories are overrepresentedwithin the highly
coexpressed group. We first observed an enrichment for dual-
function EM genes (Fig. 5A,B). This was driven by the enrichment
of dual-functionwriters, aswell as dual-function erasers (Fig. 5A,B).
Although we found six highly coexpressed dual-function re-
modelers, there was no statistically significant overrepresentation
compared to the coexpressed and not coexpressed groups (Fig.
5A,B). We then performed a breakdown of the partners of highly
coexpressed dual-function histone methyltransferases and acetyl-
transferases. We observe that both of these EM groups partner
with their corresponding readers and erasers, aswell aswith remod-
elers (Supplemental Fig. S13). In addition, the two groups partner

with each other and with the DNAmeth-
ylation machinery (Supplemental Fig.
S13). This is partly expected given the
large number of partners of highly co-
expressed genes (more than 75 per
definition) compared to the size of the in-
dividual EM categories.

We next wanted to investigate if
the observed coexpression is related to
the involvement of EM genes in tran-
scriptional regulation, their organization
into writers/erasers/readers, or both. To
test the first possibility, we used TF genes
as a reference group, whereas to test the
second possibility we used genes encod-
ing for protein phosphorylation writers/
erasers (i.e., kinases/phosphatases) (Man-
ning et al. 2002; Chen et al. 2017). We
discovered that neither of these two
classes of genes are coexpressed (Fig. 5C;
Supplemental Fig. S14), suggesting that
the coexpression is a unique property
of EM genes likely reflecting both their
role in transcription and their modular
composition.

The highly coexpressed epigenetic

regulators are extremely intolerant to

variation and enriched for genes causing

neurological dysfunction

If this coexpression of EM genes is func-
tionally important, we would anticipate
a relationship with their mutational con-
straint. Indeed, examination of the pLI

E
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C

D

Figure 4. A large subset of the components of the epigenetic machinery exhibit unusually high levels
of coexpression. (A) Schematic illustrating our definition and identification of module partners. WGCNA
was used to construct tissue-specific coexpression networks and modules for 28 tissues profiled in GTEx.
We determined if two EM genes were module partners (part of the samemodule in 10–14 tissues) or sta-
ble module partners (part of the same module in >14 tissues). (B,C) The number of module partners for
each EM gene and the module partner matrix, where rows and columns are ordered as in B. We define
three groups of EM genes—highly coexpressed, coexpressed, and not coexpressed—based on their
number of module partners. (D) The pLI for each EM gene, ordered by its number of module partners
as in B. (E) The size of the (highly) coexpressed group of EMgenes compared to 300 draws of 270 random
genes, in which the random genes are selected to have a similar expression level across tissues compared
to EM genes (Supplemental Fig. S10).
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scores of the three coexpression groups revealed a very clear asso-
ciation (Fig. 4E), with almost all highly coexpressed genes being
extremely intolerant to variation (percentage of genes with pLI >
0.9 is >90%), coexpressed genes exhibiting intermediate intoler-
ance, and the not coexpressed group being the least intolerant
(Fig. 6A).

We next asked whether, in addition to being very con-
strained, coexpressed EM genes are also preferentially associated
with specific disease phenotypes. To perform this analysis, we first
used our full list of EM genes to obtain a comprehensive picture of
those links to disease. We examined associations with Mendelian
disorders, cancer, and complex disorders (Fig. 6B; Methods; Sup-
plemental Results). EM genes associated with any one of those dis-
ease phenotypes were enriched within the highly coexpressed
group (Fig. 6C). We thus sought to examine whether this enrich-
ment was driven by associations with particular disease categories.

