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Útdráttur

Eiginleika efnahvarfa og annarra umraðana atóma er hægt að kanna með
því að skoða orkuyfirborðið, skilgreint sem orka kerfisins sem fall af atóm-
hnitunum. Staðbundin lágmörk á orkuyfirborðinu samsvara ástöndum
sem kerfið getur verið í og lágmarksorkuferlar milli þeirra einkenna gang
mögulegra umraðana atómanna. Hámörk á lágmarksorkuferlum eru sér-
lega mikilvæg. Þau samsvara fyrsta stigs söðulpunktum og gefa mat á
virkjunarorku og þar með hraða samsvarandi umröðunar.

Lágmarksorkuferlar og söðulpunktar milli tveggja þekktra ástanda eru
gjarnan fundnir með ítrekunaraðferðum þar sem röð af ímyndum af kerf-
inu mynda feril milli endapunktanna og eru færðar til þangað til þær
liggja á lágmarksorkuferlinum. Færslan í hverri ítrekun er fundin út frá
stiglunum á orkuyfirborðinu. Söðulpunktinn er hægt að finna með því
að færa orkuhæstu ímyndina í átt stigilsins eftir að þætti hans í stefnu
ferilsins hefur verið snúið við. Þannig færist sú ímynd upp í orku að
söðulpunktinum. Ef lokaástand umröðuninnar er ekki þekkt er hægt að
finna fyrsta stigs söðulpunkt með því að nota par ímynda af kerfinu sem
eru þétt saman og myndar tvennu. Henni er snúið til að finna stefnuna
með lægstan krappa á orkuyfirborðinu og síðan færð í átt stigulsins eftir
að þátturinn í stefnu lægsta krappans hefur verið speglaður. Þannig færist
tvennan að söðulpunktinum. Þessi aðferð getur þurft hundruða ítrekana
og þar eð útreikningar á orkustiglinum eru oft þungir er mikilvægt að nýta
upplýsingar úr fyrri ítrekunum eins vel og hægt er til að fækka ítrekunum.
Með því að nota tölfræðileg líkön er hægt að búa til nálgun fyrir orkuyf-
irborðið og leita að söðulpunktinum á því yfirborði. Lausnina er hægt að
sanreyna með frekari útreikningum á orkustiglinum sem síðan er hægt að
nota til að bæta nálgunina fyrir næstu færslur tvennunnar.

Í þessari ritgerð er vélrænn lærdómur sem byggður er á Gaussferlaað-
hvarfi notaður til að hraða reikningum á lágmarksorkuferlum og söðul-
punktum. Líkön fyrir orkuyfirborðið eru búin til með út frá þekktum
gildum á orkunni og stiglinum með tölfræðilegum aðferðum Bayes og mat
fundið á óvissunni í líkaninu sem hægt er að nýta til að ákveða hvaða
punkt er best að reikna í næstu ítrekun. Mismunandi aðferðir eru þróaðar
bæði til að finna lágmarksorkuferla milli tveggja þekktra ástanda og til
að finna söðulpunkt í nágreni gefins upphafspunkts. Reikningar á ýmsum
mismunandi kerfum sýna að með þessu móti er hægt að fækka útreikning-
um á orkunni og stiglinum mjög verulega í samanburði við þær aðferðir
sem nú eru notaðar.
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Preface

The journey towards this dissertation begun already in 2011 when I applied
for a summer job at the Department of Biomedical Engineering and Com-
putational Science (BECS) and found myself in the Bayesian methodology
group, developing analysis methods for brain research. After finishing my
master’s thesis and pondering my future for a while, I eventually decided
to continue on the track towards a doctoral degree. Along the journey,
BECS became NBE, the Department of Neuroscience and Biomedical En-
gineering, and our group moved to the Department of Computer Science
to be part of the current probabilistic machine learning group. These
organizational changes naturally weakened our connection to neuroscience
and spread the method development to a broader range of applications.
After several, more or less successful trial projects, the final topic for my
dissertation was quite unexpectedly found from the field of theoretical
chemistry. This connection opened an interesting opportunity for a double
degree via a joint supervision agreement between Aalto University and
University of Iceland. During the time of the shared supervision, I was
partly employed by the Department of Applied Physics. In addition to
the employer departments, I gratefully acknowledge the financial support
of the Academy of Finland and the Finnish Cultural Foundation (Kari
Kairamo Fund) as well as the support of the Icelandic Research Fund to
partly cover the expenses of my visits to Iceland.

Although research is at times lonely work inside one’s own head, it is
above all collaboration and learning from others. The people that I have
learned of the most about science are my two supervisors, Prof. Aki Vehtari
and Prof. Hannes Jónsson. As the leader of the former Bayesian method-
ology group, Aki has been supporting my work from the beginning and,
by opening his bottomless storage of ideas, taken care that his students
are never left empty-handed. On the other hand, I thank Aki also for
the freedom he has given to develop the ideas further and patience when
waiting for results. Hannes joined the journey in 2016 after he had met
Aki at a conference and recognized a possibility for fruitful collaboration.
That meeting turned out to be a good fortune to me as I got a well-defined
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goal for my theretofore unstructured doctoral research. I thank Hannes for
warmly welcoming me to Iceland, introducing me to the necessary chemi-
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1. Introduction

Theoretical chemistry utilizes physics, mathematics and computer science
to explain and predict structural and dynamical properties of molecules
and materials. One of the key concepts in theoretical chemistry is a po-
tential energy surface, often described as a function in a high-dimensional
space of atom coordinates, which contains the essential information of the
properties of the system at a finite temperature. The most interesting
locations on the energy surface are its local minimum points, correspond-
ing to stable states of the system, and first-order saddle points located
at energy ridges separating those states. Transitions from one state to
another, caused by thermal fluctuations, can be characterized by a min-
imum energy path connecting the two states, and the highest point of
this path is located at a first-order saddle point. The minimum energy
path cannot be considered as an actual trajectory for the transition but
rather a path of maximal statistical weight. In principle, such transitions
could be simulated by classical dynamics, but since the time scale of the
transition is often extremely large compared to the frequency of the ther-
mal vibrations, statistical tools such as transition state theory (Wigner,
1938; Kramers, 1940; Keck, 1967) are required. A common approach is the
harmonic approximation to the transition state theory (Vineyard, 1957),
where the rate of the transition is estimated based on the energy and its
second derivatives at the initial state and the saddle point.

Given an initial configuration of atoms, it is straightforward to locate the
nearest minimum point on the energy surface with common optimization
methods. A more challenging task is to find the saddle points located
along the minimum energy paths leading to other relevant states of the
system. A group of iterative algorithms, called surface walking methods or
mode following methods, has been developed for the task to find a saddle
point without knowledge of the final state of the transition. The common
principle of these algorithms is to make the problem approachable for
optimization methods by reverting the gradient component in the direc-
tion of the lowest energy curvature, i.e., the direction of the eigenvector
corresponding to the lowest eigenvalue of the Hessian matrix, also known
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as the minimum curvature mode. With this modification, minimization of
energy is supposed to lead to a first-order saddle point where the energy is
maximized in the direction of the minimum energy path but minimized
in all perpendicular directions. If the second derivatives of energy are
easily available, all eigenvalues of the Hessian matrix can be calculated
and a modified Hessian used to guide the saddle point search (Cerjan and
Miller, 1981; Simons et al. 1983; Banerjee et al., 1985). A more efficient
approach is to find the direction of the lowest curvature based only on the
first derivatives (Henkelman and Jónsson, 1999; Munro and Wales, 1999;
Malek and Mousseau, 2000). An example of such an approach is the dimer
method (Henkelman and Jónsson, 1999), where a pair of closely spaced
points is rotated towards the minimum curvature mode and translated
towards a saddle point based on a modified gradient.

The task of finding a saddle point along a minimum energy path is easier,
if also the final state of the transition has been found. In chain-of-states
methods, such as the nudged elastic band (NEB) method (Mills et al., 1995;
Jónsson et al., 1998), the path is represented as a discrete chain of points
which is moved and stretched towards a minimum energy path so that the
component of the energy gradient perpendicular to the path goes to zero at
all points of the chain. In the NEB method, the distribution of the points
along the path is controlled by a spring force acting parallel to the path.
The actual saddle point can be found by reverting the gradient component
parallel to the path at one of the points of the chain and letting this point
climb along the path towards the saddle point.

Both surface walking and chain-of-states methods may require hundreds
of iterations and evaluations of energy and its first derivatives. Since
these evaluations typically involve computationally expensive electronic
structure calculations, the information obtained from previous iterations
should be utilized as efficiently as possible to decrease the number of
iterations. A prominent approach for this purpose is to utilize machine
learning to construct an approximate energy surface and perform the
saddle point search based on the approximate model. The accuracy of the
solution can be checked with further evaluations, which can then be used
to update the model for the following iterations. Assuming that training of
the machine learning model and evaluations of the approximate energy
and derivatives are significantly cheaper than the accurate evaluations,
the total number of the expensive evaluations can be reduced and the
saddle point search hence accelerated. This general scheme has been
introduced by Peterson (2016) with a demonstration of applying artificial
neural network models to NEB calculations.

In this dissertation, similar algorithms to enhance searches of minimum
energy paths and saddle points are developed using Gaussian process (GP)
models as flexible prior probability models for potential energy surfaces.
Observed values of both energy and its derivatives can be used to update
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the model, and the posterior predictive distribution obtained as a result of
Bayesian inference provides also an uncertainty estimate, which can be
utilized when selecting new observation points. Whereas optimization of
a large number of weights of a neural network model may be challenging
due to many local minima of the cost function, optimization of the hyperpa-
rameters of a GP model is typically a much easier task. Gaussian process
regression have been shown to perform well especially when learning from
small training data sets (Lampinen and Vehtari, 2001; Kamath et al.,
2018), which makes it an appealing approach for this application. The
GP-NEB algorithm (Publications I–III), based on the nudged elastic band
method, finds a minimum energy path and a saddle point between two
known states, whereas the GP-dimer algorithm (Publication IV), based
on the dimer method, only finds a saddle point located in the vicinity of a
given start point.

The dissertation consists of four articles and this overview part. The fol-
lowing chapter reviews the basics of Gaussian process regression, explains
how to deal with derivatives in Gaussian process models, and shows how
the framework is applied to modelling of potential energy surfaces in Publi-
cations I–IV. Chapter 3 reviews the regular nudged elastic band and dimer
methods, and chapter 4 summarizes the contributions of Publications I–IV
by explaining the main features of the GP-NEB and GP-dimer algorithms
and presenting some test results.
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2. Gaussian processes

Gaussian processes are a class of stochastic processes, particularly suitable
for defining flexible prior distributions for functions in a Bayesian approach
to supervised learning problems. Gaussian process models have been used
for decades, e.g., in signal processing and geostatistics, where methods
known as Wiener-Kolmogorov filtering (Kolmogorov, 1941; Wiener, 1949)
and kriging (Krige, 1951; Matheron, 1963), respectively, correspond to
Gaussian process regression. Bayesian interpretation of the GP framework
has been presented by Kimeldorf and Wahba (1970), Blight and Ott (1975),
and O’Hagan (1978) and later adopted by neural network researchers (Neal,
1995; Williams and Rasmussen, 1996; Rasmussen, 1996) who realized that
neural network models in the limit of infinite number of hidden units can
be handled elegantly by replacing the networks by Gaussian processes.

This chapter reviews the basics of Gaussian process regression from the
Bayesian point of view, explains how to deal with derivatives in Gaussian
process models, and finally shows how the framework is applied to approx-
imation of potential energy surfaces in Publications I–IV. A more thorough
review of the Bayesian approach to Gaussian process regression, including
many of the basic equations appearing in this chapter, can be found in the
book of Rasmussen and Williams (2006).

2.1 Gaussian process model

By definition, a Gaussian process is a collection of random variables with
a multivariate Gaussian distribution for any finite set of these random
variables. The random variables are most often indexed in a continuous
domain such as time or space. In that case, the probability distribution of
the Gaussian process itself is the infinite-dimensional joint distribution of
all the random variables, in other words, a distribution over functions in
a continuous input space. In the machine learning community, the term
Gaussian process is often used to refer also to the model that defines the
distribution of the process (see, e.g., Rasmussen and Williams, 2006). In
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this context, Gaussian processes compose a versatile modelling framework
to specify prior probability distributions directly on functions and perform
Bayesian inference on them based on observed data.

A Gaussian process model for the probability distribution of function
f : RD → R is specified by a mean function m : RD → R and a covariance
function k : RD ×RD → R. The mean function specifies the mean level
of the marginal distribution of f (x) at a given input point x ∈ RD, i.e.,
E[ f (x)] = m(x), and the covariance function specifies how the values of f
at any two input points, x,x′ ∈ RD, correlate with each other, more pre-
cisely, E[( f (x)−m(x))( f (x′)−m(x′))]= k(x,x′). Given an arbitrary set of input
points X= [x(1),x(2), . . . ,x(N)]T, the joint probability distribution of function
values f= [ f (x(1)), f (x(2)), . . . , f (x(N))]T is defined as a multivariate Gaussian
distribution

p(f)=N (m,K(X,X)) (2.1)

with mean vector

m= [m(x(1)),m(x(2)), . . . ,m(x(N))]T

and covariance matrix

K(X,X)=

⎡
⎢⎢⎢⎢⎢⎣

k(x(1),x(1)) k(x(1),x(2)) · · · k(x(1),x(N))

k(x(2),x(1)) k(x(2),x(2)) · · · k(x(2),x(N))
...

... . . . ...

k(x(N),x(1)) k(x(N),x(2)) · · · k(x(N),x(N))

⎤
⎥⎥⎥⎥⎥⎦.

2.2 Covariance functions

From now on, the mean function of the prior GP model is assumed to be
set to zero, which is a common practice and applied also in Publications
I–IV after a suitable shift of the zero level of the data. The essential
part of a Gaussian process model is the covariance function, which can be
used to encode favourable properties of the unknown function. From the
perspective of machine learning, it has a particularly important role in
defining what can be learned about the function based on observed values.
If a covariance function k(x,x′) depends only on the vector between the
two points, x−x′, it is called stationary since it behaves similarly in all
parts of the input space. If a covariance function is also isotropic, it can
be written simply as a function of the distance ||x−x′|| =

√∑D
d=1(xd − x′d)2,

which means that the behaviour is similar in all directions.
A common stationary example is the squared exponential (or perhaps

more precisely exponentiated quadratic) covariance function

k(x,x′)=σ2
m exp

(
−||x−x′||2

2l2

)
(2.2)
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where σm and l are the hyperparameters of the covariance function. The
covariance is larger when the two input points are closer to each other and
decreases with increasing distance. The magnitude σm defines the process
variance, i.e., how much the values of f tend to deviate from the mean
function, and the length scale l defines how far the effect of the covariance
function fades out. In this isotropic form, the length scale is the same in
all directions, but it is also possible to give separate length scales ld for
each input coordinate d = 1, . . . ,D:

k(x,x′)=σ2
m exp

(
−

D∑
d=1

(
xd − x′d

)2
2l2

d

)
. (2.3)

A GP model with a squared exponential covariance function favours ex-
tremely smooth functions. This property stems from the fact that the
covariance function is infinite times differentiable, implying that sample
functions drawn from the probability model are as well infinite times
differentiable.

Even though the squared exponential covariance function is one of the
most popular choices for a GP model, such a demanding smoothness as-
sumption may be unrealistic for some real-world applications (Stein, 1999).
The Matérn class of covariance functions (Matérn, 1960) allows to loosen
the smoothness assumptions by adjusting an additional hyperparameter ν.
The general form of the isotropic Matérn covariance function is given by

k(x,x′)=σ2
m

21−ν

Γ(ν)

(�
2ν||x−x′||

l

)ν
Bν

(�
2ν||x−x′||

l

)
, (2.4)

where Γ denotes the gamma function and Bν the modified Bessel func-
tion of the second kind (Olver and Maximon, 2010). A more convenient
presentation is obtained when ν= p+1/2, where 0≤ p ∈Z:

k(x,x′)=σ2
m exp

(
−
�

2ν||x−x′||
l

)
p!

(2p)!

p∑
i=0

(
(p+ i)!

i!(p− i)!

(
2
�

2ν||x−x′||
l

)p−i)
.

Sample functions drawn from this model are n times differentiable when
n > ν. When ν approaches infinity, the Matérn class converges to the
squared exponential covariance function, whereas a choice of ν= 1/2 leads
to the exponential covariance function

k(x,x′)=σ2
m exp

(
−||x−x′||

l

)
(2.5)

and continuous but non-differentiable, roughly varying sample functions.
In practice, a good compromise for the smoothness assumption is often
obtained by choosing a once differentiable process with ν= 3/2, so that

k(x,x′)=σ2
m

(
1+

�
3||x−x′||

l

)
exp
(
−
�

3||x−x′||
l

)
, (2.6)
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or a twice differentiable process with ν= 5/2, so that

k(x,x′)=σ2
m

(
1+

�
5||x−x′||

l
+ 5||x−x′||2

3l2

)
exp
(
−
�

5||x−x′||
l

)
. (2.7)

Similarly as for the squared exponential covariance function, it is possible
to give separate length scales ld for each input coordinate d = 1, . . . ,D by
replacing the scaled distance ||x−x′||/l with

√∑D
d=1((xd − x′d)/ld)2.

One more simple covariance function encountered in this dissertation is
the constant function

k(x,x′)=σ2
c , (2.8)

often used as an auxiliary term with other covariance functions. As a
constant covariance implies full correlation between all function values,
adding σ2

c to the covariance function corresponds to adding a constant
intercept term to the process so that the unknown constant has a Gaussian
prior distribution with variance σ2

c . Thus, the constant covariance term
can be used to allow variation of the global mean level even if the mean
function was set to zero.

2.3 Gaussian process regression

Consider a regression problem with a training data set {X,y}, including
output observations y = [y(1), y(2), . . . , y(N)]T made at N input points X =
[x(1),x(2), . . . ,x(N)]T, and an observation model

p(y|f)=
N∏

i=1

p
(

y(i)∣∣ f (x(i))
)
, (2.9)

where f= [ f (x(1)), f (x(2)), . . . , f (x(N))]T is a vector of latent function values at
the input data points. In a typical Bayesian modelling approach, the latent
function f (x) would be specified by a set of unknown parameters ρ with
a prior distribution p(ρ). According to the Bayes’ theorem, the posterior
distribution of ρ conditioned on the training data would be given by

p(ρ |X,y)= p(y |X,ρ)p(ρ)
p(y |X)

, (2.10)

where p(y |X,ρ) with fixed y and X is the likelihood of ρ given by the
observation model and the normalization constant p(y |X) is obtained by
integrating over the parameters,

p(y|X)=
∫
ρ

p(y |X,ρ)p(ρ)dρ. (2.11)

In Gaussian process regression, the prior distribution is given directly to
the values of the latent function f . For this reason, Gaussian process mod-
els are often called non-parametric, but sometimes also infinite-parametric
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since the unlimited collection of latent function values f at the training
input points can be seen as the parameters of the model. When modelling
the prior of f with a Gaussian process with mean function m(x) = 0 and
a prior covariance function k(x,x′ |θ), the posterior distribution of f, con-
ditional on the hyperparameters θ of the covariance function, is given by

p(f |X,y,θ)= p(y |f)p(f |X,θ)
p(y |X,θ)

. (2.12)

Generally, evaluation of this distribution requires approximative methods
such as Monte Carlo integration (Neal, 1999), Laplace approximation
(Williams and Barber, 1998), expectation propagation (Minka, 2001), or
variational methods (Gibbs and MacKay, 2000), but in case of a Gaussian
observation model

p(y |f)=
N∏

i=1

N
(

y(i)∣∣ f (x(i)),σ2), (2.13)

the posterior can be presented in an analytical Gaussian form:

p(f |X,y,θ)=N (f |mf,Kf), (2.14)

where
mf = K(X,X)

(
K(X,X)+σ2IN

)−1 y

and
Kf = K(X,X)−K(X,X)

(
K(X,X)+σ2IN

)−1
K(X,X)

with IN denoting an N ×N identity matrix.
To predict function values f∗= [ f (x∗(1)), f (x∗(2)), . . . , f (x∗(N∗))]T at an arbi-

trary set of input points X∗= [x∗(1),x∗(2), . . . ,x∗(N∗)]T, consider first the joint
prior distribution of f and f∗:

p

([
f

f∗

]∣∣∣∣∣
[

X

X∗

])
=N

([
f

f∗

]∣∣∣∣∣
[

0

0

]
,

[
K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)

])
. (2.15)

According to the conditionalization properties of the multivariate Gaus-
sian distribution (Mises, 1964), the conditional distribution of f∗, given f,
becomes

p(f∗|X∗,X,f,θ)=N
(
f∗
∣∣mf∗|f,Kf∗|f

)
, (2.16)

where
mf∗|f = K(X∗,X)K(X,X)−1f

and
Kf∗|f = K(X∗,X∗)−K(X∗,X)K(X,X)−1K(X,X∗).

The posterior predictive distribution for the function values f∗ is obtained
by marginalizing from the joint posterior

p(f,f∗|X∗,X,y,θ)= p(f∗|X∗,X,f,θ)p(f |X,y,θ).
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With the Gaussian observation model, also this distribution remains Gaus-
sian:

p(f∗|X∗,X,y,θ)=
∫

f
p(f∗|X∗,X,f,θ)p(f |X,y,θ)df=N

(
f∗
∣∣mf∗,Kf∗

)
, (2.17)

where
mf∗ = K(X∗,X)

(
K(X,X)+σ2IN

)−1 y

and
Kf∗ = K(X∗,X∗)−K(X∗,X)

(
K(X,X)+σ2IN

)−1
K(X,X∗).

The equations above are all conditional on the prior covariance function
k(x,x′) with known hyperparameters θ. The standard way to learn the
hyperparameters is to maximize the marginal likelihood of θ given a data
set {X,y}, appearing in the denominator of equation 2.12:

θML = arg max
θ

p(y |X,θ)= arg max
θ

∫
f
p(y |f)p(f |X,θ)df. (2.18)

With the Gaussian observation model, the marginal likelihood is simply
given by

p(y |X,θ)=N
(
y
∣∣0,K(X,X)+σ2IN

)
. (2.19)

To improve stability and data efficiency, it is also possible to define a prior
distribution p(θ) (hyperprior), as done in Publications I–IV, and maximize
the marginal posterior probability density p(θ |y,X)∝p(θ)p(y |X,θ):

θMAP = arg max
θ

p(θ |y,X)= arg max
θ

p(θ)p(y |X,θ). (2.20)

An alternative to a maximum a posteriori estimate would be to integrate
over the uncertainty of the marginal posterior p(θ |y,X) using approxima-
tions based on, e.g., Monte Carlo or grid sampling or a central composite
design (Rue et al., 2009; Vanhatalo et al., 2010). In addition to the hyper-
parameters of the covariance function, the parameters of the observation
model such as the noise variance σ2 can be similarly treated as unknown
hyperparameters and incorporated in the optimization or integration.

The elegance of Gaussian process regression relies on the implicit encod-
ing of the function properties via selection of the covariance function, which
allows flexible models without restricting to simple parametric forms. The
strength of the framework is most apparent in prediction based on small
training data sets (Lampinen and Vehtari, 2001; Kamath et al., 2018). The
price of the elegance, however, is realized as computational challenges with
large data sets, since training of the model involves solving a linear system
associated with the training covariance matrix. This is typically performed
via a Cholesky decomposition with a cubic computational cost with re-
spect to the number of training observations, which makes large data sets
infeasible (Rasmussen and Williams, 2006). Common ways to alleviate
the problem involve compactly supported covariance functions leading to
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sparse covariance matrices with zero covariance between data points far
away from each other (Sansò and Schuh, 1987; Wu, 1995; Wendland, 1995;
Vanhatalo and Vehtari, 2008), sparse approximations by representing the
training data set with a smaller set of inducing points (Csató and Opper,
2002; Seeger et al., 2003; Quiñonero-Candela and Rasmussen, 2005; Snel-
son and Ghahramani, 2006; Titsias, 2009; Hensman et al., 2013), and
mixture-of-experts models where the computation can be distributed over
several local data sets (Deisenroth and Ng, 2015). However, a more recent
inference approach (Gardner et al., 2018; Wang et al., 2019) avoids the
Cholesky decomposition by using a modified batched conjugate gradients
algorithm and allows quadratic scaling without compromising the accu-
racy of the inference. In this approach, the covariance matrix is accessed
through matrix-matrix multiplications which can be computed efficiently
with GPU (graphics processing unit) hardware.

2.4 Regression with derivatives

In many applications, it is desirable to predict also the derivatives of f or
incorporate information about the derivatives into the model. For Gaussian
process models with differentiable covariance functions, this turns out to
be straightforward since the linearity of differentiation implies that the
derivative of a Gaussian process is another Gaussian process (O’Hagan,
1992; Rasmussen, 2003; Solak et al., 2003; Riihimäki and Vehtari, 2010).
The covariance between a partial derivative at x and a function value at x′

is simply given by differentiating the covariance function,

Cov
[
∂ f (x)
∂xd

, f (x′)
]
= ∂

∂1xd
Cov
[
f (x), f (x′)

]= ∂k(x,x′)
∂1xd

, (2.21)

and similarly,

Cov
[
∂ f (x)
∂xd1

,
∂ f (x′)
∂x′d2

]
= ∂2

∂1xd1∂2x′d2

Cov
[
f (x), f (x′)

]= ∂2k(x,x′)
∂1xd1∂2x′d2

. (2.22)

The notation ∂1 indicates here that the covariance is differentiated with
respect to a component of the first argument x, and ∂2 correspondingly
refers to the second argument x′.

To predict partial derivatives of f , vector f∗ and covariance matrices
K(X∗,X∗) and K(X∗,X) in equations 2.15–2.17 can be extended as⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f∗

∂ f (X∗)
∂x∗1

∂ f (X∗)
∂x∗2
...

∂ f (X∗)
∂x∗D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(X∗,X∗) ∂K(X∗,X∗)
∂2x∗1

∂K(X∗,X∗)
∂2x∗2

· · · ∂K(X∗,X∗)
∂2x∗D

∂K(X∗,X∗)
∂1x∗1

∂K(X∗,X∗)
∂1x∗1∂2x∗1

∂K(X∗,X∗)
∂1x∗1∂2x∗2

· · · ∂K(X∗,X∗)
∂1x∗1∂2x∗D

∂K(X∗,X∗)
∂1x∗2

∂K(X∗,X∗)
∂1x∗2∂2x∗1

∂K(X∗,X∗)
∂1x∗2∂2x∗2

· · · ∂K(X∗,X∗)
∂1x∗2∂2x∗D

...
...

... . . . ...
∂K(X∗,X∗)

∂1x∗D
∂K(X∗,X∗)
∂1x∗D∂2x∗1

∂K(X∗,X∗)
∂1x∗D∂2x∗2

· · · ∂K(X∗,X∗)
∂1x∗D∂2x∗D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(X∗,X)
∂K(X∗,X)

∂1x∗1
∂K(X∗,X)

∂1x∗2
...

∂K(X∗,X)
∂1x∗D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

11
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respectively. Often the primary interest is in the marginal posterior pre-
dictive distribution of individual variables, whereupon the covariances
between predictions of different partial derivatives and between predic-
tions at different input points can be ignored. For example, the posterior
predictive distribution of the partial derivative of f with respect to input co-
ordinate d at x∗, assuming the Gaussian observation model, is a Gaussian
distribution with mean

E
[
∂ f (x∗)
∂x∗d

∣∣∣∣X,y,θ
]
= ∂K(x∗,X)

∂x∗d

(
K(X,X)+σ2IN

)−1 y (2.23)

and variance

Var
[
∂ f (x∗)
∂x∗d

∣∣∣∣X,y,θ
]
= ∂2k(x∗,x∗)

∂1x∗d∂2x∗d
− ∂K(x∗,X)

∂x∗d

(
K(X,X)+σ2IN

)−1 ∂K(X,x∗)
∂x∗d

.

(2.24)
Similarly, derivative observations can be included in the model by ex-

tending the observation vector y to include partial derivative observations
and by extending the covariance matrices correspondingly. Assuming a
Gaussian noise model also for the derivative observations, the posterior
predictive mean and variance for f at x∗ are then given as

E
[
f (x∗)

∣∣yext,X,θ
]=K∗

ext(Kext +Σ)−1yext (2.25)

and
Var
[
f (x∗)

∣∣yext,X,θ
]= k(x∗,x∗)−K∗

ext(Kext +Σ)−1K∗
ext

T, (2.26)

where

yext =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y
∂ f (X)
∂x1

∂ f (X)
∂x2
...

∂ f (X)
∂xD

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Kext =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(X,X) ∂K(X,X)
∂2x1

∂K(X,X)
∂2x2

· · · ∂K(X,X)
∂2xD

∂K(X,X)
∂1x1

∂2K(X,X)
∂1x1∂2x1

∂2K(X,X)
∂1x1∂2x2

· · · ∂2K(X,X)
∂1x1∂2xD

∂K(X,X)
∂1x2

∂2K(X,X)
∂1x2∂2x1

∂2K(X,X)
∂1x2∂2x2

· · · ∂2K(X,X)
∂1x2∂2xD

...
...

... . . . ...
∂K(X,X)
∂1xD

∂2K(X,X)
∂1xD∂2x1

∂2K(X,X)
∂1xD∂2x2

· · · ∂2K(X,X)
∂1xD∂2xD

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K∗
ext =
[
K(x∗,X) ∂K(x∗,X)

∂2x1

∂K(x∗,X)
∂2x2

· · · ∂K(x∗,X)
∂2xD

]
,

and

Σ=
⎡
⎣σ2IN 0

0 σ2
dIND

⎤
⎦

is the extended noise covariance matrix with noise variance σ2
d for the

derivative observations. Correspondingly, the mean and variance of the
posterior predictive distribution of the partial derivative of f with respect
to coordinate d at x∗ are given as

E
[
∂ f (x∗)
∂x∗d

∣∣∣∣yext,X,θ
]
= ∂K∗

ext
∂x∗d

(Kext +Σ)−1yext (2.27)
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and

Var
[
∂ f (x∗)
∂x∗d

∣∣∣∣yext,X,θ
]
= ∂2k(x∗,x∗)

∂1x∗d∂2x∗d
− ∂K∗

ext
∂1x∗d

(Kext +Σ)−1 ∂K∗
ext

T

∂1x∗d
. (2.28)

Equation 2.27 is the central result used in Publications I–IV when predict-
ing gradients of a potential energy surface based on a training data set
including derivative observations.

2.5 Gaussian process models for potential energy surfaces

In this dissertation, Gaussian processes are used to model parts of potential
energy surfaces in order to accelerate algorithms that aim to find minimum
energy paths and saddle points on the energy surfaces. Following the
notation of Publication III,

x=[x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, . . . , xNm,1, xNm,2, xNm,3
]T

represents now a 3Nm-dimensional configuration vector including coordi-
nates for moving atoms 1,2, . . . , Nm ∈ Am and f is the unknown energy of
the system as a function of x. The training data set consists of both the
energy and its first derivatives with respect to the components of x. The ob-
servations are here regarded as accurate up to floating point presentation
accuracy, and thus only a really small Gaussian noise term is included in
the observation model to avoid numerical issues. An approximation to the
energy surface is given by the mean of the posterior predictive distribution
of f (equation 2.25), and the variance of the distribution (equation 2.26)
can be used as an uncertainty estimate for the GP approximation. As the
algorithm proceeds, more observations are made and the model is updated
until it is accurate enough to allow convergence to a minimum energy path
and/or a saddle point.

In Publications I and II, a simple model with a stationary squared expo-
nential covariance function kx is successfully applied to meet the goals of
the algorithms in a benchmark case involving rearrangements of a hep-
tamer island on a crystal surface (Henkelman, Jóhannesson, and Jónsson,
2000; Chill et al., 2014):

kx(x,x′)=σ2
c +σ2

m exp
(
−1

2
D2

x (x,x′)
)

, (2.29)

where

Dx(x,x′)=

√√√√√ Nm∑
i=1

3∑
d=1

(
xi,d − x′i,d

)2
l2 (2.30)

is a difference measure defined as a regular Euclidean distance between
configuration vectors in the 3Nm-dimensional space of atom coordinates.
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Figure 2.1. Illustration of problems in fitting a one-dimensional energy curve of a hydro-
gen molecule when using a Gaussian process model with stationary squared
exponential covariance function kx (equation 2.29). The training data points
include accurate values for both energy and its first derivative. When the
length scale of the covariance function is too long, the dominating data from
the steep parts of the curve disturb the predictions at longer distances where
the GP approximation does not match with the training data points even if the
noise variance is assumed to be really small. When optimized, however, the
length scale becomes too short for interpolation of the data points at the flat
parts of the curve. Figure reproduced with permission from Publication III.

