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Abstract 

Movements of animals en masse are impressive phenomena that continue to fascinate 

scientists of all persuasions. Fishes display some of the most striking examples, and an 

extensive literature has explored the subject in marine species with long histories of 

commercial harvest, and/or strong, enduring cultural values. Yet, as recognition of the 

cognitive capacity of fishes grows, and strong inter-individual variability in behavioural 

traits among sympatric conspecifics is revealed as the norm, fundamental questions on the 

drivers underpinning both large-scale migrations, and the spatial outcomes of such moves 

require reexamination. This thesis comprises five papers that focus broadly on understanding 

the factors that shape movement decisions, distribution patterns and connectivity in 

schooling marine fishes. Using Atlantic herring (Clupea harengus L.) in Iceland, and striped 

red mullet (Mullus surmuletus L.) in the North Sea and Eastern English Channel for 

illustration, the work combines new Bayesian modelling approaches with analyses of otolith 

(ear stone) chemistry to test the role of intrinsic (i.e. collective behaviour, demographic traits, 

ontogeny) and extrinsic (i.e. the environment, fishing pressure, prey availability) factors in 

influencing the spatial dynamics of these commercially-important species. The outcomes 

highlight the natural synergy between model-based and empirical approaches in addressing 

questions on the movements of group-living fishes, and demonstrate how these can be 

integrated to guide fishery-management decisions, both under present conditions, and under 

future scenarios of environmental change. 

  



Útdráttur 

Hreyfingar og hjarðhegðun dýra er heillandi og áhrifamikil sjónarspil sem hefur  verið 

uppspretta ýmissa rannsókna.  Fiskar eru meðal þeirra dýra sem sýna hvað mest sláandi dæmi 

um hjarðhegðun og margar heimildir eru til um slíkt atferli hjá nytjastofnum sem og öðrum  

lífverum sjávar. Eftir því sem meiri vitneskja safnast um vitsmunalega getu fiska, sem og 

um breytileika á meðal einstaklinga innan sömu tegundar, vakna spurningar um hvaða þættir 

hafa mest áhrif á hegðun þeirra. Þessi ritgerð samanstendur af fimm vísindagreinum þar sem 

notuð eru líkön til að lýsa útbreiðslu fiska í sjó með sérstakri áherslu á að skýra þætti sem 

hafa áhrif á úbreiðslu íslenskrar sumargotssíldar (Clupea harengus L.) við Ísland og 

rauðröndungs (Mullus surmuletus L.) í Norðursjó og Ermasundi.   Notaðar eru nýjar 

Bayesian aðferðir í líkanagerð sem eru samtvinnaðar við greiningar á efnainnihaldi kvarna 

til að skoða innri þætti (s.s. samhæft atferli, lýðfræðilega eiginleika, einstaklingsþroska) og 

ytri þætti (s.s. umhverfisþætti, veiðiálag, fæðuframboð) sem áhrif hafa á dreifingu þessarra 

mikilvægu nytjastofna. Niðurstöðurnar sýna að með því að tengja saman innri  og ytri þætti 

þá má betur lýsa göngum torfufiska.  Þá er einnig sýnt fram á  hvernig nýta má niðurstöðurnar  

við fiskveiðistjórnun, bæði við núverandi umhverfisaðstæður og einnig ef 

umhverfisaðstæður breytast. 
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1 Introduction and synthesis 

“Should I stay or should I go?”, a question immortalised by The Clash, is one central to the 

lives and fates of migratory animals. Such decisions are often tricky to make, and can be 

strongly influenced by answers to other emergent questions, such as when, in which direction 

and how far should I move? Does the risk of predation associated with moving outweigh the 

benefits of productive foraging in distant areas? What are my neighbours, and older, 

experienced conspecifics doing, and what did I/we do in the past? In the case of marine 

fishes, movement decisions must also be reached under the highly dynamic environmental 

conditions typically encountered in the ocean; conditions that in themselves add 

uncertainties and often play a decisive role in the decision-making process.  

 

These issues go to the heart of this thesis. In the five papers that comprise it, I unite 

spatiotemporal distribution models for two marine fishes of high commercial importance 

across the North Atlantic, chemical analyses of fish otoliths (ear stones) and output from 

ocean models, with an overarching objective of gaining new insight into the reasons behind, 

and consequences of, migration in fully marine species.  

 

Specifically, I explore the importance of ‘intrinsic’ (i.e. behaviour, demographics, ontogeny) 

and ‘extrinsic’ (i.e. environment, fishing pressure, prey availability) factors in shaping 

movement and migratory decisions, and predict the spatial outcomes of these decisions, both 

in a contemporary context and under future scenarios of environmental change (Papers I, 

II, V). Continuing this theme, I next develop models to test how, and at which scales, 

ontogenetic and environmental processes impact on individuals’ expression of the chemical 

traits stored within their otoliths. This information is then used to chart connections among 

juvenile populations distributed across a large geographic domain, and between juvenile and 

fished adult populations (Papers III, IV). The intention here was to provide a quantitative 

template upon which estimates of population linkages could be enhanced, with subsequent 

benefits for the spatial management and conservation of fished stocks.  

 

The remainder of this chapter is structured as follows. I begin with some relevant background 

on movement and migration, highlighting fishes’ capacity as model organisms for testing 

theories in this arena. Next, I set the scene for each paper in turn, delving deeper into the 

literature to provide context for the questions addressed, then summarising the main findings 

of each study and how these link with the other papers in the thesis. Finally, I conclude with 

some perspectives and potential future directions. 

 

1.1 Movement and migration 

The coordinated, collective movements of animals across land- and ocean-scapes are 

spectacular phenomena that continue to fascinate scientific boffins, weekend naturalists and 

couch-bound Attenborough fans alike. Celebrated examples include the long-distance, 
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seasonal migrations of large African herbivores (e.g. Talbot and Talbot 1963), annual 

transitions between high-latitude feeding grounds and low-latitude breeding and calving 

areas by baleen whales (Dawbin 1966; Rizzo and Schulte 2009; Mate et al. 2015) and the 

return of anadromous salmonid fishes to their natal rivers to spawn (Banks 1969; Jonsson 

and Jonsson 2011). Despite their often iconic status, populations of many migratory species 

have declined steeply (e.g. Dekker 2003; Sanderson et al. 2006), and indeed the act of 

migration itself is increasingly recognised as a threatened process (Wilcove and Wikelski 

2008; Harris et al. 2009; Dybas 2014).  

 

Human activities are considered largely responsible for many of these losses. Growth in 

urbanisation, expanding agriculture and the construction of barriers are fragmenting habitats 

and disrupting migratory traditions (see Harris et al. 2009; Løvchal et al. 2017), often with 

dramatic ecological, socio-economic and/or evolutionary consequences, though not all of 

them detrimental (see Flack et al. 2016). Overexploitation of commercially-targeted species 

can exacerbate these issues, as can climate change, which is redistributing species across 

jurisdictional boundaries and creating mismatches between the scales of management units 

and those at which population processes operate (e.g. Astthorsson et al. 2012; Jansen et al. 

2016; Champion et al. 2018; Moore et al. 2018).  

 

In devising strategies to minimise the negative impacts of our actions with a view to ensuring 

the long-term survival and sustainability of harvested migratory species, it is crucial that we 

seek to understand the complexities of their life histories (Brower and Malcolm 1991; 

Righton and Walker 2013). This is no easy feat, yet progress may lie in quantifying how 

individual-level variability in behavioural, physiological and genetic traits manifests at the 

population level, and assessing the ecological and evolutionary repercussions of such 

variability. Further, we require both new tools and the refinement of existing ones to explore 

the synergies between such ‘intrinsic’ processes and ‘extrinsic’ forces in shaping the 

movement decisions that ultimately define the distribution of populations and their structure 

in space and through time (Alerstam et al. 2003; Dingle and Drake 2007; Flack et al. 2016). 

 

1.2 Fishes as exemplars 

Fishes provide some of the most interesting and well-studied examples of migratory 

phenomena in animals. In many cases, this level of attention can be attributed to a long 

history of commercial harvest (e.g. Barrett et al. 2000), strong and enduring cultural values 

ascribed to a particular species (Smith and Steel 1997; Atlas et al. 2017), and/or its ongoing 

socio-economic importance for consumptive purposes (Jakobsson and Stefánsson 1999). In 

the North Atlantic, the commercial value of Atlantic salmon (Salmo salar L.), Atlantic cod 

(Gadus morhua L.) and Atlantic herring (Clupea harengus L., hereafter ‘herring’) to 

economies in Europe and North America inspired early theoretical and experimental work 

on migratory tendencies in these species (Schmidt 1907; Scheer 1939; Fridriksson and Aasen 

1950; Jakobsson 1969). Such studies, in conjunction with more recent efforts (e.g. Iles and 

Sinclair 1982; Blaxter 1985; Corten 1993, 2002; Dragesund et al. 1997; McQuinn 1997; 

Nøttestad et al. 1999) have revealed remarkable complexity in schooling behaviours, 

movement patterns, migratory traditions and population dynamics – features that often differ 

among stocks of conspecifics, and the mechanics of which are still being explored (see 

section 1.3 below for details, and Huse et al. 2010; Grabowski et al. 2012; Libungan et al. 
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2015; Pampoulie et al. 2015; Huse 2016; Bárðarson et al. 2017; Papers I, III, IV, V for 

examples). 

 

1.3 Drivers of movement, migration and space 
use in fishes 

Numerous factors have been shown to influence the movement and migratory decisions of 

fishes, as well as the outcomes of these decisions – i.e. their resultant spatial distributions. 

For example, the use of visual stimuli and electroreception to locate landmarks is well known 

(Walton and Moller 2010; Silveira et al. 2015), whilst geomagnetic and imprinted olfactory 

cues provide compasses for returning anadromous salmon (Hasler and Scholz 1983; 

Lohmann et al. 2008; Putman et al. 2013). Moreover, environmental gradients, the 

distribution of predators (both human and aquatic), competitors and prey, density-dependent 

processes, demographic structure and social cues can also act strongly, and oftentimes 

interactively, in shaping occurrence and abundance patterns (Swain 1999; Fisher and Frank 

2004; Spencer 2008; Loots et al. 2010; Planque et al. 2011; Ciannelli et al. 2012; Bartolino 

et al. 2014; Papers I, II).  

 

1.3.1 Group-living and sociality  

Of particular importance for fishes that school, or animals that live within groups or 

‘societies’ more generally, are the realities and pressures enforced by group living itself. 

Individuals can gain much from this kind of lifestyle, often experiencing lower predation 

risk, improved foraging efficiency, enhanced navigational accuracy and heightened capacity 

to sense dynamic environmental gradients, among other benefits (Berdahl et al. 2013, 2016). 

These gains provide strong incentives to stick together, whilst also creating opportunities for 

movement decisions to be made collectively and optimised for maximum group benefit 

based on democratic consensus (Conradt and Roper 2005; Sumpter and Pratt 2009). Indeed, 

the spatial proximity, number and status of conspecifics within groups can strongly affect 

individuals’ decisions about how, when and where to move; decisions simultaneously 

influenced by, and influencing, the behaviour of the collective around them (Conradt and 

Roper 2005; Sumpter and Pratt 2009; Strandburg-Peshkin et al. 2015; Berdahl et al. 2016). 

In exploring these ideas with shoals of three-spined sticklebacks (Gasterosteus aculeatus), 

Sumpter et al. (2008) and Ward et al. (2008) demonstrated that collective movement 

decisions can follow non-linear ‘quorum’ rules – the likelihood of a single stickleback 

choosing a certain route rising sharply beyond a threshold number of sticklebacks in the 

shoal that recently chose that same route. In subsequent experimental work (Ward et al. 

2011), these authors also showed that quorum responses can improve decision accuracy, and 

that larger shoals often make better decisions, sensu ‘the wisdom of crowds’ (Surowiecki 

2004).  

 

Similar patterns seem to emerge across a wide range of taxa and ecological functions (see 

Sumpter and Pratt 2009), though comparable consensus might also be achieved through 

leadership by a minority of ‘experienced’ individuals, or those with strongly-held 

preferences (Reebs 2000; Huse et al. 2002). Usually, only a few well-informed leaders are 



4 

needed to produce highly accurate movement decisions (Reebs 2000; see also Berdahl et al. 

2018); however, the complete absence of such leaders may lead to poor group navigation 

(Helfman and Schultz 1984). Such observations, in conjunction with growing recognition of 

the cognitive abilities of group-living fishes (Hotta et al. 2015) strengthens arguments for 

the existence of social and collective learning and tradition formation in some species (see 

Brown 2015; Berdahl et al. 2018 for reviews) in which information on previously-used 

migration routes is thought to be passed down from older, experienced fish to younger, naïve 

ones, communicated within cohorts and remembered (Corten 1993; McQuinn 1997). Further 

support for such ideas derives from evidence for time-place learning in fishes (e.g. Brännäs 

2014), and experimental demonstrations of accurate short- and long-term memory (Brown 

2001; Hotta et al. 2015). 

 

So, although concepts of animal consciousness and sentience remain hotly debated (Dawkins 

2001; Rose et al. 2014; Brown 2015), the aforementioned studies on fishes, and theoretical 

and empirical work on other taxa demonstrate that aspects of sociality, learning and memory 

can play important roles in determining migration patterns and space use in group-living 

animals (e.g. Couzin 2009; Guttal and Couzin 2010; Petit et al. 2013; Kao et al. 2014; Merkle 

et al. 2014; Andersson et al. 2015; Berdahl et al. 2018). Despite clear fitness advantages at 

ecological time scales, the mechanisms, ecological outcomes and evolutionary consequences 

of sociality remain unclear for many social animals. In light of such uncertainties, there have 

been recent calls for further work into how animal groups adapt their collective decisions 

dynamically, and how our observations of group-level actions (e.g. detection of realised 

spatial distributions) can be influenced by a collective’s previous experiences, or memories 

of them (Biro et al. 2016). 

 

1.3.2 Disentangling sociality and extrinsic processes 

To progress on this front, we need to quantify the synergies between these socially-driven 

factors and other extrinsic processes in how movement decisions are reached and subsequent 

distribution patterns realised. This is a challenging task, particularly for wild, long-lived 

fishes that are rarely directly observable beyond the length of a survey cruise or a fishery 

trawl shot. Yet these data are crucial, especially for migratory, commercially-targeted stocks 

that straddle international and/or jurisdictional borders – stocks for which accurate, spatially-

resolved predictions of occurrence and abundance patterns are needed to balance harvest and 

conservation goals. 

 

When mechanistic information is scarce and observational data plentiful, a sensible first step 

might involve identifying the proximate processes acting on the level of biological 

organisation of interest (e.g. individual-, population-, species-level) based on available 

ecological knowledge and/or theory, then defining the spatial and temporal scales at which 

these processes operate (Levin 1992). As an example, coordinated movements of a 

hypothetical population might emerge as a result of 1) exposure to, and retention of specific 

cues experienced during early age (e.g. natal homing in salmon), 2) the social transmission 

of long-standing traditions among individuals and cohorts (e.g. ‘The adopted migrant 

hypothesis’ in herring – McQuinn 1997), or 3) the rapid spread of information within the 

school driven by school-wide responses to environmental gradients, prey resources or 

predation threats (e.g. Nøttestad et al. 1996), or combinations thereof. Capturing such 

processes effectively, and at scales appropriate to the question(s) at hand within spatially-



5 

explicit, temporally-dynamic models, would provide a base for improving ecological 

knowledge, generating new hypotheses and providing reliable spatiotemporal predictions of 

occurrence and/or abundance patterns. 

 

1.3.3 Papers I and II 

In the first two papers in the thesis (i.e. Papers I, II), we develop these types of space-time 

distribution models for stocks of two long-lived, commercially-important fish species with 

vastly different life-history strategies and geographic distributions – Icelandic summer 

spawning (ISS) herring (C. harengus), and North Sea striped red mullet (Mullus surmuletus 

L.). We took an hypothesis-driven approach to model development for these stocks, with 

two main objectives: 1) to identify key processes shaping current and past distribution 

patterns and to define the scales at which these operate, and 2) to generate accurate 

predictions of distributional patterns that can help guide fishery-management directives. 

 

Modelling shifting fish distributions 

The models we built fall within the class of empirical statistical models, as defined by Levins 

(1966). These are in essence ‘correlative’, but draw on mechanistic underpinnings as related 

to concepts of Grinnellian and Eltonian niches (Hutchinson 1957; Soberón 2007) (see Paper 

I – Appendix 9 for a discussion).  

 

Models were fitted in Bayesian framework, using integrated nested Laplace approximation 

(INLA) and the Stochastic Partial Differential Equations (SPDE) approach (Rue et al. 2009; 

Lindgren et al. 2011) to explicitly capture spatial and temporal dependencies in the data. The 

merits of the Bayesian approach for this type of hierarchical model are many (Gelfand et al. 

2006; Gelman and Hill 2007; Royle et al. 2007). Without reviewing these exhaustively here 

(see Elderd and Miller 2016 for a comprehensive appraisal), we highlight the inherent way 

in which random effects are handled as parameters of interest, resulting in fully specified 

probability distributions from which information on the intensity and uncertainty of the 

effects can be drawn; the option to incorporate prior knowledge based on existing empirical 

data or theory; and the ability to robustly quantify and propagate uncertainty through all 

modelling stages. 

 

Model fitting using INLA is computationally efficient, and provides accurate 

approximations of the posterior marginal distributions of model parameters that show high 

concordance with Markov Chain Monte Carlo simulations (Rue and Martino 2007; Rue et 

al. 2009; Held et al. 2010). Since Lindgren and colleagues proved that a continuously 

indexed Gaussian field described by a Matérn covariance function can be represented as a 

discretely indexed Gaussian Markov random field (GMRF) (Rue and Held 2005; Lindgren 

et al. 2011), rapid development of the SPDE approach within the ‘R-INLA’ package in R 

has facilitated fitting of an expanding suite of hierarchical spatial and spatiotemporal models 

to spatial point patterns (Krainski et al. 2016). This approach has recently proven useful in 

analyses of georeferenced fisheries datasets, which are often data- rich and where inference 

at the scale of point locations, rather than grids, is required (e.g. Cosandey-Godin et al. 2015; 

Ward et al. 2015; Ono et al. 2016).  
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Study species 

Despite their many differences morphologically (see Figures 1.1, 1.3) and ecologically, both 

herring and striped red mullet share long histories of commercial exploitation, and have 

continuing high cultural and commercial significance across the North Atlantic and beyond 

(Reñones et al. 1995; Jakobsson and Stefánsson 1999; Geffen 2009; Mahé et al. 2014; Huse 

2016). Importantly, key questions regarding the triggers and outcomes of migratory 

decisions remain unresolved for both species, for which answers are needed to inform spatial 

management actions for the fisheries targeting them. We profile both species now. 

 

Atlantic herring 

Herring, a pelagic, dense-schooling clupeid, is one of the most widely-distributed and 

heavily-fished species in the North Atlantic Ocean. ‘Sild’ as they are known in Icelandic, 

occupy a unique position in the history of the Nordic region in both socio-economic and 

ecological contexts. Indeed, herring fishing in Icelandic waters has often been called 

Iceland’s first industry. Commercial fishing for the species began in earnest in the 1880s, 

with effort focussed initially on the east coast fjords. However, due to easier access to fishing 

grounds in the north, interest soon shifted to areas around Eyjafjörður and Siglufjörður. The 

herring industry, producing salt herring, fish-meal and oil, sometimes accounted for nearly 

half of Iceland's national income, and so herring came to be known as the silver of the sea, 

and Iceland’s gold (Sigurðsson et al. 2007).  

 

 
 

Figure 1.1. Sketch of a mature herring (Clupea harengus). (Jonathan Couch, 1862). 

 

Notwithstanding its clear commercial appeal, aspects of the species’ biology, schooling 

behaviour and rather unpredictable migration patterns have captured the imagination of 

fisheries researchers for centuries. In fact, several of the major theoretical advances in 

fisheries ecology have stemmed from early work on herring (see Geffen 2009 for a review). 

The species is characterised by complex population dynamics (Iles and Sinclair 1982; 

Libungan 2015; Huse 2016) perhaps best described by a metapopulation model (McQuinn 



7 

age 4 

age 5+ 

age 4:age 5+ 

1997), with individuals within local populations forming dense schools for much of the year 

and undertaking large-scale migrations between spawning, feeding and overwintering areas 

for which strong fidelity is exhibited in most, but not all years (Fernö et al. 1998; Langård 

et al. 2014). Several hypotheses have been advanced to explain this fluctuating 

‘conservatism’ in migratory strategies (Jakobsson 1969; Corten 2002), with a particular 

focus recently on the drivers of the striking shifts in winter distribution observed periodically 

(Óskarsson et al. 2009; Huse et al. 2010). Current thinking favours aspects of McQuinn’s 

‘adopted migrant hypothesis’ (McQuinn 1997), akin to Petitgas et al.’s ‘entrainment 

hypothesis’ (Petitgas et al. 2006), which both assert the importance of social and collective 

learning. When tuned to wintering herring, these hypotheses contend that naïve, first-time 

winterers (i.e. at age 3 in the ISS stock) learn the location of traditional wintering areas by 

schooling with older, experienced winterers (i.e. age 4+), typically returning to these same 

areas subsequently (Höglund 1955). However, when the learning process is disrupted in 

some way, dramatic shifts in winter distribution seem to occur, suggesting a break in 

tradition when teachers are few (Corten 1999, 2002; Huse et al. 2002, 2010) (Figure 1.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. An investigation by Huse et al. (2010) into the wintering dynamics of Norwegian 

spring spawning herring showed that the five major shifts in wintering distribution observed 

over ~60 years (vertical lines) coincided with years in which the ratio of first-year spawner 

abundance (i.e. age 4) to repeat spawner abundance (i.e. age 5+) was high. The authors 

suggested that when there is a numerical domination of naïve fish in the population, there 

are too few experienced teachers available to guide the younger fish to traditional wintering 

areas, and hence, new migration routes are forged. Figure redrawn from Huse et al. (2010). 

 

So, which factors emerge as key drivers of migratory decisions under these circumstances? 

A large body of work has demonstrated the importance of both bottom-up (e.g. climate, 

local-scale environment, zooplankton biomass) and top-down (i.e. fishing effort, predation 

and competition) processes in shaping the spatial distribution and biomass-at-age for several 

herring stocks (e.g. Glover 1955; Jakobsson 1969; Bainbridge and Forsyth 1972; Bainbridge 

et al. 1978; Huse and Ona 1996; Corten 2000; Maravelias and Reid 1995, 1997; Maravelias 

et al. 2000a, b; Kvamme et al. 2003; Óskarsson et al. 2009; Lindegren et al. 2011; Trenkel 

et al. 2014). However, spatially-resolved information on how migratory traditions are jointly 

influenced by collective learning or spatial ‘memory’, the demographics of the population 

and relevant extrinsic processes is currently lacking. 
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I address this issue in Paper I, in which we fit SPDE models to fishery and survey data for 

ISS herring to investigate wintering dynamics around Iceland across more than two decades 

(i.e. from 1991 to 2014). We included covariates reflecting dynamic (e.g. sea surface 

temperature) and static (e.g. bottom depth) environmental factors, the distribution of prey, 

and recent fishing pressure at scales matching the catch records, and through an index 

capturing distributional persistence over time, derived two proxies for spatial memory of 

past wintering sites. The winter occurrence pattern in one year was a key driver of the pattern 

in the next, its influence increasing when adult population size was large. Though the 

mechanisms remain uncertain, we suggest that a ‘wisdom of the crowd’ dynamic may be 

acting, by which directionality towards traditional wintering grounds improves in larger, 

better organised schools. Our results also exposed strong synergies among demographic 

processes and environmental effects in shaping winter distribution patterns, whilst recent 

fishing effort had little impact. Notably, we were able to accurately forecast winter 

distribution patterns one year in advance, highlighting how demographic inputs can improve 

predictions from dynamic models, and how such models might be useful for fishery-

management applications. 

 

Striped red mullet 

In collaboration with colleagues at Ifremer in France, we applied similar, though less 

complex models to explore the movement patterns of striped red mullet (hereafter ‘mullet’) 

in the North Sea and Eastern English channel across 20 years (i.e. 1995 to 2015) (Paper II). 

Although relatively ‘data-poor’ when compared with the long-term datasets and rich 

literature devoted to herring (but see Heesen 1996), published accounts on the biology of 

this demersal mullid (see Figure 1.3) still span a century, beginning with the early work of 

Fage (1909) and Desbrosses (1933, 1995) (see N´Da and Déniel 1993; Mahé et al. 2013 for 

more recent studies on growth and reproductive biology). 

 

 
 

Figure 1.3. Sketch of a mature striped red mullet (Mullus surmuletus). (Jonathan Couch, 

1862). 
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Initially treated as a valuable by-catch species, mullet is now fished extensively throughout 

the North Sea, the English Channel, the Bay of Biscay, off Spain and France, and the 

Mediterranean Sea (Reñones et al. 1995; Mahé et al. 2014). Indeed, abundances and catch 

rates have increased markedly over the past three decades in the Eastern English Channel 

and southern North Sea fishery that targets what is now recognised as the ‘northern 

subpopulation’ (Beare et al. 2005; ICES 2012; Mahé et al. 2014). In the Eastern English 

Channel for example, landings are now greater than 10 times 1990 levels (Marchal 2008; 

Carpentier et al. 2009). Yet, the species still has no assigned quota in this region, with 

quantitative monitoring of exploitation rates only commencing in 2007 (ICES 2012).  

 

Paper II focuses on the northern subpopulation, one that displays strong phenotypic 

differences and little mixing with either the ‘southern zone subpopulation’ (in the Bay of 

Biscay) (Mahé et al. 2014) and the ‘mixing zone subpopulation’ (in the Celtic Sea and the 

Western English Channel) (Benzinou et al. 2013). Despite, indications of a recent, warming-

induced, northwards range expansion by this northern subpopulation (Beare et al. 2005; 

Poulard and Blanchard 2005; Mahé et al. 2014), the role of sea surface temperature and other 

environmental factors thought to influence habitat choice in mullet (e.g. salinity, bathymetry, 

sediment type) (ICES 2017a) requires clarification using data spanning the full geographic 

range of the subpopulation, over several years. Understanding how these extrinsic processes 

shape the migration and distribution patterns of this subpopulation is the primary objective 

of Paper II. To do this, we united multiple fishery and survey datasets with differing spatial 

and temporal extents within a series of hierarchical Bayesian models, again fitted using the 

SPDE approach (Rue et al. 2009; Lindgren et al. 2011; Krainski et al. 2016). We found that 

mullet occurrence was positively correlated with water temperature and salinity, and that 

mullet distribution was widespread and rather uniform in some years and small and patchy 

in others. Despite marked inter-annual variability in distributional range, we observed 

relatively consistent patterns in seasonal migration in this subpopulation, with mullet 

occupying waters in the north-east of the North Sea in winter, moving south during 

spring/summer and entering the Eastern English Channel in autumn. 

 

Our analysis is timely, as the regular fluctuations in abundance experienced by this northern 

subpopulation have increased in magnitude over the past five years, concurrent with the loss 

of the largest, oldest spawners (ICES 2015, 2017a). Moreover, a recent assessment of length-

based indicators provided strong evidence of ‘growth overfishing’ (ICES 2017a). Taken 

together, these results point to a stock that is exploited beyond sustainable limits, with further 

declines in biomass likely given recent poor recruitment (ICES 2017a). There is currently 

no total allowable catch (TAC) specified for this subpopulation, and the implementation of 

more restrictive management actions is currently being debated. We believe that the new 

insights gained here into the environmental sensitivity and space use of the species near its 

northern range limit could contribute to making wiser, spatially-informed management 

decisions in this regard. 

 

1.4 Connectivity among populations and stocks 

Of equal, if not even greater importance for managing migratory species distributed across 

wide geographic domains are reliable data on how populations or stocks of conspecifics are 

connected (Cowen et al. 2007; Fogarty and Botsford 2007). Understanding the ecological 
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and evolutionary processes that give rise to contemporary patterns of connectivity, and 

defining the scales of this connectivity itself (e.g. across space, time and through ontogeny) 

provides a basis for delineating management boundaries that better reflect the scales at which 

populations (or stocks) actually function (Leis et al. 2011; Moore et al. 2018).  

 

Recent advances in applied-tag technology (e.g. acoustic, archival and satellite tags), in 

genetic techniques (e.g. next-generation sequencing, detection of Single Nucleotide 

Polymorphisms – SNPs) and in linkages between ocean models and species’ biological 

characteristics are allowing researchers to define these scales with increasing confidence 

(Treml et al. 2012; Grewe et al. 2015; Bárðarson et al. 2017; Halfyard et al. 2017; Scutt 

Phillips et al. 2018). However, questions on how life history stages are linked, both 

geographically and ecologically, remain open for many exploited fish populations (Cowen 

et al. 2007). Juveniles and adults of the same species often prefer different habitats, vary in 

their environmental tolerances and have distinct diets, and as such, these groups can find 

themselves biologically and spatially isolated throughout much of their lives (e.g. 

Tsukamoto et al. 2002). Even within juvenile cohorts, striking variation is sometimes seen 

in individual size, physiological and behavioural traits (Fiksen et al. 2007), past experience 

(Shima and Swearer 2010, 2016) and personality (Cote et al. 2010). These individual-level 

(intrinsic) differences might, in conjunction with local environmental (extrinsic) pressures, 

manifest in marked phenotypic diversity among groups of similarly aged juveniles 

(Freshwater et al. 2019), in turn influencing migratory capacity/tendency (Nanninga and 

Berumen 2014), survival to adulthood (Shima and Swearer 2010; Jørgensen et al. 2014) and 

the composition and spatial arrangement of nursery ‘source’ populations across an ocean 

scape. 

 

In studies of ‘source-sink’ dynamics, quantifying the scales at which such spatially-

structured populations might differ, both in their expression of intrinsically-driven traits, and 

in their exposure to extrinsic factors, can also reveal the scales at which they connect. In a 

fishery-management context, two often interlinked applications of such information are to 

estimate mixing rates among putative ‘source’ populations in order to assess their relative 

contributions to adult ‘sink’ populations.  

 

Fish otoliths (ear stones) contain arguably the richest repositories of data for this purpose. 

These structures, composed mainly of CaCO3 and located within the inner ear of all teleost 

fishes, play a vital role in the fish’s sensory functioning, balance and hearing, and comprise 

lifetime, individual-level data on phenotypic traits that can vary strongly within and among 

populations or stocks (Macdonald and Crook 2010; Huey et al. 2014; Libungan et al. 2015). 

The discovery that permanent growth increments are deposited daily onto the otolith makes 

them the gold standard of accurate age recorders (Campana and Neilsen 1985). Yet, the 

sensitivity of both otolith morphology and otolith chemical constituents to intrinsic 

processes (e.g. physiology, metabolism, growth, age, genetics) and/or extrinsic (e.g. 

environmental) factors, also highlights otoliths’ unique potential as ‘natural tags’ in 

population connectivity studies, used either alone (e.g. Burke et al. 2008; Neubauer et al. 

2010; Libungan et al. 2015; Wright et al. 2018), or in combination with other complimentary 

approaches (e.g. Ashford et al. 2012; Bárðarson et al. 2017; Taillebois et al. 2017). 
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1.4.1 Harnessing otoliths’ true potential 

To optimise otoliths’ value for these types of population-delineation applications, we need 

to acknowledge that the external environment can place strict limits on intrinsic processes 

(Pörtner and Peck 2010; Holt and Jørgensen 2014), and to quantify how these factors jointly 

influence the expression of traits that we measure in these structures. Moreover, innovations 

in statistical approaches that use the chemical traits locked within otoliths as population 

markers may allow us to honour their full potential for such applications. Traditional 

modelling approaches, while evolving (see Mercier et al. 2011; Jones et al. 2017; Niklitschek 

and Darnaude 2016), often fail to consider the mechanisms driving inter-individual 

variability in chemical traits, and how these manifest at the site-, population- or stock-level. 

Moreover, they rarely assess data- and model-related uncertainties explicitly. In the context 

of understanding connections among ‘source’ populations and their links with mixed ‘sink’ 

populations targeted by fisheries, these deficiencies make formal tests of hypotheses on the 

significance of source location and quality (see Beck et al. 2001) difficult, and might easily 

lead to sub-optimal management outcomes, especially when sampling is sparse, or sample 

sizes low. 
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1.4.2 Papers III and IV 

Papers III and IV centre on such topics. Again, we use the ISS herring stock for illustration, 

one that still supports a viable commercial fishery for Iceland (Jakobsson and Stefánsson 

1999; ICES 2018) despite undergoing a decade-long decline as a result of serial poor 

recruitment, severe disease outbreaks (Óskarsson et al. 2018a) and two mass mortality events 

during the 2012/2013 winter (ICES 2017b; Óskarsson et al. 2018b). Data on the 

spatiotemporal structure of nursery populations within this stock are limited, and the origins 

of individuals within the fished adult populations remain largely unknown.  

 

Data for both papers derive from otoliths of juvenile herring captured on their nursery 

grounds around the Icelandic coast over three autumns (i.e. 2013, 2014, 2015) (Figure 1.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. A) Chasing juvenile ISS herring aboard w/w Dröfn RE-35. Ísafjarðardjúpi, 

November 2014. (Photo: Jed Macdonald). B) A selection of age 1 and age 2 ISS herring 

fresh from the trawl. C) Polished sagittal otoliths from age 2 ISS herring (viewed under 

reflected light) awaiting the MicroMill (see Papers III and IV for analytical details). 

 

We measured the concentrations of a suite of elemental (i.e. Li, Mg, Ca, Mn, Zn, Sr, Ba) and 

stable isotopic (i.e. δ13C, δ18O) traits (hereafter ‘markers’) in these otoliths, combining laser- 

A 

B C 
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and solution-based mass spectrometry techniques to analyse otolith material accreted during 

nursery residence, representing the last weeks of each juvenile’s life prior to capture. 

 

In Paper III, we present results from a field-based test of intrinsic influences on otolith 

chemical markers. We take advantage of a sampling scheme in which two age classes were 

captured simultaneously in the same trawl haul, at a subset of nursery sites, and develop a 

series of Bayesian mixed effects models to disentangle ontogenetic influences (i.e. age- and 

growth-related factors) and environmental effects (i.e. ambient salinity and temperature) in 

shaping otolith chemical expression. We detected strong age-related, site-specific declines 

in several elemental markers, high individual-level variability within sites, within age classes 

for all markers, and evidence of temperature and salinity effects on otolith δ13C and δ18O at 

the population-level. We harnessed this information to predict marker concentrations at all 

nursery sites, both sampled and unsampled, generating maps that accurately reproduced the 

observed heterogeneity in otolith chemistry across the juveniles’ full geographic range. The 

models developed here were relatively simple, yet provided direct inference on both the scale 

of individual-, site-, age class- and population-level variation in otolith chemistry through 

time, and the synergies between marker expression and intrinsic and extrinsic factors. Whilst 

tuned to ISS herring, we note that spatially-explicit predictions from these types of models 

could provide valuable initial estimates of population connectivity for other widely-

distributed species, particularly when sampling coverage is patchy. 

 

We expand on these ideas in Paper IV, in which we tackle some open questions relating to 

the connections among, and fidelity to nursery areas, and the contribution these make to 

fished adult populations. Using an extended version of the dataset analysed in Paper III, 

and informed by its findings, we fitted a series of Bayesian multivariate and finite mixture 

models to address four key aims: 1) to define the scales of spatial and temporal variability 

in otolith chemical traits in nursery-resident juveniles across their full distributional range; 

2) to test the long-held theory that juveniles are retained within specific nurseries following 

settlement, prior to joining the adult component of the stock at age 3; and 3) to quantify the 

relative contribution of nursery populations to a sample of age 3 adults caught in the winter 

fishery operating off the west coast of Iceland in November 2015. Additionally, we explored 

if/how geographic distance from the wintering grounds, and/or nursery ‘quality’ (sensu the 

‘nursery-role hypothesis’ – Beck et al. 2001) mediate nursery contributions (aim 4).  

 

As part of this work, we used simulations to develop some new rules of thumb for assessing 

the magnitude of multivariate group differences in a Bayesian setting. We leant on these to 

classify nursery populations into better-delineated ‘source’ populations that respect the scale 

of spatial, temporal, individual- and population-level variation we observe in the data. We 

found that population-level differences in otolith chemical markers generally increased with 

both the geographic distance among nursery sites and the temporal distance between 

sampling periods, manifesting in patterns of coast-wide marker heterogeneity that shifted 

through time (aim 1). Output from the finite mixture models supported the hypothesis that 

juvenile herring exhibit strong year-to-year fidelity to nursery sites (aim 2), and 

demonstrated the collective importance of multiple sources for a fished adult ‘sink’ 

population (aim 3). Finally, we found no evidence of a connection between source 

contribution and distance from the wintering grounds, and no support for the ‘nursery-role 

hypothesis’ in this system (aim 4). The results pertaining to aims 2, 3 and 4 must be 

considered in light of the potential for unsampled, or poorly-characterised source 

populations to have contributed to the ‘mixed samples’ of age 2 and 3 herring, an uncertainty 
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that our finite mixture models cannot account for. Infinite mixture modelling approaches 

deal with this issue explicitly (Neubauer et al. 2013; Loff and Neubauer 2018; Reis-Santos 

et al. 2018), and I am exploring these in ongoing work. Notwithstanding these caveats, the 

Bayesian framework we present for ISS herring offers a quantitative basis for assessing the 

scale of connections among putative sources, elucidating nursery-residence patterns, and 

clarifying the role of nurseries as contributors to harvested populations more generally. 

 

1.5 Fishing- and climate-related distribution 
shifts 

The direct impact of fishing on commercially harvested species, including herring, can be 

immense (Jennings and Kaiser 1998; Corten 2002; Worm et al. 2009; Dickey-Collas et al. 

2010). Though we found no clear evidence for a fishing effect in driving winter distribution 

patterns in the ISS stock (see Paper I), it is increasingly recognised that intense exploitation 

of targeted fish populations may reduce their resilience to environmental change (Planque et 

al. 2010), and that fishing and climate can interact to influence long-term distribution 

patterns (Engelhard et al. 2011) and spatial population structure (Ciannelli et al. 2013). 

 

In saying this, changes in climate alone may sometimes be pervasive in rerouting migratory 

paths and reshaping marine fish distributions (Perry et al. 2005; Astthorsson et al. 2012; 

Petitgas et al. 2013; Champion et al. 2018), although often, other interactive and/or 

unmeasured factors are likely at play (Thorson et al. 2017). We saw some sensitivity to 

environmental factors, particularly temperature and salinity, or the proxies they reflect, in 

the movements of the northern subpopulation of mullet throughout the North Sea and Eastern 

English Channel (see Paper II), and in the wintering patterns of ISS herring (see Paper I). 

Similar sensitivities have been noted for other herring stocks during winter (e.g. Corten 

1999), and at different times of the year. For example, in a series of papers focused on North 

Sea herring, Maravelias and colleagues demonstrated strong effects of temperature, salinity, 

stratification, zooplankton biomass and bottom topography on pre-spawning summer 

distribution (e.g. Maravelias and Haralabous 1995; Maravelias and Reid 1997; Maravelias 

et al. 2000a, b). The direction and magnitude of these effects differed substantially from the 

results presented in Paper I, a finding that was anticipated given that the ISS stock is located 

near the northerly range edge for the species, and is therefore exposed to vastly different 

environmental conditions to those encountered in the North Sea. Moreover, these North Sea 

papers and similar studies in Nordic seas (e.g. Misund et al. 1998; Jakobsson and Østvedt 

1999; Kvamme et al. 2003; Nøttestad et al. 2007; Broms et al. 2012) have focused largely 

on herring distributions during spring and summer, periods of high feeding activity in which 

adult herring can be tightly associated with prey resources either directly (e.g. Holst et al. 

1997; Maravelias and Reid 1997; Olsen et al. 2007) or indirectly through hydrographic 

proxies.  

 

These examples go to illustrate how environmental and biotic factors can interact in complex 

ways to shape feeding, pre-spawning and overwintering distributions in herring. Moreover, 

recent experimental evidence for decreased survivorship and growth in larval herring under 

elevated temperature conditions (Sswat et al. 2018), and historic observations of recruitment 

suppression in Icelandic herring stocks during the unfavourably cold ‘ice years’ of the late 
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1960s (Jakobsson and Stefánsson 1998, 1999), highlight the need for further work on the 

potential consequences of future environmental change on herring population dynamics 

more broadly. Whilst a simplification of the processes at play, an empirical means to 

reconstruct lifetime environmental histories for individual fish would, either alone, or in 

conjunction with process-based or simulation modelling, provide a valuable baseline from 

which to predict how future ocean warming might drive range contraction or expansion, and 

for herring and other species of strong commercial interest, to plan how management 

strategies should best be adapted. 

