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Abstract 

Very little is known on the ecosystem impacts of emissions from 

geothermal power plants. The emissions, comprising mainly of non-

condensable gases (NCGs) i.e. carbon dioxide, hydrogen sulphide, 

methane and trace elements such as arsenic, boron, antimony and 

mercury, have the potential to deposit and accumulate in ecosystems. At 

elevated levels, some NCGs can cause ecosystem stress, especially H2S 

and the trace elements. The aim of this thesis is to assess the effects of 

these elements on terrestrial ecosystems around two geothermal areas in 

contrasting biomes i.e. Kenya and Iceland.  

Dominant plant species around each geothermal study area, 

Tarchonanthus camphoratus shrub in Kenya and Racomitrium 

lanuginosum moss in Iceland, were used as bio-indicators and 

concentrations of sulphur, arsenic, boron, antimony and mercury were 

mapped in their tissues and soils at increasing distances from the power 

plants along the prevailing wind direction in field surveys. Patterns of 

plant growth and health along the same distances and wind direction 

gradients were also studied to assess any potential effects related to the 

power plants. Controlled experiments were thereafter carried out on the 

same plant species to assess in detail the effects of the most abundant 

phytotoxic NCG, i.e. H2S gas, on plant growth and health.  

Results of the field surveys and experiments indicated that the main 

geothermally emitted component, H2S gas, deposits and accumulates in 

plants and soils. The measured trace element concentrations in plants and 

soils (from the field surveys): arsenic, boron, antimony and mercury, did 

not show strong patterns attributable to the geothermal power plant 

emissions. Further, results of the surveys in relation to geothermal power 

plant emissions showed weak indications of effects on Tarchonanthus 

camphoratus shrub growth and health around the Olkaria geothermal 

power plants in Kenya, while in Iceland, the growth of Racomitrium 

lanuginosum moss was reduced around the Hengill geothermal power 

plants. Additionally, the experiments showed that, 30 µg/L aqueous H2S 



(10.96 ppm in air) may be a tolerable limit for plants around geothermal 

power plants in Kenya and Iceland. These findings serve as important 

baseline data toward environmental monitoring and management around 

both geothermal power plant areas in Kenya and Iceland; this information 

is also of utmost importance in advising the public and decision makers in 

Kenya and Iceland on the ecosystem (terrestrial) impacts of geothermal 

power plant emissions.  
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Útdráttur 

Áhrif efnalosunar frá jarðvarmavirkjunum á vistkerfi eru almennt fremur 

illa þekkt. Losunin samanstendur aðallega af óþéttanlegum lofttegundum, 

þ.e. koldíoxíði, brennisteinsvetni og metani, en einnig af snefilefnum eins 

og arseni, bór, antimon og kvikasilfri sem geta öll safnast fyrir í 

vistkerfum. Við hærri styrk geta þessi efni valdið álagi á vistkerfi, einkum 

brennisteinsvetni og snefilefnin. Markmið verkefnisins var að kanna áhrif 

þessara efna á landvistkerfi við jarðvarmavirkjanir við líffræðilega mjög 

ólíkar aðstæður, þ.e. í Kenýa og á Íslandi. 

Ríkjandi plöntutegundir umhverfis virkjanasvæðin, Tarchonanthus 

camphoratus runni í Kenýa og Racomitrium lanuginosum mosi á Íslandi, 

voru notaðar sem líffræðilegir vísar og styrkur brennisteins, arsens, bórs, 

antimons og kvikasifurs mældur í þeim og í jarðvegi í mismunandi 

fjarlægð frá virkjununum í stefnu ríkjandi vindátta. Vöxtur og heilbrigði 

plantna voru einnig könnuð í sömu fjarlægðum til þess að meta möguleg 

áhrif er tengjast jarðvarmavirkjunum. Einnig voru gerðar staðlaðar 

tilraunir þar sem áhrif brennisteinsvetnis á vöxt og heilbrigði tegundanna 

tveggja voru könnuð. 

Niðurstöður vettvangsrannsókna og tilrauna benda til þess að 

brennisteinsvetni, eitt meginefnið sem losað er frá jarðvarmavirkjununum, 

safnist fyrir í plöntum og jarðvegi. Styrkur snefilefnanna arsens, bórs, 

antímons og kvikasilfurs í plöntum og jarðvegi benti hins vegar ekki til 

þess að þau mætti rekja til losunar frá virkjununum. Við orkuverin í 

Olkaria í Kenýa komu fram fremur veik en neikvæð áhrif á vöxt og 

heilbrigði runnans Tarchonanthus camphoratus. Þessi áhrif voru hins 

vegar merkjanleg á mosann Racomitrium lanuginosum við íslensku 

orkuverin við Hengil. Tilraunir sýndu að bæði í Kenýa og á Íslandi virðist 

styrkur H2S sem nemur 30 µg/l í vatnslausn (10,96 ppm í lofti) vera efri 

þolmörk fyrir tegundirnar tvær. Þessar niðurstöður leggja mikilvægan 

grunn að umhverfisvöktun og við stjórn jarðvarmaorkuvera bæði í Kenýa 

og á Íslandi. Að auki eru þær mjög mikilvægar bæði fyrir almenning og 

við alla ákvarðanatöku er snerta áhrif losunar efna frá 

jarðvarmavirkjunum á vistkerfi í báðum löndunum. 
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1. Introduction 

Geothermal energy is among the energy sources that can replace fossil 

fuels and thereby help decrease greenhouse gas emissions (GHG) and the 

effects of climate change. This owes to its intrinsic stability and relatively 

low environmental impacts, considering its generally low CO2 emissions 

and ecological effects. For this reason, growth of the installed capacity of 

geothermal power plants has been steady over the past ten years in 

countries with potential for harnessing the resource. Globally, an average 

increase of about 200 – 350 MW/yr between the years 2000 – 2014 has 

been reported, presently totaling to 12.7 GW (Bertani 2003, 2005a, 

2005b, 2007, 2012 and 2016). With the successful implementation of 

these past projects, even further growth is projected, an additional 8 GW 

of project proposals is intended for transformation into real power plants 

by 2020 totaling 21 GW (Bertani, 2016). However, like the development 

of any other energy source, geothermal power plant projects are not 

entirely free of environmental impacts. Conventional geothermal power 

plants emit a range of gases into the atmosphere, several of which have 

been reported to deposit and accumulate into their nearby ecosystems. 

Some of the gases are potentially toxic to some organisms within 

ecosystems even at low concentrations and are a growing concern since 

the effects are not fully understood.  

Attempts have been made to study potential ecosystem impacts such as 

the discharge of spent geothermal fluids (Wetangula, 2004; Were, 2007) 

and gaseous emissions (Wetangula, 2011; Ólafsdóttir et al., 2014) arising 

from geothermal wells drilling and power plants construction and 

operation, particularly for mitigation as most geothermal resources and 

power plants are located in undisturbed habitats. However, the 

understanding relating geothermal power plant emissions to impacts on 

ecosystems is still limited and mainly based on a few studies in the 

Mediterranean Italy (Bargagli et al., 1997; Bussotti et al., 1997; Loppi et 

al., 1999, 1998; Bussotti et al., 2003; Chiarucci et al., 2008).  



 

2 

For the entire geothermal development process i.e. drilling of wells to 

power plant constructions, environmental impacts arising from operations 

of geothermal power plants are most significant, because they are likely 

to have long term air quality and ecosystem effects, as the lifetime of 

power plants is estimated on average at 30 years (Hondo, 2005). 

Therefore, when compared to the other geothermal development 

processes, impacts arising from geothermal power plants are more critical 

as they involve gaseous emissions into the atmosphere for as long as the 

power plant operates, however minimum as assumed. Drilled wells on the 

other hand do not assumedly have a similar magnitude of impacts; with 

respect to land degradation, their surrounding areas can in most cases be 

reclaimed through restoration of vegetation (e.g. by re-planting) that 

existed before and leaving only the area occupied by an individual well 

(smaller compared to area occupied by power plants). Moreover, the wells 

are in the long run connected to power plants for steam supply and power 

production, therefore there is less chance of emissions from wells than 

from power plants, except during well maintenance.  

This thesis addresses the impacts of geothermal power plant emissions on 

terrestrial ecosystems. Specifically, it focuses on the impacts within two 

contrasting climatic zones where these studies have not been conducted 

before, the semi-arid parts of Kenya (Figure 1.1) and subarctic Iceland 

(Figure 1.2). This study is thus first in provision of comprehensive and 

baseline knowledge on the impacts of geothermal plant emissions on 

terrestrial ecosystems, an important consideration in the development of 

sustainable geothermal power plants in Kenya and Iceland.  
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Figure 1.1. Olkaria II geothermal power plant in semi-arid Kenya. The 

visible plants are mainly the shrub Tarchonanthus camphoratus L. that 

dominates the vegetation in the area (Photo: T. Mutia, 2014). 

 

Figure 1.2. Hellisheidi geothermal power plant in subarctic Iceland. The 

area is dominated by the Racomitrium lanuginosum (Hedw.) Brid., moss 

plants (Photo: Reykjavik Energy, 2016). 
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To evaluate these impacts on terrestrial ecosystems in each area, plants 

and soils were used as ecosystem indicators in field surveys. Deposition 

and accumulation of geothermally emitted elements in ecosystems was 

assessed by establishing concentration patterns of the elements in plants 

(dominant within the area) and soils at varying distances from the power 

plants and in relation to the prevailing wind direction. In addition, the 

impacts were assessed by measuring selected plant characteristics related 

to growth and damage. To investigate causal relationships, experiments 

were performed to assess the effect of one of the major components of 

geothermal emissions i.e. hydrogen sulphide (H2S) gas, on the dominating 

plants in each area.   

1.1. Geothermal power plant emissions 

and ecosystem implications 

Despite having considerably lower GHG emissions in comparison to 

conventional fossil fuel plants (Axtmann, 1975), geothermal power plant 

emissions can still be significant.  

Geothermal fluids contain non-condensable gases (NCGs) at various 

amounts, that are exhausted into the atmosphere after power production. 

The reported exhaust amount of NCGs per weight of steam is mostly 

resource dependent and varies across conventional geothermal power 

plants, mainly because the gas fractions depend on the underground 

reservoir geochemistry (Axtmann, 1975). Generally, and depending on 

the resource, the NCGs range between 0.2% and over 25% weight of 

steam, in rare cases (Ozcan and Gokcen, 2009). Similarly, the NCGs 

composition (and amounts of specific gases) may differ between fields 

and power plants. In common cases, the gases comprise 78 – 98% w/w 

carbondioxide (CO2), 1 - 24% w/w hydrogen sulphide (H2S), 0.02 - 

0.65% w/w methane (CH4), 0.1 - 8% w/w hydrogen (H2), 0.3 - 16% w/w 

nitrogen (N2), 0.1 - 3% w/w argon (Ar), and traces (<0.001% w/w) of 

radon (Rn), boron (B), mercury (Hg), arsenic (As), antimony (Sb), and 

ammonia (NH4) in gaseous and dissolved form (Axtmann, 1975; Baldi, 

1988; Loppi et al., 1998; Gunerhan, 1999; Loppi, 2001; Bussotti et al., 

2003; Ozcan and Gokcen, 2009; Rodríguez, 2014). The emitted gases, 

depending on quantities and prevailing wind, will disperse, deposit and 

accumulate into ecosystems with possible consequences.  
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Until recently, not much attention had been paid to the consequences, 

especially to plant species. Yet the effects of H2S emissions from 

geothermal power plants are fairly well examined on human health for 

occupational health and safety reasons (Guidotti, 1996; WHO, 2000; 

Hansell and Oppenheimer, 2004; Finnbjornsdóttir et al., 2015). However, 

with increasing interest on geothermal energy development, the public, 

policy makers and scientists are concerned and motivated to question the 

effects of these gases, especially hydrogen sulphide and trace elements, 

on plants species and ecosystems in general due to their potential toxicity, 

even at low concentrations.  

Since the emitted amounts of hydrogen sulphide gas and trace elements 

exceed those in the ambient environment, they pose concern due to their 

toxicity, even at low concentrations, and their possibility to bio-

accumulate causing deleterious effects. The effects are described in the 

next sub sections.  

1.1.1. Hydrogen sulphide gas emissions and effects 
on plants  

Monitoring of H2S gas emissions from geothermal power plants is 

increasingly becoming important for many geothermal power project 

developers as a national and international requirement to mitigate against 

the likely gas effects on human health and wellbeing. In that case, several 

air quality guidelines such as those for WHO, (2000) have been prepared 

for occupational health and safety reasons. However, for ecosystems, H2S 

gas emission guidelines or limits have not yet been developed, probably 

because of the low awareness of potential impacts of H2S gas on 

ecosystems.  

The H2S gas once emitted into the atmosphere undergoes a series of 

reactions depending on the environmental conditions, and due to its 

instability it may in some cases oxidise to sulphur dioxide gas or sulphuric 

acid (in case of precipitation) and be deposited subsequently in 

ecosystems. Kellogg et al., (1972) explain the chemical reactions of H2S 

gas in air. These various forms of sulphur deposit and accumulate in 

plants and soils. Sulphur (S) concentration in upper soil layers and above 

ground plant parts which are the major receptors of atmospheric pollution, 

has been used to assess sulphur accumulation from emitted hydrogen 

sulphide gas in the ecosystems (Gonzales, 1984; Bussotti et al., 1997; 
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Bargagli et al., 1997; Loppi et al., 1998; Bussotti et al., 2003; Bargagli et 

al., 2003). Other plant growth related traits such as plant height, leaf/shoot 

injury and abundance and leaf physiological measurements have also 

been used in such assessments (Clarke and Murray, 1990; Bussotti et al., 

2003; Rajput and Agrawal, 2005; Tuyor et al., 2005; Wali et al., 2007; 

Chiarucci et al., 2008; Zvereva et al., 2010). Despite any anticipated 

negative effects on plant health, sulphur, up to a certain optimum level of 

concentration, is a plant macronutrient and therefore hydrogen sulphide 

gas is a potential nutrient (sulphur) source for plants.  

As pointed out earlier, field studies relating effects of excess sulphur 

(from H2S emissions) from geothermal power plants on plants are mainly 

limited to the Mediterranean. These studies report increasing sulphur 

concentrations in plant leaves with decreasing distances away from 

geothermal power plants. Furthermore, higher sulphur concentrations 

have been found in the upper soil layers than below in the vicinity of the 

power plants (Bussotti et al., 2003). These findings imply atmospheric 

input of sulphur from the nearby geothermal power plants. In addition, a 

few sulphur fumigation experiments have been conducted to assess plant 

responses (Thompson and Kats, 1978; Gonzales, 1984; Maas et al., 1987). 

The findings from both the field surveys and experiments indicate various 

effects on plant leaves and the experiments especially showed varied plant 

responses across species at different H2S gas dosages. Most commonly, 

excess sulphur is reported to affect plant growth and metabolism. Effects 

are visible on leaves and include foliar injuries manifested as necrosis, 

defoliation and in the long term as reduced growth, early senescence and 

chlorosis (Thompson and Kats, 1978; Varshney et al., 1979; Maas et al., 

1987; Bargagli et al., 1997; Bussotti et al., 1997; Bussotti et al., 2003). 

In non-vascular plants such as mosses, levels of excess sulphur from 

geothermal power plants have also been revealed (Baldi, 1988; Bargagli 

et al., 2002; Bragason and Yngvadóttir, 2009; Carballeira and Fernandez, 

2002; Loppi et al., 1999, 1998; Loppi and Bargagli, 1996). However, the 

effects on growth and physiology are not well explored.   

1.1.2. Trace element emissions and effects on plants  

The practice of monitoring amounts of trace elements emitted from 

geothermal power plants is rare. Most geothermal power plant operators 

are not cognizant of this need, likely because of the assumption that the 
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elements are found in trace amounts, if at all. Even so, data is insufficient 

to ascertain the assumption.  

The deposition patterns of trace elements in the surroundings of 

geothermal power plants have been assessed in a similar way as for 

sulphur in plants. Results show trends of decreasing element 

concentrations in plants with increasing distance away from geothermal 

power plants, implying that the elements are of power plant origin (Baldi, 

1988; Bargagli et al., 1997; Bussotti et al., 2003). Moreover, the 

relationship between the measured trace element concentrations in plants 

and plant health has also been assessed in the Mediterranean studies 

(Bargagli et al., 1997; Bussotti et al., 1997; Loppi et al., 1999; Bargagli et 

al., 2002; Bussotti et al., 2003) and associated consequences reported.  

Similar to the elevated sulphur levels in plants, high levels of arsenic, 

boron, mercury, antimony and other trace elements have been measured 

in plants (Bargagli et al., 1997). Symptoms mainly of boron and arsenic 

toxicity have been observed and described in fair detail (Bussotti et al., 

1997). Elevated levels of boron and arsenic in plants are associated with 

compromised leaf conditions such as leaf area reduction, damaged 

chloroplasts and reduced chlorophyll contents. Boron is also associated 

with leaf injury, manifested as marginal necrosis (Bussotti et al., 1997; 

Bussotti et al., 2003). Since most trace elements are of no nutritive value 

to plants, except boron, their high levels can also cause deleterious effects 

on plant growth and metabolism. Their effects are discussed in detail in 

Kabata-Pendias, (1992) and Nagajyoti et al., (2010). Nonetheless, it is 

important to understand that the measured trace elements (stated above) 

in plants around volcanic areas may also be of crustal origin and their 

combined effect with environmental conditions and atmospheric 

pollutants may exacerbate their effects on plants (Bussotti et al., 1997).  

1.2. Geothermal energy development in 

Kenya 

Geothermal energy resources in Kenya are spread over 14 prospective 

sites within the Rift valley (Figure 1.3) at an estimated potential of 

between 7,000 – 10,000 MWe (Republic of Kenya, 2013).  
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The history of geothermal development in Kenya began with exploration 

at Olkaria in the late 1950s until 1981 - 1984 when production started and 

the first 45 MWe Olkaria I power plant was constructed. Drilling works 

continued and additional power plants were later established in stages: 

2003 - 70 MWe Olkaria II, 2010 - 35 MWe Olkaria II expansion, 2015 – 

140 MWe Olkaria I expansion and 2015 – 140 MWe Olkaria IV (Saitet 

and Muchemi, 2015). Additionally, 55.6 MWe geothermal power is 

generated at wellheads in Olkaria (Saitet and Muchemi, 2015) as a 

temporary strategy to make use of idle steam directly from individual 

wells for earlier power generation prior to construction of the main power 

plants. Currently, 632.1 MWe in total of geothermal power is installed at 

Olkaria (including Oserian flower farms 629.6 MWe) and Eburru (2.5 

MWe) geothermal fields in Kenya (Omenda et al., 2014; Kenya Power 

Limited, 2015; Ormat unpublished data, 2016). For direct use, 

opportunities are yet to be fully explored, however 22.4 MWth is used for 

green house heating at Oserian flower farms in Naivasha (near Olkaria), 

swimming pools at Lake Bogoria (North Rift) and the Blue Lagoon at 

Olkaria (Lagat, 2010; Omenda et al., 2014).  
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Figure 1.3. Location of geothermal areas in Kenya. 

As a signatory to the Kyoto protocol and in efforts to promote a low 

carbon economy, the government of Kenya is putting emphasis toward 

the development of clean, indigenous and sustainable energy sources to 

meet the ever increasing and urgent power demand (Republic of Kenya, 

2007, 2015). The Governments Vision 2030 (Republic of Kenya, 2007) 

foresees the country to be prosperous and newly industrialised with a 

medium income and a high quality of life by the year 2030. The 

availability of adequate, reliable, and affordable electricity is a key factor 
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in attaining this goal. Since geothermal power is environmentally benign 

and reliable as baseload over hydropower (affected by varying hydrology 

and climate) and thermal power sources that dominate the current 

installed electric capacity in Kenya (Omenda et al., 2014), more focus and 

resources are now dedicated to accelerating the deployment of geothermal 

energy sources. This is evident from the ambitious expansion plans set up 

by the government, of providing up to 1600 MWe from geothermal 

resources in the near future (Republic of Kenya, 2013; Omenda et al., 

2014). To fast track this, several intensive geothermal development 

project plans and works are currently underway at different geothermal 

fields. The status as of now is that: production drilling is on-going at 

Olkaria and Menengai (100 km north of Olkaria) geothermal fields while 

for the northern prospects (Baringo - Silali block) surface exploration 

studies are finalised and exploration drilling is expected to commence 

immediately after completion of the ongoing infrastructural works. 

Likewise, for the southern geothermal prospects, exploratory works are 

advancing at Longonot and Suswa areas: two exploration wells have been 

drilled at Longonot while at Suswa surface exploratory works are 

complete and ground breaking preparations are on course for 

commencement of infrastructural development. In general, geothermal 

power is expected to contribute significantly to the total energy mix in 

Kenya by providing 5500 MWe by the year 2030 (Republic of Kenya, 

2015). This contribution will be meaningful in provision of the much 

needed power for the population in fulfilment of Kenya’s energy needs 

toward socioeconomic and sustainable development.  

1.3. Geothermal energy development in 

Iceland  

Iceland is located on the Mid-Atlantic ridge and is thus well endowed 

with a huge geothermal potential. For a long time, the resources have 

been extensively harnessed for power generation and direct use; 

particularly heating (homes and greenhouses), swimming, spas and other 

industries (Ragnarsson, 2015). In the country, the resources are mapped 

based on temperatures at 1 km depth, either as high (>200 C) or low 

(<150 C) temperature geothermal resources (Ragnarsson, 2015). High 

temperature resources occur within the active volcanic belts of the 

country and low temperature resources in quaternary and tertiary 

formations, Figure 1.4 (Bodvarsson, 1961; Arnórsson, 1995).  
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Figure 1.4. Location of geothermal areas in Iceland (Source: Iceland 

Geosurvey (ISOR), 2016) 

Development of geothermal energy for electricity production in Iceland 

started in 1970 and has rapidly increased over the years to present 

(Ragnarsson, 2015). An overview of the individual power plants and how 

generation has developed between the periods, 1970 – present is well 

presented in Ragnarsson, (2015). However, before 1970, geothermal 

resources were still used for direct use and in particular district heating 

for a significant part of the population. To date, 663 MWe is installed for 

electricity generation from seven power plants and 2,040 MWth for direct 

uses (Lund and Boyd, 2015; Ragnarsson, 2015).  

As a policy by the government of Iceland to increase the utilisation of 

renewable energy sources in Iceland for all industrial uses to spur 

economic development, development of geothermal and hydropower 

energy sources has been increasing over the years. About 86% of the 

primary energy supply in Iceland currently stems from indigenous 

renewable energy sources with geothermal accounting for 68% and hydro 

power 18% (Ragnarsson, 2015). Because of the vast amount of 

geothermal resources in the country, there is focus to increase 
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development of these resources for more energy production. A 12% 

increase in electricity production from geothermal resources is targeted by 

year 2020 (Ragnarsson, 2015).  

1.4. Knowledge gaps and aims of this 

research 

As outlined above, there is an urgent global need to replace fossil fuels 

with renewable energy sources for sustainable development. Geothermal 

energy is a relatively clean and reliable option for countries endowed with 

the resources. For Kenya and Iceland, which are the main focus of this 

research, there are clear plans to increase the current energy supply with 

significant contributions from geothermal resources to satisfy economic 

needs. However, awareness on the ecosystem effects of these projects 

with regard to geothermal power plant emissions is limited. Moreover, 

few studies have been performed to assess these effects. Due to limited 

knowledge, there are no policy guidelines that address the control of these 

emissions into the ecosystems besides those relevant to Occupational 

Health and Safety. Yet the deposition and accumulation of geothermally 

emitted elements in different ecosystem components, such as plants, has 

been revealed. These elements are well known to cause phytotoxic stress 

and plant damages at elevated levels. As ecosystems are a complex 

interaction of biotic and abiotic components, an effect on one component 

can affect others directly or indirectly and may in the long run cause large 

and irreversible damages e.g. species loss. In addition, the relationships 

between geothermal power plant emissions and plant responses in 

ecosystems are also still unclear from the few existing studies. Our 

understanding of the effects is rudimentary, particularly at different 

element exposure limits.  

Some plant damages have been reported around geothermal power plants. 

For instance, in 2008, Racomitrium lanuginosum moss damages were 

observed around Hellisheidi and Svartsengi geothermal power plants in 

Iceland (Natturufraedistofnun Islands unpublished report, 2008) (Figure 

1.5). However, the causes of the damages are not known and were 

speculated to have arisen from excess sulphur pollution originating from 

the nearby geothermal power plants (Natturufraedistofnun Islands 

unpublished report, 2008). A year after the dying mosses were observed 

(2009), moss samples were collected around geothermal power plants for 
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sulphur and trace element analysis. Higher element concentrations were 

found in moss tissues closer to the power plants than further away 

suggesting element deposition from the nearby power plants through 

emissions (Bragason and Yngvadóttir, 2009). However, the relationships 

between the element concentrations in the moss tissues and moss growth, 

physiology and damages had not been studied. Similarly, in Kenya 

around the Olkaria I power plant, leaves of plants in the immediate 

surroundings show some visible injuries characteristic of yellow leaves, a 

symptom that may be associated to chlorosis due to excess sulphur or 

boron, leaf marginal necrosis and brown leaves that may be indicative of 

early senescence (see some damage illustrations in Figure 1.5). Again, it 

is not known whether these damages are associated to the power plant 

emissions or not.  

 

Figure 1.5. A section of plant damages around geothermal power plants 

in: Kenya for Tarchonanthus camphoratus (left) and Iceland for 

Racomitrium lanuginosum moss (right) (Photos: T. Mutia, 2014 and S.H. 

Magnússon, 2013). 

To ensure sustainable development, this study is of importance to assess 

potential ecosystem effects that relate to geothermal power plant 

emissions. The overall aim of this study was to assess the impacts of 

geothermal power plant emissions on plants in two contrasting bio-

climatic zones i.e. the semi-arid Kenya and the subarctic Iceland. The 

dominant plants in each area were identified and used as ecological 

indicators. The specific objectives aimed at: 
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 Surveying whether geothermally emitted elements, i.e. sulphur 

(from H2S), and trace elements arsenic, boron, antimony and 

mercury, deposit and accumulate in plants and soils around 

geothermal power plants with consequences for plant health 

(assessed as plant growth related traits, damage and physiology). 

 Experimentally evaluating the effects of one of the major 

components of geothermal emissions, H2S gas, on plants by 

assessing sulphur concentration and accumulation in plants and 

plant health responses. 

The objectives are addressed in a collection of three papers: first specific 

objective in Papers I and II and second specific objective in Paper III, 

which form the next chapters of this thesis.  
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2. Methods  

2.1. Study areas 

In Kenya, this research (Paper I) was carried out within the Olkaria 

geothermal field (204 km
2
, Omenda, 1998) in which five geothermal 

power plants are situated; Olkaria I, II, III, and the recent Olkaria I 

additional units IV and V, and Olkaria IV power plants (Omenda et al., 

2014).  

The surroundings of Olkaria I (3 units  15 MWe) and II (3 units  35 

MWe) geothermal power plants (South Rift) up to 4 km away and in 

the prevailing wind direction (upwind and downwind) formed the 

study area in Kenya (Figure 2.1). The power plants are owned and 

operated by the Kenya Electricity Generating Company Limited 

(KenGen) and are located within the Hells Gate National Park 

(HGNP), 120 km northwest of Nairobi.  