We found a marked enrichment for genes causing neurolog-
ical dysfunction (Fig. 6C); genes implicated in cancer were also en-
riched, although less (Fig. 6C). We next tried to disentangle the
contributions stemming from the associations with cancer versus
neurological dysfunction. To accomplish this, we partitioned the
EM genes into genes only associated with neurological dysfunc-
tion, genes only associated with cancer, and genes associated
with both. Genes only associated with neurological dysfunction
were still enriched, whereas we did not observe significant en-
richment for genes only associated with cancer (Fig. 6C). Subse-
quently, we asked if this result was a consequence of the
association between coexpression and pLI and restricted the
analysis to EM genes with high pLI (>0.9). We found that these as-

sociated with neurological dysfunction were still significantly
enriched in the highly coexpressed category (Fig. 6C,D). As expect-
ed given the overrepresentation of dual-function genes (which are
themselves enriched in the highly coexpressed subset) in the set of
genes associated with both neurological dysfunction and cancer,
the latter were particularly enriched in the highly coexpressed
group (Fig. 6C). We then examined the impact of the definition
of the highly coexpressed group on the strength of the enrichment
by varying the coexpression cutoff, while using the constant set of
non-coexpressed EM genes as a control. As expected, this showed
that the enrichment increased as the stringency of our cutoff in-
creased (Fig. 6E).

Brain-specific regulatory elements of highly coexpressed

epigenetic regulators are enriched for SNPs that explain

the heritability of common neurological traits

The preceding results establish that rare, coding variants in highly
coexpressed EM genes preferentially cause neurological dysfunc-
tion. We next asked whether common variation in regulatory
regions surrounding these genes, as well as all EM genes collective-
ly, contributes to neurological disease risk. To achieve this, we used
a set of brain enhancers (defined by the presence of H3K27 in one
or more of 87 distinct brain regions) (Vermunt et al. 2014;
Methods) and labeled every such enhancer within 1 Mb of the
TSS of EM genes as an EM-regulatory region. We then performed
stratified LD score regression (Finucane et al. 2015) to assess
whether these EM-regulatory regions show enrichment for ex-
plained heritability in 24 neurological diseases/traits (Methods;
Supplemental Fig. S15; Supplemental Table S11) compared to
what is expected given the size of the regions and their overlap
with regions of known genetic importance.

For seven of the 24 neurological traits, either the highly
coexpressed, or the all-EM regulatory regions showed significantly
enriched heritability at P=0.05 (corrected for multiple testing
within each trait) (Fig. 6F). Two of the seven traits (neuroticism
and bipolar disorder) were only significant for the set of highly
coexpressed regulatory regions, and two other traits (openness
and depressive symptoms) were only significant for the all-EM reg-
ulatory regions. The remaining three traits (schizophrenia, general
epilepsy, IQ) are significant for both sets of regulatory regions.
However, the enrichment of heritability for the highly coex-
pressed regulatory regions was either exceeding or on par with
the enrichment for the all-EM regulatory regions, despite the fact
that the former are considerably smaller (15 Mb versus 46 Mb).
As a negative control, we also examined five non-neurological
traits (Supplemental Fig. S15; Supplemental Table S11). For four
of them, we observed that neither set of regions showed heritabil-
ity enrichment, as expected. The only exception was BMI, in con-
cordance with recent results implicating brain regulatory elements
in BMI heritability (Finucane et al. 2015).

The promoters of highly coexpressed genes of the epigenetic

machinery are bound by common trans-acting factors

To gain insights into the mechanistic basis of the observed coex-
pression, we investigated (1) whether these genes are colocalized
in the genome, and (2) whether there is evidence that they are reg-
ulated by common trans-acting factors. It has been observed that
highly expressed genes tend to reside in chromosomal clusters in
the human genome (Caron et al. 2001), and clustered genes are of-
ten coexpressed (Cohen et al. 2000). However, we did not observe

BA

C

Figure 5. Dual-function EM genes are enriched within the highly coex-
pressed group. (A) The distribution of dual-function EM genes (collectively
and separately for each enzymatic group) within the three coexpression
categories. (B) Log odds ratios and 95% confidence intervals for enrich-
ment of dual-function EM genes (collectively and separately for each enzy-
matic group) in the highly coexpressed category. The vertical gray line at 0
corresponds to statistical significance. (C) Blue dots correspond to ran-
domly chosen genes, sampled in sets of 270 genes from genes with a me-
dian expression (log(RPKM+1)) greater than 0.5 in at least half the tissues,
to match the expression of EM genes (as in Fig. 4D). Orange, green, and
pink dots correspond to EM genes, TF genes, and protein kinases/phos-
phatases, respectively. Each dot corresponds to a single gene, and its po-
sition along the y-axis corresponds to the number of other genes with
which it partners. The genes are ordered on the x-axis according to the
number of their partners. This figure also serves as a sensitivity analysis
with respect to the number of partners for this particular tissue cutoff.
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any evidence of spatial clustering of EM genes (Supplemental
Results; Supplemental Fig. S16).

