Geochemistry of supercritical fluids in active geothermal systems

Matylda Heřmanská
Geochemistry of supercritical fluids in active geothermal systems

Matylda Heřmanská

Dissertation submitted in partial fulfillment of a Philosophiae Doctor degree in Geology

Advisor
Dr. Andri Stefánssson
Faculty of Earth Sciences, University of Iceland

Ph.D. Committee
Dr. Barbara I. Kleine
Institute of Earth Sciences, University of Iceland

Dr. Thomas Driesner
Department of Earth Sciences, ETH Zürich, Switzerland

Dr. Sigurður R. Gíslason
Institute of Earth Sciences, University of Iceland

Opponents
Dr. Halldór Ármannsson
Iceland Geosurvey

Dr. Luigi Marini
Consultant in Applied Geochemistry, Italy

Faculty of Earth Sciences
School of Engineering and Natural Sciences
University of Iceland
Reykjavik, March 2020
Abstract

Supercritical fluids have been reported from both rift and subduction related geothermal systems. They typically form in the vicinity of magmatic intrusions at the roots of geothermal systems upon conductive heating and boiling of the subcritical geothermal reservoir fluids to supercritical conditions and/or from gases released from the magmatic body. However, the origin and chemistry of these supercritical fluids are not yet fully understood as their chemical composition can be easily overprinted by mixing with subcritical reservoir fluids at lower temperatures and shallower depths. This study aims to link the hydrology in active intrusion-related geothermal systems with fluid chemistry and associated secondary mineralogy. The origin and formation of supercritical fluid were investigated by combining geochemical modeling and flow-through experiments and comparing modeling and experimental results with natural data reported from supercritical environments.

Experimental and modeling work performed in this thesis revealed that supercritical fluids formed upon conductive heating and the boiling of subcritical geothermal reservoir fluids are characterized by low concentrations of non-volatile elements (Si, Na, K, Ca, Mg, Fe, Al, Cl) and similar concentrations of volatile elements as in the subcritical fluids (B, CO₂, H₂S). This process is predicted to be accompanied by mineral depositions dominated by silica, aluminum silicates and, in some cases, salts. Similar trends in fluid chemistry and mineralogy occur upon supercritical fluid formation in geothermal systems associated with rift and subduction zones.

The results of the modeling and experiments compared well with the chemical composition for supercritical fluid discharges from the IDDP-1 well at Krafla (Iceland). Other geothermal systems where supercritical fluid temperatures have been reported and display similar chemical characteristics include Menengai (Kenya), Los Humeros (Mexico), Larderello (Italy), and The Geysers (USA).
Útdráttur

Hitastig vökvá í jarðhitageymsum sumra innskotatengdra jarðhitakerfa um allan heim eru yfir kriptískum gildum. Uppruni og efnafræði slíkra vökvar er ekki að fullu þekkt þar sem efnafræðileg einkenni slíks vöka eru auðveldalega yfirprentuð af ýnsum öðrum ferlum sem eiga sér stað í jarðhitakerfum. Með samþáttun mismunandi aðferðir eins og forða- og efnafræðilegulíkön í blandy við háhitatilraunir er hægt að auka skilning á myndun og efnasamsetningu slíks yfir kriptískar jarðhitavökv. Markmið rannsóknarinnar var að tengja saman grunnvatnssfræði í virkum innskotatengdum jarðhitakerfum við jaðrefnafræði vökvans, og þá sértaklega í tengslum við myndun yfir kriptískar vökv á nágrenni kvikuhólfisins.

Tilraunir og líkanreikningar sem voru framkvæmdir sem hluti af þessari doktorsverkefni sýna fram á að suða á jarðhitavatn vegna varmaleiði getur leitt til myndunar á yfirkritískar jarðhitavökv. Efnasamsetning slíks yfirkritískar vökvna einkennist af lágum styrk bergsækinna efna (Si, Na, K, Ca, Mg, Fe, Al, Cl) og svipuðum styrk rokgjarnra efna (B, CO₂, H₂S) og mælist í jarðhitavatninu. Samfara þessum efnaþreytingum í jarðhitavökvum myndast útfellingar sem eru ríkar af kvarsi, álsilikötum og salti. Sambærilegar niðurstöður fást fyrir myndun yfirkritískar vökv tengt jarðhitakerfum á rekbeltum og trogum.

Niðurstöður tilraunanna og líkanreikninganna á efnasamsetningu yfirkritískar jarðhitavökv ber vel saman við mælingar á slíkum vökv úr IDDP-1 borholunni í Kröflu (Íslandi). Önnur jaðrhitakerfi þar sem mælst hefur hæri hiti en yfirkritískur hiti vatns hafa einnig sambærilega efnasamsetningu vökvans, t.d. í Menegai (Kenýa), Los Humeros (Mexíkó), Lardarello (Ítalía) og The Geysers (Bandaríkin).
„Člověk mnoho vydrží, má-li cíl...“
-Tomáš Garrigue Masaryk

Dedicated to Olga.
Preface

This thesis is the outcome of research carried out between years 2014-2019 at the Faculty of Earth Sciences, University of Iceland. The thesis includes three research articles. Research articles I and II have been published in the international journals Geothermics and Geoﬂuids, respectively and research article III has been accepted for publication to the Journal of Volcanology and Geothermal Research. The study was funded by the Swiss National Science Foundation (CRSII2_141843/1, Sinergia COTHERM) and The National Power Company of Iceland.

Research article I

Research article II

Research article III

Heřmanská, M., Kleine, B.I., Stefánsson, A. Geochemical constraints on supercritical fluids in geothermal systems. J. Volcanol. Geotherm. Res. (reprinted with the permission of Elsevier Science Ltd.)

Parts of this work have been presented at various scientific conferences.

Table of Contents

Acknowledgements .. viii

1 Introduction ... 1
 1.1 Active geothermal systems .. 1
 1.2 Supercritical fluids in geothermal systems ... 4
 1.3 The IDDP project ... 5
 1.4 Aims of the study .. 6

2 Methodology .. 7
 2.1 Field sampling and data collection ... 7
 2.2 Flow-through experiments .. 8
 2.3 Hydrological model .. 9
 2.4 Geochemical model .. 10

3 Summary of scientific contribution ... 11
 3.1 Research Article I (Appendix A) .. 11
 3.2 Research Article II (Appendix B) .. 12
 3.3 Research Article III (Appendix C) .. 12

4 Conclusive remarks and future directions .. 15

5 References .. 17

Appendix A: Research article I ... 23

Appendix B: Research article II ... 35

Appendix C: Research article III ... 51
Acknowledgments

This study was funded by the Swiss National Science Foundation (CRSII2_141843/1, Sinergia COTHERM) and the National Power company of Iceland.

First, I would like to thank to my supervisor Andri Stefánsson for giving me the opportunity to work on this project and for his supervision. Many thanks also go to Barbara and Sam, who always helped me to find a way whenever I got lost.

People previously working in Lab 252 know that to carry out experiments there can be quite stressful. I would like to thank Gylfi, Chiara, Andri Ísak, Maggi, Martin and Helgi for being around and for helping me overcome many technical issues, also to Sigurður Jónsson and Birgir Jóhannesson for their help with SEM and XRD analysis.

This project would never been completed without my partner Dave by my side. I will never be able to express how much I appreciate that you were patient with me and continuously supportive of me with your smile, good advice, or just a shot of Brennivín. You are probably the only person who truly knows how much energy I (we) put into this project. Thank you (and to our dog Kappi too)!

Many thanks to my colleagues from the Geysir research group Hanna, Jan, Prathap, Joi, Snorri, Rikey, and Jon Órn, and to members of the Askja crew: Rob, Deirdre, Hannah, Will, Becca, Eydís, Martin, Giulia, Vincent, Maren, Vaiva, Victor, Lea, Maja, Jed, Eduardo, and Anna. Special thanks belong to Nicole and Iwona for their words of encouragement (often so needed) and Iwona for that beer that she left in front of the lab when I was trying to stop the leak at my experiment.

Ph.D. life often changes people into isolated and introverted weirdos. I was not an exception. So many thanks to all my friends who did not give up on my existence and waited for me to leave that cold, dark cave again. Many thanks to Kate and Pavla for all the fun moments that we have experienced together; Linh for your 24/7 moral support; Dominika, Bianca and Kallia for their witty and sarcastic jokes and all the moments when you kept trying over and over again to explain to me that there is life after a PhD; Isa for showing me that there is light at the end of the tunnel, and many others.

I would like to express my gratitude to my family for their unconditional love and patience. You taught me that family should always be here for you, and you were.

Many thanks to all of you!
1 Introduction

Geothermal systems act as an increasingly vital source of global energy production and will continue to be a necessary option with the growing demand for a more diverse renewable energy mix. To date, energy produced from geothermal resources represents about 0.15% of the world’s primary energy production (Conti et al., 2016; Lund and Boyd, 2016). Power production from geothermal resources mainly derives from high-temperature geothermal systems commonly associated with active or recent volcanism, but occasionally also in regions affected by extensive faulting (Fig. 1; Stimac et al., 2015; Rivera-Diaz et al., 2016). The reservoir temperatures of high-temperature geothermal systems are typically ~200-350°C. The average power production from a single high-temperature well is ~2-5 MW_e (e.g., Ketilsson et al., 2015; Sanyal and Morrow, 2012). In some geothermal fields, such as The Geysers, Salton Sea, and Hawaii (USA); Kakkonda (Japan); Lardello (Italy); Los Humeros (Mexico); Menengai (Kenya); and Krafla and Nesjavellir (Iceland), measured fluid temperatures exceed the critical temperature of water (Reinsch et al., 2017). Utilization of such fluids could potentially increase power production per well of up to 30-50 MW_e (Friðleifsson and Elders 2005) due to increased specific enthalpy, lower viscosity, and density of supercritical fluids.

Even though utilization of such supercritical resources may multiply energy production from geothermal systems, their occurrence, formation mechanism, and especially chemical properties are not well constrained and understood. Deep drilling projects such as IDDP (Iceland Deep Drilling Project) aim to explore such supercritical resources. However, reservoir conditions, corrosive geothermal fluids, and mineral scaling limited the utilization of these fluids (e.g., Hauksson et al., 2014) and also represented a technical challenge for equipment and material used for the well-head or the valves (Þórhallsson et al., 2010, 2014; Kruszewski and Witig, 2018). This work investigates the supercritical fluid formation, geochemistry, and alteration mineralization in the roots of high-temperature geothermal systems with a magmatic heat source with a focus on Icelandic geothermal fields.

1.1 Active geothermal systems

High-temperature or volcanic geothermal systems form in the Earth’s upper crust above a magmatic heat source, often at plate boundaries, where melt derived from the upper mantle can reach shallow depths within the crust (Henley and Ellis, 1983; Hedenquist and Lowenstern, 1994). After emplacement, magmatic intrusions start to cool and exchange heat with the surrounding rocks and groundwater system (Hanson, 1995, 1996). At hydrostatic pressures, heat released into the surrounding groundwater system results in the formation of density-driven convective fluid flow (Fig. 2). As the fluid temperatures and pressures within the geothermal reservoir are typically below the critical point of water, the convecting fluids form under so-called subcritical conditions (Hayba and Ingenbritsen, 1997). The geothermal system is supplied with an inflow of water (meteoric water, seawater or a mixture thereof) into a permeable reservoir around the intrusion. Magmatic gases (e.g., H_2O, CO_2, HCl, SO_2) may exsolve from the cooling and crystallizing magmatic intrusion into the geothermal reservoir. Upon geothermal fluid ascent to the surface, the overlying water column decreases resulting in depressurization boiling and the formation of liquid and vapor phase.
Figure 1 The distribution of geothermal fields that reported the occurrence of supercritical fluids (based on Reinsch et al., 2017).
It has been concluded that the composition of geothermal reservoir fluids is controlled by equilibrium between the fluids and thermodynamically stable secondary minerals for all major elements except for Cl and B that are considered mobile (e.g., Giggenbach, 1981; Arnórsson et al., 1983). As the fluid-mineral reactions are temperature dependent, it follows, that the concentration of major elements varies with reservoir fluid temperature. Such temperature effects are also reflected in depth-related distribution of secondary minerals with mixed-layered clays and chlorite being most common at shallow depths and low to moderate temperatures (<150°C), whereas epidote, chlorite, albite, sulfide, and quartz become predominant at greater depths and temperatures above ~200-250°C and eventually amphiboles such as actinolite or hornblende appearing at the highest temperatures or >300°C (Browne, 1978). At shallow depth, the ascending geothermal liquid and vapor may condense, mix and oxidize with non-thermal fluid, often resulting in fluid with acid to alkaline pH values, argillic alteration, and silica and carbonate travertines forming at the surface.

Figure 2 (A) Simplified crossection of active geothermal systems with focus on supercritical fluids (modified from Stefánsson, 1981 and Pope et al., 2015). (B) and (C) Corresponding pressure, temperature and enthalpy conditions of supercritical fluids and wells with observed supercritical conditions displayed on diagrams of pure water. Dashed lines indicate temperature-depth profiles above magmatic intrusions at selected times (after Hayba and Ingebritsen, 1997).
1.2 Supercritical fluids in geothermal systems

Supercritical geothermal fluids have commonly been defined based on the critical temperature \(T_c = 373.976 \, ^\circ C\) and pressure \(P_c = 220.06\, \text{bar}\) of pure water \((H_2O)\) (Haar et al., 1984). Such a definition can lead to an artificial and unphysical boundary in the phase diagram of water across which there is a continuous region of single-phase fluid. Here, and following Liebscher and Heinrich (2007), supercritical geothermal fluid is defined as fluid with temperatures above the critical temperature of water, irrespective of density in the case of pure water or phase state in the case of binary and higher salt-water systems (Fig. 2).

Based on heat and mass transfer modeling, geothermal fluids with temperatures exceeding the critical temperature of pure water have been suggested to exist in the roots of the geothermal systems in the vicinity of the magmatic intrusion. There, heat is transferred to the surrounding groundwater by conduction, resulting in the formation of supercritical fluids with temperatures >400°C and specific enthalpy >3000 \(\text{kJ kg}^{-1}\) (e.g., Hayba and Ingebritsen, 1997; Scott et al., 2016). Fluids with supercritical temperatures have been observed in several active geothermal systems worldwide such as The Geysers, Salton Sea, and Hawaii (USA); Kakkonda (Japan); Larderello (Italy); Los Humeros (Mexico); Menengai (Kenia); and Krafla, Nesjavellir and Reykjanes (Iceland) (Fig. 1; Reinsch et al., 2017).

Supercritical fluids may originate from magmatic degassing with such fluids being characterized by elevated \(\text{CO}_2\), \(\text{SO}_2\), \(\text{HCl}\), and \(\text{HF}\) concentrations (e.g., Fischer and Chiodini, 2015). Supercritical fluids may also form as a result of conductive heat transfer from the magmatic intrusion to the surrounding subcritical geothermal fluid (e.g., Hayba and Ingebritsen, 1997). The chemical composition of such supercritical fluids remains somewhat unclear. The solubility of most minerals is poorly known in supercritical and low-density fluids with the exception of silica, for example (Fournier and Potter, 1982) and some common salts (Leusbrock et al., 2009, 2010a, 2010b). However, as a part of the present study, the combination of geochemical modeling and laboratory experiments have suggested such fluids to have similar volatile content as the subcritical geothermal reservoir fluids and low concentration of non-volatile elements (see research articles II and III).

Reported compositions of the fluid condensate discharged from the deep geothermal wells in various geothermal fields, for example at Los Humeros (Mexico) and Krafla (Iceland), showed low pH values of the condensed fluid at room temperature along with low concentrations of non-volatile elements such as \(\text{Si, Na, K, Ca and Mg}\) (see research articles I and III). This reinforced a discussion about the role of magma gas influx and condensation of supercritical fluids to form \(\text{HCl}\) rich liquid as a cause of the low pH and dilute fluids (Truesdell et al., 1989; D’Amore et al., 1990; Ærmannsson et al., 1989, 2014; Heřmanská et al., 2019). In general, the character of the magmatic degassing is controlled by several factors, such as melt volatile content, reservoir changes during the melt emplacement, or redox conditions within the system (Giggenbach, 1987; Wallace, 2005; Shinozaka, 2008). Once an intrusion is emplaced within the crust and starts to cool down, the most volatile elements are released first during depressurization degassing of the melt. Commonly, these are \(\text{SO}_2\)-rich magmatic fluids that reach the surface, often with minor interaction with the surrounding rocks. Eventually, the transition from hydrostatic to lithostatic pressure results in the formation of slower degassing of magmatic fluids that react with the surrounding rocks, governed by temperature and redox.
conditions in the system, and eventually mix with shallower groundwater systems (e.g., Fournier, 1985; Giggenbach, 1987; Shinohara, 2008). Compositions of this type of magmatic fluids evolve with time, initially being CO$_2$-rich and evolving towards H$_2$O-rich fluids with less volatile elements, such as Cl.

1.3 The IDDP project

Iceland provides an ideal location for studying the heat and fluid transfer, fluid geochemistry and mineralogy associated with subcritical and supercritical fluids in active geothermal systems. High-temperature geothermal systems are abundant along the plate boundaries, and some of these systems are already utilized. The reported geothermal fluid discharge compositions are affected by the fluid source. At Krafla, Nesjavellir, and Hellisheiði, fluids are of meteoric or of mixed meteoric and seawater origin, whereas at Reykjanes, the geothermal reservoir fluids are sourced dominantly by seawater. Typical reservoir temperatures in these systems range from ~210 to ~325°C and specific enthalpy measured at wellhead ranges from <1000 to ~2750 kJ kg$^{-1}$, corresponding to liquid dominated to two-phase (vapor and liquid) reservoir fluids (Gudmundsson and Arnórsson, 2005; Scott et al., 2014; Óskarsson et al., 2015).

One of the most ambitious projects aimed at obtaining supercritical fluids for geothermal utilization is the Iceland Deep Drilling Project (IDDP, www.iddp.is). In 2009, the first well (IDDP-1) was drilled in Krafla (Fig. 3; NE Iceland) that came to a halt at ~2.1 km depth after drilling into rhyolite magma. After the initial heating up period, the well discharged supercritical fluids with temperatures of ~440°C, pressures of 140 bar, and enthalpy of ~3200 kJ kg$^{-1}$ (Elders et al., 2014). However, due to operational difficulties, scaling and thermal damage to the well casings, utilization proved to be challenging, and the fluid discharge was eventually terminated (Hauksson et al., 2014). In 2017, the second well (IDDP-2) was drilled at Reykjanes (SW Iceland) that eventually reached a depth of ~4.5 km. The measured temperature at the bottom of the well was 426°C, but no supercritical fluids have yet been discharged from the well head (Friðleifsson et al., 2017). The third IDDP borehole is already being planned for 2021-23 at Nesjavellir or Hellisheiði (SW Iceland). Previously, well number NJ-11 at Nesjavellir also reached a depth of 2.2 km and a temperature of >380°C (Steingrímsson et al., 1990). This implies that supercritical fluids may commonly form within different active geothermal systems in Iceland.
1.4 Aims of the study

The primary aims of this study were the following:

- To investigate the fluid chemical and mineralogical changes associated with supercritical fluid formation from conventional subcritical geothermal fluids near a shallow intrusion with emphasis on the IDDP-1 well at Krafla, Iceland, using geochemical modeling. Results have been summarized in the research article I.
- To investigate the chemical and mineralogical changes upon conductive heat addition and consequent boiling of subcritical geothermal fluids to form supercritical geothermal fluids using laboratory experiments. Results have been summarized in the research article II.
- To explore the effects of fluid source on the chemical composition of supercritical fluids using geochemical modeling and laboratory experiments. Results have been summarized in the research article III.