The HGNP is a small park covering 68.25 km
2
 in area with a wide 

variety of wildlife and striking scenery. It was gazetted in 1984 as a 

National Park and placed under the management of Kenya Wildlife 

Service (KWS), immediately after construction of the second unit of 

Olkaria I power plant in 1983. The first unit of Olkaria I had been 

commissioned earlier in 1981 while its last unit was established in 

1985. The Olkaria II power plants were established in 2003 (units 1 

and 2) and 2010 (unit 3). To foster a harmonious coexistence between 

the wildlife and geothermal operations in the area, a Memorandum of 

Understanding (MoU) between KenGen and KWS was prepared and 

adopted. The MoU emphasizes on compliance and accountability to 

the best environmental monitoring practices and wildlife conservation 

with regard to geothermal operations as stated in the project’s 

Environmental Impact Assessment and Audit (EIA/A) study reports. 

Quarterly environmental study reports and meetings covering all 

geothermal activities from drilling to power plant operations in the 

area are regularly prepared by KenGen in consult with KWS (HGNP) 
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for collective monitoring purposes. The topography is characterized by 

volcanic features, mostly steep sided rhyolite and pumice domes, fault 

scarps, fractures, active thermal manifestations and the Ol Njorowa 

Gorge cutting across an inferred caldera (Omenda, 1998). Vegetation 

in the area is rich and diverse, mostly dominated by the shrub 

Tarchonanthus camphoratus L., see Barasa et al., (2012) and Paper I 

for detailed information. 

 

Figure 2.1. Location of Olkaria geothermal area study sites and 

sampling stations. 

In Iceland, the research (Paper II) was carried out within the Hengill 

geothermal area (area 110 - 115 km
2
,
 
Franzson et al., 2010) where two 

geothermal power plants are located, the Hellisheidi and Nesjavellir 

geothermal power plants (Figure 2.2). Similar to the Kenya study, the 

surroundings of each power plant, up to 4 km upwind and downwind, 

formed the study area. The two power plants are owned and operated 

by a power company, Reykjavik Energy (Orkuveita Reykjavíkur), and 

are located southeast of Reykjavik, 25 km away for Hellisheidi and 38 

km for Nesjavellir. The Nesjavellir geothermal power plant is older 

and with a lower installed capacity than Hellisheidi power plant. It was 
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established between the years 1998 – 2005 and has a total installed 

capacity of 120 MWe (4 units). Hellisheidi geothermal power plant, on 

the other hand, was established at later years, 2006 – 2010, and has in 

total an installed capacity of 303 MWe (9 units). The Hengill 

topography is quite variable and consists of volcanic features 

(Björnsson et al., 1986) mainly, lava fields, eruptive fissures, faults, 

fractures, volcanic ridges, basaltic volcanic rocks and surface 

geothermal manifestations such as fumaroles (Foulger and Toomey, 

1989). Extensive thick carpets of moss heaths dominate the vegetation, 

a description of vegetation can be found in Helgadóttir, et al., (2013) 

and Elmarsdóttir et al., (2015). The area in which the power plants are 

located and up to the extent of the study area is uninhabited by people. 

 

Figure 2.2. Location of the Hengill geothermal area study sites and 

sampling stations. 
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2.2. Study species 

In Kenya, the shrub Tarchonanthus camphoratus L. was chosen as a 

bio-indicator and study species due to its dominance within the area. 

The species is quite common in semi-arid Africa and Arabia and often 

grows between 1500 m - 2200 m above sea level in areas with 500 - 

1000 mm annual rainfall. It is a semi-deciduous shrub that grows large 

and dense when alone, and is often associated with Acacia spp. Its 

leaves are narrow, green-grey on the upper side and pale grey, felted 

with conspicuous venation on the lower side. T. camphoratus, is 

generally unpalatable to wildlife, with the exception of extreme 

drought when cows, giraffes, impalas and springboks browse its leaves 

and shoots. Traditionally, it has many medicinal applications with leaf 

infusions and tinctures used for, among others, indigestion, heartburn, 

coughs, stomach upsets, headache, toothache, asthma, bronchitis and 

inflammation (Orwa et al., 2009). In terms of ecosystem services, the 

shrub/tree is useful in protection against soil erosion, enhancement of 

soil fertility (through litter falls) and land reclamation due to its 

resistance to drought, fire and wind. 

Around the Hengill area in Iceland, the moss Racomitrium 

lanuginosum (Hedw.) Brid. dominates in the vegetation. It was chosen 

as a study and bio-indicator species. R. lanuginosum is often found 

growing on exposed rock and boulder scree or lava fields forming a 

continuous ‘carpet’, that may grow between 20 - 40 cm in thickness 

(Bjarnason, 1991; Jónsdóttir, 1991; Jónsdóttir et al. 1995). It is 

commonly abundant in high northerly latitudes i.e. boreal and arctic 

regions, and in alpine regions of temperate and sub-tropical biomes 

(Tallis, 1964). The species has an elongated main stem with a variable 

number of lateral primary and irregularly branched shoots (Tallis, 

1959a, 1959b) and the leaves usually have a long hyaline hair point 

(Nyholm, 1998). Its growth is rather slow, for example a mean 

cumulative growth of 15.8 mm during two years (July 1990 - 1992) 

was measured in a study within the Thingvellir national park in Iceland 

(Jónsdóttir et al., 1995). Like other mosses, the species plays a 

significant role in ecosystems, especially in the Arctic where mosses 

are ubiquitous components. Mosses strongly influence nutrient, carbon 

and water cycling in the plant-soil interface, significantly regulating 

ecosystem functions (Turetsky et al., 2012). Among other roles, some 
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species are key in succession as they are the early colonizers of a 

disturbed site (Bjarnason, 1991; Turetsky et al., 2010, 2012). In recent 

years, mosses have become increasingly important in monitoring 

ecosystem health in relation to atmospheric pollution (Berg and 

Steinnes, 1997; Loppi and Bonini, 2000; Bargagli et al., 2002; 

Harmens et al., 2015) due to their lack of roots and interception of 

nutritional requirements from the atmosphere. Changes in their growth, 

physiology, distribution and tissue element concentrations (Magnússon 

and Thomas, 2007; Magnússon, 2013) serve as an early warning signal 

of serious effects of atmospheric pollution. 

2.3. Field surveys 

The first and second papers discuss and analyse the patterns of sulphur, 

arsenic, boron, antimony and mercury concentrations in plants and soil 

around geothermal power plants in Kenya (Paper I) and Iceland 

(Paper II), and some growth traits of the dominant plants in each area. 

In both study areas, the survey was based on a nested design. Two line 

transects from each power plant were established along the prevailing 

wind direction, upwind and downwind, at increasing distances away 

from the power plants (Figures 2.1, 2.2) and away from any visible 

geothermal manifestations. The distances, 250 m, 1000 m and 4000 m 

were chosen as sampling stations, within which sub-transects were 

marked for plant and soils measurements and sampling. Selected plant 

variables and growth related traits i.e. abundance, stem height, number 

of stems, main stem circumference and leaf growth (number of leaves) 

and leaf damage (visible injury) for the shrub and moss shoot growth 

(shoot length increase, shoot turnover and biomass increase), 

physiology (chlorophyll concentrations) and visible moss shoot 

damages were assessed for plant growth and health evaluations. For 

leaf/shoot damages, plants leaves/shoots colourations were visually 

assessed and categorised into three: A) healthy green, B) yellow and 

C) brown dead. At the end of plant measurements, leaf samples from 

the shrub at the sampling stations were obtained and grouped 

according to the different leaf categories for determination of sulphur, 

arsenic, boron, antimony and mercury concentrations. For moss, 

samples were obtained from the sampling stations and damage 

assessed at sampling stations. Samples were analysed for sulphur, 

arsenic, boron, antimony and mercury concentrations.  
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A reference area well outside the range of the study areas and 

geothermal power plant element depositions was included in each 

study area for comparison. Plant leaves, moss shoots and upper soil 

layers were sampled in each case for analysis of sulphur, arsenic, 

boron, antimony and mercury concentrations. Additionally, soil 

characteristics: pH, moisture, total carbon and nitrogen, were also 

measured as co-variables to account for variation in the measured 

response variables that might have been caused by these environmental 

factors. All sample preparations and processing for chemical analyses 

were conducted at internationally accredited laboratories: Kenya 

Bureau of Standards (KEBS) for the Kenya study and ALS 

Scandinavia labs in Luleå, Sweden for the Iceland study.  

2.4. Experiments 

Following the surveys, two experiments were performed, one in Kenya 

and another in Iceland, using the dominating plants in each geothermal 

area to assess the experimental effects of H2S deposition on plants 

(Paper III). Eight month old seedlings of the shrub T. camphoratus 

and extracted moss mats of R. lanuginosum that had been growing in 

areas well out of range of geothermal activity were used.  

In Kenya, the experiment was set-up and performed outdoors at an 

open ground area in Nakuru and at indoor growth chambers in Iceland 

(See experimental set-ups in Figure 2.3).  

 

Figure 2.3. Experimental layout for A) Tarchonathus camphoratus 

seedlings, B) Racomitrium lanuginosum moss and C) preparation of 

H2S stock solution for the different treatments. 
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Solutions of H2S gas dissolved in distilled water were prepared at 0, 

µg/L, 30 µg/L, 100 µg/L and 300 µg/L concentrations and used as 

experimental treatments. These concentrations correspond to air 

saturated water with H2S concentrations in air of 0 ppm, 10.96 ppm, 

36.52 ppm, and 109.57 ppm, respectively (using a Henry's law 

constant of 0.001 mol/(L*atm), (Sander, 2015)). A control solution, 

prepared from distilled water (0 µg/L) was included for comparison.  

A nested design was adopted for each experiment with four units 

randomly assigned to each treatment and multiple measurements 

conducted per unit. Treatment applications were done four times per 

week. The experiments were conducted for a period of 6.5 weeks in 

Kenya and 13 weeks in Iceland. 

Plant variables related to growth, i.e. stem height, change in number of 

stems and change in number of healthy leaves (A) healthy green), 

moss shoot length increase and biomass, and foliar damages i.e. 

proportions of damaged leaves (based on the two categories: B) yellow 

and C) brown dead), were measured and assessed at the beginning and 

end of the experiments. Sulphur and chlorophyll concentration in plant 

tissues were determined in plant leaves/moss shoots at the end of the 

experiment i.e. at the ALS Scandinavia labs in Luleå, Sweden for 

sulphur analysis and Institute of Freshwater Fisheries in Iceland for 

chlorophyll determination.  

2.5. Data analyses  

Due to the nested design of most data for the field surveys and 

experiments, linear mixed effects models (LMM) were fitted whenever 

possible. For the field survey data, i.e. concentrations of sulphur, 

arsenic, boron, antimony and mercury in plant leaves and soil, and the 

plant characteristics and growth related variables, LMMs were fitted 

against the predictors (fixed factors): distance (250 m, 1000 m and 

4000 m), direction (upwind or downwind) and location (identity of the 

power plant in each study area). Sampling stations were included as 

random factors. In cases of pooled data, simple linear models were run 

with the same predictor variables as the LMMs. Soil co-variates were 

included to account for un-explained variations in the model whenever 

possible.  
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The experimental data was analysed in a similar way as the survey data 

except with different predictors (fixed factors), i.e. the different H2S 

treatment concentrations (0 µg/L, 30 µg/L, 100 µg/L and 300 µg/L). 

The plant units were included as random factors. All interpretation was 

based on the effect size of the treatments as a whole and comparisons 

between the different treatments levels. 

The models were run in R 3.2.2 (R Development Team, 2010) using 

the functions, lmer in the lme4 packages (Bates et al., 2014) for the 

LMM and lm in the MASS package in R (Ripley et al., 2015) for linear 

models. See details in Papers I, II and III. 
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3. Results and Discussions 

3.1 Field surveys  

Different distances from geothermal power plants along the prevailing 

wind direction are key in assessment of gas emission dispersion for air 

quality monitoring studies (Wetangula, 2011; Ólafsdóttir et al., 2014), and 

the effects of these gases on ecosystems (Bargagli et al., 1997; Bussotti et 

al., 2003). Element concentrations in plants and soils in relation to these 

distances and wind direction (upwind and downwind) will thus provide an 

indication of the deposition and accumulation patterns of these elements 

on ecosystems.  

The findings of the field surveys (Paper I and II) revealed that plants and 

soils around geothermal power plants are enriched with sulphur and trace 

elements. However, there were no clear patterns for arsenic, boron, 

antimony and mercury concentrations in plants and soils in relation to 

distance and direction from the power plants. Only sulphur in plant 

tissues and soils at the geothermal areas (Kenya and Iceland) showed 

patterns of decreasing concentrations with increasing distance (Figures 

3.1, 3.2), implying atmospheric deposition of sulphur from the geothermal 

power plants. The patterns were stronger in plant tissues than soils, 

indicating that plants may have been immediate receptors of geothermally 

emitted sulphur rather than soils. Wind direction, on the other hand, did 

not show clear indications of its effects on element distribution at both 

study areas. Further, element deposition in relation to location did not 

show differences between the two power plants in Kenya, while in 

Iceland, there were generally higher element concentrations in plants and 

soils around Hellisheidi geothermal power plant than Nesjavellir. There 

are several reasons that may have been the cause of these variations. In 

Kenya, a proper evaluation of the effect of the wind and location may 

have been difficult due to the closeness of the two power plants (Olkaria I 

and II, see Figure 2.1) such that the effects of wind on the surroundings of 

one power plant would affect the effects in the vicinity of the other power 

plant. For Iceland however, the variations may have been attributed to the 

effects of topography on the prevailing wind between the two power 
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plants, since the Nesjavellir geothermal power plant is located in a valley 

and is probably more sheltered from the effect of the prevailing east 

winds than Hellisheidi, which lies exposed at a higher elevation. This 

means that around Hellisheidi there may have been much more efficient 

element distribution than at Nesjavellir. The element concentration 

variations may have also been caused by other sources of these elements, 

since the study areas are volcanic/active geothermal areas. Volcanic areas 

are known to be quite abundant in these elements, especially in the soils, 

these elements are usually of crustal or magmatic gas origin (Bussotti et 

al., 1997; Davies, 2008). Geothermal fluids from steam sprays during 

geothermal well testing (on-going at the study areas), natural hot springs 

and fumaroles also contain these elements and may deposit them within 

the area.  

 

Figure 3.1. Concentrations of sulphur in T. camphoratus leaves and soil 

in relation to the Olkaria I and II geothermal power plants in Kenya. Ref 

indicates the reference area. n = 3 leaves per station, n = 1 soil per 

station. * indicates significant differences (p<0.05) for sulphur 

concentrations in leaves and soil the different distances compared to 250 

m. The reference area values were not included in statistical models for 

the comparisons. 
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Figure 3.2. Concentrations of sulphur in the R. lanuginosum moss and 

soil in relation to the Hengill geothermal power plants in Iceland. n = 10 

shoots per station, n = 1 soil per station. * indicates significant 

differences (p<0.05) for sulphur concentrations in moss and soil at the 

different distances compared to 250 m. The reference area concentrations 

were not included in the statistical models for comparisons. 

The general patterns of plant health (assessed in the form of growth, foliar 

damage and other plant characteristics) did not also show clear patterns 

with the predictors (distance, direction and location) around the power 
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plants, except for the Iceland study. In Iceland, moss showed faster 

growth and more positive health responses at Hellisheidi than Nesjavellir, 

while at Nesjavellir, plant growth was slower closer to the power plant 

than further away. This may partly be related to the effect of wind and 

topography as discussed previously.  

For Kenya, sulphur concentrations were generally higher in the plants 

than soils around the power plants, while the opposite was true for moss 

versus soils in Iceland. One reason for the higher sulphur enrichment in 

the shrub leaves than mosses when compared to soils is probably related 

to the different plant mechanisms in relation to nutrient absorption; T. 

camphoratus acquires more nutrients (sulphur) from both the soil through 

roots and from air through leaves than R. lanuginosum which obtains all 

its nutrients (sulphur) from the air. However, at the reference areas in both 

Kenya and Iceland, soils had much higher sulphur concentrations than 

plants, which is expected in the absence of atmospheric pollutants. 

Further, sulphur concentrations were at higher levels in both plant tissue 

and soils in Iceland than Kenya. There could be several interacting 

reasons for this discrepancy between the two ecosystems; The amount of 

H2S emissions from the Hengill geothermal power plants is 83% higher 

than that of the Olkaria power plants, see details in Papers I and II. It 

therefore follows that there would be much more sulphur deposition and 

accumulation in the Hengill (Iceland) terrestrial ecosystems than Olkaria 

(Kenya). In addition, the different soil processes in the two ecosystems 

may provide an explanation for the higher sulphur concentrations in the 

Hengill soils than in Olkaria soils: the shrub leaves are most likely more 

easily decomposed than the recalcitrant moss shoots. Therefore, 

decomposition and mineralisation rates are in general much faster in 

semi-arid Kenya ecosystems than the much colder ecosystems of Iceland. 

The slow decomposition means that the elements are likely to be much 

more enriched in the soils of Iceland than in Kenya, suggesting that the 

impact of geothermal emission (H2S gas in this case) on ecosystems may 

be greater in Iceland than Kenya.  

Overall, in comparison to the reference areas, the geothermal areas in 

Kenya and Iceland showed elevated element enrichment in plants and 

soils, except for sulphur in soil at the reference area in Iceland which was 

higher than at the Hengill geothermal area. Additionally, plant growth and 

overall health was greater at the reference areas than the geothermal areas. 

While the study findings show elevated trace element concentrations in 
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plants and soils in the geothermal fields, this element enrichment cannot 

be attributed only to the power plants. Their patterns in relation to the 

power plants did not suggest the power plants as a significant factor in 

their distribution around the two contrasting ecosystems. Patterns of the 

observed plant health effects in relation to the power plants may therefore 

be related to excess sulphur enrichment in combination with other factors 

beyond the scope of this study. These findings agree with other studies 

especially in the Mediterranean that reveal high sulphur depositions in 

plants and soils closer to geothermal power plants than further away with 

some consequences for plant health (Bargagli et al., 1997; Bussotti et al., 

1997; Bussotti et al., 2003).  

3.2 Experiments  

The field surveys revealed a connection between geothermal power plants 

and sulphur enrichment in plants and soils around the geothermal areas in 

Kenya and Iceland, a concern due to the potentially phyto-toxic levels of 

sulphur at elevated levels. However, Paper III findings showed no clear 

evidence of elevated sulphur concentrations and accumulation from 

experimental wet hydrogen sulphide deposition (0 µg/L, 30 µg/L, 100 

µg/Land 300 µg/L) on dominant plants around geothermal power plants 

in Kenya (T. camphoratus seedlings) and Iceland (R. lanuginosum moss), 

Figure 3.3. In spite of this, both plants showed responses to the different 

wet H2S treatment exposures.  

The growth (increase in shoot length) of R. lanuginosum decreased in 

response to high H2S exposure levels (300 µg/L) while there was an 

increase in shrub stem height growth at intermediate concentrations of 

H2S (30 µg/L), Figure 3.4. Such a decrease in R. lanuginosum growth at 

high H2S exposure levels was expected. Mosses are highly sensitive to 

atmospheric pollutants and elevated levels of such components have been 

reported to affect their growth, e.g. a similar decrease in growth has been 

reported for Sphagnum moss species in response to high sulphur exposure 

levels (Ferguson et al., 1978; 1980). For T. camphoratus, the low H2S 

exposure levels seemed to have had a fertilising effect on the seedlings by 

stimulating shoot height. This compares with the findings of a H2S 

fumigation experiment in Thompson and Kats, (1978) that showed 

significantly stimulated growth of lettuce, sugar beets and alfalfa at low 

H2S exposure levels (30 ppb). The other plant variables for T. 
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camphoratus and R. lanuginosum were however not affected by the 

treatments over the short exposure periods.  

 

Figure 3.3. Various responses of T. camphoratus to H2S treatments 

(application of 0 µg/L, 30 µg/L, 100 µg/L and 300 µg/L): (a). 

Concentrations of sulphur in different categories of T. camphoratus 

leaves and (b) Stem height increase, after 6.5 weeks in an outdoor 

experiment (mean  SE, n = 4). Concentrations in the leaves are assigned 

to different damage categories based on visual assessment: healthy green 

leaves (leaves A), yellow leaves (leaves B) and dead brown leaves (leaves 

C). Asterisks (*) indicate significant effect of treatment (p<0.05) and 

smaller case letters show differences between treatments.  

In general, the leaves of T. camphoratus seedlings showed 75% more 

sulphur concentrations than the R. lanuginosum moss shoots. This is 

opposite to the findings of the field surveys (Paper I and II) where higher 

element concentration was found in the shoots of R. lanuginosum (in 

Iceland) than leaves of T. camphoratus (in Kenya). Besides the unseen 

effect of the different environmental/ experimental conditions for the two 

plants and in the absence of pollution, these sulphur concentration 

variations can be explained by the different plant mechanisms in relation 

to nutrient absorption; T. camphoratus acquires more nutrients (sulphur) 

from both the soil through roots and from air through leaves than R. 

lanuginosum which obtains all its nutrients (sulphur) from the air.  

  



 

29 

 

Figure 3.4. Various responses of R. lanuginosum to H2S treatments 

(application of 0 µg/L, 30 µg/L, 100 µg/Land 300 µg/L): (a) 

Concentrations of sulphur in R. lanuginosum moss and (b) Shoot length 

increase, after 13 weeks in growth chambers (mean  SE, n = 4). ‘m.s’ 

indicates a marginally significant effect of treatment (p=0.06)). Asterix 

(*) indicates significant effect of treatment (p<0.05) and smaller case 

letters show differences between treatments.  

Overall, there were no strong responses of either plant to the treatment 

exposures over the short experimental period.   
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“The sky´s no limit” ~ Claude Munyao Mutia  

4. Conclusions and future 
perspectives 

In the field surveys presented in Papers I and II, there is evidence that 

sulphur (in the form of hydrogen sulphide gas) emitted from the 

geothermal power plants in Kenya (Olkaria) and Iceland (Hengill) 

deposits and accumulates in terrestrial ecosystems in the vicinity of the 

power plants. However, the trace element concentrations: arsenic, boron, 

antimony and mercury, do not show such consistent and similar patterns; 

according to data from this study, their levels in terrestrial ecosystems in 

the Kenya and Iceland geothermal study areas cannot be attributed to the 

geothermal power plants. Further, because trace elements are not 

monitored in the emissions and their concentrations are not known, it is 

difficult to conclude that the measured trace element concentrations in the 

plants and soils may to some extent have been influenced by the power 

plants. This conclusion is slightly distinct from the Meditteranean studies 

(Baldi, 1988; Bargagli et al., 1997; Bussotti et al., 1997; Bacci et al., 

2000) that report high sulphur and trace element concentrations in plants 

and soils near geothermal power plants with patterns indicating potential 

enrichment from the power plant emissions. The Meditteranean 

geothermal systems are different. In terms of aquifer fluid phases, the 

Mediterranean geothermal systems are mainly dry steam dominated 

(Bertini et al., 2006), different from the liquid - vapour dominated 

geothermal systems in Kenya (Koech, 2014) and Iceland (Scott et al., 

2014; Ragnarsson, 2015). The trace elements in the Kenya and Icelandic 

study context are not nearly as volatile as the H2S gas and may not have 

been in very high concentrations in the NCGs of the geothermal power 

plants in Kenya and Iceland.  

The plants (bio-indicators) in the field surveys compared to reference 

areas (Papers I and II) showed some indications of geothermal power 

plant effects on plant growth that corresponded to the findings of 

geothermally enriched sulphur in their tissues and soils. This may suggest 
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that the effects on plants are somehow related to the excess sulphur levels 

in the plant tissues and soils and may be affecting plant growth. However, 

the influence of other environmental factors is to be considered, as for 

example the soil conditions were in most part significant in explaining the 

variations of the different element concentrations in the plants and soils.  

Due to the indications of effects on plant growth noted, further field 

surveys are recommended for both areas for better assessments of sulphur 

effects on plants and especially in relation to bio-accumulation in the 

ecosystem. In the present study, sulphur accumulation levels in R. 

lanuginosum shoots (Paper II) were calculated from R. lanuginosum 

concentration data and may not have been an accurate assessment, these 

estimates were however not evaluated for the Kenya study (Paper I) due 

to limited leaf biomass data. The study design needs to be improved for 

more accurate assessment of element accumulation in the ecosystem 

components (with a larger sample size). 

Further long term studies are recommended to properly evaluate sulphur 

accumulation in plants in relation to the geothermal power plants and 

associated plant growth/health effects, because of the moderate to slow 

growing nature of the plants: T. camphoratus is reported to grow between 

600 – 800 mm/year (Orwa et al., 2009) and R. lanugiosum up to 5 

mm/year (Tallis, 1964; Jónsdóttir et al., 1995). For the Kenya survey, it 

may even be more interesting to combine the shrub assessments with 

other additional and sensitive bio-indicators such as lichens and mosses or 

soil-microbes (Baldi, 1988; Loppi et al., 1998; Bargagli et al., 2002; 

Zouboulis et al., 2004; Storelli, 2013). Further responses of T. 

camphoratus related to growth and physiology can also be included in the 

studies, including recruitment of new flowers, leaf area, leaf biomass and 

photosynthesis.  

In an improved study design, the addition of more study transects around 

the power plants and a large number of replicates could provide clear 

information on element distribution and effects around the power plant 

areas to complement our findings. New study transects perpendicular to 

the main transects of the two field surveys are interesting to explore to get 

an overall picture of element distribution and plant responses over the 

entire geothermal area. To strengthen the ecological explanations as to 

why the elements, accumulate to a greater extent in the soils of Iceland 

than in Kenya, decomposition studies such as those described in 
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Keuskamp et al., (2013) are recommended as important additions for 

future studies across the two contrasting biomes. Overall, regarding 

differences between the two bio-climatic zones, it can be concluded that 

the semi-arid ecosystems are less susceptible to the effects of geothermal 

power plant emissions than subarctic systems due to higher turnover rates 

of biomass (plant growth, decomposition). 

The experiments (Paper III) revealed that short-term exposure to 30 

µg/L, 100 µg/L and 300 µg/L wet H2S deposition does not result in 

increased sulphur concentrations in plants of T. camphoratus dominant 

around geothermal power plants in Kenya. Further, there was no evidence 

of increased sulphur accumulation with the treatment exposures in both 

plants. Contrary to our predictions, plant tissues of T. camphoratus 

showed more elevated sulphur concentrations and accumulation than R. 

lanuginosum. 

Furthermore, short term exposure to moderate levels of H2S deposition 

(30 µg/L (ppb) approximately 10.96 ppm air concentrations) does not 

result in harm to the two plants. This H2S level seemed to benefit plant 

growth in the shrub T. camphoratus, and did not reduce R. lanuginosum 

moss growth. However, high exposure concentrations of H2S depositions 

(300 µg/L (ppb) – about 109.57 ppm air concentrations) reduced R. 

lanuginosum growth but did not affect T. camphoratus growth. The 

observed effects on plant health within the short duration of the 

experiment are indicative that if the experiment is conducted for a long 

duration, stronger and clear responses would be evident. A follow-up 

experiment over a longer period is thus recommended. It is important 

because these plants, within their natural set-up, are usually exposed 

(although not directly) to emissions (dry and wet deposition) over a long 

period of time, that is as long as the power plant operates. A detailed 

understanding of the effects on plant health is important for planning of 

mitigation measures.   