To test whether shared regulation potentially contributes to
coexpression, we asked if the promoters of highly coexpressed
EM genes are bound by common trans-acting factors. To answer
this, we used ENCODE ChIP-seq data from K562 cells (The
ENCODE Project Consortium 2012). We chose this cell line
because it contains by far the most extensive collection of ChIP-
seq data on such factors, and because our coexpression analysis
suggests that the coexpression is tissue-independent. We tested
each of the 330 factors available from ENCODE for enriched bind-
ing at the promoters of the highly coexpressed EMgenes relative to
those of the non-coexpressed EMgenes. Although these factors are
a relatively small subset of the 1254 TFs encoded in the human ge-
nome (Vaquerizas et al. 2009; Barrera et al. 2016), we found that 53
factors exhibit at least twofold enrichment, in contrast to what is
observed for randomly chosen genes, or after permuting the labels
of EM genes (Methods; Supplemental Fig. S17) (P=0.02 and P=5×
10−4, respectively). We note that the direction of effect is consis-
tent with our hypothesis: There is only one factor enriched in
the non-coexpressed group compared to the highly coexpressed
group.

Discussion

We have performed a systematic investigation of all human genes
encoding for epigenetic writers/erasers/remodelers/readers (EM

genes). This enables us to make three
basic contributions. First, we identify
102 novel disease candidates within this
class of genes. Second, we provide evi-
dence that genetic disruption of the epi-
genetic domains of EM genes is the most
likely cause of the disease phenotypes.
This suggests that these phenotypes are
caused by an abnormal epigenomic state.
Third, we discover that coexpression dis-
tinguishes a large subset of EM genes
that are both extremely variation-intoler-
ant and, independently, enriched for
genes causing neurological dysfunction.

We note that our pLI-based ap-
proach for disease gene identification,
while unbiased, cannot discriminate
between genes that cause severe pediatric
disease versus genes that lead to lethality
at the zygotic or embryonic stage. Addi-
tionally, although our local mutational
constraint analysis argues that the enzy-
matic/reading functions are the primary
drivers of this intolerance to variation,
some EM proteins may participate in
biochemical events that affect other,
non-chromatin-related cellular func-
tions (Spange et al. 2009; Biggar and Li
2015). The importance of nonhistone
protein methylation and acetylation for
signal transduction pathways and other
molecular activities is not well under-
stood, although there are examples of es-
tablished functional relevance. These
include cases of Cornelia de Lange syn-

drome caused by defective deacetylation of SMC3, a subunit of
the cohesin complex (Deardorff et al. 2012), as well as the regula-
tion of the tumor-suppressor functions of TP53 through acetyla-
tion mediated by CBP/EP300 (Liu et al. 1999; Iyer et al. 2004).
Further elucidation of such mechanisms will undoubtedly yield
more insights into this issue.

