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Abstract
We consider core–shell nanowires with prismatic geometry contacted with two or more superconductors in the presence of a mag-

netic field applied parallel to the wire. In this geometry, the lowest energy states are localized on the outer edges of the shell, which

strongly inhibits the orbital effects of the longitudinal magnetic field that are detrimental to Majorana physics. Using a tight-binding

model of coupled parallel chains, we calculate the topological phase diagram of the hybrid system in the presence of non-vanishing

transverse potentials and finite relative phases between the parent superconductors. We show that having finite relative phases

strongly enhances the stability of the induced topological superconductivity over a significant range of chemical potentials and

reduces the value of the critical field associated with the topological quantum phase transition.
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Introduction
The intense ongoing search for Majorana zero modes (MZMs)

in solid states systems is motivated, in part, by the perspective

of using them as a platform for fault-tolerant topological quan-

tum computation [1-4]. Several practical realizations of “syn-

thetic” topological superconductors that host zero-energy Majo-

rana modes have been proposed in the past few years, the most

promising involving semiconductor-superconductor hybrid

systems [5-9]. The basic idea [10-13] is to proximity-couple a

semiconductor nanowire with strong Rashba-type spin-orbit

coupling (e.g., InSb or InAs) to a standard s-type supercon-

ductor (e.g., NbTiN or Al) in the presence of a longitudinal

magnetic field. The system is predicted to host zero-energy

Majorana modes localized at the two ends of the nanowire

[5,7,8]. These zero-energy states combine equal proportions of

electrons and holes and are created by second quantized opera-

tors satisfying the “Majorana condition” γ† = γ. The topological

character of these modes endows them with robustness against

perturbations that do not close the superconductor gap, e.g.,
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weak interactions, wire bending, a certain amount of disorder,

etc.

The most straightforward experimental signature of a Majorana

mode is a zero-bias conductance peak that is produced in a

charge transport measurement by tunneling electrons between

the semiconductor wire and external electrodes attached to its

ends [14-24]. These experiments have provided strong indica-

tions regarding the presence of Majorana bound states at the end

of the wire, but no clear evidence of a phase transition to the

topological phase, as revealed by the closing of the bulk quasi-

particle gap [10-13], or evidence of correlated features at the

opposite ends of the wire [25].

Ideally, the MZMs are hosted by a one-dimensional (1D)

p-wave superconductor. However, the experimental realization

and detection of these modes involve 3D nanowires [26]. The

most common materials are InSb and InAs due to their large

g-factor and strong SOC. The wires are grown by bottom-up

methods and have usually a prismatic shape with a hexagonal

cross section, as determined by the crystal structure [27]. The

finite cross section of the wires used in the experiments may

generate additional phenomena, which are not captured by ideal

1D models. In particular, the orbital effects of the magnetic

field, which is oriented parallel to the nanowire, may reduce or

even destroy the stability of the Majorana modes [28].

Proximitized core–shell nanowires are slightly more complex

systems recently shown [29] to have interesting Majorana

physics that is practically immune to orbital effects. With a

conductive shell and an insulating core, such heterostructures

become tubular conductors. The prismatic shape of the

core–shell wires implies that the cross section of the shell can

be seen as a polygonal ring. This is an interesting geometry

because the corners of the polygon act like quantum wells

where the states with the lowest energies are localized. Further-

more, a group of states with higher energies is localized on the

sides of the polygon [30]. Although most of the core–shell

nanowires have a hexagonal profile, square [31] or triangular

[32-36] cross sections can also be obtained. The core diameter

is typically between 50–500 nm and the shell thickness is be-

tween 1–20 nm. For all these geometries, the edge states corre-

sponding to corner localization represent better approximations

of the ideal 1D limit than the states hosted by a full wire.

Remarkably, the energy separation between the corner states

and the side states increases when the shell thickness is narrow

compared to the radius of the wire, and when the corners are

sharp. This means that the triangular shell would be the best

choice for the realization of 1D edge channels. For example,

with a shell thickens of 8–10 nm and a radius of 50 nm the

energy separation between corner and side states can be be-

tween 50–100 meV [29,37]. In this case the corner states are

extremely robust to orbital effects of the magnetic field and the

low-energy subspace is well separated from higher-energy

states. Another interesting aspect of a prismatic shell is that it

can host several Majorana states at each end of the wire. One

can actually view the wire as a set of n coupled chains, each

having a pair of Majorana modes at its ends. On the one hand,

this results in a rich phase diagram [29], which means that

core–shell nanowires provide an interesting playground for

studying topological quantum phase transitions. On the other

hand, this richness is associated with rather fragile topological

phases [29]. In practice, it would be extremely useful to have a

knob enabling one to control the robustness of topological

superconducting phase.

In this work we show that coupling a core–shell nanowire to

two or more parent superconductors with non-vanishing rela-

tive phases enhances the stability of the topological phase and

lowers the critical magnetic field associated with the (lowest

field) topological quantum phase transition. In principle the

phase difference between superconductors can be achieved

either by applying an additional magnetic field, i.e., other than

the longitudinal field needed for the Zeeman energy, or by

driving a supercurrent through the superconductors. Hence, by

controlling the relative phases of the parent superconductors

coupled to the wire one can stabilize the topological supercon-

ducting phase that hosts the zero-energy Majorana modes and

one can obtain an additional experimental knob for exploring a

rich phase diagram and observing potentially interesting low-

energy physics.

The rest of this article is organized as follows. We first describe

the coupled-chains tight binding model that we use in our nu-

merical analysis. Then, using this simple model, we study the

topological phase diagram of (infinite) core–shell wires with

triangular and square cross section coupled to superconductors

having the same superconducting phase. Next, we show that a

finite phase difference can stabilize the topological phase in

both triangular and square geometries. In addition, we show that

the critical field associated with the (low-field) topological

quantum phase transition can be made arbitrarily low. The

implications of these findings for the stability of the Majorana

modes emerging in finite wires is discussed in the subsequent

section. Next, we corroborate our results for the topological

phase diagram using an alternative “geometric” model. Finally,

we summarize our findings and present our main conclusions.

