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Abstract—A novel feature selection approach is proposed to
address the curse of dimensionality and reduce the redundancy
of hyperspectral data. The proposed approach is based on a
new binary optimization method inspired by the Fractional-
Order Darwinian Particle Swarm Optimization (FODPSO). The
overall accuracy of a Support Vector Machine (SVM) classifier on
validation samples is used as fitness values in order to evaluate the
informativity of different groups of bands. In order to show the
capability of the proposed method, two different applications are
considered. In the first application, the proposed feature selection
approach is directly carried out on the input hyperspectral data.
The most informative bands selected from this step are classified
by SVM. In the second application, the main shortcoming of using
attribute profiles for spectral-spatial classification is addressed.
In this case, a stacked vector of the input data and an attribute
profile with all widely used attributes is created. Then, the
proposed feature selection approach automatically chooses the
most informative features from the stacked vector. Experimental
results successfully confirm that the proposed feature selection
technique works better in terms of classification accuracies
and CPU processing time than other studied methods without
requiring the number of desired features to be set a priori by
users.

Index Terms—Hyperspectral Image Analysis, Spectral-Spatial
Classification, Attribute Profile, Feature Extraction, Random
Forest Classifier, Automatic Classification.

I. INTRODUCTION

Hyperspectral remote sensors acquire a massive amount of
data by obtaining many measurements, not knowing which
data are relevant for a given problem. The trend for hyper-
spectral imagery is to record hundreds of channels from the
same scene. The obtained data can characterize the chemical
composition of different materials and potentially be helpful
in analyzing different objects of interest.

In the spectral domain, each spectral channel is considered
as one dimension and each pixel is represented as a point in
that domain. By increasing the number of spectral channels
in the spectral domain, theoretical and practical problems
may arise and conventional techniques which are applied on
multispectral data are no longer appropriate for the processing
of high dimensional data [1-3].

The aforementioned characteristics show that conventional
techniques based on the computation of the fully dimensional
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space, may not provide accurate classification results when the
number of training samples is not substantial. For instance,
while keeping the number of samples constant, after a few
number of bands, the classification accuracy actually decreases
as the number of features increases [1]. For the purpose of
classification, these problems are related to the curse of di-
mensionality [4]. In order to tackle this issue and use a smaller
number of training samples, the use of feature selection and
extraction techniques would be of importance.

From one point of view, feature selection techniques can
be split into two categories: Unsupervised and supervised.
Supervised feature selection techniques aim at finding the
most informative features with respect to the available prior
knowledge and lead to better identification and classification
of different classes of interest. On the contrary, unsupervised
methods are used in order to find distinctive bands when a
prior knowledge of the classes of interest is not available.
Information Entropy [5], First Spectral Derivative [6] and Uni-
form Spectral Spacing [7] can be considered as unsupervised
feature selection techniques, while supervised feature selection
techniques usually try to find a group of bands achieving the
largest class separability. Class separability can be calculated
by considering several approaches such as Divergence [8],
Transformed divergence [8], Bhattacharyya distance [9] and
Jeffries-Matusita distance [8]. A comprehensive overview of
different feature selection and extraction techniques is pro-
vided in [10]. However, these metrics usually suffer from the
following shortcomings:

1) They are usually based on the estimation of the second
order statistics (e.g., covariance matrix) and in this case,
they demand many training samples in order to estimate
the statistics accurately. Therefore, in a situation when
the number of training samples is limited, that may lead
to the singularity of the covariance matrix. In addition,
since the bands in hyperspectral data usually have some
redundancy, the probability of the singularity will even
increase.

2) In order to select informative bands, corrupted bands (e.
g., water absorption bands and bands with a low SNR),
are usually pre-removed, which is a time-consuming
task. Furthermore, conventional feature selection meth-
ods can be computationally demanding. To select an m
feature subset out of a total of n features, n!/(n—m)!m!
operations must be calculated, which is a laborious
task and demands a significant amount of computational
memory. In other words, the conventional feature se-
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lection techniques are only feasible in relatively low
dimensional cases.

In order to address the above-mentioned shortcomings
of the conventional feature selection techniques, the use of
stochastic and bio-inspired optimization based feature selec-
tion techniques (e.g., Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO)) are considered attractive. The
main reasons behind this trend is that 1) in evolutionary feature
selection techniques, there is no need to calculate all possible
alternatives in order to find the most informative bands and
furthermore, 2) in the evolutionary approaches, usually a
metric is chosen as the fitness function which is not based on
the calculation of the second order statistics, and, therefore,
the singularity of the covariance matrix is not a problem. In
the literature, there is an extensive number of works related
to the use of evolutionary optimization based feature selection
techniques. These methods are mostly based on the use of
GA and PSO. For example, in [11], the authors proposed
a SVM classification system which allows the detection of
the most distinctive features and the estimation of the SVM
parameters (e.g., regularization and kernel parameters) by
using a GA. In [12], authors proposed to use PSO in order to
select the most informative features obtained by morphological
profiles for classification. In [13], in order to address the
main shortcomings of GA- and PSO-based feature selection
techniques and to take the advantage of their strength, a new
feature selection approach is proposed, which is based on
the hybridization of GA and PSO. In [14], a method was
introduced which allows to simultaneously solve problems of
clustering, feature detection, and class number estimation in
an unsupervised way. However, this method suffers from the
computational time required by the optimization process.

In GA, if a chromosome is not selected for mating, the
information contained by that individual is lost, since the
algorithm does not have a memory of its previous behaviors.
Furthermore, PSO suffers from the premature convergence of a
swarm, because 1) particles try to converge to a single point,
which is located on a line between the global best and the
personal best positions, which this point does not guarantee to
be a local optimum [15] and 2) furthermore, the fast rate of
information flow between particles, can lead to the creation of
similar particles. This results in a loss in diversity [16].