In future experiments, the growth conditions for the R. lanuginosum can 

be improved by carrying out the experiments in the field and away from 

any atmospheric pollution activities rather than in a growth chamber. This 

is due to the atmospheric sensitivity of mosses, for instance in this 

experimental study, growth chambers were slightly hotter than normal 

and may have affected R. lanuginosum growth as it is susceptible to 

drying on exposure to high heat.  
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Since more ecosystem effects were noted in Iceland than in Kenya, it is 

recommended that the geothermal power plant developer at Hengill in 

Iceland fosters emission curbing mechanisms to prevent future effects of 

sulphur depositions in terrestrial ecosystems. Reykjavík Energy, the 

power developer at the Hellisheidi geothermal project, is already 

undertaking trials of a H2S emission abatement strategy by testing the 

feasibility of H2S re-injection back into the earth (Gunnarsson et al., 

2013). This project should be fully supported at all levels to ensure 

sustainable geothermal power development. In addition, monitoring of 

trace elements from the power plant emissions is highly recommended at 

the Olkaria and Hengill geothermal power plants, as at present knowledge 

is lacking on which trace elements are emitted, their concentrations, 

amounts and fate from geothermal power plants emissions. Monitoring of 

the trace element levels in emissions is thus advised for mitigation of any 

likely associated effects. 

Overall, these findings serve as a necessary yardstick in advising future 

geothermal projects. Especially because the target species are also 

common in some of the other earmarked geothermal fields for 

development in Kenya and Iceland. For example, the species T. 

camphoratus is also abundant in Suswa and Menengai geothermal areas 

in Kenya while the moss R. lanuginosum abundance is also widespread in 

most geothermal areas of Iceland. Furthermore, the general findings will 

advise policy makers, conservationists and the public on the effects of 

these emissions on ecosystems and the urgent need for development of air 

quality environmental guidelines related to geothermal power plants. This 

new knowledge will also increase public awareness on the effects of 

geothermal power plants on the environment and reduce uncertainties or 

ambiguities on such projects, an important aspect in increasing social 

confidence and possibly public acceptance and support of geothermal 

projects.  
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a  b  s  t  r  a  c  t

Exploitation  of  geothermal  energy  is  considered  to  have  minimal  ecological  impacts.  However,  this
assumption  has  not  been  widely  studied.  We  tested  the  hypothesis  that  emitted  elements  from  geother-
mal  power  plants  would  be  enriched  in both  plant  tissue  and  soil  close  to the  power plants  with
consequences  for  plant  health.  The concentrations  of  sulphur,  arsenic,  boron,  antimony  and  mercury
in  the  soil  and  leaves  of  the  dominating  shrub,  Tarchonanthus  camphoratus,  were  assayed  and  associated
foliar  injury  and  growth  traits assessed  at  variable  distances  and  directions  from  two geothermal  power
plants  in  Kenya,  Olkaria  I (operated  since  1981)  and  Olkaria  II  (since  2003).  Sulphur  concentration  in the
leaves was  elevated  close  to the  power  plants  and  decreased  with  increasing  distance,  implying  atmo-
spheric  input  of  sulphur  to the  ecosystem  from  the  power  plants.  Similar  trends  were  not  detected  in soil
and with  the  other  elements.  Our study  design  did  not  support  the  observed  higher  degree  of leaf  injury
close  to the  power  plants.  Similarly,  any  association  of  growth  traits  with  distance  or location  was  not
detected.  The  results  were  compared  with  data from  a reference  site  well  out of the  range  of  element
deposition  from  the  power  plants.  Overall,  the  levels of  sulphur,  arsenic,  boron  and  antimony  in leaves  of
T. camphoratus  and  sulphur,  and  boron  concentration  in soil  around  the Olkaria  I and  Olkaria  II geother-
mal  power  plants  were  higher  than  at  the  reference  site.  Furthermore,  the number  of healthy  leaves  per
shrub and  stem  circumference  were  lower  around  the  power  plants  than  the reference  site, while  leaf
damage  and  other  plant  growth  traits  did  not  differ.  In  spite  of relatively  weak  indication  of  the harmful
effects  of  the  geothermal  power  plants  on the  dominating  shrub  species,  follow-up  experimental  studies
and  studies  on  more  sensitive  ecosystem  components  are  recommended  to advise  existing  mitigation
measures  against  chronic  exposure  from  the emitted  gases  and  associated  impacts.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Geothermal energy is listed among those world’s renewable
energy sources considered to have minimal ecological impacts with
a great potential for the future (Bayer et al., 2013; Wong and Tan,
2014). However, a range of non-condensable gases (NCGs) and trace
elements typically ranging from less than 0.2% to over 25% weight
of steam (Rodríguez, 2014) are emitted from the power plants dur-
ing the energy conversion process. Some of these components have
been reported to deposit in the surrounding ecosystems (Bargagli

∗ Corresponding author at: Geothermal Development Company Limited, P.O Box
17700, 20100 Nakuru, Kenya.

E-mail address: teclamutts@gmail.com (T.M. Mutia).

et al., 1997; Bacci et al., 2000; Paoli and Loppi, 2008), but the
consequences are still poorly known. Potentially, they can cause
toxicological stress on human beings, plants, and other ecosys-
tem components (Bayer et al., 2013). With increasing utilization
of this energy source there is an urgent need for detailed studies on
ecological responses to geothermal power plant emissions.

Commonly, the NCG fraction comprises 73–98% w/w carbon
dioxide (CO2), 1–24% w/w  hydrogen sulfide (H2S), 0.02–0.65% w/w
methane (CH4), 0.1–8% w/w hydrogen (H2), 0.3–16% w/w nitrogen
(N2), 0.1–3% argon (Ar), and traces ( <0.001% w/w) of radon, boron,
mercury, arsenic, antimony, and ammonia in gaseous and dissolved
form (Baldi, 1988; Bargagli et al., 1997; Loppi et al., 1998; Gunerhan,
1999; Loppi, 2001; Bussotti et al., 2003; Rodríguez, 2014). Of these
gases, H2S poses a major concern due to its odour and potential tox-
icity even at low concentration. The trace elements are also widely

http://dx.doi.org/10.1016/j.geothermics.2016.01.017
0375-6505/© 2016 Elsevier Ltd. All rights reserved.
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understood to bio-accumulate in ecosystems causing deleterious
consequences (e.g. Kabata-Pendias, 1992).

Our knowledge of the effects of geothermal power plant emis-
sion on terrestrial ecosystems is limited, and mainly based on a
few studies in the Mediterranean Italy. All these studies indicate
increased levels of the emitted elements including sulphur, arsenic,
boron, mercury, and antimony in tissues of vascular plants, mosses
and epiphytic lichen close to the power plants with an appar-
ent trend of decreased concentrations over increasing distances
(Baldi, 1988; Bargagli and Barghigiani, 1991; Panichi and Orlando,
1992; Edner et al., 1993; Ferrara et al., 1994; Loppi and Bargagli,
1996; Bargagli et al., 1997; Loppi et al., 1998; Loppi, 2001; Bussotti
et al., 2003). These trends strongly imply atmospheric deposition
of sulphur (in H2S gas form) and trace elements into terrestrial
ecosystems from the nearby geothermal power plants.

High concentrations of H2S gas may  have harmful, acute and
chronic effects on ecosystems. The H2S gas molecule is quite unsta-
ble in air, and may  be oxidized to SO2 (Kellogg et al., 1972). Mobile
sulphur is available to plants primarily in the form of anionic sul-
phate (SO4

2−) from the soil or as gaseous SO2 or H2S which is
readily absorbed and assimilated by leaves (Leustek and Saito,
1999). As an essential macro-nutrient for plant metabolism and
growth, both deficiency and excess of sulphur will lead to foliar
necrosis, leaf lesions and defoliation. Consequently, the long term
effects manifest as reduced plant growth, early senescence and
chlorosis (Thompson and Kats, 1978; Varshney et al., 1979; WHO,
2000). According to WHO  (2000), SO2 can also alter plant responses
to other environmental stresses often intensifying their impacts.

The effect of H2S on crop and forest plants was experimentally
studied in a greenhouse (Thompson and Kats, 1978). Continu-
ous fumigation with 30–100 ppb H2S gas stimulated plant growth
whilst 300–3000 ppb caused patches of dead cells on leaves (leaf
lesions), defoliation and reduced or stunted growth. The effect was
more noticeable on fast growing species such as grapes, alfalfa, and
lettuce than slow growing species such as buckeye and ponderosa
pine. Symptoms similar to those observed during the experimen-
tal fumigation may  be seen in natural ecosystems, such as forests,
close to geothermal power plants, indicating stressed environmen-
tal conditions (Bussotti et al., 1997).

Increased concentrations of other emitted elements may  also
be harmful to plants. In Bussotti et al. (1997), high boron and
arsenic concentrations in Quercus cerris L. leaves were associated
with higher crown defoliation around geothermal power plants
in Travale, Southern Tuscany. From the same area, Bussotti et al.
(2003) reported widespread leaf damage in Quercus pubescens
Willd., including necrosis and decreased leaf area, which they
related to elevated boron and sulphur concentration of geothermal
power plant origin. The predominant role of foliar uptake was sug-
gested by, higher boron and sulphur levels in Q. pubescens leaves
than in soil close to the power plants. Higher boron and sulphur
concentrations in superficial soil layers (0–20 cm)  than in deeper
layers (20–40 cm), indicated atmospheric deposition as the primary
origin of these elements (Bussotti et al., 2003).

Very little is known about accumulations of emitted elements
from geothermal power plants in semi-arid terrestrial ecosystems
in the tropics and their potential impacts. In Kenya, the production
of geothermal energy began three decades ago with the develop-
ment of geothermal resources at the Olkaria geothermal field in
the Great Rift Valley and accounts for 37% gross national electricity
production today (Omenda et al., 2014). Due to the reliability and
assumed minimal ecological and climate impacts of geothermal
power compared to other sources, expansion plans are underway
in other geothermal fields to meet the current power demand. So
far, only a few studies have addressed the environmental impacts
of the power plants, all focusing on trace elements in spent geother-
mal  waters and bioaccumulation in aquatic plants (Simiyu and Tole,

2000; Were, 2007). However, solid knowledge of the environmen-
tal impacts on the surrounding terrestrial ecosystems is needed
to strengthen existing mitigation measures against pollution and
to ensure sustainable development of geothermal power plants in
Kenya. This study contributes to that knowledge by investigating
the ecosystem accumulation of elements emitted from geothermal
power plants in Kenya.

We studied the patterns of sulphur and trace element concentra-
tions in plants and soil around two power plants at the Olkaria field,
Olkaria I and Olkaria II, and some growth traits of the shrub Tarcho-
nanthus camphoratus L. We  chose this species as a bio-indicator due
to its widespread distribution and dominance in the vegetation at
Olkaria. We  hypothesized that the concentration of the elements
emitted would be enriched in both plant tissue and the soil around
the power plants with consequences for plant health. We expected
stronger responses around Olkaria II than Olkaria I, because it is
a higher output power plant with a higher emission rate of H2S
and Hg (Table 1). To test the hypothesis, we assessed the soil and
leaf chemical compositions at different distances along transects
along the prevailing wind direction, a key factor in dispersion of
atmospheric contaminants around the power plants (Olafsdottir
et al., 2014; Wetang’ula, 2011). Further, we assessed the frequency
of different leaf damage categories, and measured growth related
morphological traits of the shrub. A reference site well out of range
of all geothermal activity was  also established for comparison.

2. Materials and methods

2.1. Study area and species

The study area is within the Olkaria geothermal field (area,
204 km2), situated on the floor of the Great Rift Valley of Kenya
(Fig. 1), at an average elevation of 2000 m above sea (Omenda,
1998). The topography is dominated by volcanic features mainly
steep sided rhyolite and pumice domes, fault scarps, fractures, and
the Ol Njorowa Gorge cutting across a purported buried caldera
(KenGen, 2004; Omenda, 1998). Annual rainfall is low recording a
mean of 634 mm (2000–2013) with a bi-modal pattern. The average
minimum and maximum monthly temperatures ranged from 15.9
to 17.8 ◦C, and 24.6 to 28.3 ◦C, respectively, for 2001–2012 (Barasa
et al., 2012). Annual predominant wind direction is from south and
south–south east (Fig. 1) (KenGen 2013, unpublished; Kollikho and
Kubo, 2001). The area is classified as semi-arid due to its porous soils
coupled with a high evaporation rate of 1000–1700 mm per year
(KenGen, 2004). Soils are of volcanic origin containing a mixture of
sands, clays and air fall pyroclastics with pumice. The study focused
on the surroundings of Olkaria I and II geothermal power plants,
which are approximately 3.7 km apart and located within the
precincts of the Hells Gate National Park (HGNP). Table 1 shows the
main features of the power plants based on available data. Human
settlement within the field is minimal due to its location within
the HGNP (area, 68.25 km2). The vegetation is mainly diverse types
of grassland and shrub land (Ogola, 2004) with Tarchonanthus cam-
phoratus L. covering extensive areas, occasionally interspersed with
Vachellia drepanolobium (Harms ex Sjöstedt) P.J.H.Hurter (Syn. Aca-
cia drepanolobium Harms ex Sjöstedt) and Vachellia xanthophloea
(Benth.) P.J.H.Hurter (Syn. Acacia xanthophloea Benth.) (KenGen,
2004). The shrub T. camphoratus is semi deciduous, usually multi-
stemmed (Young and Francombe, 1991) reaching 2–6 m height. The
stem group of the multi-stem forms is known as a clump and the
stem with the largest stem circumference and height is termed
main stem.
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Fig. 1. Location of the Olkaria geothermal area showing the study sites and sampling stations. Annual (July 2012–June 2013) wind rose of the area is also shown.

Table 1
Summary data of the two  power plants in the immediate vicinity of the study area. NL—Not in literature. There is no data on the emission rates of arsenic, boron and antimony
in  the air.

Power plant Total installed
capacity (Mwe)

Year of
commisioning

No. of connected
wells

H2S tonnes/yeara Arsenic
tonnes/yearb

Boron
tonnes/yearb

Mercury
grams/yearc

Olkaria I 45 1981, 1983 & 1985 19 426 13.1 10.3 4,027
Olkaria II 105 2003 & 2010 21 1,323 NL NL 19,212

a KenGen unpublished data, 2013.
b Simiyu and Tole (2000). The concentrations were assessed in condensed steam.
c Wetangula (2011).

2.2. Study design, sampling and field measurements

After a preliminary survey, two line transects running South
South East (SSE), upwind and North North West (NNW), downwind
from the cooling towers were established around each power plant
(Fig. 1). Along each transect, sampling stations were set up at 250 m,
1000 m and 4000 m distance from the cooling towers, twelve in
total (Fig. 1). In addition, one station was set up at a reference site
at Oldonyo Orasha in Narok at similar environmental conditions
68.3 km away South West (SW) of the study area. At each sampling
station, four 10 × 10 m plots with equal spacing (10 m) were estab-
lished for sampling along a 70 m sub-transect, perpendicular to the
main transect. At the reference site, a similar sampling design was
adopted. All field measurements and sampling were conducted in
February and March 2014.

In each plot, T. camphoratus abundance was determined by
counting clumps. Assessment of morphological traits and leaf sam-
pling was then performed on three clumps of T. camphoratus in each
plot, i.e. at the mid  central point and at the midpoint of each of the
two sides of the plot perpendicular to the sub transect. The total

number of stems in each clump was  counted. On the main stem of
each clump, stem height and circumference were measured. Stem
height was  determined using a demarcated rod while stem cir-
cumference was measured 30 cm off the ground (Oszlányi, 1997;
West and West, 2009; Young and Francombe, 1991). To assess
leaf damage, three leaf categories were established: (A) healthy
green leaves, (B) yellow deteriorating leaves, and (C) brown dry
leaves (dead). We chose the three leaf categories based on previ-
ous studies on the effects of the emitted elements on leaves and
own observations. For example, the symptoms of elevated boron
are manifest as yellowing (leaf category B), spotting or drying of
leaf tissues in older leaves at the tips and margins and as leaf dry-
ing and chlorosis with increased exposure that advances toward
the centre of the leaf (Ayers and Westcot, 1985; Tuyor et al., 2005).
We  categorized the early senescence as leaf category C and all these
foliar symptoms as chronic effects of leaf damage influenced by the
emitted geothermal elements. A leaf was categorized as B or C if
more than 50% of the leaf colour was  yellow or brown, respectively
(Fig. S1). The number of leaves on the third upper branch of the
main stem in each of three leaf categories was counted per clump.
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Wearing polyethylene gloves, ten leaves per category per clump
were randomly sampled from the same branch in each plot for the
determination of sulphur, arsenic, boron, mercury and antimony
concentrations. This branch was chosen, as it was high enough
to be exposed to atmospheric pollution. Due to limited chemical
analytical funds, all collected leaf samples for all plots per station
were pooled within each leaf category and thoroughly mixed. Ten
leaves were randomly sub-sampled to represent a single sample
for the station for each category. In total, 39 leaf samples for all cat-
egories (18 samples per transect around each Olkaria power plant
and three samples at the reference site) were packed in pre-cleaned
polythene bags for laboratory analysis.

The upper 0–10 cm layers of soil were sampled to determine
accumulation of airborne substances (modified from Bussotti et al.,
2003). A soil sample was taken at each of the three clumps within
a plot. Soil samples were pooled for each station and thoroughly
mixed. Three sub-samples were drawn out of the station pool for
analyses of sulphur, arsenic, boron, mercury and antimony concen-
trations. Total soil nitrogen, soil pH, and soil moisture, were also
determined in each of the three soil sub-samples to account for
possible influence of soil conditions on the variance of the plant
data.

2.3. Sample treatment and laboratory analysis

At the laboratory, leaf sub-samples were rinsed with distilled
water (three times), dried in an oven at 40 ◦C for 48 h to con-
stant weight and pulverized using agate mortars. All analyses
were carried out according to standard analytical procedures at
the internationally accredited Kenya Bureau of Standards (KEBs)
chemistry laboratory. The concentration of sulphur in leaves was
determined according to standard methods of the Bureau of Indian
Standards (1986) reaffirmed in 2003 using a Shimadzu 1700
series pharmaspec UV/VIS spectrophotometer. Concentrations of
other elements, i.e. arsenic, mercury, boron and antimony, were
determined according to procedures described and modified from
Hettipathirana (2011), and Vummiti (2015), using the Agilent 4100
MP-AES (Microwave Plasma Atomic Emission spectrometer). Ele-
ment concentrations were expressed as weight per dry weight of
sample in !g/g or !g/kg. Procedural blanks were below the min-
imum detection level. Accuracy was checked through analysis of
standard reference materials for soil (Montana soil) and leaves
(Tomato leaves) (National Institute of Standards and Technology,
Gaithersburg, MD,  USA), and better than 95% recoveries obtained.

The soil samples were dried at 40 ◦C for 48 h to constant weight,
and sieved through 2 mm and analysed for sulphur, arsenic, mer-
cury, boron, and antimony using the same protocols as for the
leaves. Total soil nitrogen was determined according to the Kjedahl
method described in Bureau of Indian Standards (2007) and ISO
(2012) using a FOSS Kjeltec 8400 series analyser. For soil pH, 5 g of
96 h air-dried and sieved soil were weighed into 25 ml  de-ionized
water, shaken for two hours and allowed to settle for 8 h before
measuring pH (Blakemore et al., 1987). Soil moisture was measured
as percentage weight reduction after oven drying 10 g fresh soil at
105 ◦C for 24 h to constant weight.

2.4. Statistical analyses

We  used the R software version 3.2.2 for all statistical analyses
(R Development Team, 2010). For visual assessment and explo-
ration of patterns in our plant concentration, soil concentration, and
plant trait data, respectively, we performed a Non-Metric Multidi-
mensional Scaling (NMDS) ordination in R (Oksanen et al., 2015).
Euclidean dissimilarity was used as a distance metric.

For each of the elements sulphur, arsenic, boron, and anti-
mony, we tested whether concentrations were different between

the different categories of leaves using a simple linear model. For
mercury, the concentrations in the plant tissues and soil were
below detection for all samples. Because the concentrations of
sulphur and arsenic did not significantly differ between leaf cat-
egories, we  treated them as replicates for the stations in further
statistical analyses. However, for boron and antimony concentra-
tion, the leaf categories A–C were significantly different and each
category was  separately analysed statistically. The concentrations
of sulphur, arsenic, boron, and antimony in plant leaves and soil
were analysed using linear models with distances from the power
plants (250 m,  1000 m and 4000 m),  location of the sampling sta-
tions (Olkaria I versus Olkaria II) and direction from the power
plants (i.e. SSE upwind and NNW downwind) as additive predictor
variables. To meet the model assumptions, sulphur and boron con-
centrations in leaves and sulphur, and arsenic concentrations in soil
were loge transformed. The model that had boron concentrations in
leaves as a response variable against the predictor leaf category was
loge (x + v) transformed, with (v) representing the smallest value
of boron concentration in leaves of the sampled data in order to
avoid negative values for samples that had concentrations below
the detection limit. For analysis of leaf and soil concentrations, the
soil variables, soil pH, soil nitrogen, and soil chemistry (sulphur,
arsenic, boron, and antimony concentrations), were included as co-
variates, one at a time, and then the best fitted model based on the
lowest AIC (Akaike’s Information Criterion) selected.

For the continuous morphological response variables (stem
height, stem circumference), we  fitted linear mixed effect mod-
els with the same predictor variables as in the linear models above
(distance, location, direction) and their interaction as fixed factors,
soil variables as co-variates, and sampling station and plots within
station as random factors (to account for spatial auto-correlation).
For the count data (shrub abundance, number of leaves per cat-
egory, and number of stems per shrub), generalized linear mixed
effect models with a Poisson distribution were fitted. The effect of
the interactions did not yield clear trends and were therefore not
included in the final models.

The Variance Inflation Factors (VIF) for all models was calcu-
lated to ensure no collinearity and according to Zuur et al. (2010),
only variables of VIF below 3 were preserved for the final models.
Further standard model diagnostics were used to check the resid-
uals (for normality) and control for outliers. The optimal model for
each response variable was  identified by selecting the lowest AIC
after running a series of model sub-sets. The final models chosen
were therefore reduced. The models were run using the functions
lm in the MASS package in R (Ripley et al., 2015) for linear mod-
els, lme  in the nlme package (Pinheiro et al., 2015) for linear mixed
effect models and lmer in the lme4 packages (Bates et al., 2014) for
the generalized linear mixed effect models. Lists of models and test
statistics used are presented in Tables S1a, b, S2, S3 and S4.

3. Results

Soil nitrogen content and soil pH were similar among the sam-
pling stations (Table S5). As expected, soil moisture was  more
variable as it is easily affected by recent rain events.

3.1. Element concentrations in T. camphoratus leaves

The leaf categories A–C were not significantly different for sul-
phur and arsenic concentrations (Table S1a, Fig. 2a, b), while boron
and antimony concentrations differed significantly. In the leaf cate-
gory B, the concentrations of boron and antimony were significantly
lower than leaf category A and C (Tables 2 and S1a). We could not
understand the implication as we had expected increased element
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Fig. 2. Concentration of sulphur and arsenic in T. camphoratus leaves at Olkaria compared to a reference site at 68300 m away (Ref.); (2a and b) in the leaf categories A–C
(horizontal grey bar represents the concentration range across the leaf categories at the reference site), (2c and d) at different distances from Olkaria I and II power plants,
(2e  and f) around the Olkaria I and II power plants, (2g and h) at different directions from Olkaria I and II power plants. Sulphur concentration: significantly different for
the  different distances compared to 250 m (t(32) = − 3.68 p = 0.001 for 1000 m and t(32) = − 3.71 p = 0.001 for 4000 m). Arsenic concentration: significantly different between
Olkaria I and II (t(28) = 5.91 p = 0.000 for Olkaria II), and between direction NNW and SSE (t(28) = 2.40 p = 0.023 for SSE). Detection limits, 0.83 mg/kg sulphur and 0.6 mg/kg
arsenic. n = 39.

concentrations in the leaf categories B and C over the leaf category
A.

The NMDS ordination revealed large variation in the overall
element concentrations in the leaves of T. camphoratus among
the sampling stations around Olkaria I and II (Table 2, Fig. 3a–c).
However, the elements responded differently to the predictors (dis-

tance, direction or location) and therefore the ordination pattern
was not clearly related to any of them (Table S1b).

The concentration of sulphur in leaves decreased with distance
from the power plants and was significantly higher at 250 m away
than at 1000–4000 m away (Table S1b, Fig. 2c). However, it did not
differ between the two  locations or directions (Fig. 2e, g). Arsenic
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Table 2
Concentrations of boron, antimony and mercury in T. camphoratus leaves and soil (dry weight), collected along transects at two power plants in the Olkaria geothermal area
in  Kenya (leaves n = 39, soil n = 13). Detection limits: boron 0.05 mg/kg, antimony 0.6 mg/kg and mercury 8.8 !g/g.

Olkaria I Olkaria II

Element Direction Distance (m)  Leaf A Leaf B Leaf C Soil Leaf A Leaf B Leaf C Soil

Boron (mg/kg) NNW 250 0.80 0.11 <0.05 2.27 2.93 <0.05 3.40 1.50
1000  2.08 0.29 4.78 0.67 0.18 0.30 2.34 2.27
4000  4.00 0.10 1.40 1.51 1.46 2.49 1.75 0.45

SSE  250 2.27 <0.05 2.75 2.29 <0.05 3.49 <0.05 0.94
1000  2.08 0.37 5.49 3.43 1.82 2.03 0.19 1.34
4000  2.77 0.00 2.17 2.15 2.11 2.49 1.75 1.71

Reference site Leaf A <0.05, Leaf B 0.10, Leaf C 0.09, Soil 1.01
Antimony (mg/kg) NNW 250 <0.6 <0.6 <0.6 12.25 19.70 <0.6 22.93 5.05

1000  20.92 <0.6 21.04 5.16 <0.6 8.14 21.84 4.74
4000 20.71 <0.6 20.78 8.66 21.35 19.10 17.50 <0.6

SSE  250 22.55 5.16 22.94 5.13 <0.6 19.01 <0.6 7.66
1000  17.57 13.48 18.11 9.08 18.78 19.78 <0.6 11.01
4000  14.81 <0.6 22.92 4.46 18.44 <0.6 17.70 5.32

Reference site Leaf A <0.6, Leaf B <0.6, Leaf C <0.6, Soil 11.24
Mercury (!g/kg) <8.8 <8.8

Reference site Leaf A <8.8, Leaf B <8.8, Leaf C <8.8, Soil <8.8

concentrations on the other hand were not affected by distance
(Fig. 2d), but were higher around Olkaria II than I (Fig. 2f) and higher
in SSE direction (upwind) than NNW (Table S1b, Fig. 2h). For boron
and antimony, their concentrations did not vary with our predic-
tors. The soil characteristics (co-variates) improved the models by
explaining significant variations for sulphur, arsenic, boron, and
antimony concentration in the leaves.

Across all sampling stations around the two  Olkaria power
plants, the concentrations of sulphur, arsenic, antimony and boron
in T. camphoratus leaves were generally higher than at the refer-
ence site (Table 2, Fig. 2a, b). This was also evident in the NMDS
plot that showed a clear separation of the reference site from the
power plant stations along the first ordination axis (Fig. 3a–c).