 

1.5.1 Paper V 

In Paper V, I present a detailed tutorial on the empirical aspect of this equation. Specifically, 

I measure stable oxygen isotope (δ18O) profiles in otoliths using secondary ion mass 

spectrometry (SIMS) to define a thermal niche for five adult (i.e. age 6) ISS herring captured 

off the east coast of Iceland in 2014. I then apply this data to make predictions on how ISS 

herring distributions might shift under projected changes in ocean temperature across the 

region (see Darnaude and Hunter 2018 for details on the processes driving δ18O 

incorporation into otoliths, and a recent application). Briefly, through a series of equations 

that relate δ18O concentrations in the otolith to ambient δ18O, salinity and temperature, I 

estimated the life-long temperature histories of each of the five herring and defined an 

optimal thermal niche for these individuals. In making some rather large assumptions around 

adherence to this niche throughout life (see Paper V for details), I then predicted how a 1°C 

increase in water temperature throughout a region off the northeast coast forecast to undergo 

warming of up to 2°C by 2046–2065 (IPCC 2013) might affect the distributional range of 

adult ISS herring populations. The results suggest that future warming may create 

opportunities for poleward expansion in the adult component of the stock, all else being 

equal. I stress the preliminary nature of these results. The tutorial was designed to illustrate 

the type of information we can glean from otoliths and how it can be used in a forecasting 

context to predict likely distribution shifts in a rapidly warming ocean (IPCC 2013; 

Resplandy et al. 2018). I am exploring these approaches further in ongoing work, some of 

which I detail in the next section. 

 

1.6 Conclusions and further work 

By drawing together empirical data from a diverse array of sources and developing new 

models to suit, the papers presented in this thesis collectively add to a growing body of 

knowledge on the underlying drivers of movement, migration and connectivity in animals 

on the move. A unifying theme ‘connecting’ the analyses revolves around defining the scales 

at which individuals and populations of commercially-harvested marine fishes connect 

across an ocean scape, and understanding how these connections are moulded by intrinsic 

and extrinsic processes. I took a multi-pronged approach to exploring these ideas, using 

stocks of two species with vastly different life history strategies for illustration. In Papers I 

and II, we developed a series space-time regression models for adult ISS herring and the 

northern subpopulation of striped red mullet to investigate the interplay between sociality, 

stock demographics, the environment and fishing in shaping occurrence patterns through 

time. In Paper III, we isolated ontogenetic influences on the expression of chemical markers 
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stored in juvenile herring otoliths, detecting high individual-level variability in marker 

expression, and capturing this information to predict the scales of marker heterogeneity 

among spatially- and temporally-separated juvenile populations. We built on these findings 

in Paper IV, in which we established some quantitative rules for assessing multivariate 

differences in measured traits, and presented a novel Bayesian modelling approach for 

classifying ‘source’ population structure. Our rules permitted formal tests of hypotheses on 

nursery site fidelity and nursery contribution to fished adult populations, offering important 

insights into the structure and connectedness of ISS herring populations. We hope these 

findings will help protect key nursery populations and guide spatial management decisions 

for herring fisheries in Icelandic waters. Finally, in the tutorial presented in Paper V, I show 

how otoliths can be used to estimate the temperature histories of individual fish, to define 

thermal niches, and to forecast possible range shifts under future warming scenarios.  

 

Yet, there are still many questions left answered. For example, we know that dispersal of 

eggs, larvae and young juveniles is a key process governing successful recruitment in many 

marine fishes. For ISS herring, information on larval transport between spawning grounds 

and nursery fjords remains scarce – a situation that hampers the forecasts of recruitment 

strength needed to ensure the sustainable management of the fishery. Expanding on the 

approach used in Paper V, one piece of ‘work in progress’ involves integrating otolith δ18O 

and elemental measurements encompassing the full life history histories of juvenile herring 

within individual-based simulation models. Such a coupling would allow us to estimate 

herring dispersal trajectories from spawning grounds, test hypotheses on the existence of 

shared migratory histories, and shed new light on the spatiotemporal connections between 

spawning and nursery grounds.  

 

It is now widely accepted that individuals within a species can vary strongly in traits 

associated with personality, behaviour, physiology and past experience (Dall et al. 2004; 

Fiksen et al. 2007; Cote et al. 2010; Shima and Swearer 2010; Leitão et al. 2018). Indeed, 

the existence of marked individual-level variability in the expression of such traits in group-

living conspecifics of the same age (see Paper III) might have important ecological and 

evolutionary consequences for the structure and function of the populations they reside in, 

and the movement decisions they make at critical life stages (Kawecki and Ebert 2004; 

Berdahl et al. 2018; Freshwater et al. 2019). Momentum is growing in this research arena, 

and our understanding of how individuals’ decisions scale to the collective is rapidly 

improving (Berdahl et al. 2018; Westley et al. 2018; MacCall et al. 2019; Paper I). With 

regard to commercially-targeted fishes, by combining expertise from multiple disciplines, 

seeking novel empirical data sources and taking advantage of continued advancements in 

modelling approaches (e.g. see MacCall et al. 2019), we place ourselves in an ideal position 

to probe deeper into the complex processes that underpin movements, migrations and 

connections among populations – a noble quest that will help ensure fisheries remain 

sustainable into the future. 
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Social learning can be fundamental to cohesive group living, and schooling fishes 
have proven ideal test subjects for recent work in this field. For many species, both 
demographic factors, and inter- (and intra-) generational information exchange are 
considered vital ingredients in how movement decisions are reached. Yet key infor-
mation is often missing on the spatial outcomes of such decisions, and questions 
concerning how migratory traditions are influenced by collective memory, density-
dependent and density-independent processes remain open. To explore these issues, 
we focused on Atlantic herring Clupea harengus, a long-lived, dense-schooling species 
of high commercial importance, noted for its unpredictable shifts in winter distribu-
tion, and developed a series of Bayesian space-time occurrence models to investigate 
wintering dynamics over 23 yr, using point-referenced fishery and survey records from 
Icelandic waters. We included covariates reflecting local-scale environmental factors, 
temporally-lagged prey biomass and recent fishing activity, and through an index cap-
turing distributional persistence over time, derived two proxies for spatial memory of 
past wintering sites. The previous winter’s occurrence pattern was a strong predictor of 
the present pattern, its influence increasing with adult population size. Although the 
mechanistic underpinnings of this result remain uncertain, we suggest that a ‘wisdom 
of the crowd’ dynamic may be at play, by which navigational accuracy towards tradi-
tional wintering sites improves in larger and/or denser, better synchronized schools. 
Wintering herring also preferred warmer, fresher, moderately stratified waters of lower 
velocity, close to hotspots of summer zooplankton biomass, our results indicative of 
heightened environmental sensitivity in younger cohorts. Incorporating spatiotem-
poral correlation structure and time-varying regression coefficients improved model 
performance, and validation tests on independent observations one-year ahead illus-
trate the potential of uniting demographic information and non-stationary models to 
quantify both the strength of collective memory in animal groups and its relevance for 
the spatial management of populations.
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Introduction

Although notions of the ‘animal mind’ remain equivocal 
(Dawkins 2001) there is now widespread acceptance that 
sociality, learning and memory can play important roles in 
determining migration patterns and space use in group-living 
animals (Kao et  al. 2014, Merkle et  al. 2014). In animal 
groups, decisions about when to migrate, where to feed, or 
how best to escape from predators are often made collectively, 
as a result of some consensus being reached among individu-
als’ preferences (Conradt and Roper 2005). Such preferences 
are thought to arise through relatively simple interactions 
among close neighbours, with individuals trading-off aspects 
of their own experience and behavioural state with those of 
others (Berdahl et al. 2013).

Fishes have proved useful models on which to explore 
these ideas (Brown 2015 and references therein), and much 
empirical and theoretical research effort has been devoted to 
understanding the seemingly complex individual behaviours 
required to maintain school cohesion and coordinate large-
scale migration (Parrish et  al. 2002, Berdahl et  al. 2016). 
Within fish schools, neighbouring individuals are usually not 
closely related, and hence self-interest may shape the nature 
of group-level movement decisions in which the majority 
opinion is often adopted (Couzin et al. 2011). In now rather 
famous experiments on groups of three-spined sticklebacks 
Gasterosteus aculeatus, Sumpter et al. (2008) showed that col-
lective movement decisions can follow non-linear quorum 
rules, in which the probability of an individual fish choosing 
a certain route increases abruptly beyond a threshold num-
ber of neighbours that have recently chosen that same route. 
Through simulations, and in later experimental work (Ward 
et  al. 2011), these authors also demonstrated that quorum 
responses increase decision accuracy, and that larger fish 
shoals, in general, make better, faster decisions; sensu ‘the 
wisdom of crowds’ (Surowiecki 2004). These patterns appear 
to emerge across a wide range of taxa and ecological functions 
(Sumpter and Pratt 2009, but see Kao and Couzin 2014), 
and for fish, can manifest in improved navigation and capac-
ity to sense dynamic environmental gradients, among other 
benefits (Berdahl et al. 2013, 2016).

Quorum responses may also be initiated, and consensus 
achieved, through leadership by a minority of more ‘expe-
rienced’ individuals, or those with strongly held preferences 
(Reebs 2000, Huse et  al. 2002). Often, only a knowledge-
able few are needed to produce highly accurate movement 
decisions (Reebs 2000); however, a complete absence of such 
leaders may result in poor navigational accuracy or lack of 
directionality (Helfman and Schultz 1984). These obser-
vations, in conjunction with growing recognition of the 
cognitive abilities of group-living fishes (Hotta et al. 2015), 
give credence to theories purporting the existence of spatial 
learning and tradition formation in some species (see Brown 
2015 for a review), in which information on previously-used 
migration routes is thought to be passed down from older, 
experienced fish to younger, naïve ones, communicated 
within cohorts and remembered (Corten 1993). Further 

support for such ideas derives from evidence for time-place 
learning in fishes (Brännäs 2014), and experimental demon-
strations of highly accurate short- and long-term memory 
(Brown 2001, Hotta et al. 2015).

These phenomena may be particularly relevant for long-
lived, schooling species like Atlantic herring Clupea harengus 
(hereafter ‘herring’) (Wynne-Edwards 1962). Herring are 
widely distributed across the North Atlantic Ocean and 
support several important commercial fisheries. The species 
is characterized by complex population dynamics (Iles and 
Sinclair 1982, Huse 2016) perhaps best described by a meta-
population model (McQuinn 1997), with individuals within 
local populations forming densely-packed, mixed-age schools 
for much of the year and undertaking large-scale migra-
tions between spawning, feeding and overwintering areas for 
which strong fidelity is exhibited in most, but not all years 
(Fernö et al. 1998, Langård et al. 2014). Several hypotheses 
have been advanced to explain this fluctuating ‘conservatism’ 
in migratory strategies (Jakobsson 1969, Corten 2002), with 
a particular focus in recent times on the striking shifts in 
winter distribution observed occasionally (Óskarsson et  al. 
2009, Huse et al. 2010). Current thinking favours aspects of 
McQuinn’s ‘adopted migrant hypothesis’ (McQuinn 1997) 
akin to Petitgas et  al.’s ‘entrainment hypothesis’ (Petitgas 
et al. 2006). When tuned to wintering herring, these hypoth-
eses contend that naïve, first-time winterers (i.e. age 3) learn 
about traditional wintering areas by schooling with older, 
experienced winterers (i.e. age 4 and older, hereafter age 4), 
typically returning to these same areas subsequently (Höglund 
1955). However, when the learning process is disrupted 
during a stock collapse, when age classes are segregated, or 
when strong recruitment leads to numerical domination by 
naïve fish, dramatic shifts in winter distribution may occur, 
suggesting a break in tradition when teachers are few (Corten 
1999, 2002, Huse et  al. 2002, 2010). Understanding why 
and when distribution shifts might occur is clearly interesting 
for ecologists, fishers and fisheries managers alike. However, 
spatially-resolved information on the outcomes of such shifts 
(i.e. resultant spatial distribution patterns) is currently lacking 
– a situation that hinders development of spatial management 
strategies that maximize economic and conservation benefits.
Specifically, two longstanding questions remain: 1) can we
predict where herring decide to spend the winter, and 2) does
tradition and/or spatial memory drive these decisions, or are
other factors at play?

We attempt to answer these questions here. First, we derive 
a spatial similarity index (SSI) to quantify the persistence or 
transience in spatial distribution between one year t, and the 
previous year t – 1, and demonstrate its utility in describing 
the recent wintering patterns of Icelandic summer spawning 
(ISS) herring. In our example, the SSI operates at the scale of 
the entire wintering population, and we consider it a proxy 
for the level of geographic attachment to, or spatial mem-
ory for, areas occupied previously. Next, using the variables 
created through the SSI (and others), we develop a series of 
space-time regression models for wintering ISS herring span-
ning a 23-yr time series of fishery and acoustic survey data. 
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We are particularly interested in the role of spatial memory in 
shaping distribution patterns, and present a Bayesian mixed-
modelling framework based on stochastic partial differential 
equations (SPDE) (Lindgren et al. 2011) to disentangle its 
influence from factors representing the dynamic and static 
environment, prey availability during the pre-wintering feed-
ing period, the magnitude of recent fishing effort and den-
sity-dependence.

Our specific hypotheses are as follows. 1) We predict that 
spatial memory for previous wintering areas would be a key 
driver of occurrence patterns in the present winter, and that 
its relative influence across the time series may have a demo-
graphic basis. That is, spatial memory would be strongest in 
years where more experienced individuals are present in the 
wintering population, or when overall adult population size is 
large. 2) As our study region is near a range edge for herring, 
we also expect that environmental gradients (e.g. tempera-
ture, salinity) would be influential. 3) Moreover, when pop-
ulation size is small, or naïve fish outnumber experienced 
adults, we hypothesize that environmental and/or other 
density-independent processes (e.g. prey availability, fish-
ing pressure) may become unmasked, contributing more to 
shaping occurrence patterns. In addressing these hypotheses, 
we explore evidence for temporal non-stationarity in model 
parameters, and test if these dynamics can be harnessed to 
accurately predict winter occurrence patterns, both within 
the time series, and to held-out observations one-year ahead.

Material and methods

Fishery and acoustic survey data

We use two point-referenced datasets comprising T  23 yr  
of fishery and acoustic survey records for our analysis. Logbook 
data from the autumn/winter purse seine fishery for ISS herring 
were collated over the period 1991–1992 to 2013–2014. The 
fishery is highly selective for adult herring (i.e. age 3), with 
effort centred on the wintering grounds between October 
and January each year. We refer to this period as a fishing 
‘year’. At the outset of each fishing year, extensive searches for 
wintering schools are made by the fishing fleet of ∼ 15 ves-
sels, covering the full (known) distribution of the stock (see 
Supplementary material Appendix 1 for a discussion of sam-
pling coverage). Our logbook dataset provides information on 
each fishing event, defined here as an individual purse seine 
net shot, including the date, location, and biomass of her-
ring captured c (tonnes) per shot. Due to the dependence of 
c on factors such as fisher behaviour and vessel capabilities 
(Thorlindsson 1988), we simplified the biomass information 
to occurrence/non-occurrence records, and retained only con-
firmed occurrences (i.e. where c  0 tonnes). Although sev-
eral instances of zero catch were observed, we excluded these 
records as c  0 is often a function of gear failure, and not the 
absence of herring per-se (authors’ unpubl.).

We augmented the logbook data with fishery-independent 
acoustic survey records from annual cruises conducted by the 

Marine Research Inst. (MRI), Reykjavík, between 1991–1992 
and 2013–2014. Surveys were targeted towards wintering her-
ring and ran between October and January each year, spanning 
the full wintering phase and matching the timing of fishing 
activities. Survey tracks were not consistent across years; how-
ever, spatial coverage was typically broad (see Supplementary 
material Appendix 1 for details). Herring biomass estimates s 
(tonnes), as calculated from echosounder backscatter strength 
measurements, were aggregated at 2 km resolution, forming a 
single survey event, referenced by date and location.

Data on age-class structure per fishing/survey event were 
unavailable. Hence, our models focused on the entire adult 
component of the stock (i.e. age 3) which form mixed-
age schools on the wintering grounds. This also meant that 
we could not determine which age classes contributed to s, 
estimates of which were likely influenced by a substantial, 
and unknown proportion of juveniles (i.e. age 0 to 2) in 
some regions. For this reason, we extracted only zero bio-
mass records from the survey data (i.e. s  0) and consider 
these true absences. Detection for both fishery and survey 
datasets is essentially perfect, notwithstanding potential 
recording errors (Supplementary material Appendix 1). Our 
dataset, comprising n  48 724 occurrence/absence records, 
is visualized in Fig. 1. Wintering patterns showed marked 
stability spatially across several consecutive years through-
out the 23-yr time series, interspersed by occasional, dra-
matic distributional shifts (Fig. 1a–c). Occurrence records 
were characterized by strong spatial structuring within years 
(explored through correlograms), and dense clustering east, 
west and south of Iceland (Fig. 1d).

Capturing shifting distributions: a spatial similarity 
index (SSI)

To more formally quantify the spatial and temporal patterns 
of wintering we constructed the SSI, a metric that unlike 
those designed for standardized survey data (Woillez et  al. 
2007) is most useful when fishing/survey locations are incon-
sistent in space and time, and/or when abundance data are 
not available (or uncertain), as was the case here. Calculation 
is based around two georeferenced variables that map 1) the 
area of occurrence, denoted distribt, and 2) the density of 
occurrences, denoted countst, in a given year t, with com-
parisons made with maps of these variables generated for the 
previous year (i.e. distribt-1, countst-1). We refer readers to 
Fig. 2a–e and Supplementary material Appendix 2.1, 2.2 for 
calculation details, and Appendix 2.3 for R code).

Modelling winter occurrence patterns

Covariates for estimation and prediction
We took a hypothesis-driven approach to the inclusion of 
covariates that capture the strength of spatial memory for 
previous wintering areas (i.e. spatially-explicit representations 
of the SSI), features of the dynamic and static environ-
ment, the magnitude of recent fishing activity and prey 
availability during the previous summer (see Table 1 for 
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details, and Supplementary material Appendix 3 for deriva-
tion). Covariates were either constructed, computed from the 
CODE ocean model (Logemann et al. 2013) or extracted from 
other databases (GEBCO, < www.gebco.net >) at varying spa-
tial and temporal scales (Table 1). Given the importance of 
scale in drawing conclusions about ecological systems (Levin 
1992), we balanced ecological knowledge with model resolu-
tion in an attempt to select scales for each covariate that best 
match the processes acting on individual herring schools at 
the time of capture or survey (Mackinson et al. 1999, see also 
Table 1 and Supplementary material Appendix 3). Rasters of 
each covariate were created at the desired scales (see Supple-
mentary material Appendix 3, Fig. A1–A5 for examples), and 
data for each occurrence or absence record extracted for use in 
model fitting. To facilitate interpretation of regression coef-
ficients, all continuous inputs were centred and scaled to have 
mean  0, SD  0.5 prior to analysis, with binary inputs cen-
tred to have mean  0 (Gelman 2008). To avoid issues related 
to collinearity (Dormann et al. 2013), we visualized covariate 
associations through scatterplots and calculated pairwise cor-
relation coefficients (Pearson’s r). If |r|  0.7, we prioritized 
ecological reasoning in deciding which covariate to retain. 
Only bottom_depth and dist_to_shore were highly collinear 
(r  –0.78). As bathymetric features may act directly to struc-
ture herring school distribution (Maravelias et  al. 2000a), 
we chose to remove dist_to_shore from all further analyses. 
Prior to model fitting, all covariates were screened graphically 
for potentially influential values, and data tabulated to test 
for any separation issues (Zorn 2005). The distributions of  

fish_magnitude and countst-1 were characterized by many 
zeros and some high values. Each of these values was checked 
and found to be measured accurately, and as no clear outliers 
were detected, all records were retained for modelling.

Model specification
As residual correlation patterns were of direct interest, we 
considered models that incorporate these patterns explic-
itly. Let ce,i,t be the total catch (tonnes), and se,i,t the esti-
mated biomass (tonnes) of an individual fishing/survey event 
respectively, e, at location i, in year t. We define a new variable, 
ye,i,t representing observed herring occurrence for each event, 
location and year (Eq. 1).

y
c
se i t

e i t

e i t
, ,

, ,

, ,

,
,=





>
=

1
0

0
0

if
if

(1)

As detection probability equals one, ye,i,t also represents the 
true occurrence state for each observation. Our interest was 
in estimating the probability of herring occurrencey, for 
event e, at location i, in year t, so we treated each event as an 
independent trial and modelled ye,i,t with a binomial general-
ized linear mixed model (GLMM) and logit link (Eq. 2, 3).

ye,i,t ∼ Bernoulli(ye,i,t) for e  �1, …, nt; i  1, …, nt; 
t  2, …, T (2)

logit(ye.i,t)  a � spatial memory  dynamic environment 
 static environment  predators  prey 
 b12yeart  wi,t (3)

(a)

(b)

(c)

(d)

Figure 1. Winter distribution of ISS herring during the period 1991–1992 to 2013–2014. Panels (a–c) illustrate the spatial shifts in landings 
by the autumn/winter purse seine fishery through time. We identified three major wintering phases over the 23 yr of our time series, and 
aggregated the landings data (in tonnes per 0.1° longitude  0.05° latitude grid cell) within each phase: (a) ‘East’ – 1991_92 to 1997_98; 
(b) ‘Eastwest’ – 1998_99 to 2006_07; and (c) ‘West’ – 2007_08 to 2013_14 (Óskarsson et al. 2009). Note the differences in color bar
scales. (d) Twenty-three years of fishery occurrence and survey absence records. Grey lines denote 200 m and 500 m isobaths.
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spatial memory  �b1distribi,t-1  b2countsi,t-1; dynamic 
environment  b3SSTe,i,t  b4SSSe,i,t 
 b5PEAe,i,t  b6changee,i,t  b7current_
vele,i,t; static environment  b8bottom_ 
depthi  b9slopei predators  b10fish_
magnitudee,i,t; prey  b11CF_Augi,t.

Equation 3 represents the full stationary model, where all 
regression coefficients are static in space and time, a is the 
intercept and the b’s quantify the linear effects of covariates 
reflecting spatial memory, the dynamic and static environ-
ment, predators and prey on y (Table 1). For models with no 
spatiotemporal random field (i.e. ‘no-space’ and ‘time-indep’ 

(a) (b) (c)

(d)

(e)

Figure 2. Calculation of the spatial similarity index (SSI). We defined an area of interest inclusive of all occurrence records in our dataset, 
divided this into 0.1° longitude  0.05° latitude grid cells, and, for each year t  1, 2, …, T, coded each cell as 1 if herring were captured 
within it during year t, or 0 if they were not. This resulted in a distribt layer for each year. For each t  2, 3, …, T, we then calculated the 
percentage of cells occupied in both t – 1 and t, out of the number of cells occupied in t – 1 or t (a–c). Next, we weighted this value by the 
change (km) in the center of gravity (ΔCOG) of the stock between t – 1 and t. Using the countst layers that were constructed based on Eq. 
A1 (see Supplementary material Appendix 2 for details), we then calculated Pearson’s r between countst-1 and countst and added this value 
(d, e). Data are presented for 1994–1995 (t – 1) and 1995–1996 (t), with the SSI value for 1995–1996 circled.
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forms of wi,t – see Spatiotemporal random effects for details) 
we included a fixed factor for year. This categorical term 
captures the overall temporal pattern, common to all loca-
tions, and allows for year-to-year fluctuation in occurrence 
probabilities without assuming a predictable trend among 
time points.

To explore potential non-linearity in covariate effects, 
we fitted models that 1) assume linear trends for all covari-
ates, 2) include quadratic terms for all environmental 
covariates, and 3) treat each environmental covariate as a 
smooth term, represented by a penalized regression spline 
with two knots (Crainiceanu et al. 2005, see Supplemen-
tary material Appendix 4 for R code). These specifications 
form a gradient of increasing flexibility in occurrence-
covariate relationships, whilst maintaining ecologically 
realistic functional forms. To control against overfitting, 
yet maximize biological inference on our hypotheses, we 
offset this flexibility by specifying additive terms only, and 
not considering first- or higher-order interactions in our 
models.

Spatiotemporal random effects
In Eq. 3, wi,t is the spatiotemporal random effect, which 
accounts for residual spatial (and temporal) patterns not 
explained by the covariates. This term is spatially explicit 
and estimated for each location i. Three forms of wi,t were 
tested: 1) where wi,t  0 (i.e. the ‘no-space’ case); 2) where wi,t 
is a temporally independent realization of the spatial field for 
each year (i.e. the ‘time-indep’ case); and 3) where wi,t follows 
a 1st order autoregressive (ar1) process allowing correlation 
between years (i.e. the ‘time-corr’ case) (Eq. 4),

wi,t  awi,t  1  xi,t xi,t iid~ N(0, Σ) for t  2, …, T	 (4)

where the a coefficient denotes the temporal dependence in 
wi,t, with |a|  1. When a  0, xi,t is the sole representation 
of the spatial field for year t (i.e. the ‘time-indep’ case – 
see Ono et al. (2016) for a similar approach). If a ≠ 0, the 
spatiotemporal field in t depends on the intensity and pattern 
of the field in t – 1 (i.e. the ‘time-corr’ case – see Ward et al. 
(2015) for an example). In this latter instance, the realization 
of the spatial process for t  1, wi,1, is derived from the 
stationary distribution N(0, Σ/(1 – a2)) (see Cameletti et al. 
2013 for details).

In both time_indep and time_corr cases, xi,t is a zero mean 
Gaussian random field assumed to be independent in time 
and defined by a Matérn covariance function (Eq. 5).

Cov
if
if

ξ ξ
′
′′ ′

′
i t i t

i i

t t
t t, ,

,
,

,
,

  = ∑




≠
=

0
(5)

where i ≠ i’ and,

∑ = −( ) −( )i i i i K i i, || || || ||′
ω

−1

σ
( )2

′ ′
2

Γ n n
n

nk k 	 (6)

This is a representation of a Gaussian Markov random field 
(GMRF). In Eq. 6, i,i′ is the covariance between loca-
tions i and i’. G is the gamma function and v is a smoothing 

parameter equal to aw – d/2, where aw governs the smoothness 
of the random field, and d is the number of dimensions in the 
model. We set aw  2 and d  2, hence v  1. k is a scaling  

parameter associated with the practical range r  
8

k
,

which represents the distance at which spatial correlation 
reduces to ∼ 0.13, and Kv is the modified Bessel function  
of the second order. With these parameter values set, the mar-
ginal variance of the GMRF, σω

2  is given by:

σ
πω

2
2 2

1
4

=
k t

(7)

where t in Eq. 7 is the local variance parameter.

General approach
First, we considered a suite of stationary models that assume 
that the response of the herring population to each covari-
ate is static across the time series (Eq. 3). We began with 
full models including all covariates, specified as linear, 
quadratic or spline terms, a fixed year effect and all forms 
of the spatiotemporal random component wi,t (i.e. models 
s1–s15, Table 2). This approach allowed us to evaluate 
different random-effect structures, whilst gaining an ini-
tial picture of the nature and magnitude of covariate effects 
(Zuur et  al. 2009). After accounting for the overall spatial 
and temporal trends, the distribt-1 covariate was found to 
be strongly influential, exhibiting positive associations with  
y in all cases (Fig. 3, Supplementary material Appendix 7, 
Table A1). As abrupt shifts in herring winter distribution 
occurred periodically, interrupting phases of spatial continuity 
(Fig. 1, 2), we considered that the relative importance of 
distribt-1 may also vary in time and be a key indicator of the 
degree of temporal correlation in winter occurrence patterns. 
We explored this possibility by fitting a series of partly non-
stationary models (i.e. models part_ns1–part_ns9, Table 2), 
allowing regression coefficients for distribt-1 to be represented 
by a time-ordered vector with elements that vary by year 
according to 1st order random walk (rw1) dynamics. The rw1 
models were defined by a Gaussian distribution N(0, precR), 
where prec is the precision parameter assigned a Gamma(1, 
5e-05) prior, and R is a fixed structure matrix (see Supple-
mentary material Appendix 5 for details on alternative model 
and prior specifications considered). Finally, we fitted a series 
of fully non-stationary models in which coefficients for all 
fixed effects could vary annually with the same rw1 specifi-
cation (i.e. models full_ns1–full_ns9, Table 2). These non-
stationary models enabled us to explore associations between 
covariate influence and changes in population demographics 
in the ISS herring stock over time, whilst naturally handling 
temporal dependence among adjacent years (see Supplemen-
tary material Appendix 4 for R code).

Model fitting details
Models were fitted in R-INLA (Rue et  al. 2009) using the 
SPDE approach (Lindgren et al. 2011). We grouped models 
by stationarity level for ease of explanation, and summarize 
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key details in Table 2 and Supplementary material Appendix 7,  
Table A2. Prior to fitting, we created a triangulated mesh 
upon which to build the GMRFs, covering a spatial domain 
that encompassed all of our observations (see Krainski et al. 
2016 for details, and Supplementary material Appendix 4 for 
R code). We initially used a Gaussian approximation strat-
egy to enable fast model comparison. We then refitted all 
models using simplified Laplace approximation – providing 
a compromise between correcting the Gaussian approxima-
tion for errors in location and/or skewness (Rue et al. 2009) 
whilst retaining good computational properties. Vague nor-
mal priors were assigned to all fixed effects N(0, 1000), and 
the intercept N(0, ∞). To assess sensitivity to prior choice, we 
refitted all stationary ‘no-space’ models using weakly infor-
mative Cauchy priors with mean  0 and scale  2.5 for the 

fixed effects, and 10 for the intercept using the ‘bayesglm’ 
function in the ‘arm’ package in R (Gelman et al. 2008). Both 
prior specifications produced stable, highly congruent pos-
terior estimates, so we proceeded using normal priors only. 
Priors for the SPDE model hyper-parameters (a, k, t), the 
latter two defining r and σω

2 , are provided in Supplementary 
material Appendix 5.

Assessing fit and predictive performance
We calculated the deviance information criterion (DIC) 
(Spiegelhalter et al. 2002) and a series of metrics based on the 
conditional predictive ordinate (CPO) (Pettit 1990) to check 
model fit and assess predictive performance. For each model, 
we used the CPOe,i,t given by p( ye,i,t| y-(e,i,t)), which represents 
the cross-validated (cv) ‘leave-one-out’ predictive density at 

Table 2. Structure and performance of candidate space-time occurrence models for wintering ISS herring. Each model contains all covariates 
(full), and results are shown for fitting using simplified Laplace approximation (see Supplementary material Appendix 7 Table A2 for results 
based on a Gaussian approximation strategy). s1–s15, stationary models; part_ns1-part_ns9, partly non-stationary models; full_ns1-full_ns9, 
fully non-stationary models. Covariate form refers to models that include linear terms only (linear), and quadratic terms (quadratic) or penal-
ized regression spline terms for environmental covariates (spline). Space/time structure describes the form of the spatiotemporal random 
effect wi,t, and if a fixed factor for year (yeart) was included; no-space/no-time, no spatially or temporally structured effects; time_indep, 
independent realization of the spatial random field at each t; time_corr, temporal correlation (ar1) is considered in the realization of the 
spatial random field at each t. The best-performing model within each stationarity class is shown in bold.

Model Covariate form Structure DIC Mean log score Brier score AUC

Stationary
s1 linear full (no-space/no-time) 49104.2 0.504 0.157 0.934
s2 linear full  yeart 48353.6 0.496 0.154 0.974
s3 linear full  time_indep wi,t 41872.1 0.429 0.123 0.993
s4 linear full  yeart  time_indep wi,t 41811.9 0.429 0.122 0.993
s5 linear full  time_corr wi,t 41877.0 0.429 0.123 0.992
s6 quadratic full (no-space/no-time) 48917.2 0.502 0.156 0.943
s7 quadratic full  yeart 48059.1 0.493 0.152 0.981
s8 quadratic full  time_indep wi,t 41732.1 0.428 0.122 0.994
s9 quadratic full  yeart  time_indep wi,t 41629.0 0.427 0.122 0.995
s10 quadratic full  time_corr wi,t 41733.0 0.428 0.122 0.993
s11 spline full (no-space/no-time) 49232.2 0.505 0.158 0.917
s12 spline full  yeart 48365.1 0.496 0.154 0.973
s13 spline full  time_indep wi,t 41907.0 0.430 0.123 0.993
s14 spline full  yeart  time_indep wi,t 41833.3 0.429 0.123 0.993
s15 spline full  time_corr wi,t 41908.3 0.430 0.123 0.992

Partly non-stationary
part_ns1 linear full (no-space/no-time) 48953.2 0.502 0.157 0.952
part_ns2 linear full  time_indep wi,t 41733.4 0.428 0.122 0.993
part_ns3 linear full  time_corr wi,t 41742.0 0.428 0.122 0.992
part_ns4 quadratic full (no-space/no-time) 48725.5 0.500 0.155 0.960
part_ns5 quadratic full  time_indep wi,t 41621.5 0.427 0.122 0.994
part_ns6 quadratic full  time_corr wi,t 41625.5 0.427 0.122 0.994
part_ns7 spline full (no-space/no-time) 49080.7 0.504 0.157 0.943
part_ns8 spline full  time_indep wi,t 41780.0 0.428 0.122 0.993
part_ns9 spline full  time_corr wi,t 41785.5 0.428 0.122 0.992

Fully non-stationary
full_ns1 linear full (no-space/no-time) 47330.3 0.486 0.148 0.989
full_ns2 linear full  time_indep wi,t 41334.7 0.424 0.120 0.996
full_ns3 linear full  time_corr wi,t 41342.3 0.424 0.120 0.995
full_ns4 quadratic full (no-space/no-time) 46756.0 0.480 0.146 0.995
full_ns5 quadratic full  time_indep wi,t 41047.1 0.421 0.119 0.997
full_ns6 quadratic full  time_corr wi,t 41055.3 0.421 0.119 0.997
full_ns7 spline full (no-space/no-time) 46972.0 0.482 0.147 0.993
full_ns8 spline full  time_indep wi,t 41219.1 0.422 0.119 0.996
full_ns9 spline full  time_corr wi,t 41226.4 0.423 0.119 0.996

39



(a)

(d)

(g)

(h)

(i)

(e) (f)

(b) (c)

Figure 3. (a–e) Marginal effect plots for influential covariates in the part_ns5 model (see Table 1 for covariate codes), and (f ) time series of 
posterior mean estimates (red line) and 95% credible intervals (CIs) (red-shaded region) for the distribt-1 covariate. In (a–e), black lines are 
median estimates of 1000 draws from the posterior distribution for a sequence of 100 values across the full range of each covariate, and grey-
shaded regions are 95% CIs. Tick marks denote the percentile distribution of raw data for each covariate for occurrence records (top of plots) 
and absence records (bottom of plots). Plots (a–c) represent quadratic effects, and (d, e) the linear effect of the covariate. (g–i) Time series of 
posterior mean estimates for the linear term (circles) and 95% CIs (vertical lines) for all covariates from the full_ns5 model. Symbols are 
offset slightly, and results for the distribt-1 covariate plotted as a red line (posterior mean) and red-shaded region (95% CIs) in panel (g).
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observation ye,i,t with the ye,i,tth observation removed, to derive 
the mean logarithmic (log) score (Gneiting and Raftery 
2007), a measure of predictive quality, and the cv Brier score 
(i.e. mean prediction error), a measure of model goodness-
of-fit reflecting both discriminatory ability and calibration 
that evaluates the degree of correspondence between fitted 
probabilities and observed binary outcomes (Schmid and 
Griffith 2005, Roos and Held 2011). Lower values on both 
scores reflect a better model, with Brier scores interpreted in 
relation to reference values that are a function of sampling 
prevalence (see Held et al. 2012 for an example). As an addi-
tional calibration check for out-of-sample predictions, we 
examined histograms of probability integral transform (PIT) 
values for departures from uniformity (Dawid 1984, Gneit-
ing et al. 2007, Held et al. 2010). Despite its known deficien-
cies (Lobo et al. 2008), given perfect detection in our data, 
the similarity in both geographic and environmental space in 
model fitting and prediction domains, and the explicit con-
sideration of spatiotemporal error structure in our modelling 
approach, we also calculated the AUC for each model.

Covariate importance and model selection
After comparing full models using the aforementioned crite-
ria and determining an optimal structure for wi,t, we used the 
best-performing full stationary model (including the fixed 
year effect and wi,t) to estimate covariate importance and 
find an appropriate fixed-effect structure. We first examined 
parameter estimates and 95% credible intervals (CIs) for each 
covariate. Next, we dropped one covariate at a time from the 
full model (i.e. single-term deletion) and compared the DIC, 
mean log score and Brier score of the reduced models with 
the full model, and a baseline model comprising only an 
intercept, yeart and the optimal structure for wi,t (see Illian 
et al. 2013 for a similar approach).

Correlation among covariates and demographic parameters
To examine associations between covariate importance and 
population demographics, we calculated Pearson’s r coefficients 
between time series of posterior means for the linear term for 
influential covariates (i.e. those with 95% CIs not overlapping 0 
in at least one year) in the best non-stationary models, and nine 
demographic parameters for the ISS stock derived from annual 
stock assessments coordinated by The International Council 
for the Exploration of the Sea (ICES). Calculations were made 
on the first 18, 19, 20, 21, and 22 yr of data. Demographic 
parameters considered include three ratios of the numbers 
(millions) of naïve, first-time winterers to older, experienced 
individuals (i.e. age3:age4to7, age3:age8to13, age3:age4), 
spawning stock biomass (SSB – ’000 tonnes), spawning stock 
numbers (SSN – millions), numbers (millions) of young expe-
rienced individuals (n age4to7), old experienced individuals 
(n age8to13), and all experienced individuals (n age4), and 
mean age (years) of the spawning stock (mean age).

Spatial prediction and validation

An area of interest for spatial prediction was defined within 
the extent of the fishery and survey data, covering the entire 

distributional range of ISS herring. The area, spanning 
62.475 to 67.975°N and 9.008 to 28.008°W, was divided 
into 0.1° longitude  0.05° latitude (∼5  5 km) grid cells, 
matching the resolution of several covariates used in model 
building and providing a scale useful for fishery management 
(Supplementary material Appendix 3, 6). Our interest was 
in predicting herring occurrence probability on an annual  
time-step. Hence, maps were created for each covariate based 
on mean grid cell values calculated across each year. The range 
of covariate values in the prediction space was monitored, and 
closely matched the values used for model fitting (Table 1).

The different classes of models we built have different util-
ity regarding prediction. The stationary models are very gen-
eral, making them well suited for predictions to randomly 
selected data within the time series or for long-term fore-
casts. By contrast, the fully non-stationary models, with their 
annually-varying coefficients, are less flexible, but useful in 
mapping occurrence probabilities for specific years within the 
time series. The task of short-term forecasting (e.g. to t  1) 
befits the partly non-stationary models, which occupy a mid-
dle ground in terms of generality. For these reasons, we used 
the best performing fully non-stationary model to generate 
annual prediction maps within the time series. Predictions 
were made for the last 22 years (i.e. 1992–1993 to 2013–
2014), but we present results for four years (i.e. 1994–1995, 
2001–2002, 2007–2008, 2013–2014) representative of the 
different wintering phases. Implementation is straightfor-
ward in R-INLA (see Supplementary material Appendix 4 
for R code). For predictions to t  1 we used the best partly 
non-stationary specification. We ran validation tests on held-
out observations by building models for the first 18, 19, 20 
and 21 yr of data, and testing how well the predicted prob-
abilities of occurrence match the observations in the 19th, 
20th, 21st, and 22nd years, respectively. For this, we needed 
to estimate the distribt-1 regression coefficient for t  1. We 
reasoned that if strong correlations exist between the distribt-1 
regression coefficients and one or more demographic param-
eters, and we can estimate these demographic parameter(s) 
for t  1, then prediction of the distribt-1 regression coeffi-
cient in t  1 may be possible. We summarize the main find-
ings in the Results section, but provide full annotated R code 
(Supplementary material Appendix 4) and explanatory notes 
in Supplementary material Appendix 6. All analyses were run 
in R ver. 3.2.2 (R Development Core Team), and datasets 
and code are available from the Dryad Digital Repository.

Data deposition

Data available from the Dryad Digital Repository: < http://
dx.doi.org/10.5061/dryad.9v46k > (Macdonald et al. 2017).

Results

Spatial similarity across years

The SSI accurately reproduced the temporal dynamics of 
wintering patterns across our time series. The spatial persistence 
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of the distribution during the ‘East’ phase (Fig. 1a) was 
reflected in relatively high SSI values, with the northward 
shift witnessed between 1994–1995 and 1997–1998 forc-
ing a gradual reduction in the index (Fig. 2). SSI values were 
lower over the following decade. This is a result of a patch-
ier distribution during these years (Fig. 1b), although year-
to-year consistency was sometimes observed (e.g. between 
2001–2002 and 2002–2003). From 2007–2008 until 2012–
2013, the majority of the adult population wintered inshore, 
in fjords on Iceland’s west coast (Fig. 1c). Strong fidelity to 
these fjords was observed during this period, resulting in 
high SSI values. The SSI dropped in 2013–2014, as younger 
cohorts established a new wintering area off the southeast 
coast (Óskarsson and Reynisson 2014).

Model performance

Our models generally fitted the data well and showed low 
mean prediction error, with cross-validated Brier scores fall-
ing below the prevalence-based reference value of 0.138 for 
all models incorporating spatiotemporal random structure 
(Table 2). Discriminatory ability was high, with AUC val-
ues  0.9 in all cases, and Gaussian and simplified Laplace 
approximation strategies were in full agreement regarding the 
best-performing models (Table 2, Supplementary material 
Appendix 7 Table A2). The inclusion of spatial and tempo-
ral structure was beneficial, and results from the stationary 
models suggest that independent realizations of the spatial 
random field (i.e. time-indep wi,t) and a fixed year effect (i.e. 
yeart) more appropriately describe the data than a smooth 
year-to-year transition in either of these processes (i.e. time-
corr wi,t) (Table 2). Allowing fixed effect parameters to vary in 
time through the non-stationary models improved goodness-
of-fit and predictive capacity over the stationary cases, and 
there was stronger support for models allowing some non-
linearity in occurrence–covariate relationships (i.e. quadratic 
terms for environmental covariates) (Table 2).