In this paper, a novel feature selection approach is proposed
which is based on a new binary optimization technique and
the SVM classifier. The new approach is capable of handling
very high dimensional data even when only a limited number
of training samples is available (ill-posed situation) and when
conventional techniques are not able to proceed. In addition,
despite the conventional feature selection techniques for which
the number of desired features need to be initialized by the
user, the proposed approach is able to automatically select the
most informative features in terms of classification accuracy
within an acceptable CPU processing time without requiring
the number of desired features to be set a priori by users.
The new feature selection technique is, at first, compared
with the traditional PSO-based feature selection in terms
of classification accuracy on validation samples and CPU
processing time. Then, the new method is compared with a

few well-known feature selection and extraction techniques.
Furthermore, the new method will be taken into account in
order to overcome the main shortcomings of using attribute
profiles.

The rest of this paper is organized as follows: First, the new
feature selection approach is described in Section II. Then,
Section III briefly describes support vector machine. Section
IV is devoted to the methodology of the proposed approach.
Section V is on experimental results and main conclusion
remarks are furnished in section VL.

II. FRACTIONAL ORDER DARWINIAN PARTICLE SWARM
OPTIMIZATION (FODPSO) BASED FEATURE SELECTION

In brief, the goal is to overcome the curse of dimensionality
[4] by selecting the optimal [ bands for the classification,
lg <1, wherein [ is the total number of bands in a given image
I. Selecting the most adequate bands is a complex task as
the classification Overall Accuracy (OA) first grows and then
declines as the number of spectral bands increases [4]. Hence,
this paper tries to find the optimal [ bands that maximize the
OA obtained as:

N
OA = % % 100, (1
i Vij
wherein Cj; is the number of pixels assigned to the class j
which belongs to class i. C;; denotes the number of pixels
correctly assigned to the class ¢ and N, is the number of
classes.

In this paper, optimal features are selected through an
optimization procedure in such a way that each solution gets its
fitness value from the SVM classifier over validation samples.
The optimization procedure is handled with PSO algorithms.

In 1995, Eberhart and Kennedy proposed the PSO algorithm
for the first time [17]. The stochastic optimization ability of
the algorithm is enhanced due to its cooperative simplistic
mechanism, wherein each particle presents itself as a possible
solution of the problem, e.g., the best [ bands. These particles
travel through the search space to find an optimal solution,
by interacting and sharing information with other particles,
namely their individual best solution (personal best) and
computing the global best [18].

The success of this algorithm gave rise to a chain of
PSO-based alternatives in recent years, so as to overcome
its drawbacks, namely, the stagnation of particles around sub-
optimal solutions. One of the proposed methods was denoted
as Darwinian PSO (DPSO) [19]. The idea is to run many
simultaneous parallel PSO algorithms, each one as a different
swarm, on the same test problem and then a simple natural
selection mechanism is applied. When a search tends to a sub-
optimal solution, the search in that area is simply discarded
and another area is searched instead. In this approach, at each
step, swarms that get better are rewarded (extend particle life
or spawn a new descendent) and swarms that stagnate are
punished (reduce swarm life or delete particles). For more
information regarding how these rewards and punishments can
be applied, please see [20]. DPSO has been investigated for
the segmentation of remote sensing data in [21].
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Despite the positive results retrieved by Tillett et al. [19],
this coopetitive approach also increases the computational
complexity of the optimization method. As many swarms of
cooperative test solutions (i.e., particles) run simultaneously in
a competitive fashion, the computational requirements increase
and, as a consequence, the convergence time also increases.
Therefore, and to further improve the DPSO algorithm, an ex-
tended version denoted as Fractional Order DPSO (FODPSO)
was presented in [22], in which fractional calculus is used to
control the convergence rate of the algorithm. This method has
been further investigated for gray scale and hyperspectral im-
age segmentation in [20, 23]. An important property revealed
by fractional calculus is that, while an integer-order derivative
just implies a finite series, the fractional-order derivative
requires an infinite number of terms. In other words, integer
derivatives are “’local” operators, while fractional derivatives
have, implicitly, a "memory” of all past events. The character-
istics revealed by fractional calculus make this mathematical
tool well suited to describe phenomena, such as the dynamic
phenomena of particles’ trajectories.

Therefore, supported on the FODPSO previously presented
in [22], and based on the Grunwald Letnikov definition of frac-
tional calculus, in each step ¢, the fitness function represented
by (1) is used to evaluate the success of particles (i.e., OA). To
model the swarm, each particle n moves in a multidimensional
space according to the position (z,[t]), and velocity (v,[t]),
values which are highly dependent on local best (Z,[t]) and
global best (g, [t]) information:

vift+1] = 2)

wa [t + 1} + p171 (gfn [t] - fo[t]) + p27’2(i‘i [t] - fo [ﬂ):

wilt+1] = 3)
v [1] + %a(l C it — 1]+ éa(l — )2 — )t — 7]

+ 2%104(1 —a)(2—-a)(3—a)u,lt — 3]

Since the proposed FODPSO based feature selection ap-
proach is based on running many simultaneous swarms in
parallel over the search space, ‘s’ shows the number of each
swarm.

The coefficients p; and p, are assigned weights, which
control the inertial influence of “’the globally best” and “the
locally best”, respectively, when the new velocity is de-
termined. Typically, p; and po are constant integer values,
which represent “cognitive” and “social” components with
p1 + p2 < 2 [24]. However, different results can be obtained
by assigning different values for each component.

The fractional coefficient o, will weigh the influence of past
events on determining a new velocity, 0 < oo < 1. With a small
«, particles ignore their previous activities, thus ignoring the
system dynamics and becoming susceptible to get stuck in
local solutions (i.e., exploitation behavior). On the other hand,
with a large «, particles will have a more diversified behavior,
which allows exploration of new solutions and improves the
long-term performance (i.e., exploration behavior). However,
if the exploration level is too high, then the algorithm may

take longer to find the global solution. Based on [24], a good
o value can be selected in the range of 0.6 to 0.8.

The parameters 7; and ro are random vectors with each
component generally a uniform random number between 0
and 1.