The Coupled-chains Tight-binding
Model
We start by formulating the effective thigh-binding model that

describes the low-energy physics of a core–shell nanowire with
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n edges. The model has already been introduced for triangular

core–shell nanowires in [29] (Appendix), and also previously

considered by other authors, in different forms, for ladder

systems [38,39]. A “coarse-grained” shell is modeled by one

chain associated with each vertex and one or more chains corre-

sponding to each side, as shown in Figure 1. Note that the

minimal model for a nanowire with n edges consists of 2n

coupled chains (n for vertexes and n for sides), but more

detailed representations can be obtained by increasing the num-

ber of chains associated with the sides. A model that takes into

account the details of the internal geometry of the wire [29] will

be used later in the paper to corroborate the results obtained

with this simple tight-binding model. In the numerical calcula-

tions we use minimal tight-binding models consisting of 6 (for

triangular wires) or 8 (for square wires) parallel chains. Note

that the odd chains,  = 1,3,…, correspond to the corners, while

the even chains,  = 2,4,…, represent the sides.

Figure 1: Schematic representation of the chain model for triangular
(left) and square (right) core–shell nanowires. The shell (yellow) is
coarse-grained so that the vertices and the sides are represented by
1D chains (red circles). The arrows indicate the direction of the effec-
tive spin-orbit field  associated with the (longitudinal) Rashba spin-
orbit coupling. In a minimal model each side is represented by one
chain (left); a more detailed representation can be obtained by adding
more chains associated with the sides (right).

Consider now 2n 1D coupled chains proximity-coupled to one

or more s-wave superconductors. The superconducting prox-

imity effect is incorporated through the pairing potential ,

1 ≤  ≤ 2n associated with each chain. Note that, in principle,

the induced pairing potential may be chain-dependent. The low-

energy physics of the hybrid structure is described by the

following Bogoliubov–de Gennes (BdG) Hamiltonian:

(1)

where  is the annihilation operator for an electron with spin

projection σ localized on the lattice site i of the chain  and

 is the corresponding spinor operator. The first

two terms in Equation 1 represent the nearest-neighbor hopping

along the chains, with characteristic energy t, and the inter-

chain coupling, with characteristic energy t′. In the summations

over the chain index  we use the convention 2n + 1 ≡ 1. The

third term of the Hamiltonian (Equation 1) contains a chain-de-

pendent effective potential Veff( ) that incorporates the pres-

ence of various external electrostatic fields (e.g., gate potentials)

and the chemical potential μ. Note that, in general, Veff( )

breaks the n-fold rotation symmetry of the original nanowire.

The term proportional to ε0 accounts for the fact that the side

states have higher energies than the corner states and the param-

eter ε0 > 0 controls the energy gap between the two types of

states. The next term represents the Rashba type spin-orbit cou-

pling (SOC), with longitudinal and transverse components

proportional to α and α′, respectively. The underlying assump-

tion is that the spin-orbit coupling is generated by an effective

potential in the shell region due to the presence of the core [29].

The corresponding direction of the spin-orbit field  for elec-

trons moving along the wire is shown in Figure 1. The next

term in Equation 1, ΓB = gμbB, corresponds to the Zeeman spin

splitting generated by an external magnetic field applied parallel

to the wire (e.g., along the z-axis). The last term describes the

proximity-induced pairing and takes into account the possibili-

ty that pairing potential  be chain-dependent. We assume that

the vertex regions are covered by n different superconductors

separated by gaps over the side regions. The corresponding

proximity-induced pairing potentials are

(2)

where , the phase of the superconductor coupled to the vertex

, is an experimentally-controllable quantity. In the numerical

calculations presented below we use the following values

for the model parameters: t = 5.64 meV, t′ = 1.41 meV (or

t′ = 2.25 meV, when explicitly specified), α = 2.0 meV,

α′ = 0.5 meV, ε0 = 15.0 meV, and Δ = 0.3 meV.

To determine whether a given superconducting phase is topo-

logically trivial or not, we calculate the  topological index

, i.e., the Majorana number [1],

(3)

The trivial and topological superconducting phases are charac-

terized by  = +1 and  = −1, respectively. In Equation 3
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Pf[…] represents the Pfaffian [40], while the antisymmetric

matrix B(k) is the Fourier transform of the Hamiltonian (Equa-

tion 1) in the Majorana basis. The matrix B(k) can be

constructed using the particle–hole symmetry of the BdG

Hamiltonian [8,41],

(4)

where (k) is the Fourier transform of the (single particle)

Hamiltonian corresponding to Equation 1 and  = UtK is the

antiunitary time-reversal operator, with Ut a unitary operator

and K the complex conjugation. Explicitly, we have

(5)

where Λ = 0, π/a are the time-reversal invariant points charac-

terized by the property (−Λ) = (Λ). The antisymmetry of

B(k) at the time-reversal invariant points, BT(Λ) = −B(Λ), is a

direct consequence of Equation 4 and Equation 5. Considering

that for typical parameter values the Pfaffian is always positive

at the boundary of the Brillouin zone, sign[PfB(π)] = +1, we

conclude that the topological phase boundary is determined by a

sign change of PfB(0). Finally, using the general relation be-

tween the Pfaffian of a skew matrix A and its determinant,

[Pf(A)]2 = Det(A), we have Det (0) = [PfB(0)]2. Note that

Det (0) = 0 signals the presence of gapless states. Thus, the

phase boundary, which corresponds to a sign change of the

Pfaffian, is accompanied by the closing of the quasiparticle gap

at k = 0.