To achieve these aims, hydrological and geochemical modeling were combined to investigate the formation of supercritical fluids from subcritical fluids by conductive heat addition. Furthermore, laboratory experiments were conducted where the chemical and mineralogical changes accompanying supercritical fluid formation were investigated. Finally, the results obtained from modeling, experiments, and natural systems were compared.
2 Methodology

2.1 Field sampling and data collection

To investigate the different geochemical characteristics of subcritical and supercritical fluids, two-phase fluids (subcritical) and single-phase vapor condensates (supercritical) were collected from wells at the Krafla geothermal power plant, NE Iceland (Fig. 4). Fluid samples obtained by the field sampling were the subject of research articles I, II, and III.

Two-phase geothermal fluids were sampled using a Weber separator to separate liquid and vapor phases (Arnórsson et al., 2006). The liquid phase samples were cooled using an in-line cooling coil. Samples for the analysis of major cations (Na, K, Mg, Ca, Si, Al, Na, K, Mg, Fe, B) were filtered and acidified with concentrated HNO₃ on-site. The concentrations were determined using ICP-OES. Samples for the determination of F and Cl were filtered and otherwise left untreated. Samples for SO₄ analysis were filtered, and 2% Zn-acetate solution was added to precipitate the dissolved sulfide as zinc sulfide, leaving dissolved SO₄ in the
solution for analysis. All anions were analysed using ion chromatography. Samples for determination of carbonate plus sulfide alkalinity were collected into amber glass bottles and analyzed using the modified alkalinity titration method, consisting of an acidimetric titration, followed by degassing with N₂ gas and back titration (Arnórsson et al., 2006; Stefánsson et al., 2007). Total dissolved sulfide concentrations were analyzed on-site by titration with mercuric acetate using dithizone as an indicator (Arnórsson et al., 2006). The difference between the two titration results gives carbonate alkalinity. The pH was also determined on-site using a pH meter calibrated with commercial buffer solutions at pH 7 and pH 4, respectively. These analyses were carried out on-site to prevent degassing.

Vapor samples from the subcritical and supercritical discharge were treated similarly. The samples for non-volatile element determination were condensed to form a liquid. These samples were subsequently treated as described above. The volatile elements in the vapor samples were collected in pre-evacuated gas bottles containing 50% KOH, ~15 ml of a base in 100 ml flasks. The concentrations of CO₂ and H₂S in the vapor condensate were determined by a modified alkalinity titration (Stefánsson et al., 2007) and precipitation titration method using Hg acetate and a dithizone indicator (Arnórsson et al., 2006), respectively. The non-condensable gases, including H₂, N₂, Ar, and CH₄ were analyzed by gas chromatography.

2.2 Flow-through experiments

High-temperature flow-through experiments were carried out to reproduce a geothermal system with subcritical and supercritical temperatures (Fig. 5). With these experiments, the formation of both supercritical fluids and associated secondary minerals upon heat addition to subcritical fluids was investigated.

The subcritical conditions were represented by a flow-through reactor filled with basaltic glass and heated to 260°C. Supercritical conditions were simulated in a subsequent flow-through reactor that was heated to 400 or 420°C containing a stainless-steel threaded rod to collect precipitating solids. Absolute pressure was kept constant at 34 and 69 bar during the experiments to maintain subcritical and supercritical conditions in both reactors.

For this work, a total of seven flow-through experiments were carried out (Research articles II and III). The inlet solution used in the experiments was natural geothermal water from Krafla and Spóastaðir. Using a High-Performance Liquid Chromatography (HPLC) pump, the inlet solution was pumped through both the subcritical and supercritical reactor. After passing through the reactors, the fluids were cooled down by an in-line cooling jacket, followed by depressurization using a back-pressure regulator (BPR). The fluids were collected at the low-pressure end of the BPR and subsequently prepared for the analysis of major elements, CO₂, and H₂S following the same routines as described above. At the end of each experiment, the solid deposits from both the subcritical and supercritical reactors were collected, dried at 50°C and mounted on a sample holder. The rod itself was imbedded into epoxy, cut parallel and perpendicular to the flow direction in the reactor, and then polished. The chemical composition of the solids was determined using a scanning microscope (SEM).

In research article II, the flow-through experiments were used to study the formation mechanism and fluid chemistry of supercritical fluids that form upon boiling of subcritical fluids. This was conducted by using geothermal (subcritical) fluids from Krafla as inlet solutions. Here, two interconnected reactors representing subcritical and supercritical conditions, respectively, were used to reproduce the geothermal system. However, the fluids collected from the subcritical reactor were comparable with the concentrations measured in the
inlet solution. Therefore, the sampled geothermal water was directly pumped through the supercritical reactor in subsequent experiments (Fig. 5).

In research article III, the flow-through experiments were carried out to test the effects of the subcritical fluid composition on the supercritical fluid composition. For this purpose, the chemistry of the inlet solutions was varied to represent supercritical fluid formation in (1) young geothermal systems at rift zones with low chloride and low volatile immature water, (2) mature and reacted geothermal systems with fluids containing a low chloride but reacted fluid, and (3) subduction-related geothermal systems with Cl-rich fluids with high volatile gas input, either HCl or CO₂. Results from high-temperature experiments were further compared with reported reservoir fluid compositions from high-temperature geothermal systems in various plate tectonics settings.

![Figure 5](image_url)
Figure 5 Design of the experimental set-up: (A) two connected flow-through reactors used in research article II; (B) one flow-through reactor used in research article III.

2.3 Hydrological model

The pressure-temperature conditions and fluid flow paths in high-temperature geothermal systems were obtained from hydrological modeling. The modeling was conducted using HYDROTHERM software (Hayba and Ingebritsen, 1994) and the results were presented in the research article I.

The heat transfer and fluid flow above a 2 km deep intrusion of basaltic composition were simulated for a pure H₂O system to reproduce the geothermal system at Krafla. Even though assuming a pure H₂O system is a simplification, since geothermal fluids contain dissolved salts and gases, this is justified as Krafla exhibits fluids with low concentrations of NaCl, and such low NaCl concentrations do not affect the fluid phase distribution and thermodynamic properties of water significantly. The magmatic heat source was treated in a similar simplifying manner. The physical properties of the intrusion used in the HYDROTHERM simulations include an initial temperature (1100°C), density (2900 kg m⁻³), and temperature-dependent heat capacity, decreasing linearly from 2000 J kg⁻¹ K⁻¹ at 1100°C to 1000 J kg⁻¹ K⁻¹ at <850°C to simulate the effect of latent heat of crystallization (Hanson and Barton, 1989; Hayba and Ingebritsen, 1997).
The initial intrusion radius (0.5 km) of the modeled intrusion is large enough to support the development of a boiling geothermal system in an initially ‘cold’ crust. The initial permeability of basaltic host rock was set to be 10^{-15} m2, which is close to the permeability estimated for the Krafla geothermal system (Bödvarsson et al., 1984). Simulated permeabilities were temperature-dependent, decreasing from 10^{-15} m2 to 10^{-22} m2 at 550°C (Scott et al., 2015). The intrusion was assumed to be emplaced instantaneously, and subsequent heat and mass transfer were simulated as a function of time for 10000 years.

2.4 Geochemical model

Geochemical (multicomponent-multiphase) modeling was carried out to assess supercritical fluid formation and evolution upon ascent to the surface. The geochemical modeling was conducted using PHREEQC (Parkhurst and Appelo, 2013) and WATCH (Bjarnason, 2010) geochemical software.

The model considered two main fluid flow regimes: (1) supercritical fluid formation by conductive heat addition to circulating subcritical geothermal fluids near a subsurface intrusion (research articles I, II and III) and (2) supercritical fluid ascent, condensation and mixing with shallow geothermal fluids (research article I). In scenario 1, the specific enthalpy of a single-phase liquid (i.e., subcritical fluid) was increased at a close to constant pressure. This enthalpy increase would result in boiling of the liquid to complete dryness (supercritical fluid formation). In scenario 2, depressurization of a supercritical fluid at decreasing pressure-enthalpy conditions was simulated, causing condensation of the liquid from the initially single-phase vapor. Subsequently, the condensate was mixed with shallow subcritical geothermal fluids. For the detailed explanation and diagram with the flow paths see section 3.2 and Figure 2 in the research article I.

The model involved the reaction of major components within a given fluid phase and amongst vapor, liquid, and solid phases (i.e., secondary minerals) along specified pressure-temperature-enthalpy paths. Conservation of mass (closed-system behavior) was assumed for isobaric (constant pressure) boiling, whereas an open-system behavior was considered in the case of phase segregation and fluid mixing.

The chemical elements and compounds included in the model were Si, B, Na, K, Ca, Mg, Al, Fe, Cl, F, SO$_4$, H$_2$, H$_2$S, CO$_2$, and respective aqueous and vapor species. The secondary minerals considered in the calculations were those commonly observed in high-temperature geothermal systems in Iceland and included quartz, chlorites, garnets, amphiboles, clay minerals, epidote, clinzozoisite, prehnite, wollastonite, feldspars, zeolites, carbonates, anhydrite and pyrite (Kristmannsdóttir, 1979) and salts (NaCl, KCl, CaCl$_2$, MgCl$_2$, NaSO$_4$, KSO$_4$). Fluorine content was not considered in fluid-rock interactions. The thermodynamic database used for the calculations was adopted from WATEQ4f (Ball and Nordstrom, 2001) and llnl.dat database (Johnson et al., 2000). The databases included updates of the solubility constants of secondary minerals (Holland and Powell, 1998, 2011; Stefánsson et al., 2011; Leusbrock et al., 2009, 2010a, 2010b) and H$_2$S and CO$_2$ gas (Fernández-Prini et al., 2003). The initial fluid compositions, pressure and temperature conditions used in the geochemical model calculations were the same as the corresponding concentrations and conditions used in the experiments.
3 Summary of scientific contribution

The research presented in this dissertation consists of three research articles, one published in Geothermics (research article I, reprinted with permission from Elsevicer Ltd.), the second published in Geofluids (research article II, reprinted with permission from Wiley Hindawi) and the third accepted for publication in Journal of Volcanology and Geothermal Research (research article III, reprinted with the permission of Elsevier Science Ltd.).

3.1 Research Article I (Appendix A)

The first research article focuses on the formation mechanism and chemical composition of supercritical fluids in high-temperature geothermal systems by combining heat transfer and fluid flow modeling using HYDROTHERM software and geochemical modeling using WATCH and PHREEQC software. The modeling results were compared with the chemical composition of subcritical and supercritical (IDDP-1) fluids from Krafla (NE Iceland).

In the article, it is proposed that an important mechanism of such supercritical fluid formation is the conductive heating of surrounding subcritical geothermal fluids near a shallow intrusion. According to the modeling calculations, supercritical fluids formed by isobaric heating of initially liquid geothermal groundwater display similar volatile concentrations (C, S, B, Cl, F) as the initial fluid. In contrast, the low concentrations of non-volatile elements (Si, Na, K, Ca, Mg, Al, Fe) in the supercritical fluid result from intensive, quartz-dominated mineral deposition near the magmatic intrusion during boiling of liquid to dryness. Liquid condensed out of ascending supercritical fluid in the upflow zone has a low pH (~2) due to the dissociation of volatile components like HCl. However, the chemical signatures of supercritical fluid ascent are likely to be overprinted by mixing of the condensing (acid) fluids with cooler subcritical fluids, fluid-rock interaction, depressurization boiling, and phase segregation.

Geothermal reservoir fluids at Krafla had temperatures between ~200 and 440°C, specific enthalpies of 852-3200 kJ kg⁻¹, low Cl concentrations of 0.42-6.61 mmol kg⁻¹ and neutral to alkaline pH of 6.49-9.75. The chemical composition of supercritical fluids discharged by IDDP-1 was characterized by similar concentration of volatile elements (C, S, Cl, F, B) but much lower concentrations of non-volatile elements (Si, Na, K, Ca, Mg) compared to subcritical geothermal reservoir fluids. These similarities between modeled fluid compositions and the measured composition of the IDDP-1 suggest that ~440°C discharged supercritical fluids were formed by heating of circulating geothermal groundwater without significant magmatic fluid input. This is further supported by the volatile element stable isotope composition (i.e., δD, δ¹⁸O, δ¹³C, δ³⁴S, δ³⁷Cl) of the fluids.
3.2 Research Article II (Appendix B)

The second research article investigated supercritical fluid formation and associated secondary mineral precipitation using laboratory experiments. The experimental results were compared to natural fluid discharge from Krafla including the IDDP-1 fluids and modeling results previously reported in research article I.

Flow-through experiments at 260°C and 400-420°C were performed to study the chemical and mineralogical changes associated with supercritical fluid formation near shallow magmatic intrusions by conductive heating and boiling of conventional subcritical geothermal fluids. Supercritical fluids formed by isobaric heating of liquid geothermal water had similar volatile element concentrations (B, C, and S) as the subcritical water. In contrast, mineral-forming element concentrations (Si, Na, K, Ca, Mg, and Cl) in the supercritical fluid were much lower. The results are consistent with the observed mineral deposition of quartz, aluminum silicates, and the minor amount of salts during boiling. Silica deposits formed upon supercritical fluid formation may result in decreased rock permeability close to the magmatic intrusion. In this respect, the boiling of 1 kg of fluid may lead to the closure of a crack in as soon as a few hours (crack width around 0.01 mm and fluid mass flux 10^{-4} kg m$^{-2}$ s$^{-1}$) or as long as tens of years (crack width around 0.05 mm and fluid mass flux 10^{-5} kg m$^{-2}$ s$^{-1}$ and slower).

The comparison of the experimental data with measured subcritical and supercritical fluid compositions from Krafla implied that supercritical fluids discharged by the IDDP-1 may have formed by conductive heat addition and boiling of subcritical geothermal fluid. Lower concentrations of Cl and volatile elements of experimental supercritical fluids suggest that fluids discharged from the IDDP-1 well were additionally subjected to minor magmatic degassing.

3.3 Research Article III (Appendix C)

Heřmanská, M., Kleine, B.I., Stefánsson, A. (accepted for publication to Journal of Volcanology and Geothermal Research): Chemical constraints on supercritical fluids in geothermal systems

The third research article describes the effect of fluid source on the chemical composition of supercritical fluids using laboratory experiments and geochemical modeling. This article builds on the results published in the first and second research article. Four scenarios were considered to test the effects of the subcritical geothermal source composition on the supercritical fluids: (1) heating of low chloride and low volatile immature water of meteoric origin typical for young geothermal systems at rift zones, (2) heating of reacted and low chloride water of meteoric origin typical for many reservoir fluids at divergent plate boundaries, and (3 and 4) formation of supercritical fluids from subcritical NaCl fluids containing elevated CO$_2$ or HCl concentration typical for geothermal reservoir fluids at subduction zones. In summary, similar mineral deposition occurred in all NaCl-dominated experiments with cation (Na-Ca-K)-rich silicates and quartz being the dominant alteration products, accompanied by halite at elevated NaCl fluid concentrations. In contrast, fluids containing high concentrations of acids (HCl)
may result in insignificant mineral deposition upon boiling of subcritical geothermal waters to form supercritical fluids.

Upon supercritical fluid formation by conductive heating of subcritical fluids, the elemental mobility was experimentally observed and predicted by geochemical modeling to be significantly reduced with respect to rock-forming elements like Si, Na, K, Ca, Mg and Al but remained unchanged for volatile element compositions like B, C and S. This suggests that mineral-fluid reactions also control the chemical composition of many major elements in supercritical fluids, which is similar to previous findings for subcritical geothermal fluids. However, such predictions are limited to our knowledge of mineral solubilities in low-density and high-temperature fluids. In fact, available data are restricted to solubility of quartz, common salts such as NaCl, KCl, and CaCl$_2$, and some volcanic gases at these conditions (e.g., Fournier and Potter 1982; Symonds et al., 1992; Leusbrock et al., 2009, 2010a and 2010b).
4 Conclusive remarks and future directions

Volcanic geothermal systems are commonly associated with a magmatic heat source at ~2-6 km depth (Hayba and Ingebritsen, 1997; Stimac et al., 2015). Utilization of such systems typically involves 2-3 km deep boreholes sunk into the geothermal reservoir, discharging liquid and vapor at the surface with subcritical temperatures to produce ~2-5 MW electric power per well (Sanyal and Morrow, 2012; Ketilsson et al., 2015). The conductive heat transfer from the magmatic body to the circulating geothermal water above commonly occurs below the depth of the production wells within the roots of the geothermal systems. Recent studies have suggested that the geothermal fluids occurring at these depths may have temperatures exceeding the critical temperature of water (Hayba and Ingebritsen, 1997; Scott et al., 2015, 2016, 2017). Indeed, such fluid temperatures have been observed in several active geothermal systems worldwide (Reinsch et al., 2017).

Here, the chemical characteristics of such supercritical fluids formed by close to isobaric boiling of subcritical geothermal reservoir fluids were studied. Based on geochemical modeling and laboratory experiments, the following has been concluded:

- Similarities of chemical composition were observed for the IDDP-1 fluids at Krafla (NE Iceland) and those predicted by geochemical modeling and laboratory experiments suggesting the origin of the supercritical IDDP-1 fluid discharges to be the subcritical geothermal reservoir fluids at Krafla.
- Supercritical fluids formed by conductive heating of conventional geothermal groundwater by a magmatic body will be characterized by low concentrations of non-volatile elements (Si, Na, K, Ca, Mg, Fe, Al, Cl) and similar volatile element concentration as the subcritical fluids (B, C, S).
- The concentration of non-volatile elements is controlled by mineral (salts, oxides, silicates, etc.) solubility in supercritical fluids.
- The formation of supercritical fluids from subcritical geothermal fluids results in mineral deposits dominated by silica, aluminum silicates, and, in some cases, salts.
- Similar trends in fluid chemistry and mineralogy occur in the case of supercritical fluid formation in geothermal systems located at rift zones and subduction zones: cation (Na-Ca-K)-rich silicates and quartz dominates alteration products along with halite at elevated NaCl fluid concentrations, whereas fluids that contain high concentrations of acids (HCl) may result in insignificant mineral deposition upon boiling of subcritical geothermal waters to form supercritical fluids.

This work provides insights into the formation of supercritical fluids and associated secondary mineral formation. Nonetheless, many questions remain unanswered, which allow for possible future research directions and initiatives:

- Assuming supercritical fluids are a common phenomenon associated with many active volcanic geothermal systems, what geochemical methods can we apply in order to target such resources for possible drilling?
The general focus in this study has been on supercritical fluids formed by conductive heating of subcritical geothermal fluids. But what is the role and effect of magmatic gas input knowing that in many volcanic geothermal systems, especially related to subduction zone environments, such gases can be a large part of the fluids? The effect of mixing geothermal fluids with volcanic gas on supercritical fluid composition and associated mineralogical properties remains uncertain.

Many subcritical geothermal reservoir fluids have elevated salt and gas contents, and the geochemistry of supercritical fluids formed from such complex fluids was not systematically studied here and thus remains unclear.

The concentrations of many elements in supercritical fluids are likely to be controlled by the respective solubility of minerals in such high-temperature and low-density fluids. However, these remain poorly constrained for most minerals (oxides, many salts, silicates, aluminum silicates, carbonates, sulfides, and sulfates) that limit predictions of supercritical fluid composition using conventional geochemical approaches.
References

Arnórsson, S., Gunnlaugsson, E., Svavarsson, H. 2014. IDDP–The chemistry of the IDDP‐01 well fluids in relation to the geochemistry of the Krafla geothermal system. Geothermics 49, 66–75.

Heřmanská, M., Kleine, B.I., Stefánsson, A. Chemical constraints on supercritical fluids in geothermal systems. Accepted for publication to Journal of Volcanology and Geothermal Research in February 2020.