In order to investigate FODPSO for the purpose of feature
selection, the dimension of each particle should be equal to
the number of features. In this way, the velocity dimension
(dim vy[t]), as well as the position dimension (dim x,[t]),
correspond to the total number of bands of the image, i.e., dim
vp[t] = dim x,[t] = [. In other words, each particle’s velocity
will be represented as a /-dimension vector. In addition, as one
wishes to use the algorithm for band selection, each particle
represents its position in binary values, i.e., 0 or 1, which 0
demonstrates the absence of the corresponding feature and 1
has a dual meaning. In this case, as proposed by Khanesar
et al. [25], the velocity of a particle can be associated to the
probability of changing its state as:

1

“4)

Nevertheless, as one wishes to use the algorithm for band
selection, each particle represents its position in binary values,
i.e., 0 or 1. This may be represented as:

1, Az,[t+1] > r,
aalt +1] = (5)
0, Azp[t+1] < ry

wherein 7, is a random /-dimension vector with each com-
ponent generally a uniform random number between 0 and 1.
Therefore, each particle moves in a multidimensional space
according to position x,[t] from the discrete time system
represented by equations (2), (3), (4) and (5). In other words,
each particle’s position will be represented as a /-dimensional
binary vector.

To make it easier to understand of the proposed strategy, an
example is given in Fig. 1. As the figure shows, the image
has only 5 bands, i.e., [=5. This means that each particle
will be defined by its current velocity and position in the 5-
dimensional space, i.e., dim v,[t] = dim x,[t] = 5. In this
example, and to allow a straightforward understanding, only
a swarm of two particles was considered. As it is possible to
observe at time/iteration t=1, particle 1 is positioned in such a
way that it ignores the 4th band, i.e., z1[1] = [1 1 1 0 1], while
particle 2 ignores the 1st and 3rd bands i.e., z2[1] = [0101 1].
Computing (1) under those conditions returns an overall accu-
racy of OA; = 60% and OA; = 64% for particles 1 and 2,
respectively. Considering only those two particles, particle 2
will be considered as the best performing one from the swarm,
thus attracting particle 1 toward it. Such attraction will induce
the velocity of particle 1 for iteration 2 and, consequently, its
position. !

III. SUPPORT VECTOR MACHINE (SVM)
As discussed before, in the proposed method, the OA of
SVM over validation samples is considered as the fitness

'The MATLAB code for the PSO- and FODPSO-based feature selection
approaches will be provided on a request by sending an email to the authors.
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Fig. 1. Band coding of two particles for an image with 5 bands. Gridded
bands are ignored in the classification process.

value. SVM has attracted much attention due to its capa-
bility of handling the curse of dimensionality in comparison
with conventional classification techniques. The main reasons
behind success of the approach are 1) SVM is based on
a margin maximization principle which helps it to avoid
estimating the statistical distributions of different classes in the
hyperdimensional feature space and 2) SVM takes advantage
of the strong generalization capability obtained by its sparse
representation of the decision function [11].

In hyperspectral image analysis, the Random Forest (RF)
classifier and SVM play a key role since they can handle
high dimensional data even with a limited number of training
samples. In this work, we prefer to use SVM rather than
RF due to its susceptibility to noise. Due to its sensibility,
corrupted and noisy bands may significantly influence on the
classification accuracies. As a result, when RF is considered
as the fitness function, due to its capability to handle different
types of noises, corrupted bands cannot be eliminated even
after high number of iterations. On the contrary, since SVM
is more sensible than RF against noises, SVM can detect and
eliminate corrupted bands after a few iterations, which can be
considered as a privilege for the final classification step.

The general idea behind SVM is to separate training samples
belonging to different classes by tracing maximum margin
hyperplanes in the space where the samples are mapped [26].
SVMs were originally introduced for solving linear classifi-
cation problems. However, they can be generalized to non-
linear decision functions by considering the so-called kernel
trick [27]. A kernel-based SVM is being used to project the
pixel vectors into a higher dimensional space and estimate
maximum margin hyperplanes in this new space, in order to
improve linear separability of data [27]. The sensitivity to
the choice of the kernel and regularization parameters can be
considered as the most important disadvantages of SVM. The
latter is classically overcome by considering cross-validation
techniques using training data [28]. The Gaussian radial basis
function (RBF) is widely used in remote sensing [27]. More
information regarding SVM can be found in [29, 30].

IV. METHODOLOGY

In order to show the different capabilities of the proposed
feature selection technique, two different scenarios have been
taken into consideration.

A. First scenario

In the first scenario, the new feature selection approach is
directly performed on raw data sets in order to select the most
informative bands from the whole data set. The main work
flow of the proposed method for this scenario is listed below:

1) Training samples are split into two categories: Training
and validation samples.

2) FODPSO-based feature selection is performed on the
raw data. SVM is chosen as the fitness function and its
corresponding OA is considered as the fitness value.

3) The selected bands are classified by SVM with the whole
training and test samples and final classification map will
be achieved.

B. Second scenario

In the second scenario, an application of the proposed
FODPSO-based feature selection technique will be shown.
In this scenario, we address the main shortcomings of using
Attribute Profile (AP): 1) which attributes should be taken
into account and 2) which values should be opted as thresh-
old values. A comprehensive discussion related to AP and
its all modifications and alternatives, can be found in [31].
In this scenario, different types of attributes with the wide
ranges of threshold values will be constructed for building a
feature bank and then, we let the proposed feature selection
technique choose the most informative features from the bank
with respect to the classification accuracy for the validation
samples. In other words, the new feature selection technique
not only solves the main shortcomings associated with the
concept of AP, but also reduces the redundancy of the features
and addresses the curse of dimensionality.

Fig. 2 illustrates the flowchart of the proposed method
based on FODPSO feature selection technique for the second
scenario. The main work flow of this method is listed below:

1) A feature bank is made, consisting of raw input data and

an AP obtained with four attributes with a wide range
of threshold values.

o The raw input data are transformed by Principal
Component Analysis (PCA).

o The most important Principal Components (PCs),
i.e., components with cumulative variance of more
than 99%, are kept and used as base images for the
Extended Multi-AP (EMAP).

o The obtained EMAP and the raw input data are
concatenated into a stacked vector (let us call the
output of this step ).