Covariate importance and model selection

The addition of covariates improved model performance. 
Although posterior 95% CIs overlapped 0 in some cases 
(Supplementary material Appendix 7 Table A1), backwards 
selection on the best stationary model (s9) indicated that 
most covariates added some information and none detrimen-
tally affected predictive capacity (Supplementary material 
Appendix 7 Table A3). Hence, all covariates were retained, 
and full models used for further inference.

Nature of occurrence–covariate relationships

Positive associations were found between distribt-1 and y 
in all models – this pattern persisting when spatially and 
temporally structured terms were included (Fig. 3, Supple-
mentary material Appendix 7 Table A1). This result supports 
the existence of a strong connection with previously-used 

wintering sites in most years. The best partly non-stationary 
model (part_ns5) outperformed s9 (Table 2), suggesting that 
the predictive ability of the distribt-1 covariate may vary in 
time. Posterior mean estimates for distribt-1 in the part_ns5 
model were always positive however, and 95% CIs never over-
lapped 0 (Fig. 3f ). This model also assumes that the response 
of the wintering population to all other covariates is static in 
time. We visualized the nature of these associations by plot-
ting the marginal effect for covariates with posterior 95% CIs 
that did not overlap 0 (Fig. 3a–e, see Supplementary material 
Appendix 7 Fig. A7 for plots of all other covariates).

Several local-scale environmental variables were found to 
be important. Occurrence probability increased in warmer, 
fresher and moderately stratified waters (Fig. 3a–c), in lower 
velocity zones (Fig. 3d), and in areas near high zooplankton 
(i.e. adult C. finmarchicus) biomass in the August preceding 
wintering (Fig. 3e). Notably, dependence on the density of 
occurrence records from the previous year, as captured by 
countst-1, was low. Similarly, the vertical temperature gradi-
ent, bathymetric features, and the magnitude of recent fish-
ing activity all had little impact (Supplementary material 
Appendix 7 Fig. A7, Table A1).

These patterns were further investigated in the full_ns5 
model – the best model overall – in which all fixed effects 
could vary by year. Again, distribt-1 was influential; however, 
the increased number of random effects in the full_ns5 model 
acted to dampen its effect (Fig. 3g–i). The importance of SST, 
SSS and PEA shifted in time, with these covariates’ influence 
increasing during the early to mid-2000s when the winter-
ing population was patchily distributed around Iceland (Fig. 
1, 3h). Estimates for fish_magnitude were generally small, 
with large variance (Fig. 3i). Covariates describing bathymet-
ric features showed no strong trends over time, and CF_Aug 
exhibited a small positive association with y in some years 
(Fig. 3i).

Correlations among covariates and demographic 
parameters

The importance of the distribt-1 covariate was found to 
increase most strongly with adult population size (SSN) in 
both the part_ns5 and full_ns5 models, with positive associa-
tions also observed with n age4to7, n age 4  and SSB (Table 
3). Focussing on the full_ns5 model, a stronger positive effect 
of SST was detected when the ratio of naïve : older, experi-
enced individuals (age3:age8to13) increased (Table 3). The 
posterior mean estimates for SSS decreased as SSN and SSB 
increased, and coefficients for PEA were negatively associated 
with n age8to13. All other correlations were non-significant.

Spatial prediction within the time series

Spatial predictions of occurrence probabilities derived from 
the full_ns5 model showed high concordance with the 
observations (Fig. 4). The model accurately predicted the 
occurrence patterns in years when the wintering population 
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was confined to small regions of the prediction space (e.g. 
2007–2008), when it was spread out (e.g. 1994–1995), when 
it was patchily distributed (e.g. 2001–2002), and during dis-
tributional shifts (e.g. 2007–2008, 2013–2014) (Fig. 4a). For 
the four representative years considered here, model predic-
tions were well calibrated, with small mean squared differ-
ences between predicted probabilities and actual observations 
(Brier score: 1994–1995  0.162, 2001–2002  0.132, 
2007–2008  0.152, 2013–2014  0.168, all below ref-
erence values), and showed near-perfect discrimination 
between observed occurrences and absences (AUC: 1994–
1995  0.998, 2001–2002  0.994, 2007–2008  0.999, 
2013–2014  0.999).

Data were scarce in some years (e.g. 1994–1995, 2013–
2014), with large areas of the prediction space containing few 
observations. The SPDE approach handles this by evaluat-
ing the continuous spatial or spatiotemporal random effects 
as discretely indexed GMRFs, allowing predictions to be 
made to unsampled locations whilst robustly estimating the 
uncertainty of these predictions. The SD of y was highest in 
areas where occurrence and absence records were close in geo-
graphic space (Fig. 4b), likely due to difficulties in resolving 
such a steep gradient of probabilities over such short spatial 
scales. Variance was low and uniform in unsampled regions.

Inclusion of spatiotemporal random effects (w) improved 
model fit and predictive performance (Table 2), indicating 
that the covariate components were not overfitted, but also 
that factors important in shaping y have been missed, and/
or were occurring at scales that our models could not resolve. 
The patterns in w (Fig. 4c) reveal the presence of spatial 
dependence at relatively large scales (i.e. 100’s of km), con-
firmed by the posterior estimates for the practical range r 
(Table 3), and likely reflect rapid changes in school shape, size 
and structure that our models did not capture (Pitcher et al. 

1996, Nøttestad and Axelsen 1999, Makris et al. 2009). The 
trends observed in the random field SD’s are a function of 
data coverage, with uncertainty increasing with distance from 
the observations (Fig. 4d).

Predicting occurrence patterns in t  1

We found strong positive correlations between time series of 
SSN and posterior mean estimates of the distribt-1 covariate 
in the partly non-stationary models (i.e. part_ns5 specifica-
tion) fitted to the first 18, 19, 20 and 21 yr of data (Pear-
son’s r mean  0.623, SD  0.127) (Fig. 5). Given this 
degree of correlation, we then were able to predict the pos-
terior mean estimate for distribt-1 in t  1 from the estimate 
of SSN in t  1 (obtained from MRI surveys – Óskarsson 
and Reynisson 2014). This allowed us to validate our models 
on withheld observations one-year ahead, and assess predic-
tion accuracy for the last four years of the time series (see 
Supplementary material Appendix 6 for details). Predictive 
performance was high in three out of the four years (19th 
year: Brier score  0.142, AUC  0.961; 20th year: Brier 
score  0.137, AUC  0.976; 21st year: Brier score  0.128, 
AUC  0.976), but dropped sharply in the last year (22nd 
year: Brier score  0.194, AUC  0.588) concurrent with a 
reduction in correlation strength between time series of SSN 
and distribt-1 coefficients (Fig. 5).

Discussion

Our study on ISS herring heeds recent calls for a greater 
focus on the role of collective learning in shaping animal 
distributions (Keith and Bull 2017), whilst demonstrating 
that social cues may not necessarily act alone. Consistent 

Table 3. Mean (1 SD) Pearson’s r coefficients calculated between time series of demographic parameters (Demo.) for the ISS herring stock 
and posterior mean estimates for influential covariates (Cov.) in the best non-stationary models. Mean and SD were calculated from correla-
tions made for five time series incorporating the first 18, 19, 20, 21 and 22 yr of data. Demographic parameters are age3:age4to7, 
age3:age8to13, age3:age4, three ratios of numbers of naïve, first-time winterers to young experienced, old experienced, and all experi-
enced individuals respectively; SSB, spawning stock biomass; SSN, spawning stock numbers; n age4to7, number of young experienced 
individuals; n age8to13, number of old experienced individuals; n age4, number of all experienced individuals; mean age, average age of 
the spawning stock.

Demo.
Cov.

age3: 
age4to7

age3: 
age8to13

age3: 
age4 SSB SSN

n 
age4to7

n 
age8to13

n 
age4

mean 
age

Partly non-stationary model (part_ns5)
distribt-1 0.101

(0.047)
0.418

(0.128)
0.178

(0.066)
0.471

(0.061)
0.575

(0.125)
0.520

(0.107)
0.044

(0.021)
0.479

(0.089)
–0.328
(0.126)

Fully non-stationary model (full_ns5)
distribt-1 0.120

(0.036)
0.106

(0.107)
0.113

(0.040)
0.455

(0.055)
0.489

(0.125)
0.372

(0.129)
0.320

(0.047)
0.446

(0.104)
–0.040
(0.118)

SST 0.113
(0.014)

0.481
(0.020)

0.213
(0.016)

0.404
(0.006)

0.415
(0.014)

0.404
(0.011)

–0.220
(0.022)

0.324
(0.008)

–0.354
(0.026)

SSS –0.118
(0.007)

–0.375
(0.008)

–0.187
(0.007)

–0.454
(0.003)

–0.501
(0.007)

–0.435
(0.005)

0.028
(0.015)

–0.405
(0.005)

0.257
(0.016)

PEA –0.008
(0.030)

0.156
(0.049)

0.030
(0.024)

–0.386
(0.027)

–0.362
(0.071)

–0.265
(0.076)

–0.481
(0.023)

–0.362
(0.060)

–0.164
(0.062)

current_vel –0.134
(0.019)

–0.009
(0.034)

–0.104
(0.026)

0.056
(0.004)

0.101
(0.017)

0.154
(0.012)

–0.011
(0.021)

0.124
(0.010)

–0.131
(0.032)

CF_Aug –0.256
(0.007)

–0.444
(0.027)

–0.324
(0.010)

–0.317
(0.002)

–0.405
(0.017)

–0.294
(0.016)

0.088
(0.013)

–0.256
(0.010)

0.385
(0.029)
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(a)

(b)

(c)

(d)

1994–1995 2001–2002 2007–2008 2013–2014

Figure 4. Spatial predictions of occurrence probability for four representative winters of the time series as derived from the full_ns5 model. 
For each year, (a) is the mean occurrence probability (y) and (b) the SD of y (expressed as log-odds) for each grid cell. (c) is the mean 
intensity of the temporally-independent realization of the spatial random field (w), and (d) is the SD of w. Observed occurrences (black 
diamonds) and absences (grey crosses) for each year are overlaid in (a).
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Figure 5. Time series of posterior mean estimates for distribt-1 derived from partly non-stationary models (i.e. part_ns5 specification) fitted 
to the first 18, 19, 20 and 21 yr of data (solid lines), and estimates of adult population size for the ISS herring stock, represented by spawn-
ing stock numbers (SSN – in millions) (dashed line). Pearson’s r values reflect the degree of correlation between each model time series and 
SSN in the years included in that model (see Supplementary material Appendix 6 for further details).
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with our expectations, we found that the distribt-1 covari-
ate, describing the previous winter’s occurrence pattern, 
imparted strong influence on the present pattern, the mag-
nitude of its effect increasing with adult population size. 
Moreover, we showed that local-scale environmental and 
temporally-lagged prey-related factors were sometimes 
important; our results suggesting a heightened sensitivity 
of younger age classes to some environmental effects (e.g. 
SST). Importantly, the accuracy of our predictions to  
t  1 highlights the potential of combining demographic 
time series with non-stationary models in exploring evi-
dence for collective memory in fishes and other group-living 
animals, and in guiding spatial management decisions.

The multiple drivers of spatial distribution

A variety of intrinsic and extrinsic controls, often working syn-
ergistically, are known to structure marine fish distributions 
(Planque et al. 2011). For example, the use of visual stimuli 
to locate landmarks is well documented (Silveira et al. 2015), 
whilst geomagnetic and olfactory cues provide important 
compasses for migrating salmon (Putman et al. 2013). Fur-
thermore, environmental gradients, predators, competitors 
and prey, population demographics and spatial memory can 
all be influential (Perry et al. 2005, Rindorf and Lewy 2006, 
Loots et al. 2010). Many of these factors appear relevant to 
herring, and work spanning many decades has demonstrated 
the importance of bottom-up (e.g. climate, local-scale envi-
ronment, zooplankton biomass), top-down (e.g. predation) 
and demographic processes in structuring the species’ popu-
lation dynamics (Lindegren et al. 2011, see Huse 2016 for a 
review). Despite these efforts, the question of what governs 
where herring spend the winter, a non-feeding period during 
which schools are heavily targeted by commercial fisheries, 
has remained largely unresolved. We think that this may be a 
consequence of three factors. 1) High environmental flexibil-
ity in wintering populations (Fig. 3a–d, Supplementary mate-
rial Appendix 7 Fig. A6) – a trait potentially explaining the 
marked geographic plasticity in wintering locations observed 
previously (Óskarsson et al. 2009, Huse et al. 2010). 2) The 
lack of proximate feeding and spawning cues, or competitive 
forces acting during the winter months – making underlying 
mechanisms difficult to pinpoint, and 3) mismatches between 
the true scale of processes acting on wintering populations 
and the scales captured by previous studies.

In designing our study, we felt that progress could be made 
by viewing the realized winter distribution as the result of 
two behavioural states: (state 1) migrating to, and coloniz-
ing wintering areas; and (state 2) living within these areas 
following colonization; and that herring may be tuned to dif-
ferent stimuli in each. In state 1, decisions must be made on 
the directionality of migration. Such decisions are thought 
to have a demographic origin; the probability of following 
previously-used routes increasing with the proportion of 
experienced individuals present in the stock, and contin-
gent upon information-sharing opportunities among cohorts 

during some period preceding wintering. These ideas, sup-
ported now by both theory and empirical work (McQuinn 
1997, Corten 2002, Huse et  al. 2010) have advanced our 
capacity for predicting when populations are likely to follow 
suit, returning to traditional grounds, or break tradition and 
disperse to new areas.

Capturing spatial memory

Through construction of the SSI and in our models, we 
extend these ideas in a spatially-explicit manner by linking 
observations from the previous year’s distribution to the 
present year’s, and considering demographic parameters as 
potential mechanisms influencing spatial persistence from 
year-to-year. In effect, our approach simultaneously tests 
for geographic attachment to certain wintering areas (sensu 
Loots et  al. 2010) – a well-known herring trait (Höglund 
1955), while inclusion of the demographic components 
allows for an exploration, albeit correlative, of evidence for 
spatial memory and/or tradition-formation in the species. 
The strong effect of distribt-1 on y in both the stationary 
(Supplementary material Appendix 7 Table A1) and non-
stationary models (Fig. 3f–i), combined with the correla-
tion observed between time series of the distribt-1 coefficients 
and SSN (Table 3) suggests that although the proportion of 
naïve: experienced individuals appears fundamental to how 
decisions on directionality of winter migration are reached 
(state 1 – Huse et al. (2010)), population size may determine 
if these decisions are honoured. The mechanisms underpin-
ning these observations remain unclear, but may relate to 
some form of wisdom through numbers (Surowiecki 2004), 
or the ‘many wrongs principle’ (Simons 2004) by which nav-
igational accuracy increases in larger and/or denser schools 
through pooling many individual directional estimates. 
Makris et  al. (2009) found direct evidence for this in her-
ring. These authors demonstrated that a threshold density 
of individuals (i.e. 0.2 fish m–2) promoted extremely rapid 
school-formation and growth at dusk, initiated by joining of 
small leading groups, and resulting in coordinated spawn-
ing migrations towards Georges Bank in the Gulf of Maine. 
If such processes also operate during the winter migration 
period, our results suggest that recolonizing previously-used 
wintering areas is sometimes deemed a good decision by the 
majority, or at least by some threshold number of influential 
leaders, and that adherence to these decisions may be stronger 
when the population is large.

Influence of prey resources and summer feeding 
distribution

Whilst important, the distribt-1 covariate did not explain all 
the variation in our observations. We had also speculated that 
where herring feed during summer might influence winter 
migration trajectories (Fernö et al. 1998), and used August 
biomass estimates for the zooplankter C. finmarchicus to test 
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this hypothesis. Wintering areas were often geographically 
quite close to summer prey patches (Table 3, Fig. 3e) – a 
situation that could advantage herring approaching winter-
ing grounds, as energy conserved through minimizing dis-
persal away from profitable feeding areas would be highly 
valued during the subsequent non-feeding period. Georefer-
enced data on the summer feeding distribution in addition to 
empirical measures of C. finmarchicus biomass would permit 
a deeper examination of this idea; first, by providing a valida-
tion (in Icelandic waters) of the C. finmarchicus IBM used to 
derive our biomass layers (Hjøllo et al. 2012); and second, by 
allowing the degree of herring-zooplankton prey overlap to 
be estimated. Such information would provide useful insights 
into the importance of pre-wintering actions in general, and 
where they occur, on subsequent wintering behaviour. We 
argue that this may be especially relevant to the summer 
feeding period when several age classes mix (Libungan et al. 
2015), offering a perfect arena for decision-making on the 
nature of the upcoming winter migration.

Wintering and density-dependence

Following settlement in wintering areas (i.e. state 2), herring 
hardly feed (Slotte 1999), and minimizing metabolic costs is 
likely prioritized. The absence of competition for food at this 
time removes a key mechanism thought to promote positive 
relationships between population abundance and occupied 
area, now demonstrated for several fish species (Fisher and 
Frank 2004) and predicted under most models of marine fish 
spatial dynamics (e.g. the ‘basin model’ – MacCall (1990)) 
through ‘ideal free distribution’ theory (Fretwell and Lucas 
1969). Such positive associations are commonly taken as 
evidence for density-dependent habitat selection (DDHS), 
although they may also arise via density-independent means 
(Shepherd and Litvak 2004).

We found no support for any abundance–area association 
in our data (Supplementary material Appendix 8 Fig. A8), 
and no evidence for an effect of countst-1, a conservative sur-
rogate for local herring density in t – 1, on the occurrence pat-
tern in t (Table 3, Fig. 3g, Supplementary material Appendix 
7 Fig. A7a). In light of these results, we propose that DDHS 
is probably not a strong guiding force driving large-scale win-
tering patterns. Indeed, as the dense schooling behaviour typ-
ical of this phase may impart some fitness benefits in terms of 
predator evasion (Nøttestad and Axelsen 1999), the lack of an 
abundance–area association, as we found here, might reflect 
a distribution that is near ideal and free. This idea requires 
further testing, as density-dependent mechanisms are known 
to influence feeding and spawning migrations in the species 
(Ciannelli et al. 2013), and to structure schooling dynamics 
at micro- (i.e. cm to m) and meso-scales (i.e. 10’s of m to 10’s 
of km) (Pitcher et al. 1996, Mackinson et al. 1999).

Environmental effects

Given the nature of our dataset (i.e. 48 724 observations over 
23 winters), we suggest that our models provide a broad, yet 

robust picture of environmental preferences of wintering ISS 
herring over the time period considered. We found that sev-
eral local-scale dynamic variables influenced estimates of y 
(Fig. 3, Supplementary material Appendix 7 Tale A1). Whilst 
we cannot pinpoint the mechanistic basis of these relation-
ships, we contend that this environmental sensitivity can 
be framed as a balance between maximizing individual fit-
ness and fidelity to traditional wintering sites. Temperature 
(i.e. SST), the most influential environmental factor in our 
models, is a pervasive force shaping marine fish distributions 
(Perry et al. 2005), and although adult herring can tolerate 
a wide array of temperatures (Nøttestad et  al. 2007), stud-
ies at the range margins suggest that physiological barriers 
may exist (e.g.  ∼ 2°C) which are rarely crossed (Jakobsson 
1969, Misund et al. 1997). We observed this here. Wintering 
ISS herring were never encountered in SST  1.5°C, and 
were rarely captured north of 67°N, a region under the influ-
ence of cold East Icelandic Current water (Logemann et al. 
2013) (Fig. 1, 3a, Supplementary material Appendix 7 Fig. 
A6a). This is indicative of a lower bound of thermal tolerance 
below which individual fitness may be compromised. If this 
is the case, then persistence of SST’s far colder than 1.5°C 
off much of Iceland’s north coast during winter, in conjunc-
tion with winter SST’s in the study region approaching 10°C 
(Supplementary material Appendix 3 Fig. A2), may neatly 
explain the monotonic positive trend detected between SST 
and y (Fig. 3a). Even though residence in warmer waters 
likely involves higher energetic demands, given the species’ 
flexibility in temperature preferences within the ∼ 4 to 9°C 
range as seen here (Fig. 3a, Supplementary material Appendix 
7 Fig. A6a), and its capacity to tolerate far higher tempera-
tures elsewhere (Maravelias and Reid 1997) we suggest that 
our upper temperature bound would not be physiologically 
constraining.

These findings, in conjunction with pronounced drops 
in both median SSS and PEA values observed in wintering 
areas in the latter part of the time series (Supplementary 
material Appendix 7 Fig. A6b, c), add weight to Huse et al.’s 
suggestion that winter habitat selection in herring may not 
be precisely optimized (Huse et al. 2010). However, the con-
sistency in SSS and PEA values seen across several consecu-
tive years; the uniformly low current velocity characteristic 
of all wintering areas (Supplementary material Appendix 7  
Fig. A6d) and the significant relationships detected between 
y and SST, SSS, PEA and current_vel (Fig. 3) indicate a 
degree of environmental control in wintering site selection, 
at least in some years (see Supplementary material Appendix 
7 for a further discussion).

Temporal non-stationarity

One of the most interesting results of this study came 
through considering that the response of herring populations 
to intrinsic and extrinsic factors may alter through time. We 
found evidence for temporal non-stationarity in some cases 
(i.e. distribt-1, SST, SSS, PEA) (Fig. 3h); in addition to the 
distribt-1 – SSN relationship, we showed that the relative 

46



influence of SST increased with the proportion of first-time 
winterers compared with older, age 8 to 13 individuals in the 
population (Table 3). This may reflect a heightened sensi-
tivity of younger cohorts to environmental forcing, in com-
bination with an increased tendency to follow traditions as 
fish get older, as suggested by Corten (2002) (explanation 1).  
At the population level, such a scenario would manifest 
in environmental factors, such as temperature, becoming 
unmasked as strong drivers of wintering area selection when 
there are fewer older fish to provide guidance.

If we make the assumption that the population truly 
responds differently to some environmental variables in dif-
ferent years, then our results could also stem from flexibility 
in population-wide environmental preferences during win-
ter, as suggested by Óskarsson et al. (2009) and Huse et al. 
(2010) (explanation 2), or from age- or size-related variation 
in habitat preferences (Bailey et  al. 1998, Bartolino et  al. 
2011) that would act to shape the population’s collective 
reaction dependent on age-class structure (see results for SSS 
and PEA – Table 3) (explanation 3).

A fourth alternative involves the presence of interactions 
between density-dependent and environmental factors (expla-
nation 4) (see Ciannelli et al. 2012 for an example). No clear 
density-dependent environmental responses were observed 
in our study, a finding in agreement with Maravelias et  al. 
(2000a, b), who reported marked stability in relationships 
between occurrence, abundance and ambient environmental 
conditions across a four-year period of population decline in 
North Sea herring. Our inference is limited to fishery records, 
but the addition of spatially-consistent survey information 
would allow a more rigorous exploration of how biomass 
and environmental factors might interact to influence range 
size during wintering. Finally, the trends we observed may 
in part reflect the nature of our datasets (explanation 5). 
Fishing and survey coverage varied across years; a function 
of fisher behaviour, catch efficiency, funding and/or time 
availability and possibly other unknown, annually-varying 
factors our models did not capture directly (Supplementary 
material Appendix 1). The yeart term in the stationary models 
accounts for year-to-year variation in the outcome of such 
processes, yet with regard to the non-stationary models, tests 
including or omitting this term, or a temporal component 
in wi,t, left parameter estimates essentially unchanged, sug-
gesting that the time-varying patterns we see are not strongly 
dependent on data availability in a given year, and likely have 
some other basis.

This list of explanations is not exhaustive; all are plausible, 
and not necessarily mutually exclusive. However, we pro-
pose explanation 1 and/or 3 as most likely on empirical and 
theoretical grounds (Corten 1993, 2002). Opportunities 
for fine-tuning the dynamics of connections through time 
based on ecological or physiological knowledge are emerg-
ing through continued advancements in process-based 
models (Teal et  al. 2015), and ongoing work on penalized 
complexity (PC) priors (Simpson et al. 2015). By combin-
ing such approaches, and using outputs from models like 

those presented here to guide parameterization, we see great 
potential for identifying the mechanistic fundaments of non-
stationarity in ecological time series like ours (see also Supple-
mentary material Appendix 9).

Fishing and predation

The direct impact of fishing on commercially harvested spe-
cies, including herring, can be immense (Jackson et al. 2001, 
Dickey-Collas et al. 2010). It is increasingly recognized, how-
ever, that intense exploitation can reduce resilience to envi-
ronmental change, and that fishing and climate can interact 
to influence long-term distribution patterns (Engelhard et al. 
2011) and spatial structure (Ciannelli et  al. 2013). In our 
models, we attempted to capture the impact of recent purse-
seine fishing activity whilst considering local-scale environ-
mental variables as additive factors only. This decision reflects 
an attempt to balance model complexity with meaningful 
ecological inference (Merow et al. 2014), and although this 
reduced our power to detect fishing–environment interac-
tions directly, our expectation that increased fish_magnitude 
would act to reduce y at nearby locations in the following 
week was not met (Supplementary material Appendix 7 Fig. 
A7e, Table A1). This was surprising, given the known dis-
ruptive effects of fishing and vessel activity on the behaviour 
of pelagic species like herring (Vabø et al. 2002). As herring 
schools can show incredibly fast predator-evasion responses 
(Pitcher et al. 1996), we proffer that the weekly window we 
chose for fish_magnitude was too long, and the 5  5 km 
grid cell dimensions too large to capture the complexity in 
fleet dynamics (Branch et  al. 2006), or the patchiness and 
speed of fishing–herring interactions and their cumulative 
effects over time. Investigating the scale-dependence of har-
vesting impacts, induced both by fishers and other predators 
(Similä 1997, Overholtz and Link 2007, Samarra and Foote 
2015, Supplementary material Appendix 10) might provide 
insight into the trade-offs herring and other fishes face in 
adhering to migratory traditions, whilst avoiding predation 
in a previously risky arena.

Spatial prediction: implications for fishery management 
and fisheries

Our space-time models generated predictions that closely 
matched the observed occurrence patterns of wintering ISS 
herring. Whilst noting the limitations inherent in fishery 
and non-standardized survey datasets (Supplementary mate-
rial Appendix 1, 9), by incorporating time-varying effects, 
and simultaneously considering spatially- and temporally-
structured processes in our analysis, we were able to robustly 
estimate y and its uncertainty across our spatial domain, both 
within the time series (Fig. 4) and to held-out observations 
one-year ahead (Supplementary material Appendix 6, 9).

The capacity to predict distribution patterns in t  1 has 
important implications for the spatial management of herring 
stocks throughout the North Atlantic, and for other species 
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exhibiting some homing tendency, for which our models 
could be easily adapted. In our example, predictive accuracy 
depended upon the strength of association between SSN and 
posterior mean estimates for distribt-1, estimated by the part_
ns5 model (Table 3, Supplementary material Appendix 6).  
In three out of four years tested, correlation was strong, 
models were well calibrated and AUC values exceeded 0.95. 
Accuracy for the final year – 2013–2014, fell dramatically 
however, due most likely to two unusual mass-mortality 
events in a small fjord on Iceland’s west coast that forced the 
2012–2013 stock assessment estimate of SSN down, despite 
marked overlap in the area fished in 2011–2012 and 2012–
2013 (Fig. 2, 5).

Although preliminary in nature, these results do highlight 
the potential of temporally non-stationary models in predict-
ing states at one time point based on states at nearby time 
points. With rapid improvements in uncertainty estimation 
in stock assessment models for data-poor fish stocks (Kokka-
lis et al. 2017) coupled with the abundance of information-
rich, point-referenced fishery datasets available, the time is 
ripe for further investigation into the demographic influences 
on migratory behaviour in other less-studied, commercially-
important species. We believe the modelling framework out-
lined here is a solid starting point for such work.

Conclusions

Despite growing recognition of social learning as a key element 
in shaping collective movement behaviour, the evolutionary 
consequences of, and the mechanisms giving rise to, this 
phenomenon remain unclear for many taxa. Using winter-
ing ISS herring for illustration, we searched for pattern in 
these behaviours by building space-time models for multi-
year, point-referenced fishery and survey datasets and linking 
model output with time series of demographic parameters. 
Though we cannot pry too deeply into the ‘fish mind’, at 
least at present, our findings lend correlative support to the 
existence of collective memory in this long-lived, schooling 
species (Fernö et  al 1998, Corten 2002), and suggest that 
wintering site selection may be tuned to population size and 
age-class structure, in concert with local-scale environmental 
factors and temporally-lagged prey distribution. The accuracy 
of our model predictions implies that considering such pro-
cesses explicitly in spatiotemporal models could benefit spa-
tial management strategies for fishes and other group-living 
animals that display a degree of conservatism in migratory 
behaviour.
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Appendix 1. Detection and sampling coverage 

Detection 

Detection probability for our datasets is essentially = 1, notwithstanding potential recording 

errors. Occurrence records were included only if c > 0 tonnes, and the acoustic output enables 

accurate identification of herring schools based on area backscatter strength (Jakobsson et 

al. 1993; Guðmundsdóttir et al. 2007), making false absences highly unlikely. The 

spatiotemporal distribution of fishing effort in the Icelandic winter purse seine herring 

fishery is not random however, and has varied markedly over the time series considered here 

(ICES 2015). Early in the season, fishing locations are often selected based upon knowledge 

of previous overwintering areas. As the season progresses, information on recent landings, 

reports from other fishing vessels and input from the MRI acoustic surveys (which typically 

coincide with the beginning of the fishing season), drive fishing behaviour. Similarly, the 

location of the acoustic survey tracks is not consistent among years (Guðmundsdóttir et al. 

2007; ICES 2015), with the level of survey effort reflecting funding, time availability, 

weather conditions as well as information exchange between MRI and active fishing vessels 

(Óskarsson and Pálsson 2015). This situation likely resulted in some level of sampling bias, 

although given the searching capacity of the purse seine fleet (Guðmundsdóttir and 

Sigurðsson 2004; Óskarsson et al. 2009), and the wide spatial coverage of the acoustic 

surveys, we consider this bias to be minimal (see below). Additionally, such bias is generally 

of lower concern for binomial occurrence models with near perfect detection, as it only acts 

to reduce precision of the estimation in less-sampled regions, rather than biasing the 

estimation process itself (Phillips et al. 2009; Guillera-Arroita et al. 2015). 

Sampling coverage 

It could be argued that the fishery and survey data used here may be biased and may not 

reflect the true extent of the herring distribution in a given season. We contend that such bias 

would be minimal for three reasons. First, the fishing fleet for Icelandic herring, which 

currently consists of 15 large vessels, conducts extensive searches for wintering herring 

schools each season, covering a substantial portion of the stock’s distributional range which 

is fully captured within the Icelandic exclusive economic zone (EEZ) (Óskarsson et al. 2009; 

author’s personal observation). Second, the annual acoustic surveys, although varying in 

sampling intensity each year, have covered a large region of the Icelandic EEZ in all years 

from the mid-1990s onwards. Thirdly, the close working relationship between MRI and the 

fishing companies results in constant information exchange regarding the distribution of the 

herring schools during the autumn/winter fishing period. Hence, we contend that although 

the full extent of the realized distribution may not be captured by the fishery and survey data, 

it does reflect the major trends in overwintering distribution over the 1991_92 to 2013_14 

period. Furthermore, given the near perfect detection in our dataset, there is no need to make 

assumptions about capturing the full realised niche during the overwintering period. Rather, 

we use the data we have to build the models. 
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Appendix 2. Details and R code for constructing the ‘distribt’ and 

‘countst’ variables and calculating the spatial similarity index 

(SSI) 

Appendix 2.1. Construction of distribt and countst layers 

To construct the distribt layers, we defined an area of interest that encompassed all records 

in our dataset, then divided this region into 0.1° longitude × 0.05° latitude (i.e. ~ 5 × 5 km) 

grid cells. Next, for each of the 23 years t = 1, 2, …, T, we summed the number of 

occurrence records in each cell k, denoted rk,t. If rk,t > 0, then distribk,t was coded as 1, 

otherwise 0. We used these results to produce annual gridded maps of occurrence (distribt) 

across our study region (Fig. 2a–c). 

Using the same spatial grid, we then computed the countst variable which reflects the 

number of occurrence records (i.e. successful fishing events) in each cell in each year, 

whilst also accounting for potential joining/splitting interactions among herring schools 

occupying nearby cells (Mackinson et al. 1999; Nøttestad and Axelsen 1999). For each grid 

cell k, in year t, countsk,t is the sum of rk,t and the mean number of occurrence records in all 

1st order neighbouring cells nk,t,j (j = 1, 2, …, 8), excluding the central cell (eq. 1) (see 

Appendix 2.3 for R code). To allow for comparisons among years, we converted countsk,t 

to a percentage of the total number of occurrences recorded across the whole study region 

in each year, denoted occt. 

countsk,t = 
100

occt
(rk,t + 

∑ nk,t,j
8
j=1

8
) (eq. 1) 

Like distribt, we created annual gridded maps of countst for each year of the time series (Fig. 

2d, e). The countst variable can be considered a proxy for herring abundance that is less prone 

to error than using landings data directly, as catch rates by vessels using purse seine gears 

are inherently variable (Hilborn and Ledbetter 1985; Ruttan and Tyedmers 2007; Vázquez-

Rowe and Tyedmers 2013). 
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Appendix 2.2. Calculation of the SSI 

For year t = 2, 3, …, T, we sum the grid cell values from the gridded occurrence map from 

the previous year (distribt-1) and those from the current year (distribt). Where grid cell 

counts = 2, this cell has been occupied in year t-1 and year t. We then divide this number 

by the total number of occupied cells in t-1 or t, and convert to a percentage. This last step 

captures the degree of expansion and contraction in the area occupied from year to year. 

Next, we calculate the distance change (km) in the centre of gravity (COG) of the stock 

between t-1 and t. The COG for fishing year t can be defined as the mean location of the 

population for that year (Wolliez et al. 2007), and was estimated here by weighting each 

fishing location by the catch recorded from that location in that year, giving all fishing 

events equal weight (see eq. 2). For each year t, 

COG =
∑ xici
M
i=1

∑ ci
M
i=1

(eq. 2) 

where M is the total number of catch locations, xi is the geographic position (i.e., longitude 

and latitude) of location i and ci is the catch (tonnes) at location i. Dividing by COG down 

weights the SSI when the distributional centroid has changed dramatically between one 

year and the next. This calculation generates an ‘SSI_overlap’ value (see Appendix 2.3). 

Next, we calculate Pearson’s r between the countst-1 and countst layers across all grid cells. 

This captures the change in density of occurrence records from year to year, and generates 

the ‘SSI_pearson’ value. Finally, we sum the ‘SSI_overlap’ and ‘SSI_pearson’ value to 

create an ‘SSI_estimate’ for each year (see Appendix 2.3). 

Why use 1st order neighbours? 

The decision to use only 1st order neighbouring cells in the calculation for countst, rather 

than an autoregressive model, can justified for two reasons. First, this way we have direct 

control over the distance considered, which can then be tuned to relevant ecological 

processes. The maximum distance from the outer edge of one of our grid cells to the outer 

edge of a neighbouring cell is ~ 10 km – a distance representative of the scale at which 

school joining and splitting behaviour often operates (Mackinson et al. 1999). Second, 

allowing more flexibility in the numbers of neighbouring cells included in the calculations 

makes more assumptions outside the spatial range of the occurrence records. In effect, our 

approach can be viewed as quite conservative, as it only estimates values one-cell removed 

from where the data actually are. We stress however, that the distance considered in the 

calculation of countst can be easily adjusted if there are reasons to believe that ecological 

processes are acting at finer or coarser scales. 

Excluding catch biomass in the calculation of countst

Catch biomass (c) for each fishing event can vary based on vessel-, skipper-, gear- and 

weather-related factors in addition to the actual amount of herring present at a particular 

location (Branch et al. 2006; Vázquez-Rowe and Tyedmers 2013). Given that we did not 

explicitly measure the first four of these sources of variability in this study, in addition to the 

inherent difficulties in accurately capturing these effects in any case (see Squires and Kirkley 

1999), we chose to take a conservative approach in computing countst – i.e. based on the 
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number of occurrences per grid cell, per year. We also gave equal weight to occurrence 

records with 0 < c < 1 tonne and all c ≥ 1 tonne, as differences in c may arise through 

interactions among the aforementioned factors that are unrelated to the point abundance of 

herring per se. Through this approach we hoped to minimize bias associated with these 

unquantified sources of variability. 

Appendix 2.3. Data and code repository 

The folder ‘Spatial similarity index.zip’ (available from the Dryad Digital Repository: 

http://dx.doi.org/10.5061/dryad.9v46k) contains R code and data for constructing the distribt 

and countst variables and for calculating the spatial similarity index (SSI), using catch data 

from the Icelandic winter herring fishery for illustration. 

Folder name: ‘Spatial similarity index.zip’ 

Relevant files/subfolders:- 

i) ‘Create counts(t) rasters.R’ (R code to compute and map the countst variable).

ii) ‘Counts(t) rasters’ (folder to store countst rasters).

iii) ‘Spatial similarity index calculation.R’ (R code to compute and map the

distribt variable and calculate the SSI).

iv) ‘SSI_calc_stats.csv’ (.csv data file containing ‘SSI_overlap ‘SSI_pearson’

and ‘SSI_estimate’ values by year, as output from the R script in iii).

v) ‘COG_change.csv’ (.csv data file containing information on COG between

consecutive years).

vi) ‘catch_data.csv’ (.csv data file containing georeferenced catch records from

the winter herring fishery between 1991_1992 and 2013_14, referenced by

day, month and year). Here, ‘seine’ = the purse-seine shot number, ‘sild’ =

landings per shot (tonnes), and ‘pres_abs’ denotes if herring were

encountered in a given shot (1 = encountered).
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Appendix 3. Additional information on covariates for the space-
time models 

Spatial memory 

Our aim was to capture the main features represented in the SSI (Fig. 2, Appendix 2) in 

covariates that could be used for input into spatially-explicit models to predict seasonally- 

varying occurrence patterns. We employed the distribt and countst variables described in the 

Material and Methods under ‘Capturing shifting distributions: a spatial similarity index’ for 

this purpose (see also Appendix 2 for calculation details). By using the layers created for the 

previous year (i.e. t-1), we defined two covariates that represent the occurrence pattern (i.e. 

distribt-1) and density of occurrence records (i.e. countst-1) one-year earlier (see Fig. A1 for 

examples of rasters for 2001_02).  

These two covariates are able to test the following two hypotheses. 1) Does the occurrence 

of herring at a particular location in year t-1 (represented by the distribt-1 covariate) influence 

the probability of occurrence in year t? 2) Does the relative density of occurrences at a 

particular location in year t-1 (represented by the countst-1 covariate) influence the 

probability of occurrence in t? That is, are herring here in t because they were here in 

numbers in t-1 – akin, to a density-dependent effect with one-year lag? 

Fig. A1. Rasters of spatial memory covariates for 2001 2002. In distribt-1, orange cells 

indicate those occupied the previous year (i.e. 2000 2001). See Table 1 in main text for units 

and derivation for these covariates. 

Dynamic environmental variables 

As temperature, salinity and flow velocity can impact strongly on herring distribution during 

several phases of the species' life history (Sinclair and Iles 1985; Maravelias et al. 2000a,b 

and references therein; Toresen and Østvedt 2000; Lindegren et al. 2011; Bartolino et al. 

2014), information on sea surface temperature - SST (°C), sea surface salinity - SSS (psu), 

and the east-west (U-component) and north-south (V-component) flow vectors (m s-1) were 

extracted from the CODE model (Logemann et al. 2013) at three spatial scales (i.e. 1 × 1 

km, 4 × 4 km and 8 × 8 km buffer distances around each fishing/survey record) and two 

temporal scales (i.e. day of record, mean of the preceding 7 days) (Fig. A2). From these data, 
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three new variables were created (at the same scales) to capture mixing processes through 

the water column that may influence the behaviour of wintering herring: the potential energy 

anomaly - PEA (kg m-1 s-2) a proxy for stratification, and defined as the energy required to 

vertically mix the water column so that the density is uniform from surface to bottom 

(Planque et al. 2006; Huret et al. 2013), the temperature gradient between surface and bottom 

waters - change (°C), and the mean absolute values of the U and V flow vectors in surface 

waters - current vel (m s-1) (Fig. A2).  

Fig. A2. Rasters of dynamic environmental covariates for 2001_2002. See Table 1 in main 

text for derivation. For model fitting, these covariates were extracted from the CODE ocean 

model (Logemann et al. 2013) at 1×1 km resolution on the day of each catch or survey 

record (see text above). However, rasters presented here are at 0.1° longitude × 0.05° 

latitude resolution and represent mean grid cell values across the 2001_2002 season. This 

is the common scale used for spatial prediction for all covariates (see the Material and 

methods in the main text for further details). 
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The highest resolution data obtainable from the CODE (i.e. 1 × 1 km grid, day of 

record) most closely matched both the area sampled by, and the timing of each fishing 

or survey record, providing the most realistic representation possible of the ambient 

environment experienced by the school at that time and place. In light of this, in 

conjunction with the high collinearity found among the spatial and temporal scales 

considered for each covariate (Pearson's r > 0.8 in all cases), we decided to extract data 

at 1 × 1 km on the day of the record. The CODE model assimilates observational data 

from CTD (conductivity, temperature, depth) profiles and river discharge data from 46 

Icelandic watersheds into its simulation, and excellent concordance was found between 

modelled and observed temperature, salinity and flow fields across our study region (see 

Table 1 in Logemann et al. 2013). 

