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Abstract
Wepresent the theory describing the various surface electronic states arisen from themixing of
conduction and valence bands in a strainedmercury telluride (HgTe) bulkmaterial.We demonstrate
that the strain-induced band gap in the Brillouin zone center ofHgTe results in the surface states of
two different kinds. Surface states of the first kind exist in the small region of electronwave vectors
near the center of the Brillouin zone and have theDirac linear electron dispersion characteristic for
topological states. The surface states of the second kind exist only far from the center of the Brillouin
zone and have the parabolic dispersion for large wave vectors. The structure of these surface electronic
states is studied both analytically and numerically in the broad range of their parameters, aiming to
develop its systematic understanding for the relevantmodelHamiltonian. The results bring attention
to the rich surface physics relevant for topological systems.

1. Introduction

The studies of two-dimensional (2D) electronicmodes localized near the surface of a three-dimensional (3D)
condensedmatter structure (surface electronic states) represent one of themost actively studied directions of
modern science of the last decade. The increasing interest of scientific community to this research area is caused
by the topologically nontrivial nature of the surface states in structures of certain type known as topological
insulators (TIs). Namely, TIs are condensedmatter systemswhich behave like an insulator in their 3D bulk but
have 2D gapless conducting electronic states protected by the time-reversal symmetry at their boundaries [1]. Up
to date, such topologically protected electronic states were intensively studied theoretically and experimentally
in various condensedmatter structures [2–13], and their optical analogs were also revealed [14–18].

Particularly, it follows from the theoretical analysis based on theZ2 topological invariants that the surface
electronic states in bulkmercury telluride (HgTe) can be topologically nontrivial [3]. However, the band
structure of naturalHgTe is semi-metallic: there is the small overlap of conduction and valence bands originated
from the bulk inversion asymmetry (BIA) of the crystal structure [19]. In order to observe the predicted
topological surface states inHgTe, one needs to turn this semi-metal into insulator. To solve the problem, an
uniaxial strain as a tool to open the band gap between the valence and conduction bands ofHgTewas proposed
[20]. Following thismethodology, the topological surface states in strainedHgTewere recently observed
experimentally within the strain-induced band gap [21]. As a consequence, physical properties of the surface
electronic states in strainedHgTe-basedmaterials are currently in the focus of attention [22–33]. However, the
theory describing the structure of these surface states is still far frombeing complete. Particularly, the
characteristic feature ofHgTe is the coexistence of surface electronic states of different physical nature: besides of
the discussed topological surface states in gappedHgTe, there are the surface states in gaplessHgTe analyzed for
thefirst time byD’yakonov andKhaetskii [34]. Certainly, the consistent theory should be able to describe the
dependence of all surface states on the strain. The present article takes a step towards such a consistent theory
and provides an intuitive understanding of the system.
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The paper is organized as follows. In section 2, we formulate a formalismdescribing the surface electronic
states of various kinds in strainedHgTe. In section 3, we solve the corresponding Schrödinger problem
analytically in the simplest particular cases, calculate the dispersion of the surface states numerically, and analyze
their energy spectrum. The last two sections contain the conclusion and acknowledgments.

2.Model

Weconsider the surface electronic states which originate from themixing of conduction and valence bands of
HgTe near the center of the Brillouin zone (the electronic termΓ8). In bulk strainedHgTe, the states of this
electronic term are described by theHamiltonian [19]

, 1L strain BIA   = + +ˆ ˆ ˆ ˆ ( )
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is the conventional LuttingerHamiltonian describing the conduction and valence bands of unstrainedHgTe,
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is the Bir-PikusHamiltonian describing themodification of conduction and valence bands ofHgTe under strain,
and
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is the term arisen from the BIA ofHgTe crystal. Correspondingly, k=(kx, ky, kz) is the electronwave vector,

1,2,3g are the Luttinger parameters ofHgTe, a, b and d are the deformation potentials ofHgTe, uij are the
components of the deformation tensor of the strainedHgTe,α is the BIA parameter, Jx,y,z are the 4×4matrices
corresponding to the electron angularmomentum J=3/2, and the curly brackets {A,B} represent anti-
commutators of thematricesA andB. The eigenstates of theHamiltonian (1) can bewritten in themost general
form as four independent spinors,

C C C C, , e , 5m m m m m
T kr

1 2 3 4
ij = [ ] ( )

with indicesm=1, 2, 3, 4, and the spinor componentsCnm(kx, ky, kz) are the functions of the electronwave
vector, k k kk , ,x y z= ( ).

For definiteness, let us consider electronic states localized near the (001)-surface, assuming that the bulk
HgTe fills the half-space for z>0. It follows from the conservation laws that the surface (001)mixes different
electronic states of theHamiltonian (1)with the same energy, ε(ks, kz), and the samewave vector in the surface
plane, ks=(kx, ky), but with different normal components of thewave vector, kz. As a consequence, the surface-
localized electronic states which arise from themixing are described by the same spinors (5)with the imaginary
z-component of electronwave vector, k iz k= , whereκ>0 is the localization parameters, corresponding to the
inverse of localization length for electronic states near the surface. Generally, the localization parameter,κ, can
be a complex number but its real partmust be positive. In bulkHgTe, there are the four different branches of
electron energy, ε(k), corresponding to the four branches of the conduction and valence bands spin-split due to
the BIA terms of theHamiltonian (1). Therefore, there are four different parameters,κ1,2,3,4(ks, ε), which can be
found as four solutions of the secular equation,

kdet , i 0. 6s k e- =∣ ˆ ( ) ∣ ( )

Making the replacement, k iz 1,2,3,4k , in the eigenspinors (5), we canwrite the surface-localized eigenfunction
of theHamiltonian (1) as a linear combination of the spinors,
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where rs=(x, y) is the electron radius-vector in the surface plane andA1,2,3,4 are the constants to be determined.
To do so, we chose themodel of a surface potential which can be approximated by the infinitely-high barrier at
position z=0. This sets the boundary condition for the electronwave function (7) as 0z 0Y ==∣ , and results
into the homogeneous systemof four algebraic equations defining the constantsAj,

2

New J. Phys. 21 (2019) 043016 OVKibis et al



A C nk , i 0, 1, 2, 3, 4 . 8
m

m nm s m
1

4

å k = =
=

( ) ( ) ( )

The secular equation of the algebraic system (8),

C n mkdet , i 0, , 1, 2, 3, 4 , 9nm s mk = =∣ ( )∣ ( ) ( )

defines the sought energy spectrumof the surface electronic states, ε(ks). In the next section of the article, we
apply the strategy described above tofind the spectrum ε(ks) in systemswith various band parameters. In the
case ofHgTe, we use the following parameters [28, 35]: m m15.6 2 , 9.6 21

2
0 2

2
0 g g= = ,

m b8.6 2 , 1.22 eV3
2

0g = = - andα=0.208Å·eV.

3. Results and discussion

Inwhat follows, we consider theHamiltonian (1) to bewritten as a 4×4matrix in the conventional Luttinger–
Kohnbasis, jz

y , corresponding to the different projections of electron angularmomentumon the z axis,
jz=±1/2,±3/2 (see the appendix for details). In unstrained bulkHgTe, the fourwave functions, jz

y , are the
eigenfunctions of theHamiltonian (1): they describe the states of the electronic termΓ8 at k=0, which are four-
fold degenerate. As for strained bulkHgTe, we consider for definiteness the case of an uniaxial stress applied
along the z axis. Under the uniaxial stress, the deformation tensor ofHgTe, uij, written in the principal
crystallographic axes, x, y, z, is diagonal. Particularly, the case of uzz<0 and uxx=uyy>0 corresponds to the
compressive strain, whereas the opposite case of u 0zz > and uxx=uyy<0 corresponds to the tensile strain. As
a result, the strainHamiltonian (3) can be rewritten as

a u u u J2 5 4 , 10xx yy zz g zstrain
2 e= + + + -ˆ ( ) ( )( ) ( )

where b u u b u u2 2g xx zz yy zze = - = -( ) ( ), andwe note that b<0 forHgTe. Thefirst termof the
Hamiltonian (10) is the strain-induced shift of zero energy, whichwill be omitted in the following. As for the
second term, it describes the strain-induced splitting of the electronic states with jz=±1/2 and jz=±3/2 at
k=0. It follows from the totalHamiltonian (1)with the strainHamiltonian (10) that g 3 2 1 2e e e= -  ,
where jz

e are the energies of these states at k=0 (see figure 1(a)). It should be noted, particularly, that the
compressive strain (εg<0) and the tensile strain (εg>0) result in the opposite sequence orders for energies of
the basic states with thewave functionsψ±1/2 andψ±3/2. Substituting the strainHamiltonian (3) into the total
Hamiltonian (1), we can apply themethodology developed in section 2 to analyze the evolution of the surface
electronic states inHgTe under stress.

First of all, let us consider the electronic states with the zero planar electronwave vector, ks=0, which are
localized near the (001)-surface of the uniaxially strainedHgTe. The simplest case, which can be readily solved,
corresponds to the Luttinger parameter γ1=0. Physically, thismodel situation describes a semiconductor with
theHamiltonian (1), where themasses of electrons and holes along the z axis,me andmh, are equal to each other,
m m 2 2e h 2 1 2 1g g g g= - +( ) ( ). For such a symmetric electron–hole system, theHamiltonian (1) at ks=0 can
bewritten in the Luttinger–Kohn basis as a block-diagonalmatrix (see the appendix),

Figure 1. Structure of the surface electronic states (bold red curves)near the Brillouin zone center for the strain-induced gap
0.8ge = meV and the different values of the Luttinger parameter 1g : (a) γ1=0; (b) m7.8 2 ;1

2
0g = (c) m15.6 21

2
0g = (the case

ofHgTe). Thin green and blue curves represent the dispersion of bulk conduction and valence bandswhich originate from the terms
ψ±3/2 andψ±1/2, respectively.
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where k i zz = - ¶ ¶ˆ is the operator of the electronmomentumnormal to the considered surface. In the
particular case of theHamiltonian (11), the surface-localized eigenspinors (7) correspond to the eigenenergy
ε0=0 and can bewritten as
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are the localization parameters of the surface state, and D 3 6 8g g
2

2ae a g e= -( ) is the normalization
constant. The eigenspinors (12) can be easily verified by direct substitution into the Schrödinger equation,

0 1,2 0 1,2 eY = Yˆ , with theHamiltonian (11) and the eigenenergy ε0=0. It follows from equation (13) that
0k <- if εg<0. Since the real part of both localization parameters,κ±, must be positive, the surface states (12)

exist only for εg>0 (tensile strain). Physically, thismeans that the existence of the surface states (12),first, arises
from the BIA terms ( 0a ¹ ) and, second, it strongly depends on the sequence order of their parent bulk states,
ψ±1/2 andψ±3/2.

Tofind the dispersion of the surface states (12) for small wave vectors ks, we have to project the total
Hamiltonian (1) to the subspace spanned by these two states, {Ψ1,Ψ2}. Keeping the terms linear in ks, we arrive
at the effectiveHamiltonian,

k k k k
3

2

3

2
, 14x x y y x y y xeff 0 e

a
s s

a
s s= - + - +ˆ ( ) ( ) ( )

where x y,s are the Paulimatrices written in the basis {Ψ1,Ψ2}. Diagonalizing theHamiltonian (14), we canwrite
the sought energy spectrumof the surface states (12)near ks=0 as

k k k kk 3 3 . 15s x y x y0
2 2e e a=  + +( ) ( )

It follows from equation (15) that the two degenerate states (12) form theDirac point at ks=0with the energy
ε0=0 and anisotropic linear dispersion near the point. Applying themethodology of section 2, one can
calculate numerically the dispersion of the surface states in the broad range of thewave vectors, ks. To
demonstrate the properties of these surface states inmore details, we plotted their dispersion for theHgTe band
parameters γ2,3 andα but for different Luttinger parameters γ1 (see figure 1). In themodel case of symmetric
electron–hole systemdiscussed above (γ1=0), theDirac point energy, ε0=0, lies exactly in themiddle of the
bulk statesψ±1/2 andψ±3/2 (see figure 1a), whereas the nonzero Luttinger parameter γ1 shifts theDirac point
energy, ε0, from themiddle towards the bulk termψ±3/2 (see figure 1(b)). As a result, the branches of the surface
states are localized near the bulk termψ±3/2 in the real case ofHgTe (see figure 1(c)), where the electron–hole
system is strongly asymmetric (me/mh= 1). It should be stressed that the effectiveHamiltonian (14) and the
dispersion (15), whichwere derived formally for the particular case of 01g = , are applicable to describe the
energy spectrumof surface states near theDirac point for any band parameters and the strain-induced band gap.
Namely, the energy of theDirac point ε0 is proportional to the band gap value, ε0∝ εg, where the proportionality
constant depends on the bulk band parameters, γ1,2,3 andα, and turns into zero if γ1=0. Taking this into
account, both the analytical expression for theDirac dispersion (15) and the numerically calculated dispersion in
figure 1(c) can be used to analyze the surface states in strainedHgTe for any gap, εg>0. Particularly, theDirac
velocity, v 3D a= , which can be extracted from the dispersion (15), does not depend on the gap.

It follows from the aforesaid that the branches of the surface statesmerge into the spectrumof bulk
electronic states if the plane electronwave vector, ks, is large enough (see figure 1(c)). Therefore, they exist only
near ks=0.However, there are the surface electronic states of other kind, which can exist far from ks=0. In
contrast to the states (12), the BIAHamiltonian (4) is not crucial for their existence andwill be omitted in the
following analysis. To simplify calculations, we alsowill neglect theweak anisotropy of electron–hole dispersion
inHgTe. Following [34], this neglect corresponds to the replacement of the Luttinger parameters,

2 3 52,3 2 3g g g g = +( ) , in theHamiltonian (2). Under these assumptions, the secular equation (9) reads
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Solving the equation (16)with equations (17) and (18), one can find the sought energy spectrumof the surface
states, ε(ks), under the uniaxial strain. This spectrum is plotted infigure 2 for the different strain-induced gaps,
εg. In the absence of the strain (εg=0), equation (16) can be solved analytically and leads to the parabolic branch
of theD’yakonov–Khaetskii (DKh) surface states [34],
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which is plotted infigure 2(a). Solving equation (16)numerically for 0ge ¹ , we can plot the spectrumof the
DKh surface states in strainedHgTe. In contrast to the surface states discussed above, theDKh states exist for
both tensile (see figure 2(b)) and compressive (see figure 2(c)) strain. However, their structure is crucially
different for these two cases: in the case of tensile strain, theDKh states lie only within the bulk spectrumof
conduction band (see figure 2(b)), whereas the case of compressive strain corresponds to theDKh states which
lie alsowithin the strain-induced band gap (see figure 2(c)). It should be noted also that theDKh states exist only
for large electronwave vectors, ks, and vanish near ks=0. It follows from figures 2(b) and (c) that theDKh
branchmerges into the continuumof bulk conduction band in the case of tensile strain (see figure 2(b)) and the
continuumof bulk valence band in the case of compressive strain (see figure 2(c)) at a some critical electronwave
vector. The value of the critical wave vector, ks=k0, is defined by equations (16)–(18), where the energy of the
surface electron states, ε, is equal to the energy of one of the two bulk electron branches,

k k k2 3 . 20s s g s1
2 2 2 2 4e g g e g=  + +( ) ( )

Solving equations (16)–(18) together with equation (20), one canfind that k g0 eµ ∣ ∣ . Thus, the increase of the
strain-induced gap εg shifts the existence domain of theDKh surface states to the region of large electronwave
vectors, ks. It follows from equation (16) that the spectrumof theDKh surface states in strainedHgTe is parabolic
and described approximately by equation (19) for largewave vectors, ks, satisfying the condition ks g

2g e . It
should be noted that the spectrumof theDKh surface states in strainedmaterials ofHgTe-class crucially depends
on the Luttinger parameters. To demonstrate this, we plotted the dispersion of theDKh surface states infigure 3
for theHgTe band parameter m9.0 22

0g = but for different Luttinger parameters γ1. In the case of
symmetric electron–hole system (γ1=0) there are the two branches of theDKh states which behave as surface
electrons and holes (see figure 3(a)). The nonzero Luttinger parameter γ1merges the upper (electronic) branch
into the continuumof bulk electronic states and changes the curvature of the lower (hole) branch (see

Figure 2. Structure of theD’yakonov–Khaetskii surface electronic states (bold red curves) inHgTe for the different strain-induced
gaps εg:(a) unstrainedmaterial (εg=0); (b) tensile strain (εg=0.5 meV); (c) compressive strain (εg=−0.5 meV). Thin green and
blue curves represent the dispersion of bulk bandswhich originate from the termsψ±3/2 andψ±1/2, respectively.
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figure 3(b)). As for the real case ofHgTe parameters, only the lower branch survives and turns into the surface
states of electronic kind (see figure 3(c)).

Finally, it should be noted that the experimentalmethodology based on the angle resolved photoemission
spectroscopy (ARPES) technique, which is commonly used to study surface electronic states in various
condensedmatter structures [36], can allow to observe the surface states discussed above. It is important from an
experimental viewpoint that the structure of all considered surface states crucially depends on the bulk Luttinger
parameters, γ1,2,3. Therefore, they should be chosen carefully to interpret experimental results adequately in
HgTe-basedmaterials (e.g. solid solutions CdHgTe andMnHgTe), where the band parameters depend on their
stoichiometric composition.

4. Conclusion

Wedeveloped the theory describing the structure of various surface electronic states which appear due to the
mixing of the conduction and valence bands in strainedmercury telluride (HgTe). It predicts the coexistence of
surface electronic states of two different kinds. First of themoriginate from the BIA ofHgTe, have the linear
Dirac dispersion, which is characteristic for topological states, and are localized in very narrow region of electron
wave vectors near the Brillouin zone center. The surface states of second kind originate from theDKh surface
states existing in gaplessHgTe. Due to the strain-induced band gap, they are shifted far from the Brillouin zone
center to the region of large electronwave vectors. Thus, the found surface states of the two kinds exist in
different areas of the Brillouin zone and can be detected independently. The energy spectrumof the states and
their structure are calculated both analytically and numerically in the broad range of band parameters.
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Appendix. TheHamiltonian in the Luttinger–Kohnbasis

Thewave functions of the Luttinger–Kohn basis, jz
y , corresponding to the different projections of electron

angularmomentumon the z axis, jz=±1/2,±3/2, can bewritten as

X Y X Y Z

X Y Z X Y

1

2
i ,

1

6
i 2 ,

1

6
i 2 ,

1

2
i , A1

3 2 1 2

1 2 3 2

y y

y y

= +  = - -  + 

= +  -  = - - 

+ -

+ -

( ) [( ) ]

[( ) ] ( ) ( )

where the vertical arrows,  and , represent the spinors corresponding to the±1/2 spin projections on the z
axis, andX,Y,Z are theBloch functions in the Brillouin zone center, which behave like theCartesian coordinates,

Figure 3. Structure of theD’yakonov–Khaetskii surface electronic states (bold red curves) for the strain-induced gap εg=−0.8 meV
and the different values of the Luttinger parameter γ1:(a) γ1=0; (b) m7.8 2 ;1

2
0g = (c) m15.6 21

2
0g = (the case ofHgTe). Thin

green and blue curves represent the dispersion of bulk bandswhich originate from the termsψ±3/2 andψ±1/2, respectively.
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x, y, z, under rotation of the coordinate axes [19]. In the basis (A1), the angularmomentummatrices, Jx,y,z, read

J J J

0 0 0

0 0 1

1 0 0

0 0 0

,

0 0 i 0

0 0 i i

i i 0 0

0 i 0 0

,

0 0 0

0 0 0

0 0 0

0 0 0

. A2x y z

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2

3

2
1

2
1

2
3

2

= =

-

-

-
=

-

-

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

( )

Substituting thematrices (A2) into equation (1), we arrive at theHamiltonian (1)written in the Luttinger–Kohn
basis,

F I L H M N

I L G N H M

H M N G I L

N H M I L F

, A3

j j 3 2 1 2 1 2 3 2

3 2

1 2

1 2

3 2

z z

*

* * *

* * * *



y y y y y y
y
y
y
y

=

+ +

+ - - +

+ - -

- + -

+ - + -

+

-

+

-

ˆ

⧹

( )

where

F k k k a b u a b u u

G k k k a b u a b u u

I k k k k b u u u M k k

H k k k u u L k N k k

2 2 ,

2 2 ,

3 i2 3 3 2 id , 3 2 i ,

2 3 i d i , 3 , 3 2 i .

x y z zz xx yy

x y z zz xx yy

x y x y xx yy xy x y

x y z xz yz z x y

1 2
2 2

1 2
2

1 2
2 2

1 2
2

2
2 2

3

3

g g g g

g g g g

g g a

g a a

= + + + - + - + + +

= - + + + + + + - +

= - - + - - + = - +

= - - - - = = - -

( )( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( )( )

( ) ( ) ( )( )

In the particular case of the uniaxial strain along the z axis and 01g = , thematrix (A3) for k k 0x y= = turns
into the block-diagonal Hamiltonian (11).
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