Results and Discussion
Nanowire coupled to superconductors with
no relative phase difference
The emergence of topological superconductivity and zero-

energy Majorana bound states in core–shell nanowires coupled

to a single superconductor (i.e., in the absence of supercon-

ducting phase differences) was discussed in [29]. Here, we sum-

marize the main results, as revealed by the simplified tight-

binding model given by Equation 1. First, we consider a

triangular system without a symmetry-breaking potential,

Veff( ) = 0, and no superconducting phase difference,  = 0.

The corresponding topological phase diagram (as function of

the chemical potential and the applied Zeeman field) is shown

in panel (A) of Figure 2. The white regions correspond to

 = +1 (i.e., topologically trivial phases), while the orange

areas represent topologically nontrivial phases with  = −1.

The effect of a symmetry-breaking potential is illustrated in

panel (B) of Figure 2. While the topology of the phase diagram

is the same, the phase boundaries are modified significantly

with respect to panel (A). We note that this result was obtained

by applying a rather modest symmetry breaking potential with

values Veff = (0.67, 0.17, −0.33, −0.33, −0.33, 0.17) meV on the

six chains.

Figure 2: (A) Topological phase diagram for a triangular wire with
Veff( ) = 0 and  = 0. The white areas are topologically trivial and the
orange regions are nontrivial. The 4-star symbols indicate gapless
superconducting phases. (B) Topological phase diagram for a trian-
gular wire with Veff( ) ≠ 0 and  = 0. The values of the effective
potential on the 6 chains are (0.67, 0.17, −0.33, −0.33, −0.33, 0.17)
meV. The evolution of the (minimum) quasiparticle gap along the cuts I
(blue lines) corresponding to μ = −5.4 meV and II (red lines) corre-
sponding to μ = −4.4 meV are shown in Figure 3 and Figure 4, respec-
tively. See also [29].

To get further insight into the nature of the phases shown in

Figure 2, we calculate the minimum quasiparticle energy

Emin(μ,ΓB) along the constant chemical potential cuts I (blue)

and II (dark red) marked on the phase diagrams. This energy

(which corresponds to the minimum quasiparticle gap) is

defined as

(6)

where En(k) are the eigenvalues of the BdG Hamiltonian from

Equation 1. The dependence of Emin on the Zeeman field for

μ = −5.4 meV (i.e., the blue cuts I in Figure 2) is shown in

Figure 3, while the evolution of the minimum gap along the cuts

II (dark red) corresponding to μ = −4.4 meV is shown in

Figure 4.

At zero Zeeman field, ΓB = 0, the system is in a trivial

superconducting phase characterized by a quasiparticle gap
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Figure 3: Dependence of the minimum quasiparticle gap on the
Zeeman field along the blue cuts (I) corresponding to μ = −5.4 meV in
Figure Figure 2. Top: Veff( ) = 0, see Figure 2A. Bottom: Veff( ) ≠ 0,
see Figure 2B. The white/orange regions correspond to the trivial/
nontrivial phases shown in Figure 2. Note the gapless supercon-
ducting phase marked be the 4-star symbol (top panel). See also [29].

Figure 4: Dependence of the minimum quasiparticle gap on the
Zeeman field along the dark red cuts (II) corresponding to
μ = −4.4 meV in Figure 2. Top: Veff( ) = 0, see Figure 2A. Bottom:
Veff( ) ≠ 0, see Figure 2B. The white/orange regions correspond to the
trivial/nontrivial phases shown in Figure 2. Note the gapless supercon-
ducting phase marked be the 4-star symbol (top panel). See also [29].

Δ = 0.3 meV (see Figure 3 and Figure 4) given by the value of

the induced pairing potential. With increasing ΓB, the quasipar-

ticle gap reduces and eventually closes at a certain critical

Zeeman energy. In the absence of a symmetry breaking poten-

tial, the system with μ = −5.4 meV (see cut (I-A) in Figure 2)

remains gapless throughout the first (i.e., low-field) orange

region, which means that the system becomes a gapless super-

conductor. Another gapless superconducting phase corresponds

to the intermediate white region in panel (II-A) of Figure 4, i.e.,

for Zeeman fields between approximately 0.55 meV and

0.85 meV. These gapless phases are marked by a 4-star symbol

in the phase diagram (see Figure 2A) and in Figure 3(I-A) and

Figure 4(II-A). We note that inside the gapless superconducting

phases the gap closes at k ≠ 0. Of course, at the phase bound-

aries the gap always closes at k = 0. Furthermore, by increasing

the Zeeman energy above 0.7 meV in panel (I-A) of Figure 3 or

above 0.85 meV in panel (II-A) of Figure 4, the system evolves

into topological phase with a finite gap.

Upon breaking the three-fold rotation symmetry of the original

triangular wire, the gapless superconducting phases become

gapped. Also notice in panel (II-B) that the low-field topolog-

ical phase corresponding to μ = −4.4 meV is now characterized

by a sizable quasiparticle gap, indicating a regime which may

be more favorable for robust zero-energy Majorana modes. We

note that the robust low-field topological phase in panel (II-B)

corresponds to a single pair of Majorana modes (i.e., one MZM

at each end of the wire) hosted by chain 1 (with the highest

value of Veff, while the narrow low-field topological phase in

panel (I-B) corresponds to a pair of Majorana modes shared by

chains 2 and 3 (the chains with the lowest value of the

potential). Note that the expression “hosted by chain 1” (or

chains 2 and 3) actually means that most of spectral weight as-

sociated with the Majorana wave function is localized on the

corresponding chain(s) (also see below, Figure 11 and

Figure 13). The wide trivial region above ΓB ≈ 0.4 meV in panel

(I-B) corresponds to a finite system with two pairs of Majorana

bound states (on chains 2 and 3). We also note that the low-field

phase boundaries converge to a single boundary in the limit of

isolated chains, i.e., when the inter-chain hopping energy is

much smaller than the hopping along the chains, t′/t → 0. In this

case three Majorana pairs would form independently at the ends

of each chain, and coexist at zero energy, without “talking” to

each other. Physically, the limit t′/t → 0 corresponds an infi-

nitely-thin shell. For finite values of t′/t (corresponding to finite

shell thicknesses), the coupling between chains lifts the degen-

eracy, such that at most one Majorana state can have zero

energy, while the other two will acquire finite energy.

