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Abstract

We present the theory describing the various surface electronic states arisen from the mixing of
conduction and valence bands in a strained mercury telluride (HgTe) bulk material. We demonstrate
that the strain-induced band gap in the Brillouin zone center of HgTe results in the surface states of
two different kinds. Surface states of the first kind exist in the small region of electron wave vectors
near the center of the Brillouin zone and have the Dirac linear electron dispersion characteristic for
topological states. The surface states of the second kind exist only far from the center of the Brillouin
zone and have the parabolic dispersion for large wave vectors. The structure of these surface electronic
states is studied both analytically and numerically in the broad range of their parameters, aiming to
develop its systematic understanding for the relevant model Hamiltonian. The results bring attention
to the rich surface physics relevant for topological systems.

1. Introduction

The studies of two-dimensional (2D) electronic modes localized near the surface of a three-dimensional (3D)
condensed matter structure (surface electronic states) represent one of the most actively studied directions of
modern science of the last decade. The increasing interest of scientific community to this research area is caused
by the topologically nontrivial nature of the surface states in structures of certain type known as topological
insulators (TIs). Namely, TIs are condensed matter systems which behave like an insulator in their 3D bulk but
have 2D gapless conducting electronic states protected by the time-reversal symmetry at their boundaries [1]. Up
to date, such topologically protected electronic states were intensively studied theoretically and experimentally
in various condensed matter structures [2—13], and their optical analogs were also revealed [14—18].

Particularly, it follows from the theoretical analysis based on the Z, topological invariants that the surface
electronic states in bulk mercury telluride (HgTe) can be topologically nontrivial [3]. However, the band
structure of natural HgTe is semi-metallic: there is the small overlap of conduction and valence bands originated
from the bulk inversion asymmetry (BIA) of the crystal structure [19]. In order to observe the predicted
topological surface states in HgTe, one needs to turn this semi-metal into insulator. To solve the problem, an
uniaxial strain as a tool to open the band gap between the valence and conduction bands of HgTe was proposed
[20]. Following this methodology, the topological surface states in strained HgTe were recently observed
experimentally within the strain-induced band gap [21]. As a consequence, physical properties of the surface
electronic states in strained HgTe-based materials are currently in the focus of attention [22-33]. However, the
theory describing the structure of these surface states is still far from being complete. Particularly, the
characteristic feature of HgTe is the coexistence of surface electronic states of different physical nature: besides of
the discussed topological surface states in gapped HgTe, there are the surface states in gapless HgTe analyzed for
the first time by D’yakonov and Khaetskii [34]. Certainly, the consistent theory should be able to describe the
dependence of all surface states on the strain. The present article takes a step towards such a consistent theory
and provides an intuitive understanding of the system.
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The paper is organized as follows. In section 2, we formulate a formalism describing the surface electronic
states of various kinds in strained HgTe. In section 3, we solve the corresponding Schrédinger problem
analytically in the simplest particular cases, calculate the dispersion of the surface states numerically, and analyze
their energy spectrum. The last two sections contain the conclusion and acknowledgments.

2.Model

We consider the surface electronic states which originate from the mixing of conduction and valence bands of
HgTe near the center of the Brillouin zone (the electronic term I'g). In bulk strained HgTe, the states of this
electronic term are described by the Hamiltonian [19]

7:[ = 7:[L + ,i:[strain + HBIA) (1)

where
}A{L = (’71 + 272)1(2 - 272(]931(3 + ])%kf + ]ZZkZZ) - 273({]9(’ ]y}kxky + {]xa ]z}kxkz + {]yy ]z}kykz) (2)

is the conventional Luttinger Hamiltonian describing the conduction and valence bands of unstrained HgTe,

~

5
Hstrain = (a + Zb)(uxx + uyy + uzz) - b(]fuxx + ])%”yy + ]zzuZZ)

4
NE

is the Bir-Pikus Hamiltonian describing the modification of conduction and valence bands of HgTe under strain,
and

(s ]y}uxy + {Jo Ly + {]y: ]z}uyz) (3

Hoin = alke{Jo U} = IO} + kU U2 = IO} + koL G2 = THY 4)

is the term arisen from the BIA of HgTe crystal. Correspondingly, k = (k, k,, k.) is the electron wave vector,
71,3 are the Luttinger parameters of HgTe, a, b and d are the deformation potentials of HgTe, u;;are the
components of the deformation tensor of the strained HgTe, o is the BIA parameter, ., ;are the 4 X 4 matrices
corresponding to the electron angular momentum J = 3/2, and the curly brackets { A, B} represent anti-
commutators of the matrices A and B. The eigenstates of the Hamiltonian (1) can be written in the most general
form as four independent spinors,

P = [Clm) C2m: C3m C4m]Teikr’ (5)

with indices m = 1, 2, 3, 4, and the spinor components C,,,(k,, k,, k) are the functions of the electron wave
vector, k = (ky, ky, k).

