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Abstract

Blood transfusions are an important part of modern medicine, delivering approximately 85 million blood units to
patients annually. Recently, the field of transfusion medicine has started to benefit from the “omic” data revolution
and corresponding systems biology analytics. The red blood cell is the simplest human cell, making it an accessible
starting point for the application of systems biology approaches.
In this review, we discuss how the use of systems biology has led to significant contributions in transfusion medicine,
including the identification of three distinct metabolic states that define the baseline decay process of red blood cells
during storage. We then describe how a series of perturbations to the standard storage conditions characterized the
underlying metabolic phenotypes. Finally, we show how the analysis of high-dimensional data led to the
identification of predictive biomarkers.
The transfusion medicine community is in the early stages of a paradigm shift, moving away from the measurement
of a handful of chosen variables to embracing systems biology and a cell-scale point of view.
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Background
The human red blood cell (RBC) has long been a start-
ing point for the application of systems biology. The RBC
is an ideal model cell because of its relative simplicity
and its intrinsic accessibility, resulting in a vast amount
of available data. Further, it is of great importance for our
understanding of human health and physiology—RBCs
account for over 84% of the native cells in the human
body by number, making them the most numerous cell
type by a large margin [1]. Thus, many of the first whole-
cell modeling efforts targeted the RBC. The late 1980s
saw the development of the first whole-cell model of the
human RBC [2–5]. Since then, other models of the RBC
have focused on various aspects of its physiology, from
metabolism [6] to its structural properties [7].
Recently, omics technologies have been applied to study

RBCs under cold storage for use in transfusion medicine
[8]. The transfusion of RBCs has long been an integral
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part of healthcare [9–11], with approximately 85 million
RBC units transfused worldwide annually [12]. RBCs are
stored in tightly-regulated, non-physiological conditions
(i.e., packed in plastic blood bags in a static environment
at 4°C), leading to many changes in the biochemical and
physiological properties of RBCs. Over the past several
decades, the transfusion medicine community has made
great progress in defining a central paradigm that outlines
these biochemical and morphological changes—the so-
called RBC “storage lesion” (RSL)—that red cells undergo
during cold storage [13–16]. Such changes include a
decrease in 2,3-diphosphoglycerate (2,3-DPG) levels, an
increase in endothelial adherence, and morphological
modifications to the shape and structure of the cells. Some
of these changes are reversible upon transfusion (e.g., 2,3-
DPG levels), while some of themorphological changes can
be irreversible.
As omics data characterizing RSL are being generated,

the field of transfusion medicine provides opportunities
for systems biologists [17]. In particular, metabolomics
data have become a central part of the effort to bet-
ter understand RSL [18]. Profiling the metabolic state
of the cell is an important approach that allows a func-
tional interpretation of cellular biochemistry [19]. With
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the availability of such data, systems biology methods can
be applied to study and understand RSL in considerable
detail. While correlations are important for the practice
of medicine, an actionable andmechanistic understanding
of relevant physiological phenomena is desired [20, 21];
systems approaches have already proven valuable through
the evaluation of drug therapies [22, 23], identification of
biomarkers for cancer [24], and the prediction of onco-
genes in cancer conditions [25]. Here, we discuss how the
study of RSL is being added to this list.

Three key ingredients form the path tomeaningful
multi-omic data integration
There have been a multitude of examples of how a sys-
tems biology approach can be applied to study a variety
of organisms and biological questions of interest [26–29].
The systems biology approach is an inherently iterative
process of refinement that unites three key ingredients:
data collection, analysis, and computational modeling
(Fig. 1). The first ingredient is data collection. Working
in conjunction with blood centers to ensure that standard
quality controls are met is vital for generating high-quality
data. Absolutely quantified (i.e., using standards to deter-
mine concentration values instead of relative amounts)
metabolomics data—while more costly—can yield greater
benefits since it can be integrated with quantitative,

mechanistic models. The data sets described here include
time course metabolomics data (both exo- and endo-
metabolomic) and other hematological measurements
routinely performed in blood banks, such as hemolysis.
Time-resolved metabolomics data have yielded impor-

tant insights into metabolic physiology, especially when
the resolution of the time course captures the time scale
of key metabolic changes. For RBCs under storage condi-
tions, these key metabolic changes occur on time scales
on the order of days, not weeks (the historical-used time
increment). In the experiments discussed below, data is
collected every three to four days, providing a more com-
plete characterization of these temporal dynamics. Explo-
ration of various perturbations to the standard storage
conditions will help elucidate RBC metabolic properties.
Such perturbation experiments might be informed by
previous experiments or by computational models [20].
The second ingredient is the application of multivariate

data analysis to the large data sets generated. Multivari-
ate statistical analyses can reveal the overall structure
of the data sets and trends within the data. In partic-
ular, methods like principal component analysis (PCA)
[30], partial least squares discriminant analysis (PLS-DA)
[31], and independent component analysis (ICA) [32] have
been used effectively to analyze complex metabolomics
data sets. Care must be taken when choosing a method—
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Fig. 1 Three key ingredients. Three key ingredients come together to form a workflow capable of extracting knowledge from omics data
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statistical methods have specific applications and can-
not be blindly applied to raw data; fortunately, there are
several excellent resources that provide guidance for this
process [30, 33]. Although the data sets generated and
analyzed here are large compared to the history of the
field, they do not qualify as “Big Data.” In the future,
genetic information and other parameters may enrich
this data, as has been demonstrated by the generation
of personalized RBC models [34]. Notably, the REDS-III
initiative—a collaborative, international research program
that promises to evaluate 14,000 distinct donors—will
directly address hypotheses regarding the effects of
genetic variation on donor-specific RSL properties such
as hemolysis [35]. The availability of such rich data will
provide great potential for systems analyses.
The third ingredient is a computational, mechanis-

tic metabolic network model capable of integrating dis-
parate data types. Such models incorporate the results
of statistical analyses to generate biological insights and
testable hypotheses. A metabolic network specific to the
RBC has been generated by mapping multiple proteomic
data sets onto the reconstruction of the global human
metabolic network [36, 37]. This mapping has resulted
in a functional metabolic network of the RBC containing
283 metabolic genes [6] and includes contiguous known
pathways. The specifics of this network have been fur-
ther delineated through a comprehensive manual cura-
tion of the literature (the “bibliome”). This reconstructed
metabolic network inherently includes available informa-
tion about the metabolome, proteome, and bibliome [38],
truly representing multi-omic data integration.
Several years ago, the use of systems biology principles

in the transfusion medicine field were proposed as a way
to extend the lifetime of stored RBC units [17]. Since then,
the principles outlined above have been used to study RBC
storage from a systems perspective. Here, we review the
outcome of several of these efforts and try to contextualize
these results.

Multivariate statistical analysis reveals a
three-phasemetabolic decay
The first major step in a systems biology characteriza-
tion of the storage process was to understand the base-
line RBC metabolic behavior during storage [39]. RBC
units were collected from 20 individuals and stored in
saline-adenine-glucose-mannitol (SAGM) media. SAGM
media is used throughout Europe, the United Kingdom,
Australia, Canada, and New Zealand, although it is not
licensed by the FDA [40]. Over 140metabolites and hema-
tological variables (e.g., hematocrit, pH) were absolutely
quantified at 14 time points over 45 days of storage, three
days past the FDA-regulated maximum shelf life of 42
days. With measurements taken every three to four days,
the resulting time resolution was finer than historically

practiced in the transfusion medicine field (that typically
uses weekly sampling) and allowed for the capture of
previously unobserved behaviors. The quantitative nature
of the measurements is important for use in mecha-
nistic models [41] while further allowing for an assess-
ment of whether certain compounds reached toxic levels,
thereby enabling the corroboration of previous results for
the accumulation of compounds such as hypoxanthine
[42, 43].
Initial global characterization of the data was achieved

using PCA of the raw metabolomics data, revealing two
distinct metabolic shifts that occur during the 42 day
shelf-life of a stored RBC unit. These shifts in metabolic
state—occurring at days 10 and 17—showed that RBCs
do not undergo a simple linear decay process but instead
go through a defined series of three metabolic states
each with distinct characteristics. A similar three-phase
metabolic decay profile was being observed in parallel
in independent studies and in different storage media
[44] and has since been shown in other independent
studies [45]. Further, measuring endothelial biomarkers
such as hcDNA levels helped determine that blood trans-
fused from the different states had differing effects on the
endothelium [39]. These results showed that RBC units
transfused from the third state resulted in endothelial
tissue damage.
The previously reported high concentration of 2,3-DPG

that depletes over time was observed, as well as the initial
increase and subsequent decrease in ATP levels after the
first shift at day 10. It was observed that the “metabolic
inflection points” (i.e., the points in time at which the
metabolic shifts in the PCA plots occur) approximately
coincide with the depletion of extracellular adenine and
onset of accumulation of hypoxanthine and xanthine in
the storage medium. One notable novel observation from
the quantitative metabolomics data was the existence of a
large intracellular malate pool (greater than 1 mM). The
discovery of these metabolic phases and their characteri-
zation was only possible through the use of a systems-level
perspective.

Mechanistic models informed by quantitative data
generates hypotheses and understanding
The multi-variate data analysis results provided by this
baseline study of RBC metabolic decay have proven to be
a useful starting point for mechanistic model-based anal-
ysis. Since the baseline metabolomics data are absolutely
quantified, they can be integrated into mechanistic, cell-
scale models capable of making quantitative predictions
[46, 47]. These models predicted that the large 2,3-DPG
pool is utilized to generate ATP using 2,3-DPG as a pro-
ton buffer through the reversal of bisphosphoglycerate
mutase. The catabolism of 1,3-DPG generates two ATP,
while the expected dephosphorylation of 2,3-DPG to 3PG
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generates only one ATP. Given that the initial 2,3-DPG
pool is high, the shift in degradation route has a large
influence on the overall ATP generation during storage.
While an interesting prediction, thermodynamics might
suggest that this behavior is unlikely to occur, highlight-
ing a need for additional study. Others have built on
these modeling predictions by providing an examination
of the potential metabolic blockade in glycolysis at glycer-
aldehyde 3-phosphate dehydrogenase (GAPDH) based on
redox proteomics analyses and 13C1,2,3-glucose tracing to
elucidate this mechanism [48].
The quantitative model also made predictions about

the metabolic fate of citrate, a compound added to the
storage medium as an anticoagulant during blood collec-
tion. These results were validated [47] and then further
explored in a follow-up study in which labeled glucose,
citrate, and glutamine were added to RBC units [49].
More recent efforts have examined how this mechanism
is impacted by oxygen saturation in stored RBCs [50].
Together, these studies suggest that RBCs can metab-
olize carbon sources such as citrate to produce lactate

and glutamate. These examples illustrate how quantita-
tive metabolomics data enables model-based analysis that
leads to a biochemically-informed mechanistic under-
standing of metabolic changes that unfold in the RBC
during storage.

Perturbing the storage conditions
Having characterized the baseline metabolic behavior
of stored RBCs, the next step in the systems biology
characterization was to determine whether the stor-
age conditions could be perturbed in such a way that
this three-phase metabolic decay process was affected.
Four perturbations representing pressing questions were
identified and examined (Fig. 2): (1) does the three-
phase decay pattern manifest itself only in SAGM media,
or is it present in other storage media types used in
transfusion medicine?; (2) do alternative sugars sup-
port ATP levels better than glucose?; (3) is the deple-
tion of adenine the cause of the metabolic shifts?; and
(4) how does storage temperature affect the metabolic
network?

Fig. 2 Characterizing RBC storage conditions. Baseline characterization and perturbation experiments on stored RBCs. Perturbation experiments
examined the effect of (1) alternative media formulations, (2) supplementation with additional sugars, (3) addition of adenine to the media, and (4) a
change in storage temperature. An additional set of experiments (5) yielded a robust set of storage-age biomarkers
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(1) Does the storage media affect the metabolic decay
pattern?
With the baseline behavior in SAGM media character-
ized, it was important to determine whether RBCs stored
in other additive solutions exhibited similar metabolic
behavior [51]. RBC units from 12 individuals were stored
in SAGM [52, 53], AS-1 [54], AS-3 [54, 55], and PAGGSM
[56] for 45 days; an excellent discussion of the differ-
ences among these solutions can be found in [40]. Samples
were collected andmetabolically profiled at 14 time points
during storage. These media types were chosen because
they represent the most widely-used additive solutions in
Europe (SAGM, PAGGSM) and the United States (AS-1,
AS-3) [40].
Several changes in basic metabolic behavior were

observed across the four additive solutions. Notably, cit-
rate uptake and metabolism was increased in AS-3 and
PAGGSM compared to that of SAGM and AS-1. Corre-
sponding changes in intracellular malate concentrations
suggest that citrate uptake impacts malate utilization.
Labeled citrate added to the bag prior to storage in SAGM
showed that citrate is taken up and converted to intra-
cellular malate, contributing to the large pool previously
observed in the baseline characterization. This behavior
has been shown to occur in othermedia [49] andwas com-
putationally predicted and validated in the baseline data
[47]. Statistical analyses indicated that the difference in
citrate uptake and metabolism impacted glycolytic func-
tion, with small differences noted in glycolytic flux among
the additive solutions. Ultimately, while there were some
minor differences among the four solutions, the conclu-
sion was that the overall three-phase pattern of metabolic
decay is the same in alternate storage solutions.

(2) Do alternative sugars support ATP levels better than
glucose?
The baseline data showed that fructose and mannose
found in the plasma collected with the RBCs from the
donor are rapidly metabolized and depleted during the
first metabolic phase. Mannose and fructose have been
shown to be metabolized through different pathways than
glucose in RBCs [57, 58], thus providing potential benefit
over glucose as the primary energy source for metabolism.
Further, the potential positive and negative effects of fruc-
tose are not yet clearly understood [59, 60], making it
a good target for further study. Following in the foot-
steps of work by Beutler and Duron [61] and by Dawson
and colleagues [57, 62], RBC units were supplemented
with mannose and fructose to better characterize alter-
nate sugar metabolism during storage [63]. These units
were metabolically profiled at 14 time points over 25 days
of storage in SAGMmedia.
These experiments suggested that the metabolism of

mannose and fructose at 4°C reflects their metabolism

at 37°C, but this is a potentially misleading result due to
the presence of glucose (i.e., mannose and fructose were
supplemented instead of replacing the normal glucose).
The timing of the metabolic inflection points was altered
slightly with the supplemented sugars, with the observed
changes primarily centered in glycolysis. The hypothe-
sized protective effect of fructose was not observed. The
additives failed tomaintain ATP and 2,3-DPG levels under
the tested experimental conditions, although this was
likely due to the presence of glucose.
While fructose is known to be taken up through the

GLUT5 transporter [64], the exact transport mechanism
for mannose uptake has yet to be clearly elucidated. How-
ever, it is believed that mannose is transported into the
cell via the GLUT1 transporter [58]. GLUT1 is also used
by glucose, leading to competition for uptake of the two
compounds. The 13C labeling results from this perturba-
tion study support the hypothesis that mannose is taken
up by GLUT1. More importantly, these results imply that
mannose is preferentially taken up and oxidized over glu-
cose. Although some differences in the metabolic state
were observed with the addition of mannose and fructose,
there is no clear advantage to these supplementations.
Ultimately, a better characterization of the metabolism of
these sugars could be obtained by replacing glucose with
mannose and/or fructose (instead of supplementing) and
examining the resulting metabolomics measurements.

(3) Is the depletion of adenine the cause of the metabolic
shifts?
Following the identification of the three-phase metabolic
decay observed in SAGM [39], it was observed that the
depletion of adenine coincided with the metabolic inflec-
tion points observed in the PCA plots. It was hypoth-
esized that these metabolic shifts were due in part to
the depletion of adenine. To test this hypothesis, adenine
was labeled in both normal and double concentrations
in SAGM media, and metabolomics measurements were
made at 10 time points over 31 days of storage [65].
It was observed that the RBCs consumed approximately

1.5 mg/L adenine per day over the first eight days of stor-
age, almost depleting the total adenine concentration in
the bag toward the end of the first metabolic phase. Dur-
ing this first phase, adenine was converted into inosine
and IMP but not ATP. By day 18 of storage (the end of the
second phase), the extracellular adenine was completely
depleted.
Having detailed adenine metabolism under standard

storage conditions, its initial concentration was doubled
to see if its depletion was the cause for a metabolic shift.
The identical consumption rate of adenine was observed
until day 18, at which point adenine was no longer taken
up by the RBCs. In other words, it appears that the per-
fect amount of adenine is found in SAGM media; adding
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any more would result in adenine sitting in the extracel-
lular media without being consumed by the RBCs. One
possible explanation for this result is that this behavior
was previously characterized during the development of
SAGM media but never published (and has now been re-
discovered years later). One notable observation was that
the higher levels of adenine resulted in a buildup of 5-
methylthioadenosine. The conclusion of this study was
that adenine is not responsible for the observed metabolic
shifts: there is another internal process that leads to the
cessation of adenine uptake.

(4) Does the storage temperature affect the metabolic
network?
The previous studies all examined perturbations to the
storage media itself. One important aspect of the stor-
age conditions, however, is the low temperature at which
RBC units are stored (4°C) and how this low-temperature
environment affects RBC metabolism. In order to inves-
tigate these effects, RBC units were stored at 4°C, 13°C,
22°C, and 37°C—temperatures that span the ex vivo (stor-
age) and in vivo (body) temperatures—and metabolically
profiled [66]. Bags were stored for 21 days (4°C, 13°C, and
22°C) and 7 days (37°C) because the metabolic shifts were
anticipated to occur earlier at higher temperatures.
This study investigated whether the three-phase decay

pattern was observed at all temperatures. PCA was per-
formed on the metabolomics measurements, observing
that these trends were preserved but accelerated with
increasing temperature. The temperature dependences
for individual metabolites and reaction fluxes were cal-
culated, finding that the response of these individual net-
work components did not scale uniformly with increasing
temperature. In particular, the behavior of the ions was
quite different at low temperatures due to the known inac-
tivation of the sodium/potassium pump [67, 68]. Together,
these results showed that the RBC metabolic network is
robust against the accumulation or depletion of interme-
diate metabolites.
These results open the door for another interesting pos-

sibility: can the temperature dependences calculated here
be used to run high throughput screens of additional
perturbation experiments at higher temperatures? Our
results suggest that an RBC unit stored at a temperature
of only 13°C would only need to be stored for approxi-
mately 14 days to observe the equivalent 42 day storage
behaviors observed at 4°C. Since the global network-
level changes were consistent at higher temperatures, any
screens in which the three-phase decay pattern was dis-
rupted could then be investigated in detail under the
proper conditions. It is important to note, however, that
there is still further evaluation required; the temperature-
driven effects on ion homeostasis—which activates ion-
dependent cascades (e.g., calcium-induced eryptosis, a

phenomenon known to occur during prolonged storage
[69, 70])—would not be taken into account by such
measurements. If these considerations were properly
addressed, a shorter experimental time would not only
allow for high throughput screens, but it also yields
the very practical consequence of reducing experimen-
tal costs. Experiments could be further accelerated if
we could find biomarkers that characterize the three-
phase decay without the need for full and expensive
metabolomic data generation.

Can we define a set of biomarkers that represent
RBCmetabolic health?
One obstacle to the routine use of metabolomics data
is the high cost of generating them. With the increasing
amount of metabolomics data already available for RBCs
under storage conditions [18] and relative invariance of
the metabolome composition during decay, it is logical
to ask if we can identify biomarkers that describe the
three-phase decay process.With the large amounts of data
available in the literature and the above characterizations
of perturbed conditions, have we reached a point where
there is a critical mass of data available for true systems
analysis leading to the identification of robust biomarkers?
Paglia et al. [71] set out to identify a set of metabo-

lites that could define the three metabolic phases based
on normal SAGM decay. A small number of extracellu-
lar metabolites were identified because of ease, cost, and
reliability of suchmeasurements. Through statistical anal-
ysis of existing data sets, eight extracellular metabolites
(adenine, hypoxanthine, glucose, lactate, malate, nicoti-
namide, 5-oxoproline, and xanthine) were identified that
can differentiate between the three metabolic states.
These “storage-age” biomarkers robustly represent the
RBCmetabolome throughout the storage process. Initially
identified in SAGM media, these storage-age biomarkers
were validated in AS-3 and independently verified in a
separate laboratory with a different analytical setup and
different sample sets [71].
Glucose, lactate, 5-oxoproline, and adenine represent

the primary metabolic inputs and outputs can effectively
serve as “clocks” for storage time. Further, the large malate
pool is related to a major component in the citrate buffer
used during processing. The potentially more interesting
biomarkers are nicotinamide, hypoxanthine, and xanthine
that are directly indicative of the metabolic state. Nicoti-
namide is one of the components of major cofactors
(NAD+/NADH and NADP+/NADPH) and is released
from RBCs after approximately ten days of storage. The
toxic effects of hypoxanthine and xanthine are well known
[72], making them good targets for additional study. Pre-
liminary findings have already shown that hypoxanthine
levels correlate with post-transfusion recovery in vivo
and are related to purine oxidation and salvage [73, 74],
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suggesting that hypoxanthine could be a biomarker for
more than just storage age.
The utility of these storage-age biomarkers has been

shown to transcend their ability to differentiate the three
metabolic phases. A recent study showed that the con-
centrations of these extracellular metabolites at a par-
ticular time point can be used to quantitatively predict
the concentration of other metabolites in the network
[75]. Additional follow up work demonstrated that certain
combinations of these biomarkers (based on their location
within the metabolic network) could be used to forecast
the future values of other metabolites in the network [76].
The identification of these robust biomarkers is impor-
tant from a practical standpoint: they reflect the fact that
the metabolic decay process is fairly invariant under the
conditions examined, thus revealing the inherently low
dimensionality of the dynamics of the metabolic decay
process.
This particular set of storage-age biomarkers needs fur-

ther validation, not only in additional storage media but
also to determine whether they are indicative of in vivo
behavior. Other biomarkers have also been suggested that
may be able to measure the quality of stored RBCs, such as
peroxiredoxin 2 levels [77]. The identification of a robust
set of biomarkers that can be used to define both ex vivo
(i.e., storage) and in vivo health of RBCs is an area where
systems biologists can provide a meaningful contribution
to the field of transfusion medicine.

Toward broader applications of systems biology to
transfusionmedicine
Transfusion medicine is a major part of healthcare. The
results and insights gained from the application of omics
data sets and systems biology analytics to stored RBCs
will continue to grow in scope and sophistication. As this
systems view expands to include additional types of infor-
mation and data, phenomena such as genetic variation in
the human population is likely to come into focus. The
community has built large, collaborative efforts like the
REDS-III initiative [35] that directly address some of these
issues.
The RBC has been and will continue to be a useful

model system for applying and developing systems biol-
ogy approaches. It is the simplest of human cells, easily
accessible, and easy to lyse and characterize biochemically.
Multi-scale analysis of RBC functions is needed to elu-
cidate its role in human physiology, a fact easily demon-
strated by looking at the physiologically-relevant RBC
time scales: one second for capillary transit, one minute
for average circulatory time, 45 min for ATP turnover, 24
hours for circadian rhythms, and 60 days for its half-life in
circulation. It is fair to say that if the systems biology com-
munity cannot fully characterize the RBC, the prospects
of doing so for more complicated human cell types are

dim. Once we succeed with a refined definition of RBC
systems biology, it is logical to proceed to the next sim-
plest cell—the human platelet. The presence of organelles
(e.g., mitochondria) and signaling pathways will provide
challenges beyond those faced in RBC physiology.
The human RBC is not only the ideal target for systems

analysis, but it also represents a system of high interest
for studying human physiology and is central to transfu-
sion medicine. The RBC is the cell type most amenable
to systems analysis through the integration of multiple
omic data types into a mechanistic model. These data sets
can be gathered to reflect various criteria such as gen-
der, age, and ethnic diversity. Ultimately, there is great
promise for the use of systems biology approaches to
design experiments informed by a mechanistic under-
standing of RBC physiology [20]. The field of transfusion
medicine therefore holds great opportunity as a place for
the development and practical application of systems biol-
ogy approaches to human physiology and the delivery of
healthcare.
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