Appendix A: Research article I

Reprinted with the permission of Elsevier Science Ltd.
Supercritical fluids around magmatic intrusions: IDDP-1 at Krafla, Iceland

Matylda Heřmanskaa,b, Andri Stefánssona, Samuel Scottb

a Institute of Earth Sciences, University of Iceland, Starkagata 7, 101, Reykjavík, Iceland
b Department of Science and Engineering, Reykjavík University, Menntavegur 1, 101, Reykjavík, Iceland

1. Introduction

Many high-enthalpy geothermal systems are associated with shallow subsurface intrusions (e.g., Kato et al., 1993; Elders et al., 2014; Stimac et al., 2015; Reinsch et al., 2017). Supercritical fluids in the close vicinity of the intrusion may form by a combination of ground-water circulation near the intrusion (e.g., Hayba and Ingebritsen, 1997; Scott et al., 2015) and magma degassing (e.g., Kennedy and Truesdell, 2015; Lowenstern et al., 2015; Kato et al., 1993; Elders et al., 2014; Lowenstern et al., 2015; Stefánsson, 2017). The Iceland Deep Drilling Project (IDDP-1) encountered fluids with a temperature of \(\sim 440 \, ^\circ C \) at \(\sim 2 \, \text{km} \) depth during drilling into the Krafla volcanic geothermal system in northeast Iceland (Elders et al., 2014). However, the high gas and silica concentrations in the discharge fluids proved challenging to handle (Hauksson et al., 2014). To enable utilization of such fluids for power production, further research is required into the chemical changes that accompany the formation of supercritical geothermal resources, and particularly the source of acid gases in the produced vapor. High-enthalpy geothermal fluids may result from phase segregation, conductive heating of groundwater near an intrusion, magma degassing or condensation of liquid out of ascending supercritical fluid. The relatively common ‘excess-enthalpy’ wells, which feature a much higher discharge specific enthalpy than the initial aquifer fluid, result from phase segregation and retention of liquid in the reservoir rock upon depressurization of the boiling aquifer and two-phase flow towards the wellbore (e.g., Arnórsson et al., 2007; Scott et al., 2014). Although the specific enthalpy of the typical subcritical geothermal fluids corresponds to that of vapor-saturated liquid at temperatures below \(300 \, ^\circ C \), supercritical fluids may be formed above this temperature due to high pressures and temperatures.
(< 1500 kJ kg⁻¹), phase segregation may cause such wells to have discharge enthalpies as high as ~2700 kJ kg⁻¹. Supercritical geo-
thermal resources with temperature greater than the critical tempera-
ture of pure water ($T_c = 373.976$ °C; Haar et al., 1984) may form from
groundwater circulation near an intrusion and heat conduction across
an impermeable rim surrounding the intrusion (Hayba and Ingebritsen,
1997; Scott et al., 2015). Liquid will condense out of ascending su-
percritical fluids as it depressurizes, and the liquid condensate may
 correspond to the fluid encountered in so-called ‘acid’ wells, which
generally have reservoir temperatures of ~300-350 °C and discharge
specific enthalpies of ~2600–2800 kJ kg⁻¹ (Einarsdottir et al., 2010).

The different processes of high-enthalpy fluid flow display different
classical signatures, as evidenced by fluids obtained from the
Krafla geothermal system. Phase segregation reduces the bulk fluid
concentration of non-volatile elements in the discharge fluid but in-
creases the bulk fluid concentration of volatile components, compared
 to the initial subsurfacial geothermal fluids. While most subsurfacial fluids
 at Krafla have near-neutral pH values and Cl concentrations of < 5
mmol kg⁻¹, ‘acid’ well discharges have up to 5 times higher Cl content
and low pH values (~2–3 at 25°C) because of low alkalinity and dis-
sociation of HCl and/or hydrolysis of SO₂ (Armannsson et al., 1989;
Einarsson et al., 2010). In comparison, the IDDP-1 fluid contained
 elevated concentrations of some volatile components like CO₂ and H₂S,
chlore concentrations of ~3 mmol kg⁻¹ and low or non-measurable
 concentrations of other non-volatile components (Armannsson et al.,
2014). The similarity between the chloride content and isotopic com-
 position of the IDDP-1 fluid to that of normal aquifer fluids (Darling and
Armannsson, 1989, 2014; Pope et al., 2015; Stefánsson et al., 2017a)
suggests that the supercritical fluids may originate from meteoric
groundwater. While it has long been known that quartz will precipitate
during fluid flow near intrusions (e.g., Taylor, 1974; Fournier, 1999;
Scott and Driesner, 2018), the precipitation of minerals other than
quartz and the geochemical behavior of major components during su-
percritical fluid formation are not well understood.

In this study, we investigated how phase segregation, conductive
heating of subsurfacial geothermal fluids near a shallow intrusion, and
liquid condensation out of ascending supercritical fluids affect the
chemical characteristics of the groundwater system. Thermal conditions
derived from fluid flow and heat transfer near shallow intrusions were
used as inputs for chemical models of fluid chemical composition and
mineral precipitation during supercritical fluid formation, ascent and
mixing. The results of the model calculations were compared with the
physical, chemical and mineralogical observations at Krafla and the
IDDP-1 well to determine how these processes interact to control re-
source characteristics. By combining the physical and chemical prop-
erties of the geothermal fluids, one can distinguish between the dif-
ferent processes leading to the formation of various fluid discharges at
Krafla and how they affect the fluid chemical composition and the as-
associated alteration mineralogy.

2. Methods
2.1. Geothermal fluid sampling and analysis
Samples of geothermal fluids considered in this study included two-
phase well and vapor discharges from the Krafla geothermal system, NE
Iceland (Fig. 1). For the two-phase well discharges, liquid and vapor
phases were separated using a Webre separator (Arnórsson et al., 2006).
For the vapor-only discharges, no such separation was needed. The li-
 quid phase samples were cooled using an in-line cooling coil and then
filtered through a 0.2 μm cellulose acetate filter into polypropylene
bottles. Samples for major cation analysis were acidified with 0.5 ml
concentrated HNO₃ (Suprapur®, Merck) per 100 ml sample and con-
centrations were determined using ICP-OES (Spectro Ceros Vision).
Two samples for major anion analysis were collected: one that was
untreated and used for F and Cl concentration determination, and
another to which 2% Zn-acetate solution was added to precipitate
dissolved sulfide as zinc sulfide leaving dissolved SO₄ in solution for
analysis. All anion analyses were carried out using ion chromatography
(Dionex ICS-2000). Samples for determination of CO₂ concentrations
were collected into amber glass bottles and analyzed using the modified
alkalinity titration method (Stefánsson et al., 2007). Dissolved sulfide
concentrations and pH were analyzed on-site using H₂S titration
(Arnórsson et al., 2006) and a pH electrode calibrated with commercial
buffer solutions, respectively. In the case of vapor samples from the
IDDP-1 well, samples for non-volatile elements determination were
condensed to form a liquid and the various samples subsequently
 treated and analyzed as for the liquid samples previously described.

For determination of the volatile element concentration in vapor
samples, samples were collected into pre-evacuated gas-bottles con-
taining 50% KOH (~ 10 ml in 100 ml). The concentrations of CO₂
and H₂S in the vapor condensate were determined by modified alkalinity
titration (Stefánsson et al., 2007) and a precipitation titration method
using Hg-acetate and diithizon indicator (Arnórsson et al., 2006), re-
 spectively. The non-condensable gases, including H₂, N₂, Ar and CH₄,
were analyzed by gas chromatography (GC-2010 Plus, Shimadzu).

The analytical precision for all major elements based on duplicate
determination was found to be < 3% at the 95% confidence level and
for pH < ± 0.05.

2.2. HYDROTHERM modeling
Heat transfer and fluid flow above a 2 km deep intrusion were sim-
ulated using the HYDROTHERM program (Hayba and Ingebritsen,
1994) for a pure H₂O system. This is a simplification, since the fluid
contains dissolved salts and gases; however, the system considered here
is predominantly dilute (< 0.42–6.61 mmol kg⁻¹ Cl) and we assume
that the low concentrations of NaCl do not affect the fluid phase re-
relationships or thermodynamic properties (notably, specific enthalpy
and density). The magmatic heat source was also treated in a simplified
way. Although the IDDP-1 well intersected a rhyolitic intrusion (Elders
et al., 2011; Zierenberg et al., 2013), values that are appropriate for
basaltic rock were used in the HYDROTHERM simulations. We base this
assumption on the model that rhyolite forms by remelting of hydro-
thermally altered granophyre or altered crust of basaltic origin near the
roof of a larger basaltic intrusion (Jónasson, 1994). Additionally, ba-
saltic melt is also observed in most geothermal systems linked to di-
 vergent boundaries. The physical properties of the intrusion used in the
HYDROTHERM simulations are listed in Table 1 and include initial
temperature (1100 °C), density (2900 kg m⁻³), and temperature-depen-
dent heat capacity (decreasing linearly from 2000 J kg⁻¹ K at
1100 °C to 1000 J kg⁻¹ K⁻¹ at < 850 °C to simulate the effect of latent
heat of crystallization; Hanson and Barton, 1989; Hayba and
Ingebritsen, 1997) The initial intrusion radius (0.5 km) of the modeled
intrusion is large enough to support the development of a boiling
geo thermal system in initially ‘cold’ crust. The intrusion was assumed
to be emplaced instantaneously, and subsequent heat and mass transfer
were simulated as a function of time for 10000 years.

Fluid pressure and temperature were fixed at the ground surface at
1.02 bar and 20 °C, respectively. The lateral boundaries located 8.5 km
from the intrusion assumed a Dirichlet fluid pressure boundary condi-
tion (no-flow). The bottom boundary was also set to be a no-flow
boundary, with a constant heat flux of 60 mW m⁻² into the basement
and 120 mW m⁻² into the intrusion. The initial permeability of the
geo thermal system was set to be 10⁻¹⁵ m², which is close to the per-
meability estimated for the Krafla geothermal system (Arnórsson
et al., 1984). Permeability in our simulation was temperature-depen-
dent, decreasing from 10⁻¹⁵ m² to 10⁻²² m² at 550°C (Scott et al.,
2015).
2.3. Multicomponent-multiphase geochemical modeling

Based on the heat and mass transfer modeling, schematic pressure-temperature-enthalpy (P-T-h) paths along selected flow vectors within the geothermal system were assessed and used as input conditions for multicomponent-multiphase geochemical modeling. Two main flow regimes were considered: (1) supercritical fluid formation by conductive heat addition to circulating geothermal groundwater near a subsurface intrusion and (2) supercritical fluid ascent, condensation and mixing with shallower geothermal fluids. The former scenario increases the specific enthalpy of single-phase liquid at a constant temperature and pressure, eventually resulting in boiling of the liquid to dryness (supercritical fluid formation). The latter scenario involves depressurization of supercritical fluid at a constant temperature, causing liquid to condense out of the initially single-phase vapor, followed by variable mixing with shallower subcritical geothermal fluids.

For the multicomponent-multiphase geochemical modeling, major components react within a given fluid phase and between the vapor, liquid, and solid phases along the specified P-T-h path, assuming conservation of mass (closed-system behavior) for isobaric boiling and open system behavior in case of phase segregation and fluid mixing. The elements and compounds included in the calculations were Si, B, Na, K, Ca, Mg, Al, Fe, Cl, F, H₂, H₂S, and CO₂ and respective aqueous and vapor species and minerals included in the updated WATEQ4f database (Ball and Nordstrom, 1991). The secondary minerals considered here were those typically associated with high-temperature geothermal systems in Iceland (e.g., Kristmannsdóttir, 1979), including quartz, clinohore, daphnite, epidote, clinozoisite, prehnite, grossular, wollastonite, low-albite, microcline, wairakite, calcite, actinolite, magnetite, and pyrite.

Table 1

<table>
<thead>
<tr>
<th>Properties</th>
<th>Units</th>
<th>Intrusion</th>
<th>Host rock basalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial temperature</td>
<td>°C</td>
<td>1100</td>
<td>f (depth)</td>
</tr>
<tr>
<td>Rock density</td>
<td>kg m⁻³</td>
<td>2900</td>
<td>2500</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>W m⁻¹ K⁻¹</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Specific heat</td>
<td>J kg⁻¹ K⁻¹</td>
<td>f(t)</td>
<td>1000</td>
</tr>
<tr>
<td>Porosity</td>
<td>%</td>
<td>0.05</td>
<td>0.1</td>
</tr>
</tbody>
</table>

* Based on Hayba and Ingebritsen (1997) with modifications by Hanson and Barton (1989).

Table 2

<table>
<thead>
<tr>
<th>Location</th>
<th>Wellhead</th>
<th>Wellhead</th>
<th>Wellhead</th>
</tr>
</thead>
<tbody>
<tr>
<td>h (kJ kg⁻¹)</td>
<td>3200ᵇ</td>
<td>3200ᵇ</td>
<td>3200ᵇ</td>
</tr>
<tr>
<td>p (bars)</td>
<td>140ᵇ</td>
<td>140ᵇ</td>
<td>140ᵇ</td>
</tr>
<tr>
<td>T (°C)</td>
<td>2.65/17</td>
<td>2.58/19</td>
<td>2.25/21</td>
</tr>
<tr>
<td>pH/°Ca</td>
<td>0.137</td>
<td>0.063</td>
<td>0.095</td>
</tr>
<tr>
<td>SiO₂</td>
<td>0.019</td>
<td>0.010</td>
<td>0.035</td>
</tr>
<tr>
<td>B</td>
<td>0.01</td>
<td>0.149</td>
<td>0.140</td>
</tr>
<tr>
<td>Na</td>
<td>5.24E-03</td>
<td>2.50E-03</td>
<td>1.43E-03</td>
</tr>
<tr>
<td>Ca</td>
<td>8.48E-03</td>
<td>2.50E-03</td>
<td>2.25E-03</td>
</tr>
<tr>
<td>Mg</td>
<td>2.06E-03</td>
<td>8.23E-04</td>
<td>4.11E-04</td>
</tr>
<tr>
<td>Fe</td>
<td>0.041</td>
<td>0.194</td>
<td>0.046</td>
</tr>
<tr>
<td>Al</td>
<td>3.71E-03</td>
<td>2.22E-03</td>
<td>1.13E-03</td>
</tr>
<tr>
<td>Cl</td>
<td>2.25</td>
<td>3.32</td>
<td>3.34</td>
</tr>
<tr>
<td>F</td>
<td>0.590</td>
<td>0.774</td>
<td>0.700</td>
</tr>
<tr>
<td>CO₂</td>
<td>47.9</td>
<td>29.8</td>
<td>34.1</td>
</tr>
<tr>
<td>SO₄</td>
<td>0.44</td>
<td>0.28</td>
<td>0.29</td>
</tr>
<tr>
<td>H₂S</td>
<td>19.6</td>
<td>18.1</td>
<td>17.9</td>
</tr>
<tr>
<td>SO₂</td>
<td>< 0.008</td>
<td>< 0.008</td>
<td>< 0.008</td>
</tr>
<tr>
<td>STOT</td>
<td>20.0</td>
<td>18.4</td>
<td>18.2</td>
</tr>
<tr>
<td>N₂</td>
<td>9.69</td>
<td>7.57</td>
<td>7.57</td>
</tr>
<tr>
<td>Ar</td>
<td>7.00</td>
<td>30.9</td>
<td>27.8</td>
</tr>
<tr>
<td>CH₄</td>
<td>0.120</td>
<td>0.448</td>
<td>0.416</td>
</tr>
</tbody>
</table>

* pH of condensed vapor.
*b Ingason et al. (2014).
Table 3
Chemical composition of the two-phase well discharges collected in the Krafla geothermal system. Concentration units are in mmol kg\(^{-1}\).

<table>
<thead>
<tr>
<th>sample #</th>
<th>Well #</th>
<th>date</th>
<th>source(^a)</th>
<th>T(^b)</th>
<th>T(^c)</th>
<th>p(^\text{sample})</th>
<th>h</th>
<th>Liquid phase</th>
<th>Vapor phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>97-3099</td>
<td>K-14</td>
<td>25.10.97</td>
<td>[1]</td>
<td>173</td>
<td>245</td>
<td>8.5 2267</td>
<td>7.88</td>
<td>9.32</td>
<td>4.00E-04</td>
</tr>
<tr>
<td>98-3201</td>
<td>K-18</td>
<td>25.06.98</td>
<td>[1]</td>
<td>25</td>
<td>250</td>
<td>14.9 1698</td>
<td>8.88</td>
<td>9.03</td>
<td>2.00E-04</td>
</tr>
<tr>
<td>98-3205</td>
<td>K-5</td>
<td>24.06.98</td>
<td>[1]</td>
<td>123</td>
<td>207</td>
<td>2.2 1038</td>
<td>9.67</td>
<td>6.12</td>
<td>4.00E-04</td>
</tr>
<tr>
<td>98-3207</td>
<td>K-13</td>
<td>24.06.98</td>
<td>[1]</td>
<td>168</td>
<td>226</td>
<td>11.5 1658</td>
<td>8.16</td>
<td>6.85</td>
<td>1.00E-04</td>
</tr>
<tr>
<td>98-3208</td>
<td>K-24</td>
<td>25.06.98</td>
<td>[1]</td>
<td>125</td>
<td>209</td>
<td>2.3 938</td>
<td>7.93</td>
<td>6.04</td>
<td>4.00E-04</td>
</tr>
<tr>
<td>04-3102</td>
<td>K-34</td>
<td>20.10.04</td>
<td>[2]</td>
<td>206</td>
<td>251</td>
<td>17.5 2636</td>
<td>7.24</td>
<td>9.22</td>
<td>7.05E-05</td>
</tr>
<tr>
<td>04-3110</td>
<td>K-21</td>
<td>15.10.11</td>
<td>[2]</td>
<td>207</td>
<td>263</td>
<td>18.0 2399</td>
<td>8.80</td>
<td>10.7</td>
<td>5.12E-03</td>
</tr>
<tr>
<td>04-3111</td>
<td>K-17</td>
<td>15.10.11</td>
<td>[2]</td>
<td>182</td>
<td>251</td>
<td>10.5 2660</td>
<td>7.35</td>
<td>10.9</td>
<td>8.45E-05</td>
</tr>
<tr>
<td>04-3112</td>
<td>K-16A</td>
<td>15.10.11</td>
<td>[2]</td>
<td>182</td>
<td>251</td>
<td>10.5 2660</td>
<td>7.35</td>
<td>10.9</td>
<td>8.45E-05</td>
</tr>
<tr>
<td>04-3114</td>
<td>K-33</td>
<td>16.10.11</td>
<td>[2]</td>
<td>173</td>
<td>85</td>
<td>8.5 2769</td>
<td>8.42</td>
<td>12.9</td>
<td>7.01E-03</td>
</tr>
<tr>
<td>04-3115</td>
<td>K-36</td>
<td>17.10.11</td>
<td>[2]</td>
<td>182</td>
<td>105</td>
<td>10.5 2776</td>
<td>8.25</td>
<td>15.0</td>
<td>12.09E-03</td>
</tr>
<tr>
<td>04-3117</td>
<td>K-33A</td>
<td>18.10.11</td>
<td>[2]</td>
<td>170</td>
<td>228</td>
<td>8.0 1553</td>
<td>9.08</td>
<td>7.55</td>
<td>9.02E-02</td>
</tr>
<tr>
<td>04-3118</td>
<td>K-10</td>
<td>18.10.11</td>
<td>[2]</td>
<td>184</td>
<td>290</td>
<td>14.0 1058</td>
<td>9.90</td>
<td>8.54</td>
<td>7.52E-02</td>
</tr>
<tr>
<td>04-3119</td>
<td>K-12</td>
<td>19.10.11</td>
<td>[2]</td>
<td>182</td>
<td>205</td>
<td>3.4 988</td>
<td>9.22</td>
<td>5.84</td>
<td>8.82E-05</td>
</tr>
<tr>
<td>04-3121</td>
<td>K-16</td>
<td>20.10.11</td>
<td>[2]</td>
<td>184</td>
<td>199</td>
<td>11.0 2774</td>
<td>6.49</td>
<td>8.65</td>
<td>2.62E-02</td>
</tr>
<tr>
<td>04-3122</td>
<td>K-17</td>
<td>20.10.11</td>
<td>[2]</td>
<td>206</td>
<td>247</td>
<td>17.5 2763</td>
<td>7.27</td>
<td>9.86</td>
<td>4.63E-02</td>
</tr>
<tr>
<td>04-3123</td>
<td>K-17</td>
<td>20.10.11</td>
<td>[2]</td>
<td>170</td>
<td>7.9 2776</td>
<td>3.48</td>
<td>19.4</td>
<td>0.04E-03</td>
<td></td>
</tr>
<tr>
<td>04-3124</td>
<td>K-16</td>
<td>20.10.11</td>
<td>[2]</td>
<td>147</td>
<td>4.35</td>
<td>2803</td>
<td>3.96</td>
<td>5.98</td>
<td>0.29E-04</td>
</tr>
<tr>
<td>11-KRA</td>
<td>26.10.97</td>
<td>[4]</td>
<td>175</td>
<td>9 2676</td>
<td>3.30</td>
<td>11.3</td>
<td>0.42E-01</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^b\) T\(^\circ\) = sampling temperature.