Static environmental variables 

As both previous work and visual examination of our dataset suggest that herring may favour 

specific bottom topography during pre-spawning (Maravelias et al. 2000b) and wintering 

phases (MRI, unpublished data), we extracted information on depth: bottom_depth (m) and 

slope: slope (degrees) of the sea-floor from the GEBCO website. These data were available 

at 30 arcsec resolution around each fishing/survey record. As wintering ISS herring have 

been often been found close to the coast over the past three decades (Óskarsson et al. 2009), 

we calculated distance to shore: dist_to_shore (km) from each record using the ‘gDistance’ 

function in the ‘rgeos’ package in R (Fig. A3). 

Fig. A3. Rasters of static environmental covariates. See Table 1 for derivation. Rasters are 

presented at 0.1° longitude × 0.05° latitude resolution. 
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Zooplankton biomass in August 

Although herring hardly feed during the winter (Slotte 1999), adult stages of the zooplankter 

Calanus finmarchicus are a major prey item for herring in the North Atlantic during summer 

(Holst et al. 1997; Dalpadado et al. 2000; Gíslason and Astthorsson 2002; Prokopchuk and 

Sentyabov 2006). Hence, we suggest that regions of high summer C. finmarchicus biomass 

is likely be a feeding hotspot for pre-wintering ISS. Further, we propose that selection of 

wintering areas may be geographically close to where these hotspots are located. To test this, 

we extracted georeferenced mean August biomass estimates for adult C. finmarchicus (i.e. 

C4, CS, C6 stages), integrated in the upper 400 m of the water column at 20 × 20 km 

horizontal resolution, from the output of a C. finmarchicus IBM – CF_Aug (μg C m−2) 

(Hjøllo et al. 2012) (Fig. A4). We used this dataset as a proxy for late summer ISS feeding 

distribution, in lieu of spatially-referenced fishing or survey data that were not available for 

that time of year during the time series. Temporal coverage of Hjøllo et al.'s simulation 

spanned 1995 to 2007, and missing values for other years in our dataset were imputed using 

predictive mean matching in an approximate Bayesian framework in the ‘mi’ package in R 

(see below for further details). 

Fig. A4. Raster of mean C. finmarchicus biomass for August 2001. See Table 1 for 

derivation. Layers were available at 20 × 20 km resolution, and we used this resolution for 

data extraction and model fitting. Prediction was made to the 0.1° longitude × 0.05° latitude 

grid presented here, with data resampled using a bilinear interpolation. 

Imputation of CF_Aug using the 'mi' package 

The ‘mi’ R package uses a chained equation approach to multiple imputation for datasets 

with missing values (Su et al. 2011). In our case, we had missing values only for CF_Aug in 

the years 1992-1994 and 2008-2013. The ‘mi’ function approximates a Bayesian approach 

and draws imputed values from the conditional distribution for CF Aug given the observed 

values of the other covariates. With Student-t priors (mean = 0, df = 1, scale = 2.5) placed 

on the regression coefficients, we ran four independent chains initialized with different 

starting values and assessed convergence after 30 (the default), 50 and 80 iterations via Ȓ 

statistics. We found acceptable convergence after 80 iterations (CF Aug: mean = 1.01, sd = 

1.02) and diagnostic plots (produced by the ‘plot’ function in ‘mi’) revealed good 

congruence between observed and imputed data. Our procedure generated four multiply 

°
° °

°

°

°

°

°

°

60



imputed datasets (one per chain), and we took the mean imputed values for each across these 

datasets as our new values for CF Aug. 

Fishing magnitude 

Given the known disruptive effects of fishing and vessel activity on the behaviour of pelagic 

schooling species like herring (e.g. Olsen 1971; Fréon et al. 1992; Vabø et al. 2002; Ona et 

al. 2007; Lindegren et al. 2011) we aggregated data on numbers of successful fishing events 

(succk) and total landings in tonnes (ck) in each 0.1° longitude x 0.05° latitude grid cell k for 

each week of winter. We then constructed a measure of local fishing magnitude – 

fish_magnitude (tonnes) = succk × ck, for each grid cell in each week, month and year across 

the time series (Fig. A5). Finally, for each fishing/survey event, we calculated a 

fish_magnitude value in the week prior to that particular observation. Our hypothesis was 

that a high fishing magnitude would disperse the herring schools in that area, making the 

probability of capture at that location in the following week less likely. 

Fig. A5. Raster of mean fishing magnitude for 2001_2002. See Table 1 in main text for 

derivation. Model fitting was conducted using data extracted at a weekly resolution, but grid 

cell values (0.1° longitude × 0.05° latitude resolution) were  summed across the entire year 

for spatial predictions. 
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Appendix 4. R code and data for space-time occurrence models 

The folder ‘Space-time models.zip’ (available from the Dryad Digital Repository: 

http://dx.doi.org/10.5061/dryad.9v46k) contains R code and data to run all models 

described in the paper. Due to confidentially issues, the ‘herring_data.csv’ dataset is a 

modified version of that used in the paper, so results of the analyses will differ. However, 

to encourage further exploration of our specific results, we include the 

‘quadres2_sLap.Rdata’, a list containing model output that allows readers to reproduce the 

figures and tables presented in the manuscript. 

Key components of the R code stored in this folder include:- 

1) Preparing the data for modelling using the SPDE approach, allowing for different degrees

of linearity and non-stationarity in the covariates and different specifications of the

spatiotemporal random effects.

2) Creating a triangulated mesh upon which the GMRFs can be calculated.

3) Fitting the models, assessing model fit and predictive performance.

4) Extracting results from the posterior distribution and plotting summaries.

5) Making spatial predictions to an area of interest within the time series.

6) Assessing predictive performance to years outside the time series.

Folder name: ‘Space-time models.zip’ 

Relevant files/subfolders:- 

i) ‘Herring models_23yrs.R’ (R code and functions for SPDE models).

ii) ‘mesh creation.R’ (R code for different mesh resolutions).

iii) ‘herring_data.csv’ (.csv data file containing point- referenced

occurrence/absence records and covariates).

iv) bisland.csv’ (.csv data file with coordinates of the Icelandic coast).

v) ‘Adult-recruit ratios_SSB_numbers.csv’ (.csv data file including time

series of demographic parameters for Icelandic summer spawning

herring – see main text of the paper for parameter codes).

vi) ‘space_grid.csv’ (.csv data file with coordinates for spatial prediction

grid).

vii) ‘quadres2_sLap.Rdata’ (a four-element list containing model output for

plotting Figs. 3-5, A7, reproducing Tables 2, 3, A1-A3, and

summarizing key results). This list is accessed directly through the

‘Herring models_23yrs.R’ R script.

viii) ‘Final prediction rasters’ (folder containing covariate layers for making

spatial predictions for a subset of seasons).
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Appendix 5. Prior specification for the space-time models 

We assigned vague Gaussian priors for all fixed effects N(0, 1000) and the intercept N(0, 

) in the stationary and partly non-stationary models. Although information on the 

influence of some environmental variables on herring occurrence is available from previous 

work that could be used to inform prior specification, this information relates to other 

herring stocks at other times of year. These stocks are exposed to markedly different 

oceanographic conditions compared with those experienced by the ISS herring during the 

autumn and winter months. 

To this end, we chose to assign vague normal priors to all of our fixed effects, but tested 

the sensitivity of our results to prior choice by refitting the stationary ‘no space’ models 

using Cauchy priors with mean 0 and scale = 2.5 for fixed effect covariates and scale = 10 

for the intercept in the ‘arm’ R package (Gelman et al. 2008). 

For the non-stationary models, the rw1 models specified for the time-varying coefficients 

were defined by a Gaussian distribution N(0, precR), where prec is the precision parameter 

assigned a Gamma(1, 5e-05) prior, and R is a fixed structure matrix reflecting the model’s 

neighbourhood structure. We also tried various ar1 models for these time-varying terms, 

using a range of ‘Penalized Complexity’ priors that control the degree of correlation among 

seasons (see Simpson et al. 2015 for further details). We found that the rw1 models gave 

essentially the same results, yet with vast computational benefits, so we used these 

throughout. The SPDE model is defined by hyperparameters log(τ) and log(κ), (related to 

the spatial range , and marginal variance σ2) which were given normal independent priors 

N(0, 1), and the coefficient ‘a’ that controls the degree of correlation in the spatial field 

between seasons, to which we assigned N(0, 0.15). 
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Appendix 6. Spatial prediction 

Scaling covariates to match prediction grain size 

Where the spatial resolution of covariates used in model fitting was smaller (i.e. all dynamic 

environmental covariates at ~ 1 × 1 km), we aggregated the smaller cells to match the 0.1 

longitude × 0.05 resolution of the prediction grid, and used the mean value of the 

aggregated cells. In the case of the C. finmarchicus biomass layers (CF_Aug) (extracted at 

20 × 20 km resolution for model fitting), we used bilinear interpolation with the ‘resample’ 

function in the ‘raster’ package in R to create layers with the same extent and resolution as 

the prediction grid. For the fishing magnitude variable (fish_magnitude), we summed the 

grid cell values for each week in each fishing year (i.e. October to January inclusive), 

resulting in one layer reflecting total fishing magnitude for each of year. 

Prediction to t+1 (see Appendix 4 for R code for running all analyses) 

We used the best partly non-stationary model (i.e. part_ns5) specification to fit models to 

the first 18, 19, 20 and 21 years of data. We wanted to see how well we could predict the 

observed occurrences and absences in the 19th, 20th, 21st and 22nd years respectively. For 

this, we need to be able to estimate the distribt-1 regression coefficient for t+1. We tested if 

we could do this by examining relationships between the time series of distribt-1 in the fitted 

models and nine demographic parameters for the ISS herring stock (see Step 2 below). If a 

strong correlation existed with one or several demographic factors, we then fitted a GLM 

to predict the distribt-1 coefficient from the demographic factor. Assuming that we have 

data for (or can estimate) the demographic parameter in t+1, we can then feed this value 

into the GLM and estimate the distribt-1 coefficient in t+1. The steps we used are 

summarized as follows. 

Step 1: Use the more general partly non-stationary model. In this model, all covariates are 

kept stationary in time, except for spatial memory covariate (i.e. distribt-1) which is allowed 

to vary by year according to rw1 dynamics. Note that the distribt-1  covariate represents the 

spatial occurrence pattern in the previous year, t-1. 

Step 2: Examine correlations between the 22-year time series of distribt-1  coefficients from 

the above model and time series of the nine demographic parameters for the ISS herring 

stock described in main text under ‘Correlation among covariates and demographic 

parameters’. They are as follows:- 

i) Number of age3:age4+

ii) Number of age3:age4to7

iii) Number of age3:age8to13

iv) Spawning stock biomass (SSB)

v) Spawning stock numbers (SSN)

vi) Number of experienced individuals (n age4+)

vii) Number of young experienced individuals (n age4to7)

viii) Number of old experienced individuals (n age8to13)

ix) Mean age of the spawning stock (mean age).
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Step 3: If a strong correlation with one or more of these parameters is found, run a GLM 

to model distribt-1 as a function of the demographic parameter. 

This analysis revealed a strong positive correlation between SSN on the regression 

coefficients for distribt-1 across the time series. We then fitted a linear model and found 

a significant effect of SSN on the distribt-1 regression coefficients. This means that we 

may be able to predict the distribt-1 coefficient in t+1, given SSN in t+1 is known or can 

be estimated. 

Step 4: Subset full dataset to get first 18, 19, 20 and 21 years of observations and prepare 

data for model fitting. 

Step 5: Fit models to the first 18, 19, 20 and 21 years of the dataset. These models use the 

same formulation as the best partly non-stationary model with linear and quadratic terms 

for environmental covariates, a rw1 model for distribt-1 and independent realizations of the 

spatiotemporal random field (ω) each year. 

Step 6: For each of the four models in turn, extract the coefficients for the distribt-1 time 

series. 

Step 7: Correlate this time series with the equivalent time series of SSN. 

Step 8: If strong correlation with SSN is found, fit a GLM to model the distribt-1

coefficients as function of SSN. 

Step 9: Get (or predict) an estimate of SSN for t+1 (i.e. from stock assessment in year t). 

In our case, we already have the SSN estimates for the 19th, 20th, 21st and 22nd years. 

Step 10: Feed this value into the GLM to predict the distribt-1 coefficient in t+1. 

Step 11: Calculate a new multiplier for the distribt-1 covariate for the year we want to predict 

to. For example, for predicting 2010_11, we divide the predicted coefficient from Step 10 by 

the estimated coefficient from the fitted 18-year model. This value is the new coefficient we 

use multiply the distribt-1 covariate values for 2010_11 by in the 'effects' list of the prediction 

stack. 

Step 12: Validate these models on held-out observations in t+1, and assess predictive 

capacity for the next year (i.e. t+1). Do this by creating a validation stack with covariates 

referenced for t+1 and refitting the 18, 19, 20 and 21 year models with response = NA, 

using the spatiotemporal random effect estimated for year t. Examine model calibration 

and predicted outcomes versus observations (using cross-validated mean Brier scores and 

AUC). 

Step 13: Finally, make spatial predictions across the entire domain for the four t+1 

prediction years (i.e. 2010_2011, 2011_2012, 2012_2013, 2013_2014). 
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Appendix 7. Additional details on wintering area characteristics, 

modelling output, occurrence-environment relationships 

and environmental sensitivity in other herring stocks

Environmental characteristics of wintering areas 

By charting the hydrographic variability in wintering areas across seasons, we gain some 

insight into the level of environmental plasticity exhibited by wintering ISS herring. Sea 

surface temperatures (i.e. SST) in the wintering areas differed somewhat among 

seasons; however, most estimates were in the range of ~ 4 to 9°C, and rarely below 3°C 

(Fig. A6a). In 19 out of the 22 seasons, median SST’s were higher in wintering areas than 

in areas where herring were absent. Marked among-year consistency was observed in 

both sea surface salinity (i.e. SSS) and the degree of stratification (i.e. PEA) during the 

early to middle part of the time series, yet conditions inshore, inside the fjords occupied 

during the ‘West’ phase were substantially more mixed and less saline (Fig. A6b, c). 

Wintering areas were also typified by relatively small vertical temperature gradients 

(Fig. A6d), low and uniform current velocities (Fig. A6e), depths ranging from ~500 m 

off the east coast up to ~ 20 m inshore on the west coast (Fig. A6f), and low bathymetric 

relief across all seasons (Fig. A6g). 

Fig. A6. Seasonal variation in environmental characteristics of wintering areas occupied 

by ISS herring between 1991_1992 and 2013_2014. Boxplots show the annual 

distributions of environmental data associated with each occurrence record (grey 

boxes) and absence record (white boxes) in our dataset.  
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Fig. A7. Marginal effect plots for non-significant covariates in the best partly non-stationary 

model (part_ns5): (a) density of occurrence records in t-1 (countst-1), (b) vertical 

temperature gradient (change), (c) bottom depth, (d) bottom slope and (e) fishing intensity 

in the previous week (see Table 1 for detailed descriptions and derivation). Black lines 

represent the median estinate of 1000 draws from the posterior distribution for a sequence 

of 100 values across the full range of each covariate, and grey-shaded regions are 95% CIs. 

Tick marks denote the percentile distribution of raw data for each covariate for occurrence 

records (top of plots) and absence records (bottom of plots). Plots (a and e) represent the 

linear effect and plots (b, c and d) the quadratic effect of the covariate. 
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Table A1. Posterior mean estimates and 95% credible intervals for fixed effects, the spatial 

range (ρ) and marginal variance (σω
2) for the best-performing stationary, partly non-

stationary and fully non-stationary models. Estimates for random effect covariates with time-
varying coefficients in the non-stationary models are presented graphically in Fig. 3. All 
models were fitted using simplified Laplace approximation. 

Parameter Stationary model   

(s9) 

Partly non-stationary model   

(part_ns5) 

Fully non-stationary model   

(full_ns5) 

mean Q2.5% Q97.5% mean Q2.5% Q97.5% mean Q2.5% Q97.5%

α -0.140 -0.206 -0.075 -0.183 -0.204 -0.161 -0.137 -0.170 -0.104

distribt-1 0.487 0.440 0.534

countst-1 0.004 -0.021 0.029 -0.010 -0.041 0.020 

SST 0.247 0.205 0.290 0.170 0.132 0.209 

SST2 0.146 0.100 0.192 0.090 0.046 0.134 

SSS -0.168 -0.224 -0.113 -0.109 -0.162 -0.056

SSS2 -0.051 -0.070 -0.032 -0.037 -0.056 -0.018

PEA 0.116 0.087 0.145 0.127 0.098 0.156

PEA2 0.083 0.052 0.113 0.076 0.046 0.107

change -0.001 -0.026 0.024 -0.005 -0.029 0.020

change2 -0.005 -0.014 0.004 -0.005 -0.014 0.003

current_vel -0.052 -0.078 -0.026 -0.039 -0.065 -0.014

current_vel2 0.017 -0.007 0.041 0.014 -0.010 0.038

bottom_depth 0.010 -0.044 0.063 -0.003 -0.055 0.049

bottom_depth2 0.009 -0.027 0.044 0.000 -0.035 0.034

slope -0.009 -0.039 0.020 -0.011 -0.041 0.018

slope2 0.000 -0.007 0.006 0.000 -0.006 0.007

fish_magnitude -0.003 -0.023 0.018 -0.003 -0.024 0.019

CF_Aug 0.022 -0.004 0.048 0.036 0.012 0.060

year9394 -0.147 -0.272 -0.021

year9495 -0.201 -0.329 -0.074

year9596 -0.034 -0.164 0.095

year9697 0.061 -0.075 0.197

year9798 -0.137 -0.294 0.020

year9899 -0.055 -0.191 0.081

year9900 -0.022 -0.102 0.057

year0001 -0.038 -0.124 0.048

year0102 -0.068 -0.157 0.020

year0203 -0.105 -0.186 -0.023

year0304 -0.016 -0.092 0.060

year0405 -0.051 -0.139 0.035

year0506 -0.060 -0.148 0.029

year0607 -0.050 -0.138 0.037

year0708 -0.093 -0.202 0.016

year0809 -0.077 -0.149 -0.004

year0910 -0.106 -0.427 0.214

year1011 -0.009 -0.105 0.087

year1112 -0.093 -0.184 -0.003

year1213 -0.248 -0.333 -0.162

year1314 0.003 -0.185 0.189

 9.945 8.190 11.768 10.395 8.547 12.314 11.247 9.212 13.364 

σ
 2 0.107 0.081 0.135 0.109 0.081 0.137 0.086 0.063 0.110 
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Table A2. Structure and performance of candidate space-time occurrence models for 
wintering Atlantic herring. Each model contains all covariates (full), and results are shown 
for fitting using Gaussian approximation (see Table 2 in main text for results based on a 
simplified Laplace approximation strategy). s1-s15, stationary models; part_ns1-part_ns9, 
partly non-stationary models; full_ns1-full_ns9, fully non-stationary models. Covariate form 
refers to models that include linear terms only (linear), and quadratic terms (quadratic) or 
penalized regression spline terms for environmental covariates (spline). Structure details the 
form of the spatiotemporal random effect      ω i,t, and if a fixed factor for year (ye       art) was
included; no-space/no-time, no spatially or temporally structured effects; time_indep, 
independent realization of the spatial random field at each t; time_corr, temporal 
correlation (ar1) is considered in the realization of the spatial random field at each t. The 
best-performing model within each stationarity class is shown in bold. 

Model Covariate 

form 

Structure DIC mean log 

score 

Brier score AUC 

Stationary 

s1 linear full (no-space/no-time) 49104.4 0.504 0.157 0.934 
s2 linear full + yeart 48354.0 0.496 0.154 0.974 
s3 linear full + time_indep i,t 41877.0 0.429 0.123 0.993 
s4 linear full + yeart + time_indep i,t 41816.8 0.429 0.123 0.993 
s5 linear full + time_corr i,t 41881.7 0.429 0.123 0.992 
s6 quadratic full (no-space/no-time) 48917.4 0.502 0.156 0.943 
s7 quadratic full + yeart 48060.0 0.493 0.152 0.981 
s8 quadratic full + time_indep i,t 41737.1 0.428 0.122 0.994 
s9 quadratic 41634.0 0.427 0.122 0.995 
s10 quadratic 41738.2 0.428 0.122 0.994 
s11 spline 49232.4 0.505 0.158 0.917 
s12 spline 48366.0 0.496 0.154 0.973 
s13 spline 41912.0 0.430 0.123 0.993 
s14 spline 41838.2 0.429 0.123 0.993 
s15 spline 

full + yeart + time_indep ωi,t

full + time_corr ωi,t

full (no-space/no-time) 

full + yeart 

full + time_indep ωi,t

full + yeart + time_indep ωi,t

full + time_corr ωi,t 41913.5 0.430 0.123 0.992 

Partly non-stationary 

part_ns1 linear full (no-space/no-time) 48953.5 0.502 0.157 0.952 
part_ns2 linear full + time_indep i,t 41738.2 0.428 0.122 0.993 
part_ns3 linear full + time_corr i,t 41746.6 0.428 0.122 0.992 
part_ns4 quadratic full (no-space/no-time) 48726.0 0.500 0.155 0.960 
part_ns5 quadratic full + time_indep i,t 41626.5 0.427 0.122 0.994 
part_ns6 quadratic full + time_corr i,t 41630.6 0.427 0.122 0.994 
part_ns7 spline full (no-space/no-time) 49081.0 0.504 0.157 0.943 
part_ns8 spline full + time_indep i,t 41784.9 0.428 0.122 0.993 
part_ns9 spline full + time_corr i,t 41790.5 0.429 0.122 0.992 

Fully non-stationary 

full_ns1 linear full (no-space/no-time) 47333.0 0.486 0.148 0.989 
full_ns2 linear full + time_indep i,t 41342.6 0.424 0.120 0.996 
full_ns3 linear full + time_corr i,t 41351.8 0.424 0.120 0.995 
full_ns4 quadratic full (no-space/no-time) 46760.2 0.480 0.146 0.995 
full_ns5 quadratic full + time_indep i,t 41057.3 0.421 0.119 0.997 
full_ns6 quadratic full + time_corr i,t 41065.8 0.421 0.119 0.997 
full_ns7 spline full (no-space/no-time) 46975.4 0.482 0.147 0.993 
full_ns8 spline full + time_indep i,t 41228.6 0.423 0.119 0.996 
full_ns9 spline full + time_corr i,t 41236.4 0.423 0.120 0.996 
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Table A3. Results for single-term deletions from the best stationary model (s9). Note that for 
environmental covariates, this equates to deletion of both linear and quadratic terms.  

Model Covariate 

form 

Structure DIC mean log 

score 

mean Brier 

score 

s9 quadratic full + yeart + time-indep ωi,t 41629.0 0.427 0.122 

Deletions from s9 

- distribt-1 

As above 

42168.6 0.432 0.124 
- countst-1 41629.0 0.427 0.122 
- SST 41858.6 0.429 0.123 
- SSS 41680.3 0.427 0.122 
- PEA 41725.6 0.428 0.122 
- change 41631.0 0.427 0.122 
- current_vel 41653.8 0.427 0.122 
- bottom_depth 41629.0 0.427 0.122 
- slope 41630.0 0.427 0.122 
- fish_magnitude 41630.4 0.427 0.122 
- CF_Aug 41637.9 0.427 0.122 
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Further details on modelled occurrence-environment relationships 

Whilst extreme low temperature conditions can impact directly on physiology (see main text 

for details), and logic dictates that preferences for lower velocity zones may promote energy 

savings and compensate somewhat for any metabolic costs incurred through residing in 

warmer waters (see Liao et al. 2003), the search for causality in the relationships we observed 

between the probability of occurrence, SSS and PEA (see Fig. 3b, c) is more challenging. 

Given herring’s euryhaline nature, and ability to inhabit brackish and fresh waters down to 

1 psu in the Baltic Sea (Teacher et al. 2013; Miethe et al. 2014), it is clear that the lowest 

salinities encountered in Icelandic surface waters (i.e. ~ 31.5 psu) would not impose high 

physiological demands. Likewise, the highest SSS in the region throughout the study period 

approached 35.4 psu – a value close to surface measurements made in Ofotfjorden, Norway, 

during the late 1980s and early 1990s when it harbored the majority of the wintering NSS 

stock (Dommasnes et al. 1994). As these bounding values are well within the known 

tolerance range of the species, and that the vertical salinity gradient in the upper water 

column (between 1 and 100 m) across our dataset never exceeded 2 psu, we argue that 

wintering ISS herring undertaking diurnal vertical migrations would not have been exposed 

to strong physiological forcing by salinity, and that any effects we see are likely indirect. 

With regard to our results for PEA, although it could be argued that selection of less 

stratified, shallower, fresher waters, as seen during the recent years of our time series (Fig. 

A6c) could provide energetic benefits to vertically migrating herring (Huse and Ona 1996), 

we see no direct fitness advantage to wintering fish of inhabiting more stratified waters. 

In the absence of any clear mechanistic basis for these findings, we propose two alternatives. 

First, active avoidance of cold water masses could indirectly influence the population’s 

response to salinity and stratification. The warmer waters encountered at the time and 

location of the bulk of successful fishing events were also often characterized by higher PEA 

values (particularly during the ‘East’ and ‘Eastwest’ phases), weaker currents and lower SSS 

(particularly close to the coast during the inshore ‘West’ phase) compared with conditions 

associated with survey-derived absence records (Fig. A6). Such hydrographic conditions 

are common in coastal Icelandic waters (Appendix 3, Fig. A2; authors’ unpublished data),

and other regions at certain times of year (e.g. North Sea: Maravelias and Reid 1995; 

Bay of Biscay: Planque et al. 2006; Huret et al. 2013; Lindåspollene, Norway: Langård et

al. 2014), and residence in them during winter would shape the response to each of these 

covariates in the way we observe (see Fig. 3)1. Second, preference for moderately-

stratified zones, particularly during the early and middle years of the time series (Fig. A6c) 

could also reflect adaptations for predator-avoidance. During this period, the locations 

of our occurrence records were typically quite distant from major fronts off the northwest 

and north coast (i.e. boundaries between strong vertical temperature gradients – see 

‘change’ plot in Appendix 3, Fig. A2; and Pálsson and Thorsteinsson 2003) or strongly-

mixed zones offshore (i.e. those associated with lower PEA values) often rich in herring 

predators like adult cod (Pálsson and Thorsteinsson 2003; Pálsson and Björnsson 2011). 

Our results may reflect high predator densities in these years, with occupation of more 

stratified areas affording some release from predation pressure. Although we included 

recent fishing activity in our analysis as a potential 
1 We note that our PEA estimates may underestimate the true degree of stratification in very shallow zones 

(i.e. < 15 m deep), due to limits on the minimum vertical bin-depth of the CODE model (= 2.5 m). However, 

given that only 68 (0.1%) of our records were located in such shallow waters – in all cases near shore in 

fjords, and that these locations are generally influenced strongly by river run-off and tidal processes which 

enforce water-column mixing, we contend that slight inaccuracies in our estimates would have negligible 

effects on model estimation and prediction. 
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top-down control, spatially-resolved data on the distribution of other non-human predators 

in the study region during winter are needed to allow a more explicit examination of predator 

effects and their environmental interactions on herring spatial distribution patterns (see the 

‘Fishing and predation’ in the main text for a further discussion). 

Issues of scale 

That environmental factors contributed to the wintering patterns we observed (at least in 

some years) contrasts with recent work on wintering ISS herring (Óskarsson et al. 2009) and 

NSS herring (Huse et al. 2010). Both studies found no clear evidence for environmental 

signals as determinants of wintering dynamics. Huse et al. (2010) showed that the six 

different wintering locations used by the NSS stock over the past 50+ years, were 

characterized by vastly different environmental conditions. In Iceland, Óskarsson et al. 

(2009) found no support for a temperature effect on the ISS wintering patterns of the late 

1970s up until the mid-2000s, but suggested that temperature may still play a role at finer 

scales. We agree with this, and posit that the inability to detect a signal in these studies may 

have arisen from a mismatch between the scale of the temperature data used (i.e. single CTD 

stations measured annually), and the scale of the process giving rise to the occurrence of 

herring in that area.  

In developing our study, we acknowledged the variable spatial and temporal scales at which 

stimuli may act (Levin 1992; Witman et al. 2015); shoaling species’ responses to them 

emerging as a result of exposure to, and/or retention of specific cues experienced during 

early age (e.g. olfactory imprinting), the social transmission of long- standing traditions 

among generations (e.g. Fernö et al. 2011), or the spontaneous spread of information among 

individuals, that can manifest in rapid expansion in school size (Makris et al. 2009), and 

elicit fast, school-wide responses to environmental gradients, prey resources or predation 

threats (Doksæter et al. 2009; Makris et al. 2009). We deemed it crucial to capture this 

variability in our models. Therefore, we extracted environmental data from the CODE model 

(Logemann et al. 2013) at several grain sizes and temporal windows (Table 1, Appendix 3), 

and, through prioritizing ecological reasoning in the trade-off between data quality and 

availability, selected scales for the other variables (Table 1, Appendix 3).  

Our goal here was to match as closely as possible the scale of processes acting on herring 

schools in both the pre-wintering period and during residence in the wintering areas (i.e. 

behavioral states 1 and 2), given the scale of the fishery purse-seine shots that comprise our 

occurrence data. Although the scales of our covariates likely miss several processes relevant 

to wintering herring, particularly the complexities of intra-school shoaling dynamics and 

diurnal vertical migration (Mackinson et al. 1999), the potential impact of larger-scale, non-

spatial climatic indices (e.g. North Atlantic Oscillation (NAO) winter index, Atlantic 

Multidecadal Oscillation (AMO) – see Engelhard et al. 2011) and possibly, interactions 

between past environmental conditions and spatial persistence in distribution (see Corten 

2002; Rindorf and Lewy 2006), we feel that the spatial and temporal resolution we chose 

provided a plausible linkage between processes and observations. With continuing 

improvements in the quality of measured and modelled data available for marine systems 

and the species within them, opportunities are emerging to incorporate more mechanistic 

information into spatial models (e.g. Teal et al. 2016). Such process-based approaches allow 

the ‘best’ scale to emerge naturally from the physiological process of interest, and by their 

general nature, rooted in data or theory on metabolic rates, hold great promise for predicting 
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species’ distributions when observational data are limited. We anticipate rapid progress in 

this field in the coming years (see also Appendix 9 ‘Notes on the modelling approach’). 

Environmental sensitivity in herring 

Sensitivity to environmental forcing has also been seen in other herring stocks during winter 

(e.g. Corten 1999a), and at different times of the year. For example, in a series of papers 

focused on North Sea herring, Maravelias and colleagues demonstrated strong effects of 

temperature gradients, salinity, stratification, zooplankton biomass and bottom topography 

in shaping pre-spawning summer distribution (e.g. Maravelias and Haralabous 1995; 

Maravelias and Reid 1997; Maravelias et al. 2000a, b). The direction and magnitude of these 

effects differed substantially from our study, a finding that was anticipated given that the ISS 

stock is located near the northerly range-edge for the species, and is therefore exposed to 

vastly different environmental conditions to those typically encountered in the North Sea. 

Moreover, these North Sea papers and similar studies in Nordic seas (e.g. Misund et al. 1998, 

Jakobsson and Østvedt 1999; Kvamme et al. 2003; Nøttestad et al. 2007; Broms et al. 2012) 

have often focused on distribution patterns during spring and summer, periods of high 

feeding activity in which adult herring can be tightly linked to prey resources either directly 

(e.g. Holst et al. 1997; Maravelias and Reid 1997; Olsen et al. 2007) or indirectly through 

hydrographic proxies. Some examples of the latter include the northwards displacement of 

the feeding distribution of North Sea herring in the 1980s, posited as a response to 

intensification of the shelf edge current leading to increased productivity off the Norwegian 

coast, concurrent with elevated water temperatures causing a range contraction of C. 

finmarchicus to northern waters (Corten and van de Kamp 1992; Corten 2001). And, the 

reappearance of the Aberdeen Bank spawning population in 1983, suggested as a corollary 

of increased Atlantic inflow into the North Sea that caused a redistribution of key planktonic 

prey and their predators (e.g. pre-spawning herring) southwards (Corten 1999b). It has also 

been suggested that the quality of future spawning habitat (e.g. water depth, seabed 

roughness – Maravelias et al. 2000b; Langård et al. 2014), and distance to spawning grounds 

(Jech and Stroman 2012) can affect pre-spawning distribution to some extent. These 

examples illustrate how environmental and biotic factors can interact in complex ways to 

shape herring feeding and pre-spawning distributions, yet such processes are largely 

irrelevant during residence on wintering grounds (i.e. during behavioral state 2 – see main 

text for definition). 
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Appendix 8. Exploring the relationship between adult population 
size and occupied area 

Although the spatial inconsistency of our fishery and survey dataset limits precise 

quantification of expansion or contraction in Icelandic summer spawning (ISS) herring 

winter distribution over time, we can consider our occurrence records, and their gridded 

representations in the spatial similarity index (SSI), as a minimum, yet fairly accurate 

estimate of the realized winter distribution, reflecting the major spatial trends over the 

1991_92 to 2013_14 period (Guðmundsdóttir and Sigurðsson 2004; Óskarsson et al. 2009; 
and see Appendix 1 for further details). Hence, by summing the number of occupied grid 

cells within each year t = 1, 2, …, T, and plotting these values against fishery-independent 

estimates of adult population size, represented by spawning stock numbers (SSN), we were 

able to examine the association between abundance and occupied area for wintering ISS 

herring. We found no evidence of a positive relationship for our data (Fig. A8). 

Fig. A8. Plot of adult population size in the ISS herring stock, represented by estimated 

spawning stock numbers (SSN), against the number of occupied 0.1 longitude × 0.05 latitude 

grid cells during winter (i.e. October to January) for the 23 years from 1991_92 to 2013_14. 

Data for the latter are drawn from the distribt layers used in the creation of the spatial 

similarity index (SSI), and are considered as a minimal estimate of occupied area for each 

year. Estimates for SSN are derived from annual stock assessments for ISS herring 

conducted by the MRI, Iceland. No evidence of an abundance-occupied area relationship 

was found for overwintering ISS herring. The black line is the fitted curve from the non-

significant linear regression of SSN against the number of occupied cells (R2 = 0.001, p = 

0.885). 

Pearson's r = 0.03, p = 0.88
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Appendix 9. Notes on the modelling approach 

 

The mixed effects models we fit in this paper fall broadly within the class of ‘empirical’ 

statistical models as defined by Levins (1966). These types of models are in essence 

correlative, although they may have mechanistic underpinnings related to the fundaments of 

Grinnellian and Eltonian niches (Hutchinson 1957; Soberón 2007). In lieu of the oft-lacking, 

detailed physiological knowledge needed for parameterization of an exciting new family of 

process-based models (e.g. Freitas et al. 2010; Jørgensen et al. 2012; Teal et al. 2012; see 

Peck et al. 2018 for a review), correlative models, which tend to compromise generality for 

realism and precision (Levins 1966; Dickey-Collas et al. 2014), remain widely used in 

ecology to explore the nature of relationships between species’ distributions and biotic and 

abiotic factors, to build hypotheses and to guide management decisions (Guisan and Thuiller 

2005; Elith and Leathwick 2009; Robinson et al. 2011). 

 

Increasing recognition of the role of demographic structure, dispersal and density-

dependence in shaping fish distribution patterns has motivated recent attempts to incorporate 

these processes explicitly (Cheung et al. 2009; Loots et al. 2010; Planque et al. 2011; 

Ciannelli et al. 2012). Moreover, regression models including time-lagged covariates, which 

provide insights into how the past may impact the present (e.g. Rindorf and Lewy 2006), and 

those in which covariate coefficients can vary in space and/or time, have proved valuable in 

understanding the interplay between density-dependent and density-independent controls on 

observed distributions (Bartolino et al. 2011; Ciannelli et al. 2012). Whilst still not allowing 

causation to be inferred directly, this class of models implicitly integrate mechanistic 

processes in their formulation, and hence occupy a space between environmental envelope 

and process-based models (Beale and Lennon 2012; Peck et al. 2018). 

 

We built our models in line with these ideas. By linking measures of distribution history, 

output from a spatially-explicit, individual-based model of zooplankton biomass, fine scale 

environmental fields and estimates of local fishing intensity, we fitted stationary and time- 

varying coefficient GLMMs for ISS herring occurrence across a 23-year time series. 

Correlations between the relative influence of these factors across years and time series of 

demographic parameters were then examined post-hoc, providing a basis for model 

validation to held-out observations one-year ahead. Our models were fitted in a Bayesian 

framework in R-INLA, using the SPDE approach to capture spatial and temporal dependence 

in the data (Rue et al. 2009; Lindgren et al. 2011). The merits of the Bayesian approach for 

this type of hierarchical model are many (Gelfand et al. 2006; Gelman and Hill 2007; Royle 

et al. 2007). Without reviewing these exhaustively here (see Elderd and Miller 2016 for a 

comprehensive appraisal), we highlight the inherent way in which random effects are 

handled as parameters of interest, resulting in fully specified probability distributions from 

which information on the intensity and uncertainty of the effects can be drawn; the option to 

incorporate prior knowledge based on empirical data or theory; and the ability to robustly 

quantify and propagate uncertainty through all modelling stages. Model fitting using INLA 

is computationally efficient, and provides accurate approximations of the posterior marginal 

distributions of model parameters that show high concordance with Markov chain Monte 

Carlo (MCMC) simulations (Rue and Martino 2007; Rue et al. 2009; Held et al. 2010). Since 

Lindgren and colleagues proved that a continuously indexed Gaussian field described by a 

Matérn covariance function can be represented as a discretely indexed GMRF (Rue and Held 

2005; Lindgren et al. 2011), rapid development of the SPDE approach within R-INLA has 
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facilitated fitting of an expanding suite of hierarchical spatial and spatiotemporal models to 

spatial point patterns (Krainski et al. 2016). This approach has recently proven useful in 

analyses of georeferenced fisheries datasets, which are often data-rich and where inference 

at the scale of point locations, rather than grids, is required (e.g. Cosandey-Godin et al. 2015; 

Ward et al. 2015; Ono et al. 2016). 

 

One of the well-noted criticisms of correlative species distribution models (Elith and 

Leathwick 2009 for a review of different methods) has been their inability to adequately 

account for residual autocorrelation in space and/or time. This situation that can violate 

independence assumptions in regression models, leading to inference errors and/or 

misrepresentation of covariate importance (Legendre 1993; Dormann 2007; Beale et al. 

2010). The SPDE approach considers these correlation structures directly, and allows great 

flexibility in their specification (e.g. Cosandey-Godin et al. 2015). In our space-time models 

for example, we specified temporally-independent (time-indep), or temporally-evolving 

(time-corr) annual realizations of spatially-structured error terms. As wintering herring 

displayed varying persistence in their spatial distribution from year to year (Fig. 2), our aim 

was to gain insight into if, and how ωi,t-1 might influence ωi,t. Although model performance 

did not alter greatly (Table 2), the time-indep structure was preferred for all models. This is 

most likely due to inclusion of time-lagged covariates (i.e. distribt-1, countst-1), the former of 

which was highly significant in all cases, and captured well the occurrence pattern of the 

previous year. 

 

We specified covariates as additive effects only in these models, but did allow for varying 

degrees of non-linearity and temporal non-stationarity in occurrence-covariate relationships. 

Whilst acknowledging that important interactions among predictors (e.g. environment and 

fishing intensity – Planque et al. 2010) may have been overlooked, our decision reflects an 

attempt to balance model complexity with meaningful ecological inference (Merow et al. 

2014). Hence, we placed priority on deriving biologically-realistic functional forms that 

could also vary in time. We found that including quadratic terms for the environmental 

covariates improved model fit compared with linear specifications alone, or where covariates 

were represented by penalized regression splines (Table 2), although most relationships 

approached linearity (Fig. 3). As the wintering stock was often clustered tightly in space, we 

also did not consider models with spatially-varying coefficients (e.g. Bacheler et al. 2009; 

Bartolino et al. 2011; Ciannelli et al. 2012). At the spatial scales of our observations, we 

assumed that any effect of a particular covariate would be imparted roughly equally across 

the space encompassing all herring schools encountered. This assumption is unlikely to hold 

if the occupied range expands, for example, during the spring feeding period, or if various 

ontogenetic stages, inhabiting geographically or environmentally disparate areas, are 

included in the models (see Bartolino et al. 2011 for an example). In these cases, inclusion 

of spatially non-stationary terms would likely provide important new insights. 