2) Training samples are split into two categories: Training
and validation samples.

3) FODPSO based feature selection is performed on .
The fitness of each particle is evaluated by the OA of
SVM for the validation samples. After a few iterations,
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Fig. 2. General idea of the proposed classification framework based on
FODPSO-based feature selection technique for the second scenario.
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the FODPSO based feature selection approach finds the
most informative bands with respect to the OA of SVM
over the validation samples (the output of this step will
be called <&).

4) $is classified by SVM by considering the whole set of
training and test samples and a final classification map
will be achieved.

It should be noted that, in this work, the PCA can be
replaced by other feature extraction techniques (in particular
Kernel PCA and NWFE which have shown promising results
in order to produce attribute profiles [31]). Now, a brief
discussion on AP is given.

1) Extended Multi-Attribute Profile (EMAP): In order to
overcome the shortcomings of the morphological profile, AP
was introduced in [32] for extracting spatial information of
the input data, which is based on attribute filters. APs can be
regarded as more effective filters than morphological profiles
because the concept of the attribute filters is not limited to
only the size of different objects and the APs are able to
characterize other characteristics such as shape of existing
objects in the scene. In addition, APs are computed according
to an effective implementation based on max-tree and min-tree
representations, which lead to a reduction of the computational
load when compared with conventional profiles built with
operators by reconstruction. An AP is built by the sequence of
attribute thinning and thickening transformations defined with
a sequence of progressively stricter criteria [32]. To handle
hyperspectral images, the extension of AP was proposed in
[33]. Extended AP (EAP) is a stacked vector of different
APs computed on the first C' features extracted from the
original data set. When different attributes, a;, as, ...,aps are
concatenated into a stacked vector, the EMAP is obtained.
More information regarding AP and its different variations
can be found in [2, 3, 31, 32]. In this paper, the following
attributes have been taken into account:

1) (a) area of the region (related the size of the regions),
2) (s) standard deviation (as an index for showing the

Fig. 3. The AVIRIS Hekla data set. a) Spectral band number 50; b) training
samples, c¢) test samples, where each color represents a specific information
class. The information classes are listed in Table I.

1 203 4, A80es T w80 280 2 3a 14 15616

Fig. 4. The AVIRIS Indian Pines data set. a) Spectral band number 27 (A =
646.72p); b) training samples, c) test samples, where each color represents
a specific information class. The information classes are listed in Table II.

homogeneity of the regions),

3) (d) diagonal of the box bounding the regions,

4) (i) moment of inertia (as an index for measuring the
elongation of the regions).

V. EXPERIMENTAL RESULTS
A. Data Description

1) Hekla data: The first hyperspectral data set used was
collected on June 17, 1991 by AVIRIS (having spatial res-
olution 20 m) from the volcano Hekla in Iceland (see Fig.
3). Sixty four bands (from 1.84 u to 2.4 p) were removed
due to the technical problem with the 4th spectrometer in 157
bands. An image of size 500 x 200 was used in this paper for
the real experiments. For this data set, from the total number
of training samples which is equal to 966, 50 percent was
chosen for training and the rest as validation samples, in order
to perform the PSO- and FODPSO-based feature selection
approaches. After finding the most informative bands with
respect to the OA of SVM over validation samples, all 966
samples are used for training in order to perform SVM on the
selected bands. The number of training, validation and test
samples are displayed in Table I.

2) Indian Pines data: The second data set used in exper-
iments is the well-known data set captured on Indian Pines
(NW Indiana) in 1992 comprising 16 classes (see Fig. 4),
mostly related to different land covers. The data set consists of
145 x 145 pixels with spatial resolution of 20 m/pixel. In this
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TABLE I
HEKLA: NUMBER OF TRAINING, VALIDATION AND TEST SAMPLES. FOR
THE FINAL CLASSIFICATION STEP, THE TOTAL OF TRAINING AND
VALIDATION SAMPLES IS USED TO TRAIN THE SVM.

Class Number of Samples
Number Name Training  Validation  Test
1 Andesite lava 1970 97 97 829
2 Andesite lava 1980 1 54 54 442
3 Andesite lava 1991 1 150 150 1196
4 Andesite lava moss cover 49 49 370
5 Hyaloclastite formation 38 38 334
6 Rhyolite 20 19 143
7 Firn-glacier ice 76 75 549
TABLE II

INDIAN PINES: NUMBER OF TRAINING, VALIDATION AND TEST
SAMPLES. FOR THE FINAL CLASSIFICATION STEP, THE TOTAL OF
TRAINING AND VALIDATION SAMPLES IS USED TO TRAIN THE SVM.

Class Number of Samples
Number Name Training  Validation  Test
1 Corn-notill 25 25 1384
2 Corn-mintill 25 25 784
3 Corn 25 25 184
4 Grass-pasture 25 25 447
5 Grass-trees 25 25 697
6 Hay-windrowed 25 25 439
7 Soybean-notill 25 25 918
8 Soybean-mintill 25 25 2418
9 Soybean-clean 25 25 564
10 Wheat 25 25 162
11 Woods 25 25 1244
12 Bldg-Grass-Tree-Drives 25 25 330
13 Stone-Steel-Towers 25 25 45
14 Alfalfa 8 7 39
15 Grass-pasture-mowed 8 7 11
16 Oats 8 7 5

work, 220 data channels (including all noisy and atmospheric
absorbed bands) are used. In the same way, for Indian Pines,
from the total number of training samples which is equal
to 695, 50 percent of the samples were chosen for training
and the rest for the validation samples, in order to perform
the PSO- and FODPSO-based feature selection approaches.
After performing PSO- and FODPSO-based feature selection
approaches, all 695 samples are used for training in order to
perform SVM on the selected bands. The number of training,
validation and test samples are displayed in Table II.

