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Abstract: Filter is a well-known tool for noise reduction of very high spatial resolution (VHR) remote
sensing images. However, a single-scale filter usually demonstrates limitations in covering various
targets with different sizes and shapes in a given image scene. A novel method called multi-scale
filter profile (MFP)-based framework (MFPF) is introduced in this study to improve the classification
performance of a remote sensing image of VHR and address the aforementioned problem. First, an
adaptive filter is extended with a series of parameters for MFP construction. Then, a layer-stacking
technique is used to concatenate the MPFs and all the features into a stacked vector. Afterward,
principal component analysis, a classical descending dimension algorithm, is performed on the fused
profiles to reduce the redundancy of the stacked vector. Finally, the spatial adaptive region of each
filter in the MFPs is used for post-processing of the obtained initial classification map through a
supervised classifier. This process aims to revise the initial classification map and generate a final
classification map. Experimental results performed on the three real VHR remote sensing images
demonstrate the effectiveness of the proposed MFPF in comparison with the state-of-the-art methods.
Hard-tuning parameters are unnecessary in the application of the proposed approach. Thus, such a
method can be conveniently applied in real applications.

Keywords: remote sensing imagery; multi-scale filter profiles; very high resolution; land cover
classification

1. Introduction

A remote sensing image with very high resolution (VHR) has an improved visual appearance
over imagery of conventional resolution [1]. The remote sensing images with VHR mean that the
size of per pixel in the image is smaller than that of the low-median resolution image. Therefore, the
remote sensing image with VHR can capture and describe the details of ground targets in terms of
size and shape. Such imagery plays an important role in various practical applications, such as land
cover classification [2–4], target recognition [5–7], and change detection [8,9]. However, VHR remote
sensing images usually have insufficient spectral information, that is, their numbers of spectral bands
are lacking. The spectral bands for most high-resolution remote sensing sensors are less than eight.
For example, Quick Bird satellite image contains four spectral bands, and WorldView-3 image only has
eight multi-spectral bands [10,11]. This situation is attributed to remote sensors, which have physical
limitations between spatial and spectral resolutions. Thus, the high resolution in geometry and low
deliverance in spectral reflectance produce the Hughes phenomenon and cause considerable noise in
the classification map [12–16].
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A filter is used to address this problem. Filtering is an intuitive yet simple way of smoothing the
noise of a VHR image. The classical methods, such as mean filtering (MF) [17] and median filtering
(MedF) [18], have been applied to reduce the noise in images and signals [19,20]. Several spatial filters
have been developed for VHR remote sensing image classification [21,22]. For example, the modified
mean filter (MMF), which can smooth the central pixel value using the mean of its adaptive region, was
proposed to improve the classification performance of VHR remote sensing images [23]. In addition to
image filters, spatial–spectral feature complement is another method for enhancing the classification
performance while using VHR remote sensing images. For example, an attribute profile (AP) feature
based on morphology is extended with multi-scale parameters to consider the uncertainty of a ground
target in size and shape [24]. Moreover, the AP morphology is extended with multi-shape structural
elements (M_EMPs) for image classification [25]. Additionally, edge-preserving filters (EPFs) [26] and
recursive filters (RFs) [27] have been proposed to extract spatial features from high-resolution image
classification, and a rolling guidance filter (RGF) has been developed to smooth the internal noise of
a target and maintain the edge among different targets [28]. In brief, using spatial–spectral features
has been verified to be effective in improving the performance of VHR remote sensing images [29].
In addition, CNN has been widely used for land cover classification with remote sensing image [30–32].
Although the developed algorithms can improve the classification performance and accuracies with
VHR remote sensing images, these algorithms are complex. Such complexity can be considered a
problem because the parameter setting of these methods is required for real application. Clearly, no
available method has been labeled as “the appropriate one” for all classification cases [33,34]. Therefore,
the classification performance in the aforementioned case must be improved while maintaining the
usability of the method for practical engineering applications.

In recent years, post-processing has been verified as effective in further improving the classification
of VHR remote sensing images. Tang et al. presented a multiple-point geostatistical simulation for
post-processing land cover classification with a remote sensing image [35]. Huang et al. conducted
a systematic study of new post-processing methods for image classification [36]. In the previous
study, two post-processing methods were proposed to improve the classification performance on VHR
images [37,38]. In these studies, the post-processing technique is effective in smoothing the noise of
the initial classification map and improving the performance and accuracy results. However, the pre-
and post-processing for acquiring the initial classification map is independent. This operation requires
the familiarization of practitioners with the pre- and post-processing approaches.

In the present study, multi-scale filter profiles (MFPs) are proposed to extract the multi-scale
spatial-spectral feature without hard-tuning parameters. This task is initiated to improve the intra-class
homogeneity in VHR remote sensing images. Moreover, the spatial adaptive region of MPFs is
extensively applied to smooth the noise of the initial classification map further. The proposed
MPF-based framework (MFPF) is the first approach to fuse image pre-processing and post-classification
processing. This integration enhances the usability and convenience of the proposed approach.
The major contributions of the proposed method are presented as follows:

(1) MMF [23] is first extended with multi-scale parameters to construct MFPs. Experimental
comparison has demonstrated that this extension is helpful and effective for improving classification
performance [20]. In the present study, the proposed MFPs not only improve the homogeneity of a
target but also the separability of the ground target under consideration. This feature is attributed
to the substantial scale information of the target that is adopted and utilized through the expanding
values of the parameter T1.

(2) The parameter setting of the proposed MFPs is easy for practical applications and requires no
parameter hard-tuning for different datasets. In the experiments with different datasets, the proposed
MFPF is effective in terms of classification accuracies for different datasets without parameter tuning.

(3) The proposed approach is the first to integrate the pre- and post-classification techniques
through multi-scale filters. This integration of the entire technology is beneficial for promoting the
application of the proposed MPFs. The serial value of T1 not only extends the coverage of spectra but
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also utilizes the multi-scale information in the spatial domain. The adaptive regions for the multi-scale
filter are used for further post-processing of the initial classification map.

The remainder of this paper is organized as follows. Section II discusses the details of the proposed
approach. Section III provides the experiments and comparisons. Finally, Section IV presents the
conclusion drawn from this study.

2. Proposed Method

This section introduces the details of the proposed MFPF for classification with VHR remote
sensing images. Figure 1 illustrates that the proposed MFPF comprises the following parts. First,
MFPs are developed, and a layer-stacking technique is used to fuse the multi-scale filtered image
profiles. Then, principal component analysis (PCA) is adopted to reduce redundancy. Finally, an initial
classification map is acquired through a supervised classifier, and a post-classification method is
proposed on the basis of the MFs. Each part is detailed as follows.
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Figure 1. Flowchart of the proposed MFPF.

2.1. Generation of MFPs

In the previous method (MMF) [23], parameter “T1” is the measured spectral difference between
the central pixel and its neighbors, and T2 is the size of an adaptive extension and is insensitive to the
classification accuracies. By contrast, T1 is sensitive to the classification accuracy, and selecting T1 for a
given image is time consuming and depends on the practitioner’s experience. The idea of parameter
serialization is introduced in this study to handle the limitation of the previous MMF and avoid the
hard-tuning of T1 for the classification of different datasets.

In the proposed MFPF, T1 is serialized with five values with a fixed T2, such as T1 = {S1, S2, S3, S4, S5},
where Sk indicates the different values of T1. The adaptive extension algorithm in the previous study [23]
indicates that a different T1 with a fixed T2 will create the extended regions with various shapes.
This phenomenon is attributed to the different T1 values, which will change the searching direction in
the extension process. In addition, different searching directions will affect the shape of the adaptive
extension region. Therefore, the multi-scale feature of a target will be described and utilized when T1

is set to different values.
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Herein, “I” is assigned as a VHR remote sensing image with an R-G-B band false color. An adaptive
extended region with a pair of T1 and T2 is used for smoothing each band of the given image (I) with
the mean of the adaptive region to construct MFPs. Thus, the formula of MFPs can be written as

MPFs =
{
IS1 , IS2 , IS3 , IS4 , IS5

}
, (1)

In the equation-1, where IS1 is the filtered image with the pair of T1 = s1, and T2 is fixed at a
pre-provided value. Is1 =

{
IS1
r , IS1

g , IS1
b

}
, where “r, g, and b” denote the red, green, and blue bands,

respectively. Thus, “Is1
r ” presents the filtered image profile for the red band. In the MPF construction,

MPFs are the filtered profiles, which are developed by smoothing the raw image band-by-band with
the adaptive extension algorithm using different values of parameter T1 and the fixed value of T2.

2.2. Reduction of Redundancy through PCA

MPFs can capture the multi-scale feature of a ground target but is redundant in the data construction
of a target. In this section, a classical method called PCA is proposed to reduce redundancy. Before
applying the PCA, a layer-stacking method, which is embedded in the ENVI 5.2 professional software,
is adopted to fuse the MPFs into a high-dimensional vector.

The details of PCA are not introduced in this study because it is a classical method that has
been successfully applied to many image-processing cases [39–41]. In the proposed MFPF, the PCA
application tool, which is integrated into a toolbox of the ENVI 5.2 business software, is utilized
to reduce the dimension of the high-dimensional vector. An observation is depicted in Figure 2 to
demonstrate the capability of the proposed approach further in improving the intra-class homogeneity
and preserving the edge of different classes. The observations and comparison results demonstrate that
the smallest standard deviation of each band is achieved through the proposed approach. The boundary
of the ground targets is preserved, as demonstrated by the yellow arrow in the figures.
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the standard deviation value for R-G-B). (a) raw image with a 1.0 m/pixel resolution; (b), (c), and
(d) are the images filtered by MF, MedF, and MMF, respectively; (e) image comprising the top three
components of MPFs with PCA.

The reduced dimension feature vector is considered the “input feature” of a supervised classifier,
such as support vector machine (SVM). The initial classification map is acquired.

2.3. Post-Processing Classification with MFs

As previously mentioned, each filter in the applied MFs has a corresponding adaptive spatial
region. In this section, the label of each pixel in the initial classification map is revised in accordance
with the labels of its neighbors. A post-processing classification approach is proposed on the basis of
the MFPs. First, the label of each class around a pixel at position (i,j) is counted. If NCm

i j denotes the total

number of the label for the specific class Cm , then NCm
i j is obtained using Equation (2). Second, the label

of the central pixel at position (i,j) is revised using the class that frequently appears in the multi-scale
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adaptive regions, as expressed in Equation (3). The label (Li j) of the pixel at (ij) is determined by the
label of the frequently appearing class.

NCm
i j = RS1

cm + RS2
Cm

+ RS3
Cm

+ . . . , +RSk
Cm

(2)

Li j = argmax
{
NC0

i j , NC1
i j , NC2

i j , . . . , NCM
i j

}
(3)

where RS1
cm is the number of pixels for special class Cm within the adaptive region at scale s1, “k” is the

total number of scale parameter that is equal to the number of different values of T1, “M” is the total
number of classes for a given image scene, and “m” is the number of counted classes.

This post-processing with multi-scale adaptive regions can further smooth intra-class noise and
preserve the boundary between different classes. These features are attributed to the pixels, which
comprise a target that is generally homogeneous in spectra and continuous in the spatial domain.
The shape and size of a target in the remote sensing are unknown before classification. Thus, the use of
a multi-scale adaptive shape of the MFs in the post-processing of the initial classification map should
be helpful for smoothing noise and improving classification performance as demonstrated by the
experiments performed in this study.

3. Experiments

In this section, three experiments are conducted with three real VHR remote sensing images to
verify the effectiveness and superiority of the proposed MFPF. The experimental details are presented
as follows.

3.1. Datasets

(1) JX01: This dataset was acquired using a Canon EOS 5D Mark II camera banded with an
unmanned aerial vehicle (UAV) platform. The flight height is approximately 100 m, and the spatial
resolution is 0.1 m/pixel. This image covers a countryside scene in Jiang Xi City, China, and the scene
size is 1400 × 1000 pixels. Figure 3 exhibits a typical area in the countryside of China. Seven classes,
including roads, grass, buildings, shadow, trees, soil, and water, were identified in this scene.
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Figure 3. JX01 countryside area, Jiang Xi City, China. (a) Three-band false-color image, (b) ground
reference map and class legend.

(2) Pavia University: This dataset is obtained using a ROSIS-03 sensor with a spatial resolution of
1.0 m/pixel. The original data contain 103 bands with 610 × 340 pixels. In this experiment, bands 010,
27, and 46 display red, green, and blue, correspondingly (Figure 4b). The ground reference map and
legend demonstrate the nine interesting classes.
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class legend.

(3) ZH-6 of Zurich_dataset_v1.0: The third dataset comprises four channels, namely, NIR, R, G,
and B, with a resolution of 0.62 m/pixel. The size of the ZH-6 dataset is 984 × 812 pixels, and seven
interesting classes are referenced for classification, as shown in Figure 5.Remote Sens. 2019, 7, x FOR PEER REVIEW  7 of 17 
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(b) ground reference map and class legend.

3.2. Experimental Setting

Three experiments were conducted in this section to test the effectiveness of the proposed MFPF
for classifying VHR remote sensing images.
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(1) In the first experiment, the JX01 dataset is adopted and classified using the SVM classifier, which is
an extensively used pixel-wise classifier. The proposed MFPF is compared with the classification
of raw and filtered images based on MF, MedF, and MMF [23].

(2) In the second experiment, three classical and extensively used supervised classifiers, namely, SVM,
k-nearest neighbor (KNN), and Random Tree (RT), are adopted to classify the Pavia University
image scene. This task is initiated to test the robustness of the proposed approach further in
terms of the different classifiers. The effectiveness of the proposed MFPF is further verified by
comparing the different filters in terms of the three classifiers.

(3) In the third experiment, based on the ZH-6 dataset, the adaptability of the proposed MFPF is
further investigated by comparing several popular spatial–spectral feature-based approaches.
Herein, the following four extensively used spatial–spectral feature-based methods and their
corresponding parameter settings are used: EPFs [26]: δs = 4, δr = 0.2, r = 4, ∈= 0.01; RFs [27]:
δs = 200, δr = 30, iteration = 3; M_EMPs [25]: SE = {“disk”, “line”, “square”, “diamond”},
size = 4× 4; RGF [28]: δs = 4, δr = 0.1, iteration = 5.

In all the experiments, the parameters of the proposed MFPF are fixed at T1 = {10, 15, 20, 25, 30}
and T2 = 100 without hard-tuning. Three extensively used indexes, namely, overall accuracy (OA),
average accuracy (AA), and the kappa coefficient (Ka), are used to evaluate the performance of the
proposed methods. OA is the total number of correctly classified samples divided by the total number
of test samples, AA represents the mean value of correctly classified pixels for each class compared with
each test sample, and Ka indicates the inter-rater reliability for the classified result [42]. The parameters
of each approach are optimized through a trial-and-error method for a specific dataset to guarantee the
fairness of comparison.

3.3. Experimental Results

In the first experiment based on the JX01 dataset, Table 1 displays that each filter improves the
classification accuracies in comparison with those of the raw image without any filter processing.
For example, the improvements of OA, AA, and Ka are 4.12%, 2.99%, and 0.052, respectively, compared
with those of the traditional MF method. The classification performance in different filters shows that
the proposed MFPF can achieve the optimal accuracy for most kinds of specific classes. The optimal
OA, AA, and Ka are obtained through the proposed MFPF. The visual performance presented in
Figure 6 further demonstrates the conclusion of this experiment.

Table 1. Classification performance comparisons (%) on the JX01 dataset using SVM and different
image filters (training samples: 100 points/class).

Class Raw Image
without Filter MF w=3×3 MedF w=3×3 MMF [23] T1 = 15,

T2 = 100
Proposed

MFPF

Road 96.10 97.80 97.70 96.60 95.00
Grass 93.60 93.50 93.40 97.10 98.20

Building 99.30 99.50 99.50 99.50 99.50
Shadow 89.10 84.30 80.90 81.40 87.80

Trees 93.40 93.90 93.70 93.00 93.40
Water 95.00 96.20 93.90 98.60 99.00
Soil 57.00 56.90 57.00 57.30 70.40
OA 88.52 88.31 87.79 88.22 92.43
AA 89.08 88.89 88.01 89.07 91.88
KA 0.851 0.848 0.842 0.847 0.900

Note: The bold texts in each row correspond to the optimal accuracies of the comparisons.
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The second experiment is conducted on the Pavia University dataset to demonstrate the
effectiveness and adaptability of the proposed MFPF further. The experimental results are presented as
follows. (1) The proposed MFPF achieves the optimal accuracies in terms of OA, AA, and Ka in the
Pavia University image in comparison with traditional filters, such as the MF, MedF, and previous
MMF. Table 2 presents that the OA and AA of the proposed MFPF are 94.18% and 94.14% for the KNN
classifier, correspondingly, and those of MMF are 83.92% and 81.38%, respectively. Improvements of
10.26% and 12.76% in terms of OA and AA, respectively, are obtained by the proposed MFPF compared
with those of MMF. The comparison details for the KNN are summarized in Table 3 to demonstrate the
superiority of the proposed MFPF. (2) The results based on the different classifiers and filters imply
that the proposed MFPF is effective and robust for the SVM, KNN, and RT classifiers. The proposed
MFPF performs the optimal accuracies for each classifier in comparison with those of the raw image
without any processing and the images filtered with MF, MedF, and MMF.

Table 2. Evaluation of the performance of the proposed MFPF on the Pavia University image in terms
of different classifiers (“S” indicates the number of training samples).

Classifier
Raw Image

without
Filter

MF w=3×3 MedF w=9×9
MMF [23]
T1 = 25,
T2 =100

Proposed
MFPF

SVM (S = 130)
OA 63.04 72.03 74.00 75.50 83.57
AA 64.99 72.33 76.05 77.14 83.25
Ka 0.539 0.641 0.666 0.684 0.775

KNN (S = 500)
OA 66.91 73.60 80.30 83.92 94.18
AA 67.69 71.47 77.27 81.38 94.14
Ka 0.588 0.667 0.750 0.793 0.924

RT (S = 450)
OA 65.64 71.68 78.96 79.13 92.36
AA 66.48 72.01 77.00 77.50 92.59
Ka 0.573 0.645 0.733 0.734 0.901

Note: The bold texts in each row correspond to the optimal accuracies of the comparisons.
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Table 3. Class-specific user accuracy (%) of the Pavia University image for the different methods
with KNN.

Class Raw Image
without Filter MF (w=3×3) MedF (w=9×9)

MMF [23]
T1 = 25,
T2 = 100

Proposed
MFPF

Asphalt 87.80 94.40 96.30 96.10 97.30
Meadows 86.30 90.00 93.70 94.40 99.30

Gravel 42.80 48.00 66.20 71.80 90.00
Tress 55.90 59.70 58.90 67.90 92.30

Painted 82.60 73.70 82.40 85.00 97.40
Bare soil 34.10 44.80 54.80 59.70 75.60
Bitumen 55.20 57.70 71.60 79.90 99.40

Self-blocking
bricks 72.10 77.70 89.90 87.50 98.80

Shadows 92.50 97.20 81.60 90.20 97.30
OA 66.91 73.60 80.30 83.92 94.18
AA 67.69 71.47 77.27 81.38 94.14
KA 0.588 0.667 0.750 0.793 0.924

Note: The bold texts in each row correspond to the optimal accuracies of the comparisons.

Three demonstrations with the specific KNN, SVM, and RT classifier are respectively illustrated
for the corresponding visual performance in Figures 7–9. The visual comparison and observation
results clearly demonstrate that the classification map obtained through the proposed MFPF performs
with minimal noise, and the intra-class homogeneity, such as the meadow highlighted by the rectangle
in Figures 7–9, is improved. The boundary of ground targets can be preserved well in the classification
map obtained through the proposed MFPF.

In the third experiments on the ZH-6 dataset, the proposed MFPF is compared with the
state-of-the-art spatial–spectral feature-based methods. Table 4 summarizes the results of the quantitative
comparison. The comparison results show that the spatial–spectral features can improve the classification
accuracies in comparison with those of the raw image without any processing. The improvement is
approximately 5%. However, the proposed MFPF not only achieves the optimal accuracy for most
kinds of specific class but also obtains the highest accuracies in terms of OA, AA, and Ka in comparison
with the state-of-the-art spatial-spectral feature-based methods. The visual performance depicted in
Figure 10 supports the quantitative conclusion from this experiment.

Table 4. Class-specific user accuracy (%) of the ZH-6 image for the different methods with SVM.

Class
Raw Image

without
Filter

EPFs [26] RFs [27] M_EMPS [25] RGF [28] Proposed
MFPF

Building 87.00 89.30 90.30 68.30 91.90 93.40
Road 77.40 77.80 79.80 75.10 81.20 80.10
Trees 84.40 87.10 86.00 84.40 89.90 90.90
Grass 73.60 75.10 78.90 67.50 79.60 81.80
Water 4.90 5.61 5.61 5.87 6.22 11.00

Bare soil 6.18 6.64 8.38 7.90 7.92 10.20
Pools 32.9 33.90 30.70 35.20 35.10 34.80
OA 67.21 69.11 70.41 65.20 71.90 74.96
AA 52.35 53.64 54.26 49.19 55.98 57.45
Ka 0.579 0.601 0.618 0.550 0.638 0.674

Note: The bold texts in each row correspond to the optimal accuracies of the comparisons.
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Figure 7. Classification maps of the Pavia University dataset obtained through KNN with different
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Figure 8. Classification maps of the Pavia University dataset obtained through SVM with different
filtered images: (a) raw image without filter; (b) MF with a 7× 7 window; (c) MedF with a 5× 5 window;
(d) MMF with T1 = 30 and T2 = 100; (e) proposed MFPF; (f) ground reference map.
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feature images and the proposed methods: (a) raw image without filter; (b) EPFs [23]; (c) RFs [24];
(d) M_EMPs [22]; (e) RGF [25]; (f) proposed MFPF.

The experimental results based on the three real VHR remote sensing images show that the
following aspects of the proposed MFPF can be achieved. First, in the proposed approach, a novel image
filter, is effective in smoothing the noise of VHR remote sensing images. The proposed MFP-based
approach called MFPF performs better than the MF, MedF, and the previous MMF in terms of accuracies
in land cover classification of VHR remote sensing images. Second, the proposed MFPF is robust and
effective for classical classifiers, namely, SVM, KNN, and RT. Finally, the proposed MFPF has a certain
superiority to the spatial–spectral feature-based methods in comparison with the state-of-the-art VHR
image classification methods; for example, the improvements are 3.06%–9.76% and 1.47%–8.26%,
in terms of OA and AA, respectively.

4. Discussion

The relationship between the accuracies and the number of training samples for the different
methods is analyzed in this section. This task is initiated to promote the potential application of
the proposed MFPF. As shown in Figures 11–13, the accuracies of each approach are improved with
an increase in the number of training samples. For example, in Figure 11a–c, the OAs of the JX01
dataset and SVM classifier increase from 79.37% to 87.75%, whereas the number of training samples
for the proposed MFPF increases from 5 points/class to 10 points/class. The OA of the proposed
approach gradually increases to 93.43% when the number of training samples reaches 100 points/class.
The fluctuation in the method accuracies may be due to the uncertain spatial distribution of the training
samples for each test.
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The accuracies on the Pavia University image and ZH-6 dataset with KNN and SVM classifier also
swiftly increase when the number of training samples increases from 5 points/class to 10 points/class.
However, the sensitivity between the accuracies and the number of training samples stabilizes when
the latter is more than 50 points/class. The OA of the proposed MFPF only increases from 88.21% to
94.18%. By contrast, the number of training samples increases from 50 points/class to 500 points/class
for the KNN classifier, as illustrated in Figure 12a–c.

The above observation and the comparison results for the three datasets clearly demonstrate that
the proposed MFPF achieves enhanced accuracies under an equal level of the training sample for each
filter. The accuracies of the proposed MFPF will increase and stabilize. This finding is helpful for the
number of training samples selected for the proposed MFPF.
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5. Conclusions

In the present work, a simple but powerful approach called MFPF was proposed for VHR remote
sensing image classification. Instead of using the filter with a single processing scale, filter profiles
were built in the proposed MFPF approach by filtering the image with a series of different parameters.
The proposed MFPF comprises the following three major steps. (1) MFPs were first constructed through
a modified mean filter with different scale parameters. (2) The classical PCA was then adopted for
reducing the dimension of MPFs, and the top three components were taken as the input feature for
a supervised classifier to obtain the initial classification map. (3) Finally, the adaptive spatial region
of each filter was adopted for post-processing the initial classification map. The contributions and
advantages of the proposed MFPF are summarized as follows.

(1) The proposed MFPF provided competitive accuracies in land cover classification of VHR
remote sensing images. As an extension of MMF [20], the proposed MFPF achieved the best
accuracy compared with that of the MMF, MF, MedF, and the raw image without any filter processing
Furthermore, the results of the second experiment indicated that the proposed MFPF is more robust for
the different classifiers compared with that of the MF, MedF, and MMF. In addition, the classification
results achieved by the proposed MFPF clearly demonstrated its effectiveness and superiority in
terms of visual performance and quantitative accuracies compared with those based on the classical
spatial–spectral feature extraction approaches, including EPFs [26], RFs [27], M_EMPs [25], and
RGF [28].

(2) To the best of the author’s knowledge, this study is the first to promote the idea of multi-scale
filter profile construction to improve the classification performance with VHR remote sensing images.
Experimental results indicate that the proposed MFPF can smooth the salt-and-pepper noise of
classification maps because this approach can cover various targets with different shapes and sizes.
Furthermore, the post-processing strategy with the adaptive region of each filter in the proposed MFPF
can further smooth the noise in the initial classification map and improve its performance and accuracy.

The experimental results based on three real VHR remote sensing images acquired using different
sensors and platforms indicated that the proposed MFPF is effective for smoothing the noise of
classification maps and improving classification accuracies. An advantage of the proposed MFP
is its ability to improve the intra-class spectral homogeneity while preserving the edge of targets.
This improvement helps smooth the noise of the classification map and upgrades the recognition
accuracies. Another major advantage of the proposed MFPF is its capability to avoid hard-tuning of
parameters for a pre-given VHR image, which will be relatively useful in real applications.

Overall, the newly proposed approach is a promising framework for VHR remote sensing
image classification. In future works, the robustness and adaptability of the proposed approach
will be investigated on additional kinds of remote sensing images, such as the WorldView 4.0 VHR
sensing images.
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