 

A key limitation of our analysis relates to the lack of age-disaggregated or spatially- 

standardized catch or survey data available during our temporal window. Because of this, 

we were forced to consider demographic factors in a non-spatial, correlative context (i.e. 

estimates across the entire stock for each year), and were unable to incorporate the singular 

or interactive effects of density-dependence and age-structure directly within the model 

formulation. Although our results suggest that density-dependence is unlikely to play a major 

role in governing winter occurrence in herring (see Appendix 8, Fig. A8), and that population 

size may influence spatial persistence in wintering area use, georeferenced data on age- 
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structure of each fishing event or survey record would have allowed direct tests of 

hypotheses around age-related differences in environmental preference, susceptibility to 

fishing pressure and the tendency to follow traditions and return to previously-used wintering 

sites. This type of data is available for many other herring stocks, and ongoing work is 

focused on exploring these ideas. 

 

Our models were specific to wintering ISS herring, limiting their generality. However, the 

approach used, and the covariates created, are easily adaptable to other herring stocks and 

species for which questions on the drivers and scales of conservatism or homing remain 

open. Bolstered by the strong congruence between modelled and observed temperature, 

salinity and flow fields in Icelandic waters (Logemann et al. 2013), the 23-year dataset we 

analyzed represents a substantial compilation of georeferenced records on the environmental 

conditions experienced by wintering ISS herring. The model outputs therefore provide a 

basis for identifying physiological thresholds that can be used to develop more informative 

priors and guide variable selection in future regression models (Simpson et al. 2015; Authier 

et al. 2017), or to aid parameterization of mechanistic models (Teal et al. 2016). We agree 

with Rochette et al. (2013) who advocate a hierarchical Bayesian framework as an appealing 

platform upon which to meld different types of data and models together, making it possible 

to assimilate the processes acting on different life-history phases within the one ‘full life 

cycle’ model. Such a model in under development for NSS herring in the Norwegian and 

Barents Seas (Utne and Huse 2012; Huse 2016) and we see potential for the types of models 

developed here to contribute to it. 
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Appendix 10. Fish and mammal predation on herring 

Humans are but one of herring’s many predators. Across their distributional range, herring 

aggregations are targeted by demersal and pelagic fishes, in addition to several species of 

seals, whales and seabirds (Read and Brownstein 2003; Pitcher et al. 1996; Similä et al. 

1996; Nøttestad and Axelsen 1999; Overholtz and Link 2007; Guse et al. 2009; Víkingsson 

et al. 2014). Herring have developed complex behavioral strategies to combat this; classic 

examples including diurnal vertical migration (Dommasnes et al. 1994) and extended 

residence in deep waters, that whilst potentially energetically expensive (Huse and Ona 

1996) are suggested as an adaptive response to visual predators like Atlantic cod (Gadus 

morhua) (Langård et al. 2014), surface-feeding fin whales (Balaenoptera physalus) 

(Nøttestad et al. 2002) and killer whales (Orcinus orca) (Similä 1997). In-situ observations 

of killer whale- herring interactions on wintering grounds in Norway have shed further light 

on the diversity of predator-evasion responses employed by herring schools (Nøttestad 1998; 

Nøttestad and Axelsen 1999), and the cooperative tactics used by killer whales to overcome 

such responses (Similä 1997; Domenici et al. 2000). 

In Icelandic waters, killer whales specialize on wintering ISS herring, and large numbers of 

these whales are often present on the wintering grounds between December and March 

(Samarra and Foote 2015). The ability of killer whales to influence herring schooling 

behaviour is very real (Nøttestad and Axelsen 1999). However, as herring are typically 

established on wintering grounds by early October (pre-dating killer whale arrival – Samarra 

and Foote 2015), and wintering areas are not vacated once colonized (ICES 2014; authors’ 

personal observation), we propose that any displacement by killer whale foraging would 

occur mainly at localized scales. For these reasons, and due to data scarcity, we did not 

include killer whale occurrence or density in our analysis. We stress however, that 

information on arrival times may help expose the evolutionary and contemporary risks 

herring face in following traditions and returning to the same, predator-rich, wintering 

grounds. 
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Abstract 

The biological status of many commercially-exploited fishes remains unknown, mostly due 

to a lack of data necessary for their assessment. Investigating the spatiotemporal dynamics 

of such species can lead to new insights into population processes, and foster a path towards 

improved spatial management decisions. Here, we focused on striped red mullet (Mullus 

surmuletus), a widespread, yet data-limited species of high commercial importance. We 

aimed to quantify range dynamics in this data-poor scenario, and combined fishery-

dependent and -independent datasets through a series of Bayesian mixed-effects models 

designed to capture monthly and seasonal occurrence patterns near the species’ northern 

range limit across 20 years. Combining multiple datasets allowed us to cover the entire 

distribution of the northern population of Mullus surmuletus, exploring dynamics at different 

spatiotemporal scales, and identifying key environmental drivers (i.e. sea surface 

temperature, salinity) that shape occurrence patterns. Our results demonstrate that even when 

process and/or observation uncertainty is high, or when data is sparse, combining multiple 

datasets within a hierarchical modelling framework can yield accurate and useful spatial 

predictions. 
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Introduction 

Long-term time series are a valuable resource for testing hypotheses on how temporal 

variability in recruitment or abundance, or patterns of range expansion or distributional shift 

may relate to climatic and anthropogenic events (Doney et al. 2012; Hawkins et al. 2013). 

This is a prerequisite to forecast the response of populations under future scenarios of 

environmental change and additional anthropogenic stressors, such as fishing pressure 

(Szuwalski and Punt 2015).  

 

Many fish stocks targeted by fisheries are not subjected to standardized assessment methods 

(Costello et al. 2012), meaning that both their exploitation level and their resilience to 

exploitation are uncertain. Non-assessed stocks not only comprise species of low 

commercial importance; some highly exploited species also fall outside the assessment 

process. This situation is often due to data scarcity, driven either by a lack of government 

investment in the fisheries management process, or through the history of the data collection 

itself (Hilborn and Ovando 2014).  

 

Stock assessment methods for so-called data limited stocks (DLS) have received 

considerable interest in recent years, with the development of new methods based on life 

history traits (e.g. body-size frequencies), or trends in abundance and fleets (ICES 2017; 

Kokkalis et al. 2017). However, data are still missing for many species, and if present, are 

often only available over short time scales. This can reduce confidence in the evaluation 

process, with potential consequences for the viability of fish populations and associated 

fisheries (Costello et al. 2012). 

 

When time series are short or sampling coverage sparse, combining different data sources 

within a single analysis can help to overcome the limitations of single datasets considered 

separately. Dependent upon their respective spatiotemporal coverage, amalgamating 

datasets allows for extending the time series, widening the area covered, and ultimately 

improving the power of the analysis and our understanding of population dynamics. The 

development of integrated analysis (as defined in Maunder and Punt (2013)) as a tool to 

combine data arising from different sampling methods (with their own spatial and temporal 

heterogeneity) within a single framework, has received attention in the statistical ecology 

literature (McGeoch and Gaston 2002) and in fisheries sciences (Maunder and Punt 2013 

and references therein). Hierarchical modelling approaches explicitly separate out process 

models from observation models, and therefore offer an efficient framework for this purpose. 

The process equations allow for modelling multiple dependencies and stochasticity in a 

hierarchy of scales suitable to depict the spatial and temporal variability present within the 

data through latent parameters, whilst the set of observation equations define how the data 

relate to the state variables of the model (Gelfand 2012; Parent and Rivot 2013; Kéry and 

Royle 2016). This class of models is also particularly well suited to capturing residual 

correlation patterns through inclusion of spatial (or temporal) correlation structure in the 

latent variables (Legendre 1993; Elith and Leathwick 2009; Thorson and Minto 2015). 

Bayesian inference in hierarchical models offers additional technical convenience, and 

provides outputs in a probabilistic rationale that fully propagates uncertainty (Punt and 

Hilborn 1997; Harwood and Stokes 2003). 

 

Here, we combine four fishery-dependent and fishery-independent datasets, spanning a 20-

year period, within a single hierarchical model to explore monthly and seasonal occurrence 
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patterns of striped red mullet (Mullus surmuletus, Linnaeus, 1758), a demersal Mullid of 

high commercial importance. We focus on the “northern subpopulation” that resides in the 

North Sea and eastern English Channel, and shows little mixing with the “southern 

subpopulation” (Bay of Biscay) (Mahé et al. 2014) and the “mixing zone subpopulation” 

(Celtic Sea and the Western English Channel) (Benzinou et al. 2013). Despite being 

commercially targeted across much of its range, information on the sensitivity of this species 

to changing environmental conditions is scarce. The hypothesized role of dynamic gradients 

(e.g. sea surface temperature) in shaping the migration and distribution patterns of the 

northern subpopulation (Beare et al. 2005; Engelhard et al. 2011) requires further enquiry 

using data covering the full geographic range of the subpopulation, over several years. This 

northern subpopulation is also characterized by strong oscillations in abundance between 

consecutive years (Mahé et al. 2005). During the last five years, fluctuations have increased 

in magnitude, concurrently with the loss of the oldest and most efficient spawners from the 

population (ICES 2015). These indices suggest an effect of overexploitation (Iglésias et al. 

2010) and are an alarm bell for future (and perhaps prolonged) depletion. Implementation of 

restrictive management options are currently being debated, such as the implementation of 

quota sharing within the total allowable catch (TAC) for the subpopulation, as already 

established in a multilateral context for other species in the North Sea (Hannesson 2013). 

 

Indications of a depleted population state, dramatic fluctuations in abundance and high 

uncertainty regarding the drivers underpinning spatial distribution and migration patterns 

constitute strong motivations to fill ecological knowledge gaps for this species, and 

eventually provide more reliable scientific advice for fisheries management. To this end, the 

objectives of our study are twofold: 1) to clarify the role of environmental factors in shaping 

occurrence patterns across the full distributional range of the northern subpopulation of 

striped red mullet; and 2) to gain insight into the mechanisms governing the marked inter-

annual variability in abundance and the seasonal migrations that characterize the 

spatiotemporal dynamics of this subpopulation. 

 

Materials and methods 

Presence/absence data 

Our data are derived from three scientific bottom-trawl surveys and one set of commercial 

fishery catch records. The scientific surveys were the winter and summer International 

Bottom Trawl Survey (IBTS) (ICES 2017) and the Channel Ground Fish Survey (CGFS) 

(Coppin and Travers-Trolet 1989). The IBTS surveys take place over one month across 

January and February (winter survey, IBTS-Q1), and one month across August and 

September (summer survey, IBTS-Q3) and cover the whole of the North Sea. Since 2007, 

the winter survey has been expanded into the eastern English Channel. The CGFS takes 

place over one month in October, and has covered the eastern English Channel since 1990. 

As the North Sea was not systematically sampled twice a year prior to 1995, only survey 

data from 1995 to 2015 are considered here. The commercial data come from the OBSMER 

French program (Cornou et al. 2016) which aims to collect data on landings and discards 

through at-sea observers. Catch data were available throughout the year (for every fishing 

operation on each sampled trip) from 2003 to 2015. 
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The four datasets were first reclassified into two new datasets based on their spatial and 

temporal coverage. Dataset A (n = 8391) comprises observations from IBTS-Q1, IBTS-Q3, 

CGFS and OBSMER covering the eastern English Channel and the southern North Sea 

(Figure 1) and spanning the years 1995 to 2015 at a monthly resolution. Dataset B (n = 

13853) has the same temporal coverage (1995-2015) but covers a larger spatial area than 

Dataset A. It includes the whole of the North Sea and comprises fishery-independent records 

only (i.e. IBTS-Q1, IBTS-Q3 and CGFS), at a seasonal (i.e. winter, summer and autumn) 

resolution (Figure 1). The number of records available from each data source is presented in 

Table S1. 

 

For both datasets A and B, georeferenced point records describing the catches of striped red 

mullet captured at a particular location s, and time t, were transformed to presence/absence 

records. This is a critical simplification to limit the effect of heterogeneity in fishing effort 

and catchability among the various datasets, and allows us to consider that all sampling 

methods are equivalently informative relative to the presence/absence of the species. To 

further limit heterogeneity in the catchability and avoid false zeros due to low catchability 

(Martin et al. 2005) when using OBSMER data, only records from bottom-trawlers using a 

mesh size between 70-90mm were extracted for the analysis, as larger mesh sizes are 

typically used by boats targeting other species (e.g. Pollachius virens). 

 

Environmental covariates 

Presence/absence records were correlated with a set of environmental covariates thought to 

influence the occurrence of striped red mullet: depth at seabed, sediment type, sea surface 

temperature (SST) and sea surface salinity (SSS). Depth at seabed (DEP) was extracted from 

the NORWegian ECOlogical Model system (NORWECOM) database 

(http://www.imr.no/~morten/wgoofe/). SSS was extracted at a monthly resolution from the 

NORWECOM website for the time interval from 1990 to 2008, while data for 2009-2015 

were obtained directly from the author of the model system. The SST data were obtained 

from satellite observations at a daily resolution, but for the purposes of this study a monthly 

mean was computed. SST values from 1990 to 2008 were extracted from the AVHRR 

Pathfinder Version 5.2 (PFV5.2) dataset, provided by the US National Oceanographic Data 

Center and GHRSST (http://pathfinder.nodc.noaa.gov) (Casey et al. 2010), whilst data from 

2009 to 2015 were extracted from the ODYSSEA processing chain operated within the 

ESA/MEDSPIRATION project (Gohin et al. 2010). Seabed sediment types (SED) were 

adapted from Larsonneur et al. (1982) and Schluter and Jerosch (2008), and reclassified into 

five broad categories: mud, fine sand, coarse sand, gravel and pebbles. To test for collinearity 

among covariates, we used the ‘vif.mer’ function (threshold set to 10) on a model object 

fitted using the ‘lme4’ package (Bates et al. 2015) in R version 3.3.0 (R Core Team 2016), 

to calculate variance inflation factors (VIFs) for each predictor (R code available here: 

https://github.com/aufrank/R-hacks/blob/master/mer-utils.R). No collinearity among 

covariates was detected, so VIFs are not reported in the Results. 

Modelling striped red mullet occurrence 

Dataset A and Dataset B were analysed independently but using the same modelling 

approach. Models were built in a hierarchical Bayesian framework using the SPDE 

(Stochastic Partial differential Equations) approach in the ‘R-INLA’ package (Rue et al. 

2009; Lindgren et al. 2011; Lindgren and Rue 2015) in R. This approach provides direct 
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inference on the spatial and temporal dependencies in the data. The process equation models 

the probability, pt(s) of striped red mullet presence at time-step t (i.e. either month or season) 

and location s, as a random field on the logit scale:- 

 

logit (pt(s)) = Xt(s)β + θt(s)          (eq. 1) 

 

where Xt(s) represents a vector of covariates (depth at seabed, sediment, SST, SSS) at time-

step t and at location s, β represents a vector of coefficients (fixed effects) to be estimated, 

and θt(s) is a spatiotemporal random effect to account for variation not explicitly explained 

by covariates. Random effects are defined by a Gaussian random field that is spatially 

autoregressive (depending on the distance between locations) and temporally uncorrelated 

(for details see Cameletti et al. 2013). To avoid computational costs that rapidly arise in 

continuous space (the so called big-n problem) (Lasinio et al. 2013), the spatial covariation 

is modelled within a Gaussian Markov random field (GMRF) on a discrete mesh, that defines 

the area of interest (Krainski et al. 2016) (see Figure S1). This way, the influence of spatial 

covariance at any point s is reduced to a set of neighbours (Cameletti et al. 2013). 

 

Given the latent field of presence probability  p
t
(s) at any time t and location s, 

presence/absence data  yt(s) are modelled as mutually independent and identically distributed 

Bernoulli variables:- 

 

 yt(s) ~ Bernoulli (pt(s))          (eq. 2) 

 

The full likelihood equation for the model then arises from the product of Bernoulli for all 

raw data (eq. 2). Because all data sources are considered as presence/absence, the strength 

of the hierarchical structure is that different data sources are integrated within a single 

analysis to infer a unique random field model for the probability of presence that captures 

the spatiotemporal covariations as defined in eq. (1). 

 

Within the SPDE approach, eq. 1 can be rewritten as:- 

 

logit (pt(s)) = Xt(s)β + At(s)θt         (eq. 3) 

 

where observation matrix At(s) is directly related to the space discretizing mesh (Figure S1) 

as it extracts the values of the spatiotemporal random field at each location s and at each 

time t. The realization of the random field can be represented through its mean density 

distribution and standard deviation, which in turn can be translated as the level of uncertainty 

at a certain location depending on the availability of data points (Cameletti et al. 2013). The 

quantification of such uncertainty, allowed us to account for the heterogeneity across time 

and space originating from the integration of different datasets. 

 

Several mesh designs were compared visually and the sensitivity of parameter estimation to 

the different designs assessed (Cosandey-Godin et al. 2015). The best mesh design for each 

dataset (see Figure S1) includes an outer extension to avoid a ‘boundary effect’ (Lindgren 

and Rue 2015) and regularly-shaped triangles, both in the inner and in the outer extension, 

and at the border between the two extensions (Krainski et al. 2016). Once the best mesh was 

selected, parameter values defining it were kept constant across models (i.e. at the same 

spatial resolution). 
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The simplified Laplace method was used to approximate the posterior marginal distributions 

(for details see Martins et al. 2013). We built and compared models of increasing complexity, 

from null models including no covariates to full models including all covariates and random 

effects. Models were compared through the deviance information criterion (DIC), the log 

marginal likelihood and by estimating the variance contribution of random effects against 

that of fixed effects. To evaluate out-of-sample predictive capacity for each fitted model, we 

derived the conditional predictive ordinate (CPO), defined as the cross-validated (cv) 

predictive density at observation  yt(s) with that observation removed (Roos and Held 2011). 

We used the CPO values to compute the cv logarithmic score (CVLS) (Gneiting and Raftery 

2007), a measure of predictive quality, and the cv Brier score (i.e. mean prediction error) for 

each model. This latter score evaluates the correspondence between fitted probabilities and 

observed binary outcomes (Schmid and Griffith 2005; Roos and Held 2011). Lower values 

on both scores reflect better predictions, with the Brier score interpreted relative to a 

reference value equal to sampling prevalence. The probability of presence was predicted 

across the whole area covered by each dataset, but here we limit our spatial predictions to 

more reliable areas where the standard deviation of  p
t
(s) was smaller than a ‘cutoff’ value, 

defined here as equal to its mean (Figure S2). Following Ward et al. (2015), we also 

estimated the predictive accuracy of the best model through the area under the receiver 

operating characteristic curve (AUC) using the ‘ROCR’ package (Sing et al. 2005). 

 

Priors 

We used the default priors for the fixed effects and hyperparameters as implemented in R-

INLA (described in Lindgren and Rue 2015). Hyperparameters currently constitute an active 

area of research for the R-INLA team (see R-INLA documentation available at http://www.r-

inla.org/). The latent field parameters θ1 and θ2 were defined by a multivariate normal 

distribution which is a combination of θ1 = N(0,10), θ2 = N(0,10). All fixed parameter priors 

were defined by a N(0,1000) except the intercept that has a prior distribution N(0,∞). 

 

Results 

Model selection 

Models with a month within year structure (for dataset A) and season within year (for dataset 

B) structure for the random effect were always preferred based on DIC. Models including 

all environmental covariates were selected as the best models on the balance of the DIC, the 

log marginal likelihood estimates, the reduced variance contribution of the spatial effect and 

predictive quality (CVLS and Brier score) (Table 1). The spatial correlation range (nominal 

range) of the best model for dataset A was 2.66 decimal degrees, and 8.51 for dataset B 

(Table 1). The AUC estimated for the best model for dataset A was 0.61, and 0.69 for dataset 

B.  

 

Environmental parameters 

Though posterior 95% credible intervals overlapped 0 in some cases (Table 2), all covariates 

appeared to add some information the models and their addition generally improved model 

fit and predictive capacity (Table 1). SST and SSS were positively correlated with the 

presence of striped red mullet for dataset A, while for dataset B only SST was significant 
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(Table 2). Sediment types were not correlated with the presence of striped red mullet at the 

monthly time scale for dataset A, or at a seasonal scale for dataset B. Finally, depth at seabed 

alone had little influence on the distribution of striped red mullet in both datasets (Table 2). 

 

Spatial latent field 

Posterior estimates of the spatial random effects inform about spatiotemporal variability that 

was not captured by the covariates in the model. Results are presented from 2009 onwards 

to allow direct comparison between datasets, as data for all months and seasons are available 

only from 2009.  

 

For dataset A, posterior estimates of the spatial random effect revealed that the northern 

subpopulation of striped red mullet changed its distribution month by month, moving into 

and out of the eastern English Channel (Figure 2). However, due to high variability inherent 

in commercial sampling and fewer observations per month, as revealed through the patterns 

in random field standard deviations for dataset A (Figure 4), it is difficult to identify a 

consistent monthly movement trend. For dataset B, in which sampling was consistent 

between winter and summer, our models revealed a seasonal distribution shift from the 

north-east in the winter, to the south in the summer, with higher uncertainty apparent across 

the region during autumn, as data were available only for the eastern English Channel at that 

time (Figure 3). 

 

Predicted probability of presence 

Our modelling framework also generates predictions of the probability of presence at any 

point in the region, provided that covariates are available. Figure 5 shows the predicted 

probability of presence of striped red mullet in the area encompassed by dataset A, but only 

where predictions were deemed reliable, i.e. where the standard deviation of  p
t
(s) was lower 

than 13.23 (see Figure S2). Beyond the inter-annual and seasonal variability in the 

probability of striped red mullet presence, recurrent patterns can be detected. Results 

highlight strong seasonal differences, with high predicted probability of presence (>70%) 

from July to October when the surface waters are warmer and lower probability of presence 

(<50%) predicted for colder months (late winter) (Figures 5, S3A). We also detected changes 

across years linked to SST. For example, during the coldest springs of the series (2010 and 

2013) (Figure S3B), the probability of presence in the eastern English Channel and the 

southern North Sea the region was substantially lower than in other years (Figures 5, S3A). 

Predictions from both datasets also suggest the existence of seasonal movements of striped 

red mullet across the study area. For example, during the period 2009 to 2015, the northern 

subpopulation appears to have wintered in two main areas: the English Channel, and the 

northwest of the North Sea (Figures 5, 6). Monthly predictions from dataset A indicate a 

distributional shift from the English Channel towards the Strait of Dover in spring, although 

this pattern varies across years (see Figure 5). Predictions from both datasets then suggest a 

northward expansion of the distribution into the southern North Sea during late spring and 

summer, followed by a contraction back towards the Channel in late autumn (Figures 5, 6). 

We note also that in 2015, the probability of presence remained high in the English Channel 

throughout the year, a year in which SST showed slightly weaker seasonality compared with 

previous years (Figure S3). 
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Discussion 

This study provides the first spatially-explicit analysis of how environmental parameters 

may shape the distribution of striped red mullet near its northern range boundary. We 

integrated all available georeferenced information on the occurrence of the northern 

subpopulation within models that directly account for correlation structures in the data, and 

the sources of uncertainty in data and process. The results provide a substantive contribution 

to our understanding of the spatiotemporal dynamics of this data-limited stock. Despite 

marked inter-annual variability in distributional range, we detected clear patterns of seasonal 

movement; namely, winter residence in the northwest of the North Sea and the English 

Channel, expansion into the southern North Sea in spring/summer and contraction back into 

the eastern English Channel in autumn.  

 

Our findings suggest that the occurrence of the northern subpopulation is positively 

correlated with water salinity and temperature. Results for the latter covariate match 

suggestions by Beare et al. (2005), who hypothesized that the presence of striped red mullet 

in northern waters in winter was related to increasing surface water temperatures. Moreover, 

our predictions show that certain years are characterized by larger occupied areas (e.g. 2011 

and 2015) interspersed with years of very low and/or scattered concentrations (e.g. 2013) 

(see Figures 5, 6). This complements previous descriptions of the strong interannual 

fluctuations in abundance within this subpopulation (Mahé et al. 2005; Carpentier et al. 

2009). Whether range expansion is linked to population size alone in this species (see Fisher 

and Frank 2004), or synergies between abundance and environmental factors, remains an 

open question. Striped red mullet has increased in abundance by 30% over the last two 

decades in the English Channel, concomitant with a shift towards a warmer phase of the 

Atlantic Multidecadal Oscillation index (Auber et al. 2015), with further increases possible 

under future warming scenarios (Cheung et al. 2013), all else being equal.  

 

However, higher abundances do not necessarily result in distribution extensions, and further 

investigation is needed into the strength of the ‘abundance–area’ relationship for North Sea 

red striped mullet populations in order to optimize spatial management efforts. That said, 

presence/absence data are often more easily obtained and more widely available than 

abundance data, and modelling presence/absence can simplify the integration of data 

obtained from heterogeneous sources. Indeed, provided that detection probabilities of the 

survey method(s) are equal to one, or if not, that they can be accounted for, presence/absence 

models as used in this study allow us to largely ignore variation in catchability among 

different survey methods and sampling gears. 

 

Although results from both datasets identify a positive effect of SST on the presence of 

striped red mullet across our study region, some discrepancies in model outputs between the 

datasets are evident. As an example, estimated p
t
(s) during summer in the English Channel 

is roughly 0.6 higher in dataset A compared with dataset B, although the spatial patterns in 

 p
t
(s) are fairly congruent between datasets (Figures 5, 6). One possible explanation for this 

relates to sampling coverage. Dataset B is derived mainly from IBTS data that are 

consistently sampled every winter and every summer. Dataset A also contains data from the 

IBTS surveys, but is complemented by the OBSMER data. Though incorporating true 

absences, this commercial dataset is potentially biased by variation in nominal and spatial 

commercial fishing effort that shifts not only between months but also between years (Figure 

S4, S5). Although we cannot completely rule out seasonally-varying fishing effort as 
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contributing to our spatial predictions for dataset A, we suggest that any effects are relatively 

minor given our use of presence/absence data as previously discussed. Building two different 

models based on the two different datasets allows us to glean the maximum possible 

information from both, and improve our understanding of the species’ dynamics at different 

spatial and temporal scales. Dataset A provides insight into the spatiotemporal dynamics of 

the northern population of striped red mullet at a monthly level, while dataset B exposes 

seasonal dynamics at a larger spatial scale, using spatially-consistent survey information. 

Importantly, the lower level of sampling heterogeneity in dataset B suggests where, spatially, 

the predictions from dataset A may be less reliable due to the high uncertainty given by non- 

consistent sampling. 

 

Integrating data from multiple sampling campaigns increased both the number of 

observations for our analysis, and our capacity to detect statistical flukes (Maunder and Punt 

2013). Moreover, comparing the results from the separate analyses of datasets A and B 

allowed us to expand our geographical coverage and explore the consistency of inferences 

across two different spatial scales and at two different temporal resolutions (i.e. monthly for 

A, and seasonal for B). As noted by Maunder and Punt (2013), when integrating multiple 

data sources, a trade off must be found that maximizes scientific reward in light of the 

challenges presented by integrated analysis. Indeed, combining datasets within a single 

analysis does not necessarily give rise to improved understanding of the target system, as it 

may lead to conflicts in what the datasets tell us, in addition to increasing statistical 

complexity and computational costs. Distilling the IBTS-Q1, IBTS-Q3, CGFS and 

OBSMER datasets into datasets A and B that differed in spatial and temporal resolution, was 

our trade off.  

 

The major source of uncertainty in our datasets came from the lack of commercial landings 

information for single months in the years prior to 2003 (the time series is complete for each 

month only from 2009 onwards). Confidence surrounding model estimates during this time 

period is therefore relatively low, and further efforts are needed to improve data quality in 

future analyses. A substantial impediment to progress on this front relates to the difficulties 

in accessing commercial catch and observer data from countries bordering the North Sea. 

The advantages of obtaining observer data from foreign fisheries targeting local stocks was 

demonstrated in US fisheries (French et al. 1982) and stands in stark contrast to the situation 

in the eastern English Channel and North Sea, where multiple countries similarly share the 

quota on several harvested stocks. Hannesson et al. (2013) showed that cooperation always 

brings more advantages than competition when quota is shared among parties. Hence, strong 

incentive exists to integrate all the available data – both fishery dependent and independent 

(e.g. national observer programs) – to maximize coverage of spatiotemporal information for 

commercial stocks. 

 

Species which are commercially exploited, though not formally managed, are particularly 

vulnerable to overexploitation, as their population dynamics are often not monitored with no 

limits placed on landings or minimum sizes. Using striped red mullet for illustration, our 

results have demonstrated some advantages of data integration within models that explicitly 

account for process and observation uncertainties, providing new insights into the 

spatiotemporal dynamics of the northern subpopulation within the North Sea and eastern 

English Channel. It is important to note, however, that such models alone are not the silver 

bullet for developing successful management directives under data-poor scenarios. Instead, 

we hope this work inspires future sampling designs, data collection and multilateral data-
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sharing programs that in conjunction with appropriate modelling approaches can lead to 

better adaptive management decisions for data-limited populations more generally (Walters 

2007; Maunder and Punt 2013). 
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Tables 

Table 1. Models’ DIC and log marginal likelihood, estimated spatial autocorrelation range 

(ρ), variance contribution of the spatial effect to the total variance (σ2), cross-validated 

logarithmic score (CVLS) and Brier score. Best models for each dataset are highlighted in 

grey. 

 

  

Dataset A DIC log marg. 

likelihood 

ρ σ2 CVLS Brier score 

SED+DEP+SSS+SST 7529 -4204 2.657 4.604 0.4469 0.0757 

SED+DEP+SSS 7556 ‐4222 2.768 4.856 0.4483 0.1461 

SED+DEP 7558 ‐4219 2.726 4.836 0.4484 0.1461 

SED 7557 ‐4210 2.770 4.880 0.4483 0.1461 

SSS+SST 7541 ‐4221 2.432 5.183 0.4472 0.1458 

No covariates 7569 ‐4237 2.554 5.496 0.4486 0.1462 

       
Dataset B       

SED+DEP+SSS+SST 6881 ‐3841 8.510 6.555 0.2533 0.0786 

SED+DEP+SSS 6894 ‐3854 8.018 6.659 0.2536 0.0786 

SED+DEP 6895 ‐3848 8.001 6.626 0.2537 0.0786 

SED 6900 ‐3839 7.890 6.483 0.2538 0.0787 

SSS+SST 7672 ‐4257 7.475 6.466 0.2467 0.0589 

No covariates 7021 ‐3907 7.214 6.803 0.2584 0.0807 
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Table 2. Estimated coefficients for the best models for dataset A and dataset B. Values are 

posterior means and intervals (CI) are 95% Bayesian credible intervals. Intervals not 

containing 0 are highlighted in grey. 

 

Covariate Dataset A Dataset B 

Mud -4.428 (-30.036, 21.029) -0.785 (-26.155, 24.435) 

Fine sand -4.537 (-30.148, 20.922) -0.810 (-26.180, 24.411) 

Gravels -4.091 (-29.706, 21.372) -0.634 (-26.005, 24.587) 

Pebbles -5.086 (-30.700, 20.377) -1.749 (-27.120, 23.472) 

Coarse sand -3.863 (-29.475, 21.598) 0.319 (-25.051, 25.540) 

SST 0.208 (0.151, 0.266) 0.268 (0.181, 0.356) 

SSS 0.652 (0.034, 1.267) -0.063 (-0.182, 0.056) 

DEP -0.005 (-0.014, 0.003) 0.002 (-0.002, 0.006) 
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Figure 1. Spatial coverage of the two datasets (A and B) used in the modelling. 
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Figure 2. Posterior mean of the spatial random effect for dataset A – positive values indicate 

a high density of presence data while negative values indicate a high density of absence 

data. The months of January–February and August–September were grouped together to 

combine the parts of the IBTS survey that straddled months. 
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Figure 3. Mean (left-hand side) and standard deviation (right-hand side) of the spatial 

random effect at a seasonal resolution for dataset B – positive values of the mean indicate a 

high density of presence data while negative values indicate a high density of absence data. 

The standard deviation increases with distance from the data points. 
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Figure 4. Standard deviation of the spatial random effect for dataset A. The months of 

January–February and August–September were grouped together to combine the parts of 

the IBTS survey that straddled months. 
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Figure 5. Spatial predictions of the probability of presence of striped red mullet in the 

eastern English Channel and southern North Sea at a monthly resolution from 2009 (top) to 

2015 (bottom), as output from the best model for dataset A. The colour bar scales from blue 

(low occurrence probability) to red (high occurrence probability). White areas represent 

grid cells in which the standard deviation was higher than the mean standard deviation (on 

the logit scale) (see Figure S2). 
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Figure 6. Spatial predictions of the probability of presence of striped red mullet in the 

eastern English Channel and the North Sea at a seasonal resolution from 2009 (left) to 2015 

(right), as output from the best model for dataset B. The colour bar scales from blue (low 

occurrence probability) to red (high occurrence probability). 
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Supplementary material 

Table S1. Details of the four data sources used in this study, the total number of records (n) 

available for each, and the number of records where striped red mullet was present. 

Data source Spatial coverage Temporal coverage  n records n presences 

IBTS-Q1 

survey data 

North Sea & 

English Channel 

included since 

2007 

January/February 

(1995-2015) 

7496 912 

IBTS-Q3 

survey data 

North Sea & 

English Channel 

included since 

2007 

August/September 

(1995-2015) 

6202 445 

CGFS survey 

data 

English Channel October (1990-2014) 1814 922 

OBSMER 

commercial 

data 

English Channel 

and Southern 

North Sea 

Monthly (2003-2015) 4331 2041 

Dataset A See Figure 1 1995-2015 8391 3371 

Dataset B See Figure 1 1995-2015 13853 2279 

 

 

 

Figure S1. Best meshes built and selected for the SPDE model for dataset A (left) (max 

edge=0.3,0.8; offset=0.05,0.6) and dataset B (right) (max edge=0.25,0.6; offset=0.05,0.6). 

The black and grey points represent the distribution of data (presence/absence in our case). 
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Figure S2. Distribution of the values of the predictions’ standard deviation used to define 

an upper ‘cutoff’ (red vertical line) corresponding to an uncertainty too high to consider the 

predictions on the probability of presence of striped red mullet reliable. 
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Figure S3. A) Monthly predicted probability of presence obtained from dataset A, from 2009 

to 2015. Each colour represents a seasonal quarter and the horizontal dotted line marks the 

average predicted probability of presence across all years. B) Monthly average SST used to 

analyse dataset A, from 2009 to 2015. Each colour represents a seasonal quarter and the 

horizontal dotted line marks the average SST across all years. 

114



 

Figure S4. Summary of the monthly catch locations across years available from the 

OBSMER program, for bottom-trawlers using a mesh size between 70-90mm. Both total 

records (grey plus blue dots) and records where striped red mullet was present (blue dots) 

are indicated. 
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Figure S5. Summary of the yearly catch locations across years available from the OBSMER 

program, for bottom-trawlers using a mesh size between 70-90mm. Both total records (grey 

plus blue dots) and records where striped red mullet was present (blue dots) are indicated. 
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Abstract 

Populations of animals often comprise individuals with strikingly diverse phenotypes. The 

interplay between individual-level (intrinsic) and environmental (extrinsic) variability can 

magnify these phenotypic differences, leading to the emergence of strong trait variation 

among ecologically- or geographically-separated populations. For commercially-exploited 

marine fishes, defining the scales (in space and time) at which nursery ‘source’ populations 

vary in such traits can allow researchers to assess source contribution to harvested adult 

‘sink’ populations, and managers to identify and protect critical nursery habitats. The 

chemical constituents of fish otoliths (ear stones) have emerged as powerful tools for this 

purpose, as they provide life-long, bio-environmental markers for individuals and 

populations. However, substantial uncertainty still surrounds how intrinsic and extrinsic 

processes shape chemical incorporation into otoliths, limiting our capacity to predict the 

scales of marker variability when sampling coverage is patchy, or data are few. To tackle 

these issues, we analysed otolith elemental (Li, Mg, Ca, Mn, Zn, Sr, Ba) and stable isotopic 

(δ13C, δ18O) concentrations from two age-classes of juvenile Atlantic herring (Clupea 

harengus) captured simultaneously at nursery sites around Iceland, and fitted a series of 

Bayesian mixed effects models to isolate ontogenetic (i.e. age- and growth-related) 

influences from environmental influences on otolith chemistry. We tested for ontogenetic 

effects within sites, and detected strong declines in four of six element:Ca ratios with age 

(Li:Ca, Mg:Ca, Mn:Ca, Sr:Ca), the slopes of these relationships differing among sites for 

Li:Ca and Mg:Ca. Otolith Sr:Ca was consistently lower in larger individuals within an age-

class. Our models also revealed high individual-level variability (i.e. within site, within age-

class) for all otolith markers, whilst highlighting the importance of temperature and salinity 

(or the proxies these represent) in explaining population-level trends for δ13C and δ18O. Age- 

and year-specific predictions for each otolith marker, at each nursery site, generally accorded 

well with empirical observations, providing inference on island-wide heterogeneity in otolith 

chemistry across the juveniles’ full distributional range. Such spatially-resolved predictions, 

generated from mechanistically-focused models as presented here, might hold value for 

other animals whose source-sink dynamics remain uncertain, or where sampling limitations 

hamper the effectiveness of spatial management efforts. 
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Introduction 

Animals within a species often display dramatic phenotypic variability. In populations of 

conspecifics, this can arise via inter-individual differences in traits associated with behaviour 

and personality (Sih et al. 2004; Fiksen et al. 2007; Cote et al. 2010), which may be adaptive 

(Dall et al. 2004), or those related to age, physiology, sex and/or past experience (e.g. Shima 

and Swearer 2010; Leitão et al. 2019), all mediated through intra-individual plasticity in trait 

expression through ontogeny (Stamps 2016). Dependent upon the species and setting, it is 

conceivable that the existence of such intrinsic (i.e. individual-level) trait differences within 

populations, in conjunction with local extrinsic (e.g. environmental) forcing, might also give 

rise to marked divergence in trait expression among geographically- and/or ecologically-

segregated populations (see Kawecki and Ebert 2004; Freshwater et al. 2019) – differences 

pronounced enough to shape the spatial structure and connectedness of these populations, as 

well as the attributes of their members. 

Commercially-harvested species can face additional selective pressures (Allendorf et al. 

2008), and for those distributed over wide geographic domains, defining the scales at which 

spatially-separated populations differ in key traits provides a platform upon which to develop 

spatial management directives that balance sustainable harvest and conservation objectives. 

Whilst a worthy goal, such information is often lacking, particularly in the context of marine 

fisheries (Cowen et al. 2007; Moore et al. 2018; but see Williams et al. 2012). This arena is 

arguably where data needs are most pressing, as climate change redistributes species subject 

to heavy commercial fishing pressure across new international or jurisdictional borders (e.g. 

Jansen et al. 2016), leading to mismatches between the scale of management units and 

population processes (Moore et al. 2018). A means to characterise how individual-level trait 

variability scales to the population level, with explicit consideration of intrinsic and extrinsic 

influences on trait expression, would constitute a major step towards resolving these issues. 

For example, it would enhance researchers’ ability to clarify the structure of populations 

across an ocean scape, and to assess nursery ‘source’ contributions to harvested adult ‘sinks’, 

enabling managers to delineate ecologically-relevant management boundaries and to protect 

key nurseries with a view to ensuring future fishery sustainability. 

Fish otoliths (ear stones) offer one powerful tool for such applications, as they comprise life-

long, individual-level data on chemical traits (or markers) that can vary strongly within and 

among populations (Thorrold et al. 1998; Macdonald and Crook 2010). Although well 

known for their accurate age- and growth-recording properties, the discovery that 

concentrations of certain elements and stable isotopes in otoliths are sensitive to 

environmental gradients (i.e. in salinity, temperature, ambient water chemistry, pH) (Elsdon 

and Gillanders 2004; Martin and Wuenschel 2006; Mirasole et al. 2017), physiological 

changes associated with fish age (Chittaro et al. 2006; Grammer et al. 2017) and growth 

(Sadovy and Severin 1994; Stanley et al. 2015), sex (Sturrock et al. 2015), metabolic activity 

(Kalish 1991a; Høie et al. 2003), diet (Ranaldi and Gagnon 2008) and genetic variation 

(Clarke et al. 2011) underscores otoliths’ unique potential as bio-environmental recorders 

for individuals and populations (see Grønkjær 2016; Izzo et al. 2018 for reviews). 

Notwithstanding this potential, the environment can place strict limits on intrinsic processes 

(Pörtner and Peck 2010; Holt and Jørgensen 2014), and decoupling how these factors interact 

to shape otolith chemical traits remains a key challenge for accurate data interpretation. 

Evidence for non-environmentally driven elemental enrichment at, or near to, the otolith 
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core (Brophy et al. 2004) further complicates matters, and individual- (Macdonald and 

Crook 2010) and species-level (Chang and Geffen 2013) variation in elemental uptake rates 

makes generalising trends within and among taxa problematic (but see Swearer et al. 2003). 

Yet there is hope. Recent assays of blood and endolymph chemistry (Sturrock et al. 2014, 

2015; Thomas et al. 2017) in conjunction with investigations into elemental binding 

processes within the otolith (Melancon et al. 2009; Doubleday et al. 2014; Izzo et al. 2016) 

have shed new light on the bio-environmental regulation of chemical trait variability. Taken 

together, these studies open a pathway towards deeper process-based insights in this field. 