\(^c\) T\(^\text{res}\) = reservoir temperature calculated assuming quartz equilibrium and with the aid of the WATCH program (Bjarnason, 2010).
The calculations were conducted using the WATCH and PHREEQC geochemical programs (Bjarnason, 2010; Parkhurst and Appelo, 1999). The thermodynamic database used for the calculations was adopted from WATEQ4f (Ball and Nordstrom, 1991) with updates of the solubilities of secondary minerals (Stefánsson et al., 2011). Moreover, the solubilities of H₂, H₂S and CO₂ were calculated based on Fernández-Prini et al. (2003), whereas HCl and HF were assumed to enter the vapor phase upon complete boiling via ion association.

3. Results

3.1. Chemical composition of thermal fluids

The chemical composition of two-phase well discharges and IDDP-1 at Krafla are listed in Tables 2 and 3, respectively. The data include those obtained in this study and previously reported (Gudmundsson and Arnórsson, 2005; Einarsson et al., 2010; Ármannsson et al., 2014). Reservoir temperatures calculated using the quartz geothermometer (Gunnarsson and Arnórsson, 2000) and measured downhole were 198.8–440 °C (Ingason et al., 2014), and the measured discharge enthalpies 852–3200 kJ kg⁻¹. The average discharged liquid at Krafla was generally dilute with Cl concentrations of 0.42-6.61 mmol kg⁻¹ and neutral to alkaline pH of 6.49-9.75. However, some well discharges (KJ-36, KG-12) had higher Cl concentrations of 4.26-25.0 mmol kg⁻¹ and acid pH values of 3.30-3.96. A considerable range was also observed for other major elements including SiO₂, CO₂ and H₂S between wells at Krafla.

The chemical composition of supercritical fluids discharged by IDDP-1 was characterized by elevated concentrations of volatile elements including CO₂, H₂S, Cl, F and B (Table 2). In contrast, the...
Scott et al. (2016) proposed that magma-driven geothermal systems pass through a three-stage temporal evolution, consisting of the incipient, main and waning stages. During the incipient stage of a system, cool liquid at shallower depths (Fig. 2a). The boiling zones may extend to the surface during the main stage (Fig. 2b). During the waning stage, depressurization boiling restricted to shallow levels (Fig. 2c).

The simulations reveal three principal flow patterns near subsurface intrusions change over time (Fig. 2). Scott et al. (2016) proposed that magma-driven geothermal systems pass through a three-stage temporal evolution, consisting of the incipient, main and waning stages. During the incipient stage of a system, cool liquid at shallower depths (Fig. 2a). The boiling zones may extend to the surface during the main stage (Fig. 2b). During the waning stage, depressurization boiling restricted to shallow levels (Fig. 2c).

The simulations reveal three principal flow patterns, which can be described in terms of P-T-h changes (Fig. 2d-f):

1. **Path I**: Supercritical fluid formation: liquid circulating near the intrusion is heated to supercritical temperatures as a result of conductive heat transfer across the boundary of the impermeable intrusion (shown in black)

2. **Path II**: Liquid condensation out of ascending, depressurizing supercritical fluid and mixing with shallower geothermal fluids

3. **Path III**: Convection of shallow geothermal fluids not heated to supercritical conditions, followed by depressurization boiling at shallow depths.

While paths I and II are only present in incipient and main stages of the development of geothermal systems (Fig. 2d, e), path III is observed in all three stages.

3.2. Principal flow paths in geothermal systems

Fluid flow patterns near subsurface intrusions change over time (Fig. 2). Scott et al. (2016) proposed that magma-driven geothermal systems pass through a three-stage temporal evolution, consisting of the incipient, main and waning stages. During the incipient stage of a system, cool liquid at shallower depths (Fig. 2a). The boiling zones may extend to the surface during the main stage (Fig. 2b). During the waning stage, depressurization boiling restricted to shallow levels (Fig. 2c).

The simulations reveal three principal flow patterns, which can be described in terms of P-T-h changes (Fig. 2d-f):

1. **Path I**: Supercritical fluid formation: liquid circulating near the intrusion is heated to supercritical temperatures as a result of conductive heat transfer across the boundary of the impermeable intrusion (shown in black)

2. **Path II**: Liquid condensation out of ascending, depressurizing supercritical fluid and mixing with shallower geothermal fluids

3. **Path III**: Convection of shallow geothermal fluids not heated to supercritical conditions, followed by depressurization boiling at shallow depths.

3.3. Fluid composition and secondary mineralization during supercritical fluid formation

The initial fluid compositions for the geochemical modeling correspond to that of typical liquid reservoir fluids (used for the modeling of supercritical fluid formation) and supercritical fluids (modeling of supercritical fluid condensation) at Krafla. The former was based on the

Table 4

<table>
<thead>
<tr>
<th></th>
<th>Average measured subcritical fluid</th>
<th>Average measured IDDP-1</th>
<th>Modeled Supercritical fluid</th>
<th>Measured acid fluid (KJ-36)</th>
<th>Modeled condensing supercritical fluid</th>
<th>Mixing of the subcritical fluid (99 wt. %) with 1 wt % of</th>
</tr>
</thead>
<tbody>
<tr>
<td>Krafla</td>
<td>t°C</td>
<td>pH</td>
<td>SiO<sub>2</sub></td>
<td>B</td>
<td>Na</td>
<td>CO<sub>2</sub></td>
</tr>
<tr>
<td></td>
<td>295</td>
<td>7.10</td>
<td>10.0</td>
<td>0.129</td>
<td>7.48</td>
<td>2.74.E-02</td>
</tr>
<tr>
<td></td>
<td>440</td>
<td>~</td>
<td>9.84.E-02</td>
<td>0.129</td>
<td>2.16.E-02</td>
<td>4.11</td>
</tr>
<tr>
<td></td>
<td>295</td>
<td>~</td>
<td>5.29.E-02</td>
<td>0.129</td>
<td>7.31</td>
<td>1.79.E-04</td>
</tr>
<tr>
<td></td>
<td>147</td>
<td>~</td>
<td>5.98</td>
<td>0.294</td>
<td>9.57</td>
<td>2.74.E-04</td>
</tr>
<tr>
<td></td>
<td>340</td>
<td>~</td>
<td>9.89</td>
<td>0.253</td>
<td>7.43</td>
<td>9.45</td>
</tr>
<tr>
<td></td>
<td>295</td>
<td>~</td>
<td>7.04</td>
<td>0.129</td>
<td>7.41</td>
<td>7.05</td>
</tr>
<tr>
<td></td>
<td>268</td>
<td>~</td>
<td>0.861</td>
<td>0.861</td>
<td>3.61</td>
<td>0.861</td>
</tr>
<tr>
<td></td>
<td>3.10</td>
<td>2.97</td>
<td>0.30</td>
<td>0.70</td>
<td>2.50</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>0.688</td>
<td>~</td>
<td>6.66</td>
<td>0.25</td>
<td>2.86</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>7.85.E-02</td>
<td>~</td>
<td>5.03</td>
<td>0.19</td>
<td>3.07</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>~</td>
<td>~</td>
<td>3.07</td>
<td>0.19</td>
<td>11.5</td>
<td>0.19</td>
</tr>
<tr>
<td></td>
<td>37.0</td>
<td>~</td>
<td>6.70</td>
<td>0.20</td>
<td>5.91</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>37.2</td>
<td>~</td>
<td>6.90</td>
<td>0.20</td>
<td>5.90</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>37.0</td>
<td>~</td>
<td>6.90</td>
<td>0.20</td>
<td>5.90</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>22.4</td>
<td>~</td>
<td>6.90</td>
<td>0.20</td>
<td>5.90</td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>5.95</td>
<td>8.28</td>
<td>5.91</td>
<td>0.20</td>
<td>5.90</td>
<td>0.20</td>
</tr>
</tbody>
</table>

* pH was not calculated in the case of supercritical fluids.

The calculated concentrations of non-volatile (SiO₂) and volatile (CO₂) components during supercritical fluid formation (Path I) are shown in Fig. 3 and compared with Krafla well discharges and expected trends resulting from phase segregation (Path I). During isobaric conductive heating, the vapor fraction grows linearly as bulk fluid specific enthalpy increases from that of a typical subcritical geothermal fluid at 300 °C (black star, Fig. 3a) to that of the IDDP-1 discharge fluid (black square). The concentration of silica in the bulk fluid is nearly constant up to a bulk fluid specific enthalpy of 2000 kJ kg⁻¹, but is strongly reduced by precipitation of quartz and other silicate minerals at higher fluid specific enthalpies (solid line, Fig. 3a). Boiling and phase segregation (loss of liquid) generate a linear decrease in bulk fluid SiO₂ concentrations with increasing bulk fluid specific enthalpy (dashed line). Krafla discharge fluids show nearly constant SiO₂ concentrations up to a specific enthalpy of ~ 2000 kJ kg⁻¹, as predicted for the early stages of conductive heating. However, in fluids with a specific enthalpy above ~2000 kJ kg⁻¹, bulk fluid SiO₂ concentration decreases with increasing specific enthalpy, corresponding to the expected trend from phase segregation.

The bulk fluid concentrations of volatile components such as CO₂ remain constant during isobaric conductive heating (Fig. 3b, solid line) due to partitioning of volatile components into the vapor phase and undersaturation of carbonate minerals in the liquid in this particular case. However, phase segregation increases the bulk fluid volatile concentrations with increasing fluid specific enthalpy by increasing the vapor fraction of the discharge fluid (Fig. 3b, dashed line). While the low and nearly-constant concentrations of CO₂ in the Krafla discharge fluids with specific enthalpies < 2000 kJ kg⁻¹ resemble the models of conductive heating, the measured fluid compositions for higher specific enthalpy wells more closely match the phase segregation trend.

Fig. 4 shows the secondary mineralogy formed during conductive heating and supercritical fluid formation. Initially, liquid is at equilibrium with a typical propylitic alteration mineral assemblage, including quartz, calcite, pyrite, epidote, chlorite, albite and prehnite. As vapor fraction increases with increasing bulk fluid specific enthalpy, non-volatile elements including Si, Ca, and Al concentrate in the liquid phase, and are eventually lost to secondary minerals (Fig. 4a). Secondary minerals are not formed from volatile components including CO₂ and H₂, which partition into the vapor phase during heating, and
Conservative (non-reactive) elements such as B, F and Cl, which only enter the vapor phase once the fluid has been boiled to dryness. The secondary mineralogy shows a zonation with progressive heating and increasing vapor fraction, with early precipitation of small quantities of secondary mineral precipitated during supercritical fluid formation. At the modeled temperatures and pressures of the supercritical fluid, hornblende, plagioclase, and pyrrhotite are important, often dominant, alteration minerals (Ferry et al., 1987), however, these minerals were not observed to precipitate according to our geochemical models.

3.4. Fluid composition and secondary mineralization upon supercritical fluid ascent

As the supercritical fluid ascends above the magmatic heat source, depressurization results in the condensation of a liquid phase. The changes in fluid composition upon supercritical fluid condensation and variable mixing with reservoir subcritical geothermal fluids are shown in Fig. 5. Upon depressurization, soluble volatile components like HCl strongly partition into the small fraction of liquid condensate. The liquid condensate displays a low pH (∼2) due to the low alkalinity of the water, the dissociation of HCl (Fig. 5a) and a high concentration of Cl due to partitioning into the liquid phase (Fig. 5c). The concentration of mineral-forming elements like SiO2 in the condensed liquid decreases as the vapor fraction decreases (Fig. 5b). However, the concentration of volatile elements in the vapor increases as the vapor fraction decreases (Fig. 5d).

The condensed liquid may react immediately with the surrounding basaltic rock (Fig. 5 – number 2). This causes the pH of the mixture to approach that of the subcritical geothermal fluids (∼7–8), with concentrations of mineral-forming elements in the liquid controlled by temperature dependent fluid-rock equilibria. Further mixing with subcritical geothermal fluids dominates the composition of the condensing fluids (Fig. 5b – number 3 and 4). However, the volatile element concentrations of the two end-members is similar (Fig. 5c).

4. Discussion

4.1. Comparison between modeled and measured enthalpy conditions

Modeled P-T-h conditions are compared with the measured enthalpies of Krafla well discharges in Fig. 6. The pressures of the well discharges are the calculated saturation pressure at the recalculated reservoir temperature (not the measured feedzone temperature), and therefore provide a lower-bound estimate. Phase segregation causes many of the two-phase wells to have higher specific enthalpies than predicted by the fluid flow model. At < 300 °C, the models predict enthalpies in the upflow zone to be close to the liquid limb of the two-phase field, consistent with previous studies of Krafla fluids that have shown that aquifer fluids are mostly liquid with a small fraction of vapor (< 2% by mass; Gudmundsson and Árnórsdóttir, 2005). Since most of the producing wells are located within the upflow zone of the geothermal system (Ármannsson et al., 2014; Pope et al., 2015) where fluid ascends and depressurizes above the intrusion (path II), the elevated discharge enthalpies of such ‘excess enthalpy’ wells are not directly caused by heating near an intrusion (path I). However, this study identifies the latter process as the mechanism by which supercritical...
fluids similar to the IDDP-1 fluid are generated (Fig. 3). Intuitively, it makes sense for such well discharges to be relatively rare, as the conductive heating process only occurs in the direct vicinity of the intrusion (Fig. 2). As the supercritical fluid ascends, an acidic liquid condenses out. Thus, the observation that enthalpies and pressures of the ‘acid’ wells lie close to the vapor limb of the two-phase field is consistent with the notion they are generated by supercritical fluid ascent.

4.2. Composition of supercritical fluids formed by conductive heating

In this study, we propose that an important mechanism of supercritical fluid formation in the roots of volcanic geothermal systems is conductive heating of the surrounding geothermal groundwater of meteoric origin by circulation near a magmatic intrusion, without significant degassing from the magmatic intrusion. This is supported by the similarity between the chemical composition of modeled supercritical fluids formed by this mechanism and the measured IDDP-1 fluid composition (Fig. 3, Table 4). The modeled concentrations of non-reactive elements like Cl and B and volatile components are similar to the IDDP-1 reservoir fluids. The main discrepancy between the measured and modeled fluids is the high concentration of sodium and potassium in modeled fluids, which is caused by the inability of PHREEQC to model high ionic strength fluids close to the two-phase and supercritical phase transition. However, it is reasonable to assume that at this point liquid becomes increasingly saline as the vapor fraction increases, which may potentially result in precipitation of Cl-minerals like halite (Scott et al., 2017) or Na-K silicates.

That supercritical fluids originate by conductive heating of groundwater near an intrusion is further supported by the similarity between the isotopic composition of IDDP-1 fluids and subcritical reservoir fluids. While the δD and δ18O ratios of subcritical geothermal groundwater are -94 to -87‰ and -11.5 to -9.1‰, respectively (Pope et al., 2015), the IDDP-1 fluids have similar ratios of δD of -85‰ and δ18O of -10‰ (Ármannsson et al., 2014). These values are consistent with modern day precipitation in the area (Árnason, 1976) and progressive fluid-rock interaction (Stefánsson et al., 2017a), suggesting that meteoric water is the fluid source for the supercritical IDDP-1 fluids, with insignificant input of magmatic fluids.

Based on analyses of stable isotopes it has been concluded that the main source of Cl, S and CO2 in the subcritical geothermal fluids at Krafla is rock leaching, with possible magmatic degassing in the case of Cl and CO2 (Ármannsson et al., 1989; Stefánsson and Barnes, 2016; Stefánsson et al., 2017a). The δ37Cl values in the IDDP-1 fluids were 0 to +0.4‰, similar to subcritical geothermal fluids, which had ratios of +0.2 to +2.1‰ (Stefánsson and Barnes, 2016). The δ34S ratios in H2S in the IDDP-1 discharge fluid were +0.5 to +1.1‰, similar to the
vapor in the two-phase well discharges with δ34S of +0.05 to +1.28‰ (Stefánsson et al., 2015). In the case of CO2, the δ13C values for Krafla fluids are -5.3 to -1.4‰ (Arnórsson and Barnes, 1983; Sano et al., 1985; Barry et al., 2014), with the CO2 and δ13C relationship suggesting magmatic source (Stefánsson et al., 2017a). However, a low contribution of magmatic gas to the IDDP-1 fluid is supported by comparison of measured volatile concentrations from current Krafla fluids to measured concentrations after the Krafla fires in 1984–1987 (Ármannsson et al., 1989; Fig. 5c,d), during which the concentrations of both CO2 and Cl were approximately one order of magnitude higher than currently observed in the Krafla geothermal reservoir.

4.3. The formation of ‘acid’ fluids from ascending supercritical fluid

Liquid that condenses out of ascending supercritical fluid is characterized by elevated concentrations of volatile components and an acidic pH due to the dissociation of HCl transported in the supercritical vapor. Thus, acid reservoir fluids may represent the liquid condensate formed during supercritical fluid ascent, without additional input of HCl and SO2 from magma degassing. Such acid fluids have been observed at Krafla with pH values of 3.3–4.9, Cl of 3.2–25 mmol kg⁻¹ and SO2 concentrations of 0.5–6.0 mmol kg⁻¹ in wells K-12 and K-36 (e.g., Einarssson et al., 2010; Ármannsson et al., 2014). Moreover, the ratios of some common volatile components like CO2, H2S and H2 are similar in the acid, supercritical and the subcritical geothermal fluids, but differ from the ratios commonly observed in magmatic gas in Iceland (Stefánsson et al., 2017b). These observations suggest that acid reservoir geothermal fluids at Krafla represent liquid condensed out of ascending supercritical fluids.

The acidic liquid condensate is undersaturated with respect to most secondary minerals (Fig. 6), which promotes dissolution of primary minerals while limiting precipitation of secondary minerals. However, these fluids are mixed with shallower geothermal fluids to various degrees within the upflow zone. Based on our chemical models (Fig. 6), we estimate that the mixing ratio between the liquid condensate and shallower geothermal fluids is approximately < 0.1. In this case, the reservoir fluid dominates chemical signatures, making recognition of the added condensate difficult at the surface.

5. Summary and conclusions

This study describes patterns of heat and mass transfer in the roots of volcanic geothermal systems with a focus on the generation of supercritical fluids. We compare hydrological and geochemical models with data from the Krafla geothermal system in Iceland, including the IDDP-1 well. A conceptual model of the key fluid flow and geochemical processes in high-enthalpy geothermal systems like Krafla is presented in Fig. 7.

We propose that an important mechanism of supercritical fluid formation in the roots of volcanic and high-enthalpy geothermal systems is conductive heating of the surrounding subcritical geothermal fluids by a magmatic intrusion. High-enthalpy well discharges may also be formed by depressurization boiling and phase segregation in the upflow zone of the geothermal system, above the intrusion. The two processes can be distinguished from each other by the chemical and physical properties of resulting geothermal fluids.

The composition of supercritical fluids formed by conductive heating near a subsurface intrusion is characterized by negligible concentrations of non-volatile elements (i.e., Si, Na, K, Ca, Mg, Al, Fe), but similar volatile element concentrations (i.e., C, S, B, Cl, F) as the surrounding subcritical geothermal fluids. Boiling of the liquid ground-water to dryness results in intensive mineral formation dominated by quartz within the boiling zone around the magmatic intrusion, whereas insignificant rock alteration by the supercritical fluids is predicted to occur. The similarity between modeled fluid compositions and the measured composition of the IDDP-1 suggests that the ~440 °C supercritical fluids discharged were formed by heating of circulating groundwater without significant magmatic fluid input. This is further supported by the volatile element stable isotope composition (i.e., δD, δ18O, δ34S, δ34S, δ37Cl) of the fluids.