Our most unexpected finding is that, among these 295 EM
genes, we detected a subset of 74 that are highly coexpressed with-
in tissues, as well as 83 others with an intermediate level of coex-
pression. The sizes of the two groups and the exact cutoff
separating them might be refined with future interrogation of
more tissues/cell types, and increases in sample size, but we antic-
ipate the rank ordering of EM genes with respect to their partners
to remain accurate. This coexpression appears to unite three seem-
ingly independent properties of the machinery: variation intoler-
ance, association with neurological dysfunction (even after
conditioning on haploinsufficiency), and dual-function (enzy-
matic activity combinedwith reading function). From a functional
standpoint, the clear relationship between coexpression and mu-
tational constraint indicates that the former potentially plays a
role in homeostasis and disease predilection. It also suggests a basis
for the observed dosage sensitivity, a counterintuitive result given
that many EM genes are enzymes and enzymes are usually haplo-
sufficient (Jimenez-Sanchez et al. 2001). For coexpressed enzymes,
however, a reduction of the normal amount of protein product
present would not be tolerated, since it would compromise the co-
ordinated expression of the module. Given the strong signal for
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Figure 6. EM genes linked to disorders with neurological dysfunction demonstrate significant enrich-
ment within the highly coexpressed category. (A) The percentage of EM genes with pLI > 0.9 in each of
the coexpression categories. (B) The percentage of EM genes that are associated with different types of
disease; individual disease categories are mutually exclusive. (MDEM) Mendelian disorders of the epige-
netic machinery; (Neuro) includes autism, schizophrenia, developmental disorders, and MDEM whose
phenotype includes dysfunction of the central nervous system (Methods). (C) Log odds ratios and
95% confidence intervals for enrichment of different subsets of EM genes in the highly coexpressed cat-
egory. The dashed vertical line at 0 corresponds to statistical significance. (D) The percentage of EM
genes that are associated with neurological dysfunction and have pLI > 0.9 in each of the coexpression
categories. (E) Odds ratio (black line) and 95% confidence interval (shaded area) for enrichment of
EM genes associated with neurological dysfunction in the highly coexpressed group, as a function of
the size of the highly coexpressed group. For all sizes, the comparison was performed against the not
coexpressed group. (F ) Estimates for enrichment of explained heritability, and unadjusted P-values, for
eight traits and two sets of regulatory features: regions marked by H3K27ac in brain within 1 Mb of
the transcription start site of all-EM (red dots) or highly coexpressed (orange dots) EM genes.
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enrichment of genes causing neurological dysfunction, it becomes
tempting to speculate that the coexpression might be especially
relevant to brain development and function; future examination
of EM gene expression during fetal and early childhood develop-
ment will likely yield profound insights into this. It will also be
important to develop methods for experimental perturbations
of this coexpression, to help define the precise cellular conse-
quences of its disruption. Finally, prioritization of highly coex-
pressed EM genes might not only aid in the discovery of new
pathogenic variants disrupting the epigenetic machinery, but
also provide a starting point for the interpretation of the function-
al consequences of those variants, particularly in the context of
neurological dysfunction.

Most of our work has focused on the disease causing potential
of rare coding variation in EM genes, but we have also established
that brain-specific regulatory regions surrounding them show en-
riched heritability signal for multiple common neurological traits.
It is noteworthy that these traits include ameasure of intellect (IQ)
and a seizure phenotype (generalized epilepsy), given that intellec-
tual disability and seizures are among themost commonneurolog-
ical manifestations of the Mendelian disorders of the epigenetic
machinery (Bjornsson 2015). For another epileptic phenotype,
focal epilepsy, we did not find heritability enrichment for either
set of EM genes. However, this GWAS included mostly adult
individuals (International League Against Epilepsy Consortium
on Complex Epilepsies 2014), and thus probably contains a differ-
ent genetic signal. We hypothesize that, as large high-quality data
sets accumulate, many common traits with a neurodevelopmental
origin will be genetically influenced by EM genes.

With respect to the underlyingmechanistic basis of the coex-
pression, oneway that such coregulation could be achieved is with
shared upstream regulators. Our data on trans-acting factor bind-
ing at the promoters of EM genes support this possibility. Howev-
er, a definitive answer to this will only be provided after further
delineation of human regulatory circuits, with mapping of en-
hancer–promoter interactions in different cell types. Currently
available data also argue against the formation of multi-subunit
complexes between the coexpressed EM gene products (Supple-
mental Results). Hence, it is possible that the need for coexpression
arises not to regulate protein–protein interactions, but because im-
balance of the epigenetic system could over time lead to major
changes in open versus closed chromatin (Fahrner and Bjornsson
2014).

In summary, our data provide the first evidence of widespread
coexpression of epigenetic regulators and link this phenomenon
to both variation intolerance and neurological dysfunction, thus
opening a new avenue to better understand the role of the human
epigenetic machinery in health and disease.