For definiteness, let us consider electronic states localized near the (001)-surface, assuming that the bulk
HgTe fills the half-space for z > 0. It follows from the conservation laws that the surface (001) mixes different
electronic states of the Hamiltonian (1) with the same energy, e(k,, k,), and the same wave vector in the surface
plane, k; = (k,, k), but with different normal components of the wave vector, k.. As a consequence, the surface-
localized electronic states which arise from the mixing are described by the same spinors (5) with the imaginary
z-component of electron wave vector, k, = ix, where k > 0is the localization parameters, corresponding to the
inverse of localization length for electronic states near the surface. Generally, the localization parameter, x, can
be a complex number but its real part must be positive. In bulk HgTe, there are the four different branches of
electron energy, £(k), corresponding to the four branches of the conduction and valence bands spin-split due to
the BIA terms of the Hamiltonian (1). Therefore, there are four different parameters, x1 , 3 4(k,, €), which can be
found as four solutions of the secular equation,

det|H(k,, i) — €| = 0. (6)

Making the replacement, k, — ik ;3 4, in the eigenspinors (5), we can write the surface-localized eigenfunction
of the Hamiltonian (1) as alinear combination of the spinors,
4
U = ek Z [Cim(ks, 1K), Com(Ks, iKm)s Can(Ks ikm)s Can(ks, iHm)]TAm e fim?, (7)
m=1

wherer; = (x, y) is the electron radius-vector in the surface plane and A , ; 4 are the constants to be determined.
To do so, we chose the model of a surface potential which can be approximated by the infinitely-high barrier at
position z = 0. This sets the boundary condition for the electron wave function (7) as ¥|,_o = 0, and results
into the homogeneous system of four algebraic equations defining the constants A,
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Figure 1. Structure of the surface electronic states (bold red curves) near the Brillouin zone center for the strain-induced gap

&g = 0.8 meV and the different values of the Luttinger parameter ;: (a)y; = 05 (b) v, = 7.8 /2%/2mq; (¢) v, = 15.6 /2% /2my (the case
of HgTe). Thin green and blue curves represent the dispersion of bulk conduction and valence bands which originate from the terms

Va3, and 1y o, respectively.

4
Z Amcnm(ks: il{m) =0, (1’1 =1,2,3, 4) (8)

m=1

The secular equation of the algebraic system (8),

det|C,n(ks, ik,)| =0, (n,m=1,2,3,4), ©)

defines the sought energy spectrum of the surface electronic states, (k). In the next section of the article, we
apply the strategy described above to find the spectrum e(k;) in systems with various band parameters. In the
case of HgTe, we use the following parameters [28, 35]: 4, = 15.6/2%/2my, v, = 9.6 /2*/2my,

v, = 8.6 /2/2mg, b = —1.22 eV anda = 0.208 A-eV.

3. Results and discussion

In what follows, we consider the Hamiltonian (1) to be writtenasa4 x 4 matrix in the conventional Luttinger—
Kohn basis, 9 , corresponding to the different projections of electron angular momentum on the z axis,

J. = £1/2, £3/2 (see the appendix for details). In unstrained bulk HgTe, the four wave functions, 1; , are the
eigenfunctions of the Hamiltonian (1): they describe the states of the electronic term I'gatk = 0, which are four-
fold degenerate. As for strained bulk HgTe, we consider for definiteness the case of an uniaxial stress applied
along the zaxis. Under the uniaxial stress, the deformation tensor of HgTe, u;;, written in the principal
crystallographic axes, x, , z, is diagonal. Particularly, the case of u,, < 0and u,, = u,, > 0 corresponds to the
compressive strain, whereas the opposite case of u,, > 0and u,,
aresult, the strain Hamiltonian (3) can be rewritten as

