
SoftwareX 10 (2019) 100325

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

LyapXool – a program to compute complete Lyapunov functions
Carlos Argáez a,∗, Jean-Claude Berthet b, Hjörtur Björnsson a, Peter Giesl c,
Sigurdur Freyr Hafstein a

a Science Institute, University of Iceland, Dunhagi 3, 107 Reykjavík, Iceland
b Vatnaskil, Sídumúli 28, 108 Reykjavík, Iceland
c Department of Mathematics, University of Sussex, United Kingdom

a r t i c l e i n f o

Article history:
Received 12 June 2019
Received in revised form 13 August 2019
Accepted 30 August 2019

Keywords:
Complete Lyapunov functions
C++
Scientific computing
Dynamical systems
Autonomous ordinary differential
equations

a b s t r a c t

LyapXool is a C++ program to compute complete Lyapunov functions and their orbital derivatives for
any two- or three-dimensional dynamical system expressed by an autonomous ordinary differential
equation. The program is user-friendly and determines the chain-recurrent set. This paper describes
how the code is organized, how it can be used and provides an interesting example of its application.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata: General information about this code.

Current code version v1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2019_207
Legal Code License GNU General Public License v3.0
Code versioning system used None
Software code languages, tools, and services used C++, Armadillo, OpenMP
Compilation requirements, operating environments & dependencies Unix-like systems
Link to developer documentation/manual github.com/LyapXool/V1
Support email for questions carlos@hi.is

1. Motivation and significance

Solutions of an autonomous differential equations of the form

ẋ = f(x), (1)

where x ∈ Rn, n ∈ N, describe general time-changing phenomena
and often arise from applications. The general behavior of solu-
tions, depending on their initial condition, is thus of fundamental
interest. Numerical simulations of (1) under various different
initial conditions are computationally expensive. For that reason,

∗ Corresponding author.
E-mail address: carlos@hi.is (C. Argáez).

we consider an approach that characterizes the behavior of the
system by a so-called complete Lyapunov function.

A complete Lyapunov function V : Rn
→ R, introduced in [1–

4], is defined on the whole phase space. It does not increase
along solutions of the differential equation (1) and thus provides
information about stability through analyzing the function’s min-
ima and maxima. Moreover, it divides the phase space Rn into
two disjoint areas: The area of the gradient-like flow, where the
function strictly decreases along solutions and thus solutions flow
through, and the chain-recurrent set, where the function is con-
stant along solutions and where infinitesimal perturbations can
make the flow recurrent. These two areas can be characterized
by the sign of the orbital derivative V ′(x) = ∇V (x) · f(x), the

https://doi.org/10.1016/j.softx.2019.100325
2352-7110/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2019.100325
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2019.100325&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2019_207
http://github.com/LyapXool/V1
mailto:carlos@hi.is
https://doi.org/10.1016/j.softx.2019.100325
http://creativecommons.org/licenses/by/4.0/


2 C. Argáez, J.-C. Berthet, H. Björnsson et al. / SoftwareX 10 (2019) 100325

derivative along solutions: V ′(x) < 0 in the area with gradient-
like flow and V ′(x) = 0 in the chain-recurrent set. In this paper
we explain the computational code we have written to compute
complete Lyapunov functions and to classify the chain-recurrent
set. Some authors of this papers have explained the mathematical
algorithm before in [5–9], which is based on an algorithm to
compute classical Lyapunov functions, see [10].

There are other methods to analyze the general behavior of
dynamical systems. The direct simulation of solutions with many
different initial conditions is costly and can only give limited
information about the general behavior of the system. Other,
more sophisticated methods include determining the boundaries
of basins of attraction of attractors by computing invariant man-
ifolds [11]. The cell mapping approach [12] or set oriented meth-
ods [13] divide the phase space into cells and compute the dy-
namics between those cells [14].

Other methods to compute complete Lyapunov functions [15–
17] start by considering the discrete-time system given by the
time-T map, subdivide the phase space into cells and compute
the dynamics between them through an induced multivalued
map using the computer package GAIO. A complete Lyapunov
function is then obtained using graph algorithms [9]. However,
this approach has the disadvantage of requiring a large number
of cells even in low dimensions.

In [18], a complete Lyapunov is constructed as a continuous
piecewise affine (CPA) function, affine on each simplex of a fixed
simplicial complex. However, this method assumes that informa-
tion about local attractors is available, while the proposed method
in this paper does not require any information about the system
under consideration.

The method in this paper is inspired by the construction of
classical Lyapunov functions. It is fast and works well in higher
dimensions. In [19], the method described in [15] is compared to
the RBF method for equilibria for one particular example.

