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Abstract

Previous studies investigating the effects of transcranial direct current stimulation (tDCS) on

muscle strength showed no consensus. Therefore, the purpose of this article was to system-

atically review the literature on the effects of single dose tDCS to improve muscle strength.

A systematic literature search was conducted on PubMeb, ISI Web of Science, SciELO, and

Scopus using search terms regarding tDCS and muscle strength. Studies were included in

accordance with Population, Intervention, Comparison, Outcomes, and Setting (PICOS)

including criteria. Healthy men and women, strength training practitioners or sedentary were

selected. The acute effects of single dose anode stimulus of tDCS (a-tDCS) and the placebo

stimulus of tDCS (sham) or no interventions were considered as an intervention and com-

parators, respectively. Measures related to muscle strength were analyzed. To conduct the

analyses a weighted mean difference (WMD) and the standardized mean difference (SMD)

were applied as appropriate. A total of 15 studies were included in this systematic review

and 14 in meta-analysis. Regarding the maximal isometric voluntary contraction (MIVC), a

small effect was seen between tDCS and Sham with significant difference between the con-

ditions (SMD = 0.29; CI95% = 0.05 to 0.54; Z = 2.36; p = 0.02). The muscular endurance

measured by the seconds sustaining a percentage of MIVC demonstrated a large effect

between tDCS and Sham (WMD = 43.66; CI95% = 29.76 to 57.55; Z = 6.16; p < 0.001),

showing an improvement in muscular endurance after exposure to tDCS. However, muscu-

lar endurance based on total work showed a trivial effect between tDCS and Sham with no

significant difference (SMD = 0.22; CI95% = -0.11 to 0.54; Z = 1.32, p = 0.19). This study sug-

gests that the use of tDCS may promote increase in maximal voluntary contraction and mus-

cular endurance through isometric contractions.
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Introduction

Muscle strength is underpinned by a combination of morphological and neural factors includ-

ing motor unit recruitment, rate coding, motor unit synchronization, neuromuscular inhibi-

tion, muscle cross-sectional area, and musculotendinous stiffness [1]. Several evidences show

the importance of muscular strength for health, considering that it may contribute in the

improvement of different health factors such as a reduction in cardiovascular risk factors (tri-

glycerides, LDL-cholesterol, glucose and blood pressure) [2, 3], as well as low muscular

strength has been associated with increased mortality in adulthood [4]. Addition, muscular

strength is one of the most important factors for physical performance in different sports [5].

Therefore, the maintenance and increase of muscular strength is recommended for athletes

and non-athletes, being necessary a physical stimulus to obtain these objectives.

For decades, the literature has investigated different methods of training that optimize the

increase in muscle strength in athletes and non-athletes [6–9]. Although different methods of

training are relevant in increasing muscle strength, due to the increasing popularity of resis-

tance training, a wide variety of ergogenic resources have been used for this purpose [10–12].

In this regard, the neuromodulation techniques also have been used as ergogenic aids with

promising results in improving muscle strength compared to placebo stimulus (sham) [13–

17].

The transcranial direct current stimulation (tDCS) consists of a noninvasive electrical stim-

ulus that promotes changes in the resting potential of the neuronal membrane [18]. tDCS is

non-invasive, well-tolerated [19] and produces acute changes in brain excitability by 10–30

minutes of tDCS at 1–2 mA and can last over an hour after a tDCS session [18, 20, 21]. This

electrical stimulus can be applied on different areas of the cerebral cortex, having been investi-

gated regarding its effects on muscle strength. Nonetheless, there is still no consensus in this

matter [13, 15–17, 22, 23].

Previous studies have demonstrated that anodal tDCS (a-tDCS) was effective in promoting

acute increases in submaximal strength (i.e.: muscular endurance) [14–16, 24]. Moreover,

studies showed that a-tDCS was not capable of increasing the total work of knee extension and

flexion in young healthy individuals [25] and muscular endurance with isometric muscle

actions [23]. Concerning maximum strength, the results demonstrated greater pinch force in

the toe [17], muscle power [13], and no change after the use of a-tDCS [16, 23].

These results suggest that a-tDCS could be useful as an auxiliary tool for muscle strength

[26]. However, the effects of a-tDCS on different muscle groups and different types of muscle

strength have shown contradictory results. Nonetheless, there are methodological differences

regarding the stimulated area, current intensity and duration of a-tDCS [13–16, 23, 25]. Given

the aforementioned information regarding the importance of muscle strength, identifying a

safe ergogenic aid to optimize muscle strength is of extreme interest to athletes, coaches,

researchers and may be an easy and helpful strategy for such [26]. In addition, non-athlete

individuals with different fitness levels and health conditions may benefit from this method

considering that the maintenance and improvement of muscle strength is desirable for differ-

ent populations [24, 27]. Therefore, the purpose of this article was to systematically review the

literature on the effects of single dose a-tDCS on improving muscle strength.

Methods

The method of this study was designed and reported according to the recommendations of the

Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) [28] and the

Cochrane Handbook for Systematic Reviews of Interventions [29].

tDCS and muscle strength
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Protocol and registration

This study was not registered.

Eligibility criteria

Studies were included in accordance with Participants, Intervention, Comparison, Outcomes,

and Setting (PICOS) inclusion criteria:

1. Participants: Healthy men and women, strength training practitioners or sedentary, with

no history of bone, muscle or joint injury and no psychiatric illness.

2. Intervention: Was utilized the acute effects of single dose the anode stimulus of tDCS (a-

tDCS).

3. Comparators: The placebo stimulus of tDCS (sham) or no interventions were considered

(control).

4. Outcomes: acute effects of measures related to muscle strength as the maximum muscle

strength, muscular endurance, and muscle power were analyzed. Isometric and dynamic

contractions were accepted.

5. Study Design: randomized and non-randomized trials, using either cross-over or parallel

group designs, comparing an intervention encompassing a-tDCS with a sham group on

muscle strength. Conference abstracts, dissertations, theses, book chapters, and articles

published in non–peer-reviewed journals were not included.

Our analysis was confined to studies published in English and Portuguese languages,

respectively.

Information sources

A systematic literature search was conducted between June 20, 2018 and July 24, 2018. The fol-

lowing databases were used: PubMed, ISI Web of Science (Web of Science Core Collection),

SciELO, and Scopus. No filters were applied in the search.

Search strategy

Search terms were defined according to intervention (tDCS) and outcomes (muscle strength).

The following search query was used on PubMed:

("transcranial direct current stimulation"[MeSH] OR transcranial direct current

stimulation�[All Fields] OR "tDCS"[MeSH] OR "tDCS"[All Fields] OR Stimulation tDCS

[MeSH] OR Stimulation tDCS�[All Fields] OR Transcranial Electrical Stimulation [MeSH]

OR Transcranial Electrical Stimulation�[All Fields]) AND ("Muscle strength"[MeSH] OR

Muscle strength�[All Fields]).

In the Web of Science and Scopus databases, the search was performed using the same

terms combined in different searches as follows: a. transcranial direct current stimulation and

muscle strength; b. tDCS and muscle strength; c. Stimulation tDCS and muscle strength; and

d. transcranial electrical stimulation and muscle strength.

For the search using the SciELO, the same combined terms were translated to Portuguese

through the Health Sciences Descriptors (DeCS). Included reports and important reviews

regarding tDCS and muscle strength were manually screened for additional relevant studies.

Experts on the field, including authors from the included reports, were also requested to

tDCS and muscle strength
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suggest any additional trials in order to ensure that the review was as comprehensive and up-

to-date as possible.

Selection of studies

A spreadsheet was used to include the extracted data. After merging search results and discard-

ing duplicates, two researchers (EL and BRRO) independently screened titles and abstracts in

order to identify relevant studies. Full-text articles of the included reports were retrieved and

independently assessed for eligibility by the two researchers according to the previously

described criteria. A consensus meeting was performed in case of disagreement regarding any

report and a third researcher (RSMJ) completed the decision when required. When it was not

possible to retrieve full-text articles, authors were contacted using email and Research Gate in

order to provide the required report. After three failed attempts to obtain response from the

respective authors, the report was excluded from analysis.

Data extraction

The following data was extracted from the articles: participant characteristics (sample size,

gender, drop-outs, age, and previous experience with resistance training), tDCS intervention

protocol (stimulated area, electrode size, current intensity, and session duration), resistance

exercise characteristic (joint movement, type of contraction, and muscle strength test), and

main outcomes. To minimize the risk of bias in data extraction, data was extracted twice by

the same author.

Assessment of risk of bias in included studies

Risk of bias was judged based on the criteria described on the Cochrane Handbook for System-
atic Reviews of Interventions, version 5.1.0 [29]. The following criteria were evaluated:

• Selection bias: Random sequence generation (inadequate randomization procedures) and

allocation concealment (inadequate concealment of allocations prior to assignment).

• Performance bias: blinding of participants and personnel (knowledge of the allocated inter-

ventions by participants and personnel).

• Detection bias: blinding of outcome assessments (knowledge of the allocated interventions

by outcome evaluators).

• Attrition bias: incomplete outcome data (amount, nature or handling of incomplete data).

• Reporting bias: selective outcome reporting (differences between reported and unreported

findings).

• Other bias: bias due to problems not covered elsewhere in the table (Low risk- The study

appears to be free of other sources of bias; High risk- has been claimed to have been fraudu-

lent or had a potential source of bias related to the specific study design used; Unclear risk-

Insufficient rationale or evidence that an identified problem will introduce bias or Insuffi-

cient information to assess whether an important risk of bias exists).

Two researchers (EL and BRRO) independently assessed the included trials, rating each of

the previously described factors with low, high, or unclear risk of bias according to the criteria

defined by Higgins [29]. Again, a consensus meeting was performed in order to discuss rating

disagreements and a third researcher (RSMJ) ensured the final decision when required.

tDCS and muscle strength
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Meta-analyses

To conduct the analyses we extracted data related to strength (maximal isometric voluntary

contraction–MIVC) and muscular endurance (time to exhaustion in seconds sustaining a per-

centage of MIVC–TTE-%MIVC, and total work–TW). MIVC was measured by authors with

different units (e. g. N, N.m or N/Kg), TTE- % MIVC in seconds, and TW in volume-load and

joules.

A weighted mean difference (WMD) and the standardized mean difference (SMD) were

applied as appropriate. The heterogeneity index (I2) was checked to detect discrepancies

among studies. A fixed or random order effect model was carried out according to Higgins

[29]. All analyses were performed using Review Manager 5.3. In addition, Cohen’s Effect Size

[30] was used to classify the results.

Results

Study selection

The results identified a total of 566 articles (44 in the PubMed, 197 in the ISI Web of Science,

one in the SciELO, 316 in the Scopus, and eight through manual searches). After the process of

removal of duplicate articles (n = 292), a total of 274 articles remained. 251 articles were

removed by title and / or abstract, remaining a total of 23 articles. Eligibility criteria deter-

mined the exclusion of seven articles [Intervention (n = 3); Comparators (n = 2); Outcomes

(n = 2); Study Design (n = 1)]. After this removal process, 15 articles were included for system-

atic review and 14 for meta-analysis. The study conducted by Lattari et al. [13] was removed

from the meta-analysis as the only article to investigate the acute effects of single dose a-tDCS

on muscle power. Study selection flow chart is presented in Fig 1.

Study characteristics

Participant characteristics. Characteristics of the participants in the included studies are

described in Table 1. There’s a total of 219 subjects that participated in the acute tDCS studies

on muscle strength. Regarding tDCS conditions, a-tDCS conditions had sample sizes between

8 and 22 [26, 31], with a total of 204 subjects among studies. Control conditions had sample

sizes between 8 and 22 [26, 31], with a total of 210 subjects among studies. There were a total

of 2 dropouts (20%) in the Tanaka’s study [17] and 1 dropouts (4.5%) in the Radel’s study [31].

Regarding gender, most studies had more male participants than women (as expected). In

most a-tDCS and control conditions, subjects’ average age was between 16±0.9 [32] and 27.7

±8.4 years old [23]. It is also important to note that only five studies [13–15, 25, 26] reported

duration in experience strength training, a factor that may clearly play a role in a-tDCS

response.

Intervention protocols and control condition

The characteristics of the included a-tDCS protocols and respective control conditions are

described in Table 2. The a-tDCS intervention protocol presented stimulation of motor cortex

(MC) [13, 16, 17, 23–26, 32–34], dorsolateral prefrontal cortex (DLPFC) [14, 15, 31], and tem-

poral cortex (TC) [35, 36]. Two studies used high-definition tDCS for electrodes montage [31,

34]. The positioning of the electrodes were placed in a 4 X 1 ring configuration with the centre

electrode positioned over the hand cerebral cortex (anodal) and return electrodes positioned

in a ring around the centre anode (cathodal) at a radius of approximately 5 cm and 4 cm [31,

34]. Electrodes with different sizes were used in the stimulated area, between 12 and 35 cm2.

The electrodes size in a 4 X 1 ring configuration was reported with approximate diameter of

tDCS and muscle strength
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1.1 cm [31, 34]. Two studies used an electric current intensity of 1.5 mA [16, 33] and all others

applied a current intensity of 2 mA [13–15, 17, 23–26, 31, 32, 34–36]. Furthermore, session

duration was 10 [16, 17, 23, 24, 31, 33] to 20 minutes [13–15, 25, 26, 32, 34–37].

In the control conditions, only one study used no placebo stimulus (sham) [16] and all the

others utilized the sham condition [13–15, 17, 23–26, 31–36]. Twelve studies used as a sham

stimulus a duration of 30 seconds [13–15, 17, 23–26, 31, 32, 35, 36]. The positioning of the

electrodes was equal of a-tDCS condition.

Fig 1. Flowchart of outcomes of search strategy.

https://doi.org/10.1371/journal.pone.0209513.g001
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Resistance exercise characteristic

The resistance exercise characteristic showed that isometric [16, 17, 23, 24, 26, 31–34] and

dynamic contractions [13–15, 25, 35, 36] were used. For dynamic exercises were used isoki-

netic testing [25, 35, 36], muscle action against a constant load [14, 15], and muscle power.

The following joint movements were used: elbow flexors [14, 16, 23, 31, 33], internal and

Table 1. Participant characteristics.

Reference N Drop-outs (N;

%)

Gender Age Experience with ST

Cogiamanian et al.

(2007)

a-tDCS = 9

control = 15

None a-tDCS = 5 (F) and 4 (M)

control = 9 (F) and 6 (M)

24.3 None of the subjects were engaged in competitive sport activities

specifically

involving elbow flexor muscles

Kan et al. (2013) a-

tDCS = 15

sham = 15

None a-tDCS = 15 (M)

sham = 15 (M)

27.7 (±8.4) Not reported

Abdelmoula et al.

(2016)

a-

tDCS = 11

sham = 11

None a-tDCS = 8 (M) and 3 (F)

sham = 8 (M) and 3 (F)

25.0 (±1.8) None of the subjects were engaged in regular strength training

programs

Radel et al. (2017) a-

tDCS = 22

sham = 22

1 (4.5%) a-tDCS = 13 (M) and 9

(F)

sham = 13 (M) and 9 (F)

21.30

(±0.4)

Not reported

Flood et al. (2017) a-

tDCS = 12

sham = 12

None a-tDCS = 8 (M)

sham = 8 (M)

24.4 (±3.8) Recreationally active and not engaged in regular strength training

programs

Hazime et al.(2017) a-tDCS = 8

sham = 8

None a-tDCS = 8 (F)

sham = 8 (F)

19.7 (±2.3) Handball athletes (31 weeks of ST)

Vargas et al. (2017) a-

tDCS = 20

sham = 20

None a-tDCS = 20 (F)

sham = 20 (F)

16.1 (±0.9) > five years of training in soccer

(not reported with ST)

Angius et al.(2016) a-tDCS = 9

sham = 9

None a-tDCS = 9 (M)

sham = 9 (M)

23.0 (±2.0) Recreationally active (not reported with ST)

Tanaka et al. (2009) a-

tDCS = 10

sham = 10

2 (20%) a-tDCS = 8 (M) and 2 (F)

sham = 8 (M) and 2 (F)

23.8 (20–

35)

Not reported

Lattari et al. (2016) a-

tDCS = 10

sham = 10

None a-tDCS = 10 (M)

sham = 10 (M)

26.5 (±5.0) > six months

Lattari et al. (2017) a-

tDCS = 10

sham = 10

None a-tDCS = 10 (M)

sham = 10 (M)

22.1 (±3.8) 47.8±22.7 months

Lattari et al. (2018) a-

tDCS = 15

sham = 15

None a-tDCS = 15 (F)

sham = 15 (F)

24.5 (±3.3) > one year

Montenegro et al.

(2015)

a-

tDCS = 14

sham = 14

None a-tDCS = 14 (M)

sham = 14 (M)

26.0 (±4.0) > six months

Sales et al. (2016) a-

tDCS = 19

sham = 19

None a-tDCS = 19 (M)

sham = 19 (M)

25.1 (±3.9) Physically active (not reported with ST)

Ciccone et al. (2018) a-

tDCS = 20

sham = 20

None a-tDCS = 10 (M) and 10

(F)

sham = 10 (M) and 10

(F)

21.0 (±1.5) Recreationally active (not reported with ST)

N- number of participants; M- male; F- female; %- percentage; ST- Strength training; >- greater.

https://doi.org/10.1371/journal.pone.0209513.t001
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Table 2. Study protocols.

Reference Intervention protocol

(a-tDCS)

Control Resistance exercise characteristic Main outcomes

Stimulatory electrode and reference; Electrode size (cm2);

Current intensity (mA); Duration (min)

Duration (s) Joint movement;

Type of contraction;

Muscle strength test

Cogiamanian

et al., (2007)

Right MC (stimulus) and right shoulder (reference); 35 cm2;

1.5 mA; 10 min

CG Left elbow flexors;

Isometric;

MIVC (N) and

TTE with 35% of the MIVC (s)

MIVC:

6¼ between the

conditions

TTE:

a-tDCS > CG

(p<0.05)

Kan et al., (2013) Right MC (stimulus) and right shoulder (reference); 24 cm2;

2.0 mA; 10 min

30 (s) (sham) Left elbow flexors;

Isometric;

MIVC (N.m) and TTE with 30% of

the MIVC (s)

MIVC:

6¼ between the

conditions

TTE:

6¼ between the

conditions

Abdelmoula et al.

(2016)

Left MC (stimulus) and right shoulder (reference); 35 cm2;

1.5 mA; 10 min

90 (s) (sham) Right elbow flexors;

Isometric;

MIVC (N) and

TTE with 35% of the MIVC (s)

MIVC:

6¼ between the

conditions

TTE:

a-tDCS > sham

(p<0.05)

Radel et al.

(2017)

Two Positioning of the electrodes (4x1):

First- Right MC (stimulus) and four

cathodal electrodes placed at a distance of 4 cm around the

anode (reference);

Second- Right DLPFC (stimulus) and four

cathodal electrodes placed at a distance of 4 cm around the

anode (reference); radius� 1.1 cm; 2.0 mA; 10 min

30 (s) (sham) Left elbow flexors;

Isometric

TTE with 35% of the MIVC (s)

TTE:

6¼ between the

conditions

Flood et al.

(2017)

Positioning of the electrodes (4x1)

MC contralateral to the non-dominant side (stimulus, C3 or

C4) and four cathodal electrodes placed at a distance of 5

cm around the anode (reference); radius� 1.1 cm; 2.0 mA;

20 min

At the start and at

the end (2 mA in

ramping)

Non-dominant knee extensors;

Isometric;

MIVC (N.m) and

TTE with 30% of the MIVC (s)

MIVC:

6¼ between the

conditions

TTE:

6¼ between the

conditions

Hazime et al.,

(2017)

MC dominant limb (stimulus) and ipsilateral OBF

(reference); 35 cm2; 2.0 mA; 20 min

30 (s) (sham) Internal

and external rotator;

Isometric;

MIVC (N/kg)

MIVC (internal and

external rotator):

a-tDCS > sham

(p<0.05)

Vargas et al.,

(2017)

Lef and right MC (stimulus) and ipsilateral OBF (reference);

35 cm2; 2.0 mA; 20 min

30 (s) (sham) Knee extensors;

Isometric;

MIVC (N/kg) in dominant and non-

dominant limb

Dominant

a-tDCS > sham

(p<0.05)

Non-dominant

6¼ between the

conditions

Angius et al.,

(2016)

Two Positioning of the electrodes:

First- Left MC (stimulus) and right OBF (reference);

Second- Left MC (stimulus) and left shoulder (reference);

12 cm2; 2.0 mA; 10 min

30 (s) (sham) Right knee extensors;

Isometric;

MIVC (N.m) and

TTE with 20% of the MIVC (s)

MIVC:

NR

TTE:

Second position-

a-tDCS > sham

(p<0.05);

First position 6¼

between the

conditions

Tanaka et al.,

(2009)

Right MC (stimulus) and right OBF (reference); 35 cm2; 2.0

mA; 10 min

30 (s) (sham) Adduction between the left great toe

and the digitus secundus

(leg pinch force)

Adduction between the index finger

and the thumb pad of the left hand

(hand pinch force);

Isometric;

PF (N)

PF (Leg):

a-tDCS > sham

(p<0.01)

PF (Hand):

6¼ between the

conditions

(Continued)
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external rotator [26], knee extensors [24, 32, 34–36], adduction between the left great toe and

the digitus secundus and adduction between the index finger and the thumb pad of the left

hand [17], extension of the ankle, hip, and knee [13, 15], knee extensors and flexors [25]. The

changes in muscle strength were investigated through tests of muscular endurance [14–16, 23–

25, 31, 33–36], and maximum strength [16, 17, 23, 24, 26, 32–34]. Only one study investigated

the effects of single dose tDCS on the muscle power [13].

Results of individual studies

The main outcome, presented in four studies, was that no difference was observed between the

a-tDCS and sham conditions in maximal isometric voluntary contraction (MIVC) tests [16,

23, 33, 34]. One study showed that MIVC of the internal and external rotator was greater in

the a-tDCS condition compared to sham condition [26]. In another study, it was also possible

to observe that MIVC of the dominant knee extensor was greater in the a-tDCS condition

compared to sham condition [32]. However, no difference was observed between the a-tDCS

and sham conditions for non-dominant knee extensor [32]. The leg pinch force (PF) was

Table 2. (Continued)

Reference Intervention protocol

(a-tDCS)

Control Resistance exercise characteristic Main outcomes

Stimulatory electrode and reference; Electrode size (cm2);

Current intensity (mA); Duration (min)

Duration (s) Joint movement;

Type of contraction;

Muscle strength test

Lattari et al.,

(2016)

Left DLPFC (stimulus) and right OBF (reference); 35 cm2;

2.0 mA; 20 min

30 (s) (sham) elbow flexors;

Dynamic;

Volume-load (kg)

�a-tDCS > sham

(p<0.05)

Lattari et al.,

(2017)

Central MC (stimulus) and right OBF (reference); 35 cm2;

2.0 mA; 20 min

30 (s) (sham) Ankle, hip, and knee extensors;

Dynamic;

Muscle power (W)

6¼ between the

conditions

Lattari et al.,

(2018)

DLPFC (stimulus) and right OBF (reference); 35 cm2; 2.0

mA; 20 min

30 (s) (sham) Ankle, hip, and knee extensors;

Dynamic;

Volume-load (kg)

a-tDCS > sham

(p<0.05)

Montenegro

et al., (2015)

Left MC (stimulus) and right OBF (reference); 35 cm2; 2.0

mA; 20 min

30 (s) (sham) Knee extensors and flexors;

Dynamic;

Isokinetic testing (angular

velocity of 60˚�s-1:

Total work (J) and peak torque (N.m)

�Total work:

6¼ between the

conditions
�Peak torque:

6¼ between the

conditions

Sales et al., (2016) Left TC (stimulus) and right OBF (reference); 35 cm2; 2.0

mA; 20 min

30 (s) (sham) knee extensors;

Dynamic;

Isokinetic testing (angular

velocity of 180˚�s-1 and 60˚�s-1):

Total work (J) and

peak torque (N.m)

�Total work:

a-tDCS > sham

(p<0.05)
�Peak torque:

6¼ between the

conditions

Ciccone et al.,

(2018)

Two Positioning of the electrodes:

First- Left TC (stimulus) and right OBF (reference);

Second- Right TC (stimulus) and left OBF (reference); 25

cm2; 2.0 mA; 20 min

30 (s) (sham) knee extensors;

Dynamic;

Isokinetic testing (angular

velocity of 180˚�s-1):

Average work

(Nm.s)

6¼ between the

conditions

a-tDCS- anodal transcranial direct current stimulation; CG- control group; cm2- square centimeter; NR- mA- milliamps; min- minutes; s- seconds; MC- motor cortex;

DLPFC- dorsolateral prefrontal cortex; OBF- orbitofrontal cortex;� approximately; MIVC- Maximal Isometric Voluntary Contraction; PF- Pinch Force; N- Newtons;

N.m- Newtons per meter; N/kg- Newtons per kilogram (normalized by the body mass of each participant); Kg- Kilogram; J- Joules; %- percentage; Nm.s- Newtons

meter per second; TTE = time to exhaustion; NR- not reported

https://doi.org/10.1371/journal.pone.0209513.t002

tDCS and muscle strength

PLOS ONE | https://doi.org/10.1371/journal.pone.0209513 December 26, 2018 9 / 19

https://doi.org/10.1371/journal.pone.0209513.t002
https://doi.org/10.1371/journal.pone.0209513


greater during the a-tDCS application, when compared to a sham condition [17]. In two stud-

ies, it was not possible to affirm that significant differences between the a-tDCS and sham con-

ditions occurred, because the data related to hand pinch force [17] and knee extension [24]

were not reported.

Regarding muscular endurance, a-tDCS was greater than the sham conditions in six studies

[14–16, 24, 33, 35]. These differences were observed in isometric contraction [16, 24, 33], mus-

cle action against a constant load [14, 15] and isokinetic [35] strength tests. In six studies no

difference were observed between conditions for muscle endurance through isometric con-

traction [23, 24, 31, 34], and isokinetic [25, 36] strength tests. For muscle power, one study

showed that there was no significant difference between conditions [15].

Risk of bias within and across studies

Risk of bias assessment for each included trial is presented on Table 3. Only two trials provided

no sufficient information about the way the allocation sequence was generated [14, 16]. For

allocation concealment procedures and blinding of outcome assessment, all trials were classi-

fied as low risk of bias. One study presented high risk of bias because the researchers were not

blinded to experimental conditions [36]. Only three studies presented high risk of incomplete

outcome data [17, 31, 35]. In Tanaka’s study [17], three subjects did not perform the hand

pinch force task. One extreme value of endurance time was excluded by Radel’s study [31]. In

the research conducted by Sales et al [35] the data was reported only in figure and included in

the discussion. Four studies showed high risk for selective reporting [14, 17, 24, 25]. The data

of MIVC [17, 24], volume-load [14], total work, and peak torque [25] were not reported, but

some were sent [14, 25]. Finally, one study was also classified with unclear risk of other bias as

they did not describe if participants included in the trial had experience with strength training

(ST), and also drop-out rates (20%) were quite substantial in the hand PF task [17].

Synthesis of results

MIVC. A SMD was performed to analyze MIVC due to the different measurements. The

heterogeneity of this data was not significant (I2 = 0%; p = 0.49). For this reason, a fixed effect

model was applied. A small effect was seen between a-tDCS and Sham on MIVC (SMD = 0.29;

CI95% = 0.05 to 0.54; Z = 2.36; p = 0.02) with significant difference between the conditions. All

details of each study and the overall effect are shown in Fig 2.

TTE-%MIVC. Muscular endurance was based on the seconds sustaining a percentage of

MIVC. Hence, a WMD was used to analyze data. There was significant heterogeneity (I2 =

66%, p = 0.004), thus a fixed effect was applied. A large effect was seen between a-tDCS and

Sham (WMD = 43.66; CI95% = 29.76 to 57.55; Z = 6.16; p< 0.001), showing an improvement

on muscular endurance in individuals who were submitted to a-tDCS (Fig 3).

TW. The authors of included studies showed data of TW in different units. A effect size

showed a trivial effect (SMD = 0.22; CI95% = -0.11 to 0.54) between a-tDCS and Sham with no

significant difference (Z = 1.32, p = 0.19). The heterogeneity was significant (I2 = 59%,

p = 0.005), hence a random effect model was applied. These results are shown in Fig 4.

Discussion

The purpose of this article was to systematically review the effect of a-tDCS on muscle

strength. The results showed that maximal voluntary contraction and muscular endurance

through isometric contractions were improved with use of the a-tDCS. Regarding the muscu-

lar endurance through the total work, no change occurred as a consequence of a-tDCS. Our
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discussion was divided into three topics regarding study outcomes, MIVC, and endurance

muscular (TTE-%MIVC, and total work).

MIVC

In our meta-analysis it was possible to demonstrate a small effect for MIVC between tDCS and

Sham (ES = 0.29). Results of individual studies showed that a-tDCS promoted greater MIVC

of internal and external rotators [26], knee extensors (dominant limb) [32], and leg PF [17]

during its application compared to sham condition. These studies stimulated the same area of

the cortex (MC), current intensity (2 mA), and electrode size (35 cm2). The duration of the

stimulus was different, Tanaka et al.[17] stimulated the subjects for 10 minutes while Vargas

et al.[32] and Hazime et al. [26] stimulated for 20 minutes. One explanation could be that the

Table 3. Risk of bias assessment.

Reference Random

Sequence

Generation

Allocation

Concealment

Blinding of Participants

and Personnel

Blinding of

Outcome

Assessment

Incomplete Outcome

Data

Selective Reporting Other

Bias

Cogiamanian

et al.(2007)

Unclear Low Low Low Low Low Low

Kan et al.(2013) Low Low Low Low Low Low Low

Abdelmoula et al.

(2016)

Low Low Low Low Low Low Low

Hazime et al.

(2017)

Low Low Low Low Low Low Low

Radel et al.

(2017)

Low Low Low Low High

(One subject not

performed TTE task)

Low Low

Flood et al.

(2017)

Low Low Low Low Low Low Low

Vargas et al.

(2017)

Low Low Low Low Low Low Low

Angius et al.

(2016)

Low Low Low Low Low High

(MIVC not

reported)

Low

Tanaka et al.

(2009)

Low Low Low Low High

(Two subjects not

performed the hand PF

task)

High

(MIVC not

reported)

Unclear

Lattari et al.

(2016)

Unclear Low Low Low Low High

(volume-load not

reported)

Low

Lattari et al.

(2017)

Low Low Low Low Low Low Low

Lattari et al.

(2018)

Low Low Low Low Low Low Low

Montenegro et al.

(2015)

Low Low Low Low Low High

(total work and peak

torque not reported)

Low

Sales et al. (2016) Low Low Low Low High

(Data reported only in

figure and discussion)

Low Low

Ciccone et al.

(2018)

Low Low High

(The researchers were

not blinded to

experimental

conditions)

Low Low Low Low

https://doi.org/10.1371/journal.pone.0209513.t003
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increases of MIVC in healthy subjects indicate that a-tDCS may temporarily improve muscle

strength beyond normal levels [17], even in athletes [26, 32]. We speculate that improvements

in MIVC may be attributable to three main factors: increased cortical excitability, an increase

in cross-activation and a decrease in short-interval intracortical inhibition (SICI) due to the a-

tDCS [18, 38]. For example, when fifty-three healthy subjects were submitted to a-tDCS condi-

tion with 10 min and 2mA of current intensity, the results showed that a-tDCS facilitated

MEPs whereas there was no significant effect of cathodal tDCS [39]. In fact, the addition of a-

tDCS during unilateral strength training (ST + a-tDCS) was accompanied by significant

increases in corticomotoneuronal excitability, decreases in SICI, and strength increase signifi-

cantly greater than the ST + sham group [40]. On the other hand, the effects of a-tDCS on cor-

tical excitability demonstrated large interindividual variability [39, 41]. Thereby, the plausible

neurophysiological mechanism explaining the improvement on MIVC is not clear. Reduced

pain, motivation, changes in muscle synergy, or modulatory effects on motor/premotor excit-

ability pain, changes in muscle synergy, or modulatory effects on motor/premotor excitability

are also speculated as possible factors [16].

Previous studies using MIVC measures showed no difference between the a-tDCS and

sham conditions [16, 17, 23, 26, 32–34, 42]. The potential ergogenic effects of motor cortex tar-

geted a-tDCS have been attributed to increased corticomotoneuronal excitability in the

exercising limb [34]. However, the excitability after-effects do not linearly correlate with stim-

ulation intensity, as lower intensities (0.5 and 1 mA) display equal or greater effects in

Fig 2. Forest plot showing a comparison of MIVC between tDCS and Sham. Hazime et al. (2017)#- internal rotador shoulder; Hazime et al. (2017)�- external rotador

shoulder; Vargas et al. (2017)#- knee extensors dominant limb; Vargas et al. (2017)�- knee extensors non-dominant limb.

https://doi.org/10.1371/journal.pone.0209513.g002

Fig 3. Forest plot showing a comparison of TTE-%MIVC between tDCS and Sham. Angius et al. (2016)#- electrode montages (shoulder); Angius et al. (2016)�-

electrode montages (head); Radel et al. (2017)#—electrode montages (stimulus in right MC); Radel et al. (2017)�- electrode montages (stimulus in right DLPFC).

https://doi.org/10.1371/journal.pone.0209513.g003
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comparison to higher intensities [41]. In addition, the results demonstrated in previous

researches have suggested that MIVC improvement may not occur due to a ceiling effect on

the capacity to produce force [16, 23].

TTE-% MIVC

Regarding muscular endurance, through the meta-analysis it was possible to demonstrate that

the tDCS generated improvements in muscular endurance in isometric contractions compared

to the control condition, with a large effect size. It is important to note that the results pre-

sented high heterogeneity (I2 = 66%) and may represent substantial heterogeneity [43]. These

results could possibly be occasioned by two main reasons. The first one is that the study of

Cogiamanian et al.[16] presented a high weight of 60% and the second one is that few studies

were included in the meta-analysis [16, 23, 24, 31, 33, 34]. Considering this information, these

results should be interpreted with caution.

Three studies corroborated the positive effect of a-tDCS on muscular endurance [16, 24,

33]. Cogiamanian et al. [16] investigating the effect of tDCS compared to a control condition

on elbow flexor isometric time to exhaustion (TTE) tasks. The participants received anodal

tDCS and the control group did not receive any tDCS administration (no stimulation). Endur-

ance time decreased significantly less after anodal than after no stimulation. Similarly, Angius

et al. [24] compared the effect of two tDCS montages (head and shoulder) on TTE of knee

extensors. In the head montage, anodal electrode was placed over the left motor cortex and the

cathodal on contralateral forehead, while for the other montage, the anodal electrode was

placed over the left motor cortex and cathodal electrode above the shoulder. tDCS was deliv-

ered for 10 min at 2.0 mA, after which participants performed an TTE test of the right knee

extensors. TTE was significantly longer when a shoulder montage was used. Abdelmoula et al.

[33] showed that TTE test with 35% of MIVC was significantly greater after a-tDCS than sham

stimulation These variations in exercise performance arising from tDCS can be a consequence

of different montages [16, 24, 33]. This is because the tDCS cathode decreases excitability over

the area that it is placed [20]. Therefore, the cathodal electrode (i.e.reference) placed over the

Fig 4. Forest plot showing a comparison of TW between tDCS and Sham. Ciccone et al. (2018)#- isokinetic muscle actions of the knee extensors in angular velocity of

180˚.s-1 with stimulus applied on the left temporal cortex; Ciccone et al. (2018)�- isokinetic muscle actions of the knee extensors in angular velocity of 180˚.s-1 with

stimulus applied on the right temporal cortex; Montenegro et al. (2015)�- 1st set of knee extensors; Montenegro et al. (2015)§§- 3rd set of knee flexors; Montenegro et al.

(2015)��- 1st set of knee flexors; Montenegro et al. (2015)##- 2nd set of knee flexors; Montenegro et al. (2015)§- 3rd set of knee extensors; Montenegro et al. (2015)#- 2nd

set of knee extensors; Sales et al. (2016)#- isokinetic muscle actions of the knee extensors in angular velocity of 60˚.s-1; Sales et al. (2016)�- isokinetic muscle actions of the

knee extensors in angular velocity of 180˚.s-1.

https://doi.org/10.1371/journal.pone.0209513.g004
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contralateral prefrontal area, rather than the opposite shoulder may have negated the positive

effects of the anodal stimulation [16, 24, 33].

Results of individual studies showed no effect in four studies of a-tDCS on muscular endur-

ance [23, 24, 31, 34]. These studies investigated the effects of tDCS on muscular endurance in

the TTE task used low MIVC [16, 24, 33]. We theorize that improvements in muscular endur-

ance in isometric contractions may be due to the low load used (35% and 20% of MIVC)

because these results occurred in the absence of any change in neuromuscular or corticospinal

parameters [16, 24, 33]. For example, eleven adults participated of submaximal voluntary con-

tractions (35% maximal torque) performed to failure, with the right elbow flexor muscles [33].

The results show that the rates of increase in EMG, of both biceps brachii and brachioradialis

muscles, were not influenced by stimulation conditions. Furthermore, the EMG of triceps bra-

chii was also not influenced by stimulation conditions. In addition, a-tDCS increased the mag-

nitude of biceps brachii activation at 37.5% and 50% of maximum [44]. However, anodal tDCS

did not affect the voluntary EMG/force relationship of biceps brachii at 12.5% and 25% of

MIVC. Nevertheless, these results are limited in terms of practical applications.

TW

The muscular endurance measured by total work showed no significant difference between a-

tDCS and Sham, and a trivial effect between the conditions. Of particular interest, in terms of

the practical applicability [14, 15], the studies used strength exercises commonly performed in

gym centers. Nevertheless, other studies involved isokinetic muscle actions [25, 35, 36] which

are not so common in gym centers.

Two articles showed that tDCS generated improvements in total work with elbow flexor

[14] and leg-press exercise [15]. It was also demonstrated that a-tDCS generated improve-

ments in muscular endurance involving isokinetic muscle actions with knee extensors [25, 35,

36]. However, in two studies it was not possible to observe improvements in muscular endur-

ance in isokinetic muscular actions after the use of a-tDCS [25, 36].

It is important to note the difference in the area stimulated between this studies [14, 15, 25,

35, 36]. In this regard, it was shown that the DLPFC can assist in sustained contractions when

a failure was generated in output from the motor cortex [14, 27]. To maintain the required

force, the input to the spinal motoneurons must be increased [45, 46] and during sustained

submaximal contraction, the excitability of spinal motoneurons and the contractile capacity of

the muscle fibers are reduced [47]. This failure to generate output from the motor cortex has

been defined as supraspinal fatigue [48, 49]. In regarding to temporal cortex, the neurophysio-

logical mechanism explaining the improvement on muscular endurance is not clear.

Besides, it has been shown that tDCS (2mA; 20min; MC) improved muscle power in

strength trained individuals [13]. There were improvements in height, flight time, and peak

power in the countermovement jump [13].

Limitations. The present study has several limitations and factors that may have influ-

enced the results. (1) Limited number of studies included in review (n = 15) and meta-analysis

(n = 14); (2) high heterogeneity presented in muscular endurance; and (3) differences regard-

ing the strength task performed in dynamic contractions and stimulated cortical area.

The spatial specificity of the electrode montage applied via conventional tDCS limit the

potential for comparisons to be made between the current findings. In this review, only two

studies used high-definition tDCS for electrodes montage [31, 34]. The use of non-focal tDCS

may influence other cortical areas, which could be responsible for the observed difference in

muscle strength [33]. In fact, the reduction in muscle strength may arise because the central

nervous system fails to drive the motoneurons adequately [46, 48]

tDCS and muscle strength

PLOS ONE | https://doi.org/10.1371/journal.pone.0209513 December 26, 2018 14 / 19

https://doi.org/10.1371/journal.pone.0209513


In regarding to stimulated area, a number of studies investigated the role of other cortical

regions in the regulation of muscle strength [15, 16, 23, 31, 36]. For example, the motor cortex is

responsible for the output neural drive to the muscle [46]. Previous studies demonstrated that a-

tDCS applied over the scalp of motor cortex resulted in an increase in the MIVC. However,

despite the subject’s maximal effort, motor cortical output at the moment is not sufficient to drive

the motoneurons to produce maximal force from the muscle [46, 48–50]. Furthermore, the pre-

frontal cortex (PFC) is particularly active during a sustained contraction task [51]. In agreement

with this suggestion, some researchers showed an increase in the muscle endurance after a-tDCS

[14, 15]. On the other hand, no effects of the stimulation were observed on endurance time in

elbow flexors [31]. Thereby, the cortical area stimulated presents important limitations.

Furthermore, the resistance exercise characteristic was different between studies. Abdel-

moula et al. [33] suggests that a-tDCS does not act similarly on the mechanisms involved in

the loss of MIVC and of sustained submaximal contraction. Agreeing to this suggestion,

Enoka et al.[52] reported that the decline in MIVC does not directly explain the time to failure

of a submaximal contraction. Our understanding of the interactions between the nervous sys-

tem and muscle remains rather rudimentary. Among several limiting factors, individual vari-

ability in cortical excitability has received great attention in research [41]. In addition, a

decrease in SICI also has received great attention [40].

Other important limitations of the study consist of the age, samples (males and females),

psychological state, genetics, and time of day. Eleven very old individuals performed 3 maxi-

mal isometric elbow flexion contractions before and after 20 minutes of sham or a-tDCS [53].

The results showed that a-tDCS did not alter muscle strength in comparison to sham stimula-

tion. The effect of a-tDCS in the very old is a question that is still to be addressed. Anodal stim-

ulation to the DLPFC increased accuracy on the emotional perception test in females only [54]

and psychological state an important role in training, competition, tolerance of pain and moti-

vation [55]. In general, genetic diversity is a decisive biological basis of variations in neuronal

network functioning after tDCS. The functional Val(108/158)Met polymorphism in the

COMT gene, demonstrated to specifically predict the effect of tDCS on cognitive control [56].

The time of day in which the experimental conditions are performed can also influence the

effects of tDCS. Anodal tDCS compared to sham stimulation improved recollection accuracy

in the morning [57]. Future studies should consider these factors when investigating the effects

of tDCS on muscle strength.

Conclusions

This study suggests that the use of a-tDCS may increase the maximal voluntary contraction

and muscular endurance through isometric contractions in novice and advanced strength

training. It can be used as an ergogenic aid by coach and personal trainers especially in tasks

involving isometric contractions. Thereby, a-tDCS could be applied as a complementary tool

in muscle strengthening programs.
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