The low-density supercritical fluid ascends towards the surface within permeable pathways above the magmatic intrusion. Depressurization of the fluid results in condensation of an acidic liquid (pH < 4) characterized by elevated Cl concentrations and similar volatile element ratios as in subcritical geothermal fluids. Such acid fluids are encountered in a few wells at Krafla, suggesting the presence of underlying supercritical fluids. However, at shallower depths the signatures are masked by mixing with subcritical geothermal fluids and secondary processes like fluid-rock interaction, depressurization boiling and phase segregation.

Acknowledgements

The reviewers and associate editor are acknowledged for their stimulating remarks and suggestions, which led to a substantial improvement in the manuscript. Nicole S. Keller and Jóhann Gunnarsson-Robin are thanked for helping with sampling and analysis, and David Ostman for his help with the map. This work has been funded by the...
Appendix B: Research article II

Reprinted with the permission of Wiley Hindawi
Research Article
Supercritical Fluid Geochemistry in Geothermal Systems

Matylda Heřmanská, Barbara I. Kleine, and Andri Stefánsson

Institute of Earth Sciences, University of Iceland, Sturlugata 7, Reykjavík 101, Iceland

Correspondence should be addressed to Matylda Heřmanská; mattylda@hi.is

Received 2 May 2019; Accepted 1 July 2019; Published 5 August 2019

Academic Editor: John A. Mavrogenes

Copyright © 2019 Matylda Heřmanská et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Supercritical fluids exist in the roots of many active high-temperature geothermal systems. Utilization of such supercritical resources may multiply energy production from geothermal systems; yet, their occurrence, formation mechanism, and chemical properties are poorly constrained. Flow-through experiments at 260°C and 400–420°C were performed to study the chemical and mineralogical changes associated with supercritical fluid formation near shallow magmatic intrusions by conductive heating and boiling of conventional subcritical geothermal fluids. Supercritical fluids formed by isobaric heating of liquid geothermal water had similar volatile element concentrations (B, C, and S) as the subcritical water. In contrast, mineral-forming element concentrations (Si, Na, K, Ca, Mg, and Cl) in the supercritical fluid were much lower. The results are consistent with the observed mineral deposition of quartz, aluminum silicates, and minor amount of salts during boiling. Similar concentration patterns have been predicted from geochemical modeling and were observed at Krafá, Iceland, for the IDDP-1 supercritical fluid discharge. The experimental results confirm previous findings that supercritical fluids may originate from conductive heating of subcritical geothermal reservoir fluids characterized by similar or lower elemental concentrations with minor input of volcanic gas.

1. Introduction

Volcanic geothermal systems are associated with magmatic intrusions in the upper part of the Earth’s crust characterized by increased temperature, specific fluid enthalpy, and convection of groundwater [1]. Conventional exploitation of geothermal fluids from such systems typically produces an average of ~3–5 MW electric power per well [2] with a world total exploitation of geothermal energy in 2018 corresponding to ~14.4 GW [3]. Conductive heat transfer from a magmatic intrusion to the surrounding groundwater occurs in the roots of the geothermal system below the depth of typical conventional geothermal wells. Recent modeling suggests that supercritical fluids with temperatures and enthalpies exceeding ~400°C and ~3000 kJ kg⁻¹, respectively, exist at the boundary between geothermal systems and the magmatic heat source, with such fluids possibly capable of generating up to ~30-50 MW of electricity from a single well or ten times more than conventional geothermal wells [4].

Supercritical geothermal fluids have commonly been classified based on the critical temperature \(T_c = 373.976°C \) and pressure \(P_c = 22.01 \text{ MPa} \) of pure water (H₂O) [5]. Such a definition can lead to an artificial boundary in the phase diagram of water, across which there is actually a continuous change in fluid properties. Moreover, for binary salt-water fluids, the term “supercritical” may not fully describe the fluid phase properties, as critical behavior occurs along critical temperature and pressure, implying fluid phase separation rather than homogenization. Here and following Liebscher and Heinrich [6], the term supercritical is defined as a single-phase vapor with a temperature above the critical temperature. Supercritical fluids have been suggested to form by groundwater circulation near the intrusion [1, 7, 8] with or without input from magmatic gas [9–11]. More than 25 deep wells sunk into the geothermal fields at The Geysers, Salton Sea, and Hawaii (USA); Kakkonda (Japan); Larderello (Italy); Krafá, Nesjavellir, and Reykjanes (Iceland); Los Humeros (Mexico); and Menengai (Kenya) have reached...
temperatures in excess of the critical temperature of water and, in some cases, have even encountered magma [12]. The most extensive project aiming at obtaining supercritical fluids for geothermal utilization is the Iceland Deep Drilling Project (http://www.iddp.is). In 2009, the IDDP-1 well at Krafla (NE Iceland) came to a halt after drilling into molten magma at \(\sim 2.1 \) km depth [13]. After an initial heating period, the well discharged supercritical fluids with temperatures of \(\sim 440^\circ \text{C} \) and eventually reached a maximum temperature of \(459^\circ \text{C} \) and specific enthalpy of \(\sim 3200 \text{kJ kg}^{-1} \) [14, 15]. From March 2010 until September 2011, series of flow tests were conducted; however, due to the corrosive nature of the fluids, silica scaling, and thermal damage to the well casings, utilization proved to be challenging and the fluid discharge was eventually terminated [16]. In 2017, the second IDDP-2 well at Reykjanes (SW Iceland) reached its target depth of \(4.6 \) km with a measured bottom hole temperature of \(426^\circ \text{C} \) [17]. At present, fluid discharges from IDDP-2 at surface are not characterized by supercritical temperatures. Thus, deep reservoir fluid composition has been estimated from fluid inclusion analysis of felsic veins consisting of a vapor phase dominated by water (97.5 mol\% \(\text{H}_2\text{O} \), \(\sim 1.5 \) mol\% \(\text{CO}_2 \), 0.7 mol\% \(\text{H}_2\text{S} \), and traces of \(\text{H}_2 \)\(_2\), Cl-rich brine (Fe-K chlorides, sylvite-halide solid solutions), and sulfides [18].

Magmatic intrusions emplaced into the upper parts of the Earth’s crust may exsolve magmatic fluids at near lithostatic pressure, resulting in fracturing of the surrounding rocks and magmatic fluid migration [19, 20]. Near magmatic intrusions, conductive heat addition to the surrounding groundwater system may also potentially form high-temperature supercritical fluids [1, 7]. However, permeability may rapidly decrease at the brittle-ductile transition (BDT), possibly limiting the formation of such supercritical fluids to lithologies with basaltic glass transition temperatures above \(\sim 400-450^\circ \text{C} \) [1, 7, 21–23]. While the relations between rock permeability and brittle-ductile behavior, as well as reservoir simulations around magmatic intrusions, have received considerable interest, less attention has been drawn to the geochemical properties of such supercritical fluids. Fluids originating from degassing magma are rich in \(\text{CO}_2 \), \(\text{SO}_2 \), \(\text{HCl} \), and \(\text{HF} \) [24]. In contrast, supercritical fluids formed by boiling of subcritical geothermal water of meteoric or seawater origin are considered to display similar concentrations of many volatile elements (\(\text{CO}_2 \), \(\text{H}_2\text{S} \), \(\text{H}_2 \)\(_2\), and B) as the original water, much lower than corresponding magmatic-gas concentrations, but negligible nonvolatile element concentrations (\(\text{Si} \), \(\text{Na} \), \(\text{K} \), \(\text{Ca} \), and \(\text{Mg} \)) [25–31]. The formation of supercritical fluids may also produce a silica deposit around the magmatic intrusion [25, 31, 32] (Figure 1).

In this study, flow-through experiments at \(260^\circ \text{C} \) and \(400-420^\circ \text{C} \) were performed to study how conductive heating of subcritical water form geothermal fluids at supercritical temperatures and how this affects fluid chemistry and associated secondary mineral formation. The results of the experiments were further compared with the recent model simulations of the chemical nature of supercritical fluids near magmatic intrusions and with the observed composition of the supercritical fluid discharged by the IDDP-1 [31].

2. Methods

2.1. Experimental Set-Up. Flow-through experiments at \(260^\circ \text{C} \) and \(400-420^\circ \text{C} \) and \(6.9 \) MPa reproduce geothermal reservoir conditions at subcritical and supercritical
temperatures, respectively. A schematic illustration of the experimental set-up is shown in Figure 2, and a summary of experimental conditions is given in Table 1. All wetted parts of the experimental apparatus were made of inert material, including PEEK, titanium, and Inconel. Inlet solutions were pumped at a flow rate of ~0.20 ml/min using an HPLC pump (Chromatech®). The pressure was controlled at the end of the line by a back-pressure regulator (BPR, Biotech).

The first reactor (SubC), representing subcritical conditions, was heated to 260°C and filled with fine-grained basaltic glass. Table 2 lists the composition of the basaltic glass used in the experiments.

![Figure 2: Schematic set-up of the experiments described in this study.]

<table>
<thead>
<tr>
<th>#</th>
<th>t (°C)</th>
<th>P (MPa)</th>
<th>Q (g min⁻¹)</th>
<th>Material</th>
<th>Grain size (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SubC-1</td>
<td>260</td>
<td>6.9</td>
<td>0.09-0.26</td>
<td>BAS</td>
<td>45-125</td>
</tr>
<tr>
<td>SupC-1</td>
<td>420</td>
<td>6.9</td>
<td>0.19-0.21</td>
<td>SS316-rod</td>
<td></td>
</tr>
<tr>
<td>SupC-2</td>
<td>400</td>
<td>6.9</td>
<td>0.10-0.19</td>
<td>SS316-rod</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Basaltic glass composition (BAS)*.

<table>
<thead>
<tr>
<th>Element</th>
<th>wt.%</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>48.12</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>14.62</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>9.82</td>
<td></td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>9.08</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>11.82</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.97</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>CI⁻</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>CO₂⁻</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>B⁶⁺</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

*Basaltic glass from Stapafell [62]. †Taken as for average basalts in Iceland, after Kaasalainen and Stefánsson [64].
basaltic glass (grain size fraction < 45 μm) from Stapafell, Iceland (Table 2). The second reactor (SupC), representing supercritical conditions, was heated to 400-420°C. This reactor contained a stainless steel (316) threaded rod to capture deposits precipitating from the fluids. Three different experiments were carried out to test the effects of temperature and solution composition on fluid composition and alteration mineralogy. The initial solution in all cases was of natural geothermal water from Krafla, Iceland (Table 3). In experiment 1, interaction between geothermal liquid water and basaltic rocks at subcritical temperatures (260°C) was conducted. In experiments 2 and 3, the geothermal water either from the outlet subcritical reactor or directly from the inlet solution was pumped into a flow-through reactor with a supercritical temperature of 400-420°C. In all cases, the fluids were cooled down by an in-line cooling jacket, followed by depressurization by a BPR and collection of fluid samples. At the end of each experiment, the solid deposits from the reactor were collected, dried at 50°C, and mounted on a sample holder. Loose precipitates from the rod collected from the supercritical reactor were directly mounted on a sample holder to study the

<table>
<thead>
<tr>
<th>Run #</th>
<th>t (°C)</th>
<th>pH</th>
<th>°C</th>
<th>SiO₂</th>
<th>B</th>
<th>Na</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>Fe</th>
<th>Al</th>
<th>Cl</th>
<th>CO₂</th>
<th>SO₄</th>
<th>H₂S</th>
</tr>
</thead>
<tbody>
<tr>
<td>SupC-1-S1</td>
<td>420</td>
<td>5.06</td>
<td>21</td>
<td>5.3</td>
<td>3.19</td>
<td>0.2</td>
<td>0.07</td>
<td>0.06</td>
<td>0.002</td>
<td>0.050</td>
<td>0.022</td>
<td>0.35</td>
<td>8.32</td>
<td>0.45</td>
<td>13.9</td>
</tr>
<tr>
<td>SupC-1-S8</td>
<td>420</td>
<td>4.96</td>
<td>21</td>
<td>3.6</td>
<td>4.16</td>
<td>0.1</td>
<td>0.06</td>
<td>0.09</td>
<td>0.005</td>
<td>0.069</td>
<td>0.062</td>
<td>19.8</td>
<td>0.49</td>
<td>17.2</td>
<td></td>
</tr>
<tr>
<td>SupC-1-S9</td>
<td>420</td>
<td>4.75</td>
<td>21</td>
<td>2.3</td>
<td>3.30</td>
<td>0.1</td>
<td>0.02</td>
<td>0.02</td>
<td>0.002</td>
<td>0.042</td>
<td>0.027</td>
<td>0.46</td>
<td>24.5</td>
<td>0.32</td>
<td>8.18</td>
</tr>
<tr>
<td>SupC-1-S19</td>
<td>420</td>
<td>4.90</td>
<td>21</td>
<td>2.1</td>
<td>3.35</td>
<td>0.1</td>
<td>0.02</td>
<td>0.02</td>
<td>0.002</td>
<td>0.026</td>
<td>0.025</td>
<td>0.48</td>
<td>26.6</td>
<td>0.40</td>
<td>12.0</td>
</tr>
<tr>
<td>SupC-1-S20</td>
<td>420</td>
<td>4.50</td>
<td>21</td>
<td>1.5</td>
<td>2.58</td>
<td>0.2</td>
<td>0.04</td>
<td>0.02</td>
<td>0.003</td>
<td>0.024</td>
<td>0.044</td>
<td>0.48</td>
<td>26.6</td>
<td>0.40</td>
<td>12.0</td>
</tr>
<tr>
<td>SupC-1-S21</td>
<td>420</td>
<td>5.00</td>
<td>21</td>
<td>1.4</td>
<td>3.47</td>
<td>0.2</td>
<td>0.05</td>
<td>0.05</td>
<td>0.003</td>
<td>0.029</td>
<td>0.029</td>
<td>0.46</td>
<td>26.1</td>
<td>0.38</td>
<td>7.56</td>
</tr>
<tr>
<td>SupC-1-S22</td>
<td>420</td>
<td>4.40</td>
<td>21</td>
<td>1.4</td>
<td>3.42</td>
<td>0.1</td>
<td><0.1</td>
<td>0.03</td>
<td>0.004</td>
<td>0.039</td>
<td>0.081</td>
<td>0.25</td>
<td>0.35</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>SupC-1-S23</td>
<td>420</td>
<td>4.60</td>
<td>21</td>
<td>1.3</td>
<td>2.92</td>
<td>0.1</td>
<td>0.04</td>
<td>0.02</td>
<td>0.003</td>
<td>0.037</td>
<td>0.064</td>
<td>0.36</td>
<td>0.10</td>
<td>0.33</td>
<td>13.9</td>
</tr>
<tr>
<td>SupC-1-S24</td>
<td>420</td>
<td>4.70</td>
<td>21</td>
<td>2.1</td>
<td>3.35</td>
<td>0.1</td>
<td>0.02</td>
<td>0.02</td>
<td>0.002</td>
<td>0.026</td>
<td>0.023</td>
<td>0.48</td>
<td>26.6</td>
<td>0.40</td>
<td>12.0</td>
</tr>
<tr>
<td>SupC-2-SSE1</td>
<td>400</td>
<td>3.99</td>
<td>22</td>
<td>4.6</td>
<td>1.30</td>
<td>0.5</td>
<td><0.1</td>
<td>0.12</td>
<td>0.029</td>
<td>0.288</td>
<td>0.173</td>
<td>1.89</td>
<td>46.5</td>
<td>0.26</td>
<td>13.8</td>
</tr>
<tr>
<td>SupC-2-SSE2</td>
<td>400</td>
<td>4.17</td>
<td>22</td>
<td>4.3</td>
<td>1.43</td>
<td>1.6</td>
<td>0.25</td>
<td>0.15</td>
<td>0.041</td>
<td>0.181</td>
<td>0.060</td>
<td>2.13</td>
<td>35.4</td>
<td>0.78</td>
<td>10.7</td>
</tr>
<tr>
<td>SupC-2-SSE3</td>
<td>400</td>
<td>3.97</td>
<td>22</td>
<td>3.1</td>
<td>1.47</td>
<td>1.1</td>
<td>0.26</td>
<td>0.08</td>
<td>0.019</td>
<td>0.099</td>
<td>0.075</td>
<td>1.90</td>
<td>38.0</td>
<td>0.67</td>
<td>40.0</td>
</tr>
<tr>
<td>SupC-2-SSS1</td>
<td>400</td>
<td>3.68</td>
<td>22</td>
<td>2.9</td>
<td>1.32</td>
<td>1.5</td>
<td>0.19</td>
<td>0.06</td>
<td>0.021</td>
<td>0.083</td>
<td>0.059</td>
<td>2.85</td>
<td>59.6</td>
<td>0.54</td>
<td>29.9</td>
</tr>
<tr>
<td>SupC-2-SSS2</td>
<td>400</td>
<td>3.24</td>
<td>22</td>
<td>2.8</td>
<td>1.37</td>
<td>0.4</td>
<td><0.1</td>
<td>0.11</td>
<td>0.019</td>
<td>0.058</td>
<td>0.041</td>
<td>2.05</td>
<td>55.3</td>
<td>0.36</td>
<td>24.9</td>
</tr>
<tr>
<td>SupC-2-SSS6</td>
<td>400</td>
<td>3.65</td>
<td>21</td>
<td>1.2</td>
<td>1.38</td>
<td>1.0</td>
<td><0.1</td>
<td>0.17</td>
<td>0.028</td>
<td>0.102</td>
<td>0.071</td>
<td>1.11</td>
<td>53.7</td>
<td>1.74</td>
<td>25.1</td>
</tr>
</tbody>
</table>

*The average inlet composition of subcritical experiments SubC-1-n that served as inlet solution for supercritical experiment SupC-1-n. The Krafla w17 was used as an inlet for subcritical experiments SubC-1-n. Note: The inlet solution represents the liquid phase only discharge from the well w17. The Krafla w37 was used as inlet for the supercritical experiments SupC-2-n. Note: The inlet solution represents the liquid phase only discharge from the well w37. Based on Gudmundsson and Arnórsson [41]. Based on Ntimabose [63].

Table 3: Chemical composition of the solutions from the SubC and SupC reactors. Concentrations are in ppm.
Figure 3: Elemental concentrations of inlet and outlet solutions of the experiments. Abbreviations: SubC and SupC refer to subcritical and supercritical conditions, respectively.

Figure 4: Selected SEM microphotographs and EDS spectras of minerals precipitated at both subcritical (a, b) and supercritical temperatures (c, d).
morphology of the deposits. The rod itself was imbedded into epoxy and cut parallel and perpendicular to the flow direction in the reactor and then polished.

2.2. Chemical Analyses. For the fluid samples, the pH was analyzed using a pH electrode and meter calibrated against commercial buffer solutions. Measurements of CO$_2$ and H$_2$S concentrations were carried out using a modified alkalinity and Hg-precipitation titration using dithizone as an indicator, respectively [33, 34]. For CO$_2$ determination, the samples from the supercritical reactor were collected into a base (0.01 M NaOH) to prevent degassing prior to analyses. For major elemental analyses (Si, B, Na, K, Ca, Mg, Al, Fe, Cl, and SO$_4$), the samples were filtered through a 0.2 μm filter (cellulose acetate), acidified to 1% with HNO$_3$ (Merck, Suprapur®), followed by analysis using ICP-OES (Spectro Ciros Vision). The analytical precision of major element

![Figure 5: Mineral saturation state of selected minerals at subcritical conditions. The reaction quotients were calculated using the Phreeqc program [61] and the llnl.dat database. Also shown are mineral solubilities and the mineral reaction quotients for reservoir fluids at Krafla at the measured reservoir temperatures, both obtained from Gudmundsson and Arnórsson [41].](image)

![Figure 6: Relative mobility of major elements upon boiling of subcritical geothermal fluids by conductive heating to form supercritical fluids. Elements showing relative mobility close to 1 may be regarded as mobile, whereas elements with relative mobility of <0.1 are immobile.](image)
analyses was based on repeated analysis of the GYG13 standard and was found to be <3% at the 95% confidence level for all elements except Fe, where it was ~14%. The analytical precision for pH was ±0.05.