Computing a complete Lyapunov function does not require
solving the dynamical system for particular initial conditions,
instead, the general idea is to approximate a ‘‘solution’’ to the
ill-posed partial differential equation (PDE) V ′(x) = −1 in order
to find a function which has a negative orbital derivative. An
approximation v is computed using Radial Basis Functions (RBFs),
a mesh-free collocation technique, such that v′(x) = −1 is
fulfilled at all points x in a finite set of collocation points X .
However, the computed function v will fail to fulfill the PDE at
points of the chain-recurrent set, such as an equilibrium or a
periodic orbit, since for some x in the chain-recurrent set we
must have v′(x) ≥ 0. This is the key component of our general
algorithm to locate the chain-recurrent set; we determine the
chain-recurrent set by localizing the area where v′(x) ̸≈ −1.

Our code uses mesh-free collocation methods, based on RBFs
[10]. As RBFs, we use Wendland functions, which are compactly
supported and positive definite functions [20], constructed as
polynomials on their compact support. General descriptions about
Wendland functions are found in [10].

As collocation points X = {x1, . . . , xN} ⊂ Rn, we use a subset
of a hexagonal grid. This has been shown to minimize the condi-
tion number of the collocation matrix for a fixed fill distance [21].
The approximant is found by solving a system of linear equations,
given by the collocation matrix, which is a quadratic matrix of
size N . We remove all equilibria from the set of collocation points
X; not doing so would cause the collocation matrix to be singular.
The density of the collocation grid is controlled by a parameter α.
More detailed information can be found in [5–10].

Once we know v, we use an evaluation grid Yxj around each
collocation point xj to validate the approximation. LyapXool is
coded with two different options for evaluation grids. The first
one consists of m equidistant points over µ concentric circles

around each collocation point. This grid is extended to spheres
in 3D. The second one is a directional grid introduced in [7,9],
which places all evaluation points aligned to the flow of the ODE
system; at each collocation point, we place 2m evaluation points
along the direction of the flow with the collocation point in the
middle.

1.1. Complete Lyapunov function and chain-recurrent set

A tolerance parameter −1 < γ ≤ 0 is defined and every
collocation point xj, such that there exists a y ∈ Yxj with v′(y) >

γ , is marked to be in the chain-recurrent set (xj ∈ X0). The other
points are considered to be in the gradient-like flow (xj ∈ X−).
After that, the approximation of the complete Lyapunov function
can be improved iteratively by solving v′(xj) = rj, where rj is
computed from the previous iteration. We have implemented
three different strategies to compute the value rj, cf. [5,6,9] for
more information:

A. We define rj = −1 if xj ∈ X− and rj = 0 if xj ∈ X0

B. rj is a smooth interpolation of A.
C. rj is the average of the values v′(x), x ∈ Yxj

The general procedure is given by the following Algorithm.

1. Compute the approximation vi of the complete Lyapunov
function for i = 0 by solving v′

i (xj) = −1 at the collocation
points

2. Approximate X0 using v′

i (y), y ∈ Yxj , for each collocation
point xj. If v′

i (y) > γ for any y ∈ Yxj , then xj ∈ X0, else
xj ∈ X−, where γ ≤ 0 is a predefined tolerance parameter

3. Compute rj using v′

i (x), x ∈ Yxj
4. Compute vi+1 by solving v′

i+1(xj) = rj for j = 1, . . . ,N

Set i to i + 1 and repeat steps 2. to 4.

2. Software description

LyapXool is written in C++. It requires the Armadillo C++ library
for linear algebra and scientific computing [22,23] as well as
OpenMP for multithreading several operations. The program is
usually run from the command line in a unix-based operating
system. The code’s execution generates three different files:

• data.lpx, where all the input parameters are written
• files with user-chosen extension. The files contain, e.g., the

coordinates of vi(x) and v′

i (x), the points in the chain-
recurrent set, etc.

• output.lpx, where information about running times is docu-
mented

2.1. Software architecture

The source code is divided into a set of modules, each in a
separate file:

• problem.cpp: contains the entry point of the executable
• instructions.hpp: all parameters and conditions carried out

during calculations
• generalities.cpp and generalities.hpp: compute the dynami-

cal system’s Jacobian, its eigenvalues at given points. Classify
critical points as well as include printing functions

• odesystem.cpp and odesystem.hpp: specify the ODEs
• RBF.cpp and RBF.hpp: compute the complete Lyapunov func-

tion, its orbital derivative, the collocation grid, the first
rj



C. Argáez, J.-C. Berthet, H. Björnsson et al. / SoftwareX 10 (2019) 100325 3

Fig. 1. Three different projections of the computed chain-recurrent set for the
Lorenz attractor. Upper: Projection on the xy plane. Lower left: Projection on
the xz plane. Lower right: Projection on the yz plane. The z axis in the lower
right figure is the same as in the lower left figure.