In this work, in addition to selecting data sets that are
widely used in the hyperspectral imaging community, we have
used exactly the same training and test samples that have
been considered in most works related to the classification
of hyperspectral images. Some of the works which have con-
sidered exactly the same training and test samples are given in
references [3, 34]. In other words, we not only used the same
number of training and test samples adopted by other state-of-
the-art methods, but the samples also have exactly the same
spatial locations in the data. This way of using the training
and test samples makes this work fully comparable with other
spectral and spatial classification techniques reported in the
literature.

B. General Information

The following measures are used in order to evaluate the
performance of different classification methods.

1) Average Accuracy (AA): This index shows the average
value of the class classification accuracy.

2) Overall Accuracy (OA): This index represent the number
of samples which is classified correctly divided by the number
of test samples.

3) Kappa Coefficient (k): This index provides information
regarding the amount of agreement corrected by the level of
agreement that could be expected due to chance alone.

4) CPU Processing Time: This measure shows the speed of
different algorithms. It should be noted, since in all algorithms
(except Raw), EMAP is carried out, the CPU processing time
of this step is discarded from all methods. Hence, the CPU
processing time is only provided for AP, Raw + AP, Decision
Boundary Feature Extraction (DBFE) and NWFE. Except
DBFE and NWFE, which have been used in the MultiSpec
software, all methods used were programmed in MATLAB on
a computer having Intel(R) Pentium(R) 4 CPU 3.20 GHz and
4GB of memory.

The number of iterations in each run for PSO- and
FODPSO-based feature selection techniques is equal to 10.
Since PSO- and FODPSO-based feature selection techniques
are randomized methods which are based on different first
populations, each algorithm has here been run 30 times and
results are shown in different histograms and compared with
different indexes in order to examine the capabilities of PSO-
and FODPSO-based feature selection techniques.

It should be noted that, in this paper, in order to compare
PSO and FODPSO, both data sets (Hekla and Indian Pines)
have been taken into account. However for the first and second
scenarios, we preferred to use only Indian Pines since this data
set is more complex for classification. Therefore, the capability
of the proposed method can be shown more clearly by using
Indian Pines instead of Hekla. In this case, 25 PCs with a
cumulative variance of more than 99% were selected as the
base images for producing EMAP for Indian Pines.

Based on [24], the sum of all p’s should be inferior to 2 and
alpha should be near 0.632. Therefore, the parameters p;, p2
and « are initialized by 0.8, 0.8 and 0.7, respectively. It should
be noted that, the same set of parameters have been used for
both data sets and both scenarios, in order to show that the
proposed technique is data set distribution independent, and
with the same set of parameters, for all different data sets
and scenarios, the proposed method can lead to an acceptable
results in terms of accuracies and CPU processing time.

After comparing PSO- and FODPSO-based feature selection
techniques in terms of overall accuracy over validation sam-
ples, the best method will be chosen for further evaluation.
Then, the best method will be compared with the other well-
known feature selection and extraction techniques. In order to
have a fair comparison, among 30 runs, four runs have been
chosen and their classification accuracies are compared with
obtained results from the other feature selection and extraction
techniques. In this way, the results of 30 runs have been sorted
in an increasing order with respect to their overall accuracy
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over validation samples. Then, for a fair comparison with the
other methods, the four runs are selected as follows:

1) Min: SVM classification is applied on the bands se-
lected with the least overall accuracy over the validation
samples among 30 runs (the first group of the most
informative bands when the results of 30 runs have been
sorted in an increasing order).

2) Median' : SVM classification is applied on the bands
selected with the median overall accuracy over the
validation samples among 30 runs (the 15th group of
the most informative bands when the results of 30 runs
have been sorted in an increasing order).

3) Median? : SVM classification is applied on the the
most informative bands selected with the median overall
accuracy over the validation samples among 30 runs (the
16th group of bands when the results of 30 runs have
been sorted in an increasing order).

4) Max: SVM classification is applied on the bands selected
with the highest overall accuracy over the alidation
samples among 30 runs (the 30th group of the most
informative bands when the results of 30 runs have been
sorted in an increasing order).

Other methods for the purpose of comparison are listed
below:

1) Raw: The input data are directly classified with SVM
without performing any feature selection or extraction
technique.

2) Div: Divergence feature selection is performed on the
input data and the selected bands are classified by SVM.

3) TD: Transformed Divergence feature selection is per-
formed on the input data and the selected bands are
classified by SVM.

4) Bhathacharyya: Bhathacharyya distance feature selec-
tion is performed on the input data and the selected
bands are classified by SVM.

5) DBFE: DBEFE is performed on the input data and the
selected bands are classified by SVM.

6) NWFE: NWFE is performed on the input data and the
selected bands are classified by SVM,

and for the second scenario,

1) AP: The feature bank including all four attributes with
a wide range of threshold values is classified by SVM.

2) Raw+AP: The Raw and AP are concatenated into a
stacked vector and classified by SVM.

The following ranges for different attributes have been taken
into account in order to build the feature bank:
a=(5p2) x {1,2,3,4,5,6,7,8,9,10,11,12,13, 14}

s = (145) % {5,10, 15,20, 25, 30, 35, 40, 45, 50}

d = {10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

1= {0.1,0.2, 0.3,0.4,0.5,0.6,0.7,0.8,0.9}

where phi and p are the resolution of the image in meters and
the mean of a feature, respectively.

Again, in order to secure the fairness of the comparison, the
number of features for DBFE and NWFE has been chosen in
2 different ways: 1) the number of selected features is equal to
the number of features which provides Maz (see a few lines

above) and 2) the top few eigenvalues which account for 99%
of the total sum of the eigenvalues were selected.

The data sets have been classified with SVM and a Gaussian
kernel. Five-fold cross validation is taken into account in order
to select the hyperplane parameters when SVM is used for the
last step (for the classification of informative bands).