Methods

The creation of an epigenetic regulator list

We used InterPro domain annotations as provided by the UniProt
database (Hunter et al. 2009; The UniProt Consortium 2015), ac-
cessed in June 2016, to generate a list of proteins with at least
one domain that classifies them as writers or erasers of histone ly-
sinemethylation (Dillon et al. 2005; Shi 2007), writers or erasers of
histone lysine acetylation (Marmorstein and Zhou 2014; Seto and
Yoshida 2014), readers of the two aforementioned histone modifi-
cations (Musselman et al. 2012), and readers of methylated and
unmethylated CpG dinucleotides (Lee et al. 2001; Jørgensen and

Bird 2002). A full list of all the domains used along with the corre-
sponding InterPro IDs is provided in Supplemental Table S1.
Additionally, we included the known human DNA methyltrans-
ferases and demethylases (Weissman et al. 2014), as well as the cat-
alytic subunits of the known human chromatin remodeling
complexes (Clapier and Cairns 2009). We only included UniProt
entries that have been manually annotated and reviewed by the
database curators. The full list of all EM genes used in our analyses
along with several of their features, is provided in Supplemental
Table S2. We then made minor refinements to our list, following
a literature search (Supplemental Methods).

Although our categorization of EM-specific domains only in-
cludes domains which have some catalytic or reading function,
there are domains which were not labeled as EM-specific, but are
exclusively or almost exclusively found in EM genes. Two such ex-
amples are the pre-SET domain (present in seven proteins, all of
which are HMTs) and the post-SET domain (present in 16 proteins,
15 of those are HMTs and the remaining protein has eight do-
mains, all of which are post-SET domains).

To define EM protein complexes, we performed a manual
literature curation (Carrozza et al. 2003; Clapier and Cairns
2009; Laugesen and Helin 2014; Rao and Dou 2015), and subse-
quently assembled a catalog of the EM and accessory subunits of
19 complexes with chromatin modifying activities (Supplemental
Table S5).

To group EM histone modifiers according to their amino acid
substrate specificities, we classified EM genes as H3K4, H3K27,
H3K36, H3K9 methylation writers/erasers (Zhao and Garcia
2015; Hyun et al. 2017), H3K27 acetylation writers (Raisner et al.
2018), and H3K9 acetylation erasers (Supplemental Table S8;
Seto and Yoshida 2014).

Epigenetic regulators with disease associations

For Mendelian disease associations, we included disorders with a
phenotype mapping key equal to 3 (indicating sufficient evidence
to ascribe causality for a particular gene) in OMIM (https://omim
.org/), as accessed in June2016.Wedeterminedwhichof those syn-
dromes involved dysfunction of the central nervous system based
on the corresponding clinical synopses in OMIM. In addition to
OMIM, we included genes for which there is strong evidence asso-
ciating pathogenic protein-coding variants to autism (De Rubeis
et al. 2014), schizophrenia (McCarthy et al. 2014; Singh et al.
2016), or developmental disorders (Supplemental Methods; Zech
et al. 2016; Deciphering Developmental Disorders Study 2017).
In total, this yielded 50 EM genes associated with disorders exhib-
iting symptoms of abnormal brain function: Eight are linked to au-
tism, schizophrenia, and developmental disorders, and 42 are
known to cause amonogenic disorder inOMIM.As canbe seen un-
der the “Clinical Synopsis” inOMIM, in each of these disorders the
affected children can have a variety of manifestations under the
“Neurologic” category. These include intellectual disability of var-
iable severity, seizures, speech delay, apraxia, balance/gait abnor-
malities, memory defects, and others. Additionally, patients with
autism and schizophrenia also exhibit several different symptoms
attributable to central nervous systemdysfunction (suchas seizures
andmemorydeficits).Hence,weconcluded that themost clinically
meaningful classification of EM genes linked to such diseases is as
“associated with neurological dysfunction.”

Recently, Faundes et al. (2018) identified disease candidates
within the histone methylation machinery; we excluded these
EM genes from our list of novel disease candidates provided in
Supplemental Table S6.