3.2. Element concentrations in soil

In general, the element concentrations were at lower levels in
the soil compared to leaves, indicating a bio-accumulation (Figs. 2, 4
and Table 2). However, similar to the leaves the elements responded
differently to the predictors, which was reflected in the ordination
of the overall element soil concentrations (Fig. 3d–3f).

Distance had a significant effect on soil concentration of sul-
phur, although in a non-linear way: it was highest at 1000 m
distance (Fig. 4a, Table S2). The co-variate soil pH was  significant
and accounted for some of the unexplained variation in sulphur
concentrations, improving the model (Table S2). The other two pre-
dictors, direction and location did not significantly affect sulphur
concentration (Fig. 4c, e, Table S2). Arsenic concentration in soil
was affected by location as in leaves, but was at higher levels at
Olkaria I than II, opposite to what was found in leaves (Fig. 4d,
Table S2). We  could not determine the causes for the differences as
arsenic concentrations in the leaves around Olkaria II did not vary
with distance to indicate an influence of the power plant. Distance
and direction did not affect arsenic concentration (Fig. 4b, f). The
concentrations of the other elements in soil were not significantly
affected by any of the predictors (Table S2).

Compared to the reference site, the highest soil concentrations
of sulphur, arsenic, and boron occurred at the Olkaria sampling sta-
tions, except for antimony (Fig. 4a, b, Table 2). Similar to the leaves,
this was reflected in the ordination of the overall element concen-
tration in soil where the reference site had lower scores along the
first axis than at all the transect stations (Fig. 3d–f).

3.3. T. camphoratus growth related morphometrics

Overall, the growth related plant traits varied considerably
around Olkaria I and Olkaria II, although with no clear dis-
similarity patterns along the ordination axes of the NMDS plot
(Fig. 3g–i). Abundance was  the only plant trait that showed signif-
icant response to the any of the predictors and was higher upwind
(SSE) than downwind (NNW) from the power plants (Fig. 5, Tables
S3 and S4) and it even exceeded the abundance at the reference
site.

Further comparisons to the reference site showed a generally
smaller number of category A leaves (healthy) by 43% and 24%
smaller stem circumferences around the power plants (Table 3,
Fig. 5).

4. Discussion

Within a geothermal area, trends in element concentrations
over an increasing distance from the source (power plants), will
provide the strongest indication of potential emission input to the
surrounding ecosystems. Our most significant findings provided
some support for the overall hypothesis. The relatively high levels
of sulphur in leaves close to the power plants that decreased with
distance away, and the generally higher concentrations of some of
the elements in leaves and soil around the power plants than at
the reference site in combination with lower number of healthy
leaves and smaller main stem circumference, all provide an indi-
cation of an influence of geothermal power plant emissions on the
ecosystems in their vicinity.

The strong pattern of accumulated sulphur concentration in
leaves suggests atmospheric input of this element with the nearby
geothermal power plants as a source (in H2S gas form). Studies
in the Mediterranean in which lichens, mosses, and forest trees
were used as bio-monitors of geothermal air pollution (Baldi, 1988;
Bargagli et al., 1997; Bussotti et al., 2003; Loppi et al., 1998; Paoli
and Loppi, 2008) showed similar trends of decreasing sulphur con-
centrations in plant tissues with distance away from power plants.
Similar to the findings of Bussotti et al. (2003), the higher con-
centrations of most elements in plant leaves than in the soil in
this study indicate foliar accumulation from atmospheric deposi-
tion. On the other hand, the higher arsenic concentration in soil
than in the leaves points to its potential origin from other sources
besides atmospheric deposition. The same argument may  apply
for the other elements which did not show clear trends and var-
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Fig. 3. Nonmetric multidimensional scaling of (3a–c) sulphur, arsenic, boron and antimony concentrations in plant leaves, (3d–f) sulphur, arsenic, boron and antimony
concentrations in soil and (3g–i) the various plant traits measured.

ied widely between locations and directions. These other sources
may  include surface discharge of geothermal fluids (either from
natural discharges, drilled and well tests fluids or a combination
of all) which contain various geothermal elements. The elements
interact with the recipient ecosystem components such as soil and
plants and may  bio-accumulate, e.g. as shown in Simiyu and Tole
(2000), where elevated element concentrations occurred in soil and
plants in contact with geothermal waters (both natural discharges
and drilled fluids) at the Olkaria geothermal field. Other environ-
mental factors such as the varying bedrock in the volcanic active
surroundings (see Fig. 1) may  contribute to the high and varying

concentrations of elements of volcanic origin in the soil which can
have chronic effects on plants (Davies, 2008).

There were no clear indications of the effect of the prevailing
wind in element deposition. A proper evaluation of the effect of
the wind may, however, be difficult owing to the closeness of the
power plants. The effect of different output capacities of geother-
mal  power plant emissions on the plants and soil in the immediate
vicinity was not clear. Such a question can better be explored using
experimental studies such as those in Thompson and Kats (1978)
and Maas et al. (1987). With regard to the effect of these emissions
on the plant traits, our findings showed a weak indication of harm-
ful effects of the geothermal power plants on the dominating shrub



156 T.M. Mutia et al. / Geothermics 61 (2016) 149–159

Fig. 4. Concentration of sulphur and arsenic in soil at Olkaria compared to a reference site at 68300 m away (Ref.); (4a and b) at different distances from the power plants,
(4c  and d) around the Olkaria I and II and (4e and 4f) at different directions from Olkaria I and II power plants. Sulphur concentration: significantly different between the
distances 250 m and 1000 m (t(7) = 2.17 p = 0.052 for 1000 m).  Arsenic concentration: significantly different between the locations Olkaria I and II (t(9) = − 2.70 p = 0.024 for
Olkaria II). Detection limits, 0.83 mg/kg sulphur and 0.6 mg/kg arsenic. n = 13.

Table 3
Various plant traits (mean ± SE, n = 156) of T camphoratus around Olkaria I and Olkaria II geothermal power plants in Kenya. The units for each leaf category count is number
of  leaves per branch (as defined in methods).

Location Direction Distance (m)  Main stem height (m)  Main stem circumference (cm) No. Leaf A No. Leaf B No. Leaf C

Olkaria I NNW 250 2.50 ± 0.19 12.20 ± 1.54 120.00 ± 33.94 1.00 ± 0.66 2.00 ± 0.97
1000  4.00 ± 0.31 18.20 ± 2.11 96.00 ± 18.79 2.00 ± 0.71 3.00 ± 0.59
4000  4.60 ± 0.24 26.00 ± 2.56 56.00 ± 12.39 1.00 ± 0.38 3.00 ± 1.29

SSE  250 4.90 ± 0.30 29.00 ± 2.13 54.00 ± 8.45 2.00 ± 0.65 2.00 ± 0.66
1000  4.60 ± 0.29 28.80 ± 2.99 59.00 ± 8.33 1.00 ± 0.51 2.00 ± 0.92
4000  3.50 ± 0.27 15.60 ± 1.47 71.00 ± 11.19 2.00 ± 0.34 4.00 ± 1.22

Olkaria  II NNW 250 5.40 ± 0.39 36.30 ± 3.13 63.00 ± 8.86 1.00 ± 0.58 4.00 ± 1.30
1000  5.20 ± 0.48 31.70 ± 3.71 52.00 ± 11.04 1.00 ± 0.23 3.00 ± 1.44
4000  3.50 ± 0.29 18.90 ± 2.53 92.00 ± 15.66 3.00 ± 0.64 2.00 ± 0.78

SSE  250 4.30 ± 0.36 26.50 ± 3.59 70.00 ± 20.67 1.00 ± 0.65 2.00 ± 0.91
1000  4.00 ± 0.22 18.60 ± 1.00 61.00 ± 9.67 1.00 ± 0.26 3.00 ± 0.90
4000  4.60 ± 0.17 24.90 ± 1.00 70.00 ± 7.95 2.00 ± 0.56 6.00 ± 1.37

Reference site 68300 4.40 ± 0.25 31.00 ± 3.13 127.00 ± 22.93 1.00 ± 0.44 2.00 ± 0.89

species when compared to a reference site. Although plant traits
may  not only be affected by the geothermal power plant emissions

but also other unforeseen environmental conditions such as soil
characteristics, which accounted for some variation in our models.
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Fig. 5. The abundance (number of shrubs per plot) and number of stems per clump of T. camphoratus compared to a reference site at 68300 m away (Ref.); (5a and b) at
different  distances from the power plants, (5c and d) around the Olkaria I and II power plants, (5e and f) at different directions from Olkaria I and II power plants. Abundance:
significantly different between the directions NNW and SSE (z(139) = 2.58 p = 0.009 for SSE). n = 156.

Bussotti et al. (1997) explain that these natural fluctuations can to
a larger extent conceal the effects caused by the power plants.

We  can imply that T. camphoratus is not affected by the mea-
sured element levels. The sulphur levels in the plant leaf tissues
seem to be within its nutrition benefits and the concentrations of
the other elements within its toxi-tolerance limits. However, it is
important to be aware that plants can accumulate components in
their foliage and not instantly result in plant health deterioration
(Bussotti et al., 2003). In forest ecosystems for example, the effects

may  be manifested through foliage shedding and accumulation on
the forest floor consequently affecting soil biota, decomposition
rates and nutrient cycling (Ferretti, 1997). Various tree species,
however, adopt toxi-tolerance by regulation and physiological
adaption mechanisms. Nonetheless, such tolerance responses are
costly for the plants and long-term stress leads to their weakening,
resulting in the destruction of their mechanisms (Oszlányi, 1997).
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5. Conclusions and recommendations

The emissions from the geothermal power plants at Olkaria,
which have been in operation for over a decade, have not had an
apparent effect on the dominating plant T. camphoratus. However
we do recommend improved studies on other organisms to assess
if effects do emerge, preferably using sensitive ecosystem com-
ponents, such as lichens, mosses, grasses, herbs or soil microbes
(Baldi, 1988; Bargagli et al., 2002; Loppi et al., 1998; Storelli, 2013;
Zouboulis et al., 2004). Additional plant responses such as flow-
ering and recruitment of new plants, photosynthesis, growth and
leaf production can be assessed and related to variables associated
with the power plant emissions. Concentrations of the elements
sulphur, arsenic, boron, antimony and mercury in the steam, air
and precipitation around the power plants need to be determined
to support these studies. Moreover, a pattern study like this needs
to be supported by experimental studies especially to closely assess
the effects on plant growth. The findings of this study are important
in informing such future studies and will advise the public, pol-
icy/decision makers and guide mitigation of environmental impacts
related to geothermal power plants.
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Abstract 

Amid the globally accelerated plans to increase geothermal energy 

utilization, knowledge on ecological responses to power plant emissions 

is limited. We attempted to answer the question whether emitted elements 

from geothermal power plants in Iceland are deposited in both plants and 

soil with consequences for plant health. The moss Racomitrium 

lanuginosum was used as a bio-indicator, a dominating plant in our study 

areas. Concentrations of sulphur, arsenic, boron, antimony, and mercury 

in soil and shoots of R. lanuginosum, were analysed, and growth and 

other moss characteristics (moss damage, physiology and mat depth) 

assessed at different distances and directions from two geothermal power 

plants, Hellisheidi (303 MWe, operated since 2006) and Nesjavellir (120 

MWe, operated since 1996).  

Higher concentrations of these elements were detected around Hellisheidi 

than Nesjavellir. Sulphur, antimony, and mercury concentrations in moss 

decreased with increasing distance from the power plant around 

Nesjavellir. Similar trends for sulphur and antimony followed in soils. At 

Hellisheidi, element concentrations in moss and soil generally increased 

with distance, but their patterns with direction in relation to prevailing 
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winds were not clear. Moss growth and characteristics showed stronger 

positive growth responses at Hellisheidi than Nesjavellir. At Nesjavellir, 

values of moss response variables increased with increasing distance 

away while at Hellisheidi trends were non-linear. Frequency of moss 

damage was quite low around both power plants. The results, compared 

to a reference area away from geothermal activity, showed much higher 

element concentrations in moss and soil at the study area than the 

reference area, except for sulphur and mercury in soil. Biomass gain was 

higher at the reference area than at the study areas. We conclude that 

sulphur emissions from the geothermal power plants are depositing in 

moss within the surroundings which may affect moss growth at high 

levels. The pattern of trace element (As, B, Sb and Hg) concentrations in 

plants and soils around the power plants did not show a significant 

contribution of the elements from the power plants. However, monitoring 

of potential environmental effects is advised. We recommend future 

experimental studies to assess effects of sulphur in detail for appropriate 

mitigation.  

Keywords: Racomitrium lanuginosum, Nesjavellir, Hellisheidi, moss 

growth, geothermal power plants, emissions. 
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Introduction 

Today, exploitation of geothermal energy, where available, is 

increasingly preferred over nuclear and fossil fuels for power production. 

This is owing to its relatively clean and reliable nature. However, like the 

development of any other energy source, some environmental impacts are 

expected. These include among others, surface disturbance and 

atmospheric pollution (Kristmannsdóttir and Ármannsson, 2003). 

Mitigation efforts need to be based on solid research, but so far only very 

few studies have been performed to address environmental impacts of 

geothermal power plants in general and impacts of geothermal emission 

in particular (e.g. Bargagli et al., 1997; Bussotti et al., 1997; 

Kristmannsdóttir and Ármannsson, 2003; Rybach, 2003; Kömürcü and 

Akpınar, 2009; Bayer et al., 2013). 

Emissions from geothermal power plants involve the release of a range of 

gaseous compounds and elements that are not condensed at operating 

temperatures and pressures, i.e. non-condensable gases (NCGs). The 

NCGs content varies extensively between power plants depending on the 

resource, often in the range of 0.2% to 2% by weight, and up to over 

25%, in rare cases (Ozcan and Gokcen, 2009b; Rodríguez, 2014). 

Generally, the NCGs comprise 73 - 98% w/w carbon dioxide, 1 - 24% 

w/w hydrogen sulfide, 0.02 - 0.65% w/w methane, 0.1 - 8% w/w 

hydrogen, 0.3 - 16% w/w nitrogen, 0.1 - 3% argon, and traces (<0.001% 

w/w) of radon, boron, mercury, arsenic, antimony, and ammonia in 

gaseous and dissolved form (Axtmann, 1975; Baldi, 1988; Bargagli et al., 

1997; Loppi et al., 1998; Gunerhan, 1999; Loppi, 2001; Bussotti et al., 

2003; Rodríguez, 2014). Some of these gases and elements have been 

reported to deposit and accumulate in the immediate environment of 

geothermal power plants with several ecological implications (Loppi and 

Bonini, 2000; Mutia et al., 2016).  

The effects on human health of hydrogen sulphide and trace elements that 

may be found in geothermal power plant emissions (Bargagli et al., 1997; 

Bussotti et al., 1997) and volcanic activities (Hansell and Oppenheimer, 

2004; Davies, 2008) i.e. arsenic, boron, antimony and mercury in gaseous 

and dissolved form, are fairly well documented, with indications of 

potential harm at elevated concentrations (Hansell and Oppenheimer, 

2004; Davies, 2008; Finnbjornsdóttir et al., 2015). It is likely that the 

effect of high levels of geothermally emitted elements may also be 

hazardous to the natural ecosystems, cause toxicological stress on plant 
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and animal life and affect ecosystem functions (Bargagli et al., 1997; 

Kristmannsdóttir and Ármannsson, 2003). However, data on the 

ecosystem impacts are still scanty and limited to a few studies in Italy 

and Kenya (Bargagli et al., 1997; Bussotti et al., 2003; Mutia et al., 

2016).  

Elevated levels of the emitted elements in plants (including mosses) and 

lichens have been reported near geothermal power plants, that decrease 

with increasing distance away both in Italy (Baldi, 1988; Bargagli et al., 

1997; Loppi et al., 1998; Loppi, 2001; Bargagli et al., 2002; Bussotti et 

al., 2003) and Kenya (Mutia et al., 2016), suggesting geothermal power 

plant origin. These studies suggest that elements originating from 

geothermal power plants can accumulate in plants. Studies on the effects 

of the emitted elements have mainly focused on vascular plants, while 

knowledge of their effects on non-vascular plants, such as mosses, is 

more limited.  

In plants, H2S gas can be an important contributor of the macro-nutrient 

sulphur, which is essential for plant growth and metabolism. However, in 

excess, sulphur can cause detrimental effects to plants (Linzon et al., 

1979; Bussotti et al., 2003). In vascular plants, excess sulphur levels, for 

example from H2S gas emissions, have been reported to cause foliar 

injury manifested as necrosis, lesions, loss of leaf area and defoliation 

(Thompson and Kats, 1978; Bussotti et al., 2003). Further, long term 

exposure to H2S gas leads to leaf chlorosis, decreased plant growth and 

increased senescence (Thompson and Kats, 1978; Varshney et al., 1979; 

WHO, 2000).  

Similarly, higher concentrations of trace elements affect growth and 

metabolism in plants (Kabata-Pendias, 1992; Nagajyoti et al., 2010). For 

instance, elevated concentrations of arsenic and mercury can induce 

physiological disorders in plants. Higher concentrations of arsenic can 

affect metal sensitive enzymes in plants and lead to growth inhibition and 

death (Nagajyoti et al., 2010). The ionic form of mercury (mercuric ion: 

Hg
2+

)
 
can bind to water channel proteins, thus causing leaf stomata to 

close resulting in physical obstruction of water flow in plants (Nagajyoti 

et al., 2010). Further, high levels of Hg
2+

 can also disrupt bio-membrane 

lipids and cellular metabolism in plants (Nagajyoti et al., 2010). For high 

boron concentrations, typical macroscopic symptoms include leaf burn 

and chlorosis and/or necrotic patches mostly at the margins and tips of 

older leaves that lead to reduced plant growth, loss of leaf area and 
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decreased carbon dioxide gas fixation amongst a wide variety of plant 

species (Eaton, 1944; Bergmann, 1992; Bennett, 1993; Nable et al., 

1997). Antimony as well has deleterious effects to plants at higher 

concentrations. For example, in a study by Vaculík et al. (2015), high 

antimony concentrations (in the oxidation state: antimonite) in young 

sunflower plants (Helianthus annuus L.) related to reduced plant growth 

and photosynthesis.  

Since mosses are more sensitive to atmospherically deposited pollutants 

than vascular plants, we can expect them to be more severely affected. 

For example, studies by Tallis, (1964a) suggested atmospheric pollution 

as the probable cause of the virtual disappearance of the Sphagnum moss 

species from the bog vegetation of the southern Pennines, Northern 

England. A later study (Ferguson et al., 1978) that assessed vegetation 

changes for the same area through laboratory experiments revealed the 

sensitivity of Sphagnum moss species to Sulphur pollutants; growth of 

Sphagnum recurvum was reduced up to 35% on exposure to 40.51 mg/l 

(0.5mM) bisulphite. Previous studies on R. lanuginosum also indicate 

that it is affected by increased deposition of atmospheric pollutants such 

as sulphur (Woodin and Farmer, 1993) and nitrogen (Pearce and Van der 

Wal, 2008). Although growth may be initially stimulated, high loads may 

damage the moss. There are however limited studies that have addressed 

the impact of geothermal emissions on growth and functioning of mosses.  

In subarctic Iceland, the contribution of geothermal energy has since the 

twentieth century been important in the primary energy supply. Today 

2,040 MWth is used directly by a greater part of the population in various 

ways, such as space heating (Ragnarsson, 2015). The use of geothermal 

energy for electricity production began 45 years ago and rapidly 

increased the last 15 years to reach a 29% share in electricity production, 

with a total installed capacity of 663 MWe (Ragnarsson, 2015). An 

additional 12% increase of the total installed geothermal electric power is 

targeted by the year 2020 (Ragnarsson, 2015). With all the planned 

developments, it is consequently important to fill the knowledge gap on 

the ecosystem impacts of the geothermal power plants.  

The Hengill geothermal power plants: Hellisheidi and Nesjavellir (Table 

1), located in Southwest Iceland, contribute a larger share of geothermal 

power to the economy of Iceland than other geothermal power plants in 

the country (Ragnarsson, 2015). Average emissions from the Hengill 

geothermal power plants NCG content have been reported as 73% carbon 
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dioxide w/w, 25% hydrogen sulphide w/w, 1% hydrogen w/w and 0.2% 

methane w/w respectively for the period 2011 – 2013 (Sigurdardóttir and 

Thorgeirsson, 2015). However, only the emissions of hydrogen sulphide 

gas have been measured from the power plants, while those of trace 

elements i.e. arsenic, boron, antimony and mercury, either in gaseous and 

dissolved form, from the power plants are not yet determined. To assess 

the impact of Hengill geothermal power plants on terrestrial ecosystems, 

we refered to the Italian geothermal power plants emission studies that 

have revealed evidence of trace element emissions i.e. arsenic, boron, 

antimony and mercury, from geothermal power plants and deposition in 

plants within the vicinity of the power plants (e.g. in Bargagli et al., 

1997). As there is no data for trace elements emissions from the Hengill 

geothermal power plants, we predicted similar signatures of trace 

elements emissions and deposition from the Hengill geothermal power 

plant as those of the Italian studies.  

Extensive and thick carpets of the moss Racomitrium lanuginosum 

dominate the landscape in the vicinity of the geothermal power plants in 

Southwest Iceland. In some areas around the power plants in Iceland, 

damage has been observed on the moss carpet (Bragason and 

Yngvadóttir, 2009; Helgadóttir, et al., 2013). So far the cause of these 

damages has not been established, but elevated concentration of sulphur, 

boron and arsenic has been reported in moss in the area that may be 

related to the power plant emissions (Bragason and Yngvadóttir, 2009; 

Magnússon, 2013). To ensure sustainable development of geothermal 

power plants in Iceland, the relationships between elevated element 

concentrations on one hand and moss growth and observed moss damage 

on the other needs to be established.  

The aim of this study is to investigate these relationships by providing 

information on the ecosystem accumulation of elements emitted from two 

geothermal power plants at the Hengill geothermal field in Southwest 

Iceland, Hellisheidi and Nesjavellir. We hypothesized that the elements 

emitted would be deposited and enriched in both plant tissue and soil 

around the power plants with consequences for plant health. To test the 

hypothesis, we assessed chemical compositions of the soil and the 

dominating moss species, Racomitrium lanuginosum (Hedw.) Brid., at 

different distances along transects in the prevailing wind direction, an 

important factor in the dispersion of atmospheric pollutants around the 

power plants (Ólafsdóttir et al., 2014a). We assessed plant health by 

measuring moss growth, moss mat depth and chlorophyll concentration. 
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We targeted this plant species due to its widespread distribution, 

dominance and sensitivity to atmospheric contaminants. The results were 

compared with a reference area away from any geothermal activity.  

Materials and Methods  

Study area and species 

The Hengill geothermal area (110 - 115 km
2 

(Franzson et al., 2010)) is 

located in the southern part of the western volcanic zone of Iceland and 

has no human settlement (Fig. 1). Two geothermal power plants are 

located 10 km apart on either side of Mt. Hengill, i.e. Nesjavellir (180 m 

a.s.l.) to the north in a small valley surrounded by low ridges, and 

Hellisheidi (260 m a.s.l.) to the south with Mosfellsheidi heath sloping 

toward the capital area, Reykjavik, in the west. Table 1 shows the main 

features of the power plants. The study area extends 4000 m from each of 

the two power plants (Fig. 1). The topography consists of variable 

volcanic features and surface geothermal manifestations; primarily pillow 

lavas and hyaloclastites, eruptive fissures, faults, fractures, basaltic 

volcanic rocks of various kinds, and fumaroles (Björnsson et al., 1986). 

The mean annual temperature (2011–2015) is 2.4°C at Hellisheidi and 

2.1 °C at Nesjavellir (as measured at Hellisskard, approximately 3.76 km 

NW of Hellisheidi and 9.99 km SE of Nesjavellir geothermal power 

plants), with an average annual (2011–2015) precipitation of 2,400 mm at 

Hellisheidi and 2,800 mm at Nesjavellir (Icelandic Meteorological 

Office, unpublished 2016; Aradóttir, 2012). Prevailing winds are from 

the east (Icelandic Meteorological Office, unpublished data 2015), thus 

the potentially main receptor areas of the power plant emissions are to the 

west of the power plants. H2S emission data from each power plant is 

presented in Table 1. We however point out that the average annual H2S 

gas emission from each of the two power plants is similar for the years 

2007 - 2015 (Table 1). Despite the differences in the power plants 

electricity output, we had anticipated the Hellisheidi geothermal power 

plant to emit much more H2S gas (due to its big plant size) than 

Nesjavellir. However, the comparable H2S gas emission levels between 

the two power plants may be due to the ongoing efforts of the geothermal 

power developer (Reykjavik Energy) that have contributed a 25% 

decrease in H2S gas emissions from the Hellisheidi power plant 

(Juliusson, 2016). This is being done through gas re-injection (H2S and 

CO2) and sequestration as minerals in nearby, subsurface basaltic 

formations. Technical details of the process are explained in Gunnarsson 

et al., (2013); Juliusson et al., (2015); Aradóttir et al., 2015).  
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Figure 1. Location of the Hellisheidi and Nesjavellir geothermal power 

plants and the sampling stations along the east and west transects. 

Annual average (January 2001–December 2012) wind rose of the area is 

also shown (Icelandic Meteorological Office, Unpublished 2015). The 

extensively damaged areas around the power plants are shown as HP-ER 

for Hellisheidi and NP-ER for Nesjavellir.  
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Table 1. Summary data of the two power plants within the study areas. 

There is no data available on the emission rates of arsenic, boron, 

antimony and mercury in the air. 

1
Averages for the years 2007 – 2015, (Sigurdardóttir and Thorgeirsson, 

2015).  
2
Averages for the years 2013 – 2015, (Reykjavik Energy unpublished 

data, 2016). 

Soils in the area are volcanic and commonly Brown and Gleyic Andosols 

and Leptosols (Arnalds, 2015). The vegetation mainly comprises moss 

heaths dominated by the moss Racomitrium lanuginosum on the lava 

fields, intersected by grassland and dwarf shrub heath vegetation in 

depressions and along rivers and ponds (Aradóttir, 2012).  

Like most other moss species, R. lanuginosum lacks roots and a vascular 

system, it highly relies on atmospheric sources for nutrients and does not 

shed plant parts as easily as vascular plants (Dilks and Proctor, 1979; 

Nash and Wirth, 1988; Loppi and Bonini, 2000; Proctor, 2001). Mosses 

are therefore good indicators in assessment of atmospheric pollution 

(Loppi and Bonini, 2000) and are used as bio-monitors in documenting 

relative spatial and temporal deposition patterns of contaminants (Nash 

and Wirth, 1988; Harmens et al., 2015). The growth of R. lanuginosum is 

slow but variable, ranging between 5 and 15 mm per year (Tallis, 1964b; 

Jónsdóttir et al., 1995), and highly depends on the prevailing 

environmental factors (Armitage et al., 2012). 

Study design, sampling and field measurements 

The study design was based on a long-term on-going monitoring program 

by the Icelandic Institute of Natural History (IINH) of the impact of 

emissions from the Hellisheidi and Nesjavellir geothermal power plants 

on the surrounding moss heath (Helgadóttir, et al., 2013). Our study thus 

provides baseline information on ecosystem accumulation of emitted 

compounds and elements. To test our main hypothesis two transects were 

chosen in September 2013, based on the prevailing wind direction, i.e. 

one upwind (E) and the other downwind (W) from the cooling towers of 

the power plants, slightly modified by topographical features and future 

geothermal expansion plans (Fig. 1). Sampling stations were chosen 
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along each transect at increasing distances from the geothermal power 

plants, at 250 m, 1000 m and 4000 m from the cooling towers, 6 stations 

per power plant, 12 in total (Fig. 1). The stations were located on convex 

lava ridges, exposed to wind and dominated by thick (at least 10 cm) and 

dense moss mats of R. lanuginosum. As such, they provide favorable 

growing conditions for R. lanuginosum because this species does not 

favour deep snow. Due to the topography of the area, the sampling 

stations varied in altitudes, between 138 m and 420 m above sea level. At 

each sampling station we systematically sampled along a 20 m sub-

transect perpendicular to the main transect. Ten 10x10 cm squares were 

marked at 2 m intervals along these sub-transects.  

At each 10x10 cm square moss damage was scored (brown or black 

colour) to obtain the frequency of damage for each station and the depth 

of the moss mat was measured to the nearest mm at the four corners and 

the mid-point of the square, from the moss surface to the moss-soil 

interface and the mean depth calculated. The growth rates i.e. shoot 

length increase and biomass increase were measured for the moss in three 

of the squares (at 0 m, 10 m and 18 m, in total 36 sampling points) for ten 

months (method description below). Upon completing all the in situ moss 

measurements in June 2014, moss samples were collected at each square 

for analysis of the concentrations of chlorophyll, sulphur, arsenic, boron, 

antimony and mercury. The moss samples were immediately stored in 

dark bags to preserve the chlorophyll content. The uppermost 10 cm layer 

of soil was also sampled beneath each moss sample, in order to determine 

primary accumulation of airborne substances (modified from Bussotti et 

al. (2003)) and for determination of some soil characteristics: pH, 

moisture, total carbon, and total nitrogen. These characteristics were 

considered as other environmental factors that could affect soils and 

ultimately plant health and were included in our statistical models as co-

variables. 

Additional sampling areas 

To investigate if damaged moss patches (brown or black in colour) had 

higher concentrations of the emitted elements than healthy looking moss 

(a potential cause of their damage), we conducted a targeted systematic 

sampling at each of the sampling stations, where the first five damaged 

moss patches encountered along the sub-transect were sampled. In those 

patches we measured moss mat depth and chlorophyll concentrations, 

and took moss and soil samples to analyse for sulphur, arsenic, boron, 

antimony and mercury concentrations (60 sampling points in total).  
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Two additional areas close to the power plants (approximately 100 m
2
 

each) were surveyed (at 267 m and 830 m NNW of the cooling towers at 

Nesjavellir and Hellisheidi, respectively), characterised by mats of 

extensively damaged moss (mainly brown and black moss). At 

Nesjavellir the damage may originate from the early operational years of 

the power plant, when hot emissions were ejected using lower chimneys 

than cooling towers (Einar Gunnlaugsson- Reykjavik Energy pers. 

comm. 2016), and is therefore probably related to combined thermal and 

emission pollution. At Hellisheidi, overflows of spent geothermal fluid 

were suspected to have been the cause in combination with thermal and 

emission pollution (Einar Gunnlaugsson- Reykjavik Energy pers. comm. 

2016). Moss mat depth measurements and moss and soil samples were 

collected at 10 points along 20 m transects as described above.  

A reference area outside the influence of the power plant emissions was 

chosen for comparison at Raudhalsahraun (22.2640 W 64.8483N, 331 

m a.s.l), 99 km away NNW of the study area. The area is well outside the 

influence of the power plant emission. The mean annual precipitation and 

temperature is 1,181 mm (measured at Hítardalur, approximately 11.5 km 

SE of Raudhalsahraun) and 5C (measured at Hafursfell, 12.9 km WSW 

of Raudhalsahraun) for the years 2011 – 2015 (Icelandic Meteorological 

Office, unpublished data 2016). In a similar way to the sampling design 

above, measurements were collected along a 20 m transect (ten 10x10 cm 

squares at 2 m intervals, moss growth in 3 squares). 

Finally, in July 2014 we had the opportunity to sample moss and soil in 

the high Arctic Svalbard well out of range of both geothermal activity 

and volcanism. We selected an area (165 m
2
) at Skansenbukta (N 

78.51881 E 016.00052), central Svalbard, that was dominated by R. 

lanuginosum. The mean annual precipitation and temperature at the 

closest meteorological station (Svalbard Lufthavn) for 2011 – 2015 were 

499.34 mm and -2.6 C, respectively. Six moss and soil samples were 

collected following the same protocol described above. All samples were 

transported to the laboratory for processing. 

For ease of reference, we grouped our data sets into five, i.e. systematic 

sampling area (for the overall hypothesis), damaged moss patches areas, 

reference area, the extensively damaged areas and Svalbard.  
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Moss growth measurements 

Moss growth was measured at three sampling points within the 

systematic sampling stations and at the reference area by transplanting 

trimmed shoots into the moss mats (Jónsdóttir et al., 1999; Armitage et 

al., 2012). Fresh moss shoots longer than 30 mm were removed from 

mats of R. lanuginosum collected at the Raudhalsahraun area (reference 

area). For each sampling point, 39 in total (three at each sampling station 

along each transect and power plant plus three at the reference area), 

twenty moss shoots were trimmed to 30 mm length. Ten of these shoots 

were weighed (fresh weight) and placed in a tagged open-ended netlon 

bag as described in Armitage et al. (2012) and carefully inserted into the 

moss mat at the sampling point in September 2013 (t0), held in place 

using plastic coated wire prongs. The other ten shoots were used to 

determine the ratio between fresh and dry weight (after drying to a 

constant weight at 70°C) and calculate the dry weight of the transplanted 

shoots (Jónsdóttir et al., 1999). The transplanted shoots were left in situ 

for 10 months, until June 2014 (t1). Shoot growth was measured as shoot 

length increase in excess of the original 30 mm and as biomass increase. 

The transplanted shoots were dried at 70°C to obtain the dry weight at 

time t1. Biomass increase was calculated by subtracting the calculated dry 

weight at time t0 from the dry weight at time t1. Shoot length increase was 

estimated from each of the ten shoots per bag and biomass increase was 

calculated collectively for the ten shoots per bag. ‘Shoot turnover’ for the 

ten months was estimated for three squares along the 20 m transect at 

each station (at 0 m, 10 m and 18 m: same position as for the shoot length 

increase measurements) as the proportion of moss mat depth comprising 

of the last ten months’ growth: [Mean growth (in mm) / mean moss depth 

(mm)] × 100 = shoot turnover (%). This measure gives an indication of 

the relative rate of shoot biomass turnover, on the assumption that the 

moss mat remains in a steady state with uniform rate of compression as 

moss material decomposes and buries within the mat (Armitage et al., 

2012). 

Sample treatment and laboratory analysis 

Each moss sample was split into two, one for chlorophyll analysis and the 

other for sulphur and trace element analysis. For all samples, up to 3 cm 

of the shoot apices were removed, washed in distilled water and dried at 

room temperature in the dark.  
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For the chlorophyll determination, each sample was milled, weighed and 

split into two sub samples. One for chlorophyll content analysis and the 

other sample for dry weight determination (after oven drying to a 

constant weight at 70°C for 24 hours), so that samples used for 

chlorophyll analysis were not exposed to high temperature and possible 

break down of chlorophyll. Then, 10 ml of 96% ethanol was added to 0.5 

g of each sample and the mixture hand shaken for 15 seconds. The 

samples were then covered by aluminum foil to prevent light exposure 

and allowed to stand for 24 hours at 6°C in darkness and centrifuged for 

10 min at 1000 revolutions per min. 3.5 ml samples were extracted and 

transferred to 4 ml cuvettes for analysis (modified from Sumanta et al., 

2014). Light absorbance at wavelengths of 750 nm, 663 nm and 652 nm 

was measured by a spectrophotometer (HACH LANGE UV Visible 

Spectrophotometer, DR 5000) at the Institute of Freshwater Fisheries in 

Iceland. Chlorophyll content in mg/g dry weight was calculated 

according to Arnon, (1949). 

For sulphur and trace element analyses moss samples were oven dried at 

40°C for 48 hours to constant weight and pulverized using agate mortars. 

The concentrations of sulphur, arsenic, boron, antimony and mercury 

were analysed using standard analytical procedures at the internationally 

accredited ALS Scandinavia labs in Luleå, Sweden. Prior to analysis, 

samples were acid digested (in 5 ml conc. HNO3 + 0.5 ml 30% H2O2) in 

closed teflon containers in a microwave. Element analyses were 

conducted using an Element 2 ICP MS. The analyses were carried out 

according to (modified) USEPA methods 200.8 (U.S.EPA, 1994) and SS 

EN ISO 17294 parts 1 (ISO, 2005) and 2 (ISO, 2003).  

Soil analysis was done on samples that were pooled and thoroughly 

mixed for each sampling station; three sub-samples were drawn out of 

each pooled sample. Each soil sample was then split into two, one for the 

analysis of sulphur, arsenic, antimony, boron and mercury, and the other 

for analysis of soil characteristics i.e. total carbon (% C), total nitrogen 

(% N), pH and moisture. The soil samples were dried at 40°C for 48 

hours to constant weight, sieved through 2 mm and analysed for sulphur, 

arsenic, antimony, boron and mercury using the same protocols as for the 

moss shoots. Total elemental carbon and nitrogen was determined on 

ball-milled soil samples (<0.1 mm), dried at 50°C for 24 hours, using the 

Flash 2000 Elemental Analyser (Thermo Scientific, Italy). For soil pH, 

soil solution was extracted from 5 g (<2 mm) of 96 hours air-dried soil in 

25 ml de-ionized water, by shaking it for two hours and allowed to settle 
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for 8 hours before measuring pH (Blakemore et al., 1987). Soil moisture 

(%) by mass was obtained after oven drying 10 g of fresh soil at 105°C 

for 24 hours to constant weight.  

Moss shoot samples were analysed at the ALS Scandinavia labs in Luleå, 

Sweden. Analyses of soils characteristics were conducted at the 

University of Iceland, except for total carbon and nitrogen for the 

Svalbard samples, which were performed at the University Centre in 

Svalbard (UNIS), Longyearbyen, Norway. The concentrations of sulphur, 

arsenic, boron, antimony and mercury in moss and soil were expressed as 

mg/kg on dry weight basis and in% by dry weight for total carbon and 

total nitrogen. Procedural blanks were below the minimum detection 

level. Accuracy was checked through analysis of standard in house 

reference materials for soil (ALS Labs, Sweden; University of Iceland, 

Iceland; UNIS, Longyearbyen) and peach leaves (NIST 1547) (National 

Institute of Standards and Technology, Gaithersburg, MD, USA; 

(Rodushkin et al., 2008) and obtained more than 95% recoveries. 

Because of the high sulphur proportions reported from power plant 

emissions (as H2S gas, see Table 1), estimates of sulphur accumulation 

for moss shoots were calculated for the systematic sampling areas based 

on the biomass of the ten moss shoots at the three measurement squares 

per sampling station at the end of the survey and multiplied by the 

corresponding shoot concentrations of sulphur per measurement square.  

Data analyses 

For visual assessment of our data, we performed a Non-Metric 

Multidimensional Scaling (NMDS) ordination (Oksanen et al., 2015), 

using Euclidean dissimilarity as a distance metric for the three matrices 

of all response data i.e. element concentrations in moss, element 

concentrations in soil, and moss growth and characteristics on the 

predictor variables (distance, direction and location).  

Element concentrations in moss shoot tissues (sulphur, arsenic, boron, 

antimony and mercury), sulphur accumulation and moss measurements 

(i.e. moss depth, shoot length increase, shoot turnover, biomass increase, 

and chlorophyll) were separately analysed as response variables using 

Linear Mixed effects Models (LMM). Distance from the power plant 

(250 m, 1000 m, 4000 m), location (Nesjavellir and Hellisheidi), 

direction from the power plants (upwind, E and downwind, W) and all 

possible interactions were included as fixed factors. These interactions 

made sense from a biological point of view, as we may expect to see 
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different element accumulation patterns and effects on plant growth with 

increasing distances from the power plant depending on the position 

relative to prevailing winds (direction), and influence of the power plant 

(location); similarly, responses upwind and downwind may differ 

depending on the influence of the power plant (location). The elevation 

of the sampling stations (altitude) and soil characteristics i.e. soil pH,% 

soil nitrogen,% soil carbon,% soil moisture and soil chemistry (sulphur, 

arsenic, boron, antimony and mercury concentration), were included as 

co-variates; and ‘sampling station’ as a random factor to account for the 

sampling design. For shoot length increase, ‘sampling bag’ was included 

as random factor nested within ‘sampling station’. The co-variates were 

included one at a time; the best-fitted model was selected based on the 

lowest AIC (Akaike´s Information Criterion) value, provided that 

inclusion of an additional parameter in the model reduced the AIC value 

by more than 2.0. Due to less complete design of soil sampling (sample 

pooling per station), we separately fitted Linear Models (LM) for the 

concentrations of sulphur, arsenic, boron, antimony and mercury in soil, 

with the same predictor variables as in the LMMs above (distance, 

location and direction, and their interactions) and covariates. To satisfy 

the model assumptions, sulphur, arsenic, boron, antimony and mercury 

concentrations in moss shoots and sulphur in soil were log-transformed. 

To avoid negative values for models with moss and soil element 

concentrations of values below detection (whose data value had been 

assumed as zero for statistics), data were log (x+v) transformed with v 

representing the minimum value of the sampled data.  

The Variance Inflation Factor (VIF) was calculated for all variables 

included in the models to assess multicollinearity. Highly collinear co-

variables were not included in the models, so that all VIF values were 

below 3 in the final models (Zuur et al., 2010). Standard model 

diagnostics were used to check the residuals (for normality and 

homoscedasticity). The optimal model for each response variable was 

identified by selecting the lowest AIC after a series of model sub-sets 

were run. The final models chosen were reduced with our predictors 

preserved as the minimum. Non-significant interactions were dropped 

from the models to allow interpretation of the independent terms. We 

used the R software version 3.2.2 for all data analyses (R Development 

Team, 2010). The models were run using the functions, lmer in the lme4 

packages (Bates et al., 2014) for the LMM and lm in the MASS package 

in R (Ripley et al., 2015) for linear models. Pairwise correlations were 

performed for the following variables: moss growth, characteristics and 
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element concentrations in moss and in soil, and tested for significance 

using Pearson’s product moment correlations. Lists of models and test 

statistics used, and summary soil characteristics, elevation data and 

correlation matrices are presented in Tables S1 – S9 and appendix S1. 

The reference area and Svalbard data were not included in any of the 

statistical analyses.  

Results  

The NMDS ordination revealed that element concentrations in soil and 

moss and the moss traits differed in relation to location (Fig. 2); there 

was a good separation between Nesjavellir, Hellisheidi and reference 

sampling stations indicating dissimilarities (Figs. 2e and h). In relation to 

the different distances, the x-axis (Fig. 2) of the ordination plot reflected 

an overall concentration gradient in moss and soil from left (250 m) to 

right (through 1000 m to 4000 m). Such overall pattern related to 

direction was not apparent in the ordination plots, but the stations seem to 

be mainly ordinated along the x-axis.  

The frequency of moss shoot damages around the power plants was low 

in our assessment and could not be related to any of the predictors. 

Relative to mosses from the reference area in Raudhalsahraun (Table 4), 

moss from the Hellisheidi and Nesjavellir geothermal power plant areas 

(Tables 2) had considerably higher concentrations of sulphur (Fig. 3), 

arsenic and mercury. Concentrations of all other elements in moss were 

low at all sites. The element concentrations in mosses were generally 

higher around Hellisheidi than Nesjavellir (Fig. 3ai-ii, Tables 2, S1). 

Opposite to what we predicted, element concentrations increased with 

distance around Hellisheidi but were, as expected, higher downwind (W) 

than upwind (Fig. 3a-iii, Table S1). At Nesjavellir, however, the 

concentration patterns agreed with our expectations in response to 

distance, but not in response to direction (no strong overall trend), Fig. 

3a-ii, Table S1. Sulphur accumulation in moss shoots tended to be higher 

closer to the power plants than further away (marginally significant effect 

of distance; Table S1, Fig. 3b-i). Direction and location did not affect 

sulphur accumulation in R. lanuginosum shoots (Table S1, Fig. 3bii-iv).  
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Figure 2. Nonmetric Multidimensional Scaling (NMDS) ordinations of 

(2a – c) sulphur, arsenic, boron, antimony and mercury concentrations in 

moss shoots, (2d-f) sulphur, arsenic, boron, antimony and mercury 

concentrations in soil and 2g – i) the various moss traits measured. Moss 

growth and characteristics data from the damage patch targeted 

sampling and extensively damaged sampling areas were not included in 

the NMDS plot as they were few. NNW in the direction represents 

samples from the extensively damaged sampling areas. 
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In soils, sulphur and mercury concentrations were much higher at the 

reference area (Fig. 4a, Table 4) than around Hellisheidi and Nesjavellir 

(Tables 2), while the other elements, i.e. arsenic, boron and antimony 

showed the opposite pattern, with higher soil concentrations around 

power plants. Sulphur concentrations in soils were significantly higher at 

Nesjavellir than Hellisheidi (Table S2, Fig, 4a). On the contrary, the other 

elements were at higher concentrations in soils around Hellisheidi than 

Nesjavellir, except for boron, the concentrations of which did not differ 

between locations (Table S2). Around Hellisheidi, element concentration 

patterns did not vary in response to distance and direction (Fig. 4b i, iii). 

However, for Nesjavellir, most of the elements responded differently to 

the predictors. Sulphur concentrations in soil decreased with distance 

(Fig. 4b ii), while the effect of direction was not significant. Additionally, 

antimony concentrations in soil at Nesjavellir decreased with distance 

and tended to be higher to the west of the power plant than east. Distance 

and direction did not affect arsenic, boron and mercury concentrations 

(Table S2).   

The growth of moss shoots (biomass increase, Fig. 5) was overall higher 

at the reference area than at Hellisheidi and Nesjavellir, while the other 

moss response variables were comparable (Tables 3, 5, Fig. 5i-ii). 

However, the mosses at the reference area had lower chlorophyll 

concentrations and the moss mats were thinner than those around the 

power plants (Tables 3, 5). In general, moss biomass and shoot length 

increase, moss mat depth, chlorophyll concentrations and moss shoot 

turnover values were lower around Nesjavellir than at Hellisheidi (Table 

3, Fig. 5i-ii, S5). Around Nesjavellir, moss mat was thinner close to the 

power plant than far away, and as expected its depth increased with 

distance from the power plant. Deeper moss mats were measured to the 

east of Nesjavellir power plant (upwind) than west (Table S5). Moss 

biomass also increased with distance at Nesjavellir and was also higher in 

the direction east than west (Fig. 5b). Moss shoot length increase did not 

vary with distance from the power plant but showed a decrease in the 

direction west of the Nesjavellir power plant than east. Moss shoot 

turnover and chlorophyll concentrations showed opposite patterns with 

distance, they decreased away from the power plant and did not vary with 

direction. These growth trends imply thinner moss shoots close to the 

power plants and thicker shoots further away.   
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Table 2. Concentrations of arsenic, boron, antimony and mercury in 

Racomitrium lanuginosum shoots and soil (mg/kg dry weight), collected 

at the systematic sampling stations at different distances along transects 

to the east and west of the two power plants, Hellisheidi and Nesjavellir, 

in the Hengill geothermal area in Iceland (n = 10 shoots per station, n = 

1 soil per station). Some element concentrations were below the detection 

limits: 0.1 mg/kg for arsenic concentrations in shoots and 1 mg/kg for 

boron concentrations in shoots and soil. Elements concentrations for R. 

lanuginosum are given as mean  SE and only as mean for soils due to 

sample pooling per station (see methods). 

 

Around Hellisheidi, the effects of distance on moss characteristics were 

not always clear (Table S5). For instance, moss mat depth was 

significantly deeper at 250 m than at 1000 m but became deeper again at 

4000 m away from the power plant (Table 3, S5). Chlorophyll 

concentrations increased from 250 m to 1000 m and decreased again at 
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4000 m away from the power plant (Table 3, S5). Shoot turnover 

significantly increased with distance, while shoot length increase and 

biomass increase did not vary with distance (Tables 3, S5, Fig. 5). 

However, biomass increase was significantly higher in the direction W 

than E while shoot length increase did not vary with direction. Contrary 

to our expectations and Nesjavellir results, the findings at Hellisheidi 

were different. Higher values for moss growth and the other 

characteristics were measured to the west (downwind) of the Hellisheidi 

power plant than east (Table S5, Fig. 5b).  

Element concentrations in moss tissues and soils, and the moss response 

variables at the geothermal area varied differently with the predictors 

(location, distance, direction and their interactions) and there were not 

always clear trends with predictors as hypothesized. Addition of the co-

variates in general did not affect the strength and direction of the effects 

of our predictors (Tables S1, S2 and S5), and improved most models by 

explaining parts of the un-accounted variations.  

Element concentrations were generally much higher in damaged moss 

patches than in healthy-looking mosses. Overall, trends in element 

concentration in mosses and soils associated to damaged moss patches 

were similar to the healthy mosses (systematic sampling), for details see 

Appendix S1. There was not any marked difference in moss mat depth 

between the healthy and damaged moss patch sampling areas, but 

chlorophyll concentrations were much lower in the damaged moss as 

expected (Appendix S1: Table A3, A3a).  
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Figure 3a. Concentrations of sulphur in Racomitrium lanuginosum 

shoots at Hengill compared to a reference area at 99 km away (Ref) at 

the systematically sampled areas around Hellisheidi and Nesjavellir 

power plants, (3i - ii) at different distances, and (3iii -iv) different 

directions from the power plants. n = 10 per station. Sulphur 

concentration: significantly different for Hellisheidi compared to 

Nesjavellir (t(120) = -8.74 p = <0.001), for the different distances at 

Hellisheidi compared to 250 m (t(60)= -4.96 p = <0.001 for 1000 m and 

t(60) = -6.40 p = <0.001 for 4000 m), for direction E compared to W (t(60) 

= -2.17 p = 0.034) at Hellisheidi, for the different distances at 

Nesjavellir compared to 250 m (t(60)= -11.60 p <0.001 for 1000 m and 

t(60) = -12.42 p = <0.001 for 4000 m) and for direction E compared to W 

(t(60) = -9.53) p <0.001) at Nesjavellir. 
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Figure 3b. Sulphur accumulation in R. lanuginosum shoots at Hengill at 

the systematically sampled areas compared to a reference area (REF) at 

99 km away around both Hellisheidi and Nesjavellir power plants in 

relation to: (3b-i) distance from the power plants, (3b-ii) direction from 

the power plants and (3b-iii, iv) distance from the power plants. n = 10 

per station.  
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Figure 4. Concentrations of sulphur in soil at Hengill compared to a 

reference area at 99 km away (Ref) at the systematically sampled areas 

around Hellisheidi and Nesjavellir power plants, (4i-ii) at different 

distances, and (4iii-iv) different directions from the power plants. n = 1 

per station. Sulphur concentration: significantly different for Hellisheidi 

compared to Nesjavellir (t(6) = 8.36 p = <0.001. 
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Table 3. Characteristics (mean  SE) of Racomitrium lanuginosum at the 

systematic sampling stations around Hellisheidi and Nesjavellir power 

plants in Iceland. n = 6 per station. For shoot length increase, n = 3 per 

station. 

Moss characteristics Direction Distance (m) Nesjavellir Hellisheidi

Moss mat depth (cm) W 250 19.27 ± 2.47 28.17 ± 2.05

 1000 22.96 ± 1.87 17.50 ± 1.37

4000 25.59 ± 1.87 28.63 ± 2.56

E 250 20.03 ± 1.72 30.23 ± 0.76

1000 27.56 ± 2.36 27.52 ± 0.93

4000 33.20 ± 2.36 26.90 ± 2.53

Shoot length increase (cm) W 250 0.46 ± 0.25 0.63 ± 0.09

 1000 0.50 ± 0.06 0.60 ± 0.06

4000 0.37 ± 0.03 0.10 ± 0.00

E 250 0.43 ± 0.03 0.50 ± 0.06

1000 0.40 ± 0.06 0.53 ± 0.03

4000 0.40 ± 0.06 0.53 ± 0.03

Shoot turnover (%) W 250 3.00 ± 1.71 2.41 ± 0.29

 1000 2.39 ± 0.61 3.56 ± 0.63

4000 1.64 ± 0.19 0.52 ± 0.16

E 250 2.08 ± 0.22 1.70 ± 0.31

1000 1.63 ± 0.35 1.82 ± 0.16

4000 1.13 ± 0.20 2.14 ± 0.42

Chlorophyll concentration mg/g W 250 0.04 ± 0.01 0.06 ± 0.01

 1000 0.05 ± 0.02 0.67 ± 0.12

4000 0.02 ± 0.01 0.06 ± 0.01

E 250 0.18 ± 0.03 0.04 ± 0.05

1000 0.11 ± 0.02 0.04 ± 0.00

4000 0.04 ± 0.01 0.04 ± 0.01
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Figure 5. The biomass increase of Racomitrium lanuginosum shoots at 

Hengill at the systematically sampled areas compared to a reference 

area (Ref) at 99 km away around Hellisheidi and Nesjavellir power 

plants, (5i - ii) at different distances, and (5iii -iv) different directions 

from the power plants. n = 3 per station. Biomass increase: significantly 

different for Hellisheidi compared to Nesjavellir (t(11) = -4.40 p = 0.001), 

for the different distances at Nesjavellir compared to 250 m (t(6) = 3.13 p 

= 0.020 for 1000 m and t(6) = 2.84 p = 0.030 for 4000 m), for direction E 

compared to W (t(6) = -3.53 p = 0.012) at Nesjavellir and direction E 

compared to W (t(6) = -6.96 p <0.001) at Hellisheidi. 

  



 

86 

Table 4. Concentrations of arsenic, boron, antimony and mercury in 

Racomitrium lanuginosum shoots and soil (mg/kg dry weight), collected 

along transects in Skansenbukta, Svalbard (n = 6 shoots, n= 1 soil) and 

the Raudhalsahraun Reference area in Iceland (n = 10 shoots, n = 1 

soil). Some concentrations were below the detection limits in shoots: 0.1 

mg/kg arsenic and 1 mg/kg boron. Elements concentrations for R. 

lanuginosum are given as mean  SE and only as mean for soils due to 

sample pooling per station (see methods). 

 

Table 5. Characteristics (mean  SE) of Racomitrium lanuginosum at the 

extensively damaged moss areas around Hellisheidi (HP-ER) and 

Nesjavellir (NP-ER) power plants and the Raudhalsahraun reference 

area in Iceland. n = 10 per location. For shoot length increase at the 

reference area, n = 3. NA- Not Available.  

Moss characteristics Nesjavellir Hellisheidi Reference area

Moss mat depth (cm) 11.39 ± 1.22 23.18 ± 3.36 21.76 ± 1.45

 

Chlorophyll concentration (mg/g) 0.01 ± 0.00 0.03 ± 0.08 0.01 ± 0.02

Shoot length increase (cm) NA NA 0.57 ± 0.03

Shoot turnover (%) NA NA 2.94 ± 0.18
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In the extensively damaged areas, sulphur concentration in moss tissues 

was overall much higher than at our regular systematic sampling areas 

indicating input from the geothermal power plants (Appendix S1: Table 

A4, Fig. 3). For element concentrations in soil, sulphur and boron were 

elevated at the systematic sampling areas more than at the extensively 

damaged areas; all other element concentrations in soil between the two 

areas did not differ (Tables 2, A4). As expected, moss mat depth and 

chlorophyll concentrations showed generally lower values at the 

extensively damaged areas than the systematically sampled areas around 

the power plants (Tables 3, 5). For Svalbard mosses, element 

concentrations were distinct to all other sampled mosses in Iceland 

(NMDS plot; Fig. 2a – c). Mosses from Svalbard showed 20% lower 

sulphur concentrations than those at the systematic sampling areas (Table 

4 and Fig. 3). In soil, element concentrations were much lower at the 

systematically sampled areas than in Svalbard (Tables 2, 4, Fig. 4), 

although this difference was not apparent in the NMDS plot (Fig. 2d - f). 

Comparison of element concentration in moss and soils  

In general, all measured element concentrations were higher in soils than 

moss tissues at all sampling areas around the two power plants and at the 

reference area and Svalbard, probably due to the recalcitrant nature of 

moss shoots, inferring slow decomposition and mineralization rates and 

resulting in element enrichment in the soils. However, in the damaged 

moss patches (mostly 250 m away from power plants) and the 

extensively damaged areas, considerably higher sulphur was found in 

moss tissues than soil (Appendix S1: Tables A1 and A4).  

Correlations between element concentrations in moss, soil and moss 

characteristics  

The element concentrations in moss at the systematic sampling and 

damaged moss patches did not reveal any significant correlations with 

element concentrations in soil (correlation values were generally below 

0.5, details in Tables S7 –S8). This indicated that element concentrations 

in moss were not related to concentration of those particular elements in 

the soil and vice versa. Biomass increase was positively correlated to 

arsenic and antimony concentrations in moss tissues, which corresponds 

to our previous finding of high element concentrations and high biomass 

increase around Hellisheidi, 4000 m away from the power plant. Other 
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moss characteristics were not correlated with element concentrations in 

either moss tissue or soil. (Table S7).  

At the extensively damaged areas close to the power stations, most 

elements in plants were negatively correlated with soil element 

concentrations (correlation values were generally above - 0.5, Table S9). 

This may imply partially different sources of the elements in the soil 

(bedrock) and the moss (geothermal emission). Furthermore, moss mat 

depth and chlorophyll concentrations were all negatively correlated with 

arsenic, boron, antimony and mercury concentrations in the soil, but 

positively correlated with sulphur concentrations in moss (Table S9). The 

negative correlations may probably indicate harmful effects of the 

elements to moss characteristics while the positive sulphur correlations 

may be linked to some plant benefits.  

Discussion  

Evaluating the concentration patterns of geothermally emitted elements, 

using bio-indices such as plants and soils, in relation to distances from 

the power plants (Bargagli et al., 1997; Bussotti et al., 1997; Loppi, 2001; 

Mutia et al., 2016) and prevailing wind direction (Ólafsdóttir et al., 

2014a) provides a robust indication of their deposition and accumulation 

into ecosystems; an important aspect in assessing their potential 

phytotoxicity at elevated concentrations. In relation to distance and 

direction from the Hengill geothermal power plants in Iceland, our study 

findings reveal some patterns of element concentrations in the dominant 

moss and soils, and affected moss characteristics and growth providing 

some support for the main hypothesis, that the power plant emissions 

deposit and accumulate in ecosystems within their vicinity with some 

impacts. 

The trends of sulphur, arsenic, boron, antimony and mercury 

concentrations in moss and soil with our predictors (distance, direction 

and location) were in many cases variable but often followed our 

expectations, particularly around the Nesjavellir geothermal power plant. 

The patterns of moss sulphur accumulations with distance and direction 

(although only marginally significant) in the vicinity of power plants 

provide some indirect indication of sulphur accumulation in moss from 

the power plants. Further, the trend of high sulphur concentrations in 

Nesjavellir soils may be explained as a transfer of sulphur from the 

decaying moss to soil (bio-accumulation) over the longer period that 
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Nesjavellir power plant (since 1998) has been operating than Hellisheidi 

(since 2006). Besides, the trace element variations (generally higher at 

Hellisheidi than Nesjavellir) may be explained by the different steam 

consumption rates and subsequent emission rates for each power plant. 

We base this argument on the understanding that the Hellisheidi 

geothermal power plant has a higher steam consumption rate (see Table 1 

for data) than Nesjavellir due to its capacity. Since the concentrations of 

arsenic, boron, antimony and mercury in emissions from the power plants 

are not known, we assume that the trace element concentrations, if any, 

would be the same for each power plant, and because there is more steam 

needed for the power plant at Hellisheidi, larger amounts of these 

elements are emitted. However, we caution that this interpretation is 

based on an assumption and warrants further studies for confirmation or 

rebuttal. 

Further, the effect of wind and topography in the area may also affect the 

dispersion of geothermal power plant emissions, as has been reported in 

Ólafsdóttir et al. (2014a, b) for geothermally emitted H2S gas. According 

to the wind rose for the Hengill area, the prevailing wind direction is 

from the east (Fig. 1) and the Nesjavellir power plant is situated in a 

valley, well sheltered from the easterly wind, and probably the other wind 

direction as well (south). The Hellisheidi geothermal power plant on the 

other hand lies exposed at a high elevation. These topographical 

variations in location, and effects of the prevailing wind, may mean that 

elements disperse more efficiently around Hellisheidi than at Nesjavellir. 

This, in combination with the emission rates, may explain the more 

variable element concentration trends with distance and direction, i.e. 

element distribution not following the predicted patterns at Hellisheidi as 

well as at Nesjavellir; although our arguments are limited to wind 

direction predictions from a single wind rose. Nonetheless, the 

Nesjavellir findings compare well with other studies, in Italy and Kenya, 

where several species of trees, shrubs, mosses and lichens have been used 

as bio-indicators, together with soil, to monitor the impacts of geothermal 

power plant emissions on terrestrial ecosystems (Baldi, 1988; Bargagli et 

al., 1997, 2003; Bargagli and Barghigiani, 1991; Loppi and Bonini, 2000; 

Mutia et al., 2016). Their results showed similar trends as in our study, 

i.e. with relatively higher sulphur and trace element concentrations in 

plant tissues (including mosses) and soils closer to the power plants than 

further away, indicating an input of elements from the nearby geothermal 

power plants.  
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Even though there is evidence of sulphur deposition and accumulation in 

moss and sulphur deposition in soil around the Nesjavellir power plant, 

suggesting its origin to be the geothermal power plant, the variability in 

concentrations of the trace elements may imply that the power plants are 

not a significant contributor in their distribution within the area, due to 

the effect of other sources of these elements in the Hengill ecosystem. 

The Hengill geothermal area lies within the active volcanic belt of 

Iceland (Arnórsson, 1995). Being a volcanic area with active and on-

going geothermal activities, there is a high chance that occurrence of 

these elements into the ecosystem is also derived from these activities, 

since the elements form a significant proportion of volcanic and 

geothermal gases. However, it is known that trace elements may be found 

in power plant emissions at smaller proportions than sulphur (from H2S 

gas) (Axtmann, 1975). Accordingly, in this study, trace elements 

occurred at much lower concentration levels in both soil and moss than 

sulphur; these low concentrations may have made it more difficult to 

detect any trends. We therefore cannot rule out the contribution of the 

power plants to the ecosystem content of these elements. In addition, 

concentrations of arsenic ranging 0.008 – 0.093 mg/l and boron 1.33 – 

6.79 mg/l have been detected in geothermal waters of the Nesjavellir 

geothermal wells at the Hengill area (Giround, 2008), though it has not 

been determined as to whether these elements are present in the power 

plant emissions. Data on the concentrations and emission rates of the 

other elements, i.e. antimony and mercury, in geothermal fluids and 

power plant emissions at the Hengill area is still limited. Further studies 

are thus recommended to assess the trace element levels in the emissions 

from the power plants. 

Other sources of these elements in the geothermal terrestrial ecosystems 

may include steam from natural surface geothermal manifestations, such 

as hot springs and fumaroles, and steam sprays from geothermal well 

tests (on-going at Hengill) that contain these elements and distribute them 

into the atmosphere. The bedrock (Fig. 1) could also be a source of these 

variations especially in soils. At the Olkaria geothermal field in Kenya, 

where a similar study was conducted, findings also showed the same 

unclear distribution patterns of trace element concentrations in plant 

tissues and soil against distance and direction gradients and were related 

to influence from other sources; although the effect of the power plants 

could not be ruled out as the trace element levels in the Olkaria 

geothermal power plant emissions are also not determined (Mutia et al., 

2016).  
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Around the power plants, sulphur concentrations were overall higher in 

soils than in moss tissues. This results contradict the findings of a recent 

and similar study in Kenya where a vascular plant (a shrub: 

Tarchonanthus camphoratus) was used as a bio-indicator in evaluating 

the effects of the Olkaria geothermal power plant emissions on terrestrial 

ecosystems. As opposed to this study, the Olkaria study findings revealed 

higher sulphur concentrations in the shrub leaves than in soil (Mutia et 

al., 2016). A possible reason for the higher nutrient enrichment in the 

shrub leaves than mosses when compared to soils in each study area is 

probably related to both the active root and leaf uptake of 

nutrients/elements for the shrub, whereas in mosses, due to their 

ectohydric nature, nutrient/element uptake is mainly through the 

atmosphere. This suggests that elements would be more enriched in the 

shrub leaves than soil, while for moss, the opposite is true. However, at 

the reference areas for both study areas i.e. Iceland and Kenya, sulphur 

concentration was on overall higher in soils than plants, which was 

expected due to the absence of atmospheric pollution. Further, sulphur 

concentrations in plant tissues and soils were in general at higher levels 

in Iceland than Kenya. There could be several interacting reasons for this 

discrepancy between the two ecosystems; The amount of H2S emissions 

from the Hengill geothermal power plants is 83% higher than that of the 

Olkaria power plants, see Table 1 and Mutia et al., (2016). It therefore 

follows that there would be more sulphur deposition and accumulation in 

the Hengill (Iceland) terrestrial ecosystems than Olkaria (Kenya). In 

addition, the different soil proceses in the two ecosystems may provide 

an explanation for the higher sulphur concentrations in the Hengill soils 

than Olkaria soils: the shrub leaves are most likely more easily 

decomposed than the recalcitrant moss shoots. Therefore, decomposition 

and mineralisation rates are in general much faster in semi-arid Kenya 

ecosystems than the much colder ecosystems of Iceland. The slow 

decomposition means that the elements are likely to be much more 

enriched in the soils of Iceland than in Kenya, suggesting that the impact 

of geothermal emission (H2S gas in this case) on ecosystems may be 

greater in Iceland than Kenya.  

The response of the moss growth and characteristics was only partly 

consistent with our predictions. The apparent indications of decreased 

biomass growth mats in relation to the Nesjavellir power plant with even 

lower growth downwind than upwind imply some probable effects to 

plants. Because sulphur in moss at Nesjavellir was also high close to the 

power plants, it could be that the mosses are receiving excessive nutrient 
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enrichment which is affecting their biomass growth such that they don’t 

grow as healthily (low biomass) as the mosses further away (high 

biomass). The high biomass increase at 4000 m away may partially 

explain deeper moss mat at 4000 m than 250 m away from the power 

plant. We could not however explain the trend of the other variables from 

the Nesjavellir power plant i.e. shoot length increase, shoot turnover and 

chlorophyll concentrations. Although the high chlorophyll concentrations 

close to the power plant, corresponding decreased moss growth and high 

element concentrations were not surprising, because previous studies 

have reported high chlorophyll levels in plants affected by pollution 

(Carreras et al., 1996; Saarinen, 1993; Gratani et al., 2000; Bussotti et al., 

2003). The causes have been attributed to probably the triggering of 

metabolic compensation mechanisms as an adaptation by affected plants 

(Bussotti et al., 2003).  

Our results could not support the lack of relationships for moss growth 

and characteristics with predictors around the Hellisheidi geothermal 

power plant, especially because the measured element concentrations 

were elevated in the moss around Hellisheidi and thus we expected a 

related harm to them. Instead, moss around Hellisheidi showed more 

growth and higher values to the measured moss characteristics with even 

higher values downwind than upwind compared to Nesjavellir. Mosses 

seemed to be growing better (higher shoot length increase, biomass 

increase and chlorophyll) around Hellisheidi than at Nesjavellir 

suggesting that the elements dispersing and depositing downwind did not 

correspond to harmful effects on the moss at Hellisheidi. These elements 

seem to be within the moss nutrient beneficial limits as there is evidence 

of greater biomass increase and higher chlorophyll content downwind 

than upwind, where these elements are expected to deposit. In addition, 

our study was limited to three distances and two wind directions to 

calculate trends/ gradients. It is thus important to understand that other 

differences between sites, other than those related to our predictors, may 

have potentially influenced the effects of the Hengill geothermal power 

plant emissions on their terrestrial ecosystems, for instance other 

environmental factors such as snow cover and differences in precipitation 

can affect moss growth and physiology. 

Our study design did not show any relationship between the frequency of 

moss shoot damages and the effect of each power plant, distance and 

direction from the power plants. This noted, element concentration in the 

damaged moss patches also showed similar trends as the healthy 
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systematically sampled mosses, implying that we cannot rule out the 

possible role of the power plants in the damages. The comparisons 

between element concentrations both in soil and moss at the 

systematically sampled and damaged moss patches in the otherwise 

healthy moss mats was interesting. The cause of the damaged moss 

patches is not known, and has been associated with several speculations, 

including damages related to deposited sulphur emissions from the power 

plants (Natturufraedistofnun Islands unpublished report, 2008). Sulphur 

and mercury concentration in moss at the damaged patches generally 

decreased with distance away, and corresponded to decreasing moss mat 

depths and chlorophyll levels and higher measured element levels, than in 

the systematically sampled healthy moss. The extensively damaged moss 

areas (known to be associated with the geothermal power plants element 

depositions and possibly thermal pollution) also showed generally similar 

trends for element concentrations in plants and soils and effects on moss 

response variables as the healthy moss (systematic sampling). This 

suggests some relationship of element concentrations (particularly 

sulphur) in moss and soil, and moss growth and other characteristics from 

the systematic sampling moss areas with the power plant emissions.  

Overall, the variation of element concentrations in moss and soil and 

moss response variables with our predictors around the Hengill 

geothermal power plants, provided evidence to infer a sulphur deposition 

into the ecosystem from the power plants, along with other potential 

sources, while power plant origin of trace elements was less evident. The 

evidence was strengthened when comparing our findings to the 

Raudhalsahraun reference area in Iceland. We found that the 

concentrations of these elements in moss and soil (except sulphur in soil) 

around the geothermal area are much higher than at the reference area, 

providing some indication of high element concentrations in our bio-

indicators at the Hengill ecosystem. The general slower moss growth and 

low moss characteristic values around the geothermal power plant areas, 

compared to the reference area, also provide a general implication of 

negative effects on moss health, however with no visible signs of moss 

damage at our systematic sampling areas.  

Further general comparisons of each element concentration in moss 

between the Hengill geothermal area and the reference area revealed a 

30% higher sulphur concentration at the geothermal area. In addition, the 

moss at the geothermal area accumulated about 18% more sulphur than at 

the reference area. The concentrations of the other elements were in most 
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cases comparable. On the contrary, soils at the reference area had the 

highest sulphur concentrations, or 13% more than at the Hengill 

geothermal area. This could be explained as being related to the different 

concentrations of sulphur in the two lavas i.e. Raudhalsahraun lava and 

Hengill lava. Another possibility is that if the Raudhalsahraun area is 

more exposed to the ocean spray, marine SO4 may be deposited there in 

more abundance than at Hellisheidi. Further, the thinner moss mat depths 

at Raudhalsahraun than the geothermal power plant areas may be 

associated to the different lava ages. The youngest lava in the Hengill 

geothermal area is around 2000 years old, found to the East of the 

Hellisheidi geothermal power plant and around the Nesjavellir power 

plant (Franzson et al., 2010). However, Raudhalsahraun may be 

approximately 1000 years younger (Jóhannesson, 1978) than the 

Hellisheidi and Nesjavellir lava. It is therefore possible that the younger 

Raudhalsahraun lava has a thinner moss mat formation, compared to 

Hengill. 

An additional reference area, well out of range of geothermal activity was 

in central Svalbard. The concentration levels of sulphur in R. 

lanuginosum was similar to the reference area at Raudhalsahraun while 

other element concentrations in moss were comparable with those at the 

geothermal area. However, all other elements were higher in soils at 

Svalbard than the study areas in Iceland. This was surprising because the 

bedrock of central Spitsbergen is predominantly composed of various 

sedimentary rocks, in contrast to the igneous origin of most of Icelandic 

bedrock. Previous studies from Svalbard show that vascular plants 

(Askaer et al., 2008) and mosses (Klos et al., 2015) accumulate high 

levels of sulphur and arsenic and other metals resulting from coal mining 

activities. Although our sampling area in Svalbard was at least 17 km 

away from the closest coal mine, one that stopped operating in 1998, 

these elements may have dispersed widely and accumulated in the 

ecosystems.  

Since we detect a possible deposition of sulphur, emitted as H2S gas from 

the geothermal power plants in the Hengill area and some indications of 

plant effects, we recommend a follow-up experimental study of, the 

effect of sulphur enrichment on R. lanuginosum, the dominating plant in 

the moss-rich plant communities of the area, in terms of growth and 

physiology. We also encourage the start-up of routine monitoring of the 

concentration of sulphur, arsenic, boron, antimony, mercury, and all other 

toxic elements of geothermal origin in steam, air, precipitation and 
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ecosystems (using bio-indicators as in this study) as a part of the 

environmental management plan for the Hengill power plants. Clear 

information on the origin of these elements can be established using 

isotopic studies. Furthermore, the efforts undertaken by the developer of 

the Hengill geothermal power plants to reduce power plant emissions 

through re-injection of gases, should be highly supported and 

implemented as abatement strategies to minimize ecosystem effects of 

the emissions that may emerge later. Overall, this knowledge will aid in 

the development of appropriate mitigation measures to avoid future 

irreversible effects that may be costly to ecosystems. These findings also 

serve as important background in assessment of potential pollution from 

geothermal power plant emissions. However, we recommend further 

similar but long term studies (due to the slow growing nature of mosses), 

with an improved study design to provide a more accurate ecosystem 

assessment. For example, additional transects parallel to the prevailing 

wind direction with increased sampling stations and larger sample sizes 

can be considered to get a clear evaluation of the element distributions 

and effects within the geothermal area . Other sensitive bio-indicators 

such as lichens may also be included in the assessments.  
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Supplementary Material 

Table S1. Linear mixed models for sulphur, arsenic, boron, antimony and 

mercury concentrations in Racomitrium lanuginosum shoots at the 

systematically sampled areas. Estimates indicate the effects of fixed 

factors and co-variates compared to the intercept and followed by a test 

statistic. Bold p values indicate significant effects. 
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Table S1. Continued linear mixed models for antimony and mercury 

concentrations in Racomitrium lanuginosum shoots at the systematically 

sampling areas. Estimates indicate the effects of fixed factors and co-

variates compared to the intercept and followed by a test statistic. Bold p 

values indicate significant effects. 
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Table S2. Linear models for sulphur, arsenic, boron, antimony and 

mercury concentrations in soils at the systematic sampling areas. 

Estimates indicate the effects of the predictors and co-variates compared 

to the intercept and followed by a test statistic. Bold p values indicate 

significant effects. 

#undamaged	new

Response Predictors Estimate Std error t-value p-value

Sulphur concentration in soil Intercept - Distance 250, Direction E, Location Hellisheidi 339.43 51.46 6.60 0.001

Distance 1000 -131.77 38.77 -3.40 0.015

Distance 4000 -134.21 39.90 -3.36 0.015

Direction W -52.60 34.69 -1.52 0.180

Location Nesjavellir 254.47 30.45 8.36 0.000

Co-variate 

Residual standard error: 51.50,  DF 6 Soil carbon 40.88 7.39 5.53 0.001

Sulphur concentration in soil - Hellisheidi Intercept - Distance 250, Direction E 350.76 74.17 4.73 0.133

Distance 1000 -67.00 93.93 -0.71 0.606

Distance 4000 -89.78 94.96 -0.95 0.518

Direction W -43.92 61.45 -0.72 0.605

Co-variate

Residual standard error: 68.20,  DF 1 Soil carbon 34.25 13.44 2.55 0.238

Sulphur concentration in soil - Nesjavellir Intercept - Distance 250, Direction E 855.78 46.29 18.49 0.003

Distance 1000 -214.17 56.69 -3.78 0.063

Distance 4000 -166.83 56.69 -2.94 0.099

Residual standard error: 56.69,  DF 2 Direction W 70.11 46.29 1.52 0.269

Arsenic concentration in soil Intercept - Distance 250, Direction E, Location Hellisheidi 0.69 0.70 0.98 0.366

Distance 1000 0.00 0.39 -0.01 0.995

Distance 4000 -0.09 0.39 -0.23 0.823

Direction W 0.06 0.36 0.16 0.881

Location Nesjavellir -0.91 0.35 -2.61 0.040

Co-variate

Residual standard error: 0.53,  DF 6 Soil nitrogen 4.78 2.80 1.70 0.139

Intercept - Distance 250, Direction E 1.29 0.39 3.31 0.080

Distance 1000 0.92 0.48 1.91 0.196

Distance 4000 0.86 0.48 1.81 0.213

Residual standard error: 0.48,  DF 2 Direction W 0.26 0.39 0.66 0.577

Intercept - Distance 250, Direction E 1.54 0.41 3.74 0.065

Distance 1000 -0.57 0.51 -1.12 0.380

Distance 4000 -0.69 0.51 -1.36 0.307

Residual standard error: 0.51,  DF 2 Direction W 0.51 0.41 1.23 0.344

Boron concentation in soil Intercept - Distance 250, Direction E, Location Hellisheidi 0.26 7.17 0.04 0.975

Distance 1000 -0.24 0.92 -0.27 0.816

Distance 4000 -0.09 1.12 -0.08 0.942

Direction W -0.31 0.98 -0.32 0.780

Residual standard error: 1.03,  DF 2 Location Nesjavellir -0.62 0.82 -0.76 0.525

Antimony concentration in soil Intercept - Distance 250, Direction E, Location Hellisheidi 0.10 0.04 2.46 0.049

Distance 1000 0.00 0.03 -0.15 0.888

Distance 4000 -0.02 0.03 -0.70 0.511

Direction W 0.02 0.03 0.70 0.513

Location Nesjavellir -0.05 0.02 -2.28 0.063

Co-variate

Residual standard error: 0.04,  DF 6 Soil carbon 0.02 0.01 2.68 0.037

Intercept - Distance 250, Direction E 0.14 0.04 3.60 0.069

Distance 1000 0.09 0.05 1.87 0.202

Distance 4000 0.09 0.05 1.94 0.192

Residual standard error: 0.04,  DF 2 Direction W 0.04 0.04 0.97 0.434

Intercept - Distance 250, Direction E 0.15 0.02 9.32 0.011

Distance 1000 -0.04 0.02 -2.15 0.165

Distance 4000 -0.07 0.02 -3.40 0.077

Residual standard error: 0.02,  DF 2 Direction W 0.07 0.02 4.52 0.046

Mercury concentration in soil Intercept - Distance 250, Direction E, Location Hellisheidi 0.00 0.02 -0.01 0.996

Distance 1000 0.00 0.01 -0.07 0.949

Distance 4000 -0.01 0.01 -1.11 0.310

Direction W 0.00 0.01 -0.17 0.874

Location Nesjavellir -0.02 0.01 -2.51 0.046

Co-variate

Residual standard error: 0.02,  DF 6 Soil carbon 0.01 0.00 5.27 0.002

Mercury concentration in soil - Hellisheidi Intercept - Distance 250, Direction E 0.04 0.03 1.33 0.315

Distance 1000 0.06 0.04 1.52 0.268

Distance 4000 0.06 0.04 1.55 0.262

Residual standard error: 0.04,  DF 2 Direction W 0.02 0.03 0.52 0.655

Intercept - Distance 250, Direction E 0.05 0.01 4.33 0.049

Distance 1000 -0.02 0.02 -1.13 0.377

Distance 4000 -0.03 0.02 -2.28 0.151

Residual standard error: 0.02,  DF 2 Direction W 0.04 0.01 3.21 0.085

Arsenic concentration in soil - Nesjavellir

Arsenic concentration in soil -Hellisheidi

Mercury concentration in soil - Nesjavellir

Antimony concentration in soil - Hellisheidi

Antimony concentration in soil - Nesjavellir
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Table S3. Soil characteristics for the systematically sampled areas 

around the Hengill geothermal area in Iceland, n= 1 per station. The 

mean elevation data for the sampling areas is also shown. Soil data from 

sampling points per station is pooled to represent a station. See Figure 1. 

for specific transect names in the given directions below.  

 

Table S4. Linear models for co-variates (soil characteristics and 

elevation) at the systematic sampling areas. Estimates indicate the effects 

of the predictors and co-variates compared to the intercept and followed 

by a test statistic. Bold p values indicate significant effects. 
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Table S5. Linear mixed models for the moss traits at the systematically 

sampled areas. Estimate indicates effects of the fixed factors and co-

variates compared to the intercept and followed by a test statistic. Bold p 

values indicate significant effects.  

Response Fixed factor Estimate Std error DF t-value p-value

Moss mat depth Intercept - Distance 250, Direction E, Location Hellisheidi 35.55 1.88 120 18.95 0.000

Distance 1000 1.59 1.37 120 1.16 0.248

Distance 4000 6.89 1.40 120 4.90 0.000

Direction W -0.61 1.22 120 -0.50 0.615

Location Nesjavellir -2.69 1.09 120 -2.46 0.015

Covariate

Soil carbon -1.47 0.26 120 -5.77 0.000

Moss mat depth- Hellisheidi Intercept - Distance 250, Direction E 30.93 2.00 6 15.47 0.000

Distance 1000 -6.69 2.45 6 -2.73 0.034

Distance 4000 -1.43 2.45 6 -0.59 0.579

Direction W -3.45 2.00 6 -1.73 0.135

Moss mat depth - Nesjavellir Intercept - Distance 250, Direction E 21.87 1.57 60 13.92 0.000

Distance 1000 5.52 1.92 60 2.87 0.006

Distance 4000 9.66 1.92 60 5.02 0.000

Direction W -4.26 1.57 60 -2.71 0.009

log(Shoot length increase + 0.1) Intercept - Distance 250, Direction E, Location Hellisheidi -0.46 0.11 9.822 -4.22 0.002

Distance 1000 0.12 0.12 10.48 0.99 0.346

Distance 4000 -0.20 0.12 10.48 -1.64 0.132

Direction W -0.13 0.10 10.226 -1.27 0.233

Location Nesjavellir -0.23 0.10 10.226 -2.37 0.039

log(Shoot length increase - Hellisheidi) + 0.1 Intercept - Distance 250, Direction E -0.56 0.08 18 -7.09 0.000

Distance 1000 0.02 0.10 18 0.20 0.843

Distance 4000 -0.16 0.10 18 -1.69 0.108

Direction W 0.12 0.08 18 1.56 0.136

log(Shoot length increase - Nesjavellir) + 0.1 Intercept - Distance 250, Direction E -0.61 0.15 17 -4.05 0.001

Distance 1000 0.25 0.19 17 1.32 0.204

Distance 4000 -0.21 0.19 17 -1.10 0.285

Direction W -0.39 0.15 17 -2.60 0.019

Shoot turnover Intercept - Distance 250, Direction E, Location Hellisheidi 1.25 0.20 29 6.21 0.000

Distance 1000 -0.15 0.15 29 -0.99 0.329

Distance 4000 -0.61 0.17 29 -3.61 0.001

Direction W 0.08 0.14 29 0.56 0.582

Location Nesjavellir -0.33 0.13 29 -2.62 0.014

Co-variate

Soil carbon 0.13 0.03 29 4.64 0.000

Shoot turnover - Hellisheidi Intercept - Distance 250, Direction E 1.53 0.14 11 10.60 0.000

Distance 1000 0.49 0.20 11 2.41 0.035

Distance 4000 0.28 0.23 11 1.23 0.244

Direction W 0.74 0.20 11 3.60 0.004

Shoot turnover - Nesjavellir Intercept - Distance 250, Direction E 1.86 0.13 15 13.92 0.000

Distance 1000 -0.41 0.18 15 -2.23 0.041

Distance 4000 -0.81 0.16 15 -4.94 0.000

Direction W 0.43 0.14 15 2.93 0.010
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Table S5. Continued linear mixed models for the moss traits at the 

systematically sampled areas. Estimate indicates effects of the fixed 

factors and co-variates compared to the intercept and followed by a test 

statistic. Bold p values indicate significant effects. 

 

Table S6 Soil characteristics and elevation measures (co-variates) for 

Skansenbukta in Svalbard (n = 1) and Raudhalsahraun Reference area (n 

= 1) in Iceland. Data represents means of pooled samples from sampling 

points per station.  
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Table S7. Correlation coefficients (r) for element concentrations in moss, 

soil and moss growth traits for the systematic sampled areas at Hengill 

geothermal area in Iceland (n = 6 per paired data per location). 

Significant correlations in bold (P <0.001). 

 

Table S8. Correlation coefficients (r) for element concentrations in moss, 

soil and moss growth traits for the damaged moss patch areas at Hengill 

geothermal area in Iceland (n = 6 per paired data per location). 

Significant r values in bold (P<0.001). Moss boron correlations not 

shown as concentrations were always below detection. 

 

Table S9. Correlation matrix for element concentrations in moss, soil and 

moss growth traits for the extensively damaged sampling areas at Hengill 

geothermal area in Iceland (n = 20 per location). Significant 

correlations in bold (P<0.001). 
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Appendix S1. Detailed results from additional sampling sites 

Damaged moss patch sampling areas 

Element concentrations in R. lanuginosum shoots  

At different distances from the power plants, the NMDS plot showed 

clustering of damaged patch moss samples together, indicating similarity; 

however, samples from the systematic and extensively damaged sampling 

areas were separate (dissimilar), Fig. 2a. The element concentrations in 

damaged patches targeted sampling mosses were overall higher at 

Hellisheidi than Nesjavellir, except for sulphur which showed similar 

concentrations at both locations (Table A1). Around Hellisheidi, sulphur 

and boron concentrations in damaged moss showed a decrease with 

distance away, opposite to the trend in healthy moss (systematic 

sampling), while mercury increased (Table A1a). Higher element 

concentrations were also present in damaged mosses to the west of 

Hellisheidi power plant than to the east, except for sulphur and mercury 

that showed the opposite pattern. The damaged moss element 

concentrations (sulphur, antimony and mercury) around the Nesjavellir 

geothermal power plant generally decreased with increasing distance 

away, but were higher (sulphur and arsenic) to the east than west of the 

power plant (Table A1a).  

Element concentrations in soil  

The soil element concentrations were similar beneath damaged (Table 

A1) and healthy moss (Tables 2, Fig. 4). The NMDS plot (Fig. 2e) did 

not reveal any striking dissimilarity but a higher scatter among the soil 

samples under the damaged moss patches. There was no difference in 

element concentrations between the damaged patch targeted sampling 

areas for sulphur, boron and mercury, and just as beneath healthy moss 

there were higher concentrations of arsenic and antimony in soils at 

Hellisheidi than Nesjavellir (Table A1b).  

Moss mat depth and chlorophyll concentrations 

The moss variables did not reveal any marked difference in moss mat 

depth between the healthy (Table 3) and damaged moss patches (Table 

A2), but chlorophyll concentrations were much lower in the damaged 

moss as expected. For the damaged moss patches however, moss mat was 
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deeper at Nesjavellir than Hellisheidi (opposite to moss depths at the 

systematic sampled stations) (Tables A2, A2a), while chlorophyll 

concentrations did not differ between locations. At both power plants, 

moss mat depth and chlorophyll generally decreased with distance away, 

although at Nesjavellir the effect of distance was not significant on moss 

mat depth. Direction affected both moss variables and higher moss mat 

depths and higher chlorophyll concentrations were found east (upwind) 

of the power plants than west (Table A2a).  

The covariates (soil characteristics and elevation) did not vary between 

the damaged patch targeted sampling areas (Tables A3, A3a); they were 

important in improving most of the models by accounting parts of 

unexplained variations in the models (Tables A1a and A2a).  

Extensively damaged sampling areas and Svalbard 

Element concentrations in R. lanuginosum shoots  

Moss element concentrations at the Hellisheidi systematic sampling area 

were similar as those of the extensively damaged sampling moss areas at 

both locations except for sulphur. Sulphur was overall much higher at 

both locations of the extensively damaged sampling moss areas than the 

systematic sampling areas (Table A4, Fig. 3). Mosses at the Nesjavellir 

systematic sampling areas, on the other hand, showed the lowest element 

concentrations (Tables 2, 4). The concentrations of boron were below 

detection for all the sampled areas except for the systematically sampled 

areas close to the Hellisheidi power plants. The NMDS ordination did not 

reveal striking dissimilarity patterns in moss element concentration 

samples at the systematic sampling and extensively damaged sampling 

moss areas (Fig. 2).   

In comparison to the damaged patch targeted sampling areas at 250 m 

away from the power plant for Nesjavellir, all element concentrations in 

the extensively damaged sampling moss areas at Nesjavellir (267 m 

away) were generally high (Tables A1, A4). Similarly, at Hellisheidi, 

moss at the extensively damaged sampling areas (830 m away) showed 

high concentrations for only sulphur and antimony relative to mosses at 

the damaged patch targeted sampling area at 1000 m away; the other 

element concentrations were much lower than those at the damaged patch 

targeted sampling areas (Tables A1, A4).  

 



 

112 

For Svalbard mosses, their element concentration values were clearly 

dissimilar (NMDS ordination) to all sampled mosses in Iceland (Fig. 2a – 

c). Mosses from Svalbard showed 20% lower sulphur concentrations than 

those at the systematic sampling areas (Table 4 and Fig. 3). For the same 

comparisons, the other element concentrations for Svalbard mosses were 

similar to those of mosses at Hellisheidi systematic sampling but higher 

than those for mosses at Nesjavellir systematic sampling.  

Element concentrations in soil 

All element concentrations in soil at the systematic sampling areas were 

comparable to those at the extensively damaged sampling areas except 

for sulphur and boron (Tables 2, A4). Sulphur concentrations in soil were 

much higher at the Hellisheidi systematic sampling areas than the 

extensively damaged sampling moss areas, while concentrations at 

Nesjavallir systematic sampling areas were similar to those at the 

extensively damaged moss area. Boron concentrations were, on the other 

hand, much higher in soils at Nesjavellir systematic sampling areas than 

the extensively damaged sampling moss area; but concentrations at 

Hellisheidi were similar to those for soils at the extensively damaged 

sampling moss area (Tables 2, A4). There were no obvious dissimilarity 

patterns revealed by the NMDS ordination (Fig. 2d - f) between the 

systematic sampling and the extensively damaged sampling moss areas.  

In comparison to Svalbard soils, element concentrations were much 

lower at the systematically sampled areas than in Svalbard (Tables 2, 4, 

Fig. 4), although this difference was not apparent in the NMDS 

ordination (Fig. 2d - f).  

Moss depth and chlorophyll concentrations 

As expected, moss mat depth and chlorophyll concentrations showed 

generally lower values at the extensively damaged sampling moss areas 

(Table A5) than the systematically sampled areas around the power 

plants (Table 5).  
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Table A1. Concentrations of sulphur, arsenic, boron, antimony and 

mercury in Racomitrium lanuginosum shoots and soil (mg/kg dry 

weight), collected from the damaged moss patch sampling areas along 

transects at two power plants at Helisheidi and Nesjavellir, in the Hengill 

geothermal area, Iceland (n = 10 per location for moss and n = 1 per 

location for soil). Some boron concentrations were below the 1 mg/kg 

detection limit in shoots and soil. Elements concentrations for R. 

lanuginosum are given as mean  SE and only as mean for soils due to 

sample pooling per station (see methods). 
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Table A1a. Linear mixed models for sulphur, arsenic, boron, antimony 

and mercury concentrations in Racomitrium lanuginosum shoots at the 

damaged moss patch sampling areas. Estimates indicate the effects of 

fixed factors and co-variates compared to the intercept and followed by a 

test statistic. Bold p values indicate significant effects. NA – Not 

Available. 

Response Predictors Estimate Std error DF t-value p-value

log (Sulfur concentration in moss) Intercept- Distance 250, Direction E, Location Hellisheidi 6.92 0.10 60 72.57 0.000

Distance 1000 -1.05 0.10 60 -10.53 0.000

Distance 4000 -1.10 0.10 60 -10.89 0.000

Direction W -0.65 0.10 60 -6.25 0.000

Location Nesjavellir 0.09 0.07 60 1.39 0.169

Distance 1000: Direction W 0.84 0.14 60 5.98 0.000

Distance 4000: Direction W 0.44 0.15 60 2.99 0.004

Co-variate

Soil carbon 0.04 0.01 60 3.48 0.001

log (Arsenic concentration in moss + 0.245) Intercept- Distance 250, Direction E, Location Hellisheidi -0.87 0.13 60 -6.64 0.000

Distance 1000 0.04 0.18 60 0.20 0.840

Distance 4000 0.28 0.18 60 1.58 0.120

Location Nesjavellir -0.02 0.17 60 -0.14 0.887

Direction W 1.62 0.17 60 9.80 0.000

Distance 4000:Location Nesjavellir -0.56 0.20 60 -2.79 0.007

Distance 1000:Location Nesjavellir -0.22 0.20 60 -1.10 0.278

Distance 1000:Direction W 0.13 0.20 60 0.64 0.527

Distance 4000:Direction W -0.90 0.20 60 -4.46 0.000

Location Nesjavellir:Direction W -1.30 0.17 60 -7.90 0.000

log (Arsenic concentration in moss + 0.245) - Intercept- Distance 250, Direction E -1.41 0.11 60 -12.80 0.000

Distance 1000 0.00 0.14 60 0.00 1.000

Distance 4000 0.05 0.13 60 0.39 0.695

Direction W 2.26 0.13 60 17.84 0.000

Distance 1000: Direction W -0.18 0.17 60 -1.04 0.301

Distance 4000: Direction W -0.51 0.18 60 -2.82 0.006

log (Arsenic concentration in moss + 0.108) - Intercept- Distance 250, Direction E -2.01 0.07 60 -29.84 0.000

Distance 1000 0.04 0.09 60 0.41 0.682

Distance 4000 0.11 0.10 60 1.07 0.288

Direction W -0.25 0.08 60 -3.02 0.004

log (Boron concentration in moss + 1.27) Intercept- Distance 250, Direction E, Location Hellisheidi -0.37 0.39 60 -0.96 0.342

Distance 1000 -0.03 0.17 60 -0.18 0.861

Distance 4000 -0.14 0.17 60 -0.81 0.420

Direction W 1.35 0.21 60 6.31 0.000

Location Nesjavellir 0.15 0.26 60 0.58 0.565

Distance 1000: Direction W -0.42 0.21 60 -1.99 0.052

Distance 4000: Direction W -0.71 0.21 60 -3.45 0.001

Direction W:Location Nesjavellir -1.31 0.30 60 -4.36 0.000

Distance 1000:Location Nesjavellir 0.05 0.19 60 0.25 0.802

Distance 4000:Location Nesjavellir 0.40 0.19 60 2.07 0.043

Co-variate

Elevation 0.00 0.00 60 2.03 0.047

log (Boron concentration in moss + 1.38) - Hellisheidi Intercept- Distance 250, Direction E 0.34 0.28 10 1.22 0.250

Distance 1000 0.00 0.15 56 0.01 0.993

Distance 4000 0.01 0.21 59 0.03 0.978

Direction W 0.97 0.37 8 2.59 0.031
Distance 1000: Direction W -0.32 0.18 56 -1.74 0.088
Distance 4000: Direction W -0.20 0.26 59 -0.79 0.432

Boron concentration in moss - Nesjavellir NA
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Table A1a. Continued linear mixed models for sulphur, arsenic, boron, 

antimony and mercury concentrations in Racomitrium lanuginosum 

shoots at the damaged moss patch sampling areas. Estimates indicate the 

effects of fixed factors and co-variates compared to the intercept and 

followed by a test statistic. Bold p values indicate significant effects. 
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Table A1b. Linear models for sulphur, arsenic, boron, antimony and 

mercury concentrations in soils at the damaged moss patch sampling 

areas. Estimates indicate the effects of the predictors and co-variates 

compared to the intercept and followed by a test statistic. Bold p values 

indicate significant effects. 

#damaged	new

Response Predictors Estimate Std error t-value p-value

log(Sulphur concentration in soil) Intercept - Distance 250, Direction E, Location Hellisheidi 5.58 0.30 18.77 0.000

Distance 1000 -0.10 0.19 -0.55 0.602

Distance 4000 -0.25 0.19 -1.32 0.236

Direction W 0.00 0.17 -0.03 0.978

Location Nesjavellir 0.11 0.13 0.86 0.421

Co-variate 

Residual standard error: 0.21,  DF 6 Soil nitrogen 2.87 1.34 2.15 0.075

Arsenic concentration in soil Intercept - Distance 250, Direction E, Location Hellisheidi 0.32 1.12 0.28 0.786

Distance 1000 -0.94 0.70 -1.35 0.225

Distance 4000 -0.18 0.72 -0.25 0.808

Direction W 0.27 0.63 0.43 0.685

Location Nesjavellir -1.26 0.49 -2.58 0.042

Co-variate

Residual standard error: 0.80,  DF 6 Soil nitrogen 7.30 5.03 1.45 0.197

Intercept - Distance 250, Direction E, Location Hellisheidi 0.88 1.98 0.44 0.734

Distance 1000 -0.83 1.45 -0.57 0.669

Distance 4000 1.26 1.42 0.89 0.537

Residual standard error: 1.10 , DF 1 Direction W 0.48 1.34 0.36 0.782

Intercept - Distance 250, Direction E, Location Hellisheidi 0.00 0.49 0.01 0.997

Distance 1000 -0.42 0.23 -1.81 0.322

Distance 4000 -0.97 0.26 -3.78 0.165

Residual standard error: 0.20,  DF 1 Direction W 0.70 0.20 3.46 0.179

Boron concentration in soil Intercept - Distance 250, Direction E, Location Hellisheidi 2.27 4.55 0.50 0.633

Distance 1000 0.18 2.78 0.07 0.950

Distance 4000 -0.77 2.87 -0.27 0.796

Direction W -1.22 2.48 -0.49 0.637

Location Nesjavellir

Co-variate

Residual standard error: 3.21 , DF  7 Soil nitrogen 3.85 19.00 0.20 0.845

Antimony concentration in soil Intercept - Distance 250, Direction E, Location Hellisheidi 0.00 0.08 -0.01 0.995

Distance 1000 -0.08 0.05 -1.55 0.173

Distance 4000 -0.05 0.05 -0.88 0.411

Direction W 0.02 0.05 0.35 0.736

Location Nesjavellir -0.12 0.04 -3.25 0.017

Co-variate

Residual standard error: 0.06,  DF 6 Soil nitrogen 0.92 0.38 2.43 0.051

Antimony concentration in soil - Hellisheidi Intercept - Distance 250, Direction E 0.13 0.06 2.18 0.161

Distance 1000 0.04 0.07 0.47 0.686

Distance 4000 0.16 0.07 2.07 0.175

Residual standard error: 0.07,  DF 2 Direction W 0.06 0.06 1.04 0.409

Antimony concentration in soil - Nesjavellir Intercept - Distance 250, Direction E -0.12 0.01 -13.66 0.047

Distance 1000 -0.03 0.00 -7.75 0.082

Distance 4000 -0.13 0.00 -27.84 0.023

Direction W 0.07 0.00 19.37 0.033

Co-variate

Residual standard error: 0.00,  DF 1 Soil nitrogen 0.96 0.03 28.65 0.022

Mercury concentration in soil Intercept - Distance 250, Direction E, Location Hellisheidi 0.07 0.04 1.83 0.109

Distance 1000 -0.01 0.04 -0.19 0.854

Distance 4000 0.01 0.04 0.32 0.760

Direction W 0.03 0.03 0.99 0.357

Residual standard error: 0.06,  DF 7 Location Nesjavellir -0.03 0.03 -0.88 0.407

Arsenic concentration in soil - Hellisheidi

Arsenic concentration in soil - Nesjavellir
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Table A2. Characteristics (mean  SE) of Racomitrium lanuginosum in 

the damaged moss patch sampling areas around Hellisheidi and 

Nesjavellir power plants in Iceland. n = 6 per location. 

 

Table A2a. Linear mixed models for the moss plant traits at the damaged 

moss sampling areas. Estimate indicates effects of the fixed factors and 

co-variates compared to the intercept and followed by a test statistic. 

Bold p values indicate significant effects.  
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Table A3. Soil characteristics for the damaged moss patch sampling 

areas around the Hengill geothermal area in Iceland, n= 1 per station. 

Data from sampling points per station is pooled to represent a station. 

See Figure 1. for specific transect names in the given directions below. 

Elevation data for these areas is similar to that of the systematic 

sampling stations. 

 

Table A3a. Linear models for soil characteristics and elevation at the 

damaged moss patch sampling areas. Estimates indicate the effects of the 

predictors and co-variates compared to the intercept and followed by a 

test statistic. Bold p values indicate significant effects. 

 



 

119 

Table A4 Concentrations of sulphur, arsenic, boron, antimony and 

mercury in Racomitrium lanuginosum shoots and soil (mg/kg dry 

weight), collected from extensively damaged areas at two power plants at 

Hellisheidi and Nesjavellir, in the Hengill geothermal area, Iceland (n = 

10 per station for moss and n = 1 per station for soil). Some boron 

concentrations were below the 1 mg/kg detection limit in shoots. NA- Not 

Available.  

 

Table A4a. Linear mixed models for sulphur, arsenic, boron, antimony 

and mercury concentrations in Racomitrium lanuginosum shoots at the 

extensively damaged sampling areas at Hellisheidi (Transect 830 m) and 

Nesjavellir (Transect 267 m). Estimates indicate the effects of fixed 

factors and co-variates compared to the intercept and followed by a test 

statistic. Bold p values indicate significant effects. NA- Not Available. 
#Damaged	transect

Response Predictors Estimate Std error DF t-value p-value

log(Sulfur concentration in moss) Intercept - Location Hellisheidi 6.96 0.06 20 125.11 0.000

Location Nesjavellir 0.50 0.08 20 6.36 0.000

log(Arsenic concentration in moss) Intercept - Location Hellisheidi 1.35 0.09 20 14.46 0.000

Location Nesjavellir -0.59 0.13 20 -4.45 0.000

Boron concentration in moss NA

Antimony concentration in moss Intercept - Location Hellisheidi 0.10 0.01 20 15.96 0.000

Location Nesjavellir -0.02 0.01 20 -2.45 0.023

log (mercury concentration in moss) Intercept - Location Hellisheidi 0.09 0.03 20 2.69 0.014

Location Nesjavellir 0.15 0.05 20 3.07 0.006
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Table A5. Linear mixed models for the moss plant traits at the extensively damaged sampling areas at Hellisheidi 

(Transect 830 m) and Nesjavellir (Transect 267 m). Estimate indicates effects of the fixed factors and co-variates 

compared to the intercept and followed by a test statistic. Bold p values indicate significant effects. 

 

 

 

 

 

Table A6. Soil characteristics for the extensively damaged sampling areas around the Hengill geothermal area in 

Iceland, n= 1 per location. Data shows means of pooled samples from sampling points per station. In Fig. 1., the 

specific transect names are given as HP-ER for Hellisheidi and NP-ER – for Nesjavellir. Elevation data for the areas 

is also shown. NA – Not Available. 
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Abstract 

Previous studies show that plants close to geothermal power plants can 

accumulate sulphur from emitted H2S gas, but the responses in terms of 

growth and physiology are not well described. We carried out two 

separate controlled experiments on dominant plants around geothermal 

power plants in Kenya and Iceland, i.e. the shrub Tarchonathus 

camphoratus (using seedlings) and the moss Racomitrium lanuginosum, 

respectively. We tested the hypothesis that sulphur concentration and 

accumulation in plant tissues would increase with increasing 

concentrations of wet hydrogen sulphide deposition, with consequences 

for plant growth and health. We irrigated the plants with 0, 30, 100 and 

300 µg /L hydrogen sulphide gas dissolved in distilled water, for 6.5 

(shrub) and 13 (moss) weeks, and measured plant responses in terms of 

sulphur concentrations (and calculated accumulation), foliar damage, 

growth, chlorophyll concentrations and contents (total amount). Due to 

lack of roots and their sensitivity to atmospheric depositions, we expected 

mosses to respond more strongly than the shrub. The treatments did not 

affect sulphur concentrations and accumulation in shrub leaves, nor did 

they affect foliar damage or chlorophyll concentrations and content of 

seedlings. However, stem height increase was greatest at intermediate 

H2S exposure. The treatments had no effect on sulphur concentration and 

accumulation, biomass increase or chlorophyll concentrations/contents of 
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moss shoots, but shoot length was reduced at high H2S concentration 

exposures. We thus conclude that short-term exposure to moderate levels 

of H2S (watering with 30 µg/L H2S solution) is not harmful to either of 

the two plants and may even stimulate shrub growth while high levels 

may reduce moss growth. 

Keywords: Hydrogen sulphide emissions, geothermal power plants, 

sulphur accumulation, Tarchonanthus camphoratus, Racomitrium 

lanuginosum, plant growth, chlorophyll. 
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Introduction 

Hydrogen sulphide (H2S) gas from geothermal power plants using hot 

water and steam for electricity generation, is the second most abundant 

non condensable gas (NCG) emitted after carbon dioxide. Generally, it 

constitutes 1- 5% w/w of the NCGs fraction but may in rare cases reach 

up to 24% (Axtmann, 1975; Rodríguez, 2014). Its deposition (in various 

forms of sulphur) and sulphur accumulation in terrestrial ecosystems 

around geothermal power plants is a growing concern (Bargagli et al., 

1997; Bussotti et al., 2003, 1997; Mutia et al., 2016a, b), particularly 

because of its potential phyto-toxicity at elevated levels (Bussotti et al., 

1997).  

Emissions of H2S from geothermal power plants may have severe 

ecological consequences as wet or gaseous deposition (Kellogg et al. 

1972). H2S gas is relatively unstable in air and can undergo oxidation to 

form SO2, and with even further reactions to produce sulphuric acid 

(Kellogg et al., 1972). In the presence of precipitation, the likelihood of 

acid precipitation around the power plants or further away is high but 

depends on the wind dispersion of the gas. This is of concern as acid 

precipitation can affect plant growth, survival and nutrient cycling in 

ecosystems (Likens et al., 1972).  

Plants and lichens have been used as bio-monitors to map the deposition 

and distributions of geothermally emitted elements from geothermal 

power plants (Bargagli et al., 1997; Bussotti et al., 2003, 1997; Mutia et 

al., 2016a, b). These studies have shown clear patterns of increased 

sulphur concentration in plants and lichens close to the power plants. 

However, the associated effects of increased H2S levels on the growth and 

physiology of plants remain unclear. Some indications of leaf damage 

including necrosis, chlorosis, reduced growth and early senescence have 

been reported (Varshney et al., 1979; Bussotti et al., 1997; Chiarucci et 

al., 2008; Bussotti et al., 2003; Mutia et al., 2016a, b), but still it is not 

established whether these are caused by excess sulphur or other 

environmental factors (Bussotti et al., 1997).  

Assessment of the effects of a single pollutant on plant growth in the field 

is complicated by several interacting biotic and abiotic factors, including 

other pollutants. Only a few experimental studies have evaluated the 

effects of H2S gas emissions on plants, mostly using vascular plants in 



 

126 

fumigation experiments (Thompson and Kats, 1978; Gonzales, 1984; 

Maas et al., 1987, 1988). For example, Thompson and Kats, (1978) 

assessed the effects of continuous fumigation of H2S on crops and forest 

plants in a greenhouse, and showed stimulated plant growth at 30 – 100 

ppb H2S gas and damaging effects at 300 – 3000 ppb. The damages were 

characterized by leaf lesions, defoliation and stunted growth (Thompson 

and Kats, 1978). It is worth noting that at optimum concentrations 

(variable between plants), sulphur serves as a macro-nutrient essential for 

plant metabolism and growth, but becomes phyto-toxic at high levels 

(Linzon et al., 1979). Other studies report decreased plant growth with 

H2S fumigation at different concentrations, although the effects vary 

across different species (Gonzales, 1984; Maas et al., 1987). On the other 

hand, experimental studies on the effects of H2S gas on non-vascular 

plants, such as mosses, which dominate plant communities in many 

subarctic ecosystems, are limited. Existing studies are mainly based on 

field surveys that assess sulphur levels in mosses growing around 

geothermal power plants (Baldi, 1988; Berg and Steinnes, 1997; Bargagli 

et al., 2002; Mutia et al., 2016b). There is more information, however, on 

sulphur effects related to experimental sulphur dioxide (SO2) deposition 

on mosses. A study by LeBlanc and Rao, (1973) revealed damages on the 

mosses Orthotrichum obtusifolium and Pylaisia polyantha at 5 and 30 

ppb SO2 exposures: moss colour changed from green to golden brown and 

leaf cells were plasmolysed.  

In the design and implementation of appropriate mitigation measures 

toward sustainable geothermal development in Kenya and Iceland, where 

there are on-going and future geothermal development plans (Omenda et 

al., 2014; Ragnarsson, 2015), it is important to establish the effects of the 

power plant emissions. The aim of this study is therefore to assess plant 

responses to excess sulphur (in H2S form) in dominant plants around 

geothermal power plants in Kenya (Mutia et al., 2016a) and Iceland 

(Mutia et al., 2016b) by experimentally evaluating causal relationships 

between wet H2S and plant growth and health. Since existing 

experimental studies have assessed the effect of dry H2S deposition 

(fumigation experiments) on plants, we chose to study effects related to 

wet H2S deposition. This is owing to limited knowledge on this, and the 

fact that around power plants emitted H2S may dissolve in precipitation 

before deposition in ecosystems. 