The secondary mineral phases and the morphology of the solid products from the two reactors were determined using a HITACHI TM-3000 scanning electron microscope (SEM) with an accelerating voltage of 15 kV.

3. Results

3.1. Chemical Composition of the Outlet Solutions. The chemical compositions of the outlet solutions from the experiments are given in Table 3 and shown in Figure 3. The outlet solutions from the subcritical reactor (experiment 1) were mildly alkaline (pH 8.00-9.79 at 21°C) with concentrations of SiO2 (325-674 ppm), B (3.35-3.48 ppm), Na (160-212 ppm), K (18.6-55.5 ppm), Cl (43.2-50.0 ppm), CO2 (55.5-99.0 ppm), SO4 (98-207 ppm), and H2S (55.5-99.0 ppm) similar to concentrations in the inlet solution (Table 3). Concentrations of Ca (0.69-3.04 ppm) were significantly lower than corresponding concentrations in the inlet solution (7.61 ppm) whereas Al concentrations (4.86-8.04 ppm) were significantly higher in the outlet solutions than in the inlet solution (0.84 ppm). The outlet solutions from the supercritical reactors were mildly acidic (pH 3.24 to 5.06 at 21°C). In experiment 2, concentrations of SiO2 (1.3-5.3 ppm), Na (0.1-0.2 ppm), K (<0.07 ppm), Ca (0.02-0.09 ppm), Al (0.018-0.081 ppm), Cl (0.35-0.48 ppm), and SO4 (0.27-0.49 ppm) were considerably lower than the corresponding concentrations of the inlet solution from the subcritical reactor. Concentrations of B (2.58-4.16 ppm), CO2 (8.32-225 ppm), and H2S (7.56-28.0 ppm) of the outlet solution did not differ significantly from the inlet solution (Figure 3). In experiment 3, similar trends were observed. Concentrations of SiO2 (1.2-4.6 ppm), Na (0.4-1.6 ppm), K (<0.3 ppm), Ca (0.06-0.17 ppm), Al (0.014-0.17 ppm), Cl (1.41-2.85 ppm), and SO4 (0.26-1.74 ppm) were substantially lower than the corresponding concentrations in the inlet solution (Figure 3). Again, concentrations of B (1.30-1.47 ppm), CO2 (35.4-135 ppm), and H2S (10.7-40.0 ppm) of the outlet solutions did not differ significantly from the inlet solution. Concentrations of Fe and Mg in all fluid samples were close to the detection limit and/or affected by contamination and were not considered further in this study.

3.2. Mineralogy and Chemical Composition of the Solid Products. Secondary minerals associated with alteration of the basaltic glass at subcritical temperatures (260°C) occurred mainly as thin layers on the surface of the primary glass. The main secondary minerals identified were chlorites, Na-Ca zeolite (wairakite), Ca-silicate (wollastonite), and calcite (Figure 4(a) and (b)). For supercritical temperatures, abundant white deposits on the steel rod were observed, mainly composed of quartz (Figure 4(c)). Microcline and wollastonite were found in minor amounts. Thick deposits (1-2 mm) occurred on the part of the rod located closest to the inlet of the reactor. Here, silicate layers were most massive closest
to the rod, becoming highly porous with increasing distance from the rod. Towards the outlet of the reactor, quartz precipitates occurred as amorphous silica (spheres with <1 μm in diameter) interconnected with fine silica branches up to 10 μm long (Figure 4(d)).

4. Discussion

4.1. Geochemistry of Subcritical Geothermal Fluids. Studies of alteration mineralogy and fluid composition in geothermal systems show that equilibrium is closely approached between the geothermal fluids and secondary minerals formed in the systems, except for mobile elements such as Cl [35–39]. At Krafla, the most common secondary minerals identified include calcite, quartz, epidote, various clays, chlorite, feldspars, and pyrite. Anhydrite, prehnite, actinolite, wollastonite, include calcite, quartz, epidote, various clays, chlorite, feldspars, and pyrite. Anhydrite, prehnite, actinolite, wollastonite, garnet, pyrrhotite, and various zeolites, including wairakite, have also been observed [40]. Previous studies on mineral-fluid interaction at Krafla have demonstrated that the major fluid components were in equilibrium with these minerals, which in turn control the fluid composition at depth (Figure 5) [41].

Our experimental results indicate a similar process of mineral-fluid interaction at subcritical temperatures, with formation of secondary minerals upon interaction of geothermal water with the primary basaltic rock and glass. The calculated saturation indices with respect to commonly observed secondary minerals revealed near-equilibrium between the fluids and quartz, whereas supersaturation occurs with respect to calcite, chlorite, feldspars, wollastonite, and zeolites (Figure 5). Supersaturation may have resulted from high initial concentrations in the inlet experimental solutions relative to the equilibrium composition at 260°C and experimental durations of hours, compared to residence times of fluids in natural geothermal systems like at Krafla that are in the order of months to years [42, 43]. We conclude that the chemical composition of geothermal fluids at subcritical temperatures is controlled by near-equilibrium with secondary minerals. This agrees with previous findings [35–39, 41].

4.2. Supercritical Fluid Formation, Fluid-Rock Interaction, and Control of Elemental Transport. The solubility of mineral-forming elements and salts including Si, Ca, K, Na, and Cl is orders of magnitude lower in supercritical fluids compared to subcritical fluids and has been observed to decrease with decreasing fluid density [44–46]. Indeed, a recent modeling study of the formation of supercritical fluid by conductive boiling of supercritical fluids revealed that the process is expected to result in mineral deposition dominated by silica, aluminum silicates, and salts around the heat source [31]. In contrast, volatile elements like B, CO₂, and H₂S are expected to partition into the vapor phase upon boiling, resulting in insignificant concentration changes in the total fluid.

Elemental behavior upon conductive heating of subcritical liquid water to form supercritical fluid may be demonstrated from the elemental relative mobilities (RM), given by the elemental concentration (mₑ) ratio between

Figure 7: The concentration of subcritical and supercritical geothermal fluids observed in the experiments at Krafla, Iceland [31, 41]. Also shown are predicted equilibrium concentrations assuming mineral-fluid equilibria at subcritical conditions [41, 47] as well as quartz and salt equilibrium solubility concentrations in supercritical water [44–46].
Figure 8: Concentrations of B, CO$_2$, and H$_2$S in the subcritical to supercritical fluids. Experimental results, concentrations in subcritical geothermal reservoir fluids at Krafla and the IDDP-1 fluid discharge composition [31, 41], and concentration trends predicted by previous geochemical modeling calculations [31].
the inlet and outlet solution relative to a mobile element like B:

\[\text{RM} = \frac{(m/m_b)_{\text{outlet}}}{(m/m_b)_{\text{inlet}}} \]

(1)

The results demonstrate that volatile elements separate from the major rock-forming elements upon boiling of subcritical fluids to supercritical temperatures (Figure 6). Boron, CO₂, and H₂S partition into the vapor phase, whereas nonvolatile elements like Si, Ca, Na, K, Al, Cl, and SO₄ are precipitated into the observed secondary minerals, mainly silica, aluminum silicates, and chlorides. Chloride may also precipitate into salts like halite and sylvite (Figure 4). In this way, <1-10% of these elements are quantitatively removed from the initial concentration of the subcritical fluids.

The elemental concentrations can be further compared with the mineral-fluid equilibrium conditions considered to control their concentrations. At subcritical conditions, these reactions and equilibrium conditions are well established and include single mineral reactions as well as mineral-pair reactions [41] (Table 4). In order to calculate the individual elemental concentrations from these mineral-fluid equilibria buffers, further knowledge of the reservoir pH is needed. Here, pH conditions for Krafla fluids were adopted from Stefánsson and Arnórsson [47]. Experimental results are compared with calculated equilibrium compositions in Figure 7. Both experimental results and calculated equilibrium compositions showed good agreement between the two demonstrating a mineral-fluid equilibria control on the subcritical fluid compositions.

At supercritical conditions, it is less certain what processes control the fluid composition. Mineral solubilities are poorly known except for quartz and some common salts [44–46], therefore the experimental results are compared with the calculated solubility of quartz (SiO₂) and simple salts (NaCl, KCl, and CaCl₂), shown in Figure 7. Excellent agreement was observed for silica, suggesting that equilibrium between quartz and the supercritical fluid controls Si concentration in the fluid. In the case of other mineral-forming elements, concentrations obtained in the experiments were similar to or somehow higher to the calculated equilibrium concentrations of the salts. The elemental concentrations of these salts in the supercritical fluids may be influenced by a combination of different mineral solubilities including salts, oxides, and aluminum silicates. In contrast, the concentration of volatile elements like B, C, and S (Figure 8) remained unchanged in the fluid from subcritical to supercritical conditions, which is in agreement with previous geochemical modeling calculations [31].

4.3. Comparison of Experimental and Modeling Results with IDDP-1 Fluids

Experimental conductive boiling of a subcritical geothermal fluid to form supercritical fluid decreased mineral-forming element concentrations, whereas concentrations of volatile components remained mostly unchanged. Similar trends were observed in the elemental concentrations measured in the IDDP-1 supercritical fluid discharge when compared to subcritical fluids at Krafla (Table 5). However, direct comparison of experimental and IDDP-1 fluids shows that most concentrations of mineral-forming elements (Si, Na, K, and Ca) fall into a similar range, whereas Cl and volatile (CO₂, H₂S) concentrations differed significantly (Table 5). Concentrations of Cl at laboratory conditions were considerably lower than concentrations observed in the IDDP-1 discharge. Low concentrations of Cl in experimental fluids were caused by precipitation of minor amounts of salts (e.g., halite) in the very late stage of the boiling process. High concentrations of Cl and other volatile elements such as C and S in the IDDP-1 fluids could be attributed to minor magmatic degassing [48–50]. The experimental results thus support previous findings that supercritical IDDP-1

Table 5: Comparison of measured and modeled geothermal fluids at Krafla. Concentrations are in ppm.

<table>
<thead>
<tr>
<th>Subcritical fluid</th>
<th>Krafla</th>
<th>Experiment w37</th>
<th>Supercritical fluid</th>
<th>IDDP-1</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>t (°C)</td>
<td>260</td>
<td>295</td>
<td>420</td>
<td>400</td>
<td>440</td>
</tr>
<tr>
<td>SiO₂</td>
<td>453 ± 121</td>
<td>659</td>
<td>2.4 ± 1.4</td>
<td>2.9 ± 1.3</td>
<td>6.0</td>
</tr>
<tr>
<td>B</td>
<td>3.41 ± 0.05</td>
<td>1.23</td>
<td>3.30 ± 0.46</td>
<td>1.39 ± 0.06</td>
<td>1.41</td>
</tr>
<tr>
<td>Na</td>
<td>181 ± 18</td>
<td>178</td>
<td>0.13 ± 0.04</td>
<td>0.99 ± 0.46</td>
<td>0.51</td>
</tr>
<tr>
<td>K</td>
<td>21.1 ± 9.1</td>
<td>40.9</td>
<td>0.04 ± 0.02</td>
<td>0.23 ± 0.04</td>
<td>0.12</td>
</tr>
<tr>
<td>Ca</td>
<td>1.91 ± 0.76</td>
<td>1.18</td>
<td>0.04 ± 0.03</td>
<td>0.10 ± 0.05</td>
<td>0.16</td>
</tr>
<tr>
<td>Mg</td>
<td>0.009 ± 0.013</td>
<td>0.001</td>
<td>0.003 ± 0.001</td>
<td>0.026 ± 0.008</td>
<td>0.024</td>
</tr>
<tr>
<td>Fe</td>
<td>0.044 ± 0.036</td>
<td>0.036</td>
<td>0.04 ± 0.01</td>
<td>0.12 ± 0.06</td>
<td>5.25</td>
</tr>
<tr>
<td>Al</td>
<td>6.20 ± 0.79</td>
<td>1.27</td>
<td>0.04 ± 0.02</td>
<td>0.08 ± 0.04</td>
<td>0.054</td>
</tr>
<tr>
<td>Cl</td>
<td>44.8 ± 1.6</td>
<td>112</td>
<td>0.41 ± 0.06</td>
<td>1.99 ± 0.44</td>
<td>105</td>
</tr>
<tr>
<td>CO₂</td>
<td>76.9 ± 12.5</td>
<td>858</td>
<td>87 ± 104</td>
<td>60.5 ± 34.2</td>
<td>1637</td>
</tr>
<tr>
<td>SO₄</td>
<td>157 ± 29</td>
<td>127</td>
<td>0.37 ± 0.07</td>
<td>0.84 ± 0.57</td>
<td>32.7</td>
</tr>
<tr>
<td>H₂S</td>
<td>37.3 ± 9.6</td>
<td>266</td>
<td>13.9 ± 6.5</td>
<td>25.1 ± 10.2</td>
<td>630</td>
</tr>
</tbody>
</table>

*An average from the experimental runs (Table 3). From Kaasalainen and Stefánsson [64]. From Heímanska et al. [31].
Figure 9: Mechanism of conductive boiling of subcritical fluids in cracks near the brittle-ductile transition (BDT). (a) Conductive boiling of a subcritical fluid to supercritical conditions along a single crack. (b) Volumes of secondary minerals (from Hermanská et al. [31]) formed upon conductive boiling as a function of specific enthalpy along a crack. (c) Time for closure of a crack with a width of 0.05 mm as a function of specific enthalpy and fluid mass flux. Values for the range of fluid mass flux are taken from Norton and Knight [54]. (d) Time for closure of a crack with variable width based on permeability values of Norton and Knapp [53], Lamur et al. [51], and Watanabe et al., [52] using an average fluid mass flux of 10^{-5} kg m$^{-2}$ s$^{-1}$ [54]. Closure of the crack accelerates as soon as quartz starts to precipitate.
fluids likely form by conductive heating of subcritical geothermal reservoir fluids of meteoric water origin with minor input of magmatic gases [31, 48, 50]. Our experiments, in combination with geochemical modeling [31], revealed that varying the initial concentrations of volatile elements (C, S, and B) in the reservoir geothermal fluid does not affect the chemical composition of the supercritical fluid nor the alteration mineralogy, due to early partitioning of volatile elements into the vapor (Figure 8).

4.4. Mechanism of Boiling in Cracks and Implications for Exploitation of Supercritical Resources. Our experiments suggest that quartz and other silicates such as feldspar and wollastonite are the dominant secondary mineral phases that precipitate upon conductive boiling of subcritical fluids to form supercritical fluids. Boiling of 1 kg of subcritical fluids from Krafla has been modeled to produce \(\sim 50 \text{ cm}^3 \) of silica [31], and using such results, the time required for complete closure of cracks by secondary mineral formation can be calculated (Figure 9). The permeability in volcanic geothermal systems like Krafla has been shown to range typically from \(10^{-14} \) to \(10^{-16} \text{ m}^2 \), which can be equated to a single crack with a width of up to 0.05 mm cutting each cubic meter in the system [51–53]. Based on an average fluid mass flux of \(10^{-3} \text{kg m}^{-2} \text{s}^{-1} \) [54], conductive boiling of a subcritical fluid to supercritical conditions could lead to the complete closure of a 0.01 to 0.05 mm wide crack over a time period as short as a few hours or as long as \(\sim 140 \) years (Figure 9). These calculated time scales are in line with previous findings on permeability reduction in geothermal systems [25, 30, 32, 55–58]. However, the calculations should be considered as a simplification of real conditions. Mineral deposition was assumed to be immediate and independent of fluid flow, and possible reduced fluid flow upon decreased permeability associated with the mineral deposition was not considered. Formation of supercritical fluids may thus contribute to silica deposits, for example, as observed at the IDDP-1 well orifices [16]. However, such scaling will not occur during the supercritical fluid condensation as supercritical fluids exhibit low concentrations in mineral-forming elements (Figure 7).

5. Conclusions

The chemical and mineralogical changes associated with supercritical fluid formation by conductive heating and boiling of subcritical geothermal fluids were studied experimentally. Our results showed that the chemical composition of geothermal fluids at subcritical temperatures is controlled by near-equilibrium between the geothermal fluids and secondary minerals, except for mobile elements like Cl, which is in line with previous studies [35–39]. Upon conductive heating and boiling of such fluids to form supercritical fluids having a temperature \(>400 \text{C} \), rock-forming elements like Si, Na, K, Ca, Mg, and Cl are quantitatively deposited into silicate, aluminum silicate, and salt deposits. In contrast, volatile element concentrations like CO2, H2S, and B remained unchanged. The observed concentrations of the nonvolatile elements are similar to those predicted from the solubility of quartz (\(\text{SiO}_2 \)) and salts (NaCl, KCl, and CaCl2) suggesting that reactions between these solids and the fluid influence and even control the elemental concentrations in the supercritical fluid. Similar concentration trends were observed for the IDDP-1 supercritical and subcritical geothermal fluids at Krafla, Iceland, and have been predicted from geochemical modeling [31]. The experimental results further support findings that the supercritical IDDP-1 fluids likely form by conductive heating of subcritical geothermal fluids of meteoric origin, with minor input of magmatic gases [31, 48, 50]. Such fluids may be suitable for power production.

Data Availability

The experimental data used to support the findings of this study are included within the article. The data from the Krafla geothermal field are from previously reported studies and datasets, which have been cited.

Disclosure

Preliminary results of selected parts of this study were previously presented during the Goldschmidt conference in Boston in 2018 [57].

Conflicts of Interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Acknowledgments

We would like to thank Ríkey Kjartansdóttir, Andri Ísak Thórhallsson, and Helgi Arnar Alfreðsson for their valuable help. This work was funded by the Swiss National Science Foundation (CRSII2-141843/1, Sinergia COTHERM), Georg (11-04-003), and The Energy Research Fund of Landsvirkjun in 2018 and 2019.

References

Appendix C: Research article III

Heřmanská, M., Kleine, B.I., Stefánsson, A. Chemical constraints on supercritical fluids in geothermal systems

(accepted for publication in Journal of Volcanology and Geothermal Research in February 2020)

Reprinted with the permission of Elsevier Science Ltd.
GEOCHEMICAL CONSTRAINTS ON

SUPERCRITICAL FLUIDS IN GEOTHERMAL SYSTEMS

Matylda Heřmanská*, Barbara I. Kleine, Andri Stefánsson

Institute of Earth Sciences, University of Iceland, Sturlugata 7, 101 Reykjavík, Iceland

*corresponding author. e-mail address mattylda@hi.is

Keywords: geothermal; supercritical fluids; fluid composition; alteration mineralogy

Highlights:

- Supercritical fluids form in various geotectonic settings by conductive heating of subcritical fluids of diverse origin
- Supercritical fluids display low concentrations of mineral-forming elements
- Supercritical fluids have comparable volatile element concentrations with the source geothermal fluids
- Supercritical fluid formation results in the secondary mineral deposition in the vicinity of magmatic bodies
- Alteration sequence is dominated by quartz, salts, wollastonite and aluminum silicates

Abstract

Supercritical fluids with temperatures of ~400-500°C have been reported from several active geothermal fields worldwide. Although the utilization of such fluids may multiply power production from new and already exploited geothermal systems, the fluid origin and chemical controls on their composition remain unclear. We performed flow-through high-temperature
(400-420°C) experiments at 34-69 bar to study the chemical and mineralogical changes associated with supercritical fluid formation upon boiling of subcritical geothermal fluids of varying chemical composition. Based on geochemical modeling and laboratory results, we propose that an important mechanism of supercritical fluid formation is conductive heating and boiling of subcritical geothermal groundwater by a magmatic intrusion. Such supercritical fluids will display low concentrations of mineral-forming elements (Si, Na, K, Ca, Mg, Al) with their concentrations being controlled by the solubility of salts, oxides, and aluminum silicates in high-temperature (>400°C) and low-density (\(\rho < 0.3 \text{ g cm}^{-3}\)) fluids. In contrast, supercritical fluids will show elevated concentrations of volatile elements (C, S, B) of crustal and/or mantle origin, with their concentrations often being similar to those of subcritical geothermal fluids. Associated mineral deposition, dominated by quartz, aluminum silicates, and salts, may form in the vicinity of the intrusion. Comparison of the modeling and laboratory results with observed chemical composition of natural supercritical fluid discharges indicates that conductive heating and boiling of subcritical geothermal groundwater may indeed be the formation mechanism of such fluids observed for example at Krafla (Iceland), Menengai (Kenya), Los Humeros (Mexico), and Larderello (Italy) with an addition of volcanic gases in many cases. Metal and salt-rich supercritical fluids, for example, at Kakkonda (Japan), may also exist in geothermal systems. However, such supercritical fluids are considered to have been trapped upon crystallization of the magmatic intrusion.

1. Introduction

Volcanic geothermal systems are commonly associated with a magmatic heat source at ~2-6 km depth (e.g., Hayba and Ingebritsen, 1997; Stimac et al., 2015). Utilization of the systems for energy production typically involves drilling of 2-3 km deep boreholes into the geothermal
reservoir and discharging liquid and vapor at the surface with subcritical temperatures to produce \(\sim 3–5 \) MW electric power per well (Sanyal and Morrow, 2012). Conductive heat transfer from the magmatic body to the circulating geothermal water above commonly occurs below the depth of the production wells, within the roots of the geothermal systems (Fig. 1). Recent studies have suggested that the geothermal fluids at these depths may have temperatures exceeding the critical temperature of pure water or \(T_c > 374^\circ \text{C} \) (Hayba and Ingebritsen, 1997; Scott et al., 2015, 2016, 2017). Indeed, such fluid temperatures have been observed in several active geothermal systems worldwide including those at The Geysers, Salton Sea, and Hawaii, USA (e.g., Garcia et al. 2016; Kaspereit et al. 2016; Teplow et al. 2009); Kakkonda, Japan (Kato et al. 1998); Larderello, Italy (e.g., Bertini et al. 1980; Ruggieri and Gianelli, 1995); Krafla, Nesjavellir, and Reykjanes, Iceland (e.g., Steingrímsson et al. 1990; Friðleifsson et al. 2010; Marks et al. 2010; Mortensen et al. 2010; Friðleifsson and Elders 2017); Los Humeros, Mexico (e.g., Espinosa-Paredes and Garcia-Gutierrez 2003); and Menengai, Kenya (Sekento 2012; Kipyego et al. 2013; Mbia 2015) (Fig. 1). However, the occurrence of such supercritical fluids\(^1\) and, in particular, their chemical composition is not well understood. They have been predicted to form upon conductive heat transfer to the surrounding subcritical geothermal waters that boil and produce high-temperature and low-density fluids, accompanied by precipitation of non-volatile elements (Heřmanská et al., 2019a, 2019b). Supercritical fluids may also originate from magmatic degassing, characterized by elevated CO\(_2\), SO\(_2\), HCl, and

\(^{1}\)Supercritical geothermal fluids have been commonly defined based on critical temperature \((T_c = 373.976 \, ^\circ \text{C})\) and pressure \((P_c = 220.1 \, \text{bar})\) of pure water \((\text{H}_2\text{O})\). However, such a definition can lead to an artificial and unphysical boundary in the phase diagram of water across which there is a continuous region of single-phase fluid. Moreover, for binary salt-water fluids the term supercritical is meaningless as - unlike in a pure fluid such as water - temperature changes may lead to fluid phase separation rather than the homogenization implied by the term supercritical. Here and following Liebscher and Heinrich (2007), supercritical fluid is defined here as fluid with temperatures above the critical temperature of fluid, irrespective of density (in the case of pure water) or phase state (in the case of binary and higher salt-water systems).
HF concentrations (Fischer and Chiodini, 2015), or form upon fluid entrapment during magma crystallization (e.g., Kasai et al., 1998a, 1998b).

Geothermal fluids usually originate from meteoric water, seawater, or a mixture thereof. Components of connate, magmatic, and metamorphic fluids may also be present (White 1974). The reservoir temperatures generally range from ~200 to 350°C. The main salt is commonly NaCl, and the NaCl concentration typically ranges from a few ppm to thousands of ppm and varies depending on the geological setting. The NaCl content is lowest in fluids associated with rift volcanism and basaltic rocks and higher in geothermal systems at subduction zones (Arnórsson et al., 2007). The concentrations of most major elements in the fluids are considered to be controlled by close approaches to local equilibrium with secondary minerals (e.g., Giggenbach, 1980; Arnórsson et al., 1983; Hedenquist, 1990) including reactive gases like CO₂, H₂S, and H₂, which may be mostly of magmatic origin (e.g., Giggenbach, 1992; Stefánsson, 2017). Secondary processes, including boiling, vapor condensation, and mixing with non-thermal water, may further modify the geothermal reservoir water upon fluid ascent to the surface. The geochemical composition of supercritical fluids occurring in the roots of active geothermal systems is largely unknown as well as the processes controlling their composition.

In this study, we performed experiments to investigate the supercritical fluid geochemistry associated with conductive heating of subcritical reservoir fluids by a magmatic body in the rift and subduction-related geothermal systems. To explore the chemical reactions occurring upon supercritical fluid formation, we performed reaction-path modeling. The current approach is the simplicity of the complex nature of most natural systems; however, it may be used to gain additional insight into the key parameters influencing the supercritical fluid composition and related alteration. Both experiment and modeling results were subsequently compared to previously reported data on natural supercritical fluid composition.
2. Methods

2.1. Experimental set-up

Supercritical fluid geochemistry was studied using flow-through experiments. The experiments were conducted by heating geothermal solutions to 400-420°C at a set minimum pressure of 34-69 bar to reach supercritical conditions. Consequently, the fluid phases changed from liquid to vapor to supercritical fluid with specific enthalpy increase to \(h > 3000 \text{ kJ kg}^{-1} \) (Fig. 2). These temperature, pressure, and enthalpy (\(P-T-h \)) conditions correspond to heat and mass transfer regimes upon conductive heating and boiling of subcritical geothermal fluids to form supercritical fluids predicted previously to occur within the roots of volcanic geothermal systems (Hayba and Ingebritsen, 1997; Scott et al., 2015, 2016, 2017).

Four experiments were carried out to test the effects of the subcritical geothermal fluid source on the formed supercritical fluid composition. The conditions of experiment #1 (low NaCl) were related to the formation of supercritical fluids formed by the heating of low-chloride, low-volatile, and mostly unreacted water of meteoric origin. Such conditions are typical for young geothermal systems at rift settings. Experiment #2 (low NaCl+reacted) was similar in nature but represented a reacted geothermal fluid that is in fluid-mineral equilibrium with the basaltic host rock. The conditions of experiments #3 (NaCl+HCl) and #4 (NaCl+CO₂) were related to the formation of supercritical fluids from Cl-rich fluids typical for geothermal systems associated with subduction zones with elevated volatile gas input, either HCl or CO₂.

A summary of the experimental conditions and the experimental solution composition is given in Table 1. In all cases, the inlet solutions were taken from natural geothermal waters and subsequently spiked to provide the representative chemical composition. The experiments were carried out using a high-temperature, flow-through reactor (Fig. 3). All wetted parts of the
flow-through experimental apparatus were made of inert material, including PEEK, titanium, and Inconel. Inlet solutions were pumped into a flow-through reactor (Inconel) at a flow rate of <0.50 g min\(^{-1}\) using an HPLC pump (Chromotech®). The pressure was controlled at the end of the line of each reactor outlet using a back-pressure regulator (BPR, Biotech). The reactor contained a stainless steel (316) threaded rod to capture deposits precipitating from the fluids. Samples of the outlet solutions of the reactor were collected at the low-pressure end of the back-pressure regulator, and samples of the inlet solutions were collected directly from the inlet solution bottle.

2.2. Sampling and analysis

For fluid chemical analysis, vapor samples were cooled and condensed in-line using a cooling jacket followed by collection into a polypropylene syringe at the low-pressure end of the back-pressure regulator. Samples for determining major elements (SiO\(_2\), B, Na, K, Ca, Mg, Al, Fe, Cl, and SO\(_4\)) were filtered (0.2 μm cellulose acetate) into PP bottles, acidified (1% HNO\(_3\), Merck Suprapur®), and analyzed by ICP-OES (Spectro Ciros Vision). Samples for pH were analyzed immediately after collection using a pH electrode calibrated against commercial buffer solutions. The samples for CO\(_2\) determination were collected into degassed 0.01 M NaOH to prevent degassing before analyses. Dissolved inorganic carbon (CO\(_2\)) and H\(_2\)S were analyzed using a modified alkalinity titration (Stefánsson et al., 2007) and Hg precipitation titration with dithizone as an indicator (Arnórsson et al., 2006), respectively. The analytical precision of major element analyses was based on repeated analysis of a standard solution, and it was found to be < 3% for all elements except for Fe where it was ~15% at a 95% confidence level. The analytical precision for pH was ±0.05.

At the end of each experiment, the reactor was opened, and precipitates on the rod from inside of the reactor were collected. The sampling rod was imbedded in epoxy, cut
perpendicular to the flow direction in the reactor, and polished. The lose solid samples from the rod were mounted on a sample holder to study the morphology of the deposits. The secondary mineral phases and the morphology of the solid products from the two reactors were subsequently determined using a HITACHI TM-3000 scanning electron microscope (SEM) with an accelerating voltage of 15 keV.

2.3 Geochemical model

Based on the heat and mass transfer regimes upon boiling by conductive heat addition of subcritical geothermal waters to form supercritical fluids, schematic pressure, temperature, and enthalpy (P-T-h) paths were assessed and used as input conditions for the geochemical modeling (Fig. 2). The associated fluid chemical composition and secondary mineral formation were simulated assuming conservation of mass (closed-system behavior). The elements and compounds included in the calculations were SiO$_2$, B, Na, K, Ca, Mg, Al, Fe, Cl, SO$_4$, H$_2$S, and CO$_2$, along with appropriate aqueous and vapor species and selected minerals. The secondary minerals considered were those typically associated with high-temperature geothermal systems and included quartz, chlorite, epidote, wollastonite, albite, microcline, wairakite, calcite, actinolite, pyrite, and salts (e.g., halite, sylvite). The calculations were carried out using PHREEQC (Parkhurst and Appelo, 2013) and WATCH (Bjarnason, 2010) programs and the llnl.dat database was updated for mineral solubility constants (Holland and Powell, 1998; Holland and Powell, 2011; Stefánsson et al., 2011) and H$_2$S and CO$_2$ gas solubility constants (Fernández-Prini et al., 2003). Moreover, the solubility of common salts and oxides in supercritical fluids were calculated using literature data (Fournier and Potter, 1982; Leusbrock et al., 2009, 2010a, 2010b). The starting solution composition used in the geochemical calculations was the same as the inlet solutions used in the experiments (Table 1).
3. Results

3.1. Fluid chemical composition

The chemical compositions of the fluid samples collected from the outlet side of the experiments are reported in Table 2 and shown in Figure 4. The concentrations of Mg and Fe were affected by low detection limits or possible contamination by the sampling rod placed inside the reactor and, therefore, were not considered further in this study.

In experiment #1 (low NaCl), the outlet condensed solution had a mildly acidic pH value of 3.71-5.00 (at room temperature) and low concentrations of most elements relative to the inlet solution with SiO$_2$ of 0.40-2.68 ppm, Na of 0.25-5.89 ppm, Ca of 0.025-0.089 ppm, K of ~0.4 ppm, and Cl of 1.00-5.94 ppm. Concentrations of CO$_2$ of 23.4-201 ppm and B of 0.185-0.388 ppm in the outlet solution were similar to the inlet solution concentrations.

In experiment 2 (low NaCl+reacted), the outlet solution was similar in composition compared to the experiment #1 with pH of 3.24-4.17 (at room temperature) and concentrations of SiO$_2$ of 1.22-4.57 ppm, Na of 0.353-1.60 ppm, K of <0.10-0.256 ppm, Ca of 0.043-0.171 ppm, and Cl of 1.41-2.85 ppm. Concentrations of volatile elements in the outlet solutions were similar compared to the inlet solution with B of 1.30-1.47 ppm, CO$_2$ of 35.4-135 ppm, and H$_2$S of 10.7-40.0 ppm.

In experiment #3 (NaCl+HCl), the condensed outlet solution had a pH value of 0.80-1.69 (at room temperature)- much lower than other experimental solutions. As for the previous experiments, the concentrations of many mineral-forming elements in the outlet solutions were low compared to the inlet solution composition with SiO$_2$ of 1.70-2.68 ppm, Na of 0.30-15.7 ppm, K of 0.126-0.660 ppm, and Ca of 0.200-0.971 ppm. Concentrations of volatile elements like B, CO$_2$, and H$_2$S in the outlet solutions were similar to the inlet solution with concentrations of 1.27-1.62 ppm, 5.84-61.3 ppm, and 2.66-13.2 ppm, respectively. In contrast
to experiments #1 and #2, the concentration of Cl in the outlet solution was initially much lower (87.9-347 ppm) but increased at the end of the experiment to 706-1356 ppm and reached the concentration in the inlet solution.

In experiment #4 (NaCl+CO₂), the outlet condensed supercritical fluid had a mildly acidic pH value of 4.55-5.06 (at room temperature), low concentrations of SiO₂ of 0.582-0.748 ppm, Na of 0.186-33.3 ppm, K of 0.055-0.128 ppm, Ca of 0.009-0.035 ppm, and Cl of 0.446-0.7 ppm. As for the previous experiments, concentrations of B, CO₂, and H₂S were similar in the outlet solutions compared to the inlet solution with concentrations of 2.62-3.35 ppm, 89.5-419 ppm, and 19.5-40.1 ppm, respectively.

In summary, the concentrations of most mineral-forming elements like SiO₂, Na, K, Ca, and Al were observed to be low in the outlet supercritical fluids compared to the inlet subcritical fluids. The concentrations of volatile elements like B, CO₂, and H₂S in the outlet supercritical fluids were observed to be comparable to those concentrations of the respective inlet subcritical fluids. Chlorine displayed low concentrations in the supercritical fluids except when the inlet solutions contained elevated HCl concentrations.

3.2. Mineralogy and chemical composition of the solids

SEM microphotographs of the mineral deposits formed in experiments #1, # 2, and #4 are shown in Figure 5. In experiment #1 (low NaCl), the mineral deposits consisted mainly of unidentified layers of (Ca, Na, K)-Al-silicates and quartz with occasional appearances of K-feldspars and wollastonite. Close to the inlet of the reactor, the deposits on the rod were dense but became porous with increasing distance. In experiment #2 (low NaCl+reacted), the mineral deposits on the rod were similar as for experiment #1 with (Ca, Na, K)-Al-silicates and quartz dominating, the latter being replaced by amorphous silica at the outlet of the reactor. Occasional K-feldspar and wollastonite were also found in the deposits. In experiment #4
(NaCl+CO₂), solid products were distributed similarly to experiments #1 and #2, with most of the mineral deposits on the rod occurring in dense layers of 1-1.5 mm in thickness at the inlet of the reactor and becoming less abundant and porous at the outlet. The mineral deposits mainly consisted of interconnected halite cubes with amorphous silica, quartz, K-feldspar, and Ca-rich silicates presumably wollastonite. For experiment #3 (NaCl+HCl), a limited mineral deposition was observed except occasional silica.

In summary, similar mineral deposits occurred in all NaCl- experiments with cation (Na-Ca-K)-rich silicates, quartz being the dominant alteration products accompanied by halite in the case of elevated NaCl fluid concentrations. Fluids containing high concentrations of acids (HCl) resulted in insignificant mineral deposition upon the boiling of subcritical geothermal fluids to form supercritical fluids.

3.3. Geochemical modeling

The results of the geochemical modeling associated with isobaric boiling of subcritical geothermal waters by conductive heating to form supercritical fluids are shown in Figure 6. The relevant modeling results are presented for all four experimental scenarios, i.e., low NaCl fluid (experiment #1), low NaCl and reacted fluid (experiment #2), NaCl fluids with an elevated HCl input (experiment #3) and NaCl fluids with a high CO₂ input (experiment #4). In all cases, a distinct geochemical trend was observed. The concentrations of mineral-forming elements including Si, Na, K, Ca, Mg, Al, and Cl were reduced for all NaCl fluids upon boiling by the deposition of secondary mineral phases dominated by silica (quartz and amorphous silica), aluminum silicates (clays, chlorite, and K-feldspars), and salts (sylvite and halite). In contrast, for fluids containing elevated HCl with Cl concentrations greatly exceeding those of Na and K, a limited mineral deposition was predicted except for silica (quartz and amorphous silica) and simple Na-silicates. The total concentration of volatile components such as B, CO₂,
and H₂S remained constant due to the partitioning of volatile components into the vapor phase and undersaturation of carbonate and sulfide minerals in the liquid phase. It follows that the chemical composition of supercritical fluids formed upon conductive heating of a subcritical geothermal fluid has a similar volatile composition as the source fluid but low concentrations of reactive and mineral-forming elements. The input of acid magma gases like HCl may, however, drastically change the elemental geochemistry enhancing elemental mobility and reducing mineral deposition.

4. Discussion

4.1. Comparison between experimental and modeled supercritical fluid composition

Previous studies have demonstrated that major elemental concentrations of geothermal fluids with temperatures between ~50 and 350°C are controlled by an equilibrium between the geothermal fluids and secondary minerals except for mobile elements like Cl (e.g., Giggenbach, 1981, 1988; Arnórsson et al., 1983; Pang and Reed, 1998; Stefánsson and Arnórsson, 2000). The typical secondary minerals in the geothermal systems include, for instance, calcite, quartz, epidote, various clays, zeolites, chlorite, feldspars, and pyrite (e.g., Browne, 1978). Thus, the geothermal fluid composition is primarily controlled by temperature-dependent mineral solubility.

Upon supercritical fluid formation by boiling of subcritical fluids, the elemental mobility was experimentally observed and predicted by geochemical modeling to be significantly reduced for mineral-forming elements like SiO₂, Na, K, Ca, Mg and Al, but unchanged for volatile elements such as B, CO₂, and H₂S (Figs. 4 and 7). This suggests that mineral-fluid reactions also control the concentration of many major elements in supercritical fluids, as concluded previously for geothermal fluids at subcritical conditions. However, such
predictions are limited to our knowledge of mineral solubilities in low-density ($\rho < 0.3$ g cm$^{-3}$) and high-temperature (>400°C) fluids as available data are restricted to solubility of quartz, common salts such as NaCl, KCl, and CaCl$_2$ and some volcanic gases at these conditions (e.g., Fournier and Potter, 1982; Symonds et al., 1992; Leusbrock et al., 2009, 2010a, 2010b.). In Figure 7, the experimental results are compared with the calculated solubility of quartz (SiO$_2$) and salts (NaCl, KCl, CaCl$_2$) in such low-density supercritical fluid. The experimental results compare well with the predicted mineral solubility in most cases, suggesting that concentrations of elements like SiO$_2$, Na, K, Ca, and Cl in supercritical geothermal fluids may indeed be controlled by mineral solubility of, for example, silicates, aluminum silicates, oxides, and salts. The mineral solubilities at these supercritical temperatures and low pressure have been observed to be mainly controlled by water density and the hydration of the gaseous species (e.g., Leusbrock et al., 2009, 2010a, 2010b; Hurtig and Williams-Jones, 2014a, 2014b). It follows that the chemical composition of supercritical geothermal fluids may be constrained knowing the important mineral solubilities in low-density and high-temperature hydrothermal fluids, provided such data are available for minerals of interest.

Our experiments were carried out with geothermal fluids that were previously in mineral-fluid equilibrium but were not in contact with any rock during the experiments. A recent experimental study demonstrates that supercritical fluid composition is not affected to a great extent by surrounding rocks (Passarella et al., 2017). Instead, elemental concentrations in supercritical fluids are considered to be controlled by mineral solubilities that are controlled mainly by fluid density and gas species hydration.

4.2. Supercritical geothermal fluids in active geothermal systems

Supercritical temperatures have been reported from geothermal systems at rift zones, for example, at Krafla (Iceland; Steingrímsson et al., 1990; Friðleifsson et al., 2010; Mortensen et
al., 2010) and Menengai (Kenya; (Sekento 2012; Kipyego et al. 2013; Mbia 2015) (Table 3).

At Krafla the IDDP-1 well discharge had temperatures of ~440°C and displayed low concentrations of SiO$_2$, Na, K, Ca, Mg, and Al, and similar concentrations of volatile elements like B, CO$_2$ and H$_2$S as the subcritical geothermal reservoir fluids in the system (Ármannsson et al., 2014; Heřmanská et al., 2019b). Moreover, the chemical composition of the supercritical IDDP-1 fluid was similar to the composition predicted here by the geochemical modeling and laboratory experiment. At Menengai, a deep high-temperature supercritical reservoir has been identified with maximum temperatures of ~390°C and with a ~210°C liquid dominant reservoir above and at shallow depth (Montegrossi et al., 2015; O’Sullivan et al., 2015). Many of the well fluid discharges at Menengai are dominated by the shallow liquid reservoir fluids and may, therefore, not be characteristic of the deep supercritical reservoir. Instead, for the supercritical or vapor dominated fluid discharges, data are only available on the major gas composition (Malimo, 2013). These data show elevated CO$_2$ and H$_2$S concentrations compared to the Krafla supercritical fluids suggesting a possibly higher magmatic gas input. However, these elevated concentrations in the supercritical fluids are similar to those measured in the shallow subcritical liquid dominated fluids at Menengai. These findings suggest that the supercritical fluids at both Krafla and Menengai were formed by conductive heating from a magmatic body and boiling of the subcritical reservoir fluids with possible input of magmatic gases such as CO$_2$, H$_2$S, and Cl. At Krafla, these findings are further supported by the similarity of the isotopic composition of the IDDP-1 and subcritical reservoir fluids with δD of −85.8 to -84.9‰, δ18O of -10.5 to -9.8‰, suggesting meteoric water as a source of the supercritical fluids (Ármannsson et al., 2014; Pope et al., 2015). In contrast, values of δ34S-H$_2$S of +0.5 to +1.1‰, δ13C-CO$_2$ being -5.3 to -1.4‰ and δ37Cl 0.0 to +0.4‰ correspond to values of a magmatic source, however, a magmatic contribution is considered to be low (Stefánsson and Barnes, 2016; Arnórsson and Barnes 1983; Sano et al., 1985; Barry et al., 2014;
Ármansson et al., 1989; Stefánsson et al., 2015, 2017; Marini et al., 2011). Unfortunately, no isotope data are available for the supercritical fluids at Menengai to further constrain the origin of fluid and volatile elements.

Supercritical temperatures have also been reported for geothermal systems at subduction settings, for example, at The Geysers (USA), Los Humeros (Mexico), Larderello (Italy), and Kakkonda (Japan) (Table 3) (Reinsch et al., 2017). At The Geysers field, supercritical temperatures have been encountered in several boreholes, with maximum temperatures of ~400°C (e.g., Elders, 2015). Based on the δD and δ18O isotope ratios, the water originates from a local meteoric source in addition to connate and volcanic water. The supercritical fluids display low concentrations of mineral-forming elements but higher concentrations of volatile elements like CO₂ and H₂S (Table 3). These elevated volatile concentrations have been considered to originate from connate and metamorphic fluids, high-temperature breakdown of metasediments, and boiling of condensed reservoir liquid (Truesdell et al., 1989; Lowenstern and Janik, 2005). At Los Humeros, several boreholes have also encountered supercritical fluids at depth, with maximum temperatures of ~400°C. However, most of the boreholes have been abandoned because of the highly-corrosive nature of the fluids (Diez et al., 2015). Based on water isotopes (δD and δ18O), the source fluids are a mixture of local meteoric and andesitic water. As for The Geysers field, the supercritical fluid discharges at Los Humeros have low mineral-forming element concentrations where the concentrations of gases like CO₂ and H₂S are high. The concentrations of B in the fluids are also very high or up to ~1000 ppm (Bernard et al., 2011). The isotope values of the volatile elements suggest a magmatic source with δ11B of ~0.8‰ and δ13C-CO₂ of ~3.5‰ (Bernard, 2008). The geothermal reservoir at Larderello is vapor dominated with supercritical temperatures of up to ~430°C (Minissale, 1991; Ruggieri and Gianelli, 1995). The water is believed to be of meteoric origin with possible input of magmatic water (e.g., D’Amore and Bolnesi, 1994; Panichi et al., 1995; Scandiffio et al.,
Carbon dioxide is the dominant gas in the fluid of crustal and/or mantle origin based on the δ^{13}C-CO$_2$ value of -6.3 to -2.8‰ (Gherardi et al., 2005). Boron concentrations are high and are considered to originate from evaporitic and carbonitic sediments based on their δ^{11}B ratio with values of +3.4 to +16.1‰ (Pennisi et al., 2001). Based on these findings, it is evident that supercritical fluids for geothermal systems in subduction settings may, in many cases, originate from conductive heating of the geothermal groundwater by the magmatic heat source, often with input from connate and magmatic water. The concentrations of mineral-forming elements in these fluids are low (on the lower ppm and ppb scale) as observed for supercritical fluids associated with rift systems and predicted here by geochemical modeling and experimentally. Differences in elemental concentrations between the localities might also be ought to differences in fluid pressures of the individual geothermal system. Mineral-forming element solubilities such as for Si, Na, and Cl may be a function of pressure, and elemental concentrations in supercritical fluids may become higher with increasing fluid density (Fig. 7; Fournier and Potter, 1982; Leusbrock et al., 2009, 2010a, 2010b). Thus, the elemental concentrations of supercritical fluids may not only be dependent on the fluid composition of the subcritical fluid but also may depend on the pressure conditions and depth of supercritical fluid formation in the geothermal system.

On the other hand, concentrations of volatile elements like CO$_2$, H$_2$S, and B are variable between systems and often high, originating from the crust upon fluid-rock interaction and magmatic gases. Variable and elevated Cl concentrations have also been observed and associated with supercritical geothermal fluids, for example, at Krafla and The Geysers. At Krafla, high Cl concentrations can be explained by the contribution of a magmatic source where fluid ascent and depressurization to the surface may lead to the partitioning of the volatile HCl in the vapor phase into the liquid phase, possibly resulting in very high Cl concentrations (e.g., Heřmanská et al., 2019b). Elevated Cl concentrations in supercritical
fluids from The Geysers geothermal field are considered to be of magmatic origin and/or the result of boiling of NaCl-rich connate or metamorphic water (Truesdell et al., 1989, Moore and Gunderson 1995, Moore et al., 2001). Supercritical fluids have also been observed at the Kakkonda geothermal systems. The geothermal system consists of two parts - a shallow liquid dominated reservoir with temperatures of 230-260°C and a deep zone in the vicinity of granite intrusions with less permeable rocks and temperatures of up to ~500°C. The supercritical fluids at the highest temperatures are hypersaline and metal-rich with ~55% NaCl. However, these supercritical fluids are considered to have been trapped in the Kakkonda granite during crystallization with a small addition of meteoric water that permeated into the conductive heat zone around the granite intrusion (Kasai et al., 1998a, 1998b, 2000).

In conclusion, despite different chemical compositions of supercritical fluid discharges in geothermal settings like Krafla, Menengai, The Geysers, Los Humeros, and Larderello, all of them most likely originate from conductive heating of the surrounding subcritical geothermal groundwater with elevated volatile concentrations derived from the addition of connate, magmatic or metamorphic gases.

5. Conclusions

We have carried out flow-through experiments and geochemical modeling to describe the chemical and mineralogical changes associated with supercritical fluid formation upon conductive heating of subcritical geothermal fluids with varying chemical composition. Based on our experimental modeling results, we conclude the following:

- Supercritical fluids formed by conductive heating and boiling of ~200-300°C subcritical geothermal water are predicted to have low concentrations of mineral-forming elements (Si, Na, K, Ca, Mg, Al) with their concentrations controlled by the solubility of salts, oxides, and aluminum silicates in high-temperature (>400°C) and low-density (ρ <0.3 g cm⁻³)
water. The concentration of the volatile elements (C, S, B) will be higher than in the case of mineral-forming elements and similar to the concentration of volatile elements in subcritical geothermal fluids.

- Upon supercritical fluid formation by conductive heating and boiling of subcritical ~200-300°C geothermal water, the secondary mineral deposition will occur. These deposits are dominated by quartz, salts (e.g., halite), wollastonite, and aluminum silicates such as feldspars.

A comparison of the results with the observed chemical composition of natural supercritical fluid discharges indicates that conductive heating and boiling of subcritical geothermal groundwaters may indeed be the mechanism responsible for the formation of naturally observed supercritical fluids. Metal and salt-rich supercritical fluids observed in some of the geothermal systems (e.g., Kakkonda, Reykjanes) are considered to be of magmatic origin, formed by exsolution of fluids upon crystallization magmatic intrusion and/or may derive from the separation of vapor and steam.

Acknowledgments

This research was funded by the Swiss National Science Foundation [CRSII2_141843/1, Sinergia COTHERM] and Landsvirkjun Energy Research Fund. We would like to thank Ríkey Kjartansdóttir, Ísak Þórhallsson, and Gylfi Sigurðsson for their help during this work.

References

Kasai, K., Sakagawa, Y., Miyazaki, S., Akaku, K., Uchida, T., 1998b. Supersaline and metal-rich brine obtained from Quaternary Kakkonda granite by Nedo WD-1a in the Kakkonda geothermal field, Japan. Min. Deposit. 33, 298-301.

Figure and table captions

Figure 1: Main characteristics of a volcanic geothermal system. (A) Conceptual model of a volcanic geothermal system showing fluid flow paths (black arrows) and the zone of heat convection where supercritical conditions may appear (red area) between the heat source (magmatic intrusion) and the circulating geothermal fluid. Depressurization boiling occurs near the surface (after Arnórsson et al., 2007; Scott et al., 2016). Conventional production wells do not commonly reach the supercritical zone. (B) The boiling curve of water. Dashed lines indicate temperature-depth profiles above magmatic intrusions at selected times (after Hayba and Ingebritsen, 1997). The red shaded area shows fluids having temperature exceeding the critical temperature of water ($T_c > 374^\circ$C). Wells with reported temperatures above the critical temperature of the water are also shown (see Reinsch et al., 2017).

Figure 2: The subcritical to supercritical conditions of the experiments are shown (A) in connection to the boiling curve water and (B) in the phase diagram of water. The pressure, enthalpy, and temperature relations are also displayed.

Figure 3: Schematic experimental set-up used for the experiments carried out in this study.

Figure 4: Measured elemental concentration of the outlet solutions of the four experiments. The average compositions of the respective inlet solutions are included for comparison.

Figure 5: Selected SEM microphotographs of the solid products precipitated for experiment #1 (low NaCl), experiment #2 (low NaCl+reacted) and experiment #4 (NaCl+CO$_2$). Also shown are representative EDS analysis of the major phases identified in experiments #1, #2, and #4. No precipitates were found in experiment #3 (NaCl+HCl).
Figure 6: Moles of secondary minerals and the elemental loss calculated for the conditions of the experiments using the PHREEQC software (Parkhurst and Appelo, 2013).

Figure 7: A) Comparison of modeling and experimental results for elemental concentrations at subcritical and supercritical conditions. Predicted solubilities of silica, sodium, and chlorine in supercritical fluids were calculated based on quartz and salt solubility in low-density ($\rho < 0.3$ g cm$^{-3}$) and high-temperature ($T > 374^\circ$C) water using data reported by Fournier and Potter (1982) and Leusbrock et al. (2009, 2010a, 2010b). B) Naturally observed data of reservoir fluid compositions from wells that reported supercritical conditions in rift and subduction zones (Malimo, 2013; Montegrossi et al. 2015; Truesdell 1991; Truesdell et al., 1989; Diez et al., 2015; Allegrini and Benvenuti, 1970; Nicholson, 1993; Haizlip and Truesdell, 1988; Kasai et al., 1998a; Cruz and Tovar 2008; Heřmanská et al., 2019b).
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Table 1
Experimental conditions and chemical composition of the inlet solutions used in the experiments and for the geochemical model calculations. Concentrations are in ppm.

<table>
<thead>
<tr>
<th></th>
<th>Exp. #1 low NaCl</th>
<th>Exp. #2 low NaCl + reacted</th>
<th>Exp. #3 NaCl + HCl</th>
<th>Exp. #4 NaCl + CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T °C</td>
<td>420</td>
<td>400</td>
<td>420</td>
<td>420</td>
</tr>
<tr>
<td>P bar</td>
<td>34</td>
<td>69</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>h kJ kg⁻¹</td>
<td>3269</td>
<td>3159</td>
<td>3159</td>
<td>3211</td>
</tr>
<tr>
<td>Inlet solution chemical composition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH/ °C</td>
<td>8.90/19</td>
<td>9.29/22</td>
<td>1.55/22</td>
<td>8.89/21</td>
</tr>
<tr>
<td>SiO₂</td>
<td>102</td>
<td>699</td>
<td>645</td>
<td>494</td>
</tr>
<tr>
<td>B</td>
<td>0.275</td>
<td>1.49</td>
<td>1.42</td>
<td>3.34</td>
</tr>
<tr>
<td>Na</td>
<td>81.8</td>
<td>144</td>
<td>138</td>
<td>858</td>
</tr>
<tr>
<td>K</td>
<td>1.86</td>
<td>24.0</td>
<td>22.5</td>
<td>20.4</td>
</tr>
<tr>
<td>Ca</td>
<td>3.89</td>
<td>0.346</td>
<td>0.537</td>
<td>1.04</td>
</tr>
<tr>
<td>Mg</td>
<td>0.009</td>
<td>0.012</td>
<td>0.076</td>
<td>0.009</td>
</tr>
<tr>
<td>Fe</td>
<td>0.005</td>
<td>0.025</td>
<td>0.090</td>
<td>0.017</td>
</tr>
<tr>
<td>Al</td>
<td>0.029</td>
<td>1.94</td>
<td>1.86</td>
<td>2.96</td>
</tr>
<tr>
<td>CO₂</td>
<td>39.1</td>
<td>53.5</td>
<td>23.3</td>
<td>685</td>
</tr>
<tr>
<td>Cl</td>
<td>47</td>
<td>24.6</td>
<td>1055</td>
<td>604</td>
</tr>
<tr>
<td>SO₄</td>
<td>53.8</td>
<td>79.6</td>
<td>36.6</td>
<td>116</td>
</tr>
<tr>
<td>H₂S</td>
<td>nd</td>
<td>49.1</td>
<td>19.8</td>
<td>54.3</td>
</tr>
<tr>
<td>#</td>
<td>T</td>
<td>C</td>
<td>pH/°C</td>
<td>SO₂</td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>---</td>
<td>-------</td>
<td>-----</td>
</tr>
<tr>
<td>1</td>
<td>#1</td>
<td>420</td>
<td>34</td>
<td>0.50</td>
</tr>
<tr>
<td>2</td>
<td>#2</td>
<td>420</td>
<td>34</td>
<td>0.05</td>
</tr>
<tr>
<td>3</td>
<td>#3</td>
<td>420</td>
<td>34</td>
<td>0.52</td>
</tr>
<tr>
<td>4</td>
<td>#4</td>
<td>420</td>
<td>34</td>
<td>0.51</td>
</tr>
<tr>
<td>5</td>
<td>#5</td>
<td>420</td>
<td>34</td>
<td>0.50</td>
</tr>
<tr>
<td>6</td>
<td>#6</td>
<td>420</td>
<td>34</td>
<td>0.51</td>
</tr>
<tr>
<td>7</td>
<td>#7</td>
<td>420</td>
<td>34</td>
<td>0.52</td>
</tr>
<tr>
<td>8</td>
<td>#8</td>
<td>420</td>
<td>34</td>
<td>0.51</td>
</tr>
<tr>
<td>9</td>
<td>#9</td>
<td>420</td>
<td>34</td>
<td>0.52</td>
</tr>
<tr>
<td>10</td>
<td>#10</td>
<td>420</td>
<td>34</td>
<td>0.51</td>
</tr>
<tr>
<td>11</td>
<td>#11</td>
<td>420</td>
<td>34</td>
<td>0.52</td>
</tr>
<tr>
<td>12</td>
<td>#12</td>
<td>420</td>
<td>34</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Note: The table contains chemical composition data for outlet solutions, including concentrations of various elements and other parameters. The values represent concentrations in ppm and other units as indicated.
Table 3
Comparison of predicted supercritical fluid composition from geochemical modeling and laboratory experiments and observed natural supercritical fluid composition.

<table>
<thead>
<tr>
<th></th>
<th>low-NaCl fluids</th>
<th></th>
<th>NaCl-fluids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Experiments(^a)</td>
<td>Modeling(^a)</td>
<td>Kraftla(^b)</td>
</tr>
<tr>
<td>T (^\circ C)</td>
<td></td>
<td>Iceland (^\circ C)</td>
<td>Kenya (^\circ C)</td>
</tr>
<tr>
<td>SiO(_2) ppm</td>
<td>1.0-2.9</td>
<td>33-148</td>
<td>6.0</td>
</tr>
<tr>
<td>B ppm</td>
<td>0.3-1.4</td>
<td>0.24-1.5</td>
<td>1.41</td>
</tr>
<tr>
<td>Na ppm</td>
<td>1.0-1.6</td>
<td>45-130</td>
<td>0.51</td>
</tr>
<tr>
<td>K ppm</td>
<td>0.2-0.4</td>
<td>1.6-21</td>
<td>0.12</td>
</tr>
<tr>
<td>Ca ppm</td>
<td>0.04-0.1</td>
<td>0.00001-3.40</td>
<td>0.16</td>
</tr>
<tr>
<td>Mg ppm</td>
<td>0.02-0.03</td>
<td><0.00001</td>
<td>0.024</td>
</tr>
<tr>
<td>Fe ppm</td>
<td>0.1</td>
<td>0.004-0.025</td>
<td>5.25</td>
</tr>
<tr>
<td>Al ppm</td>
<td>0.05-0.08</td>
<td>0.00002-0.016</td>
<td>0.054</td>
</tr>
<tr>
<td>Cl ppm</td>
<td>2.0-2.7</td>
<td>0.5-0.7</td>
<td>105</td>
</tr>
<tr>
<td>CO(_2) ppm</td>
<td>57-61</td>
<td>38-49</td>
<td>1637</td>
</tr>
<tr>
<td>SO(_4) ppm</td>
<td>0.8-6.5</td>
<td>0.0001-79</td>
<td>32.7</td>
</tr>
<tr>
<td>H(_2)S ppm</td>
<td>10-40</td>
<td>54</td>
<td>630</td>
</tr>
</tbody>
</table>

\(^a\) This study
\(^b\) IDD-1 fluid composition based on Hefmanská et al. (2019a) for IDD-1
\(^c\) Based on Malimo (2013) and Montegrossi (2015)
\(^d\) Based on data reported by Kasai et al. (1998a). The data have been corrected for mixing with drilling fluid as proposed by Kasai et al. (1998a) taken the mixing ratio of the deep fluid to the non-thermal drilling water to be 69/31.
\(^e\) Based on Truesdell et al (1989) for vapor only well discharges except for CO\(_2\) and H\(_2\)S that is based on the upper and lower quarter of gas data reported by Lowenstern and Janik (2005)
\(^f\) Total discharge for H-43 as reported by Cruz and Tovar (2008) and Diez et al. (2015)
\(^g\) Based on data reported by Ruggieri and Gianelli (1995), Truesdell and Nerhing (1978) and Truesdell et al. (1989)