C. FODPSO vs. PSO
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Fig. 5. Hekla: Box plots for overall accuracy over 30 runs for PSO-based
feature selection (top) and FODPSO-based feature selection (bottom).

1) Hekla: Fig. 5 shows the box plots for the OA of the clas-
sification for 30 runs (10 iterations within each run) for PSO-
and FODPSO-based feature selection approaches, respectively.
As can be observed from Fig. 5, although one cannot perceive
any major differences between both methods, the FODPSO-
based feature selection approach presents an overall smaller
interquartile range, i.e., the OA of the classification, at each
run, has less dispersion regardless of the number of trials. On
the other hand, the average value of the OA is slightly larger
than for the PSO-based method.

One-way MANOVA analysis was carried out to assess
whether both the PSO- and FODPSO-based algorithms have a
statistically significant effect on the classification performance.
The significance of the different types of algorithm used (inde-
pendent variable) on the final OA and the CPU processing time
(dependent variables) was analyzed using one-way MANOVA
after checking the assumptions of multivariate normality and
homogeneity of variance/covariance, for a significance level
of 5%.

The assumption of normality of each of the univariate
dependent variables was examined using a paired-sample
Kolmogorov-Smirnov (p — value < 0.05) [35]. Although the
univariate normality of each dependent variable has not been
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Fig. 6. Hekla: Final classification accuracy in percentage and processing time
in seconds for the PSO- and FODPSO-based feature selection approaches.

verified, since n > 30 and this was assumed by benefit-
ing from using the Central Limit Theorem (CLT) [36, 37].
Consequently, the assumption of multivariate normality was
validated [37, 38]. Note that MANOVA makes the assumption
that the within-group covariance matrices are equal. Therefore,
the assumption about the equality and homogeneity of the
covariance matrix in each group was verified with the Box’s
M Test (M = 72.7642, F(3;720) = —2.0706;p — value =
1.0000) [38].

The MANOVA analysis revealed that the type of algorithm
did not lead to a statistically significant different outcome for
the multivariate composite (F'(1;58) = 3.5830;p — value =
0.1667). In this situation, the FODPSO-based solution pro-
duces slightly better solutions than the PSO but is considerably
faster than the latter. To easily assess the differences between
both algorithms, let us graphically show the outcome of each
trial using box plot charts (Fig. 6). The ends of the blue boxes
and the horizontal red line in between correspond to the first
and third quartiles and the median values, respectively. As one
may observe, by benefiting from the fractional version of the
algorithm, one is able to slightly increase the OA while, at the
same time, slightly decrease the CPU processing time.

2) Indian Pines: Fig. 7 shows the box plots for the OA of
the classification for 30 runs (10 iterations within each run)
for PSO- and FODPSO-based feature selection approaches,
respectively. Similarly as before, despite the lack of major
differences, the FODPSO-based feature selection approach
presents an overall smaller interquartile range and larger
average value of the overall accuracy.

Once again, one-way MANOVA analysis was carried out
to assess whether both PSO- and FODPSO-based algorithms
have a statistically significant effect on the classification
performance.

The assumption about the equality and homogeneity of the
covariance matrix in each group was verified with the Box’s
M Test (M = 72.5156, F'(3;720) = —2.0636; p — value =
1.0000).

For this data set, the MANOVA analysis revealed that
the type of the feature selection algorithm led to a sta-
tistically significant different outcome on the multivariate
composite (F(1;58) = 14.6338; p — value < 0.0001). As
the MANOVA detected significant statistical differences, we
proceeded to the commonly-used ANOVA for each dependent
variable. By carrying an individual test on each dependent
variable, it was possible to observe that the OA does not
present statistically significant differences (#'(1;58) = 0.0116;
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Fig. 7. Indian Pines: Box plots for overall accuracy in percentage over 30 runs
for PSO-based feature selection (top) and FODPSO-based feature selection
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Fig. 8. Indian Pines: Final classification accuracy in percentage of the PSO-
and FODPSO-based feature selection approaches.

p — value = 0.9145). On the other hand, it is in the CPU
processing time that both algorithms diverge the most, thus
resulting in statistically significant differences between them
(F(1;58) = 16.7499; p — value < 0.0001). As expected,
the FODPSO-based solution produces slightly better solutions
than the PSO considerably faster than the latter.

To easily assess the differences between both algorithms,
the outcome of each trial is shown graphically using box plot
charts (Fig. 8). As one may observe, by benefiting from the
fractional version of the algorithm, one is able to slightly
increase the OA (slightly higher median value) while, at the
same time, considerably decrease the CPU processing time.

D. First Scenario

Fig. 9 shows the list of the selected bands by the proposed
method in 30 different runs. Runs 2, 16, 30 and 29 are selected
as Min, Median', Median® and Max, respectively. As it was
mentioned before, since the FODPSO-based feature selection
technique is a randomized method which is based on different
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TABLE III
FIRST SCENARIO: THE CLASSIFICATION OF DIFFERENT TECHNIQUES IN PERCENTAGE FOR INDIAN PINES. THE NUMBER OF FEATURES IS SHOWN IN
BRACKETS. THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD.