• chainrecurrentset.cpp and chainrecurrentset.hpp: provide
the classification of the chain-recurrent set, evaluation grid
and rj for further iterations

• wendland.cpp and wendland.hpp: construct the Wendland
function

2.2. Software functionalities

Our software constructs complete Lyapunov functions and
determines the chain-recurrent set.

3. Illustrative examples

Numerous systems have been analyzed using this software [5–
9]. In Fig. 1 we show the results for the (scaled) Lorenz attractor’s
chain-recurrent set obtained with LyapXool with α = 0.0665,
γ = −0.5, r = 0.49, in the domain [−1.0, 1.0]3 ∈ R3, with
the directional evaluation grid and m = 10. These figures were
obtained after 11 iterations.

4. How to use

• Write the expression for f(x) in (1), i.e. the dynamical sys-
tem, in odesystem.cpp and give it a name

• Define that name in namespace in instructions.hpp. In this
file also define the following parameters for the calculation:
domain, critical values, total number of evaluation points
per collocation point, type of grid, etc. Finally define the
extension into which the results will be printed

• Compile and link with OpenMP and Armadillo
• Run

5. Impact

This software computes complete Lyapunov functions (CLF)
for any 2D or 3D dynamical system, whose dynamics are given
by an autonomous ODE. It classifies the chain-recurrent set and
determines the qualitative dynamics of the system. Hence, it
can be used both to analyze given dynamical systems and to
derive appropriate models. We expect it to be used in applied
sciences using ordinary differential equations, such as biology,
computational chemistry, physics, pharmacology, etc. The tool
provides a fast and reliable algorithm to construct a CLF to give

information on the behavior of any 2D or 3D dynamical system
without solving the ODE with many initial conditions.

In [24], some of the authors showed that the cost of computing
a complete Lyapunov function with our method using I iterations
is of order O(N3

+ IN2 nm), where N is the total number of
collocation points, n is the dimension of the problem and m is
the total number of points to be evaluated in the evaluation grid
per collocation point.

6. Future work

We will further develop this program, using experience form
different test systems, and make it more sophisticated to allow
it to classify the connected components of the chain-recurrent
set and their stability. In the future, we will extend our code
to handle general n-dimensional systems, and it can also be
generalized to discrete-time dynamical systems. Further, we will
investigate if it can be extended to compute Lyapunov–Krasovskii
functionals for time-delay systems.

7. Conclusions

We have written a C++ code that computes complete Lya-
punov functions for any 2- or 3-dimensional dynamical system
given by an autonomous ordinary differential equation. This code
is based on the theory explained in [10] and [5–9].

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The first author in this paper is supported by the Icelandic
Research Fund (Rannís), Iceland grant number 163074-052, Com-
plete Lyapunov functions: Efficient numerical computation. The
third author in this paper is supported by the Icelandic Re-
search Fund (Rannís), Iceland grant number 152429-051, Lya-
punov Methods and Stochastic Stability.

References

[1] Conley C. Isolated invariant sets and the morse index. CBMS regional
conference series, vol. 38, American Mathematical Society; 1978.

[2] Conley C. The gradient structure of a flow i. Ergodic Theory Dynam Systems
1988;8:11–26.

[3] Hurley M. Chain recurrence, semiflows, and gradients. J Dynam Differential
Equations 1995;7(3):437–56.

[4] Hurley M. Lyapunov functions and attractors in arbitrary metric spaces.
In: Proceedings of the American mathematical society, Vol. 126. 1998, p.
245–56.

[5] Argáez C, Giesl P, Hafstein S. Analysing dynamical systems towards
computing complete Lyapunov functions. In: Proceedings of the 7th
international conference on simulation and modeling methodologies,
technologies and applications (SIMULTECH). Madrid, Spain; 2017, p.
134–44.

[6] Argáez C, Giesl P, Hafstein S. Computational approach for complete
Lyapunov functions. In: Awrejcewicz J, editor. Dynamical systems in
theoretical perspective. Springer proceedings in mathematics and statistics,
vol. 248, Springer; 2018, p. 1–11.

[7] Argáez C, Giesl P, Hafstein S. Iterative construction of complete Lya-
punov functions. In: Proceedings of the 8th international conference on
simulation and modeling methodologies, technologies and applications
(SIMULTECH). Porto, Portugal; 2018, p. 211–22.

[8] Giesl P, Argáez C, Hafstein S, Wendland H. Construction of a complete
Lyapunov function using quadratic programming. In: Proceedings of the
15th international conference on informatics in control, automation and
robotics (ICINCO). Porto, Portugal; 2018, p. 560–8.

http://refhub.elsevier.com/S2352-7110(19)30210-9/sb1
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb1
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb1
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb2
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb2
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb2
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb3
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb3
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb3
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb4
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb4
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb4
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb4
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb4
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb5
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb5
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb5
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb5
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb5
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb5
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb5
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb5
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb5
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb6
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb6
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb6
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb6
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb6
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb6
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb6
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb7
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb7
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb7
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb7
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb7
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb7
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb7
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb8
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb8
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb8
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb8
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb8
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb8
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb8


4 C. Argáez, J.-C. Berthet, H. Björnsson et al. / SoftwareX 10 (2019) 100325

[9] Argáez C, Giesl P, Hafstein S. Computation of complete Lyapunov functions
for three-dimensional systems. In: Proceedings of the 57rd IEEE conference
on decision and control (CDC). Miami Beach, FL, USA; 2018, p. 4059–64.

[10] Giesl P. Construction of global Lyapunov functions using radial basis
functions. Lecture notes in mathematics, vol. 1904, Berlin Heidelberg:
Springer-Verlag; 2007.

[11] Krauskopf B, Osinga H, Doedel EJ, Henderson M, Guckenheimer J,
Vladimirsky A, Dellnitz M, Junge O. A survey of methods for computing
(un)stable manifolds of vector fields. Int J Bifurcationand Chaos Appl Sci
Eng 2005;15(3):763–91.

[12] Hsu CS. Cell-to-cell mapping applied mathematical sciences, Vol. 64. New
York: Springer-Verlag; 1987.

[13] Dellnitz M, Junge O. Set oriented numerical methods for dynami-
cal systems. In: Handbook of dynamical systems, Vol. 2. Amsterdam:
North-Holland; 2002, p. 221–64.

[14] Osipenko G. Dynamical systems, graphs, and algorithms. Lecture notes in
mathematics, vol. 1889, Berlin: Springer; 2007.

[15] Ban H, Kalies W. A computational approach to Conley’s decomposition
theorem. J Comput Nonlinear Dyn 2006;1:312–9.

[16] Goullet A, Harker S, Mischaikow K, Kalies W, Kasti D. Efficient computation
of Lyapunov functions for Morse decompositions. Discrete Contin Dyn Syst
Ser B 2015;20:2419–51.

[17] Kalies W, Mischaikow K, VanderVorst R. An algorithmic approach to chain
recurrence. Found Comput Math 2005;5:409–49.

[18] Björnsson J, Giesl P, Hafstein S, Kellett C, Li H. Computation of Lyapunov
functions for systems with multiple attractors. Discrete Contin Dyn Syst
2015;9:4019–39.

[19] Björnsson J, Giesl P, Hafstein S. Algorithmic verification of approximations
to complete Lyapunov functions. In: Proceedings of the 21st international
symposium on mathematical theory of networks and systems, Vol. 0180.
2014, p. 1181–8.

[20] Wendland H. Error estimates for interpolation by compactly sup-
ported Radial Basis Functions of minimal degree. J Approx Theory
1998;93:258–72.

[21] Iske A. Perfect Centre Placement for Radial Basis Function Methods,
Technical Report TUM M9809, Technische Universität München, 1998.

[22] Sanderson C, Curtin R. Armadillo: a template-based C++ library for linear
algebra. J Open Source Softw 2016;1:26.

[23] Sanderson C, Curtin R. A user-friendly hybrid sparse matrix class in C++.
Lecture notes in computer science (LNCS), vol. 10931, 2018, p. 422–30.

[24] Argáez C, Giesl P, Hafstein S. Iterative construction of complete Lyapunov
functions: Analysis of algorithm efficiency. Springer; 2019, in press.

http://refhub.elsevier.com/S2352-7110(19)30210-9/sb9
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb9
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb9
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb9
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb9
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb10
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb10
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb10
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb10
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb10
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb11
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb11
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb11
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb11
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb11
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb11
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb11
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb12
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb12
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb12
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb13
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb13
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb13
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb13
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb13
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb14
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb14
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb14
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb15
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb15
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb15
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb16
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb16
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb16
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb16
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb16
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb17
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb17
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb17
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb18
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb18
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb18
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb18
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb18
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb19
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb19
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb19
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb19
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb19
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb19
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb19
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb20
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb20
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb20
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb20
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb20
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb22
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb22
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb22
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb23
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb23
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb23
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb24
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb24
http://refhub.elsevier.com/S2352-7110(19)30210-9/sb24

	LyapXool – a program to compute complete Lyapunov functions
	Motivation and significance
	Complete Lyapunov function and chain-recurrent set

	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	How to use
	Impact
	Future work
	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