 

127 

We studied the effect of wet hydrogen sulphide deposition at different 

concentrations on two plant species: seedlings of the shrub 

Tarchonanthus camphoratus L., dominant around geothermal power 

plants in Kenya, and the moss Racomitrium lanuginosum (Hedw.) Brid., 

dominant around the Hengill geothermal power plants in Iceland. We 

hypothesized that with increasing concentration of wet H2S exposure, 

sulphur would be enriched and accumulate in the plants with 

consequences for plant growth and health. Specifically, we expected 

sulphur enrichment in plant tissue when exposed to high H2S 

concentration (> 30 g/L) leading to increased foliar damage, reduced 

plant growth and decreased chlorophyll levels. We expected stronger 

responses in R. lanuginosum than in the T. camphoratus seedlings due to 

lack of roots and general sensitivity of mosses to atmospheric pollutants 

(Rao, 1982). 

Materials and methods 

We carried out two experiments, one in each country. In Kenya, the 

experiment was performed on seedlings of the shrub T. camphoratus 

(Experiment 1) and in Iceland on extracted moss mats of R. lanuginosum 

(Experiment 2).  

We prepared H2S treatment solutions at 0, 30, 100 and 300 µg/L (ppb) 

concentrations in distilled water. These solutions correspond to air 

saturated water with H2S concentrations in air of 0 ppm, 10.96 ppm, 

36.52 ppm, and 109.57 ppm, respectively (using a Henry's law constant of 

0.001 mol/(L*atm), (Sander, 2015)). To prepare the treatments, a H2S 

stock solution was initially prepared from 5% hydrogen sulphide gas in 

nitrogen. The gas was first bubbled in a 20 L distilled water container for 

20 minutes and pH measurements taken at 5 minute intervals until there 

was no change (saturation). H2S concentration in the stock solution was 

then determined using mercury acetate, according to methods described in 

Arnórsson et al. (2006), and ranged between 3.0  10
4
 and 4.0  10

4
 g/L. 

From the stock solution, we prepared the H2S gas concentrations for the 

treatments and further confirmed their concentrations via titration 

(Arnórsson et al., 2006). The solutions were made immediately before 

each use.  
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For each experiment, a similar nested design was adopted with four units 

randomly assigned to each treatment and multiple measurements 

conducted per unit.  

Experiment 1: set-up and design 

Seeds of T. camphoratus were obtained from the Menengai forest in 

Kenya (0.2500° S, 36.0833° E, 2278 m a.s.l.). The forest grows and 

extends over the Menengai caldera, a trachytic volcano in the Kenya Rift 

Valley (Leat, 1984). The area presently has no geothermal power plants 

and is under exploration for geothermal development, with drilling of 

geothermal wells ongoing. Seeds were sown at a tree nursery within the 

caldera between August and September 2014 and the seedlings pricked 

after one month, and potted in perforated polythene bags (13 cm x 20 cm) 

filled with volcanic soil of sandy texture obtained from the area, and 

nurtured at the tree nursery for a period of seven months, to attain 

optimum growth (3 – 4 true leaves) for transplanting and acclimation to 

environmental conditions.  

Potted seedlings were later transferred to an outdoor open ground in 

Nakuru, Kenya (0.2777 S and 36.0504 E, 1889 m a.s.l) where the 

experiment was conducted between 18
th

 March and 1
st
 May 2014. Over 

the course of the experiment, seedlings were exposed to three rain events 

totaling 88 mm. The daily temperature ranges were between 17 and 20 C 

as measured at the Mlima Punda automatic weather station at Menengai 

(Geothermal Development Company Ltd, unpublished data 2014).  

Seedlings were arranged in groups of ten per experimental unit, for a total 

of sixteen units. Within each unit, five seedlings were randomly chosen 

and labelled for measurements and sampling, and the remaining five 

served as reserves in case of mortality, for a total of 80 seedlings across 

all treatments. 

The H2S solutions were applied to the T. camphoratus seedlings. Ten 

liters of the solutions were applied per group four times a week using 

watering cans (simulating a rainfall event). The experiment was 

performed for a period of 6.5 weeks (45 days). The duration was chosen 

based on the growth rates of seedlings (average 3.92 cm stem height 

increase during the experiment), and that was assumed long enough to 

detect effects of the treatments. 
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Experiment 1: growth measurements, chlorophyll and sulphur 

determination 

Growth related variables i.e. stem height, number of stems and number of 

healthy green leaves per seedling were measured/counted at the beginning 

and end of the experiment. Foliar damage was assessed at the end of the 

experiment based on leaf colour and appearance, as previously described 

in Mutia et al. (2016a): A) healthy green leaves, B) yellow leaves and C) 

brown dead leaves. The proportion of damaged leaves on each seedling 

was calculated as the number of leaves in categories B and C over the 

total number of leaves. Some seedlings had damaged leaves at the 

beginning of the experiment, but there were no differences in the 

proportion of damage among treatment groups prior to the experimental 

manipulations (Chisq=5.168, p=0.160), so we assumed that any potential 

differences at the end of the experiment would be due to the H2S 

exposure. Foliar damage, i.e. the proportion of damaged leaves 

(categories B and C) in control seedlings at the beginning and the end of 

the experiment, was compared using a paired t-test to assess the effect of 

time, independent of the experimental manipulations; results showed that 

the proportion of foliar damage did not significantly change over the 

course of the experiment (t = -2.011, p = 0.058), although marginally 

significant, this may indicate that foliar damage occured to the plants 

during the course of the experiment even though no treatment was 

applied.  

At the end of the experiment, wearing polythene gloves, all leaves were 

carefully removed from each seedling and grouped according to the three 

damage categories. At the Geothermal Development Company Ltd 

(GDC) laboratory, each sample was washed in distilled water, dried at 

room temperature in the dark and divided into two parts, one for 

chlorophyll determination and the other for total sulphur analysis. 

Chlorophyll concentrations were determined in A and B leaves (not in the 

dead C leaves). For chlorophyll determination, each sample was milled, 

weighed and split into two sub samples, one for chlorophyll concentration 

analysis and the other for dry weight determination (after oven drying to a 

constant weight at 70°C for 24 hours). Ten ml of 96% ethanol was added 

to 0.5 g of each sample and the mixture hand shaken for 15 seconds. The 

samples were then covered by aluminum foil to prevent light exposure 

and allowed to stand for 24 hours at 6°C in darkness and centrifuged for 

10 min at 1000 revolutions per min. 3.5 ml samples were extracted and 

transferred to 4 ml cuvettes for analysis at the Institute of Freshwater 
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Fisheries in Iceland (modified from Sumanta et al., 2014). To determine 

chlorophyll concentrations, light absorbance at wavelengths of 750 nm, 

663 nm and 652 nm was measured using a spectrophotometer (HACH 

LANGE UV Visible Spectrophotometer, DR 5000). Chlorophyll 

concentration in mg/g dry weight was calculated according to Arnon 

(1949). For sulphur determination, leaf samples were analysed using 

standard analytical procedures at the internationally accredited ALS 

Scandinavia labs in Luleå, Sweden. Prior to analysis, samples were acid 

digested (in 5 ml conc. HNO3 + 0.5 ml 30% H2O2) in closed teflon 

containers in a microwave. Sulphur analyses were conducted using an 

Element 2 ICP MS according to (modified) U.S.EPA methods 200.8 

(U.S.EPA, 1994) and SS EN ISO 17294 parts 1 (ISO, 2005) and 2 (ISO, 

2003). Procedural blanks were below the minimum detection level. 

Accuracy was checked through analysis of standard in house reference 

materials for soil (ALS Labs, Sweden) and peach leaves (NIST 1547) 

(National Institute of Standards and Technology, Gaithersburg, MD, 

USA; (Rodushkin et al., 2008) and obtained more than 95% recoveries. 

Estimates of sulphur accumulation and chlorophyll content (total amount) 

for each seedling were based on the number of leaves in each category, 

multiplied by the sulphur or chlorophyll concentration of that leaf 

category in that seedling, and the average leaf weight (0.015±0.002 

grams, mean ± SE), and summed across all leaf categories. 

Concentrations of sulphur in healthy leaves (category A) for each 

seedling are also compared with the sulphur concentration in the healthy 

moss. 

To account for other factors that influence plant growth and health, we 

measured soil sulphur concentrations and soil characteristics i.e. pH and 

moisture (% by weight) in the seedling pots, 80 in total. Each sample was 

split into three, one for the analysis of sulphur concentration and the other 

for analysis of soil pH and moisture (% by weight). The samples for 

sulphur analysis were dried at 50 °C for 48 h to a constant weight, sieved 

through a 2 mm sieve and analysed using the same protocols and 

equipment as for the leaves at the ALS Scandinavia labs in Luleå, 

Sweden. For soil pH, soil solution was extracted from 5 g (<2 mm) of 96 

hours air-dried soil in 25 ml de-ionized water, by shaking it for two hours 

and allowing to settle for 8 hours before measuring pH (Blakemore et al., 

1987). Soil moisture (%) by mass was obtained after oven drying 10 g of 

fresh soil at 105°C for 24 hours to constant weight.  
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Experiment 2: set-up and design 

Sixteen 16 x 24 cm mats of the moss R. lanuginosum trimmed to a depth 

5 cm were extracted from Raudhalsahraun, a lava field with no 

geothermal activity, located within the Snaefellsness volcanic belt 

(Thordarson and Larsen, 2007) in West Iceland (22.2640 W 64.8483N) 

at 331 m above sea level. Plastic trays (16 x 24 x 8 cm) were filled with 3 

cm tephra at the base (obtained from the same area as the moss) for use as 

growth substrate over which the extracted moss mats were placed. The 

experiment was carried out in a growth chamber at the University of 

Iceland in the late summer-autumn period (2
nd

 August 2013 – 30
th

 

October 2013). We maintained constant conditions within the growth 

chambers with 12 hours day light exposure (Photosynthetically Active 

Radiation (PAR) 250 molm
-2

s
-1

) and air temperatures between 17 - 20 

°C. Optimal growth temperatures for R. lanuginousm of 5–13 °C (Tallis, 

1964; Kallio and Heinonen, 1973) could not be maintained in the 

chamber due to heat development from the photosynthetic light bulbs; for 

the same reason, we had to compromise the light period, even though R. 

lanuginosum grows under almost 24 light hours (Average PAR 170 

molm
-2

s
-1

) in the Icelandic summer.   

The hydrogen sulphide treatment solutions were applied to R. 

lanuginosum moss mats. 300 ml of the solutions were applied in each tray 

four times a week using a mist sprayer, with four replicate trays per 

treatment. This experiment was conducted for a longer period (90 days, 

August – October 2013) than experiment 1, owing to the slow growth of 

mosses.  

Experiment 2: shoot growth, moss damage assessments, chlorophyll, and 

sulphur determination 

Moss growth was assessed as shoot length increase and biomass increase 

over the experimental period using open-ended netlon bags (Jónsdóttir et 

al. 1999, Armitage et al. 2012). For each bag, twenty fresh moss shoots of 

R. lanuginosum were collected from the same area as the moss mats 

(Raudhalsahraun) and trimmed to 30 mm apical length. Ten of these 

shoots were weighed fresh and placed in the tagged bag and carefully 

inserted into the moss mats within the trays at the beginning (t0) of the 

experiment; one bag was included per tray. The other ten shoots were 

used to determine the ratio between fresh and dry weight (after drying to 
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constant weight at 70°C) to calculate the dry weight of the transplanted 

shoots at the beginning of the experiment (Jónsdóttir et al., 1999). The 

transplanted shoots were left in the moss mats until the end of the 

experiment (t1). Shoot growth was measured as shoot length increase in 

excess of the original 30 mm, for each shoot. After the experiment, the 

same shoots were dried at 70°C to obtain the dry weight at time t1. 

Biomass increase was calculated collectively for the ten shoots per netlon 

bag, by subtracting the calculated dry weight of the ten shoots at time t0 

from the dry weight at time t1. Moss foliar damage was assessed on a 

weekly basis by inspecting the colour and appearance of the moss shoots, 

as described in Mutia et al., (2016b): A) healthy green shoots, B) yellow 

shoots and C) brown/black dead shoots.  

At the end of the experiment, three moss samples were systematically 

extracted from each tray, at the mid-point and both ends of the tray, and 

each sample divided into two parts/ subsamples, one for analysis of 

sulphur concentrations and the other for chlorophyll determination. For 

all samples, only the uppermost 3 cm (most photosynthetically active) of 

the moss shoots were used in the analysis. Further sample preparations 

and analysis in the shoots were performed in the same way and in the 

same labs as in experiment 1. Calculations of sulphur accumulation and 

chlorophyll content for moss shoots were based on the biomass of the ten 

moss shoots in each tray at the end of experiment, multiplied by the 

average shoot concentrations of sulphur or chlorophyll per tray.  

Data analyses 

Sulphur concentration and accumulation in seedlings of T. camphoratus, 

foliar damage, growth measurements (stem height increase, change in 

number of stems, and change in number of healthy green leaves per 

seedling) and chlorophyll concentrations and content of seedlings were 

separately analysed using Linear Mixed effects Models (LMM) or 

Generalized Linear Mixed effects Models (GLMM). Count data (change 

in number of stems and number of green leaves) and proportional data 

(foliar damage) were analysed with GLMM using a poisson and binomial 

distribution, respectively. The experimental treatment (0, 30 µg/L, 100 

µg/L and 300 µg/L) was included as a fixed factor and sampling units 

were included as a random factor. Soil characteristics (soil pH and% soil 

moisture) and soil sulphur concentrations were included as co-variates. 

The co-variates were included one at a time and then the best fitted model 
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based on the lowest AIC (Akaike´s Information Criterion) value selected, 

provided that inclusion of an additional parameter in the model reduced 

the AIC value by more than 2.0. Significance of the variables in LMM 

and GLMM was calculated, comparing models with and without the 

variable of interest, so values are reported as F values and Chisq values, 

respectively.  

Differences in sulphur and chlorophyll concentrations between leaf 

categories, and across the experimental treatments, were analysed with 

LMM, including sampling units as a random factor. As fixed factors we 

included the interaction between leaf category and experimental 

treatment. Co-variates were also included as indicated above. When the 

interaction was not significant, it was dropped from the final model. 

Sulphur concentration and accumulation in moss shoots, growth 

measurements (shoot length increase and biomass increase), and 

chlorophyll concentration and content were analysed using Linear Models 

(LM) or LMM. LMs were used when one measurement was taken per 

sampling unit (sulphur accumulation, shoot biomass increase and 

chlorophyll concentration and content). The random factors included in 

the LMMs were ‘tray’ for sulphur concentration in R. lanuginosum shoots 

(3 measurements per tray) and sulphur accumulation and ‘sampling bag’ 

for shoot length increase measurements (one bag per tray, 10 shoots 

measured in each bag). Foliar damage of mosses was not analysed 

because moss colour change was only detected in one tray in the H2S 30 

µg/L treatment where the moss formed a brown colour patch (category C) 

after four weeks. 

The models were run in R 3.2.2 (R Development Team, 2010) using the 

functions lmer in the lme4 package (Bates et al., 2014) for the LMM and 

lm in the MASS package (Ripley et al., 2015) for linear models. All plant 

variable and sulphur concentrations are summarised as mean  standard 

error (SE). 
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Results 

Effect of wet H2S treatments on T. camphoratus seedlings  

On average, the S concentration in the leaves was 1639.44±94.38 mg/kg 

and the seedlings had accumulated 0.342  0.013 mg of sulphur in their 

leaves by the end of the experiment for all the treatments (average foliar 

dry mass per seedling was 0.233±0.050 grams). Sulphur concentration in 

the different leaf categories did not differ across the experimental 

treatments (Table 1, Figure 1a). Furthermore, the accumulation of sulphur 

in the seedlings was not significantly affected by the experimental 

exposure to increased wet H2S depositions (Table 1, Figure 1b).  

The increase in stem height was on average 3.920.14 cm for all 

treatments and was positively affected by the 30 g/L treatment while it 

was not significantly different from the control at higher H2S levels. 

(Figure 1c, Table 1). 

By the end of the experiment the proportion of damaged leaves was on 

average 0.244  0.013 for all treatments. Seedlings increased their 

number of stems by 1  0.105 and on average, their number of green 

leaves decreased by one (-1  0.477) for all treatments. Chlorophyll 

concentrations of the leaves averaged 1.450.09 mg g
-1 

for leaves A and 

0.460.08 mg g
-1 

leaves B in all treatments. The average chlorophyll 

content (total amount) of seedlings was 0.240  0.016 mg, ranging 

between 0.001 and 0.696 mg. Experimental exposure to wet H2S 

deposition did not affect foliar damage (proportion of leaf damage), the 

number of stems and the number of green leaves (Table 1). Chlorophyll 

concentration was affected by the treatments, and as expected was at 

higher levels in the green healthy leaves than yellow leaves; leaves in the 

30 g/L and 100 g/L treatments had lower chlorophyll levels than the 

control and the 300 g/L treatment (Figure 1d). The total chlorophyll 

content of seedlings was, however, not affected by the experimental 

exposure (Table 1).  

The soil co-variates did not differ across the experimental treatments 

(Table S1), but they improved some models by accounting for parts of un-

explained variation (Table 1).  
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Table 1: Model results for the effects of H2S exposure on responses of T. 

camphoratus seedlings: sulphur concentrations and accumulation, 

proportion of damaged leaves, stem height increase, change in number of 

new green leaves, change in number of stems and chlorophyll 

concentrations and contents. In all models, the effect of the experimental 

manipulation of H2S exposure (‘Treatment’) was assessed; covariates 

(‘Soil moisture’, ‘Soil sulphur’ and ‘Soil pH’) were retained in the final 

model if they improved model fit. For LMMs, the numerator and 

denominator degrees of freedom are indicated. F values are reported for 

sulphur concentrations and accumulation and chlorophyll concentrations 

and contents per seedling (LMM) while Chisq values are given for the 

other response variables (GLMM). 
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Figure 1. Various responses of T. camphoratus to H2S treatments 

(application of 0 g/L, 30 g/L, 100 g/L and 300 g/L): (a) Sulphur 

concentrations in leaves, (b) sulphur accumulation per seedling, (c) stem 

height increase and (d) chlorophyll concentrations after 6.5 weeks in an 

outdoor experiment (mean  SE, n = 4). Sulphur (a) and chlorophyll (d) 

concentrations in leaves of Tarchonanthus camphoratus are assigned to 

different damage categories based on visual assessment: healthy green 

leaves (leaves A), yellow leaves (leaves B) and dead brown leaves (leaves 

C), across the different H2S experimental treatments. Asterisks (*) 

indicate significant effect of treatment (p<0.05) and smaller case letters 

show differences between treatments. 
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Effect of wet H2S treatments to R. lanuginosum moss 

The average sulphur concentration in moss was 2054 mg/kg and the 

moss had accumulated 0.0190.002 g sulphur at the end of the 

experiment (average biomass weight per ten moss shoots was 0.090.006 

mg) for all the treatments. The overall treatment effect on the 

concentration of sulphur in moss was marginally significant (Table 2), 

and was significantly lower at 30 g/L wet H2S deposition than at the 

higher exposures (Figure 2a), while the controls showed intermediate 

concentrations. The treatment did not affect sulphur accumulation in moss 

tissues (Table 2, Figure 2b). 

Over the 90 days of the experiment, shoots elongated on average by 

0.09±0.008 cm, biomass increased by 0.016±0.003 mg on average, and 

chlorophyll content of moss shoots ranged between 0.001 and 0.018 µg 

(average 0.008 ± 0.001 µg) for all treatments. Experimental exposure to 

H2S had a significant effect on shoot length increase (Table 2; Figure 2c). 

Shoot length increase at the highest levels of exposure (300 g/L H2S) 

was significantly lower than at all other treatment levels. At these highest 

exposures, shoot length increase was reduced by 59%. The treatments did 

not affect moss biomass increase, or the chlorophyll concentrations and 

contents of moss shoots (Table 2, Figure 2d).  

Comparison of sulphur concentration and accumulation between 

species 

In general, mosses have low levels of nutrients (including sulphur) 

compared to vascular plant tissues, a reason why dead moss is 

recalcitrant. As such, the samples of R. lanuginosum showed much lower 

sulphur concentrations than seedlings of T. camphoratus (205  4 mg/kg 

sulphur in moss vs 1441.407  25.742 mg in the healthy leaves of T. 

camphoratus (leaves A)). However, contrary to our predictions the moss 

did neither become more enriched nor accumulate more sulphur in 

response to the treatments. 
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Table 2: Model results for the effects of H2S exposure on responses of R. 

lanuginosum: sulphur concentrations and accumulation, biomass 

increase, shoot length increase and chlorophyll concentrations and 

contents. In all models, the effect of the experimental manipulation of H2S 

exposure (‘treatment’) was assessed. For LMMs, numerator and 

denominator degrees of freedom are indicated.  

 

 

Figure 2. Various responses of R. lanuginosum to H2S treatments 

(application of 0 g/L, 30 g/L, 100 g/L and 300 g/L): (a) Sulphur 

concentrations in shoots, (b) sulphur accumulation in shoots, (c) shoot 

elongation (shoot length increase) and (d) chlorophyll concentrations after 

13 weeks in growth chambers (mean  SE, n = 4). ‘m.s’ indicates a 

marginally significant effect of treatment (p=0.06), asterisks (*) indicate 

significant effect of treatment (p<0.05) and smaller case letters show 

differences between treatments.  



 

139 

Discussion  

Deposition and accumulation of sulphur in terrestrial ecosystems around 

geothermal power plants is a growing concern, because of the potential 

phyto-toxicity of sulphur at high levels. However, in the present study we 

found no clear evidence of accumulation of sulphur in response to 

experimentally increased wet H2S deposition in the plants that dominate 

around geothermal plants, i.e. the shrub T. camphoratus in Kenya, and the 

moss R. lanuginosum in Iceland. However, the plants responded to the 

wet H2S experimental exposure in terms of growth. According to our 

expectations, growth of R. lanuginosum decreased in response to high 

exposure levels. In the case of the shrub, there was an increase in stem 

height growth at intermediate concentrations of H2S (30 g/L).  

Accumulation of sulphur in plants exposed to high concentrations of H2S 

has been reported from field studies (Mutia et al., 2016a, b). In the present 

study, sulphur concentrations in the seedlings of T. camphoratus were 

about 70% higher than those measured in mature leaves of T. 

camphoratus in the field (Mutia et al., 2016a). This is not surprising; as 

mature leaves are poor sulphur sinks compared to young expanding 

leaves. Mature leaves preferentially redistribute sulphate to young 

expanding leaves (Rennenberg et al., 1979; Bell et al., 1995; Hartmann et 

al., 2000), roots (Sunarpi and Anderson, 1996) and generative sinks 

(seeds) for nutrition and growth. Such redistribution of sulphur was 

indeed indicated in our study by the reduced suphur concentrations in the 

senescing and dead leaves. In contrast, R. lanuginosum showed sulphur 

values 35% higher in field samples (Mutia et al., 2016b) than in the 

present experiment. This may be partly explained by the duration of the 

experiment, with a shorter time exposure to H2S compared to the 

continued exposure of mosses growing around power plants, and the 

environmental conditions during the experiment.  

In general, there were no strong treatment effects on the responses of 

either plant, which was surprising, especially for the moss due to its 

susceptibility to air pollutants. Since mosses are slow growing, possibly a 

longer duration of the experiment would have shown more clearly the 

effects of excess sulphur in their tissues. For example, in a field 

experiment applying 1.0 mM (8.10 x 10
4
 µg/L) bisulphite and 5.0 mM 

(4.8 x 10
5
 µg/L) sulphate, marked sulphur accumulation and reduced 

shoot length increase in Sphagnum species which were only evident after 

18 months of treatment applications (Ferguson and Lee, 1980), so a 

period of over a year might be recommended in future studies. Still, even 
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in the relatively short duration of our experiment (3 months) we already 

detected reduced shoot length increase at high H2S exposures. Exposure 

to high concentration (100 g/L and 300 g/L) of H2S treatment 

corresponded to increasing sulphur concentrations in R. lanuginosum 

(marginally significant) that matched slow shoot growth at high treatment 

exposure levels (300 g/L). This yields some indication that the high 

sulphur concentrations may have had a negative influence on the shoot 

growth, in agreement with other studies (Ferguson et al., 1978; Ferguson 

and Lee, 1980).  

In the case of T. camphoratus, the 30 µg/L treatment seemed to have a 

positive effect (fertilising effect), through stimulated shoot height. This is 

comparable to the findings of a H2S fumigation experiment in Thompson 

and Kats, (1978), where 30 ppb significantly stimulated the growth of 

lettuce, sugar beets and alfalfa. 

Overall, healthy leaves of T. camphoratus showed higher sulphur levels 

than the moss shoots in response to the treatments. This was opposite to 

what we anticipated, since mosses are more susceptible to atmospheric 

deposition (either as wet or dry deposition) of pollutants, so we expected 

the moss to accumulate more sulphur than the shrub. In the absence of 

pollution, this difference can be explained by the different plant 

mechanisms for nutrient absorption, where T. camphoratus acquires more 

nutrients (sulphur) from both the soil through roots and leaves than R. 

lanuginosum, which obtains all its nutrients (sulphur) from the air. 

Other environmental factors, like the high light intensity and temperature 

conditions for R. lanuginosum during the experiment and the rain events 

for T. camphoratus, may help explain the weak responses we found. 

Strong light intensities cause photo-inhibition (Murata et al., 2007) and 

can destroy chlorophyll and DNA structures of bryophytes in moist 

condition (Glime, 2007). The concentrations of chlorophyll in our R. 

lanuginosum samples were similar to values measured in field (Mutia et 

al. 2016b), so we cannot unequivocally infer chlorophyll damage. 

However, high light intensity may have affected some other physiological 

processes within the mosses under these conditions. Similarly, the effect 

of temperatures higher than optimal (due to heating from the bulbs) in the 

experimental growth chambers for R. lanuginosum could also have 

affected the moss responses to the treatment. To overcome these 

experimental limitations, we recommend that similar experiments are 

performed in better controlled environments or outdoors and away from 
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geothermal activity or atmospheric pollution during their natural growth 

period, so that the moss grows in as close to natural conditions as 

possible. However, field experiments have other limitations. For example, 

in our outdoors experiment with shrub seedlings, the three rain events 

could have affected sulphur levels and other responses in the plant leaves 

through dilution and nutrient leaching. The measured soil variables, 

which improved the models, also suggest the influence of other 

environmental factors on the shrub growth and responses to the 

treatments.  

We can therefore imply that short-term exposure to moderate levels of 

wet H2S deposition (30 µg/L) does not harm the dominating plants around 

power plants in Kenya and Iceland. These levels of H2S seemed to benefit 

growth in the case of the shrub, and did not reduce moss growth. 

However, caution needs to be taken with this interpretation and 

experiments assessing the long term effects of exposure should be 

conducted. In the case of R. lanuginosum, due to the high variability in 

the responses, experiments with larger numbers of replicates are required. 

Additional physiological plant responses such as photosynthetic rate 

(Maas et al., 1988) and changes in leaf area and dry matter for T. 

camphoratus (Maas et al., 1985; Bussotti et al., 2003) are advised. 

Fumigation experiments of the same H2S concentrations are also 

encouraged on the plant species for comparison, especially to assess the 

threshold levels at which damages may be emergent.  
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