 

Though complete mechanistic understanding is not a strict requirement for using otoliths as 

natural tags in fishery management applications, isolating the drivers of otolith chemical 

variability in wild fish populations may advantage studies of this kind. For example, several 

commercially-targeted marine species are known to form mixed-age and/or origin schools 

during critical life phases (e.g. during spawning – Grabowski et al. 2012; or nursery 

residence – Brophy and Danilowicz 2002), with populations distributed over broad 

geographic ranges and/or steep environmental gradients. For juveniles of these species, 

predictions from spatially-explicit models of otolith chemistry that appropriately capture 

both ontogenetic and environmental influences could provide first-order estimates of trait 

heterogeneity across a network of nursery sites. Indeed, by encompassing all potential 

nursery source populations, relevant time-points, age-classes, age-specific growth rates and 

environmental features, these models would generate reliable baselines for quantifying 

population mixing rates, particularly when sampling coverage is sparse. 

 

Here, we illustrate the value of such models using data from wild, juvenile Atlantic herring 

(Clupea harengus) (hereafter herring) residing in Icelandic waters (i.e. Icelandic summer 

spawners – ISS), and take advantage of a sampling scheme in which two age-classes were 

captured simultaneously from the same nursery sites, in the same trawl tow. Following larval 

dispersal from spawning grounds, ISS herring settle in nurseries that are distributed widely 

across the Icelandic coast. Juveniles exhibit strong nursery-site attachment through the first 

two years of life before leaving to join the adult component of the stock, which is subject to 

heavy commercial fishing pressure (Jakobsson and Stefánsson 1999; Guðmundsdóttir et al. 

2007). This situation provided us an opportunity to isolate ontogenetic influences on otolith 

chemical traits within nursery sites, using the sharp environmental gradients present around 

Iceland to explore the additional contribution of environmental effects among sites. 

Spatially-explicit inference on how these factors are expressed in otoliths, and at which 

scales, is particularly pertinent for ISS herring. The population has been declining for the 

past decade due to a combination of regular Ichthyophonus hoferi outbreaks and a series of 

poor recruitment years (ICES 2017), and a lack of quantitative data on the spatio-temporal 

structure of nursery populations has hindered efforts to identify and protect key nursery 

areas. 

 

To this end, we measured the elemental (Li, Mg, Mn, Zn, Sr, Ba) and stable isotopic (δ13C, 

δ18O) concentrations at the edges of juvenile ISS herring otoliths, and developed a series of 

Bayesian mixed effects models incorporating both ontogenetic and environmental covariates 

to address three specific aims (1) to seek evidence for age- and growth-related effects on 

elemental and stable isotopic markers within sites; (2) to explore variation in relationships 

between these markers and temperature and salinity gradients among sites; and (3) to harness 

this information to map site-level predictions for each marker at an island-wide scale, for the 

two juvenile age-classes, and across three sampling years. Our modelling approach provides 
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direct inference on the scale of individual-, site-, cohort- and population-level variation in 

phenotypic traits, and their synergies with intrinsic and extrinsic factors – data useful both 

for identifying connections among broadly-distributed animal populations, and for our 

management of them. 

 

Materials and methods 

Fish sampling and rationale 

Juvenile age 1 (i.e. ~15-month old) and age 2 (i.e. ~27-month old) herring were captured 

from 26 inshore nursery sites, concentrated on the Icelandic north coast, over three autumns 

(i.e. 2013, 2014, 2015) (Table 1, Figure 1). Sampling took place in late October and early 

November each year during the juvenile herring (acoustic and trawl) and northern shrimp 

(Pandalus borealis) (trawl) surveys that aim to provide recruitment/biomass indices for input 

into stock assessments. Juvenile herring are a common bycatch item in the shrimp trawls. 

We used a standard bottom trawl of 1010 meshes, with the cod-end comprising a 37-mm 

diamond-mesh. Tows were conducted during daylight hours, covering between 0.1 and 1.2 

nautical miles, with the vessel travelling at ~2 knots. 

 

At a subset of capture sites (n = 6), age 1 and age 2 herring were collected simultaneously in 

the same tow, allowing us an opportunity to isolate age- and growth-related effects on otolith 

chemistry within sites. After settlement in nursery sites, juvenile ISS herring exhibit strong 

site fidelity over the subsequent two years (Guðmundsdóttir et al. 2007), often forming 

dense, mixed-age schools that move little (in the horizontal dimension) from late autumn 

through the winter months. Under these circumstances, and given the location and 

characteristics of the capture sites, it follows that within each site, the environmental 

conditions (e.g. salinity, temperature, ambient water chemistry, pH) experienced by both 

age-classes in the weeks preceding capture would be near identical. Hence, we contend that 

any variation in chemical markers detected at the otolith edge (representing recently accreted 

otolith material) would be driven primarily by intrinsic and/or dietary factors. Upon capture, 

fish were measured for standard length (SL) (±1 mm), and frozen for transport to the 

laboratory.  

 

Otolith analysis 

Extensive details on otolith preparation, the analyses conducted and the instruments used are 

provided in Appendix S1. Briefly, sagittal otolith pairs were removed, cleaned of adhering 

tissue, rinsed with ultrapure water (Milli-Q®; www.merckmillipore.com) and stored dry in 

0.5-ml polypropylene microtubes. For each fish, we polished one sagitta to near the 

primordium and used laser ablation-inductively coupled plasma-mass spectrometry (LA-

ICP-MS) to measure the concentrations of seven elemental markers (i.e. 7Li, 25Mg, 43Ca, 
55Mn, 66Zn, 88Sr, 138Ba) in a ~40-μm wide × 11-μm deep disc of otolith material at the dorsal 

margin. We estimate that these discs reflected otolith material accreted during the final < 2 

weeks of each fish’s life (Appendix S1).  

 

We used the second sagitta for analyses of stable carbon and oxygen isotope ratios (i.e. δ13C, 

δ18O). Whole age 1 otoliths were ground, individually, to a fine powder, of which between 

0.05 and 0.1 mg was analysed using isotope ratio mass spectrometry (IRMS). Each powder 
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sample represented a full lifetime (i.e. ~15-month) record of δ13C and δ18O for each age 1 

fish. Age 2 otoliths were sub-sampled. We used a high-resolution MicroMill system to plot 

a 200-µm wide × ~25-µm deep drill path along the otolith edge (see Appendix S1 for details). 

Again, between 0.05 and 0.1 mg of powder was analysed per sample using IRMS, 

encompassing otolith material deposited during the last ~2 months of life.  

 

Elemental data are expressed as molar ratios to Ca throughout (e.g. Li:Ca), with stable 

isotopic measurements reported relative to the Vienna Pee Dee Belemnite (VPDB) reference 

standard, and expressed in δ-notation (in ‰). Note that second sagittae were not available 

for age 1 herring captured in 2014. In addition, sample sizes were often lower for stable 

isotopic compared with elemental measurements due to technical issues with the MS 

operation and subsequent loss of samples (Table 1). We consider these data as ‘missing 

completely at random’ (Rubin 1976). 

 

Statistical analysis 

A series of univariate and multivariate linear mixed effects models were developed to 

investigate how age, growth and environmental covariates might influence the elemental and 

stable isotopic composition of juvenile herring otoliths. All analyses were run in R 3.4.0 (R 

Core Team 2017). Datasets and R code are available from the Dryad Digital Repository. 

 

Covariates 

We selected covariates that reflect, either directly or indirectly, some key mechanisms 

thought to underpin chemical uptake into fish otoliths, and tuned them to the ecology of the 

juvenile herring sampled here. To capture possible ontogenetic effects, we included age in 

years (Age), and a variable representing individual-level ‘anomalies’ from the mean standard 

length calculated within each site and age-class (SL_anom). The former provides a proxy 

for any physiological, metabolic and/or dietary changes occurring between the two juvenile 

cohorts, while the latter tests if individual variation in somatic growth, or by association, 

condition or metabolism within a cohort can influence chemical incorporation. Inclusion of 

SL_anom also tests if faster growers (positive anomalies) differ from slower growers 

(negative anomalies) in chemical uptake, irrespective of Age. Conductivity, temperature and 

depth (CTD) profiles were collected at 12 out of 26 capture sites, allowing us empirical 

measurements of water temperature (Temp) and salinity (Sal) at 1-m depth intervals. We 

used these measurements to calculate mean values for both parameters across the entire 

water column at the time and location of each tow. Our aim here was to mirror the 

environmental conditions recently experienced by juvenile herring during their diel vertical 

migrations (Cardinale et al. 2003), rather than conditions at the exact depth of the tow. For 

the remaining 14 sites, we used data hindcast from the CODE ocean model (Logemann et 

al. 2013). Modelled temperature and salinity estimates were extracted at a 1 × 1 km 

horizontal resolution around each capture site at 2.5-m depth intervals, and mean values 

calculated through the entire water column for the day of capture. As empirical 

measurements were recorded on the capture date, we aimed to match this temporal resolution 

with our modelled estimates. Yet, given the potential for time-lags in elemental 

incorporation into otoliths (e.g. Macdonald and Crook 2010), we checked how representative 

the daily estimates were of local environmental variability in the week, and month preceding 

capture. Correlations (Pearson’s r) between day and week, week and month, and day and 
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month were > 0.94 for both modelled environmental parameters, so we elected to use daily 

estimates for subsequent model fitting (see Table 1).  

  

Data organisation 

In order to build, validate and predict from the models, we split our dataset in three: (1) A 

‘training’ set (n = 176), comprising data from the six sites where age 1 and age 2 fish were 

captured simultaneously was used for model building, within-sample validation and 

posterior predictive simulation (see below). (2) A ‘test’ set (n = 190), consisting of data from 

a further 12 sites in which only one age-class was captured, and site-level environmental 

variables fell within the range of the training set was used for out-of-sample (oos) validation. 

(3) An ‘extras’ set (n = 92), comprising data from the remaining eight sites, in which one 

age-class was captured, and the environmental variables fell outside the range of the training 

data (Table 1). We combined the three datasets to make spatial predictions for each otolith 

chemical marker across all nurseries sampled. 

 

Exploratory data analysis 

Prior to model fitting, the distributions of the response variables (i.e. Li.Ca, Mg:Ca, Mn:Ca, 

Zn:Ca, Sr:Ca, Ba:Ca, δ13C, δ18O) and covariates (Age, SL_anom, Temp, Sal) were visualised 

and screened for potentially influential values. Three samples with extreme values on Zn:Ca 

were detected in the training set, identified as measurement errors, and removed from 

subsequent analysis. All elemental ratios were natural log transformed, which acted to 

improve normality of residuals and stabilise the error variance in subsequent modelling. δ13C 

and δ18O values were left untransformed. We assessed covariate associations through 

scatterplots and calculated pairwise correlation coefficients (Pearson’s r). As |r| was always 

< 0.7 (Dormann et al. 2013), all covariates were retained for modelling. To facilitate 

interpretation of regression coefficients, continuous inputs were centred and scaled to have 

mean = 0 and SD = 0.5, with the binary input, Age, left unscaled (Gelman 2008).  

 

Modelling approach - univariate models 

Univariate models were fitted in both a Bayesian framework using Monte Carlo Markov 

chain (MCMC) simulations in the ‘MCMCglmm’ package (Hadfield 2010), and using 

restricted maximum likelihood (REML) and ML estimation in the ‘lme4’ package (Bates et 

al. 2015). Coupling these approaches proved useful for model comparison, checking and 

validation. The model structure differed for elemental and stable isotopic markers. For each 

elemental marker, we began with ‘full’ models containing all covariates coded as linear 

terms, and first-order interactions that allowed the relationships between SL_anom, Temp 

and Sal and the marker of interest to vary with Age. Examination of residuals from 

preliminary linear models revealed moderate within-site correlations for some markers. In 

light of this, and given (1) that our interest lay in age and growth effects within sites, and (2) 

that our sites are a random sample of all possible nursery sites, we opted to treat ‘site’ as a 

random effect. After specifying the full model, we next searched for the optimal random 

effect structure (Zuur et al. 2009) – six of which were considered (Table 2). These encompass 

a range of scenarios regarding how intrinsic and extrinsic processes might shape herring 

otolith chemistry differently at different sites. Once the best random structure was identified, 

we then found an optimal fixed structure (Zuur et al. 2009) by fitting and comparing sub-
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models containing all possible fixed effect combinations, and null (i.e. intercept-only) 

models where appropriate (see Appendix S2: Table S1). The full model equation for random 

structure 5, the most complicated structure in Table 2, is:- 
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εij ~ N(0, σ
 ε
 2)                (eq. 1) 

 

Here, y
ij
 represents the (natural log transformed) otolith edge element:Ca concentration 

measured in µmol/mol (for Li:Ca, Mn:Ca, Zn:Ca, Ba:Ca) or mmol/mol (for Mg:Ca, Sr:Ca) 

for fish i sampled at capture site j. β
0
 is the overall mean concentration across sites, and site0j 

is the random site-level deviation from this mean. β
1
to β

7
 are regression coefficients for the 

fixed effects, and site1j, site2j and site5j denote random site-level differences from the mean 

slopes for Age (β1), SL_anom (β
2
) and their interaction (β

5
), respectively. The random site 

effects are assumed to be multivariate normally distributed with mean 0 and covariance 

matrix Ωsite, which defines the site-level variances (σ 2) for, and covariances (cov) among, 

the random intercept and slopes (Eq. 1). εij, representing individual-level variation, is 

modelled as normally distributed with mean 0 and variance σ ε
 2. 

 

The ‘full’ models for otolith δ13C and δ18O, did not include an Age term. This was necessary, 

as analyses of these markers differed in temporal resolution (i.e. age 1: whole otolith; age 2: 

last ~2 months of life pre-capture), precluding direct comparisons between cohorts. Due to 

sample size constraints, we considered age 2 samples only and modelled each of δ13C and 

δ18O (in ‰) as a function of SL_anom, Temp and Sal, entered as additive, linear terms. 

Random effect structures 1 and 3 were tested and compared with models without random 

effects (i.e. structure 6) (see Table 2). 

 

Modelling approach - multivariate models 

Next, we fitted a series of multivariate (response variables = six elemental ratios), and 

bivariate (response variables = δ13C, δ18O) mixed models in the ‘MCMCglmm’ package, 

incorporating the same fixed and random effect structures as the univariate models. A key 

advantage of multi/bivariate models is their ability to quantify the covariances between 

response variables, both among and within captures sites, while also estimating the 

(co)variances described in Ωsite (eq. 1) (Dingemanse and Dochtermann 2013). A drawback, 

however, is that these models act to smooth covariate effects across all response variables, 

reducing precision if different markers are sensitive to different covariates. As covariances 

between random intercepts and slopes for Age and/or SL_anom were very low for all 

chemical markers in the univariate models, we chose not to include these in the 

multi/bivariate cases. We did estimate among-site variances in random intercepts and Age 
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and/or SL_anom slopes and their interaction (if included) for each marker (i.e. the long 

diagonal in Ωsite), the among-site covariances between all marker pairs (e.g. 

covsite0(Li:Ca, Mg:Ca) represents the covariance between random intercepts for Li:Ca and 

Mg:Ca), and the among-individual variances (σε
2) and covariances (e.g. covε (Li:Ca, Mg:Ca)) 

captured by the residual terms. All response variables were scaled to have mean = 0, SD = 1 

prior to model fitting (Hadfield 2010). Multivariate normality was checked using functions 

in the ‘MVN’ package, and we screened for multivariate outliers based on robust 

Mahalanobis distances (Korkmaz et al. 2015). The assumption of homogeneity of variance-

covariance matrices was assessed using Box’s M test in the ‘biotools’ package (da Silva 

2017). Again, we used a top-down approach to arrive at optimal random and fixed effect 

structures for each model. 

 

Bayesian model fitting 

We fitted each ‘MCMCglmm’ model to the data three times, obtaining three independent 

Markov chains initialised using dispersed values. We ran each chain for 250,000 iterations, 

discarding the first 50,000 as burn-in, and using the remaining 3 × 200,000 = 600,000 

samples for the calculation of posterior summaries. We initially used a thinning interval of 

10 to aid efficiency, then refitted the final models using unthinned chains to maximise 

precision in our estimates (Link and Eaton 2012). Convergence of the chains was assessed 

via visual inspection of trace plots and by computing Gelman-Rubin diagnostics (R̂). 

Autocorrelation between successive samples was explored using the set of ‘autocorr’ 

functions in the ‘coda’ package (Plummer et al. 2006). Finally, we calculated Monte Carlo 

standard errors for all estimated parameters using overlapping batch means in the ‘mcmcse’ 

package (Flegal et al. 2016). Details of priors, and results from a sensitivity analysis on prior 

choice for the random effect variance components are presented in Appendix S2 and Figure 

S1. 

 

Model selection 

Model selection was based on several metrics: the deviance information criterion (DIC), the 

deviance (computed for the Bayesian models), the small-sample corrected Akaike’s 

information criterion (AICc), and the restricted log likelihood (LL) (computed for models 

fitted with REML). In addition, we calculated oos mean squared prediction error (MSPEoos) 

by comparing Bayesian point predictions from the models to observed values in the test data. 

From these metrics, we arrived at two final univariate models for each otolith chemistry 

marker – one that maximised explanatory power (denoted ‘explan’) and one that maximised 

oos predictive accuracy (denoted ‘oos.pred’)  – and two final multi/bivariate models selected 

for these same attributes (Table 3, Appendix S2: Table S1). For each final ‘explan’ model, 

we checked model residuals, and, in the univariate cases, calculated the marginal, 

conditional and semi-partial R2 (R2
m, R2

c, R2
f  , respectively) to estimate the variance 

explained by all fixed effects (R2
m), fixed and random effects combined (R2

c), and each fixed 

effect, f, separately (R2
f  ) (Nakagawa and Schielzeth 2013; Johnson 2014; Jaeger et al. 2017). 

We also estimated adjusted repeatability (± 95% bootstrapped confidence intervals) for each 

marker at the site level, using the ‘rptR’ package (Stoffel et al. 2017). These repeatability 

estimates adjust for the fixed covariates, with estimates for random slope models based on 

the mean random effect variance across all values/levels of the covariate.  
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As fitting in ‘lme4’ and ‘MCMCglmm’ yielded the same final models on the balance of the 

selection criteria examined (Appendix S2: Table S1), we focused on the Bayesian models 

for further inference, and ran posterior predictive checks as an additional test of within-

sample predictive capacity. We generated 200,000 simulated datasets from each final 

‘explan’ model, and gauged how closely these data matched the observed otolith chemistry 

by plotting the observations for each marker against the simulated means (± 95% prediction 

intervals) and assessing the correlation (i.e. rsim) between them (Table 3, Appendix S2: 

Figure S2). This let us judge whether the univariate or the multi/bivariate ‘explan’ models 

performed better. The simulations also allowed us to calculate posterior predictive p-values 

(i.e. ppp-values) – the proportion of simulated means > empirical means – for two test 

quantities: the observed mean and SD of the marker(s) of interest. Values close to 0 or 1 

indicate discrepancies between simulated and observed data distributions. Lastly, to 

determine the models providing the most accurate oos prediction, we compared the 

correlation strength between observations and predictions on the test data (i.e. roos) for each 

‘oos.pred’ model version/otolith marker combination (Table 3).  

 

Spatial predictions  

We used the best-performing ‘oos.pred’ models to predict otolith elemental and stable 

isotopic chemistry for each capture site, for each of the two age-classes captured, and for 

each of the three years of sampling1. To build the prediction matrix, we first extracted mean 

daily Temp and Sal values at each capture site from CODE (measured through the full water 

column) for October 2013, 2014 and 2015, and calculated monthly means for October each 

year. For the intrinsic covariates, when age 1 and/or age 2 herring were captured from a 

given site, the mean SL_anom value from the sampled population of each cohort at that site 

was used. In the event of no fish being captured at a site in a particular year, we followed a 

series of steps to estimate the SL_anom value (see Appendix S2 for details). We produced 

annual maps of site-specific predicted values for each age-class, and plotted the observed (± 

SD) versus predicted (± 70% highest posterior density (HPD) credible intervals) values 

across all sites and years. Finally, at each capture site, and for each otolith chemistry marker 

separately, we calculated Pearson’s r between the mean observed and predicted values, and 

the MSPE across (1) all years, (2) by age-class, (3) by year, and (4) by age-class within year. 

 

Results 

Sampling coverage and environmental data 

Our sampling targeted the key nursery areas for juvenile ISS herring in each year of the study 

(Figure 1). We observed large variation in juvenile size within each age-class (i.e. age 1: 55–

118 mm SL, age 2: 97–149 mm SL), and in mean water column temperatures (0.97–8.80°C) 

and salinities (23.54–35.21‰) at capture sites across the Icelandic coast (Table 1).  

 

1 Spatial predictions are made for age 1 and age 2 herring for all element:Ca, and for age 2 only for δ13C and 

δ18O. 
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Model adequacy and diagnostics 

Fitting the univariate models in both ‘MCMCglmm’ and ‘lme4’ resulted in comparable 

parameter estimates and the selection of the same final explanatory ‘explan’ models for each 

otolith marker based on DIC and AICc (Appendix S2: Table S1). This allowed us to couple 

the functionality of ‘lme4’ for repeatability and R2 estimation, with the benefits of posterior 

predictive checks to assess model adequacy (see below and Table 3). The Markov chains for 

the estimated parameters were well mixed for all univariate and multi/bivariate MCMCglmm 

models, displaying low serial dependence. Mean (± SD) lag-one autocorrelation for 

individual chains was 0.01 (± 0.06), < 0.01 (± 0.02) and 0.03 (± 0.09) for the final uni-, 

multi- and bivariate models, respectively, and mean R̂ (± SD) was 1.01 (± 0.03), 1.00 (± 

0.01) and 1.02 (± 0.06), respectively, indicating chain convergence and reliable samples for 

computing posterior summaries. Monte Carlo standard errors were always < 0.073, 0.177 

and 0.100 in the uni-, multi- and bivariate models, respectively. 

 

Models for explanation 

The final univariate and multi/bivariate ‘explan’ models selected for each otolith marker 

differed in their fixed and random effect structures (see Table 3, Figure 2). In general, 

however, they showed strong and comparable performance with regard to within-sample 

predictive capacity as measured through posterior predictive simulation. Correlation (i.e. 

rsim) between observed values for each marker and predicted mean values from the 

simulations was ≥ 0.6, with the exception of Zn:Ca (~0.3) and Ba:Ca (~0.4) (see Table 3, 

Appendix S2: Figure S2), with the spread of ppp-values obtained for the test quantities we 

considered (i.e. observed mean and SD of each marker) indicating no major discrepancies 

between observed and simulated distributions (Table 3). For five out of eight markers 

(Mg:Ca, Zn:Ca, Sr:Ca, Ba:Ca, δ13C) the multi/bivariate ‘explan’ models displayed slightly 

higher rsim values compared with the univariate equivalents (Appendix S2: Figure S2). The 

final univariate models explained between 9 and 64% of the total variance (R2
c) in the 

response, and in all cases where random effects were included, they contributed strongly to 

R2
c. Adjusted repeatabilities varied widely. For example, after controlling for the fixed Age 

and SL_anom effects, > ~50% of the total variance in Li:Ca and Mn:Ca was explained by 

differences among sites, indicating strong within-site correlation in otolith measurements for 

these markers. By contrast, the low among-site, and high individual-level variability 

estimated for Zn:Ca (Figure 2) resulted in low repeatability (0.05) for this marker (Table 3). 

 

Our analyses support the assertion that intrinsic processes can shape otolith elemental 

concentrations. The fixed Age term was retained in all final element:Ca models (Table 2, 

Figure 2), and contributed most to the population-level outcome for four out of six elements 

(see R2
f   in Table 3). Models with the best within-sample predictive capacity (i.e. highest 

rsim; see underlined models in Figure 2) showed consistent negative Age trends for Mg:Ca, 

Mn:Ca, Sr:Ca, and Ba:Ca at both the population and site levels (Figure 3, left-hand panels). 

Some site-level variation in the element:Ca–Age relationship was observed for Li:Ca, 

Mg:Ca, Mn:Ca and Sr:Ca, as confirmed by the magnitude of the random intercept and/or 

Age slope variances for these elements (Figure 2, 3). Otolith Zn:Ca concentrations did not 

differ between cohorts. 

 

Our covariate for age-specific fish growth, SL_anom, was also influential for five of six 

elements, but trends varied across markers (Table 3, Figure 2, 3). Sr:Ca was consistently 
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lower in larger juveniles within each cohort. For Li:Ca, the interaction between SL_anom 

and Age at the population level indicates that the positive effect of SL_anom was weaker for 

age 2 compared with age 1 juveniles (Figure 3, top-right panel). Among-site variability in 

element:Ca – SL_anom relationships was generally small, as evidenced by the low estimated 

random SL_anom slope (co)variances for most markers (see Figure 2), and the consistent 

site-level trends (Figure 3, right hand panels). Ba:Ca was the exception, with site-level 

relationships for SL_anom varying widely (Figure 3). This result drove the inclusion of the 

random SL_anom slope term in the final multivariate model for the elemental markers (Table 

3, Figure 2). We found no evidence for growth-related effects on otolith δ13C and δ18O (Table 

3, Figure 2). 

 

Environmental parameters, which here differed only among and not within capture sites, also 

explained some of the population-level variance for certain otolith markers (see R2
f   

estimates in Table 3). In the univariate models, salinity (Sal) was retained as a main effect 

for Zn:Ca (positive association), δ13C and δ18O (both negative associations), and showed a 

positive interaction with Age for Mg:Ca and Sr:Ca. Given that the main effects for Age and 

Sal were negative for Mg:Ca and Sr:Ca, a positive interaction coefficient suggests that the 

influence of Sal on these two elements is dampened in older (i.e. age 2) versus younger (age 

1) individuals. Temperature (Temp) was retained in the univariate model for Sr:Ca and 

interacted with Age. Similar to the result for Sal, this interaction effect suggests that the 

weak overall negative association observed between Temp and Sr:Ca was weaker for age 2 

than age 1 individuals. Temp was the most important predictor in the uni- and bivariate 

models for both δ13C and δ18O, showing relatively strong negative associations with these 

markers in all four models (Figure 2, bottom four panels). A bivariate, and a univariate 

model, both including random intercepts, exhibited the best within-sample predictive 

accuracy for δ13C and δ18O, respectively (underlined in Figure 2). Among-site variance in 

intercepts was low for δ13C and moderate for δ18O. 

 

Models for out-of-sample prediction 

The final ‘oos.pred’ models had the highest oos predictive accuracy (i.e. the lowest MSPEoos) 

of all candidate models considered. We observed substantial variation in MSPEoos across the 

candidate models (Appendix S2: Table S1), and also between the final ‘explan’ and 

‘oos.pred’ models selected (Table 3). These two model suites often contained different fixed 

effect structures (e.g. see Li:Ca in Table 3); however, at least one intrinsic covariate was 

always included in the final ‘oos.pred’ models. The univariate models for the elemental 

markers out-performed the multivariate model in terms of correlation strength between 

observed and predicted values on the test data (roos) (Table 3). The bivariate ‘oos.pred’ model 

for δ13C and δ18O did better than the univariate versions.  

 

Spatial predictions  

Predictions from the best performing ‘oos.pred’ models revealed strong spatial structuring 

in several otolith markers across the Icelandic coast (Figure 4, Appendix S2: Figure S3). 

These patterns were generally consistent among the three sampling years within each age-

class. Age 1 individuals were predicted to show enriched elemental concentrations relative 

to age 2 fish for five out of six elemental markers (see maps of Li:Ca, Sr:Ca, Mg:Ca, Mn:Ca, 

Zn:Ca) (Figure 4, Appendix S2: Figure S3), and displayed more pronounced variation in 
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elemental concentrations among capture sites; with the spatial scale of this variability 

differing by element (e.g. coarse north–south gradient in Li:Ca; finer, fjord-scale east–west 

and north–south gradient in Sr:Ca; homogenous pattern at the island-scale for Mn:Ca). 

Predictions for δ13C and δ18O depended solely on water temperature (Table 3), which 

increased year-on-year at most sites between 2013 and 2015. This drove the annual decrease 

in predicted values for these stable isotopic markers for age 2 fish, in addition to the strong 

north–south gradients observed (Figure 4, Appendix S2: Figure S3). 

 

Overall, our predictions showed good concordance with the observations (Figure 5). 

Correlation (Pearson’s r) between observed and predicted values for all captures sites was > 

0.6 for Sr:Ca and δ13C, and ≥ 0.4 for Li:Ca and δ18O. Mg:Ca and Ba:Ca were poorly 

predicted, yet in the case of Mg:Ca, this was a consequence of high within-site variability in 

this marker observed in 2013. MSPE for 2013 (MSPE2013) was an order of magnitude greater 

than MSPE2014 and MSPE2015, with r increasing from 0.09 to 0.57 for Mg:Ca if data from 

2013 were excluded. No further clear trends emerged for individual markers with regard to 

MSPEs calculated by age-class, year, or by age-class within year (Appendix S2: Table S2). 

 

Discussion 

The natural schooling behaviour of juvenile ISS herring on their nursery grounds afforded 

us a rare, direct test of ontogenetic influences on otolith chemical traits in the field. Through 

the co-occurrence of two age-classes with shared recent environmental experience, captured 

in the same trawl tow, we were able to isolate age- and growth-related effects and 

demonstrate their importance in shaping otolith elemental and stable isotopic concentrations. 

Our models revealed how inter-individual variability in otolith chemistry scales to the site 

level, exposing site-level variation in relationships between some elemental concentrations 

and these intrinsic traits, whilst also highlighting the additional contribution of salinity and 

temperature variability (and/or the mechanisms these proxies represent) in explaining 

population-level trends. We made use of this information to predict observations at nursery 

sites across the Icelandic coast over three years, providing first-order estimates of the scales 

at which juvenile otolith chemistry might vary in space and time. The accuracy achieved 

here using relatively simple models parameterised with only four easily-calculated and 

routinely-measured covariates, suggests that these scales might, in fact, be quite predictable 

more generally. Given appropriate data, our modelling approach could test this on other 

species and systems, and serve as a valuable template for resolving management-related 

questions on source-sink dynamics when field observations are scarce or sampling coverage 

patchy. 

 

Intrinsic influences on elemental and isotopic ratios 

Using fish otoliths for illustration, our results add field-based support for the contention that 

intrinsic processes related to ontogeny can act, either alone, or in concert with environmental 

factors, to shape phenotypic trait variability (Walther et al. 2010; Grammer et al. 2017). The 

Age covariate was retained in the final ‘explan’ models for all elemental markers, and the 

SL_anom covariate in five of six (Table 3), with older age 2 juveniles typically displaying 

lower element:Ca ratios at the otolith edge relative to the younger conspecifics, both at the 

site- and population-level (Figure 3). Similar age-associated trends in these elements have 

been documented for other marine fishes (Sadovy and Severin 1994; Chittaro et al. 2006; 
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Grammer et al. 2017). However, the direction and magnitude of such relationships vary 

across species and systems (e.g. Walther et al. 2010), making generalisations difficult to 

draw, and underlying mechanisms difficult to pinpoint. Our ability here to discount 

environmental influences on otolith chemistry within capture sites implies that any clear 

deviation from a zero Age or SL_anom slope at the site-level must have an intrinsic and/or 

dietary basis, notwithstanding constraints enforced by sample size and between-cohort 

variability in otolith growth near the ablation site. Below, we present some ideas to explain 

our results in the context of recent theoretical and empirical advances. 

 

Our Age covariate was included as a proxy for physiological and/or dietary changes 

occurring at an ~annual time step. Such changes were outwardly expressed as variation in 

fish size and growth rates between age-classes (Table 1), but internally, both theory and 

experiments suggest that these changes might regulate ion availability and transport through 

most stages of the journey from the surrounding water to blood to endolymph to otolith 

surface (Kalish 1989, 1991b; Sturrock et al. 2014, 2015; Limburg et al. 2018). How this 

occurs is complex, and Loewen et al. (2016) recently stressed the need to consider the 

functional role of each element in terms of life maintenance in teasing apart the stage-specific 

physiological processes giving rise to otolith concentrations. For example, accumulation of 

biologically ‘essential’ elements like Mg, Mn and Zn, that facilitate enzyme functioning 

(Watanabe et al. 1997; Crichton 2008), may be closely tuned to diet (Zn) (Ranaldi and 

Gagnon 2008), growth (Mg, Mn) (Martin and Thorrold 2005; Turner and Limburg 2015), 

and metabolism (Mg) (Limburg et al. 2018). Whereas, ‘non-essential’ elements like Sr and 

Ba, which likely substitute directly for calcium in the otolith matrix (Campana 1999; 

Doubleday et al. 2014), may be more sensitive to ambient Ca concentrations and Ca 

homeostasis at the water–blood and blood–endolymph boundaries (Payan et al. 2004; 

Loewen et al. 2016). Yet, other work at the water–blood interface has also illustrated the 

interplay between ontogeny and blood-bound protein concentrations in regulating ion 

exchange (Sturrock et al. 2014). In their 12-month mesocosm experiment on European plaice 

(Pleuronectes platessa), Sturrock et al. (2014) showed that plasma protein concentration 

varied with age, shifting through the year within the same groups of fish. They also reported 

a positive correlation between plasma protein level and somatic growth rate, and found that 

one or both of these variables were strong predictors of blood plasma concentrations of Mg, 

Ca, Mn, Zn, and Sr – elements found to be under limited environmental control in their 

experiment (Sturrock et al. 2014). 

 

We did not collect blood composition data in our study. However, considering Sturrock et 

al. (2014)’s findings in conjunction with the evidence for tight links between (1) protein and 

ion concentrations in the plasma, and endolymph and otolith ion concentrations (Mugiya 

1966; Kalish 1991b; Sturrock et al. 2015), and (2) otolith composition and endolymph 

composition (Kalish 1989; Borelli et al. 2001), it seems clear that physiologically-sensitive 

constituents of marine teleost blood are capable of mediating both endolymph and otolith 

chemistry. In light of this, one possible contribution to the negative element:Ca–Age 

relationships we observed might stem from a reduction in plasma protein concentrations due 

to slower growth in older versus younger juveniles, as seen in ISS herring (authors’ 

unpublished data) and other herring populations (see Berg et al. 2018). Although this 

explanation may be particularly pertinent for transition metals like Zn, which associate 

closely with plasma (Sturrock et al. 2012) and otolith (Izzo et al. 2016) proteins, we contend 

that it may also apply to Sr. Sr is present in both mineral and protein fractions of the 

endolymph (Thomas et al. 2017) and otolith (Izzo et al. 2016), suggesting both endogenous 
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and exogenous regulation. In fully marine fishes, otolith Sr:Ca rarely reflects ambient water 

concentrations (Brown and Severin 2009), and instead, appears tied to internal factors that 

shift with age and growth, mediated by environmental variability (Kalish 1989, 1991b; 

Sturrock et al. 2015; Grammer et al. 2017). However, if we assume a positive link between 

somatic growth and plasma protein concentration (Sturrock et al. 2014), the consistent site- 

and population-level decreases in Sr:Ca with Age that we observed appear reasonable. 

 

Reasonable that is, except that larger individuals within each age-class consistently exhibited 

lower otolith Sr:Ca than their smaller nursery-mates (Figure 3). From first glance, it appears 

that faster growth in early life may actually depress Sr:Ca uptake, as reported in previous 

studies (e.g. Sadovy and Severin 1994; Walther et al. 2010). Whilst we cannot rule this out, 

we offer an alternative. As spawning occurs over a ~30-day period in ISS herring (Óskarsson 

and Taggert 2009), we presumed that larger fish are faster growers in a pool of similarly-

aged juveniles, rather than being older, ‘average’ growers. Spawning can occur in two or 

more waves in this stock, however (Óskarsson and Taggert 2009), so larger individuals could 

actually be older, and to have experienced slower recent growth than their younger, smaller 

conspecifics – an explanation that aligns more closely with the negative Age effects we 

detected, and one that could be resolved with more extensive daily increment analyses. Few 

published data exist on blood composition in herring (but see Ewart and Fletcher 1990 

regarding ‘antifreeze’ proteins), and to our knowledge, none on endolymph composition. 

Controlled experiments that examine plasma protein levels in relation to growth variability 

in this species, whilst concurrently monitoring environmental Ca, endolymph and otolith 

composition would allow these ideas to be explored more rigorously. 

 

But the constituents of ambient water, blood and endolymph are not necessarily the sole 

determinants of otolith chemical composition. In linking the seasonal fluctuations in otolith 

Mg:Ca observed for several marine-dependent fishes (including herring) with otolith growth 

and modelled standard metabolic rates (SMR), Limburg et al. (2018) make the case for a 

metabolic basis to Mg incorporation into the otolith. Briefly, their hypothesis originates at 

the blood–endolymph interface, where the authors propose that the activity of ion-transport 

cells (i.e. ionocytes) in the saccular epithelium correlates positively with the metabolic rate 

of the fish. This increases during high feeding activity, which in turn provides the energy 

needed for faster growth, and for the ionocytes to pump large, hydrated Mg2 ions actively 

into the endolymph. Once within the saccule, Limburg et al. (2018) then argue the 

importance of the otolith surface environment for Mg2+ inclusion, pointing to the ratio of 

water soluble to insoluble proteins in the organic matrix as a key determinant – a ratio that 

can be well predicted by fish size (negative effect) and temperature (positive effect) (Hüssy 

et al. 2004). 

 

Using Baltic flounder (Platichthys flesus) and American shad (Alosa sapidissima) for 

illustration, Limburg et al. (2018) demonstrated significant positive relationships between 

otolith Mg:Ca concentrations and both daily and annual otolith growth. Moreover, all species 

examined in their study displayed Mg:Ca enrichment during the early juvenile phase, with 

concentrations declining towards the otolith margin whilst tracking the seasonality of the 

species’ particular environment (see their Figure 3). These patterns closely match the model 

of negative allometry in fish metabolism (Goolish 1995; Rosenfeld et al. 2015) that, in 

general, predicts higher metabolic, otolith and somatic growth rates as juveniles, and a non-

linear decline in these parameters with size and/or age. We contend that this model might 

neatly explain the negative otolith Mg:Ca–Age relationships observed here for juvenile ISS 
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herring, and for other marine fishes (Macdonald et al. 2013; Grammer et al. 2017). Daily 

increment widths at the otolith edge, potential proxies for recent somatic growth, decreased 

with age in our samples (age 1 mean ± SD = 3.83 ± 0.08, n = 10; age 2 mean ± SD = 3.03 ± 

0.09, n = 10). The uncoupling of otolith and somatic growth in herring larvae (Moksness 

1992) fits within the general view that otolith growth is more closely tied to metabolic rate 

(see Mosegaard et al. 1988), and under this scenario, Limburg et al.’s proposal of a metabolic 

control on Mg:Ca incorporation appears to hold for our data. We did not measure individual 

metabolic rates, but note that metabolism in juvenile fishes can be linked to growth 

(Rosenfeld et al. 2015), social status (Metcalfe et al. 1995), food intake (Van Leeuwen et al. 

2012) and temperature (Bernreuther et al. 2013), some of which may be selected for 

(Rosenfeld et al. 2015) and all of which may covary. Further integration of experimental 

results with dynamic energy budget theory (e.g. Fablet et al. 2011) would help disentangle 

these effects, clarifying the value of otolith Mg as a metabolic recorder, and perhaps 

shedding new light on the mechanisms underlying the consistent cycling in other elements 

(e.g. Mn, Sr, Ba) often detected in scans across marine fish otoliths (e.g. Macdonald et al. 

2013). 

 

Our results for Mn warrant some further discussion along these lines. We found strong 

negative relationships between Mn:Ca and Age at all sites, but no evidence for an age-

specific growth effect (Figure 3). The maternal basis for Mn enrichment at the otolith core 

of Atlantic herring has been identified previously (Brophy et al. 2004), and this phenomenon 

has since been widely observed in marine fishes (e.g. Ruttenberg et al. 2005). However, 

patterns seen in Mn:Ca across outer growth zones have been less easily explained. In the 

Baltic Sea, Limburg et al. (2011) linked Mn:Ca in Atlantic cod otoliths to periodic hypoxia, 

but also reported a decline in concentrations through the first five years of life irrespective 

of the hypoxia level experienced. Drawing on these results, they proposed a model for 

Mn:Ca uptake as a function of (1) decreasing somatic growth with age, following an inverse 

von Bertalanffy growth curve, and (2) ambient Mn2+ (see SI Appendix in Limburg et al. 2011). 

Under non-hypoxic conditions within capture sites where ambient Mn2+ is equally available 

to age 1 and age 2 juveniles, this model would then predict a reduction in otolith Mn:Ca with 

age and/or growth, as we observed at all sites (Figure 3), consistent with other studies 

(Sturrock et al. 2015; Turner and Limburg 2015). Under non-hypoxic conditions, it therefore 

appears likely that ontogenetic patterns in otolith Mn may be associated with growth-related 

changes in physiology, which in our case were strong enough between age-classes (Age plot 

in Figure 3), but not within age-classes (SL_anom plot in Figure 3) to illicit a response in 

Mn:Ca levels. 

 

We found less convincing evidence for ontogenetic influences on otolith Zn:Ca, Li:Ca and 

Ba:Ca at the site level. Assuming that both juvenile cohorts have experienced a common 

environment in the lead up to capture, these results might indicate either (1) a primarily 

extrinsic control on these elements, (2) that physiological processes driving the expression 

of an intrinsic signal are not sufficiently different between cohorts within sites, and/or (3) 

that inter-individual variation in physiological processes swamps any site- or population-

level signals. Whilst we cannot fully disentangle these alternatives, useful insight may be 

gained from recent investigations into ion-binding affinities within the saccular endolymph, 

and at the precipitating otolith surface. 