= u,, < 0 corresponds to the tensile strain. As

ﬂstrain = a(uyg + Uy + Uz) + (5g/2)(]zz - 5/4)> (10)

where e, = 2b(ty — ;) = 2b(uy, — u,,),and wenote that b < 0 for HgTe. The first term of the
Hamiltonian (10) is the strain-induced shift of zero energy, which will be omitted in the following. As for the
second term, it describes the strain-induced splitting of the electronic states with j, = +1/2andj, = £3/2at
k = 0.t follows from the total Hamiltonian (1) with the strain Hamiltonian (10) that &, = €13/5 — €41/,
where ¢; are the energies of these states atk = 0 (see figure 1(a)). It should be noted, particularly, that the
compressive strain (¢, < 0) and the tensile strain (¢, > 0) result in the opposite sequence orders for energies of
the basic states with the wave functions ¢ ; /, and ¢, 3 /. Substituting the strain Hamiltonian (3) into the total
Hamiltonian (1), we can apply the methodology developed in section 2 to analyze the evolution of the surface
electronic states in HgTe under stress.

First of all, let us consider the electronic states with the zero planar electron wave vector, k, = 0, which are
localized near the (001)-surface of the uniaxially strained HgTe. The simplest case, which can be readily solved,
corresponds to the Luttinger parameter y; = 0. Physically, this model situation describes a semiconductor with
the Hamiltonian (1), where the masses of electrons and holes along the z axis, #, and my, are equal to each other,
me /my, = (27, — ) /@27, + ). For such a symmetric electron-hole system, the Hamiltonian (1) atk, = 0 can
be written in the Luttinger—Kohn basis as a block-diagonal matrix (see the appendix),

3
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—2mk; + &,)2 V3ak, 0 0
A A2
. J3ak 27k, — €,/2 0 0
Ho = ‘ 2 &/ Az R , (11)
0 0 272k, — g/2 —3ak,
A a2
0 0 —3ak, —2mk, + &g/2
where lzz = — i8/ 0z is the operator of the electron momentum normal to the considered surface. In the

particular case of the Hamiltonian (11), the surface-localized eigenspinors (7) correspond to the eigenenergy
€9 = 0and can be written as

W = D(e "™ — e "9)[1, 1, 0, 0]

U, = D(e " — e~ #9)[0, 0, —i, 1]7, (12)
where
2
I
L (ﬁa) s 13)
47, 47, 4y,

are the localization parameters of the surface state,and D = \/ J3 agg / (602 — 8, €g) is the normalization
constant. The eigenspinors (12) can be easily verified by direct substitution into the Schrédinger equation,
'HO\I/],Z = g9 ¥}, with the Hamiltonian (11) and the eigenenergy ¢, = 0. It follows from equation (13) that
k_ < 0ife, < 0.Since the real part of both localization parameters, # ., must be positive, the surface states (12)
exist only for £, > 0 (tensile strain). Physically, this means that the existence of the surface states (12), first, arises
from the BIA terms (a = 0) and, second, it strongly depends on the sequence order of their parent bulk states,
Yirpand Py .

To find the dispersion of the surface states (12) for small wave vectors k,, we have to project the total
Hamiltonian (1) to the subspace spanned by these two states, { U, U, }. Keeping the terms linear in k,, we arrive
at the effective Hamiltonian,

: ¥E

3
Her = €0 — %(kax + Uyky) - Ta(axky + Uykx)) (14)

where oy ,, are the Pauli matrices written in the basis { ¥y, ¥, }. Diagonalizing the Hamiltonian (14), we can write
the sought energy spectrum of the surface states (12) near k, = O as

e(k) = g0 = V3a [k + k; + V3k.k,.

15)

It follows from equation (15) that the two degenerate states (12) form the Dirac point atk, = 0 with the energy
€0 = 0and anisotropic linear dispersion near the point. Applying the methodology of section 2, one can
calculate numerically the dispersion of the surface states in the broad range of the wave vectors, k,. To
demonstrate the properties of these surface states in more details, we plotted their dispersion for the HgTe band
parameters 7, ; and « but for different Luttinger parameters ; (see figure 1). In the model case of symmetric
electron—hole system discussed above (7, = 0), the Dirac point energy, €, = 0, lies exactly in the middle of the
bulk states ¢ ; » and ¢, 5> (see figure 1a), whereas the nonzero Luttinger parameter +; shifts the Dirac point
energy, o, from the middle towards the bulk term 1), 5 /> (see figure 1(b)). As a result, the branches of the surface
states are localized near the bulk term v, 5, in the real case of HgT'e (see figure 1(c)), where the electron—hole
system is strongly asymmetric (m,/my, < 1). It should be stressed that the effective Hamiltonian (14) and the
dispersion (15), which were derived formally for the particular case of 7, = 0, are applicable to describe the
energy spectrum of surface states near the Dirac point for any band parameters and the strain-induced band gap.
Namely, the energy of the Dirac point & is proportional to the band gap value, &, o €, where the proportionality
constant depends on the bulk band parameters, 7; , ; and «, and turns into zero if y; = 0. Taking this into
account, both the analytical expression for the Dirac dispersion (15) and the numerically calculated dispersion in
figure 1(c) can be used to analyze the surface states in strained HgTe for any gap, €, > 0. Particularly, the Dirac
velocity, vp = /3 a//, which can be extracted from the dispersion (15), does not depend on the gap.

It follows from the aforesaid that the branches of the surface states merge into the spectrum of bulk
electronic states if the plane electron wave vector, ki, is large enough (see figure 1(c)). Therefore, they exist only
near k, = 0. However, there are the surface electronic states of other kind, which can exist far fromk, = 0.In
contrast to the states (12), the BIA Hamiltonian (4) is not crucial for their existence and will be omitted in the
following analysis. To simplify calculations, we also will neglect the weak anisotropy of electron—hole dispersion
in HgTe. Following [34], this neglect corresponds to the replacement of the Luttinger parameters,

Y3 — ¥ = (27, + 37%;) /5, in the Hamiltonian (2). Under these assumptions, the secular equation (9) reads

4
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Figure 2. Structure of the D’yakonov—Khaetskii surface electronic states (bold red curves) in HgTe for the different strain-induced
gaps £,:(a) unstrained material (¢, = 0); (b) tensile strain (¢, = 0.5 meV); (c) compressive strain (¢, = —0.5 meV). Thin green and
blue curves represent the dispersion of bulk bands which originate from the terms ¢, 3, and 1) /», respectively.

DA — 11APA® — 1] =0, (16)
where
2
AY = V3 T 265 , (17)
e — k! — &) + (=DI[y (K} + 255 + g2
A + (—1)/{JA> 4+ 4BC
Kj = > (18)
2B
and

A=2m(e — k) + 274kl — &), B= (m+ 212y — ),

C=(c — mkd)* — Ok + g¢/2)* — 37k
Solving the equation (16) with equations (17) and (18), one can find the sought energy spectrum of the surface
states, £(k;), under the uniaxial strain. This spectrum is plotted in figure 2 for the different strain-induced gaps,

€¢. In the absence of the strain (¢, = 0), equation (16) can be solved analytically and leads to the parabolic branch
of the D’yakonov—Khaetskii (DKh) surface states [34],

1+ 32y — /@y + ) |
2

etk = |1 - (n + 27)kZ, (19)

which is plotted in figure 2(a). Solving equation (16) numerically for ¢, = 0, we can plot the spectrum of the
DKh surface states in strained HgTe. In contrast to the surface states discussed above, the DKh states exist for
both tensile (see figure 2(b)) and compressive (see figure 2(¢)) strain. However, their structure is crucially
different for these two cases: in the case of tensile strain, the DKh states lie only within the bulk spectrum of
conduction band (see figure 2(b)), whereas the case of compressive strain corresponds to the DKh states which
lie also within the strain-induced band gap (see figure 2(¢)). It should be noted also that the DKh states exist only
for large electron wave vectors, k,, and vanish near k, = 0. It follows from figures 2(b) and (c) that the DKh
branch merges into the continuum of bulk conduction band in the case of tensile strain (see figure 2(b)) and the
continuum of bulk valence band in the case of compressive strain (see figure 2(c)) at a some critical electron wave
vector. The value of the critical wave vector, k; = ko, is defined by equations (16)—(18), where the energy of the
surface electron states, ¢, is equal to the energy of one of the two bulk electron branches,

e = mk2 £ (k2 + €/2)* + 37%2. (20)

Solving equations (16)—(18) together with equation (20), one can find that kg o< /|| . Thus, the increase of the
strain-induced gap ¢, shifts the existence domain of the DKh surface states to the region of large electron wave
vectors, k. It follows from equation (16) that the spectrum of the DKh surface states in strained HgTe is parabolic
and described approximately by equation (19) for large wave vectors, k,, satisfying the condition vk2 >> €q. It
should be noted that the spectrum of the DKh surface states in strained materials of HgTe-class crucially depends
on the Luttinger parameters. To demonstrate this, we plotted the dispersion of the DKh surface states in figure 3
for the HgTe band parameter v = 9.0 /22/2m, but for different Luttinger parameters ;. In the case of
symmetric electron—hole system (7, = 0) there are the two branches of the DKh states which behave as surface
electrons and holes (see figure 3(a)). The nonzero Luttinger parameter ; merges the upper (electronic) branch
into the continuum of bulk electronic states and changes the curvature of the lower (hole) branch (see

5
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Figure 3. Structure of the D’yakonov—-Khaetskii surface electronic states (bold red curves) for the strain-induced gap ¢, = —0.8 meV
and the different values of the Luttinger parameter v;:(a) y; = 03 (b) v, = 7.8 /#2/2mg; (c) 7, = 15.6 /2 /2my (the case of HgTe). Thin
green and blue curves represent the dispersion of bulk bands which originate from the terms 15, and ¢, », respectively.

figure 3(b)). As for the real case of HgTe parameters, only the lower branch survives and turns into the surface
states of electronic kind (see figure 3(c)).

Finally, it should be noted that the experimental methodology based on the angle resolved photoemission
spectroscopy (ARPES) technique, which is commonly used to study surface electronic states in various
condensed matter structures [36], can allow to observe the surface states discussed above. It is important from an
experimental viewpoint that the structure of all considered surface states crucially depends on the bulk Luttinger
parameters, 71 » 3. Therefore, they should be chosen carefully to interpret experimental results adequately in
HgTe-based materials (e.g. solid solutions CdHgTe and MnHgTe), where the band parameters depend on their
stoichiometric composition.

4. Conclusion

We developed the theory describing the structure of various surface electronic states which appear due to the
mixing of the conduction and valence bands in strained mercury telluride (HgTe). It predicts the coexistence of
surface electronic states of two different kinds. First of them originate from the BIA of HgTe, have the linear
Dirac dispersion, which is characteristic for topological states, and are localized in very narrow region of electron
wave vectors near the Brillouin zone center. The surface states of second kind originate from the DKh surface
states existing in gapless HgTe. Due to the strain-induced band gap, they are shifted far from the Brillouin zone
center to the region of large electron wave vectors. Thus, the found surface states of the two kinds exist in
different areas of the Brillouin zone and can be detected independently. The energy spectrum of the states and
their structure are calculated both analytically and numerically in the broad range of band parameters.
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Appendix. The Hamiltonian in the Luttinger—-Kohn basis

The wave functions of the Luttinger—Kohn basis, 1; , corresponding to the different projections of electron
angular momentum on the zaxis, j, = +1/2, £3/2, can be written as

Yy32 = %(X +iY) T2 = —%[(x —iY) 142211,
wﬂ/z:%[ou iY) | 22714 = —%(X— i), (A1)

where the vertical arrows, T and |, represent the spinors corresponding to the £1/2 spin projections on the z
axis, and X, Y, Z are the Bloch functions in the Brillouin zone center, which behave like the Cartesian coordinates,
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x,y» z, under rotation of the coordinate axes [19]. In the basis (A1), the angular momentum matrices, J,,. read

o o B o o o0 —i o ErE
2 2 2
o o 1 0 0 S Lk 0 1 0 o0
k= A > ]y = = » L= 1 (A2)
e TEE R 0 0 0 I 0
5 3
o 2 0 o 0 i 0 0 o 0 0 -5

Substituting the matrices (A2) into equation (1), we arrive at the Hamiltonian (1) written in the Luttinger—Kohn
basis,

Yi\Y; Y3 Y_1/2 P12 Y 3.2
Py3/ F I+L H+M N
H= ¢, I*+1L G -N —-H+M, (A3)
Ui, H*4+ M*  —N* G I-1L
Vs N*¥  —H¥*4+ M* I*—1L F

where
F=(m+ ki + k) + (= 27k + (@ — buze + (@ + b/2) (uxe + uyy),
G=m— ki + k) + n+ 27k + (@ + buz + (@ — b/2)(ux + uyy),
I=—B3yki — k) + i2V3y3keky — (V3b/2) (g — 1)) + idugy, M = —(30a/2)(k, + iky),
H= 23k, — ik)k, — d(uy, — iuy), L = J3ak,, N=—Ba/2)k, — ik,).

In the particular case of the uniaxial strain along the zaxis and , = 0, the matrix (A3) for k, = k, = 0 turns
into the block-diagonal Hamiltonian (11).
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