The existence of gapless superconducting phases in systems

with rotation symmetry is generic, i.e., it holds for n > 3. We

emphasize that gapless phases cannot host stable Majorana

modes and, therefore, they are not suitable for studying Majo-

rana physics. Applying a symmetry-braking potential

Veff( ) ≠ 0 opens a finite gap throughout the entire phase

diagram, except, of course, the phase boundaries, where the

quasiparticle gap vanishes at k = 0. To better illustrate this

point, we calculate the topological phase diagram for a square

wire with Veff( ) ≠ 0 and the minimum gap along a representa-

tive cut through the phase diagram. The results are shown in
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Figure 5. Note that all topologically trivial and nontrivial phases

are gapped. However, the gaps are rather small indicating the

fact that topological superconductivity (and the corresponding

Majorana modes) are not very robust.

Figure 5: (A) Topological phase diagram for a square wire with
Veff( ) ≠ 0 and  = 0. The white areas are topologically trivial and the
orange regions are nontrivial. The values of the effective potential on
the 8 chains are (0.5, 0, −0.5, −0.5, −0.5, 0, 0.5, 0.5) meV and the
inter-chain hopping is t′ = 2.25 meV. (B) Evolution of the minimum
quasiparticle gap along the horizontal cut Γ = 0.35 meV shown in the
top panel.

An important difference between the phase diagram shown in

Figure 5 and that in Figure 2 is that for the square wire we have

used a larger value of the inter-chain hopping, t′ = 2.25 meV.

Enhancing the coupling between chains widens the low-field

topological regions (which would practically vanish in the limit

t′/t → 0). Finally, we emphasize that although a finite system

with parameters corresponding to a topologically nontrivial

phase will support one pair of MZMs (i.e., one Majorana mode

at each end of the wire), generically each Majorana mode is

hosted by multiple chains (rather than a single chain). For ex-

ample, in a configuration corresponding to Figure 5, the low-

field topological phases with μ< 3.7 meV can support MZMs

hosted by chains 3 and 5 (with minimum values of Veff( )),

while for μ > 3.7 meV the MZMs are hosted by chains 1 and 7

(corresponding to the maximum values of Veff( )).

Wires coupled with multiple superconductors:
the stabilizing role of the phase difference
A critical question that we want to investigate concerns the

effect of a nonzero superconducting phase difference in a wire

coupled to multiple parent superconductors. A non-zero phase

Figure 6: (A) Topological phase diagram for a triangular wire with
Veff( ) ≠ 0 and 1 = 0, 3 = π/2, 5 = −π/2. The white and orange
phases are topologically trivial and nontrivial, respectively. The effec-
tive potential is the same as in Figure 2B. (B) Dependence of the
minimum quasiparticle gap on the Zeeman field along the blue cut (I)
in panel (A). (C) Dependence of the minimum quasiparticle gap on the
Zeeman field along the dark red cut (II) in panel (A). Note the in-
creased stability of the low-field topological phase (see for comparison
Figure 2B) and the fact that the minimum critical field  ≈ 0.15 meV is
lower than the pairing potential for corner chains, Δ = 0.3 meV.

difference was shown to stabilize the topological phase in a

Josephson junction across a 2D electron gas with Rashba spin-

orbit coupling and in-plane magnetic field [42] and in a topo-

logical insulator nanoribbon coupled with two superconductors

[43]. Here, for concreteness, we consider a triangular core–shell

nanowire modeled by six chains, as described above, which are

coupled to three separate superconductors that induce pairing

potentials characterized by 1 = 0, 3 = π/2, and 5 = −π/2. The

other parameters are the same as in Figure 2B, i.e., the case

Veff ≠ 0 discussed above. The corresponding phase diagram is

shown in Figure 6. Remarkably, the “crossing points” that char-

acterize the phase diagram in Figure 2 disappear and, upon in-

creasing the Zeeman field, we have an alternance of trivial and

nontrivial phases for all values of the chemical potential. More

importantly, the low-field topological phase becomes stable for

a wide range of chemical potentials, i.e., it is characterized by a



Beilstein J. Nanotechnol. 2018, 9, 1512–1526.

1518

significant quasiparticle gap, as shown in panels (B) and (C). In

addition, the lowest critical field  ≈ 0.15 meV is about half

the value of the pairing potential (i.e., Δ/2). This is in sharp

contrast with the case of hybrid systems involving a single

superconductor, or multiple superconductors having the same

phase,  = const., where the minimum critical field is  = Δ.

A comparison between the results in Figure 2 and those in

Figure 6 suggests that the superconducting phase could be

used as a knob for tuning the system across a topological quan-

tum phase transition. For example, if μ = −5.4 meV and

ΓB = 0.25 meV the system evolves as a function of the super-

conducting phase differences from a topologically-trivial state

when  = 0 to a topological superconductor when 1 = 0 and

3 = − 5 = π/2. We emphasize that the simplified tight-binding

model can only provide a qualitative picture of the low-energy

physics of proximitized core–shell wires. For quantitative

predictions regarding the dependence of the low-energy physics

on the effective bias potential Veff and the superconducting

phases  a more detailed modeling of the hybrid structure

(possibly, at the microscopic level) is necessary.

To corroborate our findings regarding the effect of a phase

difference, we consider the square wire corresponding to the

phase diagram shown in Figure 5 coupled to four separate

superconductors that induce pairing potentials characterized by

1 = π/2, 3 = −π/2, 5 = π/2, and 7 = −π/2. The correspond-

ing phase diagram is shown in Figure 7. The qualitative effect

of having finite phase differences is the same as in the case of

the triangular wire, while quantitatively it is more significant as

a results of a stronger inter-chain coupling t′. The topology of

the phase diagram is similar to that shown in Figure 6. Howev-

er, the low-field topological phase now occupies a significant

region of the parameter space and the minimum critical field

 is practically zero. Furthermore, the topological gap is sub-

stantial, as shown in the lower panel of Figure 7, indicating a

robust topological superconducting phase.

Majorana modes in finite core–shell
nanowires
As a consistency check for the results discussed above, which

are based on a translation-invariant model (i.e., infinite wire),

and to gain further insight into the low-energy physics of the

hybrid structure, we continue now with the case of wires of

finite length. For concreteness, we consider a triangular wire of

length L = 2.25 μm in the parameter regimes corresponding to

the panels labeled by “I” and “II” in Figure 3, Figure 4, and

Figure 6. The dependence of the low-energy spectrum on the

Zeeman field for μ = −5.4 meV, i.e., corresponding to the (I)

panels, is shown in Figure 8. Note that when Veff = 0 and  = 0

(top panel) the first transition is from a topologically-trivial

Figure 7: (A) Topological phase diagram for a square wire with
Veff( ) ≠ 0 and 1 = π/2, 3 = −π/2, 5 = π/2, and 7 = −π/2. The
white areas are topologically trivial and the orange regions are
nontrivial. The values of Veff( ) and the inter-chain hopping t′ are the
same as in Figure 5. (B) Evolution of the minimum quasiparticle gap
along the horizontal cut Γ = 0.35 meV shown in the top panel. Note the
significant expansion of the low-field topological phase (see for com-
parison Figure 5), the large topological gap, and the low values of the
critical field.

Figure 8: Dependence of the low-energy spectrum on the Zeeman
field for a finite triangular wire of length L = 2.25 μm and chemical
potential μ = −5.4 meV. The parameters used in the top, middle, and
bottom panels correspond to Figure 3(I-A), Figure 3(I-B), and
Figure 6B, respectively.
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phase to a gapless superconductor, as already discussed in the

context of Figure 3. The high-field topological phase

(ΓB > 0.7 meV) is characterized by a zero-energy Majorana

mode separated by a finite gap from finite energy excitations.

Applying a symmetry-breaking potential Veff (middle panel)

generates a low-field topological phase characterized by a small

bulk gap and a weakly stable, energy-split Majorana mode.

However, the stability of this topological phase can be signifi-

cantly enhanced by creating phase differences between the

parent superconductors (bottom panel). Note that in the middle

and bottom panels the second trivial phase (ΓB larger than about

0.35 meV and 0.45 meV, respectively) is characterized by sub-

gap states that can be viewed as pairs of overlapping, energy

split Majorana bound states (at each end of the wire). This result

suggests that coupling the nanowire to multiple parent super-

conductors and controlling their relative phases represents a

powerful scheme for enhancing the robustness of the topolog-

ical phase and tuning the system across a topological quantum

phase transition.

The low-energy spectra for μ = −4.4 meV, i.e., those corre-

sponding to the (II) panels in Figure 4 and Figure 6, are shown

in Figure 9. In the top panel, note the presence of a gapless

superconducting phase, which is consistent with our conclu-

sions based on the results shown in Figure 4. Also note that the

high-field topological phase (ΓB > 0.85 meV) supports two

finite energy sub-gap modes, in addition to the zero-energy

Majorana mode. Again, we can interpret these modes as pairs of

overlapping Majoranas. We conclude that in this phase the

hybrid system has three Majorana bound states at each end of

the wire, two Majorana modes acquiring finite energy and one

remaining gapless, consistent with a  topological classifica-

tion. Applying a symmetry-breaking potential (middle panel)

enhances significantly the stability of the low-field topological

phase and generates a second trivial phase (ΓB > 0.9 meV) that

is gapped in the bulk, consistent with Figure 4. Remarkably,

this trivial phase supports a pair of zero-energy Majorana

modes at each end of the wire, which correspond to the mid-gap

states visible in the middle panel of Figure 9. This indicates the

presence of an additional “hidden” symmetry in the system,

which makes it an element of the BDI symmetry class [44].

This symmetry is broken in the presence of a superconducting

phase difference (bottom panel), when the sub-gap modes

acquire finite energy.

Symmetry and gapless superconducting
phases
The existence of the gapless superconducting phases (indicated

by the star in the top panels of Figure 2 and Figure 3) is a

consequence of the threefold rotation symmetry of the trian-

gular wire with Veff( ) = 0 and identical superconductors.

Figure 9: Dependence of the low-energy spectrum on the Zeeman
field for a finite triangular wire of length L = 2.25 μm and chemical
potential μ = −4.4 meV. The parameters used in the top, middle, and
bottom panels correspond to Figure 4(II-A), Figure 4(II-B), and
Figure 6C, respectively.

Breaking this symmetry automatically opens a (bulk) gap in the

spectrum. To illustrate this property we consider the system of

finite length L = 2.25 nm, with the other parameters correspond-

ing to Figure 2A, with chemical potential μ = −5.4 meV (i.e.,

the blue vertical line there), and Veff( ) = 0, and we focus on

the gapless phase 0.36 < ΓB < 0.58 meV. The low-energy spec-

trum is shown in Figure 10A, which is in fact a zoom into the

top panel of Figure 8. We consider now a small symmetry-

breaking potential, with the same proportions as in Figure 2B,

Figure 3(I-B), and middle panel of Figure 8, but now ten

times weaker, i.e., Veff = V0(2, 0.5, −1, −1, −1, 0.5) with

V0 = 33.3 μeV. The potential opens a bulk gap that hosts a mid-

gap Majorana mode, as shown in Figure 10B. To emphasize

that the opening of a bulk gap is the result of breaking the three-

fold rotation symmetry, we also consider a system with vanish-

ing effective potential, Veff( ) = 0, in which we break the

symmetry by coupling the wire to parent superconductors

having different bulk gaps, so that the proximity-induced

pairing potentials for the edges are Δ1 = 0.375 meV,

Δ3 = 0.300 meV, and Δ5 = 0.300 meV. Here we do not consider

any relative phase between the superconductors. Again, a small

bulk gap opens in the (bulk) spectrum and a (nearly-zero) Majo-

rana mode emerges as a mid-gap state, as can be seen

Figure 10C.
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Figure 10: Low-energy spectra as a function of the Zeeman field for a finite triangular wire of length L = 2.25 μm and chemical potential
μ = −5.4 meV. (A) Gapless superconducting phase in a system with threefold rotation symmetry, like in Figure 2A and Figure 3(I-A). (B) Applying a
symmetry-breaking Veff, ten times waker than in Figure 2B, a small bulk gap develops, like in Figure 3(I-B), that hosts a mid-gap Majorana mode. (C)
Symmetry broken by coupling the wire to different superconductors inducing edge pairing potentials Δ1 = 0.375 meV, Δ3 = 0.3 meV, and Δ5 = 0.3
meV. The filled (orange) region 0.36 < ΓB < 0.58 meV represents the topological superconducting phase (of an infinite wire) in the presence of an
infinitesimally-small symmetry-breaking perturbation.

Another important general property of the Majorana modes

illustrated in Figure 10, panels (B) and (C), is the presence of

energy splitting oscillations [25,45]. In general, the energy split-

ting is caused by a finite overlap of the Majorana modes local-

ized at the opposite ends of the wire. The amplitude of the oscil-

lations depends on the Majorana localization length ξ [25],

which increases as the topological gap decreases, diverging in

the gapless limit. This behavior is illustrated in Figure 11. The

top panel represents the lowest-energy state corresponding to a

gapless system with threefold rotation symmetry (i.e., Veff = 0),

which could be seen as a linear combination of Majorana modes

with an infinite characteristic lenghscale, ξ → ∞. Introducing a

symmetry-breaking perturbation (Veff ≠ 0) opens a (bulk) topo-

logical gap that increases with increasing the effective potential.

In addition, in a finite system a midgap state emerges,

consisting of two (partially) overlapping Majorana modes local-

ized at the opposite ends of the wire. As clearly shown in

Figure 11, the characteristic length scale ξ of the Majorana

modes decreases as the amplitude V0 of the symmetry-breaking

potential increases (i.e., as the topological gap increases).

We note that, from the perspective of quantum computation, the

zero-energy Majorana modes have to be i) well separated

spatially (to minimize the overlap and, consequently, the energy

splitting δE) and ii) well separated in energy from all other low-

energy states (by a certain minimum quasiparticle gap ΔE). The

first condition ensures that the Majorana modes have non-

Abelian properties, while the second guarantees that the parity

of the low-energy Majorana sub-space is fixed (the presence of

other low-energy states would allow excitations from the Majo-

rana sub-space, which would change its parity and destroy any

quantum information stored in the Majorana system). If these

conditions are satisfied, the Majorana modes span a nearly-zero

Figure 11: Position dependence of the lowest energy wave function
corresponding to a finite triangular wire of length L = 2.25 μm, chemi-
cal potential μ = −5.4 meV, Zeeman field ΓB = 0.45 meV, and
symmetry-breaking effective potential with amplitude V0 (see
Figure 10B). The thick (red) line represents the probability distribution
|Ψ1(x)|2 along the edge  = 1, while the filled (blue) line represents the
probability distribution along the edges  = 3,5. With increasing the
amplitude of the symmetry-breaking potential the (bulk) topological gap
increases, which leads to the reduction of the characteristic length ξ of
the Majorana modes localized at the opposite ends of the wire.

energy subspace that can be used for storing and processing

quantum information. The characteristic timescale τ for quan-

tum operations has to satisfy the condition  Of

course, the impossibility of satisfying this condition is manifest

in regimes characterized by small topological gaps, as δE and

ΔE become comparable in the gapless superconductor limit.
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Figure 12: (A) Position dependence of the normalized disorder poten-
tial along the edge  = 3 of a triangular wire for a specific disorder real-
ization. The disorder profiles along the edges  = 1,5 (not shown) are
different, but characterized by similar qualitative features. In particular,
the characteristic length scale for the potential variations is δd = 60 nm.
(B) Dependence of the low-energy spectrum on the amplitude Vmax of
the disorder potential for the disorder realization shown in panel (A).
(C) Low-energy spectrum averaged over 50 different disorder realiza-
tions as a function of Vmax. The parameters of the system are: wire
length L = 2.25 μm, chemical potential μ = −5.4 meV, effective poten-
tial Veff = (0.67, 0.17, −0.33, −0.33, −0.33, 0.17) meV, supercon-
ducting phases 1 = 0, 3 = π/2, 5 = −π/2 and Zeeman field
ΓB = 0.35 meV.

Effects of disorder
Another element that can compromise the topological protec-

tion of the Majorana subspace is the presence of disorder.

Generically, disorder induces low-energy sub-gap states, thus

reducing ΔE[46-50]. The effect of potential disorder on a topo-

logical phase realized in a triangular wire is illustrated in

Figure 12. Panel (A) shows the position dependence (along the

wire) of a typical disorder potential Vdis(x) considered in the

calculation. Next, we calculate the low-energy spectrum in the

presence of a disorder potential with a fixed profile but a

varying amplitude Vmax (see Figure 12B). As the disorder

strength increases, several low-energy states converge toward

zero-energy, so that the quasiparticle gap ΔE practically

collapses when the amplitude of the effective disorder potential

is larger than Vmax≈ 1 meV. To demonstrate that this is not an

accidental property of a specific disorder realization, we also

calculated the spectrum averaged over multiple disorder realiza-

tions (see Figure 12C). The qualitative features discussed above

are manifestly present. We note that “critical” disorder strength

associated with the collapse of the quasiparticle gap depends on

the characteristic length scale of the disorder potential, as well

as the topological gap of the clean system, larger gaps implying

an increased robustness against disorder.

The final point that we want to address concerns the structure of

the disorder-induced low-energy states. Specifically, we calcu-

late the spatial profiles of the three lowest-energy states marked

by red dots in Figure 12B. The results are shown in Figure 13.

We note that the Majorana modes (n = 1) are well localized near

the opposite ends of the wire and have most of the spectral

weight on the edges  = 3,5 as a result of applying a bias poten-

tial Veff( ). The disorder-induced states (n = 2,3) are localized

inside the wire and have most of their spectral weight on the

same edges,  = 3,5. We conclude that the presence of disorder

induces low-energy localized states than can destroy the topo-

logical protection of the Majorana subspace. We note that

within a topological quantum computation scheme based on

qubits characterized by a finite charging energy [51,52], interac-

tion-mediated transitions between the Majorana modes and

disorder-induced localized states are possible even when the

spatial overlap of the two types of states is exponentially small.

Such transitions, which create low-energy quasiparticles, could

completely compromise the topological protection of the quan-

tum computation scheme.

Figure 13: Spatial profiles of the three lowest energy states corre-
sponding to the red dots in Figure 12B. The thick (red) line represents
the profile along the edge  = 1, while the filled lines represent the
profiles along the edge  = 3 (blue/light blue filling) and  = 5 (dark
red/yellow filling).

Geometrical model of a prismatic shell
In this section we analyze the results of a finer-grained model of

triangular and square prismatic shells, based on a geometrical
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description [29]. First the two-dimensional Hamiltonian of a

single electron confined on the polygonal cross section is

discretized on a grid defined in polar coordinates and diagonal-

ized numerically [37,53]. The resulting low-energy eigenstates,

corresponding to corner localization, are further used as a basis

to find the eigenstates of the BdG Hamiltonian, assuming plane

waves in direction longitudinal to the prism. The basis includes

the spin and the isospin. The variable Zeeman energy is gener-

ated by a uniform magnetic field B longitudinal to the wire. In

addition we consider a relatively weak electric field E trans-

verse to the wire as a technical tool to break the symmetry of

the polygon, indicated by the red arrows in Figure 14. This field

is equivalent with the chain dependent potential Veff( ) intro-

duced before. First, a perfectly symmetric shell is experimental-

ly unrealistic from fabrication. Second, as already mentioned, in

a regular experimental setup external gates and other contacts

may affect the wire symmetries. Third, a generic electric field

can be seen as a tunable parameter that can change the topolog-

ical phase diagram.

Figure 14: A schematic cross section of the hybrid semiconductor-
superconductor experimental device incorporating a core–shell wire.
The core is shown in grey and the shell in yellow. The blue blocks
represent the superconductor metals attached to the wire. The lower
superconductors can have phases ±θ relatively to the upper one
considered with zero phase. The red arrows indicate the electric field
included in our geometrical model. (A) In the triangular case it is
parallel to one side of the triangle. (B) In the square case it can be
either perpendicular or parallel to the superconductors.

We characterize the lateral size of the wire with the radius R of

a circle surrounding the shell, and with the shell thickness d. In

the present calculations we use R = 50 nm for both geometries,

but d = 12.5 nm for the triangular shell and d = 8 nm for the

square shell. These values are comparable to the dimensions of

the realistic core–shell nanowires mentioned in the experimen-

tal papers [32-36]. The material parameters of the shell are

chosen as for InSb. For these geometric parameters and with

meff = 0.014 the energy separation between the corner and side

states is about 41 and 38 meV for the triangular and square

case, respectively, meaning that for these parameters the low

energy physics can be very well described by the corner states.

Therefore we can use a Rashba SOC model similar to that of the

planar electron gas, but on a cylindrical surface of radius R, i.e.,

transformed from Cartesian to polar coordinates [54]. Since the

sides of the triangular shell are unpopulated this model is quali-

tatively reasonable, and can lead to Majorana states. As

mentioned before a more elaborated microscopic description of

the SOC is beyond the scope of the present paper, and here we

simply adopt in the numerical calculations the coupling con-

stant of bulk InSb, of 50 meV/nm.

For a symmetric triangle the corner states have equal probabili-

ty distribution at each corner [37], whereas in the presence of a

weak electric field E, here corresponding to 0.22 mV across the

radius R, they separate. The wave functions still have some

exponential tails along the sides of the polygon, which are

equivalent to the inter-chain hopping introduced earlier. The

phase diagram shown in Figure 15A is obtained with a real

valued superconductor gap Δ = 0.5 meV, and can be compared

with Figure 2B (where all  = 0). The fragmentation of the

phase boundaries in three dark lines reflects the presence of the

three corners (edges) of the prismatic wire. The boundaries ap-

proach each other when the aspect ratio of the triangle (d/R)

decreases, which results in reduced overlap of the wave func-

tions of the corner states [29].

The colors used indicate the minimum gap of the BdG spec-

trum at any wave vector k, on a logarithmic scale, so the repre-

sentation is complementary to the two-color scheme of

Figure 2B (or A). Here the topological phases can be identified

by the number of crossings of the dark lines. Along these lines

the gap closes at k = 0. Starting from any point outside the

boundaries one enters into a topological Majorana phase after

the first intercept of a dark line, then into the trivial phase after

the second intercept, and again into the topological phase after

the third intercept.

Next, in Figure 15B, we show the phase diagram obtained with

a complex valued superconductor gap, of constant modulus and

variable phases, which are zero at one corner and ±π/6 at the

other corners (i.e., θ = π/6 in Figure 14A). We obtain a splitting

(or anticrossing) of the phase boundaries at the former crossing

point, similar to that shown in Figure 6A, although now more

pronounced than in the chain model.

By further increasing the relative (angular) phase θ to ±π/2 the

boundaries of the quantum phase transitions become nearly

parallel, Figure 15C. This result can be interpreted as an in-

creased interaction between the corner states in the presence of

the phase shift θ of the superconductors. Another consequence

of this phase shift is that the absolute gap of the BdG spectrum

decreases in some topological regions, as indicated by the

diffuse reddish regions, suggesting that some topological states
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Figure 15: Phase boundaries for the triangular wire in the corner-state
domain. The color code describes the minimum gap of the BdG spec-
tra for all wave vectors. The character of each phase can be identified
by counting the boundary crossings along a vertical line, starting at
zero magnetic field, i.e., topological or trivial for an odd or an even
number of crossings, respectively. Along these boundaries the gap
closes at k = 0. Starting from any point outside the (A) All supercon-
ductor phases are equal to zero. (B) Phases are: 0 at one corner and
±π/6 at the other corners, i.e., θ = π/6 in Figure 14A. (C) The same
phase distribution, with θ = π/2.

may become gapless. This tendency is consistent with the

results of the multiple chain model, compare Figure 4B with

Figure 6C.

As with the coupled-chains model, we also tested the effect of

using two superconductors with different gaps, for example by

reducing the gap parameter Δ of one or two superconductors by

one half, and using no relative phase, θ = 0. The resulting phase

diagrams were qualitatively like those shown in Figure 15B,C,

although with lower energy gaps in the topological phases. This

indicates no particular gain by creating an asymmetry in this

way, compared to using the superconductors with the large gap

and creating the asymmetry via the relative phase θ.

Figure 16: Phase boundaries for the square wire in the corner-state
domain. The color code describes the minimum gap of the BdG spec-
tra for all wave vectors. The topological or trivial character of the
phases can be identified by the number of boundary crossings, as de-
scribed in the caption of Figure 15. (A) The superconductor phases
equal to zero. (B) The superconductor phases are zero and θ = π/2,
and the electric field perpendicular to the superconductors, see
Figure 14B. (C) Again θ = π/2, but with the electric field parallel to the
superconductors.

Finally, in Figure 16 we show the phase diagrams obtained with

the geometric model for the square shell profile. Here, in the

geometrical model, we use a particular setup for the square ge-

ometry, with only two superconductors. Unlike in the coupled-

chains model, in this case the superconductors are also

connected to the states localized on the sides of the polygon, if

those states would be populated, but this is not the case for the

chemical potentials used for Figure 16. First we note that we

obtain four phase boundaries, according to the presence of four

corner states. As for the triangular geometry the trivial or topo-

logical character of the phases is associated with odd or even

number of boundary crossings, respectively, when starting from

the outer regions. Therefore the central zone of the phase

diagrams is now topologically trivial. In Figure 16A we show
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the results with θ = 0, i.e., no phase shift between the supercon-

ductors (Figure 14B). The electric field corresponds now to

60 mV per radius, and obviously the results do not depend on

the two orientation considered here if θ = 0.

Remarkably, with a finite phase shift, here θ = π/2, the phase

diagrams are different when the electric field is perpendicular,

Figure 16B, or parallel to the superconductors, Figure 16C, re-

spectively. In the perpendicular case the phase frontiers are

mostly changed in the central region, whereas in the parallel

case they are more affected in the low field part. In the first case

the corner states with phase θ are separated energetically from

those with zero phase, but they still interact when they are all

grouped within or close to the superconductor gap. In the

second case the states with the same superconductivity phase

are separated, and the frontiers tend to become parallel.

Conclusion
In this work we have studied the phase diagram of core–shell

nanowires coupled with multiple parent superconductors using

a simplified tight-binding parallel-chain model. We found

that applying a potential that breaks the (intrinsic) rotation

symmetry of the wire does not modify the topology of the phase

diagram, but removes the gapless superconducting phases that

populate certain regions of the phase diagram and partially

stabilizes the topological superconducting phase. Remarkably,

finite phase differences between the parent superconductors

have dramatic effects. First, the topology of the phase diagram

is modified. In particular the “crossing points” that characterize

the phase diagram in the presence of a uniform supercon-

ducting phase disappear and, upon increasing the Zeeman field,

we have an alternance of trivial and nontrivial phases for all

values of the chemical potential. More importantly, the low-

field topological phase becomes stable for a wide range of

chemical potentials and the minimum critical field  can have

arbitrarily low values. We conclude that by controlling the rela-

tive phases of the parent superconductors coupled to the wire

one can stabilize the topological superconducting phase that

hosts the zero-energy Majorana modes and one can obtain a

powerful additional experimental knob for exploring a rich

phase diagram and observing potentially interesting low-energy

physics. Given the potential experimental significance of these

conclusions, we believe that a more detailed and systematic in-

vestigation of these effects, which is beyond the goal of the

present work, would be warranted.

In particular, the effect of electrostatic interactions on the prop-

erties of the normal electronic states in core–shell nanowires

can be important. The effect of interactions should be calcu-

lated using a Schrödinger–Poisson scheme, e.g., like in [55], to

take into account both the interface potential between the core

and the shell, and the presence of the carrier density in the shell.

In addition, for Majorana devices, one should incorporate the

effects due to the presence of a parent superconductor, includ-

ing the work function difference between the superconductor

and the semiconductor, as well as the effects generated by gate-

induced electric fields. An efficient method for implementing

the Schrödinger–Poisson scheme in calculations using realistic

three-dimensional models of hybrid devices has been recently

proposed in [56]. We emphasize that, due to the corner and side

localization, the electron–electron interactions have nontrivial

effects [57], which can modify the proximity-induced supercon-

ductor gap and the phase diagram of the Majorana states [58-

65]. The calculation of the effective potential profile is also

essential for estimating the SOC in the nanowire. Therefore, ac-

counting for the electrostatic effects represents a key step

toward a quantitative theory of Majorana physics in core–shell

nanowires.
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