In some systems, however, strong and quickly changing repulsive forces
may cause problems for stationary covariance functions, as demonstrated
in Publication III. Figure 2.1 shows a simple example involving a pair
of hydrogen atoms, where fitting a one-dimensional energy curve turns
out to be a challenging task for covariance function kx. With a too long
length scale l, the dominating data from the steep part of the curve disturb
the predictions at longer distances. To accommodate the data, the model
hence favours small values of l. A short length scale, however, leads to
oscillations in the GP approximation at the flat parts of the energy curve
as the predictive mean between the observation points approaches the
mean of the whole data.

In addition to the stationarity of the covariance function, part of the
problem is due to the strong smoothness assumptions of the infinitely
differentiable squared exponential covariance function. The infinitely
differentiable model tends to avoid abrupt changes not only in energy and
its first derivatives but also in derivatives of any order. As shown in the
Supporting Information of Publication III and also by Denzel and Kästner
(2018a), Matérn covariance functions with smoothness parameter ν= 3/2
or ν = 5/2 may perform somewhat better in modelling chemical systems
than the squared exponential covariance function but are not able to fully
resolve the problem. These covariance functions are here denoted by kM−3/2

x
and kM−5/2

x , respectively:

kM−3/2
x (x,x′)=σ2

c +σ2
m
(
1+�

3Dx(x,x′)
)
exp
(−�3Dx(x,x′)

)
, (2.31)
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and

kM−5/2
x (x,x′)=σ2

c +σ2
m

(
1+�

5Dx(x,x′)+ 5
3

D2
x (x,x′)

)
exp
(−�5Dx(x,x′)

)
. (2.32)

Since potential energy typically changes faster with respect to atom co-
ordinates when the atoms are close to each other, a modified difference
measure based on inverse interatomic distances is introduced in Publica-
tion III and used also in Publication IV to replace Dx(x,x′) in the squared
exponential covariance function:

D1/r(x,x′)=

√√√√√√√
∑
i∈Am

∑
j∈Am, j>i

∨
j∈Af

(
1

ri, j(x) − 1
ri, j(x′)

)2
l2
φ(i, j)

, (2.33)

where

ri, j(x)=

√√√√ 3∑
d=1

(
xi,d − xj,d

)2
is the distance between atoms i and j and lφ(i, j) denotes the length scale for
atom pair type φ(i, j). The outer summation goes through the set of moving
atoms Am, and the inner summation includes all other moving atoms and
the possible set of frozen atoms Af with fixed coordinates. The closer an
atom is to another atom, the larger effect a displacement of the atom
towards or away from the other atom has on the difference measure. Thus,
the difference measure can be interpreted to be stretched when atoms
approach each other, which makes the covariance function nonstationary
with respect to the atom coordinates and allows faster variation of energy
in those directions.

With the modified difference measure D1/r(x,x′), the squared exponential
covariance function gets the following form:

k1/r(x,x′)=σ2
c +σ2

m exp

⎛
⎜⎜⎜⎜⎝−1

2

∑
i∈Am

∑
j∈Am, j>i

∨
j∈Af

(
1

ri, j(x) − 1
ri, j(x′)

)2
l2
φ(i, j)

⎞
⎟⎟⎟⎟⎠. (2.34)

Expressions for the partial derivatives of kx, kM−5/2
x , kM−3/2

x , and k1/r re-
quired when dealing with derivative observations and predicting the en-
ergy gradient (as described in section 2.4) are given in the Appendix
and Supporting Information of Publication III. Figure 2.2 shows a two-
dimensional illustration where using the stationary squared exponential
covariance function kx leads to oscillations in spite of a dense grid of ob-
servations. The Matérn covariance functions kM−5/2

x and kM−3/2
x perform

better, but the interpolation is poor especially at the lower left corner of
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Figure 2.2. A two-dimensional cut through the potential energy surface for a pair of
hydrogen atoms near a copper surface (Mills et al., 1995). The GP approxima-
tions with optimized hyperparameters are based on accurate values of energy
and its first derivatives with respect to coordinates of the hydrogen atoms at
the training data points shown with black crosses. With stationary squared
exponential (kx) and Matérn (kM−5/2

x and kM−3/2
x ) covariance functions, the

high-gradient observations on the left induce oscillations in the GP approxi-
mation. When using covariance function k1/r, based on the inverse-distance
difference measure D1/r, the training data are interpolated without problems.
Figure reproduced with permission from Publication III.

the graph. With the inverse-distance covariance function k1/r, the high-
gradient observations on the left do not disturb the fitting of the energy
surface.

Another advantage of the difference measure D1/r is that it modifies
the similarity structure of the coordinate space in a natural way, which
allows more efficient learning with fewer observations. Even more efficient
representations for entire potential energy surfaces could be obtained by
using some of the carefully designed descriptors or covariance functions
associated with the Gaussian approximation potential framework (Bartók
et al., 2010; Bartók and Csányi, 2015). These models approximate the
total energy of the system with a sum over local atomic environments
where the local energy is assumed to be invariant with respect to rotations
and translations of the environment and permutations of identical atoms.
For example, the SOAP (smooth overlap of atomic positions) covariance
function between local environments is based on measuring the overlap
in smooth density functions centred at the locations of the neighbouring
atoms. In this dissertation, however, the ultimate goal is automated and
accurate modelling of the surroudings of a minimum energy path or a
saddle point, and the models are therefore kept fairly simple.
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3. Methods for finding saddle points

A saddle point of a smooth function is a critical point with a zero gradient
but neither local minimum nor maximum point of the function. In this
dissertation, the interest is in first-order saddle points of potential energy
surfaces located along minimum energy paths, where the Hessian matrix
has exactly one negative eigenvalue. In practice, this means that the saddle
point is a local maximum point along the direction of the minimum energy
path but at a local minimum point along all directions perpendicular to
the path.

The two main groups of saddle point search algorithms are chain-of-
states methods and surface walking methods. In chain-of-states methods,
such as the nudged elastic band method (Mills et al., 1995; Jónsson et al.,
1998) or the string method (E et al., 2002; Ren, 2003; E et al., 2007), the
task is to find a minimum energy path between the known initial and final
states of a transition and to locate the saddle point at the maximum point
of that path. The path is represented as a discrete chain of points in the
coordinate space, i.e., a chain of states of the system, which is optimized so
that the component of the energy gradient perpendicular to the path goes
to zero at all points of the chain.

Another group of algorithms, called surface walking methods or mode
following methods, aims at finding saddle points without knowing the final
state of the transition. The start point for these algorithms is often varied
close to a known initial state to search for possible transitions, but it is
also common to start closer to the saddle point with an initial guess based
for example on approximative minimum energy path calculations. Early
examples of this group are based on calculating all eigenvectors of the Hes-
sian matrix and, by modifying the Hessian, maximizing the energy in the
direction of the lowest curvature corresponding to the smallest eigenvalue
while minimizing the energy in other directions (Cerjan and Miller, 1981;
Simons et al. 1983; Banerjee et al., 1985). Some later algorithms, such
as the dimer method, find out only the eigenvector corresponding to the
smallest eigenvalue without observing the Hessian matrix (Henkelman
and Jónsson, 1999; Munro and Wales, 1999; Malek and Mousseau, 2000)
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and proceed towards the saddle point based on a modified gradient. This
approach is often referred to as the minimum mode following method.

Recent advances of saddle point search methods are reviewed in a book
chapter by Ásgeirsson and Jónsson (2018). In this dissertation, the focus
is on the nudged elastic band method and the dimer method, which are
common representatives of the two main groups, both based on the first
derivatives of the energy surface. In publications I–IV, these methods
are used as parts of the GP-NEB and GP-dimer algorithms, where the
search of a minimum energy path and/or a saddle point is enhanced using
Gaussian process regression. Similar algorithms can, however, be applied
to accelerate practically any other stable saddle point search method.

3.1 Nudged elastic band method

Consider a system of Nm moving atoms with configurations represented by
3Nm-dimensional vectors including the atom coordinates. In the nudged
elastic band method (Mills et al., 1995; Jónsson et al., 1998), two given lo-
cal minimum points representing the initial and final states of a transition
are connected with a discrete chain of Nim configurations, often referred
to as images of the system. The first image of the chain, R0, is fixed to
the initial state and the last image, RNim−1, to the final state, whereas the
intermediate images, Ri, i = 1,2, . . . , Nim−2, are iteratively moved towards a
minimum energy path. The simplest path to begin with is obtained by plac-
ing the intermediate images regularly along a straight line between R0 and
RNim−1. In some cases, however, this may lead to unphysical configurations
with overlapping atoms. A better initial guess that avoids the overlapping
can be obtained with the IDPP (image dependent pair potential) method
(Smidstrup et al., 2014), which aims to place the intermediate images
so that the distances between neighbouring atoms change as linearly as
possible along the chain, or the geodesic approach recently introduced by
Zhu et al. (2019).

The movements of the intermediate images Ri, i = 1,2, . . . , Nim − 2, are
based on the energy E(Ri), the atomic force vector F(Ri) =−∇E(Ri) given
by the negative gradient of the energy, and the tangent of the path, τ̂i. The
goal of the movements is to zero an effective force vector, here referred to
as the NEB force:

FNEB
i =F⊥(Ri)+Fs

i , (3.1)

where
F⊥(Ri)=F(Ri)− (F(Ri) · τ̂i)τ̂i (3.2)

is the component of F(Ri) perpendicular to the normalized path tangent
τ̂i at Ri and Fs

i is a spring force parallel to τ̂i. In the original formulation
(Jónsson et al., 1998), the spring force is defined as
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Fs
i =
((

ks
i+1(Ri+1 −Ri)−ks

i(Ri −Ri−1)
)· τ̂i
)
τ̂i, (3.3)

where ks
i is a spring constant that determines the relative length desired

for the interval between images Ri and Ri−1. A common choice of equal
intervals is made for applications of NEB in Publication I, where the spring
force is defined according to Henkelman and Jónsson (2000) as

Fs
i = ks(||Ri+1 −Ri||− ||Ri −Ri−1||)τ̂i. (3.4)

The word nudged refers to the separation of the forces into two orthogonal
components, which is an essential feature of the NEB method. Removal
of the atomic force component parallel to the path prevents the images
from sliding down towards the minimum energy points and leaves the
control of the distribution of the images along the path to the spring forces.
On the other hand, projection of the spring force on the path tangent
prevents corner cutting since the perpendicular spring forces would tend
to straighten the path at curves. A small perpendicular spring force can
sometimes stabilize the path optimization by preventing kinks of the path
in regions where the atomic forces perpendicular to the path are small
compared to the forces along the path, but these solutions require some sort
of switching function for the magnitude of the force (Jónsson et al., 1998;
Trygubenko and Wales, 2004; Sheppard et al., 2008; Maras et al., 2016).
Another cure for this behaviour is obtained by modifying the estimate
of the path tangent (Henkelman and Jónsson, 2000). Whereas a simple
estimate for the path tangent is parallel to a line segment connecting the
previous and the following image,

τ̂i = Ri+1 −Ri−1

||Ri+1 −Ri−1||
, (3.5)

a better-behaved estimate for the direction of the tangent, used also in
Publications I–III, can be achieved by

τi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ri+1 −Ri, if E(Ri−1)< E(Ri)< E(Ri+1)

Ri −Ri−1, if E(Ri+1)< E(Ri)< E(Ri−1)

ΔE−(Ri+1 −Ri)+ΔE+(Ri −Ri−1), if E(Ri±1)< E(Ri)

ΔE+(Ri+1 −Ri)+ΔE−(Ri −Ri−1), if E(Ri)< E(Ri±1),

(3.6)

where ΔE− = |E(Ri)−E(Ri−1)| and ΔE+ = |E(Ri+1)−E(Ri)|. If the energy at an
image is either higher or lower than at both of its neighbours, the direction
of the tangent is defined as a weighted average of two line segments.
Otherwise, only the line segment to the neighbouring image with higher
energy is taken into account.

The ultimate goal of NEB calculations is often to locate the saddle point at
the maximum point of the minimum energy path. However, the maximum
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energy may be under- or overestimated if interpolated based on the discrete
representation of the path. The climbing image nudged elastic band (CI-
NEB) method (Henkelman, Uberuaga, and Jónsson, 2000) provides a
solution to this problem by letting one of the images climb upwards along
the path towards the saddle point. The method is often started with regular
NEB iterations to find a rough shape of the path, and the image with the
highest energy is then selected as the climbing image RiCI . This special
image is not exposed to any spring forces, but a component of the atomic
force perpendicular to the path tangent is restored and reverted to point
towards the direction of increasing energy along the path. The effective
force on the climbing image is hence given as

FNEB
iCI

=F(RiCI )−2(F(RiCI ) · τ̂iCI )τ̂iCI . (3.7)

With equal spring constants, the images leaving on each side of the climb-
ing image are then distributed evenly on each subpath. Since the saddle
point is usually the most interesting part of the minimum energy path,
it is common to set a tighter convergence threshold for the NEB force of
the climbing image than for the rest of the images. Figure 3.1 illustrates
the effect of the climbing image on a NEB calculation on an artificial
two-dimensional energy surface (Müller and Brown, 1979). Without the
climbing image feature, the images of the converged path are evenly dis-
tributed and miss the saddle point found by the climbing image. The
CI-NEB method has a central role in Publication II, where the details
of the GP-NEB algorithm are modified to take the climbing image into
account.

The simplest way to define the NEB iterations is to move the images
in the direction of the NEB force with a step length proportional to the
magnitude of the NEB force. This steepest descent approach may, however,
require an excessively large number of iterations. A more efficient con-
trol of the step length is obtained by the velocity projection optimization
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Figure 3.1. Progression of a NEB calculation on a two-dimensional Müller-Brown energy
surface (Müller and Brown, 1979) with and without the climbing image feature.
The white dots represent images of the converged path, and the small black
dots represent earlier locations of intermediate images where energy and its
first derivatives have been evaluated during the process. With CI-NEB, the
third image of the path converges to the saddle point, whereas the evenly
distributed NEB path takes a shortcut on the critical area. The continuous
minimum energy path is presented on the left.
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(VPO) algorithm (also known as quick-min) based on molecular dynamics
(Jónsson et al., 1998). The movement of the images is accelerated based
on the velocity Verlet algorithm (Andersen, 1980; Swope et al., 1982), or
alternatively a simpler Euler integrator (Sheppard et al., 2008), with the
exception that the velocity vector is projected on the direction of the NEB
force or zeroed if the direction of the projected velocity would be opposite
to the NEB force. This optimization method is used in the implementation
of the GP-NEB algorithm in Publications I–III.

The lack of a well-defined objective function due to the force projections
make NEB challenging for more advanced optimization methods, such
as nonlinear conjugate gradient (Fletcher and Reeves, 1964; Polak and
Ribière, 1969) or limited memory Broyden-Fletcher-Goldfarb-Shanno (L-
BFGS) algorithms (Nocedal, 1980; Liu and Nocedal, 1989), that modify
also the search direction based on previous iterations and often perform
a line search along that direction based on a finite difference step. These
methods have a potential to faster convergence to the minimum energy
path especially when the convergence threshold is tight but may be un-
stable during the early phases of the optimization (Sheppard et al., 2008).
Better convergence properties can be achieved also by using the fast in-
ertial relaxation engine (Bitzek et al., 2006), shortened as FIRE, which
is an extension of the VPO algorithm involving adaptive time steps and
additional modifications to the velocity. Since acquisition of the second
derivatives of energy is usually too expensive, the optimization algorithm
is required to be based only on the first derivatives. In case accurate
observations of the second derivatives were easily available, the NEB opti-
mization could be done efficiently with a Newton-Rapshon method using
analytical calculations of the derivatives of the NEB forces (Bohner et al.,
2013).

3.2 Dimer method

The dimer method (Henkelman and Jónsson, 1999) is an example of a
minimum mode following algorithm with the objective to find a saddle
point by following the direction of the lowest curvature on the energy
surface without knowing the final state of the transition. Inspired by the
idea of Voter (1997), the lowest curvature mode is found by rotating a dimer
consisting of a pair of images, R1 and R2, with respect to its middle point
R0, and the whole dimer is then translated towards the saddle point based
on a force vector where the component parallel to the direction of the dimer
is reverted to point towards the direction of increasing energy, similarly
as in the CI-NEB method. During the algorithm, rotation and translation
phases alternate until the magnitude of the translational force is below
some convergence threshold. Figure 3.2 shows a simple two-dimensional
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Figure 3.2. Progression of the dimer method in a simple example where two hydrogen
atoms are free to move near a fixed copper surface (Mills et al., 1995). The
saddle point and the initial dimer coincide with the same two-dimensional cut
of the coordinate space as shown in figure 2.2. The pink and red bars represent
the dimer before and after the rotation or translation, respectively, and the
black crosses represent locations where energy and its first derivatives have
been evaluated during the process. In this case, the orientation of the dimer
after the first rotation turns out to be close enough to the lowest curvature
mode of the saddle point so that no further rotations are needed.

illustration of the progression of the dimer method in the same system as
shown in figure 2.2.

The rotations towards the lowest curvature mode are based on the atomic
force vectors F(R1)=−∇E(R1) and F(R2)=−∇E(R2), given by the negative
energy gradient at the two images. The distance from the middle point R0

to R1 and R2, referred to as the dimer separation ΔR, is fixed to a small
value in order to estimate the second derivative of energy along the dimer
as accurately as possible. The direction of the lowest curvature corresponds
to the orientation where the dimer energy, defined as E(R1)+E(R2), is
minimized. The minimum curvature mode is thus found by zeroing a
scaled rotational force given as

Frot = F⊥(R1)−F⊥(R2)
ΔR

, (3.8)

where
F⊥(Ri)=F(Ri)− (F(Ri) · N̂)N̂ (3.9)

is the component of F(Ri) perpendicular to the orientation vector N̂, which
is a unit vector pointing from R0 towards R1. Instead of evaluating the
force at both R1 and R2 between subsequent rotations, it is more efficient
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to evaluate the force at the fixed middle point R0 and extrapolate the force
at R2 as F(R2)≈ 2F(R0)−F(R1), as suggested by Olsen et al. (2004).

The rotational plane for each rotation iteration is spanned by the orien-
tation vector N̂ and another unit vector Ω̂, which defines the direction of
the rotation for R1. The steepest descent direction is simply the direction
of the rotational force: Ω̂=Frot/||Frot||. It is also possible to use a nonlinear
conjugate gradient (Fletcher and Reeves, 1964; Polak and Ribière, 1969;
Henkelman and Jónsson, 1999) or a more efficient L-BFGS (Nocedal, 1980;
Liu and Nocedal, 1989; Kästner and Sherwood, 2008) approach, where Ω̂

is modified based on previous rotation iterations.
In the original formulation (Henkelman and Jónsson, 1999), a small

preliminary step with a rotation angle ω∗ is first taken to get a finite
difference approximation to the derivative of the rotational force, and
the optimal rotation angle ω is then obtained based on a local quadratic
approximation to the energy surface. Heyden et al. (2005) prefer a larger
preliminary rotation instead of a finite difference step in order to avoid
possible problems with noisy data. They suggest the following rough
estimate, used also in Publication IV, for the preliminary rotation angle:

ω∗= 1
2

arctan
(F(R1)−F(R0)) ·Ω̂

ΔR|C| , (3.10)

where
C = (F(R0)−F(R1)) · N̂/ΔR (3.11)

is an estimate for the curvature of energy along the dimer. The dimer
orientation and rotation direction after the preliminary rotation step are
given by

N̂∗= N̂cosω∗+Ω̂sinω∗ (3.12)

and
Ω̂

∗=−N̂sinω∗+Ω̂cosω∗, (3.13)

and the force F(R∗
1) is then evaluated at R∗

1 =R0 +ΔRN̂∗. Based on a local
quadratic approximation, the final rotation angle that minimizes the dimer
energy on the rotational plane is given as

ω=

⎧⎪⎪⎨
⎪⎪⎩

1
2

arctan
b1

a1
, if

b1

a1
≥ 0

1
2

arctan
b1

a1
+ π

2
, if

b1

a1
< 0,

(3.14)

where
b1 = (F(R0)−F(R1)) ·Ω̂/ΔR (3.15)

and

a1 = b1 cos(2ω∗)− (F(R0)−F(R∗
1)) ·Ω̂∗/ΔR

sin(2ω∗)
. (3.16)
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The new dimer orientation after the rotation is given by

N̂new = N̂cosω+Ω̂sinω (3.17)

and the new R1 by
Rnew

1 =R0 +ΔRN̂new. (3.18)

In some implementations, no more than one rotation iteration is performed
between the translation steps. The rotation iterations can be also repeated
until rotational convergence, defined based on the preliminary or final
rotation angle or the magnitude of rotational force, or until some maximum
number of consecutive rotations is reached. In that case, the number of
force evaluations between consecutive rotation iterations can be reduced by
extrapolating F(Rnew

1 ) from F(R0), F(R1), and F(R∗
1) and using this estimate

when calculating the rotational force for the following rotation iteration
(Kästner and Sherwood, 2008).

After each rotation phase, a translation step is performed to move the
middle point of the dimer towards the saddle point. The nature of the
translation step depends on the curvature along the current orientation
vector N̂, estimated either by the quadratic approximation (Olsen et al.,
2004; Heyden et al., 2005) or equation 3.11. If the curvature is positive, the
dimer is assumed to be in a convex region with positive second derivatives
of energy in all directions, which is often the case if the start point is
chosen to be close to an minimum energy point. In this case, a step with
some predifined length is taken to the direction of increasing energy along
N̂ to make the dimer climb up from the convex region. If the curvature
along the dimer is negative, the translational force is obtained by reverting
the component of F(R0) parallel to the dimer:

Ftrans =F(R0)−2F∥(R0), (3.19)

where
F∥(R0)= (F(R0) · N̂)N̂. (3.20)

This allows the dimer to climb upwards on the energy surface following
the direction of the minimum curvature mode mode while minimizing
the energy in directions perpendicular to the dimer. The displacement
of R0 can be performed using any gradient-based optimization approach,
including nonlinear conjugate gradient (Fletcher and Reeves, 1964; Polak
and Ribière, 1969) and L-BFGS (Nocedal, 1980; Liu and Nocedal, 1989)
algorithms. Similarly as in the rotation phase, a preliminary step can be
taken to estimate a proper step length for the translation. In the L-BFGS
approach, however, a good estimate for the translation step length is pro-
vided by an inverse Hessian approximated implicitly based on information
stored during previous translation iterations. As suggested by Kästner
and Sherwood (2008), the L-BFGS approach is applied to both translations
and rotations in the GP-dimer algorithm presented in Publication IV.
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4. Summary of contributions

The contribution of this dissertation consists of development and testing
of two algorithms that utilize Gaussian process regression to enhance
searches of saddle points and minimum energy paths. The GP-NEB algo-
rithm aims to find a minimum energy path between two known minimum
energy configurations and the saddle point located at the maximum point
of the path, whereas the GP-dimer algorithm only searches for the saddle
point starting somewhere from its vicinity.

4.1 GP-NEB algorithm

The general idea of using machine learning methods to enhance saddle
point search algorithms has been introduced by Peterson (2016), who ap-
plied artificial neural networks to nudged elastic band calculations. In the
iterative procedure, a minimum energy path is first found on an approx-
imate energy surface based on a machine learning model, and accurate
evaluations of energy and its first derivatives are then performed to check
if the path has converged also on the accurate energy surface. If the con-
vergence criteria are not satisfied, the new observations are included in
the training data set, the machine learning model is updated, and the path
is relaxed again on the approximate energy surface. The iterations are
repeated until final convergence is confirmed by accurate evaluations. The
advantage of this approach is based on the assumption that the accurate
evaluations are significantly more expensive than training of the machine
learning model or approximation of energy and its derivatives based on
the model. By performing the path relaxation on the approximate energy
surface, the total number of accurate evaluations required for convergence
can be reduced and the minimum energy path search hence accelerated.

Publication I presents an initial step in the development of a similar
algorithm where Gaussian process regression is applied instead of neural
networks as a machine learning approach to model the energy surface.
Whereas optimization of a large number of weights of a neural network
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model may be challenging due to many local minima of the cost function,
optimization of the hyperparameters of a Gaussian process model is a
much easier task. As described in section 2.4, Gaussian process models
allow straightforward ways to handle derivatives, which is beneficial when
learning from the derivative observations and predicting NEB forces for
the path relaxation. Furthermore, GP models have been shown to perform
well especially when learning from small training data sets, which makes
them appealing for this application. In Publication I, the feasibility of
the GP-NEB approach is demonstrated for three simple benchmark tran-
sitions, where two atoms of an heptamer island move to adjacent sites
on the (111) surface of a FCC (face-centred cubic) crystal (Henkelman,
Jóhannesson, and Jónsson, 2000; Chill et al., 2014). As compared with a
regular NEB method, the number of evaluations required for convergence
to the minimum energy path is decreased to less than fifth with a simple
implementation of the GP-NEB algorithm using the stationary squared
exponential covariance function kx (see equation 2.29 in section 2.5).

Publication II extends the GP-NEB method to CI-NEB calculations and
presents detailed descriptions for two variants of the algorithm. The sim-
pler one, referred to as the all-images-evaluated (AIE) algorithm, follows
the original idea of Peterson (2016) by evaluating accurate energy and its
first derivatives at all intermediate images of the NEB path relaxed on
the approximate energy surface. Figure 4.1 shows the progression of the
AIE algorithm in the same two-dimensional task as shown in figure 3.1
for the regular CI-NEB method. Knowing the coordinates of the initial
path, Ri, i = 0,1, . . . , Nim −1, and accurate energy and its (zero) gradient
at the two end points, E(R0), ∇E(R0), E(RNim−1), and ∇E(RNim−1), the al-
gorithm is started by evaluating E(Ri) and ∇E(Ri) at the intermediate
images Ri, i = 1, . . . , Nim−2. Based on these data, a GP model for the energy
surface is trained by optimizing the hyperparameters of the covariance
function, and a CI-NEB calculation is performed using the mean of the
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Figure 4.1. Progression of the simpler all-images-evaluated (AIE) version of the GP-NEB
algorithm on a two-dimensional Müller-Brown energy surface (Müller and
Brown, 1979). The white dots represent images of the relaxed CI-NEB path on
an approximate energy surface obtained by GP regression. After each GPR it-
eration, final convergence of the path is checked by evaluating accurate energy
and its first derivatives at all intermediate images, and those observations
are then added to the training data set (observed locations marked with black
crosses). Figure reproduced with permission from Publication II.
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posterior predictive distribution of energy and its derivatives (see equa-
tions 2.25 and 2.27 in section 2.4) when calculating the NEB forces. After
the CI-NEB path has relaxed on the approximate energy surface, new
energy and gradient evaluations are made at the intermediate images of
the relaxed path and added to the training data set for the following GPR
iteration. The algorithm is continued until final convergence criteria for
the accurate NEB forces are satisfied after three GPR iterations and a
total of 24 evaluations.

Due to the probabilistic nature of Gaussian process regression, the pre-
dictions of energy and its derivatives are expressed as probability dis-
tributions. The more advanced variant of GP-NEB, referred to as the
one-image-evaluated (OIE) algorithm, utilizes the variance of the posterior
distribution of energy (see equation 2.26 in section 2.4) as a measure of
uncertainty to direct the evaluations to locations where they are most
useful. According to the main rule, accurate energy and derivatives are
evaluated only at the image with the highest uncertainty before updating
the GP model and relaxing the path. However, since confirmation of the
final convergence requires accurate energy gradient to be known for all
images of the path, also the other intermediate images are included in
the evaluations one by one without moving the path as long as there is
a chance that final convergence might have been reached based on the
mixture of accurate and approximated NEB forces. Since the convergence
criterion may be tighter for the climbing image and since its location affects
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Figure 4.2. Progression of the more advanced one-image-evaluated (OIE) version of
the GP-NEB algorithm on a two-dimensional Müller-Brown energy surface
(Müller and Brown, 1979). The white dots represent images of the relaxed
CI-NEB path on an approximate energy surface obtained by GP regression.
The lower panel shows the standard deviation of the posterior distribution
of energy representing the uncertainty of the predictions according to the
GP model. After GPR iterations 1, 2, and 3, accurate energy and its first
derivatives are evaluated at the image with the largest uncertainty, and the
information is then added to the training data set (observed locations marked
with black crosses). After GPR iteration 11, the path is not moved anymore
but the final convergence is confirmed by accurate evaluations at each of the
intermediate images. Figure reproduced with permission from Publication II.
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on the distribution of the other images, the climbing image is favoured
over other images in the evaluation order of the convergence check. Figure
4.2 shows the progression of the OIE algorithm in the two-dimensional
example task. The final shape of the path is here obtained after eleven en-
ergy and gradient evaluations, and the final convergence is then confirmed
by six more evaluations.

In Publication II, the two variants of the GP-NEB algorithm are tested
in CI-NEB calculations for the whole heptamer island benchmark (Henkel-
man, Jóhannesson, and Jónsson, 2000; Chill et al., 2014) including thirteen
transitions. As compared with a regular CI-NEB method, the number of
evaluations required for convergence to the minimum energy path is de-
creased by an order of magnitude. The OIE algorithm reduces the number
of evaluations to about a half of what is required by the AIE algorithm.
As an additional test feature, information about the second derivatives
of energy at the two end points are included by adding finite difference
data points in the initial training data set. Since the Hessian of energy
is often evaluated anyway at the initial and final states of the transition
when calculating transition rates using the harmonic approximation to
the transition state theory (Vineyard, 1957), these evaluations may be
considered available without additional effort. The use of the Hessian data
reduces the number of observations by about 20% when using the AIE
algorithm, but the effect is smaller for the OIE algorithm.

In Publications I and II, a simple GP model with a stationary squared
exponential covariance function kx is successfully used in the GP-NEB
calculations. In some systems, however, the stationarity of the covariance
function with respect to the atom coordinates may lead to problems as
illustrated in section 2.5. In Publication III, these problems are avoided by
defining a modified covariance function k1/r where the difference measure
fed to the squared exponential covariance function is based on differences
in the inverse interatomic distances (see equation 2.34 in section 2.5).
This difference measure stretches when atoms are closer to each other,
which makes it easier to model large repulsive forces. In addition, the
more informative covariance structure allows more efficient learning of
the potential energy surface.

Even though the modified GP model handles well also large repulsive
forces, avoiding unphysical configurations and constraining the exploration
of uncertain regions may still stabilize the algorithm. Another modification
introduced in Publication III concerns the early stopping criteria that
define the allowed region for the images of the path during the NEB
relaxation phase. The early stopping criterion used in Publication II is
based on the distance to the nearest observed data point according to
the regular difference measure Dx (see equation 2.30 in section 2.5) with
the limit set to a half of the length of the initial path. If the limit is
exceeded, then the last step of the NEB relaxation phase is rejected, the
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relaxation phase is stopped, and the following evaluation is performed at
the image that violated the condition. In Publication III, an additional
early stopping criterion is introduced based on relative changes in the
interatomic distances. The condition requires that for each image of the
current path, there exists an observed data point with all interatomic
distances between 2/3 and 3/2 of the corresponding distance in the current
image. Accompanied with the inverse-distance covariance function k1/r,
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Figure 4.3. A two-dimensional cut through the potential energy surface for a pair of hy-
drogen atoms near a fixed copper surface (Mills et al., 1995). The upper panel
shows the progression of the modified GP-NEB algorithm. The white dots
are projections of the images of the relaxed CI-NEB path on an approximate
energy surface obtained by GP regression with the inverse-distance covari-
ance function k1/r, and the red line shows the border of the allowed region
defined by the accompanying early stopping criterion. The black crosses are
projections of the training data points. In the first four GPR iterations, the
NEB relaxation phase is terminated by the early stopping rule, and the final
path is obtained after thirteen GPR iterations. For comparison, the lower
panel shows GP approximations with the stationary covariance function kx
using the same training data sets as in the upper panel. Figure reproduced
with permission from Publication III.
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Figure 4.4. GP approximations based on covariance functions kx and k1/r corresponding
to the rightmost graphs in figure 4.3 with a high-gradient data point close to
the left border of the graph added to the training data set. Figure reproduced
with permission from Publication III.

this criterion practically prevents the distance between two atoms from
becoming shorter than 2/3 of the unknown bond length (notice that this
does not apply with a stationary covariance function).