Class Raw Min Median™ | Median? Max DBFE | DBFE-99% | NWFE | NWFE-99%
No. (220) (84) (79) (57) (44) (44) 17) (44) (120)
I 54.1 67.1 69.5 67.1 70.9 54.4 54.1 59.6 49.1
2 57.5 67.6 66.8 69.6 68.6 62.2 53.8 51.2 46.3
3 80.4 82.0 84.2 90.7 88.5 73.3 70.1 67.3 64.6
4 88.3 92.6 92.6 88.1 92.8 86.5 88.1 86.5 89.0
5 81.4 85.2 88.5 82.6 88.3 88.3 87.2 87.5 84.3
6 922 92.9 94.9 94.0 95.8 94.5 96.3 97.2 97.2
7 68.0 73.7 76.6 76.4 78.7 61.1 62.2 61.0 54.0
8 49.1 47.7 63.6 58.4 61.7 472 439 342 35.7
9 64.1 73.7 82.0 79.7 83.5 723 67.7 622 63.4
10 95.6 96.2 97.5 98.7 98.7 98.7 99.3 98.7 98.1
11 79.0 82.7 87.1 87.5 91.1 86.6 85.3 80.9 84.4
12 64.5 70 73.0 73.3 77.5 76.9 73.0 69.6 72.1
13 95.5 97.7 97.7 100 97.7 91.1 93.3 95.5 91.1
14 64.1 79.4 92.3 84.6 89.7 61.5 58.9 71.7 61.5
15 81.8 100 81.8 90.9 90.9 81.8 100 81.8 63.6
16 100 100 100 60 100 40 40 40 40
AA 76.02 81.82 84.29 81.39 85.94 73.57 73.36 71.61 68.44
OA 65.41 70.11 76.22 74.17 77.18 66.95 64.96 61.98 60.13

K 0.6119 | 0.6646 0.7306 0.7088 0.7418 | 0.6273 0.6055 0.5749 0.5533
Time 94 165 192 276 223 105 72 89 132

30

25~
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Fig. 9. First scenario: Selected bands by the proposed method in 30 different
runs. Runs 2, 16, 30 and 29 are selected as Min, Median', Median? and
Max, respectively.

first populations, the selected bands are different in different
runs.

As can be seen from Table III, the proposed method (Max)
provides the best results in terms of OA, followed by Median'
and Median® (other runs of the proposed technique). This
shows that different alternatives of the proposed method (ex-
cept Min) demonstrate the best performance and improve the
other techniques in terms of classification accuracies.

Some algorithms, such as the originally proposed DBFE
[39], require the use of the second order statistics (e.g., the
covariance matrix) to characterize the distribution of training
samples with respect to the mean. In hyperspectral image
analysis, the number of available training samples is usually
not sufficient to make a good estimate of the covariance matrix.
In this case, the use of sample covariance, or common covari-
ance [1], may not be successful. As an example, either when
the sample or the common covariance approach, is chosen to

estimate the statistics for each available class for DBFE, if
the number of pixels in the classes is not, one more than the
total number of features being used (at least), the DBFE stops
working. In this case, the Leave-One-Out Covariance (LOOC)
[1] estimator can be used as an alternative to estimate the
covariance matrix. The normal minimum number of required
samples for a sample class covariance matrix is /+/ samples
for I-dimensional data. For the LOOC estimator, only a few
samples are all that is needed. In general, this covariance
estimator is non-singular when at least three samples are
in hand regardless of the dimensions of the data, and so it
can be used even though the sample covariance or common
covariance estimates are singular.

As discussed before, the conventional feature selection
techniques are only feasible in relatively low dimensional
cases. In this way, as the number of bands increases, the
required statistical estimation becomes unwieldy. In our case,
the methods; Divergence, Transformed divergence and Bhat-
tacharyya distance stopped working since in our data sets,
the corrupted bands have not been eliminated and also the
dimensionality of the data sets is high. However, since the
proposed method is based on the evolutionary technique, there
is no need to calculate all possible alternatives in order to find
the most informative bands. Another advantage of using the
proposed method is that there is no need to estimate the second
order statistics and, in this manner, the singularity of the
covariance matrix is not a problem. Therefore, the FODPSO-
based feature selection technique can find the most informative
bands in a very reasonable CPU processing time when the
other techniques stop and cannot lead to a conclusion.

E. Second Scenario

Fig. 10 depicts the box plots for the OA of the classification
for 30 runs (10 iterations within each run) for PSO- and
FODPSO-based feature selection approaches, respectively. As
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Fig. 10. Indian Pines: Box plots for overall accuracy in percentage over
30 runs for PSO-based feature selection (top) and FODPSO-based feature
selection (bottom).

TABLE IV
SECOND SCENARIO: THE NUMBER OF SELECTED FEATURES IN Min,
Median', Median? AND M ax FOR DIFFERENT ATTRIBUTES, AREA (A)
WITH 725 FEATURES, STANDARD DEVIATION (S) WITH 500 FEATURES,
MOMENT OF INERTIA (1) WITH 450 FEATURES AND DIAGONAL OF THE
BOX BOUNDING THE REGIONS (D) WITH 500 FEATURES.

Group a S i d Input | Total number of
data | selected features
Min 152 106 85 107 47 497
Median® |124 79 76 85 34 398
Median? |153 118 92 112 42 517
Max 83 74 65 53 31 306
Total features | 725 500 450 500 220 -

before, Fig. 10 shows the advantage of the FODPSO-based
approach over the alternative. In this case, one can easily
perceive the differences, wherein both the interquartile range
and average value of the OA are considerably improved. In
other words, the FODPSO-based feature selection technique
is able to find a better and more stable solution than the PSO-
based feature selection technique.

The significance of the different type of algorithm used
(independent variable) on the final OA and the CPU process-
ing time (dependent variables) was analyzed using one-way
MANOVA.

The assumption about the equality and homogeneity of the
covariance matrix in each group was verified with the Box’s
M Test (M = 72.8921,F(3;720) = —2.07424; p — value =
1.0000). This suggests that the design is balanced and, since
there is an equal number of observations in each cell (n=30),
the robustness of the MANOVA tests is guaranteed.

TABLE V
SECOND SCENARIO: THE CLASSIFICATION OF DIFFERENT TECHNIQUES IN
PERCENTAGE FOR INDIAN PINES. THE NUMBER OF FEATURES IS SHOWN
IN BRACKETS. THE BEST ACCURACY IN EACH ROW IS SHOWN IN BOLD.

Class | Raw AP [Raw+AP| Min | Median® | Median? | Max
No. | (220) | (2175) | (2395) | (497) (398) (517) (306)
1 54.1 | 68.3 67.7 78.1 76.0 76.3 76.6
2 575 | 79.3 78.5 88.2 90.1 87.7 89.5
3 80.4 | 82.6 82.6 94.0 929 95.6 93.4
4 88.3 | 834 81.8 93.9 94.4 94.4 94.4
5 81.4 | 81.2 80.4 90.2 90.2 90.1 90.3
6 922 | 949 94.5 98.8 98.8 98.6 99.0
7 68.0 | 75.8 75.8 82.7 82.0 84.8 77.4
8 49.1 | 68.5 67.7 84.9 78.4 85.1 82.4
9 64.1 75.5 73.7 87.2 84.5 86.8 89.1
10 95.6 | 919 90.7 98.7 98.1 99.3 98.7
11 79.1 88.2 87.9 95.8 95.5 94.2 95.9
12 64.5 | 97.8 98.1 94.5 93.0 94.8 94.2
13 95.5 | 88.8 88.8 100 100 100 100
14 64.1 51.2 435 923 89.7 89.7 97.4
15 81.8 | 81.8 81.8 81.8 90.9 90.9 100
16 100 100 80 100 100 100 100
AA |76.02 | 81.87 79.64 91.35 90.94 91.80 92.44
OA | 6541 77.54 76.85 87.83 85.73 87.60 86.78
K ]0.611]|0.7465| 0.739 |0.8613 | 0.8377 0.8587 |0.8494
Time - 1295 1434 1556 1529 1567 1498
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Fig. 11. Indian Pines in the second scenario: Final classification accuracy in
percentage of the PSO- and FODPSO-based feature selection approaches.

The MANOVA analysis revealed that the type of algorithm
led to a statistically significant different outcome on the
multivariate composite (F'(1;58) = 18.8030; p — value <
0.0001). As the MANOVA detected significant statistical
differences, we proceeded to the commonly-used ANOVA
for each dependent variable. By carrying an individual test
on each dependent variable, it was possible to observe that
the OA does not present statistically significant differences
(F(1;58) = 3.3804; p — value = 0.0711). On the other
hand, it is once again in the CPU processing time that both
algorithms diverge the most, presenting statistically significant
differences (F(1;58) = 20.7238; p — value < 0.0001).
As expected, the FODPSO-based approach (higher median
value) produces slightly better solutions than the PSO and is
considerably faster than the later.

To easily assess the differences between both algorithms,
the outcome of each trial is graphically shown using box
plot charts (Fig. 11). In the second scenario, one can easily
observe the benefits of the fractional version of the algorithm,
achieving a high level of OA in a short period of time.

Table. IV gives information regarding he number of selected
features in Min, Median', Median? and Maz for different
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attributes, area (a) with 725 features, standard deviation (s)
with 500 features, moment of inertia (i) with 450 features and
diagonal of the box bounding the regions (d) with 500 features.
As can be inferred from the table, the proposed method selects
different number of features for different attributes in different
runs. Therefore, it is difficult to conclude which attribute leads
to better classification accuracies. However, it seems that the
proposed methodology selects the highest number of features
for the area attribute. The reason behind this might be that
the area attribute is well related to the object hierarchy in the
images and it generally can model the spatial information of
images in a good way.

As can be seen from Table V, the proposed feature selection
technique has the best performance when the other feature
selection and extraction techniques are not able to process
the data due to the very high dimensionality and the limited
number of training samples. All alternatives of the proposed
method have almost the same performance in terms of OA and
significantly improve on AP and Raw + AP in terms of clas-
sification accuracies. Both AP and Raw + AP dramatically
suffer by the curse of dimensionality and the high redundancy
of available features in the feature bank.

In addition, the proposed method can be considered as
a good solution to overcome the shortcomings of attribute
profiles. As can be seen, the proposed method can automati-
cally find the most informative features from the feature bank
including highly redundant features.

VI. CONCLUSION

In this paper a novel feature selection approach is proposed,
which is based on a new binary optimization technique named
Binary FODPSO and SVM. The proposed approach was
compared to commonly used feature selection and feature
extraction approaches in experiments using standard AVIRIS
hyperespectral data sets. Based on the experiments, the fol-
lowing points can be concluded:

o Binary FODPSO exploits many swarms in which each
swarm individually performs just like an ordinary PSO
algorithm with rules governing the collection of swarms
that are designed to simulate natural selection. Moreover,
the concept of fractional derivative is used to control the
convergence rate of particles. The aforementioned reasons
lead to a better performance than Binary PSO in terms
of CPU processing time and OA for the cross-validation
samples.

« In the novel feature selection approach, there is no need
to set the number of output features and the proposed
approach can automatically select the most informative
features in terms of classification accuracies.

o Since the new approach is based on an evolutionary
method, it is much faster than other well-known feature
selection techniques which demand an exhaustive process
to select the most informative bands. In this sense, the
new approach can work appropriately in a situation which
other feature selection techniques are not applicable.

o Since the new feature selection approach is based on a
SVM classification which is capable of handling high di-
mensional data with a limited number of training samples,

it can proceed to select the most informative features in an
ill-posed situation when other feature selection/extraction
techniques cannot proceed without a powerful technique
for estimating the statistics for each class. As an example,
when the original way is opted to estimate the statistics
for each class, DBFE based on original statistics cannot
proceed, since the number of pixels in the following
classes needs to be at least one more than the total number
of features being used, and LOOC statistics must be taken
into account to handle this issue [1]. However, the new
method can handle this problem effectively.

e The new approach can solve the main shortcomings of
using AP for classification.

As a possible future work, we aim at finding the best
SVM parameters (i.e., regularization and kernel parameters)
by using the proposed Binary FODPSO in an automatic way
instead of adjusting the parameters by using a cross-validation
procedure after performing Binary FODPSO. In addition, in
the second scenario, the proposed feature selection approach
can be performed on each attribute profile separately, which
generally leads to higher classification accuracy but in a higher
CPU processing time. Therefore, another topic deserving fu-
ture research is the development of parallel implementations
of the presented approach in high-performance computing
architectures, although the processing times reported in our
experiments (measured in a standard desktop CPU) are quite
small for the considered data sets.
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