 

Zinc, a transition metal, associates with the ‘proteinaceous fraction’ of the endolymph and 

is tightly bound to soluble proteins in the otolith matrix (Izzo et al. 2016; Thomas et al. 
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2017). Zinc exhibits strong catalytic properties (Crichton 2008), and its presence in otoliths 

likely reflects its physiological significance as a co-factor, rather than being environmentally 

driven (Thomas et al. 2017), although sensitivity to diet has also been noted (Ranaldi and 

Gagnon 2008). Within nursery sites, we would expect that a distinct difference in dietary Zn 

between cohorts would result in some shift in otolith Zn concentrations (Ranaldi and Gagnon 

2008). This was not observed, implying either that both cohorts share a similar diet, a notion 

supported by findings in other seas (e.g. Last 1989), that diets are variable, but Zn-

concentrations within them are similar, or that alternatives (2) and/or (3) (previous 

paragraph), may be acting. Among-individual repeatability for Zn:Ca was very low, as a 

result of high variability in Zn:Ca concentrations within sites and cohorts, making option (3) 

a likely contributor to the (lack of) trends we see. 

 

The alkali metal, Li was found only in the ‘mineral fraction’ of estuarine black bream 

(Acanthopagrus butcheri) endolymph as free ions (Thomas et al. 2017), and has low affinity 

for otolith proteins (Izzo et al. 2016). Lithium cations are small and univalent, hence regular 

substitution for Ca2+ in the otolith matrix is unlikely; random trapping providing a more 

plausible incorporation route. It is conceivable that otolith growth rates could influence ion-

trapping opportunities, a scenario which would regulate Li incorporation according to otolith 

growth, both decreasing with age. We observed this Age trend at four of six capture sites 

(Figure 3), although the inconsistency in site-level relationships hints that a growth-based 

mechanism may not be universal. Nevertheless, as the positive impact of somatic (and likely 

otolith) growth on otolith Li:Ca appears to diminish in older juveniles (Figure 3, top-right 

panel), and as growth potential can vary markedly at the island-wide scale (see Site- and 

individual-level variation) this could explain our results in the context of growth variability 

alone. We stress though, that the interaction of Age and SL_anom was retained only at the 

population-level (i.e. across all capture sites), constraining our ability to disentangle intrinsic 

from unmeasured extrinsic processes (e.g. ambient water concentrations). 

 

Bivalent barium ions associate mainly with the mineral phase of the otolith (Izzo et al. 2016) 

and likely follow a similar uptake pathway to Sr2+, i.e. via Ca2+ replacement (Campana 

1999). However, there is some suggestion of both intrinsic and extrinsic control on Ba 

incorporation (Walther et al. 2010; Clarke et al. 2011; Thomas et al. 2017). We observed 

small, consistent decreases in otolith Ba:Ca with Age at all sites, but no clear relationship 

with fish growth (Figure 3). Our data provide no strong evidence to refute the notion that 

otolith Ba concentration is under substantial environmental control (i.e. alternative 1 above), 

or at least control by internal processes (e.g. metabolism) themselves influenced by 

environmental factors (e.g. temperature). The predictive capacity of our Ba models was poor 

(Table 3, Figure 5), adding weight to the argument that external factors can largely determine 

otolith Ba levels in marine fishes (Martin and Wuenschel 2006; Walther and Thorrold 2006). 

 

Still at the growing otolith surface, a strong element:Ca–Age relationship could also reflect 

differences in the ratios of CaCO3 : protein occurring in outer otolith growth bands for age 1 

and age 2 juveniles, depending on the binding sites of particular elements (Thorrold and 

Swearer 2009; Izzo et al. 2016), or simply between-cohort variation in the growth period 

ablated. However, given that our 40-µm ablation spots sampled, at most, the final two weeks 

of otolith growth in both age-classes, we consider any impact of the latter to be slight. 

 

Otolith stable carbon and oxygen isotope ratios were explained solely by environmental 

effects in all models. These findings were initially surprising, given the former’s known links 
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to metabolism, growth and diet (Kalish 1991c; Solomon et al. 2006; Geffen 2012), and the 

potential for ‘vital’ effects to impact the relationship between δ18O and temperature 

(Darnaude and Hunter 2018). We discuss these points further below. 

 

Environmental influences across sites 

The oceanography around Iceland during autumn is characterised by marked north-south 

temperature variation and steep inshore-offshore salinity gradients that shape conditions on 

the ISS herring nursery grounds (Figure 1, Valdimarsson et al. 2012; Logemann et al. 2013). 

Such environmental variability is uncommon across ocean scapes at this small a spatial scale, 

allowing us to field-test the effects of two parameters known to directly and/or indirectly 

affect otolith chemical concentrations across the full distributional range of ISS juveniles. In 

interpreting our results, we note that we were unable to isolate the influence of Temp or Sal 

from other unquantified extrinsic (e.g. pH, ambient water concentrations) factors here, as 

our comparisons were made across sites. Though any relationships we see must be viewed 

as correlative only, some interesting trends emerged. Salinity was found to influence Mg:Ca, 

Zn:Ca, and to a lesser extent, Sr:Ca concentrations in both univariate and multivariate 

‘explan’ models, with a mild negative temperature effect detected in the univariate model 

for Sr:Ca (Figure 2). Importantly, Mg:Ca and Sr:Ca displayed significant interactions 

between Age and Sal, and Age and both environmental covariates, respectively, in the 

univariate models. These patterns point to decreased environmental sensitivity in Mg and Sr 

markers for older juveniles. This is in line with work by Grammer et al. (2017), who reported 

both a steeper rate of change in elemental assimilation in younger compared with older reef 

ocean perch (Helicolenus percoides) traversing the same environmental gradients, and 

interactions between age and environmental features such as upwelling intensity. 

 

The search for an unambiguous record of an individual fish’s environmental history inspired 

initial efforts to understand how the environment might shape chemical uptake into otoliths 

(e.g. Radtke 1984). The commercial importance of herring positioned them at the forefront 

of early work in this field. In experiments on larvae and juveniles, Townsend et al. (1989) 

and Radtke et al. (1990) sought evidence for temperature dependence on otolith Sr:Ca. Both 

studies demonstrated a negative relationship; however, the results were questioned due to 

artificially introduced stress effects. In a follow-up study on age 0 juveniles, Townsend et 

al. (1992) interpreted the decrease in Sr:Ca with temperature (also observed in our study) in 

terms of physiology. They suggested that at lower temperatures, where metabolism slows, 

Sr may be transported more readily into the endolymph, increasing opportunities for 

accretion onto the otolith surface (sensu Kalish 1989). More recent work has added support 

for a degree of internal control, not just on Sr, but on concentrations of several commonly-

measured elements (e.g. Mg, Mn, Ba) (Brophy et al. 2004; Clarke et al. 2011; Sturrock et al. 

2014, 2015; Izzo et al. 2018; Limburg et al. 2018; this study), mediated by temperature (e.g. 

growth, metabolism) (Holt and Jørgensen 2014) or salinity (e.g. osmoregulation) (Holliday 

and Blaxter 1960). Ocean-resident species generally experience less environmental 

heterogeneity throughout life than their freshwater and estuarine cousins, a situation in which 

environmental influences on otolith chemistry may be swamped by intrinsic signals 

(Sturrock et al. 2012; 2014). Indeed, a primarily internal control on uptake of such elements 

into marine fish otoliths might explain the pronounced species- and system-level variability 

seen among studies that test for environmental influences alone (Chang and Geffen 2013). 
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To our knowledge, our study is the first to report δ13C and δ18O measurements in herring 

otoliths. Stable oxygen isotopes in age 2 otoliths appeared insensitive to variation in growth 

rate. However, a clear negative association was found between δ18O, Temp and Sal across 

all capture sites. A negative temperature trend is in agreement with previous laboratory- and 

field-based investigations into temperature dependence in otolith δ18O (e.g. Kalish 1991a, b; 

Geffen 2012; Darnaude and Hunter 2018). Moreover, our results mirror those from work on 

juvenile Atlantic cod (Høie et al. 2003; Stanley et al. 2015) and plaice (Geffen 2012) that 

reported no effect of somatic growth, and reduced otolith δ18O at higher temperatures. 

Interestingly, in contrast to these three studies, otolith δ13C was not influenced by herring 

growth variability within or across nursery sites, but like δ18O, did decline strongly with 

increasing temperature. We suggest that the marked temperature and salinity variation 

existing across the Icelandic coast might have indirectly shaped site-level differences in 

individuals’ metabolic rates. Previous investigations have predicted otolith δ13C depletion at 

higher metabolic rates (Kalish 1991c; Schwarcz et al. 1998), and given that metabolic 

activity increases with temperature in herring (Bernreuther et al. 2013), our results are 

perhaps not wholly unexpected (see Radtke 1984). As changes detected in stable isotopic 

concentrations as a function of otolith growth are nearly certainly of metabolic, rather than 

kinetic origin (Høie et al. 2003), the absence of a growth-related signal here might reflect 

similarity in metabolic rates between similar-age juveniles across the size range we captured. 

Monitoring of individual SMRs would have allowed us to explore this further. But we 

highlight recent analytical advances in assessing the contribution of dietary δ13C and δ15N to 

otolith values of these isotopes, which hold great promise for generating retrospective 

estimates of individual metabolism from otoliths alone (Shiao et al. 2018). 

 

We did not collect water chemistry data in our study. Ambient water concentrations are 

known to be major predictors of otolith elemental, δ13C and δ18O concentrations (Bath et al. 

2000; Elsdon and Gillanders 2004; Solomon et al. 2006), and we recognise that inclusion of 

such data would likely have improved the fit and predictive capacity of our models at the 

population scale. However, our main focus in this paper was to test for ontogenetic effects 

within capture sites, whereby all juveniles present were exposed to identical ambient water 

concentrations, temperatures, salinities and pH in their recent past. This provided us a quasi-

controlled, natural-laboratory setting, allowing us direct inference on intrinsic effects both 

between and within cohorts. 

 

A second issue relates to our use of modelled environmental data at a subset of inshore 

capture sites. The hydrographic conditions within fjords receiving high inflows are difficult 

to quantify accurately, either with empirical snapshots of ambient conditions, or with ocean 

models. Yet, as such areas are the primary nursery grounds for ISS herring on Iceland’s north 

coast, we sought the most realistic representation possible. Empirical measurements were 

available through the water column at 12 of 26 capture sites at the time of sampling, and 

importantly, at five of six sites in the ‘training’ dataset. For the remaining sites, we extracted 

data from the CODE model, which assimilates observations from CTD profiles and river 

discharge data from 46 watersheds into its simulation. Excellent concordance was found 

between modelled and observed temperature and salinity fields across our study region (see 

Table 1 in Logemann et al. 2013). However, given the bias of the CTD data towards offshore 

waters, we acknowledge that some uncertainty surrounds our estimates for the inshore sites 

within the ‘test’ and ‘extras’ datasets. We are confident though, that our covariates reflect 

the main environmental gradients present across the Icelandic coast at the time of sampling. 

We believe also that the ‘explan’ and ‘oos.pred’ models, fitted using a predominance of 
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empirical observations, incorporate a reliable description of the ambient conditions 

experienced by juvenile ISS herring on their nursery grounds.  

 

Site- and individual-level variation 

An important result from our study was the degree of among-site variation detected in 

relationships between some otolith elemental markers and the intrinsic covariates (Figure 2, 

3). This is a notable finding, suggesting that the characteristics of particular areas might 

generate pronounced site-level divergence in phenotypic expression (Freshwater et al. 2019). 

The nursery fjords in our training dataset differ markedly in topography, and are separated 

by up to ~400 km of coastline. At this scale, strong potential exists for differences in food 

availability/quality, predation or density-dependent pressures, and environmental 

heterogeneity – characteristics capable of impacting individuals’ behaviour and emergent 

phenotypic traits (e.g. growth, metabolic activity) (Fiksen et al. 2007; Holt and Jørgensen 

2014) that may themselves covary (e.g. Rosenfeld et al. 2015). If the phenotypes of 

individuals residing within a site are affected similarly by local characteristics, and these 

characteristics differ sufficiently between sites, then one would expect phenotypic 

differences to scale from the individual- to the site-level. We saw some evidence for this 

through the non-overlapping size distributions of age 1 juveniles captured from different 

nursery sites (e.g. Table 1: site D7-2014C c/w site D9-2014-6). In light of the potential 

sensitivity of Li and Mg to development-related factors, we speculate that site-level 

differences in phenotypic traits, driven at least in part by site-specific conditions, may have 

contributed to the among-site variability seen in Age slopes. 

 

The phenotypic composition of nursery-resident juveniles might also be influenced by events 

occurring prior to nursery settlement. The ability and tendency of animals to disperse during 

early life is increasingly being seen as the product of context (environmental drivers) and 

condition (an individual’s internal state). On an individual, intra-specific level, variation in 

genotype, physiology, behaviour, history and parental history coupled with environmental 

heterogeneity might lead to marked inter-individual variation in dispersal trajectories 

(Fiksen et al. 2007; Cote et al. 2010; Nanninga and Berumen 2014). In turn, dispersal history 

can have consequences for individual fitness later in life, affecting settlement patterns, and 

hence the spatial structure of populations (Shima and Swearer 2010). With regard to dense-

schooling species like herring, if similarly ‘conditioned’ individuals, with similar 

phenotypes share similar dispersal histories, the chances of them colonising the same nursery 

habitats may increase (Shima and Swearer 2016). We are exploring this idea by linking 

particle-tracking simulations with otolith δ18O life-history transects from a subset of our age 

2 herring (authors’ unpublished data). If this is the case, and assuming a level of intrinsic 

control on elemental uptake, then phenotypic variability emerging both pre- and post-

settlement, may have jointly found expression in the site-level otolith chemical variability 

we detected. 

 

Of course, any site-level variation we see must originate at the level of the individual. We 

noticed marked inter-individual variation in otolith chemistry within age-classes, within 

capture sites for several elements (Table 3, Figure 2, 3); variation that cannot be attributed 

to environmental heterogeneity. The magnitude of the σ
 ε
 2 terms in Figure 2 provides some 

clues on the degree of individual variability at the population level. However, the spread of 

raw data, disaggregated by capture site and age-class (see Figure 3, element:Ca–Age plots), 

and the adjusted repeatability estimates (i.e. ‘Adj. rep’) in Table 3, both directly demonstrate 
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strong inter-individual variation for some markers (i.e. Mg:Ca, Zn:Ca and Ba:Ca) and lower 

variability in others (i.e. Li:Ca, Mn:Ca, Sr:Ca, δ18O). 

 

Such individual-level variability in trait expression is well known in animals (Dall et al. 

2004; Stamps 2016), and is not uncommon in otolith chemistry studies. Indeed, Kalish 

(1989) first observed individual differences in otolith Sr:Ca in Australian salmon (Arripis 

trutta) kept under identical environmental conditions, and more recently, Macdonald and 

Crook (2010) and Panfili et al. (2015) have demonstrated clear inconsistencies in otolith 

Sr:Ca and/or Ba:Ca profiles among juvenile Australian bass (Macquaria novemaculeata) 

and tilapia (Sarotherodonmelanotheron heudelotii), respectively, held within the same 

treatment tanks. We are not currently in a position to pin down the mechanisms governing 

these patterns. However, evidence for inter-individual behavioural plasticity within species 

and populations is growing (e.g. Crook et al. 2017; Freshwater et al. 2019). And, as 

individual behaviour can feedback to affect growth (Fiksen et al. 2007) and physiology, 

factors than may influence elements like Mg and Zn (Turner and Limburg 2015; Thomas et 

al. 2017), we suggest that the existence of a variety of behavioural traits within each age-

class and capture site played a part in driving the individual variability in otolith chemical 

traits we observed. 

 

Spatial predictions: application to source-sink dynamics and fishery 

management 

The accuracy achieved in predicting most elemental and both stable isotopic markers at our 

nursery sites was unexpected (see Figure 4, 5, Appendix S2: Figure S3). We found moderate 

to good congruence (i.e. r = 0.26 to 0.64) between site-level observations and predictions 

from the ‘oos.pred’ models for six out of eight markers, and for seven of eight markers (all 

except Ba:Ca) when data from 2013 were excluded (Table 3, Figure 5). All final ‘oos.pred’ 

models for element:Ca ratios included Age and/or SL_anom in their structure, further 

highlighting the role of age- and/or growth-associated factors in predicting elemental 

chemistry on oos test data. Our prediction maps exposed island-wide heterogeneity in each 

marker, providing us a reliable initial estimate of the scales of otolith chemical variability in 

space, time and for both juvenile cohorts across their entire distributional range (Figure 4). 

 

To some notable results. We detected fine, fjord-scale variation in otolith Sr:Ca across the 

north coast (Figure 4). Sr:Ca was the best predicted marker, exhibiting the lowest MSPE 

overall (Table 3), by year (Figure 5), age-class, and age-class within year (Appendix S2: 

Table S2). Ambient Sr is known to be rather invariant in marine systems (Sturrock et al. 

2012), often reducing its utility as a population discriminator in open-ocean settings. This 

was found to be the case at sites located further offshore (Figure 4); however, given the 

inclusion of Age, SL_anom and Sal in the final ‘oos.pred’ model for Sr:Ca, we were able to 

resolve a finer-scale spatial pattern inshore, across the north coast fjords. By contrast, Ba:Ca 

was predicted poorly, both non-spatially to oos data, and at the site-level (Table 3, Figure 4, 

5). We believe this result stems from a primary dependence of otolith Ba:Ca on ambient 

Ba:Ca in marine fishes (Bath et al. 2000; Walther and Thorrold 2006), a variable we did not 

measure here. Site-level predictions of δ18O matched the observations well in most instances 

(Figure 5), exhibiting a stark north-south decline that tracked the temperature gradient 

around Iceland. Predictions for otolith δ13C reflected the salinity gradient and agreed well 

with the observations (r = 0.64, Figure 5), suggesting that salinity may be a good proxy for 

either metabolically-derived carbon sourced from the diet, or for water-borne dissolved 
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inorganic carbon (Gillikin et al. 2006), both key contributors to otolith δ13C values (Solomon 

et al. 2006). Interestingly, evidence for strong annual variation in otolith chemistry was 

absent, and, as also inferred from the ‘explan’ models, older juveniles were generally 

predicted to exhibit lower, more homogenous elemental chemistry across the study region 

(Figure 4, 5, Appendix S2: Figure S3). 

 

Our predictions are based on snapshots of the local environmental conditions and the nursery 

populations, both of which may fluctuate over seasonal and annual time scales. Otolith 

chemistry can also differ markedly in time at the same location, particularly for elemental 

markers (Reis-Santos et al. 2012), suggesting that the among-year consistency we predicted 

likely underestimates the system’s true variability. We also note that predictions to sites 

within the ‘test’ and ‘extras’ datasets, where observations were few, or totally absent, would 

be more sensitive to how our intrinsic covariates were derived (see Appendix S2). 

 

Notwithstanding these limitations, the prediction accuracy we achieved generates 

confidence in our modelling approach. Using combinations of only four covariates that are 

routinely collected during sampling programmes, we provide a framework for inferring 

island-wide variability in otolith chemistry, by age-class and through time. Such inference 

could confer important benefits for fishery-management applications further afield, 

particularly in data-limited situations. For example, our models return direct estimates of 

source-source connectivity across all potential source populations, allowing ‘baseline’ 

samples of otolith chemical signatures to be constructed at appropriate scales, even when 

sampling coverage is incomplete. A reliable baseline, together with methods that affirm the 

number of sources within it (e.g. Neubauer et al. 2013), adds potency to source-assignment 

tests for older individuals mixing on fishing grounds. These tests provide fundamental data 

for management, allowing key sources contributing to a fishery to be identified, and 

protected. Secondly, accurate predictions could aid future juvenile sampling programmes by 

reducing time and/or costs associated with targeting populations with chemically-

homogenous otoliths (if the research or management goal is population delineation). Third, 

they could allow temporal stability in otolith chemistry in each site/region to be estimated, 

and if present, remove the need to resample all sites when establishing a reference atlas of 

source otolith chemical signatures. And lastly, at the otolith analysis stage, they could help 

identify subsets of chemical markers that maximise discriminatory ability for the target 

species, potentially negating redundant, often expensive analyses.  

 

Conclusions 

By accessing times series of chemical traits stored in otoliths, this study demonstrates the 

importance of ontogeny in shaping trait expression, and shows how such information can be 

harnessed to predict trait heterogeneity at multiple scales. Our analysis focussed on otoliths 

of ISS herring, a fish stock exploited heavily by commercial fishers and undergoing a 

decade-long decline as a result of recurring I. hoferi infection and persistent poor 

recruitment. Ongoing pressures from these and other top-down stressors (e.g. the potential 

for high juvenile bycatch in the northern shrimp fishery) provided the impetus for this work. 

That said, our modelling approach, which explicitly captures individual- to population-level 

variation in trait expression through ontogeny could be easily applied to other taxa for which 

time-stamped, individual-level data are available (e.g. via statoliths in aquatic invertebrates, 

implantable data loggers in aquatic and terrestrial organisms). In a commercial-harvest 
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context, a tighter union of experimental work and modelling would help disentangle the 

intrinsic and extrinsic controls on traits stored in such repositories, thereby building trust in 

them as guides for the effective spatial management of targeted species. The present work 

represents a step in this direction. 
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Random structure Description Estimated parameters 

1. 1 | site Random intercept for capture site. σsite0

2 , σε
2

2. Age | site Random intercept and Age slope for capture 

site. Relationship between the response and 

fish age can vary by site. Correlation allowed 

between random intercept and slope for Age. 

σsite0

2 , σsite1

2 , covsite0,site1

 , σε
2

3. SL_anom | site Random intercept and SL_anom slope for 

capture site. Relationship between the 

response and fish growth can vary by site. 

Correlation allowed between random 

intercept and slope for SL_anom. 

σsite0

2 , σsite2

2 , covsite0,site2

 , σε
2

4. Age | site +

SL_anom | site

Random intercept, Age and SL_anom slopes 

for capture site. Relationships between the 

response and fish age and growth can change 

by site. Fully correlated random effects 

specified between the two random slopes for 

Age and SL_anom and between the random 

slopes and the random intercept.    

σsite0

2 , σsite1

2 , σsite2

2  covsite0,site1

 , 

covsite0,site2

 , covsite1,site2

 , σε
2

5. Age | site +

SL_anom | site +

Age × SL_anom | site

Random intercept, Age, SL_anom (and their 

interaction) slopes for capture site. 

Relationships between the response and fish 

age and growth and their interaction allowed 

to vary by site. Fully correlated random 

effects specified.   

Ωsite

6. None No site-level random effects. Tested in the 

univariate and bivariate models for δ13C and 

δ18O. 

σε
2

Table 2. Random effect structures considered in univariate and multivariate linear mixed
effects models of otolith elemental and stable isotopic composition in juvenile ISS herring 
(using ‘lme4’ syntax). See eq. 1 for further details on the estimated parameters. Terms
presented here relate to the univariate models, with the additional parameters estimated in 
the multivariate models described in the main text. 
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Figure 1. Capture sites for juvenile ISS herring (age 1: triangles; age 2: circles) collected
during 2013 (black symbols), 2014 (orange symbols) and 2015 (red symbols). Sites at which 
age 1 and age 2 herring were captured simultaneously (n = 6) comprise the ‘training’ data. 
Sites without an inner white symbol are ‘test’ sites (n = 12), and those with an inner white 
symbol are ‘extras’ sites (n = 8). Sites that overlap exactly in space in different years are 
offset for clarity. The colour ramp represents modelled mean daily sea surface temperature 
(SST °C) for October across 2013, 2014 and 2015. Depth contours (in m) (black lines) are 
overlaid. 
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Figure 2. Results from the final univariate (black) and multivariate (red) explanatory ‘explan’
models for each elemental and stable isotopic marker. Posterior mean estimates (± 95% HPD 
credible intervals) for fixed (solid symbols) and random effect components (variances – 
shaded symbols; covariances – open symbols) are presented for each model. See eq. 1, Table
2 and the main text for descriptions of the fixed and random effect parameters estimated. For 
each marker, underlined models performed better in terms of within-sample predictive 
capacity (i.e. higher rsim) based on posterior predictive simulations (see Appendix S2: Figure
S2). 
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Figure 3. Relationships between each elemental marker and herring age (Age) and growth
(SL_anom). Results are derived from the final univariate (black) or multivariate (red) 
explanatory ‘explan’ model for each marker (see underlined models in Figure 2). Each open
symbol denotes the observation for an individual fish. Grey and pink lines show the site-level 
relationships estimated from the univariate and multivariate models, respectively, with black 
and red lines representing the population-level trend across all sites. In the element:Ca–Age 
plots, observations are disaggregated into vertical columns by capture site (n = 6) to illustrate 
the degree of individual variation within cohorts and sites. Site codes from left to right are 529, 
D5-2015-18, D7-2014-140, D7-2014-154, D7-2014B, D9-2014-6 (Table 1). Data are presented 
on the natural log scale, and have mean = 0 and SD = 1 in the multivariate cases. SL_anom was 
not included in the final model for Mn:Ca. The data alone are plotted here. 
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Figure 4. Spatial predictions for otolith Li:Ca, Sr:Ca and δ18O at all capture sites in each of 
the three sampling years (2013, 2014, 2015) and for the two age-classes (age 1: triangles, age 
2: circles). Results are derived from the final ‘oos.pred’ models (see Table 3). Colour ramps 
represent the mean predicted values for each site for the marker of interest. Sites at which fish 
were captured in a particular year are outlined in black (for 2013), orange (for 2014) and red 
(for 2015). Predictions for Li:Ca and Sr:Ca are presented on the natural log scale in units of 
µmol/mol and mmol/mol, respectively, with predictions for δ18O (in ‰) generated using a 
bivariate  model in which each response variable (i.e. δ13C, δ18O) was scaled to mean = 0 and 
SD = 1. See Appendix S2: Figure S3 for maps of all other markers. 

153



1 2 3 4 5

1.5

2.0

2.5

3.0

3.5

4.0 Li:Ca (μmol/mol)

●

●●
●

●

●

●

●
●

●

●

●

●
●

●●

●
●

−2.8 −2.6 −2.4 −2.2 −2.0

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0 Mg:Ca (mmol/mol)

●

●

●

●

●●●
●●●

●

●

●

●
●●

●
●

−1.0 −0.5 0.0 0.5

−2

−1

0

1
Mn:Ca (μmol/mol)

●

●

●

●●

●

●

●

●

●
●●●

●
●
●

●
●

−1.5 −1.0 −0.5

−3

−2

−1

0

1

2

3
Zn:Ca (μmol/mol)

●
●

●

●

●

●●

●

●●

●

●● ●

●
●

●

●

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4 Sr:Ca (mmol/mol)

●

●

●

●●
●

●
● ●
●●

●●●

●
●

●
●

−2.4 −2.2 −2.0 −1.8

−3.0

−2.5

−2.0

−1.5

−1.0
Ba:Ca (μmol/mol)

●

●
●
●

●

●

●
●
●

●
●● ●
●
●
●

●
●

−1.0 −0.5 0.0 0.5

−4

−3

−2

−1

0

1

2 δ13C
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

−1.5 −1.0 −0.5 0.0 0.5

−5

−4

−3

−2

−1

0

1

2
δ18O

●
●

●
●

●

●

●
●

●
●

●
●●

●
●●

●

O
bs

er
ve

d 
va

lu
e

Predicted value

Figure 5. Plots of observed versus predicted values for each otolith marker at all capture sites
sampled in 2013 (black), 2014 (orange) and 2015 (red) for age 1 (triangles) and age 2 herring 
(circles). Symbols are the site-level mean values, vertical lines are ± SD of the observations, and 
horizontal lines are ± 70% HPD credible intervals on the predictions. In each plot, the correlation 
(Pearson’s r) between site-level mean observed and predicted values is shown, in addition to the 
MSPE by year. The 1:1 line (dashed black line) is overlaid. See Appendix S2: Table S2 for 
overall MSPE estimates across years, by age-class, and by age-class within year. Data for each 
elemental marker are presented on the natural log scale, with δ13C and δ18O values scaled to have 
mean = 0 and SD = 1. 
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Appendix S1. Details on otolith preparation and analysis 

Otolith removal and preparation 

Sagittal otolith pairs were removed under a dissecting microscope, cleaned of adhering tissue, 

rinsed with ultrapure water (Milli-Q®; www.merckmillipore.com) and stored dry in 0.5 ml 

polypropylene microtubes. One sagitta from each fish was selected for elemental analysis. We 

mounted these individually, sulcus downwards, on an acid-washed glass slide in thermoplastic 

glue (Crystalbond™) and polished them to within 10–15 μm of the primordium using a series 

of wetted lapping films (9, 5, 3 μm). We then reheated the slide and transferred the polished 

otolith to a master slide, on which otoliths from all capture sites were set in Crystalbond™ and 

arranged randomly. Master slides were rinsed in ultrapure water and air-dried overnight in a 

class 100 laminar flow cabinet at room temperature. 

Elemental analyses 

Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) was used to 

measure elemental concentrations at the otolith edge. Measurements were made using a Varian 

810 quadrupole ICP-MS, coupled to a HelEx (Laurin Technic, and The Australian National 

University) laser ablation system located at The University of Melbourne, Australia. The HelEx 

system is built around a Compex 110 (Lambda Physik, Gottingen, Germany) excimer laser. 

Master slides were placed in the sample cell and the primordium of each otolith was located 

visually with a 400× objective and a video imaging system. The target ablation site on each 

sample was then digitally plotted using GeoStar v6.14 software (Norris software). We used a 

depth-profiling approach to ablate a 40-μm spot at the dorsal margin of each otolith, equidistant 

between the pararostrum and antirostrum. Ablation occurred inside a sealed chamber in an 

atmosphere of pure He (flow rate: 0.3 L/min) with the vaporised material transported to the 

ICP-MS in the Ar carrier gas (flow rate: 1.23 L/min) via a signal-smoothing manifold. Prior to 

data acquisition, a pre-ablation step was implemented in which three laser pulses were fired (at 

78 mJ output energy) at the target sites to remove any surface contaminants. Using the same 

energy settings, the laser was then pulsed at 5 Hz for 40 s per sample. For each otolith sample, 

the first 3 s of data in the acquisition sequence were excluded, and the next 15 s retained, 

encompassing a disc of otolith material ~40-μm wide × 11-μm deep. The latter measure was 

estimated from the drilling rate (i.e., ~0.15 µm per laser pulse) in conjunction with microscopic 

examination of ablation site geometry post-analysis. Based on measurements of daily growth 

increment widths taken immediately adjacent to the ablation site on age 1 (n = 10) and age 2 

(n = 10) otoliths, we estimate that the ablated discs reflect otolith material deposited during the 

final < 2 weeks of each fish’s life.  

Otoliths were analysed for seven elements: 7Li, 25Mg, 43Ca, 55Mn, 66Zn, 88Sr and 138Ba, with 
43Ca used as an internal standard. Dwell times were 0.03 s for all elements except Li (0.05 s). 

Data were processed offline using Iolite version 3.31 (www.iolite-software.com) (Paton et al. 

2011). Subtraction of background ion counts from otolith counts was followed by the 

normalisation of each element to Ca using a glass reference standard (National Institute of 

Standards and Technology: NIST 612) which was analysed after every 10th otolith sample. 

Measurement precision (% relative standard deviation [RSD]) was calculated based on 20, 20 

s analyses each of NIST 610 and MACS-3 (United States Geological Survey) reference 

standards run concurrently with the otolith samples. Mean RSDs for the NIST 610/MACS-3, 

respectively, for normalised data, were Li: 0.60/6.23, Mg: 1.21/6·60, Mn: 0.59/3.95, Zn: 

1.10/7.92, Sr: 0.34/6.27, Ba 0.34/3.99. Detection limits (DL) were calculated as the mean + 3 
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SD of the background samples. Li, Mg, Mn, Sr and Ba were measured well above DL in the 

otoliths, but Zn was within 5% of DL in 4.6% of cases. Given the relatively low RSD for Zn, 

and its potential sensitivity to dietary factors (Ranaldi and Gagnon 2008), we elected to include 

it in our statistical analysis. Elemental data are expressed throughout as molar ratios to Ca (e.g. 

Li:Ca). 

Stable isotopic analysis 

We used the second sagitta from each fish for analysis of stable carbon and oxygen isotope 

ratios (i.e. δ13C, δ18O). Due to their small diameter, whole age 1 otoliths were ground, 

individually, to a fine powder using a mortar and pestle, and between 0.05 and 0.1 mg of the 

resulting powder transferred to a 0.5 ml polypropylene microtube. Each powder sample 

represents a full lifetime (i.e. ~15-month) record of δ13C and δ18O for each age 1 individual. 

Age 2 otoliths were larger, making sub-sampling possible. Age 2 otoliths were polished, 

mounted, cleaned and dried in an identical manner to those prepared for elemental analyses. 

We used a high-resolution New Wave Research MicroMill system (New Wave Research Inc., 

Fremont, California, USA) to plot a 200-µm wide × ~25-µm deep drill path along the otolith 

edge, beginning at the rostrum, and extending along the ventral margin to the postrostrum. The 

drill speed was set to 5% and scan speed across the sample was 50 µm/s. Again, between 0.05 

and 0.1 mg of powder was collected per individual, encompassing otolith material deposited 

during the last ~2 months of the fish’s life pre-capture (authors’ unpublished data). When 

insufficient material was recovered in the first drill pass, we continued drilling along the 

otolith’s dorsal edge from the pararostrum to the antirostrum. 

Otolith powders were analysed using an automated carbonate preparation device (NuCarb) 

coupled to a Nu Instruments Perspective dual-inlet stable isotope ratio mass spectrometer, 

located in the School of Geography, The University of Melbourne. Three external standards 

with known δ13C and δ18O values (National Bureau of Standards: NBS19, New1, New12) were 

run concurrently with the otolith samples. Estimated precision (RSD), based on repeated 

measurements of NBS19 (n = 5), New1 (n = 18) and New12 (n = 15) across all analysis days 

was: 3.50, 1.73 and 0.40, respectively for δ13C, and 11.17, 2.43 and 0.53, respectively for δ18O. 

All stable isotope measurements are reported relative to the Vienna Pee Dee Belemnite (VPDB) 

reference standard, and expressed in δ-notation (in ‰).  

References
Paton, C., Hellstrom, J., Paul, B. and Hergt, J. 2011. Iolite: Freeware for the visualisation and 

processing of mass spectrometric. J. Anal. At. Spectrom. 26: 2508–2518. 

Ranaldi, M.M. and Gagnon, M.M. 2008. Zinc incorporation in the otoliths of juvenile pink 
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J. Exp. Mar. Biol. Ecol. 360: 56–62.
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Appendix S2. Priors, sensitivity analysis and additional modelling 

results 

Priors 

In all models, we assigned vague normal priors N(0, 104) for the fixed effects and an inverse 

gamma (IG) prior with shape = scale = 0.001 for the residual variance (σε
2). This latter prior is

equivalent to an inverse Wishart (IW) with scale V = 1, and degree of belief parameter nu = 

0.002, and is weakly informative when the posterior distribution does not have large support 

near 0.  

We performed an analysis to test the sensitivity of our results to the choice of prior for the 

random effect variance components (see details on next page). Using the simplest random 

effect structure (i.e. random intercept for site - structure 1, Table 2 in main text), we tested 5 

different prior distributions for the among-site variance (σsite0

2 ) or standard deviation (σsite0
)

parameters, refitting the models with each prior, for each elemental and stable isotopic marker 

separately.  

Based on the results of this analysis, we specified IG priors with shape and scale = 0.001 for 

(co)variance components in the univariate Li:Ca, Mn:Ca and Zn:Ca models, and used 

‘parameter expanded’ (PE) models (Liu et al. 1998, Gelman 2006) for Mg:Ca, Sr:Ca, Ba:Ca, 

δ13C and δ18O and all multi/bivariate models. In random intercept models, for example, the PE 

settings we used correspond to placing a proper half-Cauchy prior on σsite0
, with location

parameter = 0 and scale = √1000. These priors are considered weakly informative, performing 

well near 0, and when the number of capture sites is low (Gelman 2006). 
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β5Ageij SL_anomij +  β6Ageij Temp
j
 + β7Ageij Salj + εij

site0j ~ N(0, σ site0
 2 )

εij ~ N(0, σ ε
 2) (eq. S1) 

This model is a simplification of that specified in Eq. 1 in the main text, where yij represents 
the (natural log transformed) otolith edge element:Ca concentration measured in µmol/mol 
(for Li:Ca, Mn:Ca, Zn:Ca, Ba:Ca) or mmol/mol (for Mg:Ca, Sr:Ca) for fish i captured at 
sampling site j. Here, β0 is the overall mean concentration across sites, site0j is the random 
site-level deviation from this mean, β1 to β7 are regression coefficients for the fixed effects 
of fish age (Ageij), somatic growth within an age-class (SL_anomij), ambient temperature 
(Tempj) and salinity (Salj), and some interactions, and εij is the observation-level residual. 
Continuous inputs were centred and scaled to have mean = 0, SD = 0.5 prior to analysis 
(Gelman 2008), and both site0j and εij are assumed to be normally distributed with 
mean 0 and variance σ 

 2
site0 and σ 

 ε
2, respectively.

As the temporal resolution of the otolith material used for δ13C and δ18O measurements 
differed between age 1 and age 2 fish, we dropped Ageij from Eq. S1 and fitted the 
following model for each (untransformed) stable isotopic marker (eq. S2):- 

y
ij

 = (β0+ site0j) + β1SL_anomij + β2Temp
j
 + β3Salj + εij

site0j ~ N(0, σ
 

 2
site0)

εij ~ N(0, σ ε
 2) (eq. S2) 

We tested five different prior distributions for the among-site variance (σ
 

 2
site0) or standard 

deviation (σ 
site0) parameters (see below), refitting the models using each prior specification 

in turn. In all models, we assigned vague normal priors – N(0, 104) for the fixed effects and 
an inverse gamma (IG) prior with shape = scale = 0.001 for the residual variance (σ 

 ε
2).

The priors considered were as follows:- 

Prior set A

Sensitivity to prior choice for variance components 

Motivation and methods
We conducted a sensitivity analysis to explore how the choice of prior for the random effect 
variance components might influence our results. For each trace-element marker separately 
(i.e., Li:Ca, Mg:Ca, Mn:Ca, Zn:Ca, Sr:Ca, Ba:Ca), we fitted full univariate models 
containing all fixed effects specified as linear terms (and some first-order interactions) and 
the simplest random effect structure (i.e., random intercept for capture site), as in eq. S1.  

y
ij

 =  (β0+ site0j) + β1Ageij + β2SL_anomij + β3Temp
j
 + β4Salj +

 Fixed effects: N(0, 104)
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 Variance components:-
 Among-site variance (i.e. ‘G’ list in MCMCglmm call): IW(V=1, nu=0.002) =

IG(0.001, 0.001). Default setting in ‘MCMCglmm’ package and considered weakly to
strongly informative in our examples.

 Residual variance (i.e. ‘R’ list in MCMCglmm call): IW(V=1, nu=0.002) = IG(0.001,
0.001)

Prior set B 
 Fixed effects: N(0, 104)
 Variance components:-

 Among-site variance: IW(V=1, nu=0.02) = IG(0.01, 0.01). An order of magnitude
increase in nu results in slightly more mass away from zero than Prior set A.

 Residual variance: IW(V=1, nu=0.002) = IG(0.001, 0.001)

Prior set C 
 Fixed effects: N(0, 104)
 Variance components:-

 Among-site variance: IW(V=1, nu=0.2) = IG(0.1, 0.1). Another order of magnitude
increase in nu. This prior places more mass away from zero than Prior set B.

 Residual variance: IW(V=1, nu=0.002) = IG(0.001, 0.001)

Prior set D 
 Fixed effects: N(0, 104)
 Variance components:-

 Among-site variance: Here we used ‘parameter expanded’ models (Liu et al. 1998,
Gelman 2006) to induce folded non-central t priors on the among-site standard
deviation parameters (σsite0

 ). For random-intercept models fitted with the
‘MCMCglmm’ package, this can be coded by setting the V=1, nu=1, mean (alpha.mu)
= 0 and variance (alpha.V) = 103, or something large (see Hadfield 2010 for details).
These settings correspond to a proper half-Cauchy prior on σsite0

 , with location
parameter = 0 and scale = √alpha.V, which in our case = √1000.

 Residual variance: IW(V=1, nu=0.002) = IG(0.001, 0.001)

Prior set E 
 Fixed effects: N(0, 104)
 Variance components:-

 Among-site variance: Improper uniform prior on σsite0
  over the interval (0, ∞). Coded

as (V=1e-10, nu=-1) in ‘MCMCglmm’ function call. Non-informative and widely
used (e.g. Gelman et al. 2003), although for instances where the number of sites is
small (i.e. < 5), the uniform density can inflate the standard deviation estimates.

 Residual variance: IW(V=1, nu=0.002) = IG(0.001, 0.001)

We fitted each model using the ‘MCMCglmm’ R package (Hadfield 2010), obtaining three 
independent Markov chains initialized using dispersed values. We ran each chain for 250,000 
iterations, discarding the first 50,000 as burn-in, and using the remaining 3 × 200,000 = 
600,000 samples for the calculation of posterior summaries. Convergence of the chains was 
assessed via visual inspection of trace plots and by computing Gelman-Rubin diagnostics (R̂) 
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(Brooks and Gelman 1998). Autocorrelation between successive samples was explored 
using the set of ‘autocorr’ functions in the ‘coda’ package (Plummer et al. 2006).  