The upper panel of figure 4.3 shows the progression of the modified GP-
NEB algorithm in a CI-NEB calculation for a dissociation of a hydrogen
molecule on a fixed copper surface (Mills et al., 1995). The initial and final
states coincide with the same two-dimensional cut of the six-dimensional
coordinate space as shown in figure 2.2. The GP approximation based
on the inverse-distance covariance function looks quite realistic already
in the beginning, when the training data include the energy and its first
derivatives at one intermediate image and the two end points in addition
to the Hessian data at the end points. Since the third image of the initial
path is outside the allowed regions, the early stopping rule is triggered
already before moving the images, and also the NEB relaxations in the
following three GPR iterations are terminated by the early stopping rule.
The final convergence is confirmed after nineteen energy and gradient
evaluations, whereas a regular CI-NEB calculation requires about 500
evaluations.

For comparison, the lower panel of figure 4.3 shows what the GP ap-
proximation with the same training data would look like if the station-
ary squared exponential covariance function kx was used instead of the
inverse-distance covariance function k1/r. Since the stationary GP model
extrapolates the attractive forces acting on the hydrogen atoms to regions
where the atoms collide, it would be difficult to keep the images away from
regions of large repulsive forces without a too restrictive stopping rule. As
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shown in figure 4.4, an additional data point from the repulsive region
would make interpolation of the training data set more difficult for the sta-
tionary model and lead to a short length scale. With the inverse-distance
covariance function, the additional data point would not cause problems.

In addition to demonstrations in systems that are challenging for station-
ary GP models, Publication III reports results also for the heptamer island
benchmark for which the squared exponential covariance function kx works
well. Figure 4.5 shows the average number of energy and gradient evalua-
tions required for GP-NEB calculations with a varying number of degrees
of freedom. Depending on the algorithm variant, the inverse-distance
covariance function with the accompanying early stopping criterion re-
duces the number of energy and force evaluations by about 30–50% when
compared with the squared exponential covariance function.
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Figure 4.5. Number of energy and gradient evaluations required for convergence of CI-
NEB calculations in a heptamer island benchmark (Henkelman, Jóhannesson,
and Jónsson, 2000; Chill et al., 2014) with variants of the GP-NEB algorithm.
The average over thirteen different transitions is presented as a function of
the number of degrees of freedom, increased by allowing a larger number
of substrate atoms to move. The narrow dashed lines present results with
the stationary squared exponential covariance function kx, and the thick
solid lines present the corresponding results when using the inverse-distance
covariance function k1/r with the accompanying stopping criterion. The blue
triangles represent the all-images-evaluated (AIE) algorithm, and the green
dots represent the one-image-evaluated (OIE) algorithm. The use of Hessian
data at the two end points is indicated by darker colour. Figure reproduced
with permission from Publication III.

4.2 GP-dimer algorithm

Publication IV applies the Gaussian process regression approach used
in the GP-NEB algorithm to the dimer method in a saddle point search
task where only a start point is known. A similar general scheme con-
necting Gaussian process regression with surface walking methods has
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been recently applied by Denzel and Kästner (2018b), who use a stationary
Matérn-5/2 covariance function to build a computationally efficient multi-
level Gaussian process model (Denzel and Kästner, 2018a). The GP-dimer
algorithm in Publication IV applies the more expressive inverse-distance
covariance function k1/r coupled with the robust stopping criterion as sug-
gested for the GP-NEB algorithm in Publication III, and the performance is
compared with corresponding results obtained with stationary covariance
functions.

With the middle point R0 of the initial dimer set to the given start
point and images R1 and R2 aligned with the a possibly randomized start
orientation, the GP-dimer algorithm is started by evaluating accurate
energy and its gradient at R0 and R1, i.e., E(R0), ∇E(R0), E(R1), and ∇E(R1).
If no information is available about the energy surface or the direction
of the lowest energy curvature at the start point, it is useful to perfom
initial rotations with accurate evaluations before translating the dimer.
In the GP-dimer algorithm, this initial phase is performed by repeated
initial rotation rounds on an approximate energy surface obtained by
GP regression based on the evaluations made so far. During each initial
rotation round, the direction of the lowest curvature on the approximate
energy surface is found according to a regular rotation scheme using
the mean of the posterior predictive distribution of the energy gradient to
calculate the rotational force (see equation 2.27 in section 2.4), and accurate
energy E(R1) and gradient ∇E(R1) are then evaluated at the new location
of R1. The initial rotation phase is stopped when the preliminary rotation
angle ω∗ (see equation 3.10 in section 3.2) based on the accurate gradients
∇E(R0) and ∇E(R1) or the angle between the relaxed orientations of two
subsequent rounds is below a given threshold. As shown in Publication IV,
this approach requires fewer evaluations for rotational convergence than
regular rotation schemes. A similar initial phase where GP regression is
utilized to find the direction of the lowest energy curvature is applied also
by Denzel and Kästner (2018b).

In the actual GPR iterations started after the initial rotation phase,
the dimer is both rotated and translated based on the GP approximation.
During each GPR iteration, a saddle point on the approximate energy
surface is found according to a regular dimer method, and final convergence
of the dimer is then checked by evaluating accurate energy E(R0) and
gradient ∇E(R0) at the middle point R0 of the relaxed dimer. Figure 4.6
shows the progression of the GP-dimer algorithm in the same example
task as shown in figure 3.2 for the regular dimer method. In this simple
example, the direction of the lowest curvature of the accurate energy
surface is found after two initial rotation rounds, and a saddle point close
to the correct location is formed on the approximate energy surface based
only on the four data points around the start point. After evaluating
the accurate energy and gradient at this predicted saddle point, the GP

32



Summary of contributions

1.2 1.3 1.4 1.5 1.6

0.85

0.9

0.95

1.0

D
is
ta
n
ce

fr
om

C
u
(1
10
)
su
rf
ac
e
(Å
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Figure 4.6. Progression of the GP-dimer algorithm in a simple example where two hydro-
gen atoms are free to move near a fixed copper surface (Mills et al., 1995). The
saddle point and the initial dimer coincide with the same two-dimensional
cut of the coordinate space as shown in figure 2.2. The pink and red bars
represent the dimer in the beginning and end of the initial rotation round or
GPR iteration, respectively. During the two rotation rounds, the orientation of
the dimer is aligned with the direction of the lowest curvature on an approxi-
mate energy surface obtained by GP regression. After each round, accurate
energy and its first derivatives are evaluated at one of the images of the dimer,
and the information is then added to the training data set (observed loca-
tions marked with black crosses). In the actual GPR iterations started after
reaching rotational convergence at the start point, the dimer is both rotated
and translated to find a saddle point on the approximate energy surface, and
final convergence is then checked by evaluating accurate energy and its first
derivatives at the middle point of the relaxed dimer. Figure reproduced with
permission from Publication IV.

approximation becomes accurate enough for convergence to the correct
saddle point.

In addition to the dissociative adsorption of a hydrogen molecule on a
copper surface (Mills et al., 1995), used also in GP-NEB calculations in
Publication III, the tests of the GP-dimer algorithm in Publication IV
involve three gas phase chemical reactions (Birkholtz and Schlegel, 2015)
with saddle point configurations illustrated in figure 4.7 alongside the
corresponding result graphs. A set of start points is chosen randomly with
a varying distance from the saddle point of each example reaction, and
the number of energy and gradient evaluations required for convergence
is reported for two variants of the regular dimer method and for the GP-
dimer algorithm with the inverse-distance covariance function k1/r and
stationary squared exponential (kx) and Matérn-5/2 (kM−5/2

x ) covariance
functions. As shown in figure 4.7, the variants of GP-dimer require fewer
evaluations than the regular methods, and the difference increases when
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Figure 4.7. Number of energy and gradient evaluations required for convergence with a
regular dimer method, based on conjugate gradients (Heyden et al., 2005) or
L-BFGS (Kästner and Sherwood, 2008), and the GP-dimer algorithm using
the inverse-distance (k1/r), squared exponential (kx), or Matérn-5/2 (kM−5/2

x ) co-
variance function. The saddle point configuration of each of the three example
reactions (Birkholtz and Schlegel, 2015) is visualized with the following atom
colours: C, dark gray; H, light gray; O, red; N, blue; S, yellow. The distance of
the start point from this configuration is shown on the horizontal axis. The
large dots present the median number of evaluations among ten randomly cho-
sen start positions, the bars present the interval between the third and eighth
largest numbers, and the two smallest and largest numbers are presented
with small dots. Figure reproduced with permission from Publication IV.
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Summary of contributions

the start point is farther from the example saddle point. With start points
closer than 0.1 Å to the saddle point, only small differences are observed
between the three variants of the GP-dimer algorithm, but the benefits
of using the inverse-distance covariance function become apparent with
larger start distances.
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5. Discussion

This dissertation presents the first steps in utilizing Gaussian process
regression to enhance saddle point search algorithms on potential energy
surfaces. In the GP-NEB algorithm, a minimum energy path between
two known minimum energy configurations and a saddle point located
at the maximum point of the path are found on an approximate energy
surface based on a Gaussian process model, which is updated with accurate
observations of energy and its derivatives until convergence of the path
on the accurate energy surface is confirmed. In the GP-dimer algorithm,
a similar approach is applied to minimum mode following calculations,
where only a start point for a saddle point search is given in the beginning.
Based on simple test examples, the Gaussian process regression approach
may reduce the required number of accurate energy and force evaluations
by an order of magnitude when compared with conventional methods.

In Gaussian process regression, the predictions of energy and its deriva-
tives are expressed as probability distributions obtained as a result of
Bayesian inference. The variance of the predictive distribution can be
utilized in the GP-NEB algorithm as an uncertainty estimate when se-
lecting new observation points from the discretized path. This approach
has similarities with Bayesian optimization, where an acquisition function
based on the predictive distribution of the objective function is defined for
the selection of observation points in a global optimization task (Shahriari
et al., 2016). A major difference is that saddle point search algorithms
are typically satisfied with a local type of convergence, which means that
exploration of uncertain regions far from the predicted minimum energy
path or saddle point is not necessary. When the task is to find a minimum
energy path with convergence confirmed by accurate evaluations at all
points of the discretized path, it is often most efficient to select one of those
points as the new observation point. However, if accurate convergence
is important only for the saddle point, the convergence of the rest of the
path can be defined based on the estimated uncertainty without restricting
to any number of discretization points (Garrido Torres et al., 2019). The
search for the energy maximum along the path can be then defined as
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Discussion

a Bayesian optimization problem with various possible choices for the
acquisition function.

Besides algorithmic development, the dissertation shows that automated
and accurate modelling of the surroundings of a minimum energy path is
possible with rather simple Gaussian process models. While stationary
covariance functions with similar properties in all parts of the space of
atom coordinates turn out to be insufficient in many systems involving
large repulsive forces, a good representation can be obtained by defining
the difference measure between two configurations based on inverse inter-
atomic distances. More sophisticated descriptors designed for modelling
entire potential energy surfaces are often based on approximation of the
total energy of the system with a sum over local atomic environments
and may require larger noise variance to be assumed for the observations
(Bartók et al., 2010; Bartók and Csányi, 2015). With reduced convergence
requirements, however, such models may provide useful properties also for
the GP-NEB and GP-dimer algorithms.

The advantage of the Gaussian process regression approach to saddle
point searches relies on the assumption that the accurate energy and
gradient evaluations are significantly more expensive than predictions
based on the Gaussian process model or training of the model. In large
systems, however, the applicability of the approach is limited due to the
poor scaling of the computational cost of Gaussian process regression
with respect to the number of training observations. Since the number
of available derivative observations depends on the number of moving
atoms, the computational cost increases fast with the system size if full
advantage is taken of the derivative information. While many of the
attempts to make Gaussian process models more applicable to large data
sets rely on approximations, recent development on exact Gaussian process
inference is reducing the training cost from cubic to quadratic without
compromising the accuracy (Gardner et al., 2018; Wang et al., 2019). This
sort of advancement paves the way for further development of efficient
saddle point search methods.
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Errata

Publication I

The early stopping and convergence criteria are described correctly in
the Methods section (section 2.3), but there are unfortunate mistakes in
the following two sentences in the Results section. A corrected version of
Publication I is available as e-print arXiv:1703.10423.

Original sentence (rows 12–15 of section 3.1):

The relaxation of the images on this rough estimate of the energy surface does
not, however, bring the images too far from the initial placement because of the
condition that images cannot be moved in a single iteration by more than a
half of the initial distance between the images.

Corrected sentence:

[...] because of the condition that the relaxation phase is stopped early if the
convergence measure, i.e., the mean of the magnitudes of the force components
perpendicular to the path at the intermediate images, increases.

Original sentence (rows 3–5 of the caption of figure 4):

The convergence tolerance is 0.001 eV/Å for the magnitude of the perpendicular
component of the force on any one of the images.

Corrected sentence:

[...] for the mean of the magnitudes of the perpendicular force components at
the intermediate images.
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Errata

Publications I and II

The computational complexity of one inner iteration of the GP-NEB al-
gorithm is claimed to be linear with respect to the number of degrees of
freedom D (row 25 of section 2.3 in Publication I and the last three rows
of section IV.A in Publication II). The computational cost of prediction of
energy or any gradient component indeed scales linearly with respect to
D, but since moving the images requires prediction of the whole gradient
vector, the complexity of one inner iteration becomes quadratic with respect
to D.
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The calculation of minimum energy paths for transitions such as atomic and/or spin rearrangements is an important task in many contexts and

can often be used to determine the mechanism and rate of transitions. An important challenge is to reduce the computational effort in such

calculations, especially when ab initio or electron density functional calculations are used to evaluate the energy since they can require large

computational effort. Gaussian process regression is used here to reduce significantly the number of energy evaluations needed to find minimum

energy paths of atomic rearrangements. By using results of previous calculations to construct an approximate energy surface and then converge

to the minimum energy path on that surface in each Gaussian process iteration, the number of energy evaluations is reduced significantly as

compared with regular nudged elastic band calculations. For a test problem involving rearrangements of a heptamer island on a crystal surface,

the number of energy evaluations is reduced to less than a fifth. The scaling of the computational effort with the number of degrees of freedom

as well as various possible further improvements to this approach are discussed.

Keywords: minimum energy path, machine learning, Gaussian process, transition mechanism, saddle point.
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1. Introduction

The task of predicting the rate and identifying the mechanism of transitions involving some rearrangements
of atoms in or on the surface of solids shows up in many different applications, for example diffusion, crystal
growth, chemical catalysis, nanotechnology, etc. At a finite temperature, the thermal fluctuations in the dynamics
of atoms can lead to rearrangements from one stable configuration to another, but these are rare events on the
time scale of atomic vibrations, so direct dynamics simulations cannot in most cases be used for these types of
studies. The separation of time scales typically amounts to several orders of magnitude and a direct simulation
would take impossibly long time. Instead, algorithms based on statistical mechanics as well as classical dynamics
and focusing on the relevant rare events need to be applied [1–3]. Typical transitions involve not just one or a few
atoms but rather a large number of atoms so the challenge is also to deal with multiple degrees of freedom. One
way of looking at the problem is to characterise the motion of the system on a high dimensional energy surface
where the number of degrees of freedom is easily more than a hundred. A key concept is the reaction coordinate
which usually is taken to be a minimum energy path (MEP) on the energy surface connecting one minimum to
another. The rate of transitions in solids is usually evaluated within harmonic transition state theory which is based
on a quadratic expansion of the energy surface at the initial state minimum and at the highest maximum along the
MEP, which is a first order saddle point on the energy surface [4]. For given initial and final states, the task is to
determine the MEP and identify the saddle point(s) as well as possible unknown, intermediate minima [5]. The
discussion here has been in terms of rearrangements of atoms, but similar considerations apply to reorientations of
magnetic moments [6–9].

The nudged elastic band (NEB) method is commonly used to find MEPs for atomic rearrangements [5,10,11].
An analogous method, referred to as the geodesic NEB, has been developed for magnetic transitions [12]. In
NEB calculations, some initial path is constructed between two local minima on the energy surface and the path
is represented by a discrete set of replicas of the system. The replicas are referred to as images of the system.
They consist of some set of values for all degrees of freedom in the system. The NEB algorithm then optimises
iteratively the location of the images that are between the endpoint minima so as to obtain a discrete representation
of the MEP. Initially, the method was mainly used in combination with analytical potential energy functions, but
today the method is used extensively in combination with electronic structure calculations. A large amount of
computer time is used in these calculations. Each calculation typically involves 100 evaluations of the energy and
force (the negative gradient of the energy) for each one of the images and the path is typically represented by 5
to 10 images. Since a typical electronic structure calculation takes on the order of tens of CPU minutes or more,
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these calculations can be heavy. Also, several different possible final states usually need to be tested and the
NEB calculation therefore repeated. In light of the widespread use and large amount of CPU time used in NEB
calculations, it is of great practical importance to find ways to accelerate the calculations. The goal should be to
use the information coming from all the computationally intensive electronic structure calculations in an optimal
way so as to reduce as much as possible the number of iterations needed to reach the MEP.

It has recently been shown that a machine learning algorithm based on neural networks can be used to
significantly reduce the computational effort in NEB calculations [13]. An approximate representation of the
energy surface is constructed from the calculations using a machine learning approach and the MEP calculated
using the NEB method on this approximate surface. Then, additional evaluations are made of the true energy
surface, the approximate model surface refined, etc., until convergence on the MEP of the true energy surface
has been reached. The number of function evaluations was shown to drop dramatically by applying such an
approach [13].

We present here an initial step in the development of a similar approach to accelerated MEP calculations based
on Gaussian process regresssion [14–17]. This approach could have some advantages over neural networks for such
applications. Neural networks have a large number of weights which can have multimodal distributions making the
search for global optimum difficult and leading to possible dependence on the initial values of the parameters [13].
Also, the handling of uncertainties in GP theory is easier than in neural networks since the prediction equations
are analytical and integration over the parameter space can be carried out more easily. It is, therefore, of interest
to test the efficiency of the GP approach in MEP calculations. We report in this article initial feasability studies.
More extensive testing and comparison with other approaches such as neural networks is left for future work.

The article is organized in the following way: The methodology is presented in the next section, followed by a
section on applications, both a simple two-dimensional system and a larger test problem involving rearrangements
of a heptamer island on a crystal surface. The article concludes with a discussion section.

2. Methods

The method presented here for finding the minimum energy paths can be viewed as an acceleration of a NEB
calculation by making use of Gaussian process theory. Previously calculated data points are used to construct an
approximate model of the energy surface and the MEP is found for this approximate surface before additional
calculations of the true energy are carried out. This gives an interpolation between the calculated points and
also provides an extrapolation that can be used to explore the energy surface with larger moves. The savings
in computational effort are based on the fact that several computationally light iterations can be made for the
approximate surface in between the computationally demanding evaluations of the true energy function. A brief
review of the NEB method is first given, then a description of the Gaussian process regression, and finally a
detailed algorithm describing how the calculations were carried out in the present case.

2.1. Nudged elastic band method

Given two local minima on the energy surface, the task is to find an MEP connecting the two. The definition
of an MEP is that the gradient has zero component perpendicular to the path tangent at each point along the path.
The NEB method needs to be started with some initial path between the two minima that is represented by a set
of images. Most often, a straight line interpolation between the minima is used to generate the initial path [11],
but a better approach is to start with a path that interpolates as closely as possible the changes distances between
atoms [18].

The key aspect of the NEB algorithm is the nudging, a force projection which is used to decouple the
displacements of the images perpendicular to the path towards the MEP from the displacements that affect their
distribution along the path. In order to make this projection, an estimate of the local tangent to the path at each of
the images is needed. A numerically stable choice involves finding the line segment from the current image to the
adjacent image of higher energy [19].

Given this decoupling, there are several different options for distributing the images along the path. Some
constraint is needed to prevent the images from sliding down to the minima at the two ends. In most cases an even
distribution is chosen, but one can also choose to have, for example, higher density of images where the energy
is larger [20]. An attractive spring force is typically introduced between adjacent images to control the spacing
between images and this also prevents the path from becoming arbitrarily long in regions of little or no force. The
latter is important, for example, in calculations of adsorption and desorption of molecules at surfaces. For systems
that can freely translate and rotate, such as nano-clusters in free space, it is important to remove the translational
and rotational degrees of freedom. This is non-trivial because the system cannot be treated as a rigid body. A
method for doing this efficiently based on quaternions has recently been presented [21].
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The component of the force acting on each image perpendicular to the path is used to iteratively move the
images from the initial path to the MEP. The force is the negative of the gradient and in most cases an evaluation
of the energy delivers also the gradient vector at little or no extra expense. The largest amount of information
from an evaluation of a point on the energy surface is, therefore, represented by the gradient. It is hower typically
too expensive to evaluate second derivatives of the energy and iterative algorithms for moving the images towards
the MEP are therefore based solely on the gradient and the energy at each point. A simple and numerically stable
method that has been used extensively in NEB calculations will be used here. It is based on the velocity Verlet
method where only the component of the velocity in the direction of the force is included and the velocity is zered
of the its dot product with the force becomes negative [11]. A somewhat higher efficiency can be obtained by
using a quadratically convergent algorithm such as conjugate gradients or quasi-Newton [22] but those can be less
stable especially in the beginning of an NEB calculation. A linear interpolation between the initial state minima
was used in all the calculations presented here and the number of images, Np, chosen to be either 5 or 8. An equal
distribution of the images along the path was chosen.

The focus here is on calculations where the energy and the gradient are obtained using some ab initio or density
functional theory calculation. The computational effort in all other parts of the calculation is then insignificant
in comparison and the computational effort is well characterised by simply the number of times the energy and
force need to be evaluated in order to converge on the MEP. Below, we introduce a strategy to accelerate the MEP
search with Gaussian process regression.

2.2. Gaussian processes regression

The general idea behind the strategy is similar to the one introduced by Peterson [13]. The idea is to use the
calculations carried out so far to train an approximate model of the energy surface, and find the MEP with the
conventional methods using the approximations of the energy and gradient based on this model. After converging
to the MEP on the approximate energy surface, the true energy and force are evaluated again, showing whether or
not the path has converged to the true MEP. If not, the model is updated with the new values of the true energy
and force to get a more accurate approximation, and this is continued iteratively, until the true MEP has been
found. Since the number of true energy and force evaluations is the measure of computational effort, basically any
method can be used to optimise the path on the approximate energy surface, as long as it converges to an MEP.

Here, a Gaussian process (GP) is used as a probabilistic model for the energy surface. GPs provide a flexible
framework for modelling multidimensional functions. Through the selection of the covariance function and its
hyperparameters, smoothness properties of the function can easily be defined and those properties can also be
learned from the data. It is also straightforward to both include derivative observations into the model and to
predict the derivative of the modelled function. Analytical expressions for the posterior predictions conditional on
the hyperparameters allow both fast predictions and reliable estimation of uncertainties. In cases where only a small
number of observations are available, Gaussian processes have been shown to have good predictive performance
compared to other machine learning methods [23].

A GP can be seen as a probability distribution over functions in a continuous domain, see, e.g., [14–17]. In a
GP, the joint probability distribution of the function values f(x(1)), f(x(2)), . . . , f(x(N)) at any finite set of input
points x(1),x(2), . . . ,x(N) ∈ R

D is a multivariate Gaussian distribution. A GP is defined by a mean function m(x)
and a covariance function k(x(i),x(j)), which determines the covariance between f(x(i)) and f(x(j)), e.g., based
on the distance between x(i) and x(j).

Consider a regression problem y = f(x) + ε, where ε is Gaussian noise with variance σ2, and a training data
set {X,y}, where X ∈ R

N×D denotes a matrix of N input vectors x(1),x(2), . . . ,x(N) ∈ R
D and y is a vector

of the corresponding N noisy observations. By choosing a Gaussian process to model function f , different prior
assumptions can be made about the properties of the function, and after observing {X,y}, the posterior predictive
probabilities for the function values at a set of new points can be calculated analytically as a multivariate Gaussian
distribution. Here, the mean function is taken to be m(x) = 0 and the covariance function is assumed to have the
form

k(x(i),x(j)) = c2 + η2 exp

(
−1

2

D∑
d=1

ρ−2
d (x

(i)
d − x

(j)
d )2

)
,

where η2 and ρ = {ρ1, . . . , ρD} are the hyperparameters of the GP model. The squared exponential covariance
function is infinitely differentiable and thus favours smooth functions. The length scales ρ define how fast the
function f can change, and η2 controls the magnitude of the overall variation. The additional constant term c2

has a similar effect as integration over an unknown constant mean function with a Gaussian prior distribution of
variance of c2. The posterior predictive distribution for a function value of the function at a new point x∗, denoted
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as f∗, is described by a Gaussian distribution with mean

E[f∗|x∗,y,X,θ] = K(x∗,X)(K(X,X) + σ2I)−1y

and variance
Var[f∗|x∗,y,X,θ] = k(x∗,x∗)−K(x∗,X)(K(X,X) + σ2I)−1K(X,x∗),

where I is the identity matrix and the notation K(X,X′) represents a covariance matrix with entries Kij =

k(x(i),x′(j)). The hyperparameter values θ = {η2,ρ} are optimised by defining a prior probability distribution
p(θ) and maximising the marginal posterior probability p(θ|y,X) = p(θ)p(y|X,θ) after observing y.

Since differentiation is a linear operation, the derivative of a Gaussian process is also a Gaussian process
(see, e.g., [24, 25]), and this makes it possible to use observations of the derivative of the function and also to
predict derivatives of the function f . The partial derivative observations can simply be included in the observation
vector y and the covariance matrix correspondingly extended with the covariances between the observations and
the partial derivatives and the covariances between the partial derivatives themselves. In the case of the squared
exponential covariance function, these entries are obtained by

Cov

[
∂f (i)

∂x
(i)
d

, f (j)

]
=

∂

∂x
(i)
d

Cov
[
f (i), f (j)

]
=

∂

∂x
(i)
d

k
(
x(i),x(j)

)

=η2 exp

(
−1

2

D∑
g=1

ρ−2
g (x(i)

g − x(j)
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)(
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)
,

and

Cov

[
∂f (i)

∂x
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d1

,
∂f (j)
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]
=

∂2

∂x
(i)
d1
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where δd1d2
= 1 if d1 = d2, and δd1d2

= 0 if d1 �= d2.
These same expressions are useful also when predicting values of the derivatives. The posterior predictive

distribution of the partial derivative of function f with respect to dimension d at a new point x∗ is a Gaussian
distribution with mean

E

[
∂f∗

∂x∗
d

∣∣∣∣x∗,y,X,θ

]
=

∂K(x∗,X)

∂x∗
d

(K(X,X) + σ2I)−1y

and variance

Var

[
∂f∗

∂x∗
d

∣∣∣∣x∗,y,X,θ

]
=

∂2k(x∗,x∗)
∂x∗

d∂x
∗
d

− ∂K (x∗,X)

∂x∗
d

(K(X,X) + σ2I)−1 ∂K(X,x∗)
∂x∗

d

.

In the present application, the vector x represents coordinates of the atoms and the function f the energy of
the system. The observations y are the true values of the energy as well as the partial derivatives of the energy
with respect to the coordinates of the atoms at the various sets of coordinates x(1),x(2), . . . ,x(N). With this input,
the Gaussian process model is used to predict the most likely value of energy f∗ and its derivatives ∂f∗

∂x∗
d

at a new
set of atom coordinates x∗ representing in this case an image in the discrete path representation between the initial
and final state minima. Since the training data is assumed to be noiseless and include also derivative observations,
the equations for the mean predictions can be presented as

E[f∗|x∗,yext,X,θ] = K∗
extK

−1
extyext (1)

and

E

[
∂f∗

∂x∗
d
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]
=

∂K∗
ext
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d

K−1
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where
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[
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2

, · · · ,
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D

]T
,
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K∗
ext =

[
K(x∗,X)
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∂x1
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∂x2
· · · ∂K(x∗,X)
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]
,

and

Kext =
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

2.3. Algorithm for GP-aided MEP search

Input: the coordinates, energy and its gradient at the two minima on the energy surface, the number of
images representing the path (Np), convergence limit (CL), step coefficient (kstep).

Output: minimum energy path represented by Np images.

1. Place the initial Np images equally spaced along a straight line between the two minima.

2. Repeat until convergence (outer iteration loop):
A. Evaluate the true energy and its gradient at the Np − 2 intermediate images of the path, and add
them to the training data.
B. Calculate the negative energy gradient (e.g., force) component perpendicular to the path (ngc) for
each intermediate image, and denote the mean of their norms as Mngc.
C. If Mngc < CL, the path has converged to the true MEP.
D. Optimise the hyperparameters of the GP model based on the training data, and calculate the matrix
inversion in equation 1.
E. Define CLrelax as 1

10 of the smallest Mngc so far, and repeat (relaxation phase):
I. Move the intermediate images according to any stable path optimisation algorithm.
II. Update the GP posterior mean energy and gradient at the new intermediate images using
equations 1 and 2.
III. Calculate ngc for each image using the GP posterior mean gradient, and denote the mean
of their norms as MGP

ngc .
IV. If MGP

ngc < CLrelax, or if MGP
ngc is increasing, exit the relaxation phase (E).

The GP calculations make use of the GPStuff toolbox [26]. For the hyperparameter optimisation which is
carried out after each evaluation of the true energy and force, the computational effort scales as O((N(D + 1))3),
where N is the number of observations and D is the number of degrees of freedom (here coordinate of movable
atoms). Since the hyperparameters and observations stay the same during a search for the MEP on the approximate
energy surface, the matrix inversion in equation 1 needs to be computed only once for each such optimization of
the path. Thus, the complexity of one inner iteration on the GP posterior energy surface is O(N(D + 1)).

The length of any one displacement of an image is restricted to be less than half of the initial interval between
the images in order to prevent the path from forming loops. Convergence of the path to the MEP is determined
from the norm of the force component perpendicular to the path at each of the intermediate images. The path
is considered to be converged to the MEP, when the mean of the true values of these norms is less than 0.001
eV/Å. During the relaxations, norms based on the current GP model are monitored and the mean of these used
as a convergence criterion. Since it is not necessary to find a path that is accurately converged on the MEP of
the inaccurate, approximate energy surface, the convergence limit for each relaxation phase is defined as 1

10 of the
smallest true mean of norms evaluated so far. Higher convergence limits at early relaxation steps speed up the
algorithm and they also make it more stable by preventing the path from escaping too far from the true observation
points. For the same reason, the relaxation is stopped before convergence if the convergence criterion starts to
increase.
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3. Applications

The method described above has been applied to two test problems: A simple two-dimensional problem where
the energy surface can be visualised, and a more realistic problem involving the rearrangements of atoms in a
heptamer island on a crystal surface.

3.1. Two-dimensional test problem

The two-dimensional problem is formulated by coupling a degree of freedom representing the simultaneous
formation and breaking of chemical bonds with a degree of freedom representing a harmonic oscillator solvent
environment. The model along with the detailed equations is described in the appendix A.2 of reference [11]. Here,
one additional repulsive Gaussian was added to shift the saddle point away from the straight line interpolation
between the two minima. A contour graph of the energy surface is shown in Fig. 1.

FIG. 1. The true and Gaussian process approximated energy surface and minimum energy path
for a two-dimensional test problem. Far left: The true energy surface and points on the minimum
energy path (yellow dots). Far right and intermediate figures: The approximate energy surface
generated by the Gaussian process regression after one, two and three iterations, points (’images’)
on the estimated minimum energy path and points where the true energy and force have been
calculated (red + signs) at each stage of the calculation the period is missing.

This example shows how the GP model of the energy surface is gradually built up and refined as more
observations, i.e. calculations of the true energy and partial derivatives of the energy, are made. Here, Np = 10
images are used to represent the path and the calculation is started by placing the images along a straight line
between the two minima on the energy surface. The first observations are made at those points (see red + signs on
the figure second from the left). Based on the energy and partial derivatives of the energy at those points, the GP
model already shows some of the most important features of the energy surface close to the linear interpolation, but
completely misses the increase in energy in the lower half of the figure. The relaxation of the images on this rough
estimate of the energy surface does not, however, bring the images too far from the initial placement because of
the condition that images cannot be moved in a single iteration by more than half the initial distance between the
images. In the second GP iteration, observations are made at the position of the images at the end of the first GP
iteration. When those data points are fed into the GP model, the energy surface is already showing the essential
features around the MEP, but of course misses the steep increase in the energy far from the MEP. The relaxation
of the images during the second GP iteration brings them quite close to the MEP. The addition of observations at
those points at the beginning of the third GP iteration refines the model energy surface further. While a a total of
six GP iteration are required to bring the images onto the MEP to within the tight tolerance of 0.001 eV/Å in the
mean magnitude of the force component perpendicular to the path, no visible changes occur in the contour graph
or the location of the images, so the results are not displayed in the figure.
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3.2. Heptamer island on a crystal surface

A more realistic test problem which has been used in several studies of MEP and saddle point searches
involves an island of 7 atoms on the (111) surface of a face centered cubic (FCC) crystal (see, for example,
references [27, 28]). Roughly, this represents a metallic system, but the interaction between the atoms is described
here with a simple Morse potential to make it easier to implement the benchmark calculation. The initial, saddle
point and final configurations of the atoms for three possible rearrangements of the atoms is shown in Fig. 2.
Several other transitions are possible (see reference [27]), but these three are chosen as examples.

FIG. 2. On-top view of the surface and the seven atom island used to test the efficiency of the
Gaussian process regression method. The initial state is shown to the left. The saddle point
configurations and the final state configurations of three example transitions are also shown.
Transition 1 corresponds to a pair of edge atoms sliding to adjacent FCC sites. In transition 2, an
atom half way dissociates from the island. In transition 3, a pair of edge atoms moves in such a
way that one of the atoms is displaced away from the island while the other atom takes its place.
At the same time the other island atoms as well as some of the underlying atoms also move but
in the end return to nearly the same position as they had initially.

The three examples chosen here represent three types of transitions that can occur in the shape of the island.
In one case, a pair of edge atoms slides to adjacent FCC sites, in another an atom half way dissociates from the
island, and in the third case pair of edge atoms moves in such a way that one of the atoms is displaced away from
the island while the other atom takes its place.
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The energy along the MEP for the transition 3 is shown in Fig. 3 as well as the energy of the Np = 7 images
at the end of GP iterations 1 to 7. After the first and second GP iteration, the estimates of the MEP is quite
inaccurate and the energy rises along those paths by more than 3 eV, but already after the third GP iteration, the
estimated energy barrier is not too far from the accurate value. After the fifth GP iteration, the shape of the energy
curve is quite well reproduced, and after seven iterations the energy along the MEP of the approximate energy
surface is nearly indistinguishable from the energy along the true MEP.

FIG. 3. Energy along paths for transition 3 shown in Fig. 2. The energy of images on the true
MEP are shown in blue, but the energy of images on MEPs of approximate models of the energy
surface obtained after 1 to 7 Gaussian process iterations are shown in red. After the first two
Gaussian process iterations, the energy barrier for this transition is greatly overestimated, but
already after three iterations the estimated energy barrier is quite close to the true value, and after
7 iterations an accurate estimate is obtained from the model energy surface.

The number of energy and force evaluations needed to converge the five intermediate images to the MEP in
both a regular NEB calculation and in a GP aided calculation was found for varying number of degrees of freedom.
The average for the three transitions depicted in Fig. 2 is shown in Fig. 4. The number of degrees of freedom
varies from 21 (as only the island atoms are allowed to move while all the substrate atoms are kept immobile), to
42 (as seven of the closest substrate atoms are also allowed to move during the transition). The number of energy
and force evaluations for the NEB method obtained here is similar to what has been reported earlier for this test
problem, see references [27, 28]. It is possible to use a more efficient minimisation scheme to relax the images in
NEB calculations [22], but the difference is not large.

A large reduction in the number of energy and force evaluations is obtained by using the GP regression, as
shown in Fig. 4. With the GP regression, the reduction is to less than a fifth as compared with the regular NEB
calculation. In calculations involving ab initio or density functional theory evaluation of the energy and force,
the computational effort is essentially proportional to this number of observations and the additional calculations
involved in the GP regression is insignificant in comparison. This test problem, therefore, shows that the use of
GP regression can significantly reduce the computational effort in, for example, calculations of surface processes.

4. Discussion

The results presented in this article indicate that GP regression is a powerful approach for significantly
reducing the computational effort in calculations of MEPs for transitions. This is important since a great deal of
computer time is used in such calculations, especially when ab initio or density functional theory calculations are
used to evaluate the energy and atomic forces. The heptamer island test problem studied here indicates that the
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FIG. 4. The average number of energy and force evaluations needed to converge five intermediate
images on the minimum energy paths of the three heptamer island transitions shown in Fig. 2 as
a function of the number of degrees of freedom included in the calculations. The convergence
tolerance is 0.001 eV/Å for the magnitude of the perpendicular component of the force on any
one of the images. For the smallest number, 21, only the seven island atoms are allowed to move
and all substrate atoms are immobile. For a larger number of degrees of freedom, some of the
substrate atoms are also allowed to move during the transition. In the regular NEB calculations
(blue dots), the minimization method for relaxing the images to the MEP is based on velocity
Verlet algorithm, as described in reference [11]. In the Gaussian process regression calculations
(red dots), the number of true energy and function evaluations is less than a fifth of what is needed
in the regular NEB calculation. This illustrates well the large reduction in the computational effort
that Gaussian process regression can provide in a typical surface process calculation.

computational effort can be reduced to less than a fifth. But, this study represents only an initial proof-of-principle
demonstration of the GP regression in this context. There are several ways in which the implementation can be
improved and made more efficient. One of the advantages of GP regression over, for example, neural networks
is the availability of uncertainty estimates which can be used to make the observations more selective. In the
present case, an observation (i.e., evaluation of the true energy and force) was made for all the images in each GP
iteration. Alternatively, an observation may only be made for the image for which there is greatest uncertainty.
This could target the calculations better and thereby reduce the total number of energy and force evaluations needed
to converge to the true MEP.

While the whole path has to be converged well enough to provide an accurate estimate of the tangent, the part
of the path that is most important for practical purposes is the region around the first order saddle point. In most
cases, the MEP is needed mainly to find the highest energy point along the path, i.e. the first order saddle point
on the energy surface that is required for evaluating the transition rate within harmonic transition state theory. The
algorithm can be refined to take this into account by, for example, applying the climbing-image NEB [20] where
one of the images is driven to the maximum energy along the path, and at the same time the tolerance for the
convergence of other images can be increased.

In a typical case, the goal is to evaluate the transition rate using harmonic transition state theory. There, the
second derivative matrix, the Hessian matrix, and the frequency of vibrational modes needs to be evaluated at
the end points as well as at the (highest) first order saddle point. While the saddle point is not known until the
MEP calculation has been carried out, the minima are, and the second derivative matrices at those points might
as well be calculated right from the start. This would provide additional information that could be fed into the
GP regression so as to improve the accuracy of the approximate energy surface right from first GP iteration. It



934 O-P. Koistinen, E. Maras, A. Vehtari, H. Jónsson

remains an interesting challenge to extend the GP regression approach to include in some way such information
on the second derivatives.

The test problems studied here are quite simple, and it will be important to test the method on more complex
systems to fully assess its utility and to develop it further. One issue that can arise is that more than one MEP
connects the two endpoint minima. Then, some kind of sampling of MEPs needs to be carried out [29]. Also, some
energy surfaces have multiple local minima and highly curved MEPs, which can lead to convergence problems
unless a large number of images is included in the calculation. The scaling of the GP regression approach to such
more challenging problems needs to be tested. There will, however, clearly be a large set of important problems,
such as calculations of catalytic processes, which often involve rather small molecules adsorbed on surfaces, where
the complexity is quite similar to the heptamer island test probelm studied here, and where the GP regression is
clearly going to offer a significant reduction in computational effort.

At low enough temperature, quantum mechanical tunneling becomes the dominant transition mechanism and
the task is then to find the minimum action path [5, 30, 31]. Calculations of tunneling paths requires exploring the
energy surface over a wider region than a calculation of MEPs and here again the GP regression approach can
lead to a significant reduction in computational effort, even more than for MEP calculations since each iteration
necessarily involves more observations and thereby more input for the modeling of the energy surface.

The discussion has focused here on atomic rearrangements, but it will, furthermore, be interesting to apply the
GP regression approach to magnetic transitions where the evaluation of the magnetic properties of the system is
carried out using computationally intensive ab initio or density functional theory calculations. There, the relevant
degrees of freedom are the angles defining the orientation of the magnetic vectors and the task is again to find
MEPs on the energy surface with respect to those angles [7–9].
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Minimum energy paths for transitions such as atomic and/or spin rearrangements in thermalized sys-
tems are the transition paths of largest statistical weight. Such paths are frequently calculated using
the nudged elastic band method, where an initial path is iteratively shifted to the nearest minimum
energy path. The computational effort can be large, especially when ab initio or electron density
functional calculations are used to evaluate the energy and atomic forces. Here, we show how the
number of such evaluations can be reduced by an order of magnitude using a Gaussian process
regression approach where an approximate energy surface is generated and refined in each iteration.
When the goal is to evaluate the transition rate within harmonic transition state theory, the evalu-
ation of the Hessian matrix at the initial and final state minima can be carried out beforehand and
used as input in the minimum energy path calculation, thereby improving stability and reducing the
number of iterations needed for convergence. A Gaussian process model also provides an uncer-
tainty estimate for the approximate energy surface, and this can be used to focus the calculations on
the lesser-known part of the path, thereby reducing the number of needed energy and force evalua-
tions to a half in the present calculations. The methodology is illustrated using the two-dimensional
Müller-Brown potential surface and performance assessed on an established benchmark involving
13 rearrangement transitions of a heptamer island on a solid surface. Published by AIP Publishing.
https://doi.org/10.1063/1.4986787

I. INTRODUCTION

Theoretical studies of the transition mechanism and esti-
mation of the rate of thermally activated events involving dis-
placements of atoms or rotations of magnetic moments often
involve finding a minimum energy path (MEP) connecting ini-
tial and final state minima on the energy surface characterizing
the system. An MEP is a natural choice for a reaction coor-
dinate since it represents a path of maximal statistical weight
in a system in thermal equilibrium with a heat bath. Transi-
tion state theory1–3 calculations can be carried out using this
reaction coordinate to parametrize, for example, a hyperpla-
nar representation of the transition state.4,5 Even though such a
reaction coordinate represents only one particular mechanism
for the transition, it is possible to discover a new mechanism
corresponding to a lower free energy barrier when full varia-
tional optimization of both the location and orientation of the
hyperplanar transition state is carried out.6,7 In such a case, an
MEP is just a convenient tool for the implementation of a full
free energy calculation.

Most often, transition rates are, however, estimated from
the harmonic approximation to transition state theory, where

a)Electronic mail: hj@hi.is

the maximum rise in the energy along an MEP gives the activa-
tion energy of the transition and the pre-exponential factor in
the Arrhenius expression for the rate can be obtained from the
Hessian matrix evaluated at the initial state minimum and the
energy maximum—a first-order saddle point on the energy sur-
face.8 While it is possible to use various methods to converge
directly on a saddle point starting from some initial guess,
knowledge of the whole MEP is useful because it is impor-
tant to make sure that the highest first-order saddle point for
the full transition has been found. Furthermore, calculations of
MEPs often reveal unknown intermediate minima and unex-
pected transition mechanisms9 and therefore play an important
role in the studies of the mechanism and rate of thermally
activated transitions. Most often, such calculations are car-
ried out for transitions involving rearrangements of atoms, but
similar considerations apply to thermally activated transitions
where magnetic moments rotate from one magnetic state to
another.10–13

The nudged elastic band (NEB) method is a commonly
used iterative approach to find MEPs.5,9,14 For magnetic tran-
sitions, a variant of the method called geodesic NEB has been
developed.15 In the NEB method, the path between two local
minima on the energy surface is represented by a discrete set
of replicas of the system, referred to as “images,” each of them
consisting of values for all degrees of freedom. Starting from

0021-9606/2017/147(15)/152720/14/$30.00 147, 152720-1 Published by AIP Publishing.
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some initial path, the locations of the images on the energy
surface are iteratively optimized so as to obtain a discrete
representation of an MEP.

Each NEB calculation typically involves on the order of
a hundred evaluations of the energy and force (the negative
gradient of the energy) for each one of the images, and the
path is typically represented by five to ten images. The evalua-
tions were initially performed mostly using analytical potential
energy functions, but nowadays electronic structure calcula-
tions are also used extensively in NEB applications. Since
a typical electronic structure calculation takes on the order
of tens of CPU minutes or more, the NEB calculations can
become computationally demanding. In addition, the calcu-
lation may need to be repeated if there are several possible
final states for the transition. Thus, it would be valuable to find
ways to accelerate NEB calculations. To get the most out of
the computationally intensive electronic structure calculations,
the information obtained from them should be exploited better
to decrease the number of NEB iterations instead of forgetting
it after one iteration.

The use of machine learning to accelerate MEP and sad-
dle point calculations has been introduced by Peterson,16 who
applied neural networks to construct an approximate energy
surface for which NEB calculations were carried out. After
relaxation of the path on the approximate energy surface, the
true energy and force were evaluated at the images of the
relaxed path to see whether or not the path had converged
on an MEP on the true energy surface. If true convergence had
not been reached, the new energy and force values calculated
at the location of the images were added to the training data
set and the model was updated. This procedure was repeated
iteratively until the approximate energy surface was accurate
enough for converging on the true MEP.

Proof-of-principle results have also been presented where
Gaussian process regression (GPR)17–20 is applied to accel-
erate NEB calculations.21 Since the calculations are largely
based on the gradient vector of the energy surface, straight-
forward inclusion of derivative observations and prediction of
derivatives can be seen as advantages of GPR for this appli-
cation. It is also easy to encode prior assumptions about the
smoothness properties of the energy surface into the covariance
function of the Gaussian process (GP) model or learn about
these properties from the data. Analytical expressions for the
posterior predictions conditional on the hyperparameters of
the GP model allow both fast predictions and reliable esti-
mation of uncertainties. The predictive performance of GPR
has been shown to be competitive with other machine learn-
ing methods especially when the number of observations is
small.22

The GPR approach to MEP calculations is extended here
by presenting two algorithms to accelerate climbing image
nudged elastic band (CI-NEB) calculations, where one of the
images is made to converge to a small tolerance on the highest
energy maximum along the MEP.23 The basic GPR approach is
described as the all-images-evaluated (AIE) algorithm, where
the energy and force are evaluated at all intermediate images
of the CI-NEB before the approximation to the energy sur-
face is updated. In a more advanced algorithm, the energy
and force are evaluated at only one image before a new

approximate energy surface is constructed. We refer to the
latter as the one-image-evaluated (OIE) algorithm. As a prob-
abilistic model, a GP expresses the energy predictions as
probability distributions, which means that the uncertainty of
the prediction can also be estimated, e.g., as the variance of
the posterior distribution. This uncertainty estimate is used
by the OIE algorithm to select the image to be evaluated in
such a way as to give maximal improvement of the model.
By directing the evaluations to locations where they are most
needed, the OIE algorithm skips some of the energy and force
evaluations and thus decreases the overall computation time
compared to the AIE algorithm. This approach has similarities
with Bayesian optimization,24 where the uncertainties of a GP
model are used to define an acquisition function that is used to
select the locations of new evaluations in a global optimization
task.

Another extension of the GPR approach presented here
applies when the overall goal is to estimate the forward and
backward transition rates using harmonic transition state the-
ory. Then, the Hessian matrix needs to be evaluated at the initial
and final state minima, as well as at the highest first-order sad-
dle point along the MEP. The evaluation of the Hessian at the
endpoint minima can be carried out before the MEP calcula-
tion to provide additional input information into the GP model
about the shape of the energy surface in the vicinity of the two
ends of the MEP.

The article is organized as follows: In Sec. II, a brief
introduction to the NEB method is given, followed by pre-
sentation of necessary GP theory for the GPR approach in
Sec. III. In Sec. IV, the two implementations, the AIE algo-
rithm and the OIE algorithm, are described and illustrated
on the two-dimensional Müller-Brown energy surface.25 In
Sec. V, the heptamer island benchmark is described and per-
formance statistics are given as a function of the number of
degrees of freedom. The article concludes with a discussion in
Sec. VI.

II. NUDGED ELASTIC BAND METHOD

The objective of the nudged elastic band (NEB) method
is to find a minimum energy path (MEP) connecting two given
local minima on an energy surface. An MEP is defined as a
path for which the gradient of the energy has zero compo-
nent perpendicular to the path tangent. In the NEB method,
the path is represented in a discretized way as a set of images,
which are sets of values of all degrees of freedom in the system
(atom coordinates and angles specifying orientation of mag-
netic vectors, and possibly also simulation box size and shape).
The MEP is found iteratively, starting from some initial path
between the two minima. Most often, a straight line interpola-
tion between the minima has been used to generate the initial
path,14 but a better approach is to start with a path that interpo-
lates as closely as possible the distances between neighboring
atoms, the so-called image dependent pair potential (IDPP)
method.26

The key feature of the NEB algorithm is the “nudging,”
a projection which is used to separate the force components
perpendicular and parallel to the path from each other. If each
image is just moved along the force vector (negative gradient
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of the energy), they would end up sliding down to the nearest
minima. The main idea in the NEB method is to take into
account only the force component perpendicular to the path
and at the same time control the distribution of the images
along the path. The projection of the force requires an estimate
of the local tangent to the path at the location of each image.
A well-behaved estimate is obtained by defining the tangent
based on the vector to the neighboring image of higher energy
or, if both of the neighbors are either higher or lower in energy
than the current image, a weighted average of the vectors to
the two neighboring images.27

To control the distribution of the images along the path, a
spring force acting in the direction of the path tangent is typi-
cally introduced. The most common choice is to strive for an
even distribution, but one can also choose to have, for exam-
ple, a higher density of images where the energy is larger.23

The spring force also prevents the path from becoming arbi-
trarily long in regions of little or no force. This is important,
for example, in calculations of adsorption and desorption of
molecules at surfaces.

In each iteration, the images are moved along the resul-
tant vector of the spring force and the component of the true
force perpendicular to the path, which is here referred to as
the NEB force FNEB. The true force is the negative gradient of
the energy, and in most cases, an evaluation of the energy also
delivers the gradient vector at little or no additional expense.
It is, however, typically too expensive to evaluate the second
derivatives of the energy, and the iterative algorithms are there-
fore based solely on the gradient and energy at each image
(in addition to the spring force which depends on the distri-
bution of the images). A simple and stable method that has
been used extensively in NEB calculations will be used here
to control the step size of the movements. It is based on a veloc-
ity Verlet dynamics algorithm where only the component of
the velocity in the direction of the NEB force is included as
long as the inner product with the NEB force is positive.14 A
somewhat higher efficiency can be obtained by using quadrat-
ically convergent algorithms such as conjugate gradient or
quasi-Newton,28 but those can be less stable especially in the
beginning of an NEB calculation.

The most important part of an MEP is the vicinity of the
highest energy saddle point, especially in harmonic transition
state theory calculations where the highest energy saddle point
directly gives an estimate of the activation energy of the tran-
sition. It is, therefore, advantageous to let the highest energy
image move to the maximum energy along the path. This vari-
ant of the NEB method is referred to as the climbing image
nudged elastic band (CI-NEB) method.23 Whereas the com-
ponent of the true force acting in the direction of the tangent
is normally removed from the NEB force, for the climbing
image, it is instead flipped around to point towards the direc-
tion of higher energy along the path. In the CI-NEB method,
the spring force is not applied to the climbing image and the
rest of the images are distributed evenly on each side of the
climbing image. To keep the intervals reasonably similar on
both sides of the climbing image, the regular NEB method is
typically conducted first (to some preliminary tolerance) so
that the image selected as the climbing image is not too far
from the true saddle point. The rest of the MEP is mainly

needed to ensure that the highest saddle point has been iden-
tified and to provide an estimate of the tangent to the path in
order to carry out the nudging projections of the forces. It is
more important to make the climbing image converge rigor-
ously than the other images. It is, therefore, practical to apply
a tighter tolerance for the magnitude of the NEB force acting
on the climbing image than to the other images in CI-NEB
calculations.

In the heptamer island benchmark presented here, the path
was represented by seven images, N im = 7, and the initial path
was generated using the IDPP method. All spring constants
were chosen to be 1 eV/Å to give an even distribution of the
images along the path on each side of the climbing image.
The focus here is on calculations where the energy and force
are obtained using some ab initio or density functional theory
calculations. The computational effort in all other parts of the
calculation is then insignificant in comparison, and thus the
overall computational effort is well characterized by simply
the number of times the energy and force need to be evaluated
in order to converge on the MEP. Below, we describe various
strategies to accelerate CI-NEB calculations with Gaussian
process regression.

III. GAUSSIAN PROCESS REGRESSION

A Gaussian process (GP) is a flexible probabilistic model
for functions in a continuous domain.17–20 It is defined by
a mean function m(x) and a covariance function k(x(i), x(j))
so that the joint probability distribution of the function
values f = [ f (x(1)), f (x(2)), . . . , f (x(N))]T at any finite set of
input points X= [x(1), x(2), . . . , x(N)]T ∈ R

N×D is a mul-
tivariate Gaussian distribution p(f)=N(m, K(X, X)), where
m= [m(x(1)), m(x(2)), . . . , m(x(N))]T and the notation K(X, X′)
represents a covariance matrix with entries Kij = k(xi, x′j ).
Thus, a GP can be seen as an infinite-dimensional general-
ization of the multivariate Gaussian distribution, serving as
a prior probability distribution for the unknown function f.
After evaluating the function at some training data points,
the probability model is updated and a posterior probability
distribution can be calculated for the function value at any
point.

The most important part of the GP model is the covari-
ance function, which defines how the function values at any
two input points depend on each other, usually based on the
distance between the points. Through selection of the covari-
ance function, different prior assumptions about the properties
of the function can be encoded into the model. To favor smooth
functions, the infinitely differentiable squared exponential
covariance function

k(x(i), x(j)) = σ2
c + σ2

m exp ���−
1
2

D∑

d=1

(x(i)
d − x(j)

d )2

l2
d

���
is used here. The hyperparameters l = {l1, . . . , lD} are length
scales that define the range of the covariance in each dimen-
sion, and σ2

m is a hyperparameter that controls the magnitude
of the covariation. The mean function is here set to zero, but
the additional constant term σ2

c in the covariance function
has a similar effect as integration over an unknown constant
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intercept term having a Gaussian prior distribution with
variance σ2

c .
Consider a regression problem y= f (x) + ε , where ε is a

Gaussian noise term with variance σ2, and a training data
set {X, y}, where y= [y(1), y(2), . . . , y(N)]T includes N noisy
output observations from the N input points X= [x(1), x(2),
. . . , x(N)]T ∈ R

N×D. The posterior predictive distribution for
the function value f (x*) at a new point x*, conditional on
the GP model hyperparameters θ = {σ2

m, l}, is a Gaussian
distribution with mean

E[ f (x∗)|y, X, θ] = K(x∗, X)
(
K(X, X) + σ2I

)−1
y

and variance

Var[ f (x∗)|y, X, θ]

= k(x∗, x∗) − K(x∗, X)
(
K(X, X) + σ2I

)−1
K(X, x∗),

where I is the identity matrix. Here the hyperparameter val-
ues θ = {σ2

m, l} are optimized by defining a prior probabil-
ity distribution p(θ) and maximizing the marginal posterior
probability density p(θ |y, X)∝ p(θ)p(y|X, θ), where p(y|X, θ)
= ∫f p(y|f)p(f |X, θ)df is the marginal likelihood of θ in the
light of the observed data set {X, y}.

Since differentiation is a linear operation, the derivative
of a GP is a GP as well.29–33 This makes it straightforward to
use derivative information and predict derivatives of the func-
tion f. Derivative observations can be included in the model by
extending the observation vector y to include partial deriva-
tive observations and by extending the covariance matrix K(X,
X) correspondingly to include covariances between the func-
tion values and partial derivatives and covariances between
the partial derivatives themselves. In the case of the squared

exponential covariance function, these entries are obtained
by

Cov
⎡⎢⎢⎢⎢⎣∂f (x(i))

∂x(i)
d

, f (x(j))
⎤⎥⎥⎥⎥⎦

=
∂

∂x(i)
d

Cov
[

f (x(i)), f (x(j))
]
=
∂k(x(i), x(j))

∂x(i)
d

= −σ
2
m(x(i)

d − x(j)
d )

l2
d

exp ���−
1
2

D∑

g=1

(x(i)
g − x(j)

g )2

l2
g

���
and

Cov

⎡⎢⎢⎢⎢⎢⎣
∂f (x(i))

∂x(i)
d1

,
∂f (x(j))

∂x(j)
d2

⎤⎥⎥⎥⎥⎥⎦ =
∂2

∂x(i)
d1
∂x(j)

d2

Cov
[

f (x(i)), f (x(j))
]

=
∂2k(x(i), x(j))

∂x(i)
d1
∂x(j)

d2

=
σ2

m

l2
d1

���δd1d2 −
(x(i)

d1
− x(j)

d1
)(x(i)

d2
− x(j)

d2
)

l2
d2

���
× exp ���−

1
2

D∑

g=1

(x(i)
g − x(j)

g )2

l2
g

��� ,

where δd1d2 = 1 if d1 = d2 and δd1d2 = 0 if d1 � d2. These same
expressions are needed when predicting the derivatives. The
posterior predictive distribution of the partial derivative of
function f with respect to dimension d at a new point x* is
a Gaussian distribution with mean

E

[
∂f (x∗)
∂x∗d

�����y, X, θ

]
=
∂K(x∗, X)
∂x∗d

(
K(X, X) + σ2I

)−1
y

and variance

Var

[
∂f (x∗)
∂x∗d

�����y, X, θ

]
=
∂2k(x∗, x∗′)
∂x∗d∂x∗d

′ −
∂K(x∗, X)
∂x∗d

(
K(X, X) + σ2I

)−1 ∂K(X, x∗)
∂x∗d

.

In the present application, the vector x includes coordinates of the atoms and the function f is the energy of the system. The
extended observation vector

yext =

⎡⎢⎢⎢⎢⎣y(1) · · · y(N),
∂f (x(1))

∂x(1)
1

· · · ∂f (x(N))

∂x(N)
1

,
∂f (x(1))

∂x(1)
2

· · · ∂f (x(N))

∂x(N)
2

, . . . ,
∂f (x(1))

∂x(1)
D

· · · ∂f (x(N))

∂x(N)
D

⎤⎥⎥⎥⎥⎦
T

includes the accurate values of the energy and the partial derivatives of the energy with respect to the coordinates of the atoms
(i.e., components of the negative force vector) at the training data points x(1), x(2), . . . , x(N). The GP model is used to predict the
energy f (x*) and its gradient vector [ ∂f (x∗)

∂x∗1
, ∂f (x∗)

∂x∗2
, . . . , ∂f (x∗)

∂x∗D
]T at a new point x*, which in this case represents an image on the

discrete path representation between the initial and final state minima. Since the training data also include derivative observations,
the mean and variance of the posterior predictive distribution of the energy are given as

E[ f (x∗)|yext, X, θ] = K∗ext

(
Kext + σ2I

)−1
yext (1)

and

Var[ f (x∗)|yext, X, θ] = k(x∗, x∗) −K∗ext

(
Kext + σ2I

)−1
K∗ext

T, (2)

where

K∗ext =

[
K(x∗, X)

∂K(x∗, X)
∂x1

∂K(x∗, X)
∂x2

· · · ∂K(x∗, X)
∂xD

]
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and

Kext =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K(X, X)
∂K(X, X′)
∂x′1

∂K(X, X′)
∂x′2

· · · ∂K(X, X′)
∂x′D

∂K(X, X′)
∂x1

∂2K(X, X′)
∂x1∂x′1

∂2K(X, X′)
∂x1∂x′2

· · · ∂
2K(X, X′)
∂x1∂x′D

∂K(X, X′)
∂x2

∂2K(X, X′)
∂x2∂x′1

∂2K(X, X′)
∂x2∂x′2

· · · ∂
2K(X, X′)
∂x2∂x′D

...
...

...
. . .

...

∂K(X, X′)
∂xD

∂2K(X, X′)
∂xD∂x′1

∂2K(X, X′)
∂xD∂x′2

· · · ∂
2K(X, X′)
∂xD∂x′D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Correspondingly, the mean and variance of the posterior pre-
dictive distribution of the partial derivative of the energy with
respect to coordinate d at x* are given as

E

[
∂f (x∗)
∂x∗d

�����yext, X, θ

]
=
∂K∗ext

∂x∗d

(
Kext + σ2I

)−1
yext (3)

and

Var

[
∂f (x∗)
∂x∗d

�����yext, X, θ

]
=
∂2k(x∗, x∗′)
∂x∗d∂x∗d

′ −
∂K∗ext

∂x∗d

(
Kext + σ2I

)−1 ∂K∗ext
T

∂x∗d
.

Even if the observations are assumed to be accurate, a small
but positive value for the noise variance σ2 is used to avoid
numerical problems when inverting the covariance matrix
Kext.

IV. ALGORITHMS

In this section, the two algorithms using the Gaussian
process regression (GPR) approach to accelerate CI-NEB
calculations, the all-images-evaluated (AIE) algorithm and
the one-image-evaluated (OIE) algorithm, are presented in
detail.

A. All-images-evaluated (AIE) algorithm

Input: A GP model, energy (and zero force) at the two
minima on the energy surface, coordinates of the N im images
on the initial path, a final convergence threshold TMEP for the
minimum energy path, an additional final convergence thresh-
old TCI for the climbing image iCI, a preliminary convergence
threshold TGP

CIon for turning climbing image mode on during the
relaxation phase, a maximum displacement rmax of any image
from the nearest observed data point.

Output: A minimum energy path represented by N im

images, one of which has climbed to the highest saddle point.

1. Start from the initial path and repeat the following (outer
iteration loop):

A. Evaluate the true energy and force at the N im � 2
intermediate images of the current path and add them
to the training data.

B. Calculate the accurate NEB force vector FNEB(i) for
each intermediate image i ∈ {2, 3, . . . , Nim − 1}.

C. If maxi |FNEB(i)| < TMEP and |FNEB(iCI)| < TCI, then
stop the algorithm (final convergence reached).

D. Optimize the hyperparameters of the GP model based
on the training data and calculate the matrix inversion
in Eq. (1).

E. Relaxation phase: Start from the initial path, set
climbing image mode off, and repeat the following
(inner iteration loop):

I. Calculate the GP posterior mean energy and gradi-
ent at the intermediate images using Eqs. (1) and
(3).

II. Calculate the approximate NEB force vector
FGP

NEB(i) for each intermediate image using the GP
posterior mean gradient.

III. If climbing image mode is off and maxi |FGP
NEB(i)|

< TGP
CIon, then turn climbing image mode on and

recalculate the approximate NEB force vectors.
IV. If climbing image mode is on and maxi |FGP

NEB(i)|
< 1

10 TCI, then stop the relaxation phase (E).
V. Move the intermediate images along the approx-

imate NEB force vector FGP
NEB(i) with a step size

defined by the projected velocity Verlet algorithm.
VI. If the distance from any current image to the nearest

observed data point is larger than rmax, then reject
the last inner step and stop the relaxation phase (E).

A pseudocode for the AIE algorithm is presented above.
Figure 1 shows an illustration of the progression of the algo-
rithm on the two-dimensional Müller-Brown energy surface.25

The energy (and the zero gradient of the energy) at the ini-
tial and final state minima is assumed to be provided as
input.

The algorithm is started by evaluating the energy and force
at the N im � 2 intermediate images of an initial path and con-
structing a GP model for the energy based on the obtained
information. The path is then relaxed on the approximate
energy surface (GPR iteration 1), which is given as the pos-
terior mean of the GP model, with a regular CI-NEB method
using the posterior mean gradient of the GP model to cal-
culate the approximate NEB force at the images. After each
relaxation phase, final convergence of the path is checked by
evaluating the true energy and force at the images of the relaxed
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FIG. 1. Far left: The two-dimensional Müller-Brown energy surface, which has three minima, and the minimum energy path (red curve). Three panels to the
right: An illustration of the iterative construction of an approximate energy surface in the vicinity of the minimum energy path using the all-images-evaluated
algorithm where energy and atomic forces are evaluated at all intermediate images of the nudged elastic band. The initial path is a straight line interpolation
between the initial and final state minima. The red + signs show the points at which the energy and atomic forces have been evaluated. The yellow disks show
the climbing image nudged elastic band relaxed on the approximate energy surface of each Gaussian process regression iteration. After each GPR iteration,
final convergence of the path is checked by energy and force evaluations, which are then added to the training data for the following GPR iteration. After three
iterations (and a total of 24 energy and force evaluations), final convergence is confirmed as the magnitude of the NEB force is below the threshold 0.01, both
for the climbing image and the other intermediate images.

path, and these observations are then added to the training
data to improve the GP model on the following round. As can
be seen from Fig. 1, a fairly accurate approximation of the
Müller-Brown energy surface is obtained already after three
GPR iterations of the AIE algorithm. This corresponds to 18
energy and force evaluations since the path is represented by
six movable images in this case. A simplified flowchart of the
algorithm is presented in Fig. 2.

The final convergence of the climbing image nudged elas-
tic band is defined by the magnitude of the NEB force (includ-
ing the spring force parallel to the path tangent) at each image
calculated using the energy and force of the true energy sur-
face. Two separate final convergence thresholds are used: TMEP

for the maximum NEB force magnitude maxi |FNEB(i)| among
the intermediate images i and a tighter TCI for the NEB force
magnitude |FNEB(iCI)| of the climbing image iCI.

To ensure that the incomplete relaxation of the path on
the approximate energy surface does not disturb final con-
vergence, the convergence threshold TGP

MEP for the maximum
approximate NEB force magnitude maxi |FGP

NEB(i)| during the
relaxation phase is defined as 1/10 of the tighter final thresh-
old TCI. To decrease the amount of inner iterations during the
relaxation phase, there is an alternative option for TGP

MEP to
be defined as 1/10 of the smallest true NEB force magnitude
obtained so far on any of the intermediate images (but not

less than TCI/10). If the approximation error is assumed not
to decrease more than that during one GPR iteration, there is
no need for a tighter convergence on the approximated surface
and thus the relaxation phase can be sped up by using a larger
tolerance. The divisor 10 can also be replaced by some other
suitable number.

To make it more certain that the path converges to the same
MEP as the one obtained by the regular CI-NEB method, each
relaxation phase on the approximate energy surface is started
from the same initial path. The relaxation is first conducted
without climbing image mode until a preliminary convergence
threshold TGP

CIon is reached and then continued from the prelim-
inary evenly spaced path with climbing image mode turned on.
Starting each relaxation phase from the initial path may pos-
sibly improve the stability of the algorithm, but there is also
an alternative option which may decrease the number of inner
iterations. In this alternative scheme, each relaxation phase
would be started from the latest evenly spaced path converged
to TGP

CIon, and the climbing image phase would be started from
the latest converged CI-NEB path if the climbing image of
that path has the highest energy also on the current approx-
imate energy surface. If, instead, the index of the highest
energy image has changed, the climbing image phase would be
started normally from the preliminarily relaxed evenly spaced
path.

FIG. 2. A flowchart of the all-images-
evaluated algorithm, where energy and
atomic forces are evaluated at all inter-
mediate images of the climbing image
nudged elastic band relaxed on the GP-
approximated energy surface.
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In the early phases of the algorithm, when little infor-
mation is available about the energy surface, there is a greater
possibility that the path wanders far away from the initial path.
To prevent this behavior, it is good to have some early stop-
ping rule for the movement of the path. Thus, if the distance
from any current image to the nearest observed data point
becomes larger than rmax, then the last inner step is rejected
and the relaxation phase stopped. In the heptamer island bench-
mark described later in Sec. V, rmax is defined as half of the
length of the initial path (sum of the distances between adja-
cent images), but other definitions, e.g., based on the length
scale of the GP model, are also possible.

When the final goal is to estimate the transition rates using
harmonic transition state theory, the Hessian matrices at the
initial and final state minima will need to be calculated. The
Hessian is usually calculated with a finite difference method,
where energy and force evaluations are made in the neighbor-
hood of the minima. If these calculations, which anyway are
needed for the Hessian, are evaluated already in the beginning
of the MEP calculation, the calculated values can be added to
the initial data set for the GPR calculations to provide informa-
tion about the shape of the energy surface around the endpoints
of the path and improve especially the early phase of the algo-
rithm. To test the effect of the Hessian input in the heptamer
island benchmark, a finite difference displacement of 10�3 Å
is made in the positive direction along each of the atom coor-
dinates, and the values of the energy and force at these points
are included as input in the GPR calculation.

Since the GPR calculations using gradient observations
require an inversion of an (1 + D)N × (1 + D)N matrix, the
computational effort scales as O(((1 + D)N)3), where N is
the number of observation points and D is the number of
degrees of freedom (here coordinates of movable atoms). As
usual, the matrix inversion is computed by forming a Cholesky
decomposition and solving a linear system of equations. Since
the model stays the same during the relaxation phase on the
approximate energy surface, the matrix inversion needs to be
computed only once for each GPR iteration and the complex-
ity of one inner iteration on the approximate energy surface is
O((1 + D)N).

B. One-image-evaluated (OIE) algorithm

Input: A GP model, energy (and zero force) at the two
minima on the energy surface, coordinates of the N im images
on the initial path, a final convergence threshold TMEP for the
minimum energy path, an additional final convergence thresh-
old TCI for the climbing image iCI, a preliminary convergence
threshold TGP

CIon for turning climbing image mode on during the
relaxation phase, a maximum displacement rmax of any image
from the nearest observed data point.

Output: A minimum energy path represented by N im

images, one of which has climbed to the highest saddle
point.

1. Optimize the hyperparameters of the GP model based on
the initial data.

2. Start from the initial path and repeat the following (outer
iteration loop):

A. Calculate the GP posterior variance at the uneval-
uated images i ∈ Iu on the current path using Eq.
(2).

B. Evaluate the true energy and force at the image
with highest posterior variance and add them to the
training data.

C. Calculate the accurate NEB force vector FNEB(i) for
the evaluated images i ∈ Ie.

D. If all images on the current path have been evaluated,
maxi |FNEB(i)| < TMEP and |FNEB(iCI)| < TCI, then
stop the algorithm (final convergence reached).

E. Reoptimize the GP hyperparameters, calculate the
GP posterior mean energy and gradient at the uneval-
uated images i ∈ Iu using Eqs. (1) and (3), and save
the matrix inversion for further use.

F. Calculate the approximate NEB force vector FGP
NEB(i)

for the unevaluated images i ∈ Iu using the GP
posterior mean gradient and set FGP

NEB(i) = FNEB(i)
for the evaluated images i ∈ Ie.

G. If maxi |FGP
NEB(i)| < TMEP:

I. If iCI ∈ Iu, then evaluate the energy and force at the
climbing image iCI, add them to the training data,
and go to C.

II. If iCI ∈ Ie and |FNEB(iCI)| < TCI, then go to A.
III. If iCI ∈ Ie and |FNEB(iCI)| ≥ TCI, then execute the

relaxation phase (H), evaluate the energy and force
at the climbing image, add them to the training data,
and go to C.

H. Relaxation phase: Start from the initial path, set
climbing image mode off, and repeat the following
(inner iteration loop):

I. Calculate the GP posterior mean energy and gradi-
ent at the intermediate images using Eqs. (1) and
(3).

II. Calculate the approximate NEB force vector
FGP

NEB(i) for each intermediate image using the GP
posterior mean gradient.

III. If climbing image mode is off and maxi |FGP
NEB(i)|

< TGP
CIon, then turn climbing image mode on and

recalculate the approximate NEB force vectors.
IV. If climbing image mode is on and maxi |FGP

NEB(i)|
< TGP

MEP =
1

10 TCI, then stop the relaxation phase
(H).

V. Move the intermediate images along the approx-
imate NEB force vector FGP

NEB(i) with a step size
defined by the projected velocity Verlet algorithm.

VI. If the distance from any current image i to the near-
est observed data point is larger than rmax, then
reject the last inner step, evaluate image i, and go
to C.

A pseudocode for the OIE algorithm is presented above.
Figure 3 shows an illustration of the progression of the algo-
rithm on the Müller-Brown energy surface. Both the GP
approximation to the energy surface and the estimated uncer-
tainty after one, two, three, and eleven GPR iterations are
shown. The energy (and the zero gradient of the energy) at the
initial and final state minima is assumed to be given as
input.
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FIG. 3. An illustration of the iterative construction of an approximate energy surface to the two-dimensional Müller-Brown energy surface (shown in Fig. 1) in
the vicinity of the minimum energy path using the one-image-evaluated algorithm where the energy and atomic forces are evaluated only at one image of the
nudged elastic band. The initial path is a straight line interpolation between the initial and final state minima. Upper panel: The red + signs show the points at
which the energy and atomic forces have been evaluated. The yellow disks show the climbing image nudged elastic band relaxed on the approximate energy
surface of each Gaussian process regression iteration. After GPR iterations 1, 2, and 3, the energy and force are calculated at the image where the estimated
uncertainty is largest and the observed data are then added to the training data set for the following GPR iteration. Lower panel: The estimated uncertainty
(standard deviation) of the energy approximation shown directly above. After eleven iterations, the path is not displaced further but the final convergence is
checked by evaluating the energy and force at each intermediate image one by one. After 17 evaluations, final convergence is confirmed as the magnitude of the
NEB force is below the threshold 0.01 both for the climbing image and the other intermediate images.

The algorithm is started by evaluating the true energy and
force at the image located in the middle of the initial path
where the uncertainty of the initial GP model is largest. The
GP model is then updated based on the obtained information,
and the path is relaxed on the approximate energy surface (GPR
iteration 1). After each relaxation phase, the true energy and
force are evaluated at only one image of the relaxed path before
updating the GP model. According to the main rule, the image
with the highest uncertainty estimate is selected for evalua-
tion, and the information obtained is then used to improve
the GP model on the following round. As can be seen from
Fig. 3, a fairly accurate approximation of the Müller-Brown
energy surface is obtained already after eleven GPR iterations
of the OIE algorithm. This corresponds to only eleven energy
and force evaluations, quite a bit fewer than the 18 included
in the three GPR iterations of the AIE algorithm shown in
Fig. 1.

The details of the OIE algorithm are otherwise similar
to the AIE algorithm, but since only one image is evaluated
between the GPR iterations, relaxing the path between each
evaluation would mean that the accurate NEB force is only
known for one image at a time. Thus, it would not be known for
sure whether the path has converged on a true MEP. Approxi-
mations for the NEB forces can of course be calculated at the
unevaluated images based on the updated GP model, but since
the NEB forces have been relaxed to zero based on the previous

GP approximation and since the largest changes to the approx-
imation usually emerge near the new observation point, it is
most likely that these approximations underestimate the NEB
force magnitudes. The approximated NEB forces, however,
together with the accurate ones, at least indicate if there is a
possibility that the path may have converged. The general idea
for the convergence check of the OIE algorithm is that when
the maximum magnitude of both the accurate and approxi-
mated NEB forces is below the final convergence threshold
TMEP, more images are evaluated without moving the path
until some of the magnitudes rise above the threshold or all
images have been evaluated. Since the images with the high-
est uncertainty, which are the most likely ones to violate the
convergence criterion, are evaluated first, it is likely that the
convergence check will be interrupted early if the path has not
yet truly converged.

The special role of the climbing image makes the evalu-
ation rules a bit more complicated. Since the climbing image
has a tighter convergence threshold and since the position of
the climbing image also affects the distribution of the other
images, it is desirable to favor evaluations of the climbing
image during the convergence check. As long as the maxi-
mum magnitude of the accurate and approximated NEB forces
is above TMEP, the GP relaxation phase is executed nor-
mally and the image with the highest uncertainty is evaluated.
After the maximum magnitude has reduced below TMEP, the
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FIG. 4. A flowchart of the one-image-
evaluated algorithm, where the energy
and atomic forces are evaluated at only
one image before a new Gaussian pro-
cess regression iteration.

climbing image is evaluated without moving the path (if
not already evaluated). As long as the maximum NEB force
magnitude stays below TMEP but the NEB force magnitude
|FNEB(iCI)| on the climbing image is above TCI, the path is
relaxed and the climbing image is re-evaluated. Finally, if the
maximum magnitude of the accurate and approximated NEB
forces is below TMEP, the climbing image has been evaluated
and |FNEB(iCI)| < TCI, then more images are evaluated with-
out moving the path, starting from the image with the highest
uncertainty.

Another exception to the selection of the image to be eval-
uated is caused by the early stopping rule during the relaxation
phase. If the distance from any current image i to the nearest
observed data point becomes larger than rmax, then the last
inner step is rejected, the relaxation phase stopped, and image
i evaluated next. A simplified flowchart of the OIE algorithm
is presented in Fig. 4.

V. APPLICATION TO THE HEPTAMER
ISLAND BENCHMARK

A test problem that has been used in several studies of
algorithms for finding MEPs and saddle points involves an
island of seven atoms on the (111) surface of a face-centered

cubic (FCC) crystal.34,35 The interaction between the atoms is
described with a simple Morse potential to make the imple-
mentation of the benchmark easy. The initial, saddle point
and final configurations of the atoms for the 13 lowest acti-
vation energy transitions, labeled from A to M, are shown in
Fig. 5. In the initial state, the seven atoms sit at FCC surface
sites and form a compact island. In transitions A and B, the
whole island shifts to HCP sites on the surface. In some of the
other transitions, a pair of edge atoms slides to adjacent FCC
sites, an atom half way dissociates from the island, or a pair
of edge atoms moves in such a way that one of the atoms is
displaced away from the island while the other atom takes its
place.

The calculations were carried out using five intermediate
images (N im = 7) in the CI-NEB calculations starting with an
IDPP path, and the images were moved iteratively to an MEP
using the projected velocity Verlet algorithm14 with a time step
of 0.1 fs. A time step of 1 fs is too large and leads to overshoot-
ing, but a time step of 0.01 fs requires a significantly larger
number of iterations. The algorithms were continued until the
magnitude of the true NEB force acting on the climbing image
had dropped below TCI = 0.01 eV/Å. A larger tolerance, TMEP

= 0.3 eV/Å, was used for the magnitude of the NEB force
acting on the other images in the CI-NEB calculation. During
each relaxation phase on the GP-approximated surface, the
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FIG. 5. An illustration of the atomic transitions of the heptamer island bench-
mark problem. The initial configuration involves a seven-atom island (dark
blue disks in the uppermost left column) adsorbed at FCC sites of an FCC(111)
surface. Saddle point configuration (light blue disks) and final configura-
tion (purple disks) are shown together for each of the transitions, labeled
A–M.

preliminary convergence threshold TGP
CIon for turning climbing

image mode on was 1 eV/Å. The GPR calculations were car-
ried out using the GPstuff toolbox.36 The fixed parameters of
the GP model were chosen to be σ2 = 10−8 eV2 and σ2

c = 100
eV2. A common length scale ld = l was used for all dimen-
sions d = 1, . . . , D, and a zero mean Student’s t-distribution
(restricted to positive values) with 1 Å2 scale and four degrees
of freedom was used as a prior distribution for l and a log-
uniform distribution for σ2

m (i.e., the default priors of GPstuff)
in the optimization of the hyperparameters. The prior distri-
butions stabilize the point estimates of the hyperparameters
especially in the beginning, when there is little data available.
The optimization was performed using the scaled conjugate
gradient algorithm.37

By using input from the Hessian at the initial and final
state minima, the path relaxed on the GP-approximated energy
surface can become qualitatively similar to the true MEP with
fewer GPR iterations. This is illustrated for transition I in
Fig. 6. It shows the true energy evaluated at the location of
the images of the initial path, the converged MEP, and the
path after one GPR iteration in the AIE algorithm with and

FIG. 6. An illustration of the improvement that can be obtained by using the
Hessian at the initial and final state minima. The calculations are for transition
I when the substrate atoms are frozen. The green and orange points show the
true energy evaluated at the location of images of a climbing image nudged
elastic band relaxed on the first approximate energy surface of the all-images-
evaluated algorithm, i.e., at this point, the energy and force had been evaluated
at all the images of the initial path. The path obtained when the Hessian is not
used (orange) is far from the converged minimum energy path (red), quite a bit
farther away than the initial path (blue), and the climbing image has moved to
the final state minimum. The path obtained when the Hessian is used (green),
however, represents a clear improvement to the initial path, having moved
significantly closer to the converged MEP. Eventually, the path converges
after 14 Gaussian process regression iterations (a total of 75 energy and force
evaluations required to confirm final convergence) when the Hessian is used,
and after 17 GPR iterations when it is not used.

without input from the Hessian. The estimate without the Hes-
sian input is quite poor at this point, the path reaching an area
of high energy and the climbing image moving to the final state
minimum.

The reason for this behavior can be seen from Fig. 7, where
the GP-approximated energy at the location of the images
after one GPR iteration (five energy and force evaluations) is
shown. The maximum of the approximated energy along the
path is indeed at the final state of the path. However, with the
input from the Hessian, a qualitatively correct path is obtained
already after one GPR iteration. In this case, the information
coming from the Hessian about the curvature at the endpoints
ensures that the GP-approximated surface has minima at those
points. Without the Hessian input, the three subsequent GPR
iterations still show qualitatively wrong variation of the energy
along the path, and it is only after the fifth iteration that enough
input has been obtained for the GP model to be reasonably
accurate to produce a path qualitatively similar to the true
MEP.

The overall reduction in the number of energy and force
evaluations corresponds essentially to the first three GPR itera-
tions that can be skipped when the Hessian is provided. It takes
17 GPR iterations without and 14 iterations with the Hessian
input to reach convergence in this case. The energy and force
evaluations needed to construct the Hessian are not counted
in the cost of finding the MEP since they need to be carried
out anyway if the transition rate is estimated using harmonic
transition state theory. While the reduction in the number of
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FIG. 7. Comparison of the performance of the all-images-evaluated algo-
rithm with and without input from the Hessian at the initial state minima.
The markers show the GP-approximated energy at the images of the climb-
ing image nudged elastic band relaxed on the approximate energy surface
after one to seven Gaussian process regression iterations (5 to 35 energy and
force evaluations, blue) and after final convergence (red) for transition I when
the substrate atoms are frozen. Without the Hessian input (upper graph), the
approximate energy surface after one GPR iteration does not have an interme-
diate barrier and the climbing image moves to the final state minimum. The true
energy evaluated at each image along this path is shown in Fig. 6 and shows a
large energy barrier. It takes six GPR iterations (30 energy and force evalua-
tions) before the path relaxed on the approximated surface starts to look quali-
tatively similar to the converged minimum energy path. With the Hessian input
(lower graph), the energy along the path relaxed on the approximate energy
surface is qualitatively similar to that of the converged MEP already after one
iteration.

energy and force evaluations (here 15) corresponds to savings
of about 20%, the importance of the Hessian input can be
greater in more challenging systems when avoiding explo-
ration of regions far away from the MEP where the atomic
forces tend to be large.

Even larger savings are obtained by using the uncertainty
estimate provided by the GP model to evaluate the energy and
force only at the image where the true energy is the most poorly
known instead of all images, i.e., to move to the OIE from the
AIE algorithm. This is illustrated for transition F in Fig. 8,
where the GP-approximated energy at the CI-NEB images is
shown after a certain number of energy and force evaluations
for the AIE and OIE algorithms. In the AIE case, the path
is still qualitatively incorrect after 20 evaluations (four GPR
iterations), while this suffices for the OIE algorithm (20 GPR
iterations) to nearly reach convergence. For the AIE algorithm,
it takes a total of 75 energy and force evaluations to confirm
final convergence, while the OIE algorithm requires 39. Sim-
ilar reduction in the number of energy and force evaluations
was found for the other transitions.

The number of energy and force evaluations required
to confirm final convergence for each of the 13 transitions
using the AIE and OIE algorithms is given in Table I as a

FIG. 8. Comparison of the performance of the all-images-evaluated (AIE)
and the one-image-evaluated (OIE) algorithms (Hessian input used) for tran-
sition F when the substrate atoms are frozen. The markers show the GP-
approximated energy at the images of the climbing image nudged elastic band
relaxed on the approximate energy surface after 5, 10, 15, and 20 energy and
force evaluations (blue) and after final convergence (red). With the AIE algo-
rithm (upper figure), the variation of the energy is significantly different for
the path on the approximate surface compared with the true minimum energy
path even after 20 evaluations (four Gaussian process regression iterations).
With the OIE algorithm (lower figure), the variation of the energy along the
path on the approximate surface is close to that of the converged MEP after
20 evaluations (corresponding to 20 GPR iterations in this case).

fraction of the number of evaluations required by a regular
CI-NEB method. Also, the effect of using the Hessian input
for the AIE algorithm is shown. These numbers correspond
to the case where six nearest substrate atoms can move in
addition to the seven island atoms. The relative number of
evaluations compared to the regular CI-NEB varies between
the transitions. A clear trend is that the more complex the
transition and the more the iterations required by the reg-
ular CI-NEB, the larger is the relative effect of the GPR
approach.

The average number of energy and force evaluations for
transitions C–M as a function of the number of degrees of free-
dom is shown in Fig. 9.38 For the smallest number of degrees
of freedom, 21, only the seven island atoms are allowed to
move while all the substrate atoms are frozen. For the larger
numbers of degrees of freedom, some of the surface atoms are
also allowed to move. Starting with the AIE algorithm, the
use of the Hessian input reduces the number of evaluations by
about 20%, but the transition to the OIE algorithm has an even
larger effect, a reduction to a half.

The OIE results represent savings of an order of magnitude
with respect to the regular CI-NEB calculation. The number
of energy and force evaluations reported here for the CI-NEB
method is similar to what has been reported earlier for this test
problem.34,35 It is possible to use a more efficient minimization
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TABLE I. The number of energy and force evaluations needed to converge
the regular climbing image nudged elastic band (CI-NEB) calculations of the
heptamer island benchmark transitions (shown in Fig. 5) when 39 degrees of
freedom are included, and the reduction in the number of evaluations obtained
with the Gaussian process regression approach using the all-images-evaluated
algorithm without the Hessian input (AIE), all-images-evaluated algorithm
with the Hessian input (AIE-H), and one-image-evaluated algorithm without
the Hessian input (OIE).

Number of Number of evaluations as a fraction
evaluations of evaluations needed for CI-NEB

Transition CI-NEB AIE AIE-H OIE

A 120 0.42 0.42 0.13

B 120 0.42 0.42 0.23

C 285 0.25 0.21 0.13

D 265 0.26 0.23 0.14

E 290 0.24 0.19 0.13

F 855 0.12 0.12 0.05

G 840 0.13 0.11 0.05

H 1480 0.08 0.07 0.04

I 1480 0.07 0.07 0.04

J 605 0.15 0.12 0.07

K 610 0.14 0.12 0.07

L 565 0.17 0.12 0.06

M 570 0.17 0.11 0.06

scheme to relax the images in CI-NEB calculations,28 but the
difference is not so large. The test results presented here, there-
fore, show that the use of GPR can significantly reduce the
computational effort in, for example, calculations of MEPs
for surface processes.

FIG. 9. Average number of energy and force evaluations needed to converge
to a minimum energy path in climbing image nudged elastic band calculations
of the heptamer island benchmark as a function of the number of degrees of
freedom, increased by allowing a larger number of substrate atoms to move.
The lower figure shows the same results as the upper figure on a different scale
to better distinguish between the various implementations of the Gaussian
process regression approach. For the larger numbers of degrees of freedom,
the one-image-evaluated (OIE) algorithm provides about 1/20 reduction in the
number of energy and force evaluations as compared with a regular CI-NEB
calculation. The all-images-evaluated (AIE) algorithm requires about twice
as many evaluations as the OIE algorithm, but the use of the Hessian at the
initial and final state minima can reduce that by about 20%. The use of the
Hessian has less effect when the OIE algorithm is used (not shown).

VI. DISCUSSION

The results presented here show that the GPR approach
can reduce the number of energy and force evaluations needed
in CI-NEB calculations of MEPs by an order of magnitude.
This is important since a large amount of computer time is
used in such calculations, especially when ab initio or den-
sity functional theory calculations are used. Compared with
the previous proof-of-principle calculations,21 three major
improvements to the algorithm have been presented here. First
of all, the CI-NEB algorithm was used where one of the images
is pushed up to the maximum along the MEP. This provides
stability and accelerates convergence because it focuses more
evaluations of the energy and force in the vicinity of the
first-order saddle point, the most important part of the energy
surface.

Second, the benefit of using the finite difference estimate
of the Hessian at the endpoints was demonstrated and found
to result in a 20% reduction in the number of energy and func-
tion evaluations needed to converge on an MEP with the AIE
algorithm. This estimation of the Hessian does not represent
any additional energy and force evaluations in cases where the
goal is to calculate the transition rates using harmonic tran-
sition state theory. The usual ordering of the calculations is
simply changed; the Hessian at the endpoint minima is eval-
uated before the MEP calculation rather than afterwards. If a
higher level of rate theory, such as optimal hyperplanar tran-
sition state theory,6 is used, then analogous information about
the initial and final states can be obtained from dynamical
trajectories.

While the Hessian input reduced the number of energy
and function evaluations only by 20%, a significant advan-
tage is likely in greater stability and lower probability of the
path escaping into irrelevant regions of the energy surface in
the first few GPR iterations. This we have seen in preliminary
studies of dissociative adsorption of H2 on a metal surface and
water molecule diffusion on an ice Ih(0001) surface.39 The
addition of the finite difference data points for the Hessian
adds significantly to the memory requirements of the GPR cal-
culation. Those data points could, however, be dropped after
just a few GPR iterations since they are not needed when the
GP approximation of the energy surface becomes reasonably
accurate around the MEP. A more elegant and efficient way
of incorporating the information from the Hessian into the
covariance calculation could also be developed. The imple-
mentation described here represents just an initial test to see
how important such information can be.

As a third improvement, a significant reduction in the
computational effort was shown to be possible by using
the one-image-evaluated algorithm instead of the earlier all-
images-evaluated approach. The number of energy and force
evaluations was reduced to a half in the heptamer benchmark.
In the OIE algorithm, the true energy and force are evalu-
ated only at one image, rather than all images along the path,
before a new GPR iteration. A calculated choice of the location
of each evaluation can be made based on the uncertainty esti-
mate provided by the GP model. Interestingly, the use of the
Hessian did not provide significant reduction in the number of
energy and force evaluations required by the OIE algorithm.
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This apparently stems from the fact that the OIE algorithm
involves fewer evaluations in the early phase of the iterative
GPR process where the approximation to the energy surface
is poor.

The heptamer island benchmark studied here is a rela-
tively simple example, and it will be important to test the GPR
approach on more complex systems to be able to fully assess
its utility and to develop the methodology further. On complex
energy surfaces, there may exist multiple MEPs connecting
the two endpoint minima, which would require some kind of
sampling of MEPs.40 Also, some systems may have multi-
ple local minima and highly curved MEPs, which can lead to
convergence problems unless a large number of images are
included in the calculation. In systems where various types of
molecular interactions are involved, the optimal length scale
may vary depending on the location in the coordinate space.
In such cases, it may be advantageous to use a GP model
that allows different length scales in different parts of the
space.

In order to tackle large systems, the scaling of the GPR
calculations will need to be improved. A more efficient imple-
mentation could be obtained, e.g., by using a compactly sup-
ported covariance function to produce a sparse covariance
matrix where data points far away from each other become
independent.41 It may also be possible to reduce the dimen-
sionality by using partially additive models, where the inter-
action term in the energy function for far away atoms is
ignored. There is, however, a large set of important problems,
such as calculations of catalytic processes often involving
rather small molecules adsorbed on surfaces, where the com-
plexity is comparable to the heptamer island benchmark and
where the GPR approach is clearly going to offer a signifi-
cant reduction in computational effort in NEB calculations of
MEPs.

At a low enough temperature, quantum mechanical tun-
neling becomes the dominant transition mechanism, and the
task is then to find a minimal action path.9,42,43 The effect of
the GPR approach in tunneling path calculations could be even
larger than for MEP calculations since each iteration involves
more energy and force calculations (Feynman paths rather than
points in configuration space) and thereby more data for the
modeling. In addition to atomic rearrangements, it will be valu-
able to apply the GPR approach also to magnetic transitions
where the magnetic properties of the system are evaluated by
computationally intensive ab initio or density functional the-
ory calculations. The relevant degrees of freedom in magnetic
transitions are the angles defining the orientation of the mag-
netic vectors, and the task is again to find MEPs on the energy
surface with respect to those angles.11–13
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ABSTRACT: Calculations of minimum energy paths for atomic rearrangements
using the nudged elastic band method can be accelerated with Gaussian process
regression to reduce the number of energy and atomic force evaluations needed for
convergence. Problems can arise, however, when configurations with large forces due
to short distance between atoms are included in the data set. Here, a significant
improvement to the Gaussian process regression approach is obtained by basing the
difference measure between two atomic configurations in the covariance function on
the inverted interatomic distances and by adding a new early stopping criterion for the
path relaxation phase. This greatly improves the performance of the method in two
applications where the original formulation does not work well: a dissociative
adsorption of an H2 molecule on a Cu(110) surface and a diffusion hop of an H2O
molecule on an ice Ih(0001) surface. Also, the revised method works better in the
previously analyzed benchmark application to rearrangement transitions of a heptamer
island on a surface, requiring fewer energy and force evaluations for convergence to the minimum energy path.

1. INTRODUCTION

Transitions involving rearrangements of atoms, such as chemical
reactions or diffusion events, can be studied by analyzing a
potential energy surface defined in a high-dimensional space of
atom coordinates. Local minima on the energy surface represent
stable states of the system, and minimum energy paths (MEPs)
connecting those characterize mechanisms of possible tran-
sitions. A maximum on an MEP corresponds to a first-order
saddle point on the energy surface, and the highest maximum
provides an estimate of the activation energy for the transition.
An MEP can be defined from the requirement that any point

on the path is at an energy minimum in all directions
perpendicular to the path. A common way to find MEPs is the
nudged elastic band (NEB) method,1,2 where a discrete chain of
atomic configurations, referred to as images, initially located
along some trial path connecting the given minima, is iteratively
moved toward the nearest MEP. A typical NEB calculation
requires on the order of a hundred evaluations of the energy and
atomic forces (corresponding to the negative gradient vector of
the energy) for each image, so the computational effort can be
large, especially when it is combined with electronic structure
calculations such as quantum wave function or density
functional theory based methods. In addition, the calculation
may need to be repeated if there are several possible final states
for the transition. Thus, it is important to find ways to accelerate
NEB calculations.
Peterson3 applied machine learning based on neural net-

works4,5 to accelerate NEB calculations by constructing an
approximate energy surface for which the NEB calculations are

carried out. After relaxation of the path on the approximate
energy surface, the true energy and force are evaluated at the
locations of the images of the relaxed path to see whether or not
the path has converged to an MEP on the true energy surface. If
not, the results of the new energy and force calculations are
added to the training data set and the model is updated. This
procedure is repeated iteratively until the approximate energy
surface is accurate enough for convergence on the true MEP.
The GP-NEB method6,7 applies a similar idea but uses

Gaussian process regression (GPR)8−11 to model the energy
surface. As a nonparametric approach, GPR avoids difficulties
related to optimization of a large number of parameters, which
may cause problems when using, e.g., neural networks. Since
NEB calculations are largely based on the atomic forces, a
straightforward inclusion of derivative observations and
prediction of derivatives can be seen as advantages of GPR for
this application. As a probabilistic model, GPR also provides an
uncertainty estimate, which can be used to further enhance the
procedure by evaluating the energy and forces only at images
located in the most uncertain region of the approximate energy
surface before relaxing the path again.7

Sophisticated methods such as Gaussian approximation
potentials12,13 have been developed to model the entire
potential energy surface of atomic systems with Gaussian
process regression. The total energy is typically approximated as
a sum of contributions of local atomic environments defined by
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descriptors that take into account the type of atoms involved as
well as translational, rotational, and permutational invariance in
the atomic configurations. Such methods could be coupled with
theGP-NEBmethod, but sinceMEP calculations concern only a
small part of the potential energy surface, it is convenient to keep
the representation simple with respect to the atom coordinates
and independent of the types of atoms involved.
The GP-NEB method based on a simple squared exponential

covariance function6,7 has been shown to work well for a
benchmark problem involving 13 different rearrangement
transitions of a heptamer island on a solid surface,14,15 reducing
the number of energy and force evaluations by an order of
magnitude as compared with a regular NEB calculation. A
similar approach has been successfully applied also to the
diffusion of a Au atom on an Al(111) surface and the diffusion of
a Pt adatom across two terraces of a stepped platinum surface.16

In some systems, however, strong and quickly changing
repulsive forces may cause problems for a covariance function
of this sort where the characteristic length scale and magnitude
are the same throughout the configuration space. In atomic
systems, it is typical that the potential energy changes faster with
respect to the atom coordinates when atoms are close to each
other, and this needs to be taken into account when improving
the formulation of the covariance function, as shown here.
In this article, we present improvements to the GP-NEB

method, specifically a better difference measure between a pair
of configurations in the covariance function. Instead of
measuring the distance between the two configurations in the
space of atom coordinates, themeasure is based on differences in
inverted interatomic distances within each of the two
configurations. In addition, a new early stopping criterion,
restricting relative changes in the interatomic distances, is
introduced to prevent atoms from moving too close to each
other during the NEB relaxation phase. The effect of the
improvements is illustrated using a system where an H2
molecule dissociates on a Cu(110) surface. The improved
method is also applied to H2O diffusion on ice Ih(0001) surface,
another example for which the original formulation does not
perform well. In addition, we show that the new features
improve the performance of the GP-NEB method also in the
previously analyzed7 heptamer island benchmark.

2. METHODS
In this section, we first briefly review the nudged elastic band
method for completeness. In the second subsection, we describe
how Gaussian process regression is used to model energy
surfaces in the GP-NEB method and define an improved
difference measure for the covariance function. Finally, the GP-
NEB method is reviewed and a new early stopping criterion
introduced in the third subsection.
2.1. Nudged Elastic Band Method. The nudged elastic

band method is an iterative algorithm for finding a minimum
energy path connecting two given local minima on a potential
energy surface.1,2 The system can consist of atoms that move
from one location to another in the transition as well as atoms
that remain fixed at the same position. The number of moving
atoms is denoted by Nm. An MEP is correspondingly a
continuous path in a 3Nm-dimensional coordinate space. In
the NEB method, the path is represented as a discrete chain of
points, and each point is referred to as an image of the system.
Starting from some initial path connecting the two minima, the
basic idea is to move the images downhill on the energy surface
to converge on the MEP and at the same time control the

distribution of the images along the path. For the selection of the
initial path, the simplest option is to use a straight line
interpolation between the minima, but better alternatives are the
so-called image dependent pair potential (IDPP) method,17

which interpolates as closely as possible the distances between
neighboring atoms, or the geodesic approach recently
introduced by Zhu et al.18

During one iteration, a so-called NEB force vector is
calculated for each intermediate image, and the images are
then simultaneously moved in directions based on those vectors.
The NEB force is a resultant of two components. The first one is
perpendicular to the path and moves the chain toward the
adjacent MEP. It is given by the negative energy gradient after
removing the component parallel to the tangent of the path at
each image. The other component is added to control the
distribution of the images along the path, an artificial spring force
acting only in the direction of the path tangent. When the spring
constant is chosen to be the same for all pairs of adjacent images,
an even spacing of the images along the path is obtained. Since
the path is represented in a discretized way, the path tangent at
an image needs to be estimated based on the locations of the
neighboring images. A well-behaved estimate is obtained by
defining the tangent to be parallel with the line segment
connecting the current image to the neighboring image of higher
energy or, if both of the neighbors are either higher or lower in
energy than the current image, using a weighted average of the
two line segments.19 The algorithm has reached convergence
when the magnitude of the NEB force on each image is below a
given threshold, TMEP.
Since the ultimate goal is to find the point of highest energy

along the MEP, it is useful to make one of the images of the
discrete chain converge to this maximum point. This can be
accomplished with the climbing image nudged elastic band (CI-
NEB) method,20 where the highest energy image is treated
differently. Whereas the component of the negative gradient
parallel to the path tangent is normally removed from the NEB
force, it is instead included and reversed for the climbing image,
so as to point in the direction of increased energy along the path.
The spring force is not applied to the climbing image. In order to
keep the intervals reasonably similar on both sides of the
climbing image, the regular NEB method can be conducted first
(using some preliminary convergence threshold) so that the
image selected as the climbing image is not too far from its final
location. The rest of theMEP is mainly needed to ensure that the
highest saddle point has been identified and to provide an
estimate for the path tangent at the climbing image. It is,
therefore, practical to apply a tighter convergence threshold TCI
(<TMEP) to the climbing image.
In the GP-NEB calculations presented here, the iterative

optimization of the locations of the images is performed using
the velocity projection optimization algorithm.2 It is based on
the velocity Verlet algorithm,21 but the velocity vector is
projected on the direction of the NEB force vector to allow the
images to accelerate in that direction. If the projected velocity
and the NEB force point in opposite directions, as judged by the
inner product, the velocity is set to zero. In the regular NEB
calculations, which are compared to the GP-NEB results, also a
global L-BFGS optimizer22,23 implemented in the EON software
package24 is tested, and the more efficient one of the two
optimizers is used in the reference method. The spring constant
for the NEB force and the time step for the velocity projection
optimization algorithm are chosen so that they work best for the
regular NEB method.
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2.2. Gaussian Process Regression. A Gaussian process
(GP) is a flexible probabilistic model for functions in a
continuous domain.8−11 It is defined by a mean function
m(x), which controls the global mean level of the process (often
set to zero), and a covariance function k(x, x′), which defines
how the function values f(x) and f(x′) at any two input points
depend on each other:

f f kx x x xCov ( ), ( ) ( , )[ ′ ] = ′ (1)

If the covariance is large, the function values are likely to be
similar, and with zero covariance they are considered
independent. The joint probability distribution of the function
values f = [f(x(1)), f(x(2)), ..., f(x(N))]T at any finite set of input
points X = [x(1), x(2), ..., x(N)]T is a multivariate Gaussian
distribution p Kf m X X( ) ( , ( , ))= , where m = [m(x(1)),
m(x(2)), ..., m(x(N))]T and the notation K(X, X′) represents a
covariance matrix
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Thus, a GP can be seen as an infinite-dimensional generalization
of the multivariate Gaussian distribution, serving as a prior
probability distribution for the unknown function f. After
evaluating the function at some training data points, the
probability model is updated and a posterior probability
distribution can be calculated for the function value at any point.
In the present application, f represents the energy of the

system and

x x x x x x x x xx , , , , , , ..., , ,N N N1,1 1,2 1,3 2,1 2,2 2,3 ,1 ,2 ,3
T

m m m
= [ ]

is a 3Nm-dimensional configuration vector including the
Cartesian coordinates for moving atoms 1, 2, ..., Nm ∈ Am.
Given a training data set including both the energy and its
gradient for certain configurations, the mean of the posterior
process of f provides an approximate energy surface, which is
here referred to as the GP approximation.
2.2.1. Covariance Function and Difference Measures.

Through selection of the covariance function, prior assumptions
about the properties of function f can be encoded into the GP
model. In the original formulation of the GP-NEB method,6,7 a
common choice to favor smooth functions was made by using
the squared exponential covariance function

k x x x x( , ) exp
1
2
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is a regular Euclidean distance between configuration vectors x
and x′ in the 3Nm-dimensional space of the atom coordinates.
The hyperparameters θx = {l, σm} control the length scale and
magnitude of the covariance function, respectively, and σc

2 is an
additional constant term with a similar effect as integration over
an unknown constant intercept term having a Gaussian prior
distribution with variance σc

2.

This type of covariance function is referred to as being
stationary in that the characteristic length scale and magnitude
of the model stay the same throughout the coordinate space. As
will be demonstrated in the Results section, this can be
problematic when representing the energy of atomic config-
urations, because the energy tends to change faster with respect
to the atom coordinates when atoms are close to each other (see,
e.g., the energy curve in Figure 1).
One way to make a stationary covariance function more

tolerant toward this kind of nonstationary effects is to loosen its
smoothness assumptions. The squared exponential covariance
function produces infinite times differentiable sample functions,
which means that the underlying energy surface is assumed to be
extremely smooth. In other words, the model tends to avoid
abrupt changes not only in the energy and its gradient but also in
the derivatives of all orders. The Mateŕn family of covariance
functions25 allows control of the smoothness properties by
including an additional hyperparameter, ν. These functions have
a convenient form when ν is a half-integer. For example a choice
of 3

2
ν = leads to once differentiable sample functions, which

means that the gradient of the underlying function is assumed to
be continuous but abrupt changes in the second derivatives are
allowed.When ν→∞, Mateŕn covariance function converges to
the squared exponential covariance function.
As shown in the Supporting Information (SI), Mateŕn

covariance functions with once ( 3
2

ν = ) or twice ( 5
2

ν = )

differentiable sample functions can perform better in modeling
chemical systems than the squared exponential covariance
function. A similar observation has been made recently with

5
2

ν = in ref 26. However, neither the squared exponential nor

the Mateŕn covariance functions give good performance if the
training data set includes configurations where the atoms come
close to each other and the force acting on the atoms is large. In
order to resolve this problem, we replace difference measure

x x( , )x ′ in the squared exponential covariance function with a
modified difference measure x x( , )r1/ ′ that stretches when
atoms approach each other and thus makes the covariance
function nonstationary with respect to atom coordinates.
The difference measure x x( , )r1/ ′ between configurations x

and x′ is defined through the sum of squared differences in the
inverted interatomic distances between all atoms in the system,
weighted by length scales specific to each atom pair type:

l
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is the distance between atoms i and j,ϕ(i, j) is the atom pair type
for pair (i, j), and lϕ(i, j) is the length scale for that pair type. If
frozen atoms are present, i.e., atoms that do not move during the
transition, then pairs of two frozen atoms can be omitted in the
calculation of the difference measure. Thus, the outer
summation only includes the set of moving atoms Am. The
inner summation includes the set of frozen atoms Af and part of
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the moving atoms so that each atom pair occurs only once. After
a little rearrangement

r r
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it is easy to see that the inversion of the interatomic distances
corresponds to scaling the difference between the interatomic
distances with their product. Thus, the closer two atoms are to
each other, the larger effect a displacement of these atoms
toward or away from each other has on the difference measure.
On the other hand, if two atoms are far apart, the effect of
changes in the interatomic distance becomes negligible.
In practice, some of the frozen atoms may be so far from the

moving atoms that they can be omitted from the difference
measure. The evaluations of the covariance function can,
therefore, be sped up by defining an activation distance for the
frozen atoms. In the applications presented in this article, a
frozen atom is activated when it is within a radius of 5 Å from any
moving atom in any configuration encountered during the GP-
NEB algorithm. Once a frozen atom is activated, it stays active
from then on and is taken into account when calculating
covariances. The distances from the moving atoms to inactive
frozen atoms are checked in each iteration, and if new frozen
atoms are activated, the GP model is updated.
Replacing difference measure x x( , )x ′ with x x( , )r1/ ′ in

the squared exponential covariance function leads to the
following form:
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Since k1/r corresponds to a regular squared exponential
covariance function in the space of inverse interatomic distances
which are obtained as functions of the original coordinates, it is a
valid covariance function in the original coordinate space. With
this covariance function, the GP-NEB method works well also
for systems where strong chemical bonding is involved, as
discussed in the Results section. Dealing with atomic forces and
efficient optimization of the hyperparameter values θ1/r = {l1, l2,
..., lNϕ

, σm}, where Nϕ is the number of active atom pair types,
require differentiation of the covariance function with respect to
the atom coordinates and the hyperparameters. Expressions for
the required partial derivatives for both kx and k1/r are given in
the Appendix.
2.2.2. Regression.Consider a regression problem y = f(x) + ϵ,

where ϵ is a Gaussian noise term with variance σ2, and a training
data set {X, y}, where y = [y(1), y(2), ..., y(N)]T includes noisy
output observations from N input points X. When modeling
function f as a Gaussian process with a prior mean functionm(x)
= 0 and a prior covariance function k(x, x′), the posterior
predictive distribution for the function value f(x*) at a new point
x*, conditional on the hyperparameters θ of the covariance
function, is a Gaussian distribution with mean

f K Kx y X x X X X yE ( ) , , ( , )( ( , ) ) 1θ Σ[ * | ] = * + −
(7)

and variance
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where Σ = σ2IN is a noise covariance matrix with IN denoting an
identity matrix of size N. The corresponding prediction for the
partial derivative of f with respect to coordinate xi,d* is given by
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where the elements of ∂K(x*, X)/∂xi,d* are obtained by
differentiating the covariance function. Expressions for the
partial derivatives of covariance functions kx and k1/r are given in
the Appendix.
The derivatives of the covariance function are needed also for

including derivative information in Gaussian process regres-
sion.27−30When y is extended to include partial derivatives of f at
the training data points with Gaussian noise variance σd

2, the
training covariance matrix K(X, X) is extended correspondingly
to include prior covariances between the partial derivatives and
function values

f
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and the covariances between the derivatives
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The vector K(x*, X), required in prediction at a new point x*, is
extended similarly to include covariances between the function
values f(x*) at the new point and the partial derivatives at the
training data points. The extension of the noise covariance
matrix Σ consists of the noise variances of both the energy and
derivative observations on the diagonal. Notice that since the
function values are in different units than the derivatives, the
numerical value of σd

2 is not generally comparable to σ2.
The hyperparameter values θ can be optimized by defining a

prior probability distribution p(θ) and maximizing the marginal
posterior probability density p(θ | y, X)∝ p(θ)p(y | X, θ), where

p K Ky X X X y X X y( , ) 2 ( ( , ) ) exp
1
2

( ( , ) )1/2 T 1θ π Σ Σ| = | + | − +− −

(12)

is the marginal likelihood of θ in light of the given training data
set {X, y}. To improve robustness of the hyperparameter
optimization, we use here weakly informative priors based on the
range of the training data. The prior distributions used for θ1/r
are p( ) (0, ( /3) )ym

2σ = Δ and p l( ) (0, ( /3) )X
2= Δψ ,

where Δy is the difference between the highest and lowest
observed energy values and ΔX is the maximum difference
between the observed data points based on difference measure

x x( , )r1/ ′ with unit length scales. In practice, both the
objective function and the hyperparameters are transformed to
logarithmic scale for the optimization. The fixed value of the
constant term σc

2 is set to the square of the mean of the observed
energy values.
In the applications of the GP-NEB method presented here,

both energy and gradient observations are assumed to be
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noiseless, but small values for the noise variances, σ2 = 10−8 eV2

and σd
2 = 10−8 eV2/Å2, are used to avoid numerical problems

when inverting the training covariance matrix. The GPR
calculations were implemented using the GPstuff toolbox,31

and the hyperparameters of the covariance function were
optimized using the scaled conjugate gradient algorithm32

whenever the model was updated.
2.3. GP-NEB Method. The GP-NEB method6,7 is an

algorithm that accelerates NEB calculation by modeling the
potential energy surface as a Gaussian process, relaxing the path
on the approximated surface and refining the model after new
evaluations have been performed. There are two variations of the
method. In the simpler version, referred to as the all-images-
evaluated (AIE) algorithm, energy and atomic forces are
evaluated at all intermediate images of the path after each
NEB relaxation phase. Here we focus, however, on the more
efficient one-image-evaluated (OIE) version,7 where the true
energy and gradient are evaluated only for the image that is
located in the most uncertain region according to the GPmodel.
2.3.1. OIE Algorithm. The OIE algorithm7 is started by

constructing an initial GP model based on the initial data from
the two end points of the path and evaluating the energy and
force at themost uncertain intermediate image of the initial path.
The selection is based on the variance of the posterior predictive
distribution of energy at each image. The GP model is then
updated based on the obtained information, and the whole NEB
path is relaxed on the revisedGP approximation. By default, each
NEB relaxation phase is started from the same initial path and
continued until the maximum magnitude of the approximated
NEB forces has dropped below a threshold TMEP

GP = TCI/10,
where TCI is the final convergence threshold for the accurate
NEB force on the climbing image. Other options are also
possible in order to decrease the number of steps required for
the relaxation.7 The relaxation is first conducted without
climbing image mode until a preliminary convergence threshold
TCIon
GP is reached and then continued from the preliminary evenly

spaced path with climbing image mode turned on.
The final convergence of the algorithm is defined similarly as

in the regular NEB method, based on final convergence
thresholds TMEP and TCI for the magnitude of the accurate
NEB forces. However, since all intermediate images are relaxed
after each evaluation, the accurate NEB force can only be known
for one image at a time. To enable confirmation of the final
convergence of the whole path with accurate NEB forces, the
following rules are applied based on the mixture of accurate and
approximated NEB forces after each model update: If the
maximum magnitude of the accurate/approximated NEB forces
is above TMEP, the NEB relaxation phase is executed normally
and the image with the highest uncertainty is evaluated.
Otherwise, the climbing image is evaluated without moving
the path (if not already evaluated). If the maximum NEB force
magnitude is below TMEP but the accurate NEB force magnitude
on the climbing image above TCI, the path is relaxed and the
climbing image re-evaluated. Finally, if the maximummagnitude
of the accurate/approximated NEB forces is below TMEP and the
accurate NEB force magnitude on the climbing image is below
TCI, then more images are evaluated without moving the path,
starting from the image with the highest uncertainty, until all
images have been evaluated or some of the NEB forces is again
above TMEP.
When the motivation for finding an MEP is to estimate the

transition rates using harmonic transition state theory, addi-
tional force evaluations in the neighborhood of the end points of

the path are usually required to estimate Hessian matrices at the
two minimum points. By performing these evaluations already
before the MEP calculation, the additional data can be included
in the initial data set for the GPR calculations.7 In the
applications presented in this article, the Hessian data consist
of one data point per input coordinate, including both energy
and gradient evaluated at a location given by a displacement of
10−3 Å in the positive direction of the coordinate axis.

2.3.2. Early Stopping Rules. To prevent the path from
moving too far into regions with no observed data, it is good to
have an early stopping rule for the NEB relaxation phase. The
stopping criterion defined in the original formulation of the GP-
NEB method7 is based on the distance to the nearest evaluated
configuration according to the regular difference measure x:
For all images xim of the current path, there needs to exist an
evaluated configuration xeval so that

Lx x( , )x xim eval
es< (13)

If this condition does not hold, then the last NEB iteration is
rejected, the relaxation phase is stopped, and the image that
triggered the early stopping rule is evaluated next. By default, Lx

es

is set to one-half of the length of the initial path.
This stopping criterion does not, however, prevent the path

from moving to locations where atoms come close together. As
illustrated in the Results section and the SI, large repulsive forces
between atoms may cause problems for the GP model when
using a stationary covariance function with the regular difference
measure x. The inverse-distance difference measure r1/
stretches in the direction of the interatomic force when the
atoms are closer to each other, which effectively smoothens the
repulsive forces with respect to the difference measure and
makes the modeling easier. However, to ensure that the new
evaluations are made at sensible locations, it is still good to
restrict too large relative changes of interatomic distances in the
NEB relaxation phase by an additional early stopping criterion:
For all images xim of the current path, there needs to exist an
evaluated configuration xeval so that

i j
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In other words, each evaluated data point is surrounded by an
allowed neighborhood with a limit for the relative (logarithmic)
changes in the interatomic distances, and the position of an
image is required to be inside some of these allowed
neighborhoods.
The formulation of this early stopping criterion relies on the

assumption that a reduction of an interatomic distance to two-
thirds of the bond length does not lead to problems when using a
covariance function with the inverse-distance difference
measure r1/ . If there exists no evaluated data from the
repulsive region with interatomic distance shorter than the bond
length, the early stopping rule keeps the path safe, and if such
data exists, the shape of the GPmodel should lead the path away
from those regions. Besides avoiding unphysical configurations,
another function of the new early stopping rule is to generally
stabilize the development of the GP model by constraining the
exploration into regions of large uncertainty. The limit in the
relative change of the interatomic distances can also be seen as a
trade-off between confirming stability of the algorithm and
optimizing its efficiency with respect to the number of
evaluations required for convergence. Based on our tests, the
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value of 2
3
is a good general choice for all the systems studied

here, although for example 1
2
or 3

4
would be applicable as well.

Even though the inverse-distance difference measure r1/
handles well also strong repulsive forces, it is possible that amore
restrictive limit becomes beneficial in some other systems.
From the perspective of avoiding regions with large

uncertainty, it could seem tempting to base the stopping
criterion on the uncertainty estimate of the GP model, which is
now based on the inverse-distance difference measure r1/ . In
the beginning, however, there would be a potential risk that a
falsely large length scale of one atom pair type compared to
another would make differences in the corresponding
interatomic distances negligible in the expression of r1/ and
the uncertainties in these directions would be underestimated.
Since our definition for the early stopping criterion is
independent of the length scales of the difference measure, it
would be unaffected by the false length scales and would instead
help to safely correct them by forcing evaluations to be made
before moving too far in these directions. Instead of logarithmic
scale, it would still be possible to connect the lower and upper
limit based on changes in the inverse interatomic distances,
which would increase the upper limit from 3

2
to 2, but we find the

logarithmic scale more intuitive if the user wants to modify the
sensitivity of the stopping rule.
If the displacements of the images during a single iteration of

the NEB relaxation phase were unlimited, using the early
stopping rules would involve a potential risk for a loop where the
same or almost the same configuration with high atomic force
keeps throwing the path away from the allowed region. Since the
early stopping rules reject the last NEB iteration, the new
evaluation would always be made at that same location and the
allowed region would not be extended. For this reason, we set
additional limitation rules for the step length of the NEB
iterations during the relaxation phase to guarantee that an
evaluated image cannot move away from the allowed region
during a single NEB iteration. Notice that these limitation rules

do not stop the NEB relaxation phase but only reduce the step
length of the NEB iterations when necessary.
In respect of the new early stopping criterion (eq 14), the

limitation rule for image xim is defined as follows: An individual
atom i ∈ Am cannot move more than 99% of

r xmin ( )/6
j i

i j
A A

, im
f m∈ ∪ \{ }

where the minimum is taken over all interatomic distances from
that atom to any other atom in xim. If this limit is exceeded, the
whole displacement vector (including all moving atoms) is
shortened so that the displacement of atom i is at the limit. This
limitation rule guarantees that the interatomic distances cannot
decrease to two-thirds during a single NEB iteration.
A corresponding limitation rule to accompany the original

early stopping criterion (eq 13) is obtained by limiting the
displacement vector to 99% of Lx

es. If this limit is exceeded, the
displacement vector is simply shortened to the limit.

3. RESULTS

In this section, we present results showing the success of the
improved covariance function with the new early stopping
criterion in GP-NEB calculations for two systems that are
challenging for the original formulation of the GP-NEBmethod.
The problems encountered when using a stationary squared
exponential covariance function are illustrated in context of the
first application example, where a hydrogen molecule dissociates
on a Cu(110) surface. The revised method is shown to perform
well also in a more complicated system where an H2O molecule
makes a diffusion hop on an ice Ih(0001) surface. In addition, we
show that the performance of the GP-NEB method is improved
also for a previously analyzed benchmark application involving
rearrangements of a heptamer island on a surface.

3.1. Application to H2 Dissociation on Cu(110). A
system where a hydrogen molecule dissociates on a Cu(110)
surface1 is a good example to illustrate the benefit of replacing
the regular difference measure x with the inverse-distance
difference measure r1/ in the covariance function when
modeling the energy surface with a Gaussian process. The

Figure 1. (thick green curve) “True” energy as a function of distance between two hydrogen atoms. Training data for the GP models, marked with +
signs, include accurate values for both energy and its first derivative with respect to the coordinate of the moving hydrogen atom. (left) GP
approximations obtained using the stationary squared exponential covariance function kx. The red curve shows a GP approximation obtained with a
long length scale (fixed hyperparameters: σm = 1.6 eV, l = 1 Å), and the blue curve shows that with optimized hyperparameters (σm≈ 1.9 eV, l≈ 0.084
Å). (right) GP approximation obtained using covariance function k1/r, based on the inverse-distance difference measure r1/ , with optimized
hyperparameters.
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copper slab representing the (110) surface consists of 216 Cu
atoms in six layers, and the potential energy function
representing the “true” energy is obtained as described in ref 1
using the embedded-atom method (EAM).33 We start by
illustrating the challenges that arise when modeling a one-
dimensional energy curve for a two-atom system where a
hydrogen atom approaches another hydrogen atom using the
stationary squared exponential covariance function kx; see
Figure 1. The “true” energy is smoothly varying but rises sharply
when the atoms are close to each other. If the length scale l in the
covariance function is too long, the dominant data from the
short distance region disturb prediction at longer distances. In
the example shown by the red curve, the GP approximation does
not go through the data points even if the assumed noise
variance is set to be small. Consequently, the length scale tends
to be optimized to a small value. With a short length scale,
however, the GP model has problems in interpolating the flat
region where atoms are farther away from each other, and the
predicted values between the data points approach the mean of
the data. When the regular difference measure x is replaced
with the inverse-distance difference measure r1/ , the GP
model manages to reproduce the energy curve without
problems.
From the perspective of the GP-NEB algorithm, the

oscillations in the GP approximation caused by a short length
scale disturb the NEB relaxation phase since the path tends to
move toward the fallacious energy minima. If the length scale is
somewhat sensible, the oscillations should eventually disappear
after additional energy and force evaluations, but the number of
required evaluations may grow large especially in high-
dimensional cases. In this case, however, data from a bit shorter
distances would force the length scale to be so small that
interpolation would become practically impossible.
Figure 2 shows a two-dimensional illustration of a cut through

an energy surface for a hydrogen molecule dissociating on a
Cu(110) surface. In spite of quite a dense grid of training data
points, the GP model based on the regular difference measure

x cannot recover from the oscillations caused by the high-
gradient data on the left. And again, data points closer to the
vertical axis would force the length scale to become even shorter
and make things worse. With the inverse-distance covariance
function k1/r, the high-gradient data near the vertical axis do not
cause problems for the GP model and the agreement with the
“true” energy surface is again good.
GP-NEB calculations for finding the minimum energy path of

H2 dissociative adsorption on Cu(110) were performed with the
improvements presented in the Methods section, including
covariance function k1/r based on the inverse-distance difference
measure r1/ and the new early stopping criterion restricting
relative changes of interatomic distances. The initial state
represents an H2 molecule far from the Cu(110) surface, while
the final state represents two H adatoms sitting on the surface.
Each NEB relaxation phase was started from an IDPP path with
eight intermediate images, and the climbing image mode was
turned on when the magnitude of the NEB force based on the
GP approximation had dropped below TCIon

GP = 1 eV/Å for all
images. The GP-NEB algorithm was continued until the
magnitude of the true NEB force had dropped below TCI =
0.01 eV/Å for the climbing image and below TMEP = 0.3 eV/Å
for the other intermediate images. A spring constant of 1 eV/Å2

was used for all image intervals.

The upper panel of Figure 3 illustrates the progression of the
OIE algorithm in a six-dimensional case where only the two
hydrogen atoms are free to move. Both the initial and final state
are included in the same cut of the energy surface as illustrated in
Figure 2, but the locations of the intermediate images and the
training data points in Figure 3 need to be interpreted as
projections due to small rotations and translations of the H2
molecule on the plane parallel to the Cu(110) surface. The GP
approximation based on covariance function k1/r looks
surprisingly realistic already in the beginning, when the training
data include only the energy and its first derivatives at the two
end points and one intermediate image and the Hessian data at
the end points. Before moving the images, however, the new
early stopping rule requires one more image of the initial path to
be evaluated in order for all the images to be within the allowed
region. The NEB relaxations in the following three GPR
iterations also end up being terminated by the early stopping
rule. Given how good the first prediction looks, the early
stopping criterion may seem unnecessarily conservative, but it
ensures that the relevant region is obtained safely with a
reasonable number of energy and force evaluations, without the
risk of getting too deep into regions of large atomic forces. The
converged MEP is obtained after 13 GPR iterations, and the
convergence is then confirmed by one more evaluation per
image.
For comparison, the lower panel of Figure 3 shows what the

GP approximation with the same training data would look like if
covariance function kx based on the regular difference measure

Figure 2.Two-dimensional cut through the potential energy surface for
a pair of hydrogen atoms near a Cu(110) surface. The H−Hmolecular
axis is parallel to the surface and perpendicular to the atom rows on the
Cu(110) surface. The horizontal axis represents the distance between
the two H atoms, and the vertical axis represents the distance between
the H atoms and the Cu(110) surface. (left) “True” energy, given by an
energy surface taken from ref 1. (middle) GP approximation based on
the grid of energy and atomic force evaluations shown with + signs
when using the stationary squared exponential covariance function kx
with optimized hyperparameters. Notice the short length scale
oscillations in the GP approximation. (right) GP approximation
obtained using covariance function k1/r, based on the inverse-distance
difference measure r1/ , with optimized hyperparameters. In this case
the GP approximation agrees well with the accurate energy surface.
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x is used instead of k1/r. Note that the training data here consist
of configurations where the energy surface with respect to the
atom coordinates is still smooth enough to be interpolated with
a reasonable stationary length scale. However, since the
stationary covariance function extrapolates the attractive forces
acting on the H atoms deep into the regions where the atoms
collide or even pass through each other, it would be difficult to
keep the images away from regions of large repulsive forces
without too restrictive stopping rule. As shown in Figure 4, an
additional data point from the repulsive region would make
interpolation of the training data set more difficult and lead to a
short length scale. For covariance function k1/r, instead, this
high-gradient data point would not cause problems.
Figure 5 shows the number of energy and force evaluations

required for convergence of GP-NEB calculations where the six-
dimensional configuration space was extended by allowing also

the nearest Cu atoms to move. The corresponding results for the
regular CI-NEB method were obtained using the velocity
projection optimizer with a time step of 0.1 fs, which performed
better than the L-BFGS optimizer in this example. The
difference in the obtained saddle point energy between GP-
NEB and regular CI-NEB was not larger than 0.0001 eV in any
of the cases. Compared to the reference method, the number of
evaluations is reduced by an order of magnitude when using the
OIE algorithm with the improved covariance function k1/r and
the new stopping criterion. The differences in the results
between OIE and AIE algorithms and the effect of using the
Hessian data at the initial and final state minima are quite similar
to the earlier results for the heptamer benchmark obtained with
the original formulation of the GP-NEB method.7 For the
reasons explained above, the original formulation based on the

Figure 3.Two-dimensional cut through the potential energy surface for an H2molecule dissociating on a Cu(110) surface. The H−Hmolecular axis is
parallel to the surface and perpendicular to the atom rows on the Cu(110) surface. The horizontal axis represents the distance between the two H
atoms, and the vertical axis represents the distance between the H atoms and the Cu(110) surface. (upper) GP approximations with covariance
function k1/r after 1, 2, 3, 4, and 13 GPR iterations of the improved GP-NEB algorithm. The + signs mark projections of locations where energy and
forces have been evaluated. The red line shows the border of the region allowed by the new early stopping rule, and the white dots are projections of the
images at the end of each NEB relaxation phase. In the first four GPR iterations, the NEB relaxation phase is terminated by the early stopping rule. A
converged MEP is obtained after 13 GPR iterations. (lower) For comparison, GP approximations obtained with optimized hyperparameters for the
stationary covariance function kx are presented using the same training data sets as in the upper panel.
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stationary squared exponential covariance function kx could not
be successfully applied to the H2/Cu(110) system.
3.2. Application to H2O Diffusion on Ice Surface.

Another example of an application challenging for the original
formulation of the GP-NEB method, involving both strong
intramolecular forces and weak intermolecular forces, is a
diffusion hop of an H2O admolecule on a (0001) surface of
proton-disordered ice Ih. The slab representing the surface is
here composed of 192 constrained water molecules arranged in
four bilayers, and the energy surface is described by the TIP4P/

2005f potential function,34 which is a flexible version of TIP4P/
2005.35 This potential function has previously been used to
simulate surface diffusion on various ice Ih surfaces using long-
time-scale adaptive kinetic Monte Carlo simulations, and
additional information on the modeling can be found in refs
36 and 37.
CI-NEB calculations for the transition were performed using a

linear initial path, a spring constant of 10 eV/Å2, and the same
convergence thresholds as in the H2/Cu(110) example (TCI =
0.01 eV/Å, TMEP = 0.3 eV/Å, TCIon

GP = 1 eV/Å). In regular CI-
NEB calculations, the L-BFGS optimizer performed better than
the velocity projection optimizer for which a time step of 0.05 fs
worked best. Figure 6 shows the minimum energy path obtained
for the transition using the revised GP-NEBmethod. The energy
difference between the initial state and saddle point was 0.054
eV with the regular CI-NEB method, 0.047 eV with the OIE
version of the GP-NEB algorithm and 0.045 eV with the AIE
version. While the regular CI-NEB calculation required 1574
energy and force evaluations to reach convergence, the OIE
version of the GP-NEB method converged with 35 and the AIE
version with 90 evaluations. Thus, also for this molecular system,
the GP-NEB method significantly reduces the number of
evaluations.

3.3. Application to theHeptamer Island Benchmark. In
an earlier publication,7 the original formulation of the GP-NEB
method based on the stationary covariance function kx was
shown to work well for a benchmark involving rearrangements
of a heptamer island on a (111) surface of a face-centered cubic
(FCC) crystal.14,15 We now show that the improved covariance
function k1/r based on the inverse-distance difference measure

r1/ gives even better performance in that the number of energy
and force evaluations needed to reach convergence is reduced
further. The initial, saddle point, and final state configurations
for the 13 transitions are shown in ref 7. In the initial state, the
seven atoms sit at FCC surface sites and form a compact island.
In two of the transitions, the whole island is shifted to hexagonal
close-packed (HCP) sites on the surface. In some of the other
transitions, a pair of edge atoms slides to adjacent FCC sites, an
atom half way dissociates from the island, or one of the atoms is
displaced away from the island while another one takes its place.
The system is described by 343 platinum atoms with 56 atoms in

Figure 4. Illustrations of GP approximations based on covariance
functions kx (left) and k1/r (right), corresponding to the rightmost
graphs in Figure 3 after adding one high-gradient training data point
near the left border of the graph and reoptimizing the hyperparameters.

Figure 5. Number of energy and force evaluations required for
convergence of CI-NEB calculations in the H2/Cu(110) example as a
function of the number of degrees of freedom, increased by allowing a
larger number of Cu-atoms to move. The performance of the all-
images-evaluated (AIE) algorithm is presented by blue triangles, and
the performance of the one-image-evaluated (OIE) algorithm is shown
with green dots. The use of Hessian data at the initial and final state
minima is indicated by darker colors. All the GP-NEB results were
obtained using the improved covariance function k1/r and the new
stopping criterion.

Figure 6. Minimum energy path for a diffusion hop of an H2O
admolecule on proton-disordered ice Ih(0001) surface calculated using
the improved GP-NEB method. The O atom of the diffusing molecule
is shown in red, and the molecules in the surface bilayer in grayscale.
Lower bilayer molecules are not presented. Hydrogen bonds are shown
with dotted lines. The use of Gaussian process regression reduces the
number of energy and force evaluations by more than an order of
magnitude.
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each of the six layers, and the interactions between the atoms are
described by a Morse potential.14

New GP-NEB calculations for the benchmark transitions
were performed using the improved covariance function k1/r and
the new early stopping criterion with the same settings as in the
earlier tests:7 An IDPP path with five intermediate images (Nim =
7) was used as the initial path, the spring constant was set to 1
eV/Å2 for all image intervals, and the convergence thresholds
were the same that were used also for the H2/Cu(110) and H2O
applications (TCI = 0.01 eV/Å, TMEP = 0.3 eV/Å, TCIon

GP = 1 eV/
Å). All platinum atoms were treated as the same atom type, and
thus, a common length scale was shared by all atom pairs in the
system when calculating the inverse-distance difference measure

r1/ between configurations. The number of degrees of
freedom was altered from 21 to 39 by allowing some of the
nearest substrate atoms to move with the seven island atoms. In
all cases, the saddle point energy differed less than 0.0004 eV
from the regular CI-NEB result.
The average number of energy and force evaluations required

in the new GP-NEB calculations as a function of the number of
degrees of freedom is shown in Figure 7 with thick solid lines.
The results are presented for both the OIE (green) and AIE
(blue) algorithms with (darker color) and without (lighter
color) use of the Hessian data at the initial and final state
minima. Depending on the algorithm variant, the improvements
to the GP-NEB method reduce the number of required energy
and force evaluations by about 30−50% compared to the earlier
results (narrow dashed lines).

4. DISCUSSION

The examples of application of the GP-NEB method studied
here show that interpolation of the energy surface with respect to
atom coordinates may be difficult with a stationary Gaussian
process covariance function that has the same characteristic
length scale throughout the coordinate space. An improved
covariance function was presented here, where the similarity
between two configurations is based on differences in inverted
interatomic distances within each of the two configurations. The
closer two atoms are to each other, the larger effect a small
displacement of these atoms toward or away from each other has
on the inverse-distance difference measure. This makes the
covariance function nonstationary with respect to the atom
coordinates and the energy surface easier to represent by the
Gaussian process model.
The justification of the inverse-distance covariance function is

based on the assumption that the energy of the system can be
presented as a smooth function of interatomic distances. In
other words, if there are two configurations with the same
interatomic distances, also the energy should be the same. Since
the covariance function gives almost full correlation for the two
energy values, reduced only by the small noise variance σ2,
problems may arise if the energies differ by significantly more
than σ. Therefore, if a cutoff distance is used to reduce the
number of atom pairs taken into account in the covariance
function, the changes in energy outside the cutoff distance
should be kept comparable to σ. Similar problems may emerge if
the energy evaluations involve periodic boundary conditions not
taken into account when calculating the interatomic distances
for the covariance function. In a proper treatment of such
systems, the contribution of an interatomic distance should be
suppressed smoothly to zero before half cell size is reached in
any direction in order to avoid discontinuities in the derivatives
of the difference measure with respect to the original
coordinates.
As mentioned in theMethods section and illustrated in the SI,

a stationary model becomes to some extent more flexible if the
smoothness assumptions are loosened by replacing the infinitely
differentiable squared exponential covariance function with an
appropriate member of the Mateŕn family. The improved
covariance function based on the inverse-distance difference
measure could similarly be made more flexible if the difference
measure was fed to a Mateŕn covariance function. In the
examples presented in this article, however, this covariance
function worked best in the squared exponential form. This
indicates that the energy was behaving smoothly enough with
respect to the inverted interatomic distances, in order to be
successfully modeled with an infinitely differentiable covariance
function.
In addition to the inverse interatomic distances, it is possible

to include also angles between the lines connecting the atoms
when defining the similarity between configurations. This
would, however, require handling triplets of atoms, which
would complicate and slow down calculation of the covariances.
In principle, the GP-NEB method can also be combined with
more complicated approximative models of local atomic
environments as those used in the GAP potentials.12,13 Our
goal, however, has been to keep themodel simple with respect to
the atom coordinates and general enough to be able to
interpolate the surroundings of minimum energy paths
accurately without extensive tuning.

Figure 7. Number of energy and force evaluations required for
convergence of CI-NEB calculations in the heptamer island benchmark
with variants of the GP-NEBmethod. The average over the 13 different
transitions is presented as a function of the number of degrees of
freedom, increased by allowing a larger number of substrate atoms to
move. The narrow dashed lines present the earlier GP-NEB results7

obtained using the stationary squared exponential covariance function
kx, and the thick solid lines present the corresponding results when
using the improved covariance function k1/r and the new stopping
criterion. The performance of the all-images-evaluated (AIE) algorithm
is presented by blue triangles, and the performance of the one-image-
evaluated (OIE) algorithm is shown with green dots. The use of
Hessian data at the initial and final state minima is indicated by darker
color.
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Besides modifying the covariance function, an early stopping
criterion restricting relative changes in the interatomic distances
during the NEB relaxation was introduced. The purpose of the
new stopping rule is to avoid unphysical configurations that may
disturb the fitting of the GPmodel and also to generally stabilize
the development of the model by constraining how far the NEB
images can move into unexplored regions. However, since the
criterion is only based on interatomic distances, it does not
necessarily restrict joint movement of a group of atoms. To
restrict also joint movement of atoms, we considered one more
early stopping criterion based on the displacement of each atom
scaled by the distance to the nearest atom. This criterion would
similarly require that there exists an evaluated data point that
fulfils the condition for all atoms. However, we did not find this
addition useful in the examples presented here. Rather than
stabilizing the algorithm, it increased the number of evaluations
by triggering unnecessary energy and force evaluations.
The advantage of the GP-NEB method relies on the

assumption that training of the GP model and evaluations on
the approximated energy surface can be performed in negligible
time compared to accurate energy and force evaluations. In
practice, however, the cost of the GP approximation limits the
applicability of the method to systems with around a few dozen
moving atoms or less. The computational bottleneck of a
standard implementation of Gaussian process regression is the
inversion of the training covariance matrix with a cubic time
requirement and a quadratic memory requirement with respect
to the length of the observation vector. A recently introduced
approach38,39 avoids explicit inversion of the covariance matrix
and thereby reduces the scaling of the training time from cubic
to quadratic and the scaling of the memory requirement from
quadratic to linear without compromising the accuracy of the
inference. Since the approach is also parallelizable, further
acceleration is possible by using multiple processors. When the
training data set includes derivatives with respect to all 3Nm
input coordinates, this approach would mean quadratic scaling
with respect to both the number of data points, N, and the
number of moving atoms, Nm. The construction of the matrix
requires evaluations of (N(1 + 3Nm))

2 covariances and the
prediction of the whole gradient vector Nm derivatives of N(1 +
3Nm) covariances. Even though calculation of any of these
elements requires evaluation of the difference measure, which
here includes a sum over all pairs of moving atoms, this needs to
be done only once for each pair of data points. By storing the
value of the difference measure and its derivative with respect to
each input coordinate while building each of the N2 blocks, the
whole covariance matrix can be built in N N( )2

m
2 time, and

similarly, the prediction of the whole gradient vector can be
done in NN( )m

2 time. Thus, even though the inverse-distance
formulation increases the cost of individual covariance function
evaluations, it does not affect the scaling of the cost of the whole
algorithm.
If found necessary, practical speedup could be obtained by

reducing the training data set by selectively ignoring some of the
data points, derivatives of some data points or derivatives with
respect to movement of some atoms. It would also be possible to
train a separate GPmodel for each image using different training
data sets. If the evaluations of the GP approximation are taking
much time, it might be convenient to reduce the maximum
number of inner iterations and start the following NEB
relaxation phase where the previous one ended. The
optimization of the hyperparameters could be as well started

from the previous values after a few initial rounds or even
skipped for some number of rounds after the values have
stabilized, and it is also possible to use the same length scale for
all atom pair types. One possible approach would be to start with
a lighter approximate model with larger noise assumed and
switch to a noiseless model when converging to the minimum
energy path.

■ APPENDIX

Partial Derivatives of Covariance Function kx
When predicting derivatives of a function modeled with a
Gaussian process (eq 9) or when dealing with derivative data in
the training data set (eqs 10−11), partial derivatives of the
covariance function with respect to input coordinates are
required. To calculate the partial derivatives of covariance
function kx, defined in eq 2, we first calculate the partial
derivative of the square of the regular difference measure

x x( , )x ′ , defined in eq 3, with respect to the dth coordinate of
moving atom i in x,
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Using chain rules, the corresponding partial derivatives of
covariance function kx can be presented as
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are the first and second derivatives of the covariance function
with respect to the squared difference measure.
When optimizing the hyperparameters, it is useful to

differentiate the covariance function and its derivatives also
with respect to the hyperparameters. Differentiation with
respect to magnitude σm is trivial, since σm

2 can be factorized
out from the expressions. With respect to the isotropic length
scale l, we start again by differentiating the squared difference
measure and its derivatives:
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Using chain rules, we can now differentiate the covariance
function and its derivatives:
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Partial Derivatives of Covariance Function k1/r
The partial derivative of the square of the inverse-distance
difference measure x x( , )r1/ ′ , defined in eq 4, with respect to
the dth coordinate of moving atom i in x is given by
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and with respect to both the d1th coordinate of moving atom i1
in x and the d2th coordinate of moving atom i2 in x′ by
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The corresponding partial derivatives of covariance function k1/r
can be presented with similar expressions as shown for kx in eqs
17 and 18, keeping in mind that kx and k1/r have the same
derivatives with respect to the square of the difference measure.
Similarly, k1/r and its derivatives can be differentiated with

respect to length scale lψ for atom pair type ψ using similar chain
rules as shown in eqs 24, 25, and 26. The corresponding partial
derivatives of the square of the difference measure r1/ ,
required for these expressions, are given by

l l

x x( , ) 2
r

i A j A j i
j A
i j

r rx x1/
2

,

( , )

1
( )

1
( )

2

3
i j i j

m m

f

, ,∑ ∑∂ ′
∂

=
− −

ψ

ϕ ψ

ψ∈ ∈ >
∨∈

=

′

(30)

x l

x x

l r r r
x x

x x x
( , ) 4( )

( )
1
( )

1
( )

r

i d j A i
j A
i j

i d j d

i j i j i j

2
1/
2

,

( , )

, ,
3

,
3

, ,m

f

∑∂ ′
∂ ∂

=
−

−
′ψ

ϕ ψ

ψ∈ \{ }
∨∈

=

(31)

and
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Matérn Covariance Functions

Modeling of systems with strong and quickly changing repulsive forces may be difficult with
a stationary covariance function, where the characteristic length scale and magnitude stay
the same throughout the coordinate space. As mentioned in the main article, one way to
make a stationary covariance function more tolerant toward nonstationary effects is to loosen
the assumptions of the smoothness of the modeled function conveyed through the smoothness
properties of the covariance function. The squared exponential covariance function produces
infinite times differentiable sample functions, which means that the underlying energy surface is
assumed to be extremely smooth. In other words, the model tends to avoid abrupt changes not
only in the energy and its gradient but also in the derivatives of all orders. The Matérn family
of covariance functions allows control of the smoothness properties by including an additional
hyperparameter, ν. These functions have a convenient form when ν is a half-integer. For
example a choice of ν = 3

2 leads to once differentiable sample functions, which means that
the gradient of the underlying function is assumed to be continuous but abrupt changes in the
second derivatives are allowed. When ν → ∞, Matérn covariance function converges to the
squared exponential covariance function.

The Matérn covariance functions with smoothness parameter values ν = 3
2 and ν = 5

2 ,
leading to once and twice differentiable sample functions, respectively, are given by
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The first, second, and third derivatives of Matérn-3/2 covariance function with respect to the
square of difference measure Dx(x,x

′) are given by
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and the corresponding derivatives of Matérn-5/2 by
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In cases where these expressions are defined, the partial derivatives with respect to atom
coordinates and length scale l are obtained by replacing derivatives of kx with the above ex-
pressions in eqs 17–18 and 24–26. When Dx(x,x

′) = 0,
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Figure S1 extends Figure 1 showing an energy curve for a pair of hydrogen atoms. In
addition to GP approximations obtained with the squared exponential covariance function kx,

corresponding GP approximations are presented for Matérn covariance functions k
M−5/2
x and

k
M−3/2
x . As shown on the left, both Matérn-3/2 and Matérn-5/2 tolerate the long length scale

better than the infinitely differentiable squared exponential covariance function. Even though

the fit on the left looks good, stationarity causes problems also for k
M−5/2
x and k

M−3/2
x , and

optimization of the length scale leads to oscillations, although weaker than with kx.
Figure S2 extends similarly Figure 2 showing a two-dimensional illustration where the verti-

cal axis represents the distance of a pair of hydrogen atoms from a Cu(110) surface. In spite of
quite a dense grid of observations, the squared exponential covariance function cannot recover
from the oscillations caused by the high-gradient observations on the left. For Matérn-3/2 and
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GP approximation with optimized length scale

Accurate energy curve
GP approximation, kx
GP approximation, kM−5/2

x

GP approximation, kM−3/2
x

Data point

Figure S1. The thick green curve shows “true” energy as a function of distance be-
tween two hydrogen atoms. Training data for the GP models, marked with + signs,
include accurate values for both energy and its first derivative with respect to the co-
ordinate of the moving hydrogen atom. GP approximations obtained using stationary
covariance functions with different smoothness properties are shown with red for the
squared exponential covariance function kx, violet for Matérn-5/2 covariance function

k
M−5/2
x , and blue for Matérn-3/2 covariance function k

M−3/2
x . Left: GP approximations

obtained with a long length scale (fixed hyperparameters: σm = 1.6 eV, l = 1 Å).
Right: GP approximations obtained with optimized hyperparameters (kx: σm ≈ 1.9 eV,

l ≈ 0.084 Å; k
M−5/2
x : σm ≈ 1.9 eV, l ≈ 0.17 Å; k

M−3/2
x : σm ≈ 2.0 eV, l ≈ 0.26 Å).
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kx

1 2 3
0

1

2

3

4

5

GP approximation
kM−5/2
x

1 2 3
0

1

2

3

4

5

kM−3/2
x

0

1

2

3

4

5
E
n
er
gy

(e
V
)

Figure S2. A two-dimensional cut through the potential energy surface for a pair of
hydrogen atoms near a Cu(110) surface. The H–H molecular axis is parallel to the sur-
face and perpendicular to the atom rows on the Cu(110) surface. The horizontal axis
represents the distance between the two H atoms, and the vertical axis represents the
distance between the H atoms and the Cu(110) surface. The leftmost graph presents
“true” energy, and the three other graphs present GP approximations based on the
grid of energy and atomic force evaluations shown with + signs when using optimized
hyperparameters for stationary covariance functions with different smoothness proper-
ties. The squared exponential covariance function is notated as kx and Matérn-5/2 and

Matérn-3/2 covariance functions as k
M−5/2
x and k

M−3/2
x , respectively.
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Figure S3. A two-dimensional cut through the potential energy surface for an H2

molecule dissociating on a Cu(110) surface. The H–H molecular axis is parallel to the
surface and perpendicular to the atom rows on the Cu(110) surface. The horizontal
axis represents the distance between the two H atoms, and the vertical axis represents
the distance between the H atoms and the Cu(110) surface. The three panels present
GP approximations obtained using optimized hyperparameters for stationary covariance
functions with different smoothness properties. The five training data sets, marked by
+ signs, include the same energy and force evaluations that are used in the first, second,
third, fourth, and thirteenth GPR iteration of the improved GP-NEB algorithm using
covariance function k1/r; see Figure 3 in the main article.
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Matérn-5/2, the numerous observations from the flat regions lengthen the optimized length
scale, which allows smooth interpolation of those locations, but especially the lower left corner,
where the H atoms are close to both the Cu(110) surface and each other, appears to be difficult
to model correctly.

Figure S3 is an extension of the lower panel of Figure 3, where the training data sets do not
include high-gradient observations from the repulsive regions. Again, Matérn-3/2 and Matérn-
5/2 produce smoother interpolations than the squared exponential covariance function. Since
Matérn-3/2 does not assume continuity of the second derivatives of the energy surface, it ignores
the second derivative information included in the training data at the upmost and rightmost
data points. For the same reason, the attractive forces acting on the H atoms are extrapolated

farther to the repulsive region than when using k
M−5/2
x or kx. As shown in Figure S4, an

additional data point from the repulsive region would make interpolation of the training data
set more difficult and lead to shorter length scale, although the effect is not as dramatic for
Matérn-5/2 or Matérn-3/2.
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Figure S4. Illustrations of GP approximations based on stationary covariance functions

kx (left), k
M−5/2
x (middle), and k

M−3/2
x (right) corresponding to the rightmost graphs

in Figure S3 after adding one high-gradient training data point near the left border of
the graph and reoptimizing the hyperparameters.

Matérn Covariance Functions with Difference Measure D1/r

Similarly to the stationary squared exponential covariance function kx, also covariance function
k1/r based on the inverse-distance difference measure D1/r can be made more flexible by feeding
the difference measure to Matérn-3/2 or Matérn-5/2 covariance function:

k
M−3/2
1/r (x,x′) = σ2

c + σ2
m

(√
3D1/r(x,x

′) + 1
)
exp
(
−
√
3D1/r(x,x

′)
)

(S13)

k
M−5/2
1/r (x,x′) = σ2

c + σ2
m

(
5

3
D2

1/r(x,x
′) +

√
5D1/r(x,x

′) + 1

)
exp
(
−
√
5D1/r(x,x

′)
)

(S14)

The partial derivatives of covariance functions k
M−3/2
1/r and k

M−5/2
1/r can be presented with similar

expressions as for k
M−3/2
x and k

M−5/2
x , keeping in mind that the derivatives of k

M−3/2
1/r and k

M−5/2
1/r
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with respect to D2
1/r are the same as the derivatives of k

M−3/2
x and k

M−5/2
x with respect to D2

x.
The partial derivatives of the square of difference measure D1/r, required for these expressions,
are presented in eqs 28–32.

Figure S5 repeats the results presented in Figure 7 for the improved GP-NEB method in the

H2/Cu(110) example and shows also the corresponding results when using k
M−5/2
1/r or k

M−3/2
1/r

instead of k1/r as the covariance function of the GP model. Except for the OIE results for

k
M−5/2
1/r , the Matérn variants increase the number of energy and force evaluations required for

convergence. Matérn-3/2 variants using Hessian data are omitted, since k
M−3/2
1/r ignores second

derivative information.
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Figure S5. Number of energy and force evaluations required for convergence of CI-
NEB calculations in the H2/Cu(110) example as a function of the number of degrees of
freedom, increased by allowing a larger number of Cu atoms to move. The solid lines
present results for the improved GP-NEB method when using covariance function k1/r
obtained by feeding the inverse-distance difference measure D1/r to the squared expo-
nential covariance function. The dotted lines show the corresponding results when using

covariance functions k
M−5/2
1/r (left) or k

M−3/2
1/r (right) obtained when the difference mea-

sure D1/r is instead fed to Matérn-5/2 or Matérn-3/2 covariance function, respectively.
The performance of the all-images-evaluated (AIE) algorithm is presented by blue tri-
angles and the performance of the one-image-evaluated (OIE) algorithm by green dots.
The use of Hessian data at the initial and final state minima is indicated by darker color.
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Abstract

The minimum mode following method can be used to find saddle points on an energy
surface by following a direction guided by the lowest curvature mode. Such calculations
are often started close to a minimum on the energy surface to find out which transitions
can occur from an initial state of the system, but it is also common to start from the
vicinity of a first-order saddle point making use of an initial guess based on intuition or
more approximate calculations. In systems where accurate evaluations of the energy and
its gradient are computationally intensive, it is important to exploit the information of
the previous evaluations to enhance the performance. Here, we show that the number of
evaluations required for convergence to the saddle point can be significantly reduced by
making use of an approximate energy surface obtained by a Gaussian process model based
on inverse interatomic distances, evaluating accurate energy and gradient at the saddle point
of the approximate surface and then correcting the model based on the new information.
The performance of the method is tested with start points chosen randomly in the vicinity
of saddle points for dissociative adsorption of an H2 molecule on the Cu(110) surface and
three gas phase chemical reactions.

1 Introduction

In systems characterized by a smooth potential energy surface, the transition state between the
initial and final states of an atomic rearrangement event is, within the harmonic approximation
to transition state theory, placed using information about a first-order saddle point on the
energy surface, i.e., a location with zero gradient and exactly one negative eigenvalue of the
Hessian matrix. Finding first-order saddle points is then the essential task when identifying
the mechanisms and estimating the rates of transitions. The transition state is taken to be a
hyperplane going through the saddle point with normal parallel to the eigenvector corresponding
to the negative eigenvalue.
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In chain-of-states methods, such as the nudged elastic band method,1,2 saddle points are
found by calculating a minimum energy path between the initial and final states and identifying
the energy maximum along the path. There, both the initial and final states of the transition are
specified. In another type of algorithms, only the initial state is specified and the saddle point
found by climbing up the energy surface without specifying the final state of the transition.
Such calculations are often started from the vicinity of the initial state minimum to find out
which transitions can occur, but it is also common to start from somewhere close to the saddle
point with an initial guess obtained from intuition or from approximate minimum energy path
calculations.3,4 Early algorithms of this sort required the evaluation of the full Hessian, the
matrix of the second derivatives of the energy with respect to the coordinates, and calculation of
all the eigenvalues and eigenvectors (see ref 5 for a review). In a more efficient formulation, the
minimum mode following method, only the eigenvector corresponding to the lowest eigenvalue
is found and used to guide the search for the saddle point(s) without a need to evaluate the
Hessian matrix.6–8

In this article, we choose to find the minimum mode using the dimer method.6,9–11 A dimer
is here a pair of points in a configuration space, separated by a small fixed distance. The dimer
is first rotated around its midpoint to find the orientation that gives the lowest total energy of
the two configurations. This gives the direction of the lowest curvature mode of the Hessian,
the minimum mode.12 The dimer is then translated toward the saddle point by reversing the
force (negative energy gradient) component in this direction. The movements are based only
on the energy and the gradient of the energy and thus do not require calculation of the Hessian
matrix.

In systems where accurate evaluations of energy and its gradient are computationally expen-
sive, it is important to exploit the information in previous evaluations to enhance the perfor-
mance. Here, we show that Gaussian process (GP) regression13–16 can be used to significantly
reduce the number of evaluations required for convergence to saddle points. The basic scheme
is similar to the one used for nudged elastic band calculations in the GP-NEB method:17–19 a
regular minimum mode following calculation is performed to find a saddle point on an approx-
imate surface obtained by a Gaussian process model, accurate energy and gradient are then
evaluated at that point, and the model is subsequently refined based on the new evaluations.
If no information about the energy surface is available in the beginning, it is useful to perform
initial rotations with accurate evaluations before starting to translate the dimer. We show that
GP regression can be used also to reduce the number of evaluations required for finding the
lowest curvature mode in this initial rotation phase.

A similar general scheme for saddle point searches starting from a configuration close to a
saddle point has been presented by Denzel and Kästner, who use a stationary Matérn covariance
function to build the GP model.20 Here, we use a more expressive covariance function based
on inverted interatomic distances, coupled with a robust stopping criterion, as suggested in
ref 19 and compare the performance to stationary covariance functions. The inverse-distance
covariance function makes the method more robust especially when the calculation is started
far from the saddle point where the atomic forces are large.

The performance of the GP-dimer method is tested with start points up to 3 Å from saddle
points for dissociative adsorption of an H2 molecule on the Cu(110) surface and three gas
phase chemical reactions. With the largest start distances, the number of energy and gradient
evaluations is found to be reduced by an order of magnitude compared to the regular dimer
method.
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2 Dimer method

In this section, we review the principles of the dimer method for finding the minimum mode6,9–11

and present details for two variants of the algorithm, here referred to as CG-dimer10 and LBFGS-
dimer.11 They are used as references for comparing the performance with our GP-dimer method.
The LBFGS-dimer algorithm is used also as a part of the GP-dimer method as described in the
following section.

A dimer is defined as a pair of points in a configuration space, referred to as image 1, R1,
and image 2, R2. The small distance between R1 and R2 is kept constant, and half of this
distance is referred to as the dimer separation, ΔR (here 10−2 Å as recommended in ref 9).
The middle point of the dimer is denoted by R0, and the orientation vector N̂ is a unit vector
that points from R0 toward R1. The dimer energy is defined as the sum E1 + E2, where E1

and E2 denote the energy of the system at R1 and R2, respectively. The direction of lowest
curvature of energy at R0 corresponds to the orientation of minimum dimer energy, which is
obtained by rotating the dimer around R0 so that the rotational force is zeroed. Denoting the
force (negative energy gradient) acting on Ri by Fi and the component of Fi perpendicular to
the dimer by F⊥

i = Fi − (Fi · N̂)N̂, the scaled rotational force acting on R1 is defined by

Frot = (F⊥
1 − F⊥

2 )/ΔR. (1)

As suggested by Olsen et al.,9 it is more efficient to evaluate the force at the middle point R0

instead of R2 and extrapolate the force at R2 as F2 = 2F0 − F1.
Each rotation iteration is performed within a plane spanned by unit vectors N̂ and Ω̂,

where the steepest descent direction of rotation for image 1 is Ω̂ = Frot/||Frot||. In CG-dimer
and LBFGS-dimer, Ω̂ is modified based on previous rotation iterations according to nonlinear
conjugate gradient21,22 or limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)23,24

algorithms, respectively. According to the approach of Heyden et al.,10 a rough estimate for
the optimal rotational angle is first calculated based on F0 and F1 as

ω∗ =
1

2
arctan

(F1 − F0) · Ω̂
ΔR |C| , (2)

where C = (F0 − F1) · N̂/ΔR is the curvature of the energy along the dimer. After the
preliminary rotation of ω∗, the orientation vector of the dimer is given by

N̂∗ = N̂ cosω∗ + Ω̂ sinω∗ (3)

and the rotation direction by

Ω̂∗ = −N̂ sinω∗ + Ω̂ cosω∗. (4)

After evaluating the force F∗
1 at R∗

1 = R0 + ΔRN̂
∗, the optimal rotational angle based on a

local quadratic approximation to the energy surface is given by

ω =

⎧⎪⎪⎨
⎪⎪⎩
1

2
arctan

b1
a1

, if
b1
a1
≥ 0

1

2
arctan

b1
a1

+
π

2
, if

b1
a1

< 0,

(5)

where
b1 = (F0 − F1) · Ω̂/ΔR (6)

and

a1 =
b1 cos(2ω

∗)− (F0 − F∗
1) · Ω̂∗/ΔR

sin(2ω∗)
. (7)
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The orientation vector of the dimer after the rotation is then given by

N̂new = N̂ cosω + Ω̂ sinω (8)

and the new location of image 1 by

Rnew
1 = R0 +ΔRN̂

new. (9)

The rotation direction in the end of the rotation, needed for the following rotation iteration in
CG-dimer, is given by

Ω̂end = −N̂ sinω + Ω̂ cosω. (10)

Here, the rotation iterations are stopped if the preliminary rotational angle ω∗ is estimated to be
below 5◦,11 if the actual rotational angle ω is below this threshold, or if a prescribed maximum
number of consecutive rotation iterations is reached. In the two latter cases, the curvature of
energy along the new orientation vector N̂new can be estimated as

Cnew ≈ C + a1(cos(2ω)− 1) + b1 sin(2ω). (11)

After the rotation phase, the middle point of the dimer is translated in order to advance
toward the saddle point. The translational force is obtained by inverting the component of F0

parallel to the dimer:

Ftrans = F0 − 2F
‖
0, (12)

where F
‖
0 = (F0 · N̂)N̂. This allows the dimer to climb upward on the energy surface in the

direction of the minimum mode while moving toward lower energy in directions perpendicular
to the minimum mode. In CG-dimer and LBFGS-dimer, also the translations are modified
according to conjugate gradient and L-BFGS algorithms, respectively. If the curvature along
the dimer is positive, the dimer is assumed to be in a convex region where all eigenvalues of the
Hessian matrix are positive. In this case, a step of a predefined length is taken in the opposite

direction of F
‖
0 to make the dimer climb up from the energy basin as quickly as possible. Here,

this step length is set to 0.1 Å, which is also the maximum step length for the translation
iterations.9 The calculation is considered to have converged when the maximum component
of force F0 at the middle point of the dimer is below a threshold T0, which is here set to
T0 = 0.01 eV/Å.

2.1 CG-dimer

The first of the two reference algorithms, referred to here as CG-dimer, follows mainly the
details presented by Heyden et al.10 In this algorithm, only one rotation iteration, if any, is
performed between translations. Thus, each rotation phase includes two or three energy and
force evaluations. Since the initial orientation of the dimer is chosen randomly in our test cases,
a larger maximum number of rotations, equal to the number of degrees of freedom in the system,
is used in the first rotation phase to stabilize the algorithm.

In CG-dimer, we apply separate nonlinear conjugate gradient algorithms21,22 to choose the
rotational plane and translational search direction, as suggested previously.6 Given a rotation
direction Ω̂, the rotation proceeds as presented above. For translations, a preliminary step is
first taken and the middle point of the dimer moved to

R∗
0 = R0 +

Γ̂ · Ftrans

2 |C| Γ̂, (13)
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where Γ̂ is a unit vector parallel to the search direction.10 After evaluating the force F∗
0 at R∗

0,
the middle point of the dimer is then moved to the estimated zero point of the translational
force component parallel to the search direction:

Rnew
0 = R0 − Γ̂ · Ftrans

Γ̂ · (F∗
trans − Ftrans)

(R∗
0 −R0), (14)

where F∗
trans = F∗

0 − 2(F∗
0 · N̂)N̂.

In the conjugate gradient algorithm for the translations, the search direction Γ̂ is parallel
to a conjugated force vector Γ, which is a linear combination of the current and previous
translational force vectors. Γ can be expressed recursively as

Γ = Ftrans + βΓold, (15)

where Γold is the conjugated force vector in the previous translation iteration and the coefficient
βtrans is here given by the Polak-Ribière formula:22

βtrans = max

{
0,

(Ftrans − Fold
trans) · Ftrans

Fold
trans · Fold

trans

}
, (16)

where Fold
trans is the previous translational force vector. In the first iteration, Γ is set equal to

Ftrans. As noted previously,6 increasing translational force in the search direction would lead
to a step backward against the search direction, which indicates that the dimer may still be in
a convex area in spite of negative estimated curvature C in the direction of the dimer. In this
case, a step of a predefined length (here 0.1 Å) is taken in the search direction. Without further
restrictions, however, a negative step against the search direction may occur also if the search
direction itself is opposite to the current translational force vector. This would as well trigger
the predefined step and might lead to a trap where the dimer bounces between two locations.
To prevent this kind of situation, we set βtrans to zero when the correction vector βtransΓ

old in eq
15 becomes longer than the current translational force vector Ftrans. In addition, we reset the
memory of conjugate directions when the number of conjugated iterations reaches the number
of degrees of freedom in the system or if a predefined step length is used due to positive C,
negative step against the search direction, or excessive step length.

Analogously to the conjugate gradient algorithm described above for the translations, the
rotation direction Ω̂ is parallel to a conjugated force vector Ω defined recursively based on the
current rotational force vector Frot, the previous rotational force vector Fold

rot , and the previous
conjugated force vector Ωold. The only difference is that Ωold needs to be rotated on the
previous rotational plane to be aligned with Ω̂old

end, which is the rotation direction in the end of
the previous iteration (eq 10).6 Thus, the recursive expression for Ω is given by

Ω = Frot + βrot||Ωold||Ω̂old
end, (17)

where

βrot = max

{
0,

(Frot − Fold
rot) · Frot

Fold
rot · Fold

rot

}
. (18)

The coefficient βrot is set to zero when the correction vector βrot||Ωold||Ω̂old
end in eq 17 becomes

longer than the current rotational force vector Frot, and the memory of rotational conjugate
directions is reset when the number of conjugated rotation iterations reaches the number of
degrees of freedom in the system or if rotational convergence is reached.
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2.2 LBFGS-dimer

The second reference algorithm, referred to here as LBFGS-dimer, follows mainly the details
presented by Kästner and Sherwood.11 In this algorithm, the rotations are continued until
convergence unless the maximum of 10 consecutive rotation iterations is reached. If the number
of degrees of freedom is less than 10, we use this number as the maximum. To reduce the
number of evaluations between the consecutive rotation iterations to one, the force Fnew

1 at the
new location of image 1 is estimated as

Fnew
1 ≈ sin(ω∗ − ω)

sinω∗ F1 +
sinω

sinω∗F
∗
1 +

(
1− cosω − sinω tan

ω∗

2

)
F0. (19)

In LBFGS-dimer, the rotational plane and translational search direction are chosen using
separate limited-memory BFGS algorithms.23,24 Given a rotation direction Ω̂, the rotation
proceeds similarly as in CG-dimer. For translations, the L-BFGS algorithm gives also a step
length in addition to the search direction, and thus no preliminary step is needed.

The L-BFGS algorithm approximates an inverse Hessian matrix implicitly based on infor-
mation stored from previous iterations. The memory of L-BFGS includes displacement vectors
δix, i = 1, 2, . . . ,M , between the locations and δiF, i = 1, 2, . . . ,M , between the effective forces in
the ith and (i−1)th last iteration counting backward from the current iteration. The size of the
memory, M , is here limited to the number of degrees of freedom in the system, and the inverse
Hessian is initialized to an identity matrix scaled by λ = (δ1F · δ1x)/||δ1F||2.24 If the memory is
empty, the scaling factor is set to λ = 0.01 Å2/eV. The optimal displacement vector δx for the
current iteration is obtained by the following recursive procedure,23 where Ψ is initialized to
the effective force vector:

For i = 1, 2, . . . ,M :

Set αi ← Ψ · δix
δiF · δix

.

Set Ψ← Ψ− αiδiF.

Set δx ← λΨ.

For i = M,M − 1, . . . , 1 :

Set δx ← δx +

(
αi − δiF · δx

δiF · δix

)
δix.

In the L-BFGS algorithm for the translations, δix are displacements of the middle point R0

and the effective force is the translational force Ftrans. The new location of R0 is simply given
by Rnew

0 +δx. The memory of L-BFGS is reset, if a predefined step length is used due to positive
C or excessive step length.

For the rotations, δix are given by changes of the orientation vector N̂ during previous
rotation iterations and the effective force is the rotational force Frot. After estimating δx
according to the recursive procedure described above, the rotation direction Ω̂ is given by a
unit vector parallel to

δ⊥x = δx − (δx · N̂)N̂, (20)

which is the component of δx perpendicular to the dimer. The memory of the L-BFGS algorithm
for rotations is reset after each translation step.

3 GP-dimer method

In this section, the GP-dimer method is described. There, each iteration involves the energy
surface being modeled using Gaussian process regression, dimer calculations performed on the
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approximate surface, and the GP model then refined after evaluating the accurate energy and
force at the saddle point determined on the approximate surface. The method can be seen as
a surface walking version of the GP-NEB method.17–19 The dimer calculations on the approxi-
mated surface are performed using LBFGS-dimer11 with some modifications.

3.1 Gaussian process regression

A Gaussian process13–16 model defines the joint probability distribution of the function values
f = [f(x(1)), f(x(2)), . . . , f(x(N))]T at any finite set of input locations X = [x(1),x(2), . . . ,x(N)]T

as a multivariate Gaussian p(f) = N (m,K(X,X)), wherem = [m(x(1)),m(x(2)), . . . ,m(x(N))]T

is defined by mean function m(x) and the notation K(X,X′) stands for a covariance matrix
with elements Kij = k(x(i),x′(j)) defined by covariance function k(x,x′). In the applications of
the GP-dimer method presented here, the energy surface is modeled as a function of a 3Nm-
dimensional coordinate vector

x = [x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, . . . , xNm,1, xNm,2, xNm,3]
T

including the coordinates for moving atoms 1, 2, . . . , Nm ∈ Am. The system may also involve a
set of atoms with fixed coordinates, denoted by Af , but here those atoms are taken into account
in the GP model only if some of the moving atoms have been within the radius of 5 Å from
the frozen atom during the GP-dimer algorithm. As suggested in ref 19, the prior probability
model of the energy surface is defined here as a GP with mean function m(x) = 0 and covariance
function

k1/r(x,x
′) = σ2

c + σ2
m exp

⎛
⎜⎜⎜⎜⎝−

1

2

∑
i∈Am

∑
j∈Am,j>i

∨
j∈Af

(
1

ri,j(x)
− 1

ri,j(x′)

)2
l2φ(i,j)

⎞
⎟⎟⎟⎟⎠, (21)

where

ri,j(x) =

√√√√ 3∑
d=1

(xi,d − xj,d)2

is the distance between atoms i and j, φ(i, j) is the atom pair type for pair (i, j), and lφ(i,j) is
the length scale for that pair type. With the inverse-distance formulation, a displacement of an
atom toward or away from another atom results in a larger drop when the two atoms are closer
to each other, which makes it easier to model large repulsive forces.

Weakly informative prior distributions p(σm) = N (0,max{1 eV2, (Δy/3)
2}) and p(lψ) =

N (0,max{1 Å−2, (ΔX/3)2}) are set for the magnitude σm and length scales lψ, ψ = 1, 2, . . . , Nφ,
with Δy representing the range of energy values in the training data set and ΔX representing
the maximum difference between the data points based on difference measure

D1/r(x,x
′) =

√√√√√√
∑
i∈Am

∑
j∈Am,j>i

∨
j∈Af

(
1

ri,j(x)
− 1

ri,j(x′)

)2
. (22)

The constant term σ2
c corresponds to a prior variance for an unknown constant mean function

and is set to the square of the mean of the observed energy values but no lower than 1 eV2. The
only differences from the model suggested for the GP-NEB method in ref 19 are the lower limits
for the constant term and for the variances of the prior distributions of the hyperparameters.
Since the initial training data set in the GP-dimer method is focused around one start point,
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small ΔX and Δy would lead to unnecessarily restrictive priors for the magnitude σm and length
scales lψ in the beginning if no lower limits for the variances were used.

For comparisons, alternative GP models with stationary covariance functions are also im-
plemented for the GP-dimer method. Following the notation of ref 19, we define the squared
exponential covariance function as

kx(x,x
′) = σ2

c + σ2
m exp

(
−||x− x′||2

2l2

)
(23)

and the Matérn-5/2 covariance function as

kM−5/2
x (x,x′) = σ2

c + σ2
m

(
1 +

√
5||x− x′||

l
+

5||x− x′||2
3l2

)
exp

(
−
√
5||x− x′||

l

)
. (24)

Since the dimer method relies on the curvature properties of the energy surface, Matérn co-
variance functions with a lower smoothness parameter (ν < 2) are not good choices for this
application. The priors of the hyperparameters are defined similarly as for k1/r, but the prior
variance of the length scale is based on the regular distance in the 3Nm-dimensional coordinate
space.

The evaluations of energy and force (negative energy gradient) are regarded as accurate up to
floating point presentation accuracy, and thus Gaussian noise with a small variance is assumed
to be included in both energy (noise variance σ2 = 10−8 eV2) and force evaluations (noise
variance σ2

d = 10−8 eV2/Å2) to avoid numerical problems. Given a training data set {X,y},
where y = [y(1), y(2), . . . , y(N)]T includes evaluated energy values from N locations X, and a
noise covariance matrix Σ = σ2IN with IN denoting an identity matrix, the hyperparameters
θ = {σm, l1, l2, . . . , lNφ

} can be optimized by maximizing the marginal posterior probability

density p(θ |y,X) ∝ p(θ)p(y |X,θ), where p(θ) = p(σm)
∏Nφ

ψ=1 p(lψ) and

p(y |X,θ) = N (y |0,K(X,X) +Σ) (25)

is the marginal likelihood of θ. The GP approximation for the energy f(x∗) at any location x∗

is then obtained by GP regression as the mean of the posterior predictive distribution of f(x∗)
conditional on the optimized hyperparameters θ,

E[f(x∗) |y,X,θ]= K(x∗,X)(K(X,X) +Σ)−1y, (26)

and the approximation for the partial derivative of the energy with respect to coordinate x∗i,d
is given by

E

[
∂f(x∗)
∂x∗i,d

∣∣∣∣∣y,X,θ

]
=

∂K(x∗,X)

∂x∗i,d
(K(X,X) +Σ)−1y, (27)

where the elements of ∂K(x∗,X)/∂x∗i,d are obtained by differentiating the covariance function.
The derivatives of the covariance function are needed also when including the force eval-

uations in the training data set.25–28 When y is extended to include partial derivatives of f
(components of negative force), the training covariance matrix K(X,X) and covariance vector
K(x∗,X) are extended correspondingly to include prior covariances between the energy and
derivative values

Cov

[
∂f(x)

∂xi,d
, f(x′)

]
=

∂

∂xi,d
Cov
[
f(x), f(x′)

]
=

∂k(x,x′)
∂xi,d

(28)

and the covariances between the derivatives

Cov

[
∂f(x)

∂xi1,d1
,
∂f(x′)
∂x′i2,d2

]
=

∂2

∂xi1,d1∂x
′
i2,d2

Cov
[
f(x), f(x′)

]
=

∂2k(x,x′)
∂xi1,d1∂x

′
i2,d2

, (29)

8



and the noise covariance matrix Σ is extended to include the noise variances for the force
evaluations (σ2

d) on the diagonal. Expressions for the derivatives of covariance functions k1/r,

kx and k
M−5/2
x with respect to the atom coordinates xi,d and the hyperparameters θ can be found

in ref 19. The latter are useful in the hyperparameter optimization, which is here performed
with the scaled conjugate gradient algorithm29 implemented in the GPstuff toolbox.30

3.2 Algorithm description

If no information about the energy surface or the minimum energy orientation of the dimer
is available in the beginning, it is useful to perform initial rotations with accurate evaluations
to find the lowest curvature mode before starting to translate the dimer. These rotations can
be done through a regular rotation scheme using either the conjugate gradient or the L-BFGS
approach, but we choose to utilize GP regression also in the initial rotation phase. A similar
initial phase where the lowest curvature mode is found by GP regression iterations is applied
also in ref 20. With only a middle point and a randomized orientation given for the initial
dimer, the GP-dimer algorithm proceeds as follows:

1. Evaluate accurate energy E0 and force F0 at the middle point R0.

2. Check final convergence using accurate force F0.

3. Evaluate accurate energy E1 and force F1 at R1.

4. Check rotational convergence using accurate forces F0 and F1.

5. Repeat initial rotations until rotational convergence:

(a) Update the GP model based on the energy and force evaluations.

(b) Rotate the dimer until rotational convergence using the GP approximation
of the energy gradient.

(c) Evaluate accurate energy E1 and force F1 at R1.

(d) Check rotational convergence using accurate forces F0 and F1.

6. Repeat GPR iterations until final convergence:

(a) Update the GP model based on the energy and force evaluations.

(b) Rotate and translate the dimer until early stopping or convergence using the
GP approximation of the energy gradient.

(c) Evaluate accurate energy E0 and force F0 at R0.

(d) Check final convergence using accurate force F0.

Figure 1 shows a two-dimensional illustration of the progression of the GP-dimer algorithm
when finding a saddle point for dissociative adsorption of an H2 molecule on a Cu(110) surface
with fixed positions for the copper atoms. This example system is the same as the one used
for testing the GP-NEB algorithm in ref 19. Each of the four graphs presents a cut of the GP
approximation to the energy surface based on energy and force data evaluated at the points
marked by + signs. The pink and red bars represent the dimer in the beginning and end of the
initial rotation round or GPR iteration, respectively. Starting from an initial dimer coinciding
with the two-dimensional cut of the coordinate space, the lowest curvature mode of the accurate
energy surface is found after two initial rotation rounds, and the GP model extrapolates a saddle
point close to the correct location already based on the four data points evaluated around the
start point. After one more evaluation at the saddle point found on the approximate energy
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Figure 1: Two-dimensional cut through the energy surface of an H2 molecule inter-
acting with a Cu(110) surface. The H–H molecular axis lies in a plane parallel to the
surface and perpendicular to the close-packed rows of Cu atoms. The upper graphs
present GP approximations to the energy surface for the two initial rotation rounds and
the lower graphs for the two GPR iterations of the GP-dimer algorithm. The training
data points, marked with + signs, include both energy and force evaluations. The pink
and red bars represent the dimer in the beginning and end of the initial rotation round
or GPR iteration, respectively.

surface, the GP approximation is corrected and the middle point of the dimer converges to the
correct saddle point.

Convergence of the GP-dimer algorithm has been reached when the maximum component of
the accurate force F0 is below the final convergence threshold T0 (here 0.01 eV/Å). Rotational
convergence in the initial rotation phase is checked by calculating the preliminary rotational
angle ω∗, given by eq 2, using the accurate forces F0 and F1. If more than one initial rotation
round has been performed, also the angle between the converged orientations in the current
and previous round is taken into account as an alternative criterion. The initial rotation phase
is stopped when either of these angles is below Tω (here 5◦). The maximum number of initial
rotation rounds is set to the number of degrees of freedom in the system.

During the initial rotation rounds, we use the rotation scheme of LBFGS-dimer with forces
approximated by the GP model to find the lowest curvature mode on the approximate energy
surface. As an exception to LBFGS-dimer, the new force Fnew

1 is not estimated with eq 19 after
the rotation iterations but the GP approximation is used also there. A tighter convergence
threshold TGP

ω = min{0.01 rad, Tω/10} is used for both the preliminary rotational angle ω∗ and
the realized rotational angle ω, given by eq 5. Each initial rotation round is here started from
the same initial orientation.
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The LBFGS-dimer algorithm is used also for dimer relaxation in the actual GPR iterations
where the dimer is both rotated and translated on the approximate energy surface. Again,
the GP approximation of the new force Fnew

1 is used instead of estimating Fnew
1 with eq 19

or estimating the new curvature Cnew with eq 11 after any rotation iteration. The rotational
convergence threshold TGP

ω for ω∗ or ω is now set to 0.01 rad and the convergence threshold
TGP
0 for the maximum component of F0 on the approximate energy surface is set to 1/10 of the

lowest accurate maximum component of F0 evaluated so far. Here, dimer relaxation is always
started from the same initial location with orientation obtained from the initial rotation phase.

In ref 19, the GP model based on inverse interatomic distances is coupled with an early
stopping criterion constraining relative changes in the interatomic distances during the GP-
NEB algorithm. The same early stopping criterion is used here for dimer relaxation inside the
GPR iterations: After each translation iteration, there needs to exist an evaluated configuration
xeval so that

∀i ∈ Am ∀j ∈ Am ∪Af :
2

3
ri,j(xeval) < ri,j(R0) <

3

2
ri,j(xeval). (30)

If this condition does not hold, the last translation iteration is rejected and dimer relaxation
stopped. Another early stopping criterion is based on the regular difference measure Dx: After
each translation iteration, there needs to exist an evaluated configuration xeval so that

Dx(R0,xeval) < Les
x . (31)

This criterion with Les
x = 0.5 Å is applied also when using the stationary covariance functions

kx or k
M−5/2
x .

To guarantee that the early stopping criterion in eq 30 cannot be triggered by a single
translation step taken from an evaluated data point, a following limitation rule is set for the
step length of translation iterations inside the GPR iterations:19 An individual atom i ∈ Am

cannot move more than 99% of
min

j∈Af∪Am\{i}
ri,j(R0)/6,

where the minimum is taken over all interatomic distances from that atom to any other atom in
R0. If this limit is exceeded, the whole displacement vector is shortened so that the displacement
of atom i is at the limit. A corresponding limitation rule to accompany the early stopping
criterion in eq 31 is obtained by limiting the displacement vector to 99% of Les

x . If this limit is
exceeded, the displacement vector is simply shortened to the limit.

As in ref 19, an activation distance of 5 Å is applied here for the frozen atoms. This means
that a frozen atom is taken into account in the covariance function of the GP model only if
some of the moving atoms have been within the radius of 5 Å from the frozen atom in the
configuration of the middle point of the dimer during the algorithm. The distances from the
moving atoms to inactive frozen atoms are checked on each translation iteration inside the GPR
iterations, and if new frozen atoms are activated, the GP model is updated.

4 Results

In this section, we present results for tests of the GP-dimer method with start points chosen
randomly within the vicinity of saddle points for a dissociative adsorption of a hydrogen molecule
on a Cu(110) surface and three different gas phase chemical reactions. The performance of
the GP-dimer method with the inverse-distance covariance function k1/r and two stationary

covariance functions, kx and k
M−5/2
x , is reported in terms of the required number of energy and

force evaluations and compared to two variants of the regular dimer method, described above
as CG-dimer and LBFGS-dimer. In addition, we compare the number of evaluations required
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for finding the lowest curvature mode of the energy surface when performing initial rotations
using the Gaussian process regression, conjugate gradient, or L-BFGS approach.

4.1 Application to H2 dissociation on Cu(110)

Our first example transition is a dissociative adsorption of an H2 molecule on the Cu(110)
surface. The same transition has been used in ref 19 for testing the GP-NEB algorithm for
finding the minimum energy path between given initial and final states. In the test system here,
the two H atoms are allowed to move, whereas the Cu atoms are frozen. The energy surface
is described in ref 1. The start point of the algorithm is chosen by a random displacement of
0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.6, 1, 2, or 3 Å from the saddle point of the example transition
in the six-dimensional coordinate space. Ten different start points and randomly chosen initial
orientations are used for each distance. Figure 1 illustrates the progression of the GP-dimer
algorithm in an easy example where the start point and the initial orientation coincide with the
same two-dimensional cut of the coordinate space as the saddle point.

Figure 2 shows the number of energy and force evaluations required for convergence to a
saddle point with the GP-dimer method and the two variants of the regular dimer method,
CG-dimer (orange) and LBFGS-dimer (blue). In addition to the inverse-distance covariance
function k1/r (green), GP-dimer results are shown also for the squared exponential covariance

function kx (red) and Matérn-5/2 covariance function k
M−5/2
x (violet). In almost all cases, GP-

dimer requires fewer evaluations than the regular dimer methods, and the difference increases
when moving the start point farther away from the saddle point of the example transition.
With start points closer than 0.5 Å to the saddle point, there are only small differences in
the performance between the three covariance functions in the GP-dimer calculations, but
the benefits of the inverse-distance covariance function become visible with larger distances.
Figure 3 shows an example of the behaviour of the GP-dimer method with different covariance
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Figure 2: Number of energy and force evaluations required for convergence to a saddle
point in the H2/Cu(110) example using the regular CG-dimer (red) and LBFGS-dimer
(blue) methods and the GP-dimer method with the squared exponential (red), Matérn-
5/2 (violet), and inverse-distance (green) covariance functions. The distance of the start
point of the calculation from the example saddle point is shown on the horizontal axis,
and the vertical axis represents the number of evaluations in logarithmic scale. The
large dots present the median number of evaluations among 10 randomly chosen start
positions. The bars present the interval between the third and eighth largest numbers,
and the two smallest and largest numbers are presented by small dots if not included in
the interval.
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(Å

)

GP-dimer, kx

8 9 10
7

8

9

10

11

12

xi,1 (Å)
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Figure 3: Example of the movement of the two H atoms (blue and red) during the GP-
dimer algorithm in the H2/Cu(110) example when using the squared exponential (left),
Matérn-5/2 (middle), and inverse-distance (right) covariance functions. The locations
of the atoms are shown as projections on a plane parallel to the Cu(110) surface. The
triangles represent the start configuration, and the double circles represent the saddle
point where the algorithm converges.

functions with a start distance of 3 Å. The blue and red lines present the movement of the
two H atoms projected on the plane of the Cu(110) surface during the algorithm. When the
inverse-distance covariance function is used (right), convergence is reached after 40 evaluations.
With Matérn-5/2 (middle) and squared exponential (left) covariance functions, convergence to
the same saddle point requires 170 and 228 evaluations, respectively.

4.2 Application to chemical reactions

Another set of test examples studied here involves three chemical reactions (Nm ≤ 14). The
electronic structure computations for the energy and atomic forces are performed using the PM3
semi-empirical approach31 as implemented within the ORCA suite of programs.32 Reaction 1
is a simple addition of N2O and ethylene to form oxadiazole, reaction 2 is the rearrangement of
allyl vinyl ether to form 1-pentene-5-one, and reaction 3 is the removal of sulfur dioxide from
butadiene sulfone.33 The activation energies for the example reactions are relatively high: 1.86
eV, 3.36 eV, and 2.41 eV, respectively. For each of the reactions, the saddle point used as the
center of start points is confirmed to have a single negative eigenvalue of the Hessian. The
reactant, saddle point, and product state configurations of the example reactions are illustrated
in Figure 4 alongside the corresponding result graphs.

Start points for the dimer calculations are chosen by a random displacement of 0.02, 0.05,
0.1, 0.2, 0.3, 0.4, 0.6, or 1 Å from the example saddle point in the 3Nm-dimensional coordinate
space. Ten different start points and randomly chosen initial orientations are again used for
each value of the distance. As shown in Figure 4, the pattern of the results is quite similar for
each of the three test examples. Unlike in the H2/Cu(110) example, the LBFGS-dimer method
performs here clearly better than CG-dimer. The three variants of the GP-dimer method require
again significantly fewer evaluations than the regular dimer methods, but the difference between
the stationary and inverse-distance covariance functions starts to become appreciable already at
0.1 Å. From some start positions, the algorithms may end up in configurations where the energy
and force evaluations fail. In such cases, the number of required evaluations is considered to be
above 300.
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Figure 4: Number of energy and force evaluations required for convergence to a saddle
point in three test examples using the regular CG-dimer (red) and LBFGS-dimer (blue)
methods and the GP-dimer method with the squared exponential (red), Matérn-5/2
(violet), and inverse-distance (green) covariance functions. The distance of the start
point of the calculation from the saddle point of the example reaction is shown on the
horizontal axis, and the vertical axis represents the number of evaluations in logarithmic
scale. The large dots represent the median number of evaluations among 10 randomly
chosen start positions. The bars present the interval between the third and eighth largest
numbers, and the two smallest and largest numbers are represented by small dots if not
included in the interval. The reactant, saddle point and product state configurations for
each example reaction are visualized with the following atom colors: C, dark gray; H,
light gray; O, red; N, blue; S, yellow.
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4.3 Initial rotations

In the GP-dimer method, the initial rotation phase is performed using a Gaussian process
regression approach where the lowest curvature mode at the start point is found by rotating
the dimer on the approximate energy surface and refining the GP model based on accurate
evaluations. To demonstrate the savings as compared to the conjugate gradient or L-BFGS
approaches, we present results from separate tests where the rotations at the start point are
continued until the preliminary rotation angle ω∗, given by eq 2, is below 5◦. If ω∗ is based on
estimated forces, the rotational convergence is confirmed by evaluating the accurate forces and
the rotations are continued if necessary.

Figure 5 presents the number of evaluations required for rotational convergence in the
H2/Cu(110) example with the conjugate gradient (red), L-BFGS (blue), and GP regression
approaches (red, violet, and green for squared exponential, Matérn-5/2, and inverse-distance
covariance functions, respectively). For the GP regression approach, the median of the number
of evaluations remains between four and six with any of the three covariance functions. The
median for the L-BFGS approach is 1–3 evaluations and the median for the conjugate gradient
approach 3–11 evaluations larger than for the GP regression approach, but those results include
more outliers. Due to the local nature of the training data set in the initial rotation phase, there
are only small differences between the stationary and inverse-distance covariance functions.

Figure 6 presents corresponding results for the three chemical reaction examples. Again,
the GP regression approach consistently converges with fewer evaluations than the comparison
methods, although the difference from the L-BFGS approach is small, especially when using
the stationary covariance functions. The performance of the conjugate gradient approach is
significantly worse.
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Figure 5: Number of energy and force evaluations required for rotations to the lowest
curvature mode of energy in the H2/Cu(110) example with the conjugate gradient (red)
and L-BFGS (blue) approaches and with the Gaussian process regression approach using
the squared exponential (red), Matérn-5/2 (violet), and inverse-distance (green) covari-
ance functions. The distance between the locations of the middle point of the dimer
and the saddle point of the example transition is shown on the horizontal axis. The
large dots present the median number of evaluations among 10 randomly chosen start
positions. The bars present the interval between the third and eighth largest numbers,
and the two smallest and largest numbers are presented by small dots if not included in
the interval.
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Figure 6: Number of energy and force evaluations required for rotations to the lowest
curvature mode of energy in the three chemical reaction examples with the conjugate
gradient (red) and L-BFGS (blue) approaches and with the Gaussian process regression
approach using the squared exponential (red), Matérn-5/2 (violet), and inverse-distance
(green) covariance functions. The distance between the locations of the middle point of
the dimer and the saddle point of the example reaction is shown on the horizontal axis.
The large dots present the median number of evaluations among 10 randomly chosen
start positions. The bars present the interval between the third and eighth largest
numbers, and the two smallest and largest numbers are presented by small dots if not
included in the interval.
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5 Discussion

The results presented here show that the inverse-distance covariance function suggested for
GP-NEB calculations in ref 19 is beneficial also when applying the Gaussian process regression
approach to minimum mode following calculations. The improved covariance function and the
accompanying early stopping criterion are especially important when the start point for the
calculation is not close to a saddle point. Already when the start point is displaced 0.1 Å from
a saddle point, the GP-dimer method with the inverse-distance covariance function may require
a significantly smaller number of energy and force evaluations to reach convergence than when
using a stationary covariance function. Our results show also generally that the GP regression
approach (no matter which covariance function is used) gives an advantage also when starting
really close to the saddle point compared to the usual implementations of the dimer method
based on conjugate gradient or L-BFGS algorithms. This applies to the initial rotations as well
as to the translations of the dimer in the climb up the energy surface. Even though stationary
covariance functions give convergence in the examples presented here, similar problems can arise
as seen in GP-NEB calculations where the inclusion of large atomic forces can lead to failure
in calculations based on stationary covariance functions.19 Ultimately, the GP-dimer method
can be used in repeated saddle point searches starting from a given local minimum to map out
relevant low-lying saddle points in long time scale simulations.3,4 We expect the robustness of
the inverse-distance covariance approach will then be even more important.

We have assumed here that no information about the energy surface is available in the
beginning of the minimum mode following calculation, only the coordinates and a random
orientation of the dimer. If other information is available, the initial rotation phase may be
unnecessary. This is the case, for example, if the start point has been obtained from an NEB
calculation on some approximate energy surface, based for example on a lower level of electronic
structure theory, or if an NEB calculation has converged only to a large tolerance. In these
cases, information from the NEB calculation can be utilized when training the GP model, and
that can make the GP regression approach even more useful.

After finding a saddle point, all eigenvalues of the Hessian at the saddle point are typically
required to estimate the transition rate using the harmonic approximation to transition state
theory. This can involve substantial computational effort for large systems. The GP model
learned during the minimum mode following calculation gives a probability distribution for the
energy surface, which can be used to estimate the Hessian and its eigenvalues as well as the
uncertainty of these estimates and the calculated transition rate. If the rate cannot be estimated
reliably enough, new energy and force calculations can be performed in a systematic way to
update the GP model until the required confidence levels have been reached. Uncertainties
of the second derivatives could also be utilized for deciding when to evaluate also image 1
(once or even repeatedly until rotational convergence) during the algorithm, which may become
beneficial when starting far from a saddle point.
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Numérique 1969, 3, 35.

23Nocedal, J. Updating quasi-Newton matrices with limited storage. Math. Comput. 1980, 35,
773.

24 Liu, D. C.; Nocedal, J. On the limited memory BFGS method for large scale optimization.
Math. Program. 1989, 45, 503.

25O’Hagan, A. Some Bayesian numerical analysis. In Bayesian Statistics 4; Bernardo, J. M.,
Berger, J. O., Dawid, A. P., Smith, A. F. M., Eds.; Clarendon Press: Oxford, 1992; pp 345–
363.

26Rasmussen, C. E. Gaussian processes to speed up hybrid Monte Carlo for expensive Bayesian
integrals. In Bayesian Statistics 7; Bernardo, J. M., Dawid, A. P., Berger, J. O., West, M.,
Heckerman, D., Bayarri, M. J., Smith, A. F. M., Eds.; Clarendon Press: Oxford, 2003;
pp 651–659.

27 Solak, E.; Murray-Smith, R.; Leithead, W. E.; Leith, D. J.; Rasmussen, C. E. Derivative ob-
servations in Gaussian process models of dynamic systems. In Advances in Neural Information
Processing Systems 15; Becker, S., Thrun, S., Obermayer, K., Eds.; MIT Press: Cambridge,
MA, 2003; pp 1057–1064.
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