Regarding associations with cancer, we first identified EM
genes potentially functioning as cancer drivers using: (1) a list of
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260 significantly mutated cancer genes, derived from data span-
ning 21 tumor types (Lawrence et al. 2014), and (2) genes that
were predicted to be drivers by at least one of the top three per-
formingmethods in Tokheim et al. (2016). Both these studies eval-
uated genes based on point mutations and small insertions/
deletions. We then also included other EM genes that have been
reported to be involved in cancer, harboring either point muta-
tions/small indels or structural rearrangements (Shen and Laird
2013; Feinberg et al. 2016). Taken together, the preceding studies
show that EM genes are associated with a wide variety of tumor
types, both solid and hematological (e.g., renal cell carcinoma,
colorectal cancer, lung cancer, melanoma, pancreatic neuroendo-
crine tumors, T/B cell lymphoma, acute lymphoblastic leukemia,
and others). This indicates that they broadly promote tumorigen-
esis when mutated in somatic cells, in a tissue-independent
manner. Therefore, we collectively refer to all these EM genes as
“cancer-associated.”

All the aforementioned disease associations are provided in
Supplemental Table S2.

Variation tolerance analysis

pLI scores for heterozygous loss-of-function constraint were down-
loaded from the ExAC database (Lek et al. 2016).When comparing
the pLI distributions of different classes of genes, we excluded
genes encoded on the X and Y Chromosomes.

CCR local constraint score

The CCR model (Havrilla et al. 2019) identifies regions of the ge-
nome without any missense or loss-of-function mutations in
gnomAD (Lek et al. 2016). Each region devoid of mutations is as-
signed a CCR percentile score; the greater the difference between
the observed and expected coverage-weighted length for regions
with similar CpG density, the higher the constraint. As a result,
the CCR model extends single gene-wide estimates of constraint
to identify subregions within genes that exhibit “local constraint.”
We mapped each protein domain to the genome, using the Pbase
package (available fromBioconductor at https://bioconductor.org/
packages/Pbase) (see also Supplemental Methods). For each EM
gene, we restricted our analysis to the single specific isoform for
which ExAC provides a pLI score. We then classified a domain as
constrained if at least 10% of bases in that domain resided in a ge-
nomic region with a CCR percentile score above 90, using
Supplemental Table S12. Our rationale for choosing this cutoff
was that (1) it had to be a sizable percentage, and (2) in high pLI
genes that only contain a single domain (such as TET3), that
domain had to be constrained. However, to examine whether
our results are dependent on the choice of cutoff, we also per-
formed our analysis with a quantitative version of this domain-
specific constraint. Specifically, we defined the “CCR local con-
straint” of a domain to be the percentage of bases in the domain
residing in a genomic region with a CCR percentile score above
90. Our analysis yielded results that mirrored those obtained
with the binary version of the CCR constraint (Supplemental
Fig. S4). The CCR local constraint score (quantitative version) for
the protein domains in EM genes is included in Supplemental
Table S3.

GTEx data

RNA-seq data from28 tissues (Supplemental Table S9) from449 in-
dividuals were downloaded from the GTEx portal, release V6p.
Those 28 tissues were selected based on differences in physiologi-
cal function. Our goal was to obtain as representative a picture of
human physiology as possible; since we ultimately performed

across-tissue analyses, we sought to avoid the inclusion of tissues
whose presence could introduce gene expression similarities that
would confound our tissue-specificity and coexpression analyses
(see subsequent sections). As an example, we only included sam-
ples from subcutaneous and not from visceral adipose tissue.

We downloaded the raw RPKM data as provided in the GTEx
portal. To determine whether a gene is expressed above a certain
threshold or not, and for our tissue specificity and expression level
analyses (Supplemental Methods), we used median(log2(RPKM+
1)). We assessed the impact of unwanted variation on the estima-
tion of tissue specificity (Supplemental Fig. S18), as described in
Supplemental Methods.

For our coexpression analysis, we downloaded the gene-level
count table and transformed to the log2(RPM/10+1) scale (scaled
to 107 counts per sample instead of 106). In this data set, five EM
genes were not available, leaving us with 290 for analysis.

Coexpression analysis

Using the GTEx data described above, we estimated tissue-specific
networks and modules using the following approach. First, for
each tissue, we only included genes for which the corresponding
median expression (median(log2(RPKM+1))) in that specific tissue
was greater than zero. Then, prior to network construction, we pre-
processed the expression data (on the log2(RPM/10+1) scale) to re-
move unwanted variation, which can confound the estimation of
pairwise correlation coefficients between genes (Freytag et al.
2015; Parsana et al. 2017). Parsana et al. (2017) established that
this can be addressed by removing leading principal components
from the expression matrix. To avoid overfitting, we removed
the same number of principal components from all tissues. In
Supplemental Figure S19, we depict the impact of doing this on
the distribution of pairwise correlations across (1) 2000 randomly
selected genes, and (2) 80 genes encoding for the protein compo-
nent of the ribosome (Supplemental Table S13), following ideas
from Freytag et al. (2015). We expect random genes to be uncorre-
lated (negative controls), whereas we expect genes encoding for ri-
bosomal proteins to be highly coexpressed (positive controls).
Based on these assessments, we settled on removing four principal
components.

We then proceeded to network construction. For each tissue,
we estimated the soft thresholding power using the entire expres-
sion matrix, following standard WGCNA guidelines. To ensure
that we can ultimately make comparisons across the 28 tissues,
wenext selectedEMgenes thathave someminimal expression (me-
dian(log2(RPKM+1)) > 0) in all of them.This gaveus 270EMgenes.
Subsequently, using only those 270 EM genes, we built unsigned
tissue-specific networks and identified modules by performing hi-
erarchical clustering using the function cutTreeDynamic(), with
the dissimilarity measure based on the topological overlap matrix.
We set the parameters minClusterSize and deepSplit equal to 15
and 2, respectively.Modules weremergedwhen the correlation be-
tween the corresponding module eigengenes was 0.8 or greater.
Any parameters that are not mentioned were left at their default
values.We assessed the statistical significance of our results, the ro-
bustness to sample outlier, and the reproducibility with a different
network inferencemethod as described in SupplementalMethods.

Trans-acting factor binding at EM gene promoters

We defined promoters as 10-kb sequences centered around the
transcriptional start site. We used the ENCODE portal (https://
www.encodeproject.org), to download TF ChIP-seq data for the
K562 cell line (Supplemental Methods; Supplemental Table S14)
and then selected genes expressed in K562 cells (Supplemental
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Methods). This yielded a total of 242 EM genes (72 highly co-
expressed and 94non-coexpressed), 14,355 other genes (excluding
ribosomal protein genes), and 330 TFs. To test for enrichment of
TF binding in the highly coexpressed versus the non-coexpressed
EM gene group, we first discarded any TFs that were binding at
only 10 promoters or less, as those were unlikely to be driving the
observed coexpression. We then created a 2×2 table for each of
the remaining 295 TFs, and performed Fisher’s exact test. Finally,
we examined the statistical significance of our results as described
in Supplemental Methods.

Stratified LD score regression

We used a list of brain enhancer regions defined by Vermunt et al.
(2014) as genomic locations distinct from genic promoters, which
are marked by H3K27ac in one or more of 136 brain samples from
87 anatomically distinct brain regions. We labeled each brain en-
hancer region within 1 Mb of the transcription start site (TSS) of
an EM gene as an EM-regulatory region. This yielded 46 Mb of
EM-regulatory regions and 15Mb of highly coexpressed regulatory
regions (with the former including the latter as a subset). We next
used stratified LD score regression (SLDSR) (Bulik-Sullivan et al.
2015; Finucane et al. 2015) with the LDSC software (https://
github.com/bulik/ldsc) to estimate coefficient Z-scores and en-
richment statistics for these two sets of regions across 29 traits
(Supplemental Methods; information regarding the correspond-
ing GWAS studies is provided in Supplemental Table S11). The in-
terpretation of the LDSC analysis is that a feature (a set of regions)
is significantly enriched for explained heritability if the feature
adds (significantly) to the explained heritability on top of the base-
line model. Because the model includes (controls for) multiple
types of features including coding and conserved regions, as well
as LD structure, this is a stronger statement of enrichment than,
for example, considering the enrichment of leading GWAS SNPs.

Genome assembly version

All our analyses were performed using theGRCh37 (hg19) genome
assembly version, primarily because the publicly available data sets
we relied on (ExAC, as well as the GWAS data used in LDSC) uti-
lized this genome version. Given that we focus on well-annotated
regions of the genome, our results would not be significantly im-
pacted by use of the newer GRCh38.

Software availability

Analysis code for this work is available online (https://github.com/
hansenlab/em_paper) and as Supplemental Code 1.
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