Results 
The Markov chains for the variance components were well mixed across all models, with 
mean R̂ (± SD) for the among-site variance parameter (σ 

 2
site0) = 1.102 (± 0.088). In general,

we observed better mixing properties for parameter expanded models and those using 
IG(0.001, 0.001) priors. Mean (± SD) lag-one autocorrelation for individual chains was 
0.583 (± 0.103), indicating moderate serial dependence, but we chose not to thin chains here 
in order to maximise precision in our estimates (Link and Eaton 2012). The mean (± SD) 
effective sample sizes per chain for each prior specification were as follows: 51216 (± 
12694) – Prior set A; 45063 (± 6808) – Prior set B; 51568 (± 13202) – Prior set C; 30929 (± 
16055) – Prior set D; 47404 (± 13388) – Prior set E. For each otolith chemistry marker, we 
plotted the posterior densities of σ 

 2
site0 derived from models using each of the five priors 

(Figure S1). 

−4 −2 0 2 4 6 8

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Li:Ca

−10 −5 0 5

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Mg:Ca

−4 −2 0 2 4 6

0.0

0.1
0.2
0.3
0.4
0.5
0.6

Mn:Ca

−10 −5 0 5

0.0

0.1
0.2
0.3
0.4
0.5
0.6

Zn:Ca

−8 −6 −4 −2 0 2

0.0
0.1
0.2

0.3
0.4
0.5
0.6

Sr:Ca

−5 0 5

0.0
0.1
0.2

0.3
0.4
0.5
0.6

Ba:Ca

−10 −5 0 5

0.0
0.1
0.2
0.3

0.4
0.5
0.6

δ13C

−5 0 5

0.0
0.1
0.2
0.3

0.4
0.5
0.6

δ18O

IG(0.001, 0.001) on  2site0

IG(0.01, 0.01) on  2site0

IG(0.1, 0.1) on  2site0

C+(0,   1000)  
 site0

U(0, ∞) on  site0

site0

2

D
en

si
ty

Figure S1. Posterior densities (on natural log scale) for the among-site variance (σ 
 
s
2
ite0

) estimated from

MCMCglmm models for each otolith chemistry marker, as specified in eq. S1. Plots show the influence of

five different prior distributions placed on σ 
 
s
2
ite0 or σ 

site0
 (see bottom right panel for colour codes and

details). Vertical lines in each plot are (natural log) mean estimates of σ 
 2
site0

 derived from equivalent models

fitted using REML estimation. The REML estimate for σ 
 
s
2
ite0

 in the δ13C model was ~0, the natural log of

which is undefined. Hence, no vertical line in plotted on the bottom left panel. 
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We then overlaid the mean estimate of the σ 
 2
site0 derived from an equivalent model fitted 

using restricted maximum likelihood (REML) estimation in the ‘lme4’ package (Bates et al. 
2015). 

For some otolith markers (i.e. Mg, Sr, Ba, δ13C, δ18O) the among-site variance was small, 
and in these cases, increasing the degree-of-belief parameter (nu) for the IW prior tended to 
push the posterior density far beyond the REML estimate. For markers exhibiting σ2site0 
estimates well away from zero (i.e. Li, Mn, Zn), the influence of the prior decreased, 
with REML estimates more closely matching the posterior modes (Figure S1). Parameter 
expanded models, and those using the flat prior on the site-level standard deviation (σ 

site0) 
resulted in very similar posterior densities for all otolith markers. 

Given the tight congruence between REML estimates and the posterior modes from models 
using an IG(0.001, 0.001) prior on σ 

 2
site0 (i.e. Prior set A), the good chain mixing properties 

observed in these models, and the relatively high effective sample sizes recovered, we 
decided to use Prior set A in our model selection steps for the Li, Mn and Zn models. As IG 
priors can be strongly informative when among-site variances approach 0, we elected to use 
parameter expanded models for Mg, Sr, Ba, δ13C and δ18O with proper half-Cauchy priors 
placed on σ 

site0 (i.e. Prior set D). These priors are considered weakly informative, and 
perform well near 0 and when the number of sites is low (Gelman 2006). 
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Table S1. Summaries for candidate models describing otolith edge chemistry in juvenile ISS herring. Models 
were fitted using the best supported random effect structure for each otolith marker (see Table 2 for descriptions). 
Small sample-size corrected Akaike’s information criteria (AICc) and log-likelihood (LL) values were derived 
from models fitted using restricted maximum likelihood (REML) and ML estimation, and mean (and SD) 
estimates of the deviance information criterion (DIC), deviance (Dev) and mean squared prediction error on out-
of-sample (oos) test data (MSPEoos) were computed from three replicate Bayesian models fitted using 
dispersed starting values in the ‘MCMCglmm’ package. Bold models were ranked highest in terms of 
model fit and explanatory power (i.e., ‘explan’ models in main text), and those underlined were ranked 
highest regarding oos predictive accuracy (i.e., ‘oos.pred’ models in main text). All univariate models include an 
overall intercept, with the intercept suppressed in the multi/bivariate cases to aid interpretation of 
regression coefficients. × denotes interaction terms; * denotes the additive contribution of two covariates plus 
their interaction; ‘1 | site’ is a random intercept for capture site; and ‘covariate | site’ is a random covariate 
slope and intercept for capture site (see Table 2 for further details). Covariate codes are: A = Age; SL = 
SL_anom; T = Temp; S = Sal. 

Model Structure DIC  
(SD) 

Dev 
(SD) 

AICc LL MSPEoos  
(SD) Fixed Random 

Li:Ca - univariate 
Li_mod.full A*SL + A*T + A*S A | site 165.29 (0.01) 150.48 (0.03) 200.68 -87.39 0.582 (0.014)
Li_mod.sub1 A + SL + T + S + A×SL + A×S 165.22 (0.00) 150.47 (0.04) 199.40 -87.89 0.478 (0.000)
Li_mod.sub2 A + SL + T + S + A×SL + A×T 165.23 (0.03) 150.51 (0.03) 199.91 -88.15 0.483 (0.006)
Li_mod.sub3 A + SL + T + S + A×T + A×S 166.18 (0.04) 152.38 (0.03) 201.13 -88.76 0.584 (0.012)
Li_mod.sub4 A + SL + S + A×SL + A×S 165.16 (0.02) 150.43 (0.04) 197.14 -87.90 0.681 (0.003)
Li_mod.sub5 A + SL + T + A×SL + A×T 165.25 (0.02) 150.55 (0.03) 198.41 -88.54 0.531 (0.002)
Li_mod.sub6 A + T + S + A×T + A×S 178.29 (0.02) 165.49 (0.02) 211.99 -95.33 0.587 (0.011)
Li_mod.sub7 A + SL + T + S + A×S 166.09 (0.02) 152.32 (0.03) 199.88 -89.27 0.478 (0.004)
Li_mod.sub8 A + SL + T + S + A×SL 165.11 (0.02) 150.45 (0.05) 197.64 -88.15 0.482 (0.002)
Li_mod.sub9 A + SL + T + S + A×T 166.13 (0.02) 152.40 (0.07) 200.38 -89.52 0.485 (0.004)
Li_mod.sub10 A + SL + S + A×SL 165.07 (0.01) 150.43 (0.04) 195.42 -88.17 0.680 (0.004)
Li_mod.sub11 A + SL + T + A×SL 165.12 (0.03) 150.46 (0.08) 196.17 -88.54 0.529 (0.001)
Li_mod.sub12 A + T + S + A×S 178.20 (0.02) 165.45 (0.01) 210.84 -95.88 0.467 (0.002)
Li_mod.sub13 A + SL + S + A×S 166.04 (0.02) 152.33 (0.05) 197.65 -89.28 0.686 (0.005)
Li_mod.sub14 A + T + S + A×T 178.25 (0.02) 165.54 (0.02) 211.30 -96.11 0.483 (0.004)
Li_mod.sub15 A + SL + T + A×T 166.10 (0.03) 152.37 (0.05) 198.90 -89.91 0.536 (0.001)
Li_mod.sub16 A + SL + T + S 166.02 (0.03) 152.37 (0.04) 198.15 -89.53 0.480 (0.002)
Li_mod.sub17 A + SL + A×SL 165.07 (0.02) 150.46 (0.06) 194.67 -88.90 0.596 (0.000) 

Li_mod.sub18 A + S + A×S 178.14 (0.02) 165.42 (0.05) 208.64 -95.89 0.687 (0.003)
Li_mod.sub19 A + T + A×T 178.20 (0.01) 165.52 (0.04) 209.84 -96.49 0.539 (0.001)
Li_mod.sub20 A + T + S 178.07 (0.02) 165.41 (0.03) 209.10 -96.12 0.475 (0.004)
Li_mod.sub21 A + SL + S 165.95 (0.02) 152.32 (0.06) 195.95 -89.54 0.683 (0.004)
Li_mod.sub22 A + SL + T 166.03 (0.01) 152.39 (0.05) 196.69 -89.91 0.532 (0.001)
Li_mod.sub23 A + S 178.03 (0.02) 165.39 (0.01) 206.93 -96.13 0.682 (0.003)
Li_mod.sub24 A + T 178.08 (0.03) 165.44 (0.04) 207.66 -96.50 0.533 (0.001)
Li_mod.sub25 A + SL 165.91 (0.03) 152.31 (0.02) 195.23 -90.28 0.600 (0.001)
Li_mod.sub26 A 177.98 (0.01) 165.41 (0.02) 206.20 -96.85 0.602 (0.001)

Mg:Ca - univariate 
Mg_mod.full A*SL + A*T + A*S A | site 145.16 (0.02) 130.48 (0.05) 157.58 -65.83 0.251 (0.003)
Mg_mod.sub1 A + SL + T + S + A×SL + A×S 145.09 (0.02) 130.50 (0.06) 156.64 -66.51 0.233 (0.000)
Mg_mod.sub2 A + SL + T + S + A×SL + A×T 145.07 (0.01) 131.70 (0.02) 156.30 -66.34 0.306 (0.001)
Mg_mod.sub3 A + SL + T + S + A×T + A×S 145.35 (0.01) 130.47 (0.06) 157.52 -66.95 0.248 (0.001)
Mg_mod.sub4 A + SL + S + A×SL + A×S 144.98 (0.03) 130.50 (0.04) 154.67 -66.67 0.239 (0.000)
Mg_mod.sub5 A + SL + T + A×SL + A×T 145.03 (0.05) 130.97 (0.00) 159.24 -68.95 0.254 (0.000)
Mg_mod.sub6 A + T + S + A×T + A×S 143.66 (0.01) 131.67 (0.04) 155.62 -67.14 0.250 (0.003)
Mg_mod.sub7 A + SL + T + S + A×S 145.25 (0.02) 130.47 (0.01) 156.59 -67.63 0.229 (0.000)
Mg_mod.sub8 A + SL + T + S + A×SL 145.01 (0.01) 131.67 (0.03) 158.50 -68.58 0.229 (0.000)
Mg_mod.sub9 A + SL + T + S + A×T 145.24 (0.02) 130.45 (0.04) 156.27 -67.47 0.303 (0.003)
Mg_mod.sub10 A + SL + S + A×SL 144.94 (0.03) 130.45 (0.03) 156.43 -68.67 0.249 (0.000)
Mg_mod.sub11 A + SL + T + A×SL 144.99 (0.01) 130.93 (0.03) 161.22 -71.07 0.226 (0.000)
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Mg_mod.sub12 A + T + S + A×S 143.52 (0.02) 131.60 (0.05) 154.72 -67.82 0.231 (0.000)
Mg_mod.sub13 A + SL + S + A×S 145.17 (0.02) 130.95 (0.04) 154.63 -67.77 0.236 (0.000)
Mg_mod.sub14 A + T + S + A×T 143.56 (0.03) 131.64 (0.06) 154.40 -67.66 0.305 (0.000)
Mg_mod.sub15 A + SL + T + A×T 145.19 (0.06) 131.66 (0.03) 159.16 -70.04 0.250 (0.001)
Mg_mod.sub16 A + SL + T + S 145.21 (0.01) 130.52 (0.01) 158.48 -69.70 0.224 (0.001)
Mg_mod.sub17 A + SL + A×SL 145.00 (0.02) 130.87 (0.04) 160.09 -71.61 0.235 (0.000)
Mg_mod.sub18 A + S + A×S 143.45 (0.02) 130.93 (0.03) 152.77 -67.96 0.238 (0.000) 

Mg_mod.sub19 A + T + A×T 143.46 (0.02) 130.92 (0.01) 157.29 -70.21 0.252 (0.000)
Mg_mod.sub20 A + T + S 143.50 (0.05) 131.62 (0.03) 156.63 -69.88 0.228 (0.001)
Mg_mod.sub21 A + SL + S 145.11 (0.00) 131.66 (0.01) 156.43 -69.78 0.245 (0.000)
Mg_mod.sub22 A + SL + T 145.09 (0.02) 130.90 (0.01) 161.15 -72.14 0.222 (0.000)
Mg_mod.sub23 A + S 143.39 (0.01) 130.92 (0.05) 154.59 -69.96 0.247 (0.000)
Mg_mod.sub24 A + T 143.42 (0.01) 131.63 (0.03) 159.30 -72.32 0.224 (0.000)
Mg_mod.sub25 A + SL 145.15 (0.02) 132.41 (0.01) 160.00 -72.67 0.231 (0.000)
Mg_mod.sub26 A 143.45 (0.03) 131.72 (0.09) 158.16 -72.83 0.234 (0.000)

Mn:Ca - univariate 
Mn_mod.full A*SL + A*T + A*S A | site 275.17 (0.02) 260.56 (0.03) 296.15 -135.12 0.562 (0.005)
Mn_mod.sub1 A + SL + T + S + A×SL + A×S 274.84 (0.04) 260.43 (0.06) 293.88 -135.14 0.558 (0.007)
Mn_mod.sub2 A + SL + T + S + A×SL + A×T 274.88 (0.02) 260.44 (0.04) 294.08 -135.24 0.563 (0.003)
Mn_mod.sub3 A + SL + T + S + A×T + A×S 273.24 (0.03) 259.62 (0.03) 294.03 -135.21 0.560 (0.009)
Mn_mod.sub4 A + SL + S + A×SL + A×S 274.81 (0.06) 260.37 (0.07) 291.63 -135.15 0.566 (0.001)
Mn_mod.sub5 A + SL + T + A×SL + A×T 274.87 (0.02) 260.43 (0.01) 292.40 -135.53 0.521 (0.000)
Mn_mod.sub6 A + T + S + A×T + A×S 272.08 (0.02) 259.45 (0.04) 292.59 -135.63 0.558 (0.012)
Mn_mod.sub7 A + SL + T + S + A×S 272.98 (0.03) 259.50 (0.03) 291.80 -135.23 0.562 (0.003)
Mn_mod.sub8 A + SL + T + S + A×SL 274.47 (0.04) 260.26 (0.03) 291.84 -135.26 0.562 (0.002)
Mn_mod.sub9 A + SL + T + S + A×T 273.01 (0.02) 259.54 (0.01) 291.99 -135.33 0.559 (0.009)
Mn_mod.sub10 A + SL + S + A×SL 274.47 (0.04) 260.24 (0.05) 289.64 -135.28 0.570 (0.001)
Mn_mod.sub11 A + SL + T + A×SL 274.47 (0.02) 260.27 (0.01) 290.18 -135.55 0.521 (0.002)
Mn_mod.sub12 A + T + S + A×S 271.73 (0.03) 259.29 (0.04) 290.39 -135.65 0.546 (0.005)
Mn_mod.sub13 A + SL + S + A×S 272.92 (0.01) 259.53 (0.04) 289.58 -135.25 0.566 (0.001)
Mn_mod.sub14 A + T + S + A×T 271.78 (0.01) 259.32 (0.01) 290.58 -135.75 0.548 (0.004)
Mn_mod.sub15 A + SL + T + A×T 272.99 (0.02) 259.55 (0.05) 290.34 -135.63 0.520 (0.001)
Mn_mod.sub16 A + SL + T + S 272.60 (0.01) 259.33 (0.03) 289.78 -135.35 0.558 (0.005)
Mn_mod.sub17 A + SL + A×SL 274.37 (0.00) 260.19 (0.04) 288.21 -135.67 0.544 (0.001)
Mn_mod.sub18 A + S + A×S 271.73 (0.01) 259.29 (0.02) 288.20 -135.67 0.560 (0.001)
Mn_mod.sub19 A + T + A×T 271.78 (0.03) 259.32 (0.03) 288.95 -136.04 0.515 (0.001)
Mn_mod.sub20 A + T + S 271.42 (0.02) 259.16 (0.04) 288.39 -135.76 0.550 (0.006)
Mn_mod.sub21 A + SL + S 272.59 (0.01) 259.38 (0.06) 287.60 -135.37 0.569 (0.002)
Mn_mod.sub22 A + SL + T 272.60 (0.01) 259.41 (0.01) 288.15 -135.64 0.521 (0.001)
Mn_mod.sub23 A + S 271.36 (0.03) 259.11 (0.04) 286.24 -135.79 0.562 (0.001)
Mn_mod.sub24 A + T 271.39 (0.01) 259.16 (0.00) 286.78 -136.06 0.515 (0.003)
Mn_mod.sub25 A + SL 272.49 (0.03) 259.33 (0.02) 286.20 -135.76 0.546 (0.000)
Mn_mod.sub26 A 271.31 (0.03) 259.13 (0.04) 284.85 -136.18 0.538 (0.002) 

Zn:Ca - univariate 
Zn_mod.full A*SL + A*T + A*S 1 | site 501.51 (0.04) 490.22 (0.10) 506.77 -242.72 1.538 (0.001)
Zn_mod.sub1 A + SL + T + S + A×SL + A×S 499.53 (0.01) 489.29 (0.02) 504.53 -242.72 1.536 (0.001)
Zn_mod.sub2 A + SL + T + S + A×SL + A×T 500.31 (0.03) 490.01 (0.03) 505.37 -243.14 1.523 (0.002)
Zn_mod.sub3 A + SL + T + S + A×T + A×S 501.23 (0.02) 490.96 (0.01) 506.12 -243.52 1.541 (0.003)
Zn_mod.sub4 A + SL + S + A×SL + A×S 498.73 (0.01) 489.46 (0.03) 502.33 -242.73 1.563 (0.002)
Zn_mod.sub5 A + SL + T + A×SL + A×T 500.11 (0.03) 490.30 0.10) 504.45 -243.80 1.386 (0.000)
Zn_mod.sub6 A + T + S + A×T + A×S 500.15 (0.02) 490.88 (0.04) 504.90 -244.02 1.542 (0.003)
Zn_mod.sub7 A + SL + T + S + A×S 499.23 (0.01) 489.97 (0.06) 503.91 -243.52 1.535 (0.005)
Zn_mod.sub8 A + SL + T + S + A×SL 498.52 (0.02) 489.13 (0.05) 503.62 -243.38 1.524 (0.003)
Zn_mod.sub9 A + SL + T + S + A×T 500.01 (0.02) 490.73 (0.03) 504.74 -243.94 1.523 (0.001)
Zn_mod.sub10 A + SL + S + A×SL 497.82 (0.02) 489.36 (0.02) 501.48 -243.41 1.563 (0.001)
Zn_mod.sub11 A + SL + T + A×SL 498.35 (0.01) 489.41 (0.05) 502.69 -244.01 1.375 (0.001)
Zn_mod.sub12 A + T + S + A×S 498.14 (0.00) 489.87 (0.03) 502.71 -244.02 1.537 (0.001)
Zn_mod.sub13 A + SL + S + A×S 498.37 (0.02) 490.10 (0.03) 501.73 -243.53 1.562 (0.002)
Zn_mod.sub14 A + T + S + A×T 498.94 (0.03) 490.66 (0.05) 503.54 -244.44 1.523 (0.003)
Zn_mod.sub15 A + SL + T + A×T 499.82 (0.00) 491.06 (0.05) 503.90 -244.62 1.388 (0.000)
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Zn_mod.sub16 A + SL + T + S 498.23 (0.04) 489.89 (0.05) 503.05 -244.19 1.527 (0.001)
Zn_mod.sub17 A + SL + A×SL 498.39 (0.04) 489.77 (0.07) 502.12 -244.81 1.393 (0.000)
Zn_mod.sub18 A + S + A×S 497.33 (0.01) 490.02 (0.03) 500.56 -244.03 1.560 (0.002)
Zn_mod.sub19 A + T + A×T 498.74 (0.01) 490.92 (0.02) 502.71 -245.11 1.386 (0.000)
Zn_mod.sub20 A + T + S 497.11 (0.01) 489.75 (0.03) 501.84 -244.67 1.524 (0.002)
Zn_mod.sub21 A + SL + S 497.50 (0.03) 490.07 (0.01) 500.93 -244.22 1.563 (0.001)
Zn_mod.sub22 A + SL + T 498.05 (0.01) 490.14 (0.01) 502.19 -244.85 1.375 (0.001)
Zn_mod.sub23 SL + T + S 498.95 (0.02) 491.61 (0.02) 503.54 -245.52 1.608 (0.000)
Zn_mod.sub24 A + S 496.47 (0.02) 490.00 (0.05) 499.75 -244.70 1.561 (0.001) 

Zn_mod.sub25 A + T 496.97 (0.03) 490.04 (0.03) 501.00 -245.32 1.375 (0.000)
Zn_mod.sub26 A + SL 498.10 (0.01) 490.52 (0.02) 501.62 -245.63 1.394 (0.000)
Zn_mod.sub27 SL + S 498.20 (0.01) 491.81 (0.01) 501.42 -245.54 1.644 (0.001)
Zn_mod.sub28 SL + T 498.83 (0.01) 491.89 (0.03) 502.87 -246.26 1.413 (0.000)
Zn_mod.sub29 T + S 497.91 (0.02) 491.56 (0.06) 502.39 -246.02 1.612 (0.003)
Zn_mod.sub30 A 496.96 (0.02) 490.39 (0.04) 500.47 -246.12 1.394 (0.000)
Zn_mod.sub31 SL 498.84 (0.01) 492.23 (0.01) 502.28 -247.02 1.455 (0.001)
Zn_mod.sub32 T 497.78 (0.01) 491.81 (0.01) 501.74 -246.75 1.413 (0.000)
Zn_mod.sub33 S 497.17 (0.02) 491.75 (0.01) 500.30 -246.03 1.646 (0.000)
Zn_mod.null - 497.78 (0.03) 492.18 (0.04) 501.18 -247.52 - 

Sr:Ca - univariate 
Sr_mod.full A*SL + A*T + A*S 1 | site -187.11 (0.02) -198.93 (0.01) -173.44 97.39 0.042 (0.000) 
Sr_mod.sub1 A + SL + T + S + A×SL + A×S -176.95 (0.03) -187.76 0.05 -163.31 91.20 0.040 (0.000) 
Sr_mod.sub2 A + SL + T + S + A×SL + A×T -183.42 0.01 -194.26 0.03 -170.25 94.67 0.040 (0.000) 
Sr_mod.sub3 A + SL + T + S + A×T + A×S -187.20 0.01 -198.07 0.03 -173.77 96.43 0.043 (0.000) 

Sr_mod.sub4 A + SL + S + A×SL + A×S -177.02 0.02 -187.77 0.07 -165.17 91.02 0.039 (0.000) 
Sr_mod.sub5 A + SL + T + A×SL + A×T -183.44 0.01 -194.25 0.03 -170.05 93.45 0.047 (0.000) 
Sr_mod.sub6 A + T + S + A×T + A×S -181.76 0.02 -191.58 0.01 -168.71 92.79 0.043 (0.000) 
Sr_mod.sub7 A + SL + T + S + A×S -177.08 0.02 -186.91 0.05 -163.66 90.26 0.041 (0.000) 
Sr_mod.sub8 A + SL + T + S + A×SL -179.00 0.02 -188.88 0.03 -165.53 91.20 0.040 (0.000) 
Sr_mod.sub9 A + SL + T + S + A×T -183.58 0.04 -193.43 0.03 -170.61 93.74 0.041 (0.000) 
Sr_mod.sub10 A + SL + S + A×SL -179.07 0.03 -188.81 0.05 -167.37 91.02 0.039 (0.000) 
Sr_mod.sub11 A + SL + T + A×SL -179.00 0.01 -188.81 0.05 -165.34 90.00 0.046 (0.000) 
Sr_mod.sub12 A + T + S + A×S -171.86 0.03 -180.72 0.04 -158.82 86.75 0.041 (0.000) 
Sr_mod.sub13 A + SL + S + A×S -177.17 0.02 -186.91 0.04 -165.49 90.08 0.040 (0.000) 
Sr_mod.sub14 A + T + S + A×T -178.38 0.01 -187.23 0.03 -165.77 90.22 0.041 (0.000) 
Sr_mod.sub15 A + SL + T + A×T -183.61 0.01 -193.41 0.05 -170.39 92.53 0.048 (0.000) 
Sr_mod.sub16 A + SL + T + S -179.13 0.00 -188.01 0.04 -165.85 90.26 0.041 (0.000) 
Sr_mod.sub17 A + SL + A×SL -179.07 0.02 -188.77 0.03 -166.88 89.69 0.044 (0.000) 
Sr_mod.sub18 A + S + A×S -171.95 0.01 -180.71 0.02 -160.61 86.55 0.040 (0.000) 
Sr_mod.sub19 A + T + A×T -178.40 0.05 -187.21 0.02 -165.53 89.01 0.048 (0.000) 
Sr_mod.sub20 A + T + S -173.89 0.00 -181.79 0.04 -160.99 86.74 0.041 (0.000) 
Sr_mod.sub21 A + SL + S -179.20 0.04 -187.97 0.04 -167.65 90.08 0.040 (0.000) 
Sr_mod.sub22 A + SL + T -179.12 0.02 -187.96 0.03 -165.64 89.07 0.046 (0.000) 
Sr_mod.sub23 SL + T + S -136.97 0.02 -144.81 0.02 -126.66 69.58 0.043 (0.000) 
Sr_mod.sub24 A + S -174.02 0.01 -181.75 0.04 -162.75 86.55 0.040 (0.000) 
Sr_mod.sub25 A + T -173.92 0.02 -181.74 0.01 -160.75 85.55 0.046 (0.000) 
Sr_mod.sub26 A + SL -179.18 0.01 -187.91 0.02 -167.17 88.76 0.045 (0.000) 
Sr_mod.sub27 SL + S -137.10 0.02 -144.73 0.05 -128.50 69.43 0.045 (0.000) 
Sr_mod.sub28 SL + T -137.04 0.01 -144.77 0.01 -126.41 68.38 0.057 (0.000) 
Sr_mod.sub29 T + S -132.93 0.02 -139.79 0.03 -122.91 66.63 0.043 (0.000) 
Sr_mod.sub30 A -173.98 0.03 -181.71 0.03 -162.28 85.26 0.045 (0.000) 
Sr_mod.sub31 SL -137.05 0.02 -144.69 0.01 -127.81 68.02 0.053 (0.000) 
Sr_mod.sub32 T -132.99 0.01 -139.74 0.02 -122.64 65.44 0.057 (0.000) 
Sr_mod.sub33 S -133.06 0.01 -139.72 0.02 -124.72 66.48 0.045 (0.000) 
Sr_mod.null - -133.02 0.00 -139.63 0.03 -124.04 65.09 - 

Ba:Ca - univariate 
Ba_mod.full A*SL + A*T + A*S SL | site 205.68 (0.03) 189.89 (0.03) 216.85 -95.47 0.278 (0.000)
Ba_mod.sub1 A + SL + T + S + A×SL + A×S 204.17 (0.03) 189.37 (0.05) 215.27 -95.83 0.273 (0.000)
Ba_mod.sub2 A + SL + T + S + A×SL + A×T 203.59 (0.03) 188.84 (0.05) 214.58 -95.49 0.280 (0.000)
Ba_mod.sub3 A + SL + T + S + A×T + A×S 204.25 (0.02) 189.50 (0.04) 215.09 -95.74 0.277 (0.000)
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Ba_mod.sub4 A + SL + S + A×SL + A×S 203.86 (0.01) 189.52 (0.01) 213.46 -96.06 0.276 (0.000)
Ba_mod.sub5 A + SL + T + A×SL + A×T 203.13 (0.04) 188.76 (0.02) 212.69 -95.68 0.288 (0.000)
Ba_mod.sub6 A + SL + T + S + A×S 202.77 (0.01) 188.97 (0.06) 213.53 -96.10 0.273 (0.000)
Ba_mod.sub7 A + SL + T + S + A×SL 202.89 (0.01) 189.03 (0.03) 214.02 -96.34 0.280 (0.000)
Ba_mod.sub8 A + SL + T + S + A×T 202.15 (0.03) 188.41 (0.03) 212.85 -95.76 0.280 (0.001)
Ba_mod.sub9 A + SL + S + A×SL 202.63 (0.03) 189.24 (0.01) 212.14 -96.53 0.283 (0.000)
Ba_mod.sub10 A + SL + T + A×SL 202.52 (0.04) 189.07 (0.05) 212.26 -96.59 0.285 (0.000)
Ba_mod.sub11 A + SL + S + A×S 202.44 (0.05) 189.12 (0.07) 211.72 -96.32 0.275 (0.000)
Ba_mod.sub12 A + SL + T + A×T 201.75 (0.04) 188.40 (0.06) 210.92 -95.92 0.287 (0.000)
Ba_mod.sub13 A + SL + T + S 201.48 (0.02) 188.68 (0.08) 212.30 -96.61 0.279 (0.000)
Ba_mod.sub14 A + SL + A×SL 201.95 (0.01) 189.12 (0.01) 210.07 -96.60 0.284 (0.000)
Ba_mod.sub15 SL + T + S 208.72 (0.00) 196.92 (0.04) 220.17 -101.65 0.281 (0.000)
Ba_mod.sub16 A + SL + S 201.20 (0.03) 188.81 (0.03) 210.43 -96.78 0.283 (0.000)
Ba_mod.sub17 A + SL + T 201.11 (0.01) 188.68 (0.02) 210.50 -96.82 0.285 (0.000)
Ba_mod.sub18 SL + S 208.51 (0.02) 197.08 (0.01) 218.37 -101.85 0.274 (0.000)
Ba_mod.sub19 SL + T 208.35 (0.01) 196.86 (0.07) 218.55 -101.94 0.272 (0.000)
Ba_mod.sub20 A + SL 200.56 (0.03) 188.75 (0.04) 208.34 -96.84 0.284 (0.000) 

Ba_mod.sub21 SL 207.97 (0.04) 197.01 (0.05) 216.40 -101.95 0.271 (0.000)

δ13C - univariate 
C_mod.full SL + T + S None 93.26 (0.00) 88.38 (0.02) 94.29 -41.58 1.066 (0.001)
C_mod.sub1 T + S 91.54 (0.01) 87.63 (0.04) 92.23 -41.75 1.063 (0.003) 

C_mod.sub2 SL + S 113.60 (0.00) 109.67 (0.02) 114.28 -52.77 0.323 (0.001)
C_mod.sub3 SL + T 100.94 (0.01) 97.04 (0.01) 101.64 -46.45 0.404 (0.000)
C_mod.sub4 S 111.77 (0.02) 108.82 (0.02) 112.20 -52.88 0.316 (0.000)
C_mod.sub5 T 99.26 (0.01) 96.32 (0.02) 99.69 -46.62 0.396 (0.000)
C_mod.sub6 SL 111.66 (0.02) 108.73 (0.02) 112.09 -52.83 0.328 (0.000)
C_mod.null - 109.85 (0.00) 107.90 (0.01) 110.09 -52.94 - 

δ18O - univariate 
O_mod.full SL + T + S 1 | site 32.65 (0.03) 24.92 (0.03) 41.83 -14.09 0.394 (0.003)
O_mod.sub1 T + S 30.87 (0.02) 24.14 (0.02) 39.57 -14.21 0.387 (0.003) 

O_mod.sub2 SL + S 32.28 (0.02) 24.57 (0.01) 47.93 -18.39 0.336 (0.003)
O_mod.sub3 SL + T 32.38 (0.00) 24.72 (0.05) 44.50 -16.67 0.200 (0.001)
O_mod.sub4 S 30.55 (0.02) 23.80 (0.01) 45.83 -18.54 0.332 (0.002)
O_mod.sub5 T 30.58 (0.02) 23.91 (0.04) 42.40 -16.82 0.196 (0.001)
O_mod.sub6 SL 32.21 (0.02) 24.60 (0.03) 45.61 -18.43 0.308 (0.000)
O_mod.null - 30.44 (0.01) 23.83 (0.01) 43.60 -18.58 - 

Multi 
multi_mod.full A*SL + A*T + A*S A | site + 

SL | site 
2502.92 (0.03) 2397.25 (0.05) - - 1.161 (0.007)

multi_mod.sub1 A + SL + T + S + A×SL + A×S 2499.76 (0.09) 2396.20 (0.19) - - 1.110 (0.005)
multi_mod.sub2 A + SL + T + S + A×SL + A×T 2500.27 (0.04) 2397.10 (0.02) - - 1.148 (0.004)
multi_mod.sub3 A + SL + T + S + A×T + A×S 2502.32 (0.10) 2401.93 (0.12) - - 1.164 (0.009)
multi_mod.sub4 A + SL + S + A×SL + A×S 2498.46 (0.08) 2396.38 (0.08) - - 1.147 (0.003)
multi_mod.sub5 A + SL + T + A×SL + A×T 2499.67 (0.09) 2397.77 (0.15) - - 1.122 (0.002)
multi_mod.sub6 A + SL + T + S + A×S 2499.19 (0.06) 2400.84 (0.06) - - 1.113 (0.002)
multi_mod.sub7 A + SL + T + S + A×T 2499.73 (0.09) 2401.72 (0.10) - - 1.151 (0.004)
multi_mod.sub8 A + SL + T + S + A×SL 2495.96 (0.06) 2395.16 (0.08) - - 1.103 (0.003)
multi_mod.sub9 A + SL + S + A×SL 2494.61 (0.02) 2395.48 (0.13) - - 1.133 (0.001)
multi_mod.sub10 A + SL + T + A×SL 2495.39 (0.11) 2395.80 (0.09) - - 1.066 (0.001)
multi_mod.sub11 A + SL + S + A×S 2497.71 (0.06) 2401.03 (0.09) - - 1.147 (0.001)
multi_mod.sub12 A + SL + T + A×T 2498.85 (0.07) 2402.30 (0.08) - - 1.121 (0.002)
multi_mod.sub13 A + SL + T + S 2495.28 (0.02) 2399.75 (0.11) - - 1.104 (0.004)
multi_mod.sub14 A + SL + A×SL 2495.00 (0.05) 2396.87 (0.10) - - 1.097 (0.001)
multi_mod.sub15 A + SL + S 2494.03 (0.04) 2400.09 (0.04) - - 1.134 (0.001) 

multi_mod.sub16 A + SL + T 2494.80 (0.06) 2400.45 (0.05) - - 1.067 (0.001)
multi_mod.sub17 A + SL 2494.28 (0.06) 2401.47 (0.10) - - 1.098 (0.001)

Bivar 
bivar_mod.full SL + T + S 1 | site 270.44 (0.04) 257.47 (0.03) - - 2.111 (0.006)
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bivar_mod.sub1 T + S 266.71 (0.04) 255.66 (0.08) - - 2.103 (0.013) 

bivar_mod.sub2 SL + S 272.46 (0.03) 258.08 (0.06) - - 1.112 (0.005)
bivar_mod.sub3 SL + T 272.12 (0.03) 258.47 (0.01) - - 0.817 (0.000)
bivar_mod.sub4 S 268.76 (0.08) 256.29 (0.08) - - 1.091 (0.003) 
bivar_mod.sub5 T 268.47 (0.01) 256.70 (0.05) - - 0.797 (0.000)
bivar_mod.sub6 SL 270.91 (0.08) 257.48 (0.02) - - 0.999 (0.000)
bivar_mod.null - 267.59 (0.05) 255.75 (0.08) - - 2.111 (0.006)
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Figure S2. Measurements of elemental and stable isotope markers in the training data plotted against 
predicted mean values (± 95% prediction intervals – horizontal lines) calculated across 200,000 datasets 
simulated from the final ‘explan’ models. Univariate models: black symbols and lines; multi/bivariate 
models: red symbols and lines models. Correlations (Pearson’s r) between observed and predicted values 
are shown for each plot, and the 1:1 line is shown in grey. Units for Li:Ca, Mn:Ca, Zn:Ca and Ba:Ca are 
µmol/mol, with Mg:Ca and Sr:Ca measured in mmol/mol, and δ13C and δ18O in ‰. Note that all 
element:Ca ratios are natural log transformed, and all markers used in the multi/bivariate models are 
scaled to mean = 0, SD = 1. 
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Calculation of SL_anom values for spatial prediction

At some nursery sites, no age 1 and/or age 2 juveniles were captured in a particular year. We 

still wanted to make predictions of otolith elemental and stable isotopic markers at these sites 

for each age-class, so followed a series of steps to estimate the SL_anom covariate value, as 

follows.  

First, we used the median cohort-specific SL_anom value from the nearest capture site (i.e., 
minimum distance by water) in that year, if this site was located within 10 nautical miles of 

the site of interest. (2) If no such site existed, we instead used the median cohort-specific 
SL_anom value from the site of interest in the year in which the fish were collected. (3) If the

relevant cohort was never collected from the site of interest across the three sampling years,

we used (A) the mean cohort-specific SL_anom value across all sites with data that were

located within 10 nautical miles of the site of interest, and across all years; or if no such sites 

existed, (B) the mean cohort-specific SL_anom value across all sites with data in the year of

interest.
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Figure S3. Spatial predictions for otolith Mg:Ca, Mn:Ca, Zn:Ca, Ba:Ca and δ13C at all capture sites in each 
of the three sampling years (2013, 2014, 2015) and for the two age-classes (age 1: triangles, age 2: circles). 
Results are derived from the final ‘oos.pred’ models (see Table 3). Colour bars represent the mean predicted 
values for each site for the marker of interest. Sites at which fish were captured in a particular year are 
outlined in black (for 2013), orange (for 2014) and red (for 2015). Predictions for Mg:Ca (mmol/mol), 
Mn:Ca, Zn:Ca and Ba:Ca (all µmol/mol) are presented on the natural log scale, with predictions for δ13C (in 
‰) generated using a bivariate model in which each response variable (i.e. δ13C and δ18O) was scaled to 
mean = 0 and SD = 1. 
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Table S2. Mean squared prediction error (MSPE) for spatial predictions of each 
otolith chemical marker. Estimates are given for all three sampling years (All years) 
and for each year separately (2013, 2014, 2015). All sites: all capture sites; Age 1: sites 
where age 1 herring were captured; Age 2: sites where age 2 herring were captured.  

Marker All years 2013 2014 2015 
 All sites Age 

1 
Age 

2 
 All sites Age 

1 
Age 

2 
 All sites Age 

1 
Age 

2 
 All sites Age 

1 
Age 

2 
Li:Ca 0.28 0.38 0.20 0.14 0.29 0.04 0.36 0.47 0.25 0.19 0.12 0.23 
Mg:Ca 0.18 0.05 0.28 0.67 0.08 1.12 0.04 0.04 0.04 0.06 0.08 0.05 
Mn:Ca 0.26 0.40 0.16 0.30 0.39 0.23 0.29 0.41 0.18 0.15 0.37 0.04 
Zn:Ca 0.46 0.15 0.70 1.35 0.12 2.28 0.18 0.12 0.23 0.31 0.34 0.29 
Sr:Ca 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.00 0.02 
Ba:Ca 0.04 0.05 0.03 0.05 0.08 0.03 0.03 0.04 0.02 0.03 0.04 0.03 
δ13C 0.62 - 0.62  0.73 - 0.73  0.71 - 0.71  0.30 - 0.30
δ18O 0.79 - 0.79  0.46 - 0.46  0.95 - 0.95  0.77 - 0.77
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Abstract 

Reliable information on how, and at which scales marine fish populations connect is crucial 

for the effective management of harvested migratory species. One approach to charting such 

connections is to quantify the degree to which populations vary in their expression of certain 

traits, the chemical constituents locked within fish otoliths (ear stones) providing well-

known examples. In this study, we develop some new, quantitative rules for assessing the 

scale of spatial and temporal variation in otolith chemistry within a Bayesian modelling 

framework. We apply these rules to data on Icelandic summer spawning (ISS) herring 

Clupea harengus, a stock of high commercial importance, to address some long-standing 

questions on nursery connectivity, nursery fidelity and nursery-specific contributions to the 

fishery. We show that population-level differences in otolith chemical traits generally scale 

with both geographic distance among nurseries, and temporal distance between sampling 

events, manifesting in coast-wide heterogeneity in otolith elemental (i.e. Li:Ca, Mg:Ca, 

Mn:Ca, Zn:Ca, Sr:Ca, Ba:Ca) and stable isotopic (i.e. δ13C, δ18O) concentrations that vary 

through time. This information created a data-driven platform for characterising ‘source’ 

population structure that explicitly considers individual- to population-level variation in 

chemical markers through all modelling stages. Such platforms build trust in outputs from 

mixture models designed to estimate the provenance of fish of uncertain origin; