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Identification of multiple risk loci and regulatory
mechanisms influencing susceptibility to
multiple myeloma
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Genome-wide association studies (GWAS) have transformed our understanding of

susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained.

We report a new GWAS, a meta-analysis with previous GWAS and a replication series,

totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these

data provide evidence for six new MM risk loci, bringing the total number to 23. Integration

of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk

loci implicate disruption of developmental transcriptional regulators as a basis of MM

susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregu-

lation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed

pathways. Our findings provide further insight into the biological basis of MM.
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Multiple myeloma (MM) is a malignancy of plasma cells
primarily located within the bone marrow. Although no
lifestyle or environmental exposures have been con-

sistently linked to an increased risk of MM, the two- to four-fold
increased risk observed in relatives of MM patients provides
support for inherited genetic predisposition1. Our understanding
of MM susceptibility has recently been informed by genome-wide
association studies (GWAS), which have so far identified 17
independent risk loci for MM2–5, with an additional locus being
subtype-specific for t(11;14) translocation MM6. Much of the
heritable risk of MM, however, remains unexplained and statis-
tical modelling indicates that further common risk variants
remain to be discovered7.

To gain a more comprehensive insight into MM aetiology, we
performed a new GWAS followed by a meta-analysis with
existing GWAS and replication genotyping (totalling 9974 cases
and 247,556 controls). Here, we report the identification of six
new MM susceptibility loci as well as refined risk estimates for the
previously reported loci. In addition, we have investigated the
possible gene regulatory mechanisms underlying the associations
seen at all 23 GWAS risk loci by analysing in situ promoter
Capture Hi-C (CHi-C) in MM cells to characterise chromatin
interactions between predisposition single-nucleotide poly-
morphism (SNPs) and target genes, integrating these data with
chromatin immunoprecipitation-sequencing (ChIP-seq) data
generated in house and a range of publicly available genomics
data. Finally, we have quantified the contribution of both new and
previously discovered loci to the heritable risk of MM and
implemented a likelihood-based approach to estimate sample
sizes required to explain 80% of the heritability.

Results
Association analysis. We conducted a new GWAS using the
OncoArray platform8 (878 MM cases and 7083 controls from the
UK), followed by a meta-analysis with six published MM GWAS
data sets (totalling 7319 cases and 234,385 controls) (Fig. 1,
Supplementary Tables 1–3)2–5. To increase genomic resolution,
we imputed data to >10 million SNPs. Quantile–quantile (Q–Q)
plots for SNPs with minor allele frequency (MAF) >1% after
imputation did not show evidence of substantive over-dispersion
for the OncoArray GWAS (λ= 1.03, λ1000= 1.02, Supplementary
Fig. 1). We derived joint odds ratios (ORs) under a fixed-effects
model for each SNP with MAF >1%. Finally, we sought validation
of nine SNPs associated at P < 1 × 10−6 in the meta-analysis,
which did not map to known MM risk loci and displayed a

consistent OR across all GWAS data sets, by genotyping an
additional 1777 cases and 6088 controls from three independent
series (Germany, Denmark and Sweden). After meta-analysis
of the new and pre-existing GWAS data sets and replication
series, we identified genome-wide significant associations (i.e. P <
5 × 10−8)9 for six new loci at 2q31.1, 5q23.2, 7q22.3, 7q31.33,
16p11.2 and 19p13.11 (Table 1, Supplementary Table 4 and 5,
Fig. 2). Additionally, borderline associations were identified at
two loci with P values of 5.93 × 10−8 (6p25.3) and 9.90 × 10−8

(7q21.11), which have corresponding Bayesian false-discovery
probabilities (BFDP)10 of 4% and 6%, respectively (Supplemen-
tary Table 4 and 5). We found no evidence for significant
interactions between any of the 23 risk loci. Finally, we found no
evidence to support the existence of the putative risk locus at
2p12.3 (rs1214346), previously proposed by Erickson et al.11

(GWAS meta-analysis P value= 0.32).

Risk SNPs and myeloma phenotype. We did not find any
association between sex or age at diagnosis and the 23 MM risk
SNPs using case-only analysis (Supplementary Table 6 and 7).
Aside from previously reported relationships between the risk loci
at 11q13.3 and 5q15 with t(11;14) MM6 and hyperdiploid MM12,
respectively, we found no evidence for subtype-specific associa-
tions (Supplementary Table 8-11) or an impact on MM-specific
survival (Supplementary Table 12). A failure to demonstrate
additional relationships may, however, be reflective of limited
study power. Collectively, these data suggest that the risk variants
are likely to have generic effects on MM development.

Contribution of risk SNPs to heritability. Using linkage dis-
equilibrium adjusted kinships (LDAK)13, the heritability of MM
ascribable to all common variation was 15.6% (±4.7); collectively
the previously identified and new risk loci account for 15.7%
of the GWAS heritability (13.6% and 2.1%, respectively). To
assess the collective impact of all identified risk SNPs, we con-
structed polygenic risk scores (PRS) considering the combined
effect of all risk SNPs modelled under a log-normal relative risk
distribution14. Using this approach, an individual in the top 1% of
genetic risk has a threefold increased risk of MM when compared
to an individual with median genetic risk (Supplementary Fig. 2).
We observed an enrichment of risk variants among familial MM
compared with both sporadic MM cases and population-based
controls comparable to that expected in the absence of a
strong monogenic predisposition (respective P values 0.027 and
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1.60 × 10−5; Supplementary Fig. 3). Undoubtedly, the identifica-
tion of further risk loci through the analysis of larger GWAS are
likely to improve the performance of any PRS model. To estimate
the sample size required to explain a greater proportion of the
GWAS heritability, we implemented a likelihood-based approach
using association statistics in combination with LD information
to model the effect-size distribution15,16. The effect-size dis-
tributions for susceptibility SNPs were best modelled using the
three-component model (mixture of two normal distributions)
(Supplementary Fig. 4). Under this model, to identify SNPs
explaining 80% of the GWAS heritability is likely to require
sample sizes in excess of 50,000 (Supplementary Fig. 5).

Functional annotation and biological inference of risk loci. To
the extent that they have been studied, many GWAS risk SNPs
localise to non-coding regions and influence gene regulation17.
To investigate the functional role of previously reported and new
MM risk SNPs, we performed a global analysis of SNP associa-
tions using ChIP-seq data generated on the MM cell line KMS11
and publicly accessible naive B-cell Blueprint Epigenome Project
data18. We found enrichment of MM SNPs in regions of active
chromatin, as indicated by the presence of H3K27ac, H3K4Me3
and H3K4Me1 marks (Supplementary Fig. 6). We also observed
an enrichment of relevant B-cell transcription factor-(TF) binding
sites using ENCODE GM12878 lymphoblastoid cell line data
(Supplementary Fig. 7). Collectively these data support the tenet
that the MM predisposition loci influence risk through effects on
cis-regulatory networks involved in transcriptional initiation and
enhancement.

Since genomic spatial proximity and chromatin looping
interactions are key to the regulation of gene expression, we
interrogated physical interactions at respective genomic regions
in KMS11 and naive B-cells using CHi-C data19. We also sought
to gain insight into the possible biological mechanisms for
associations by performing an expression quantitative trait locus

(eQTL) analysis using mRNA expression data on CD138-purified
MM plasma cells; specifically, we used Summary data-based
Mendelian Randomisation (SMR) analysis20 to test for pleiotropy
between GWAS signal and cis-eQTL for genes within 1Mb of the
sentinel SNP to identify a causal relationship. We additionally
annotated risk loci with variants mapping to binding motifs of B-
cell-specific TFs. Finally, we catalogued direct promoter variants
and non-synonymous coding mutations for genes within risk loci
(Supplementary Data 1 and Fig. 1).

Although preliminary, and requiring functional validation, our
analysis delineates four potential candidate disease mechanisms
across the 23 MM risk loci (Supplementary Data 1). Firstly, four
of the risk loci contain candidate genes linked to regulation of cell
cycle and genomic instability, as evidenced by Hi-C looping
interactions in KMS11 cells to MTAP (at 9p21.3) and eQTL
effects for CEP120 (at 5q23.2). CEP120 is required for micro-
tubule assembly and elongation with overexpression of CEP120
leading to uncontrolled centriole elongation21. rs58618031
(7q31.33) maps 5′ of POT1, the protection of telomeres 1 gene.
POT1 is part of the shelterin complex that functions to protect
telomeres and maintain chromosomal stability22,23. While
mutated POT1 is not a feature of MM, it is commonly observed
in B-cell chronic lymphocytic leukaemia24–26. The looping
interaction from the rs58618031 annotated enhancer element
implicates ASB15. Members of the ASB family feature as protein
components of the ubiquitin–proteasome system, intriguingly a
therapeutic target in MM27–29.

Second, candidate genes encoding proteins involved in
chromatin remodelling were implicated at three of the MM
risk loci, supported by promoter variants at 2q31.1, 7q36.1 and
22q13.1. The new locus at 2q31.1 implicates SP3, encoding a TF,
which through promoter interaction, has a well-established
role in B-cell development influencing the expression of
germinal centre genes, including activation-induced cyti-
dine deaminase AID30,31.

Table 1 Summary of genotyping results for all 23 risk SNPs

OncoArray Previous data Replication Combined meta

SNP Locus Pos. (b37) Risk Allele RAF OR Ptrend OR Ptrend OR Ptrend OR Pmeta I2

rs7577599 2p23.3 25613146 T 0.81 1.22 2.63×10−3 1.24 1.24×10−16 – – 1.23 1.29×10−18 0
rs4325816 2q31.1 174808899 T 0.77 1.16 1.23×10−2 1.11 1.30×10−5 1.16 3.00×10−3 1.12 7.37×10−9 9
rs6599192 3p22.1 41992408 G 0.16 1.24 1.35×10−3 1.26 8.75×10−18 – – 1.26 4.96×10−20 0
rs10936600 3q26.2 169514585 A 0.75 1.18 5.12×10−3 1.20 5.94×10−15 – – 1.20 1.20×10−16 0
rs1423269 5q15 95255724 A 0.75 1.09 0.125 1.17 1.57×10−11 – – 1.16 8.30×10−12 23
rs6595443 5q23.2 122743325 T 0.43 1.14 9.87×10−3 1.10 4.69×10−6 1.10 0.022 1.11 1.20×10−8 0
rs34229995 6p22.3 15244018 G 0.02 1.05 0.781 1.40 1.76×10−8 – – 1.36 5.60×10−8 0
rs3132535 6p21.3 31116526 A 0.29 1.26 2.67×10−5 1.20 2.97×10−17 – – 1.21 6.00×10−21 0
rs9372120 6q21 106667535 G 0.21 1.18 7.74×10−3 1.20 8.72×10−14 – – 1.19 2.40×10−15 0
rs4487645 7p15.3 21938240 C 0.65 1.23 1.06×10−4 1.24 5.30×10−25 – – 1.24 2.80×10−28 0
rs17507636 7q22.3 106291118 C 0.74 1.12 5.71×10−2 1.12 5.54×10−7 1.10 0.036 1.12 9.20×10−9 50
rs58618031 7q31.33 124583896 T 0.72 1.17 7.61×10−3 1.11 4.70×10−6 1.10 0.061 1.12 2.73×10−8 0
rs7781265 7q36.1 150950940 A 0.12 1.33 3.23×10−4 1.20 1.82×10−7 – – 1.22 4.82×10−10 49
rs1948915 8q24.21 128222421 C 0.32 1.19 1.68×10−3 1.14 3.14×10−10 – – 1.15 2.53×10−12 26
rs2811710 9p21.3 21991923 C 0.63 1.13 1.76×10−2 1.14 6.50×10−10 – – 1.14 3.64×10−11 0
rs2790457 10p12.1 28856819 G 0.73 1.09 0.124 1.12 8.44×10−7 – – 1.11 2.66×10−6 0
rs13338946 16p11.2 30700858 C 0.26 1.17 7.90×10−3 1.12 2.22×10−7 1.26 2.5×10−7 1.15 1.02×10−13 26
rs7193541 16q23.1 74664743 T 0.58 1.14 9.01×10−3 1.12 1.14×10−8 – – 1.12 3.68×10−10 34
rs34562254 17p11.2 16842991 A 0.10 1.32 7.63×10−4 1.30 3.63×10−17 – – 1.30 1.18×10−19 29
rs11086029 19p13.11 16438661 T 0.24 1.26 1.02×10−4 1.12 1.69×10−6 1.15 5.00×10−3 1.14 6.79×10−11 42
rs6066835 20q13.13 47355009 C 0.08 1.13 0.162 1.24 1.16×10−9 – – 1.23 6.58×10−10 38
rs138747 22q13.1 35700488 A 0.66 – – 1.21 2.58×10−8 – – 1.21 2.58×10−8 0
rs139402 22q13.1 39546145 C 0.44 1.11 4.146×10−2 1.23 4.98×10−26 – – 1.22 3.84×10−26 56

Newly identified risk loci are emboldened.1 Where >10 TF were implicated at a locus, only those that overlap with TF which demonstrated enrichment in GM12878 are shown here. A full list of TFs
localising to loci are detailed in Supplementary Table 17
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Third, the central role IRF4-MYC-mediated apoptosis/autop-
hagy in MM oncogenesis is supported by variation at five loci,
including eQTL effects WAC (at 10p12.1) and Hi-C looping
interactions (at 8q24.21 and 16q23.1). The 7p15.3 association
ascribable to rs4487645 has been documented to influence
expression of c-MYC-interacting CDCA7L through differential
IRF4 binding32. Similarly, the long-range interaction between
CCAT1 (colon cancer-associated transcript 1) and MYC provides
an attractive biological basis for the 8q24.21 association, given the
notable role of MYC in MM33,34. It is noteworthy that the
promising risk locus at 6p25.3 contains IRF4. At the new locus
19p13.11, the missense variant (NP_057354.1:p.Leu104Pro) and
the correlated promoter SNP rs11086029 implicates KLF2 in MM
biology. Demethylation by KDM3A histone demethylase sustains
KLF2 expression and influences IRF4-dependent MM cell
survival35. The new 16p11.2 risk locus contains a number of
genes including Proline-Rich Protein 14 (PRR14), which is

implicated in PI3-kinase/Akt/mTOR signalling, a therapeutic
target in myelomatous plasma cells36.

Fourth, loci related to B cell and plasma cell differentiation and
function are supported by variation at three loci, including eQTL
effects (ELL2 at 5q15) and Hi-C looping interactions (at 6q21). As
previously inferred from GM12878 cell line data, the region at
6q21 (rs9372120, ATG5) participates in intra-chromosome loop-
ing with the B-cell transcriptional repressor PRDM1 (alias
BLIMP1)4. Additionally, SNP rs34562254 at 17p11.2 is respon-
sible for the amino acid substitution (NP_036584.1:p.Pro251Leu)
in TNFRSF13B, a key regulator of normal B-cell homoeostasis,
which has an established role in MM biology37–42.

Discussion
Our meta-analysis of a new GWAS series in conjunction with
previously published MM data sets has identified six novel risk
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loci. Together, the new and previously reported loci explain an
estimated 16% of the SNP heritability for MM in European
populations. Ancestral differences in the risk of developing MM
are well recognised, with a greater prevalence of MM in African
Americans as compared with those with European ancestry43. It
is plausible that the effects of MM risk SNPs may differ between
Europeans and non-Europeans and hence contribute to differ-
ences in prevalence rates. Thus far, there has only been limited
evaluation of this possibility with no evidence for significant
differences44.

Integration of Hi-C data with ChIP-seq chromatin profiling
from MM and lymphoblastoid cell lines and naive B cells and
eQTL analysis, using patient expression data, has allowed us to
gain preliminary insight into the biological basis of MM sus-
ceptibility. This analysis suggests a model of MM susceptibility
based on transcriptional dysregulation consistent with altered
B-cell differentiation, where dysregulation of autophagy/apoptosis
and cell cycle signalling feature as recurrently modulated
pathways. Specifically, our findings implicate mTOR-related
genes ULK4, ATG5 and WAC, and by virtue of the role of
IRF4-MYC related autophagy, CDCA7L, DNMT3A, CBX7 and
KLF2 in MM development (Supplementary Data 1). Further
investigations are necessary to decipher the functional basis of
risk SNPs, nevertheless we highlight mTOR signalling and the
ubiquitin–proteasome pathway, targets of approved drugs in
MM. As a corollary of this, genes elucidated via the functional
annotation of GWAS that discovered MM risk loci may represent
promising therapeutic targets for myeloma drug discovery.
Finally, our estimation of sample sizes required to identify a
larger proportion of the heritable risk of MM attributable to
common variation underscore the need for further international
collaborative analyses.

Methods
Ethics. Collection of patient samples and associated clinico-pathological infor-
mation was undertaken with written informed consent and relevant ethical review
board approval at respective study centres in accordance with the tenets of the
Declaration of Helsinki. Specifically for the Myeloma-IX trial by the Medical
Research Council (MRC) Leukaemia Data Monitoring and Ethics committee
(MREC 02/8/95, ISRCTN68454111), the Myeloma-XI trial by the Oxfordshire
Research Ethics Committee (MREC 17/09/09, ISRCTN49407852), HOVON65/
GMMG-HD4 (ISRCTN 644552890; METC 13/01/2015), HOVON87/NMSG18
(EudraCTnr 2007-004007-34, METC 20/11/2008), HOVON95/EMN02
(EudraCTnr 2009-017903-28, METC 04/11/10), University of Heidelberg Ethical
Commission (229/2003, S-337/2009, AFmu-119/2010), University of Arkansas for
Medical Sciences Institutional Review Board (IRB 202077), Lund University Ethical
Review Board (2013/54), the Norwegian REK 2014/97, the Danish Ethical Review
Board (no. H-16032570) and Icelandic Data Protection Authority (2,001,010,157
and National Bioethics Committee 01/015).

The diagnosis of MM (ICD-10 C90.0) in all cases was established in accordance
with World Health Organization guidelines. All samples from patients for
genotyping were obtained before treatment or at presentation.

Primary GWAS. We analysed constitutional DNA (EDTA-venous blood derived)
from 931 cases ascertained through the UK Myeloma XI trial; detailed in Sup-
plementary Table 1. Cases were genotyped using the Illumina OncoArray (Illumina
Inc. San Diego, CA 92122, USA). Controls were also genotyped using the
OncoArray and comprised: (1) 2976 cancer-free men recruited by the PRACTICAL
Consortium—the UK Genetic Prostate Cancer Study (UKGPCS) (age <65 years), a
study conducted through the Royal Marsden NHS Foundation Trust and SEARCH
(Study of Epidemiology & Risk Factors in Cancer), recruited via GP practices in
East Anglia (2003–2009) and (2) 4446 cancer-free women across the UK, recruited
via the Breast Cancer Association Consortium (BCAC).

Standard quality-control measures were applied to the GWAS45. Specifically,
individuals with low SNP call rate (<95%) as well as individuals evaluated to be of
non-European ancestry (using the HapMap version 2 CEU, JPT/CHB and YRI
populations as a reference) were excluded (Supplementary Fig. 8). For apparent
first-degree relative pairs, we excluded the control from a case–control pair;
otherwise, we excluded the individual with the lower call rate. SNPs with a call rate
<95% were excluded as were those with a MAF <0.01 or displaying significant
deviation from Hardy–Weinberg equilibrium (P < 10−5). GWAS data were
imputed to >10 million SNPs using IMPUTE2 v2.346 software in conjunction with

a merged reference panel consisting of data from 1000 Genomes Project47 (phase 1
integrated release 3 March 2012) and UK10K48. Genotypes were aligned to the
positive strand in both imputation and genotyping. We imposed predefined
thresholds for imputation quality to retain potential risk variants with MAF >0.01
for validation. Poorly imputed SNPs with an information measure <0.80 were
excluded. Tests of association between imputed SNPs and MM was performed
under an additive model in SNPTESTv2.549. The adequacy of the case–control
matching and possibility of differential genotyping of cases and controls was
evaluated using a Q–Q plot of test statistics (Supplementary Fig. 1). The inflation λ
was based on the 90% least-significant SNPs50 and assessment of λ1000. Details of
SNP QC are provided in in Supplementary Table 2.

Published GWAS. The data from six previously reported GWAS2–5 are sum-
marised in Supplementary Table 1. All these studies were based on individuals with
European ancestry and comprised: UK-GWAS (2282 cases, 5197 controls),
Swedish-GWAS (1714 cases, 10,391 controls), German-GWAS (1508 cases, 2107
controls), Netherlands-GWAS (555 cases, 2669 controls), US-GWAS (780 cases,
1857 controls) and Iceland (480 cases, 212,164 controls).

Replication studies and technical validation. To validate promising associations,
we analysed three case–control series from Germany, Sweden and Denmark,
summarised in Supplementary Table 3. The German replication series comprised
911 cases collected by the German Myeloma Study Group (Deutsche Studien-
gruppe Multiples Myeloma (DSMM)), GMMG, University Clinic, Heidelberg and
University Clinic, Ulm. Controls comprised 1477 healthy German blood donors
recruited between 2004 and 2007 by the Institute of Transfusion Medicine and
Immunology, University of Mannheim, Germany. The Swedish replication series
comprised 534 MM cases from the Swedish National Myeloma Biobank and the
Danish replication series comprised 332 MM cases from the University Hospital of
Copenhagen. As controls, we analysed 2382 Swedish blood donors and 2229
individuals from Denmark and Skåne County, Sweden (the southernmost part of
Sweden adjacent to Denmark). Replication genotyping of German and Scandina-
vian samples was performed using competitive allele-specific PCR KASPar
chemistry (LGC, Hertfordshire, UK). Call rates for SNP genotypes were >95% in
each of the replication series. To ensure the quality of genotyping in all assays, at
least two negative controls and duplicate samples (showing a concordance of
>99%) were genotyped at each centre. The fidelity of imputation was assessed by
directly sequencing a set of 147 randomly selected samples from the UK
OncoArray case series. Imputation was found to be robust; concordance was >90%
(Supplementary Table 13). Genotyping and sequencing primers are detailed in
Supplementary Table 14 and 15, respectively.

Meta-analysis. Meta-analyses were performed using the fixed-effects inverse-
variance method using META v1.651. Cochran’s Q-statistic to test for heterogeneity
and the I2 statistic to quantify the proportion of the total variation due to het-
erogeneity was calculated. Using the meta-analysis summary statistics and LD
correlations from a reference panel of the 1000 Genomes Project combined with
UK10K, we implemented Genome-wide Complex Trait Analysis52 to perform
conditional association analysis. Association statistics were calculated for all SNPs
conditioning on the top SNP in each loci showing genome-wide significance. This
was carried out step-wise.

For borderline associations, the BFDP10 was calculated based on a plausible OR
of 1.2 and a prior probability of association of 0.0001. For both promising
associations, the BFDP was <10%.

Fluorescence in situ hybridisation. Fluorescence in situ hybridisation (FISH) and
ploidy classification of UK and German samples were performed as previously
described53,54. Logistic regression in case-only analyses was used to assess the
relationship between SNP genotype and IgH translocations or tumour ploidy.

eQTL analysis. eQTL analyses were performed using CD138-purified plasma cells
from 183 UK MyIX trial patients and 658 German GMMG patients32. Briefly,
German and UK data were pre-processed separately, followed by analysis using a
Bayesian approach to probabilistic estimation of expression residuals to infer broad
variance components, accounting for hidden determinants influencing global
expression. The association between genotype of SNPs and expression of genes
within 1Mb either side of each MM risk locus was evaluated based on the sig-
nificance of linear regression coefficients. We pooled data from each study under a
fixed-effects model.

The relationship between SNP genotype and gene expression was carried out
using SMR analysis as per Zhu et al.2 Briefly, if bxy is the effect size of x (gene
expression) on y (slope of y regressed on the genetic value of x), bzx is the effect of z
on x and bzy be the effect of z on y, bxy (bzy/bzx) is the effect of x on y. To distinguish
pleiotropy from linkage where the top associated cis-eQTL is in LD with two causal
variants, one affecting gene expression and the other affecting a trait, we tested for
heterogeneity in dependent instruments (HEIDI), using multiple SNPs in each cis-
eQTL region. Under the hypothesis of pleiotropy, bxy values for SNPs in LD with
the causal variant should be identical. For each probe that passed significance
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threshold for the SMR test, we tested the heterogeneity in the bxy values estimated
for multiple SNPs in the cis-eQTL region using HEIDI.

GWAS summary statistics files were generated from the meta-analysis. We set a
threshold for the SMR test of PSMR < 1 × 10−3 corresponding to a Bonferroni
correction for 45 tests, i.e. 45 probes which demonstrated an association in the
SMR test. For all genes passing this threshold, we generated plots of the eQTL and
GWAS associations at the locus, as well as plots of GWAS and eQTL effect sizes
(i.e. input for the HEIDI heterogeneity test). HEIDI test P values < 0.05 were
considered as reflective of heterogeneity. This threshold is, however, conservative
for gene discovery because it retains fewer genes than when correcting for multiple
testing. SMR plots for significant eQTLs are shown in Supplementary Fig. 9 and 10,
and a summary of results are shown in Supplementary Table 16.

Promoter CHi-C. To map risk SNPs to interactions involving promoter contacts
and identify genes involved in MM susceptibility, we analysed publicly accessible
promoter CHi-C data on the naive B cells downloaded from Blueprint Epigenome
Project. Additionally, we also analysed promoter CHi-C data that we have pre-
viously generated for the MM cell line KMS1112. Interactions were called using the
CHiCAGO pipeline to obtain a unique list of reproducible contacts55 and those
with a −log(weighted P) ≥5 were considered significant.

Chromatin state annotation. Variant sets (i.e. sentinel risk SNP and correlated
SNPs, r2>0.8) were annotated for putative functional effect based upon histone
mark ChIP-seq data for H3K27ac, H3K4Me1, H3K27Me3, H3K9Me3, H3K36Me3
and H3K27Me3 from KMS11 cell lines, generated in-house and naive B cells from
Blueprint Epigenome Project56. We used ChromHMM to infer chromatin states by
integrating information on these histone modifications, training the model on three
MM cell lines; KMS11, MM1S and JJN3. Genome-wide signal tracks were binarized
(including input controls for ChIP-seq data), and a set of learned models were
generated using ChromHMM software57. A 12-state model was suitable for inter-
pretation, and biological meaning was assigned to the states based on chromatin
marks that use putative rules as previously described (Supplementary Fig. 11).

TF and histone mark enrichment analysis. To examine enrichment in specific TF
binding across risk loci, we adapted the method of Cowper-Sal lari et al.58. Briefly,
for each risk locus, a region of strong LD (defined as r2>0.8 and D′>0.8) was
determined, and these SNPs were considered the associated variant set (AVS).
Publically available data on TF ChIP-seq uniform peak data were obtained from
ENCODE for the GM12878 cell line, including data for 82 TF and 11 histone
marks59. In addition, ChIP-seq peak data for six histone marks from KMS11 cell
line were generated in-house, and naive B-cell ChIP-seq data were downloaded
from Blueprint Epigenome Project56. For each mark, the overlap of the SNPs in the
AVS and the binding sites was assessed to generate a mapping tally. A null dis-
tribution was produced by randomly selecting SNPs with the same characteristics
as the risk-associated SNPs, and the null mapping tally calculated. This process was
repeated 10,000 times, and P values were calculated as the proportion of permu-
tations, where null mapping tally was greater or equal to the AVS mapping tally.
An enrichment score was calculated by normalising the tallies to the median of the
null distribution. Thus, the enrichment score is the number of standard deviations
of the AVS mapping tally from the median of the null distribution tallies.
Enrichment plots are shown in Supplementary Fig. 6 and 7.

Functional annotation. For the integrated functional annotation of risk loci,
variant sets (i.e. all SNPs in LD r2 > 0.8 with the sentinel SNP) were annotated with:
(i) presence of a Hi-C contact linking to a gene promoter, (ii) presence of an
association from SMR analysis, (iii) presence of a regulatory ChromHMM state,
(iv) evidence of transcription factor binding and (v) presence of a nonsynonymous
coding change. Candidate causal genes were then assigned to MM risk loci using
the target genes implicated in annotation tracks (i), (ii), (iiii) and (iv). If the data
supported multiple gene candidates, the gene with the highest number of individual
functional data points was considered as the candidate. Where multiple genes have
the same number of data points, all genes are listed. Direct non-synonymous
coding variants were allocated additional weighting. Competing mechanisms for
the same gene (e.g. both coding and promoter variants) were permitted.

Heritability analysis. We used LDAK to estimate the polygenic variance (i.e.
heritability) ascribable to all genotyped and imputed GWAS SNPs from summary
statistic data. SNP-specific expected heritability, adjusted for LD, MAF and gen-
otype certainty was calculated from the UK10K and 1000 Genomes data. Samples
were excluded with a call rate <0.99 or if individuals were closely related or of
divergent ancestry from CEU. Individual SNPs were excluded if they showed
deviation from HWE with P < 1 × 10−5, an individual SNP genotype yield <95%,
MAF <1%, SNP imputation score <0.99 and the absence of the SNP in the GWAS
summary statistic data. This resulted in a total 1,254,459 SNPs which were used to
estimate the heritability of MM.

To estimate the sample size required for a given proportion of the GWAS
heritability, we implemented a likelihood-based approach to model the effect-size
distribution15 using association statistics, from the MM meta-analysis, and LD
information, obtained from individuals of European ancestry in the 1000 Genomes

Project Phase 3. LD values were based on an r2 threshold of 0.1 and a window size
of 1MB. The goodness of fit of the observed distribution of P values against the
expected from a two-component model (single normal distribution) and a three-
component model (mixture of two normal distributions) were assessed15, and a
better fit was observed for the latter model (Supplementary Figure 4). The
percentage of GWAS heritability explained for a projected sample size was
determined using this model and is based on power calculations for the discovery
of genome-wide significant SNPs. The genetic variance explained was calculated as
the proportion of total GWAS heritability explained by SNPs reaching genome-
wide significance at a given sample size. The 95% confidence intervals were
determined using 10,000 simulations.

PRS for familial MM (n= 38) from 25 families were compared with sporadic
MM (n= 1530) and population-based controls (n= 10,171); first as a simple sum
of risk alleles and secondly as sum of risk alleles weighted by their log-transformed
ORs. Family member scores were averaged. A one-sided Student’s t-test was used
to assess difference between groups. The genetic data have been previously
described5,60 with the familial MM cases having been identified by linkages of
Swedish registry information.

Data availability. SNP genotyping data that support the findings of this study have
been deposited in Gene Expression Omnibus with accession codes GSE21349,
GSE19784, GSE24080, GSE2658 and GSE15695; in the European Genome-
phenome Archive (EGA) with accession code EGAS00000000001; in the European
Bioinformatics Institute (Part of the European Molecular Biology Laboratory)
(EMBL-EBI) with accession code E-MTAB-362 and E-TABM-1138; and in the
database of Genotypes and Phenotypes (dbGaP) with accession code phs000207.v1.
p1. Expression data that support the findings of this study have been deposited in
GEO with accession codes GSE21349, GSE2658, GSE31161 and EMBL-EBI with
accession code E-MTAB-2299. The remaining data are contained within the paper
and Supplementary Files or are available from the author upon request. KMS11 Hi-
C data used in this manuscript are deposited in EGA under accession number
EGAS00001002614. The accession number for the KMS11 ChIP-seq data reported
in this paper is EGA: S00001002414. Naive B-cell HiC data used in this work is
publically available from Blueprint Blueprint Epigenome Project [https://osf.io/
u8tzp/]. ChIP-seq data for H3K27ac, H3K4Me1, H3K27Me3, H3K9Me3,
H3K36Me3 and H3K27Me3 from naive B cells are publically available and were
obtained from Blueprint Epigenome Project [http://www.blueprint-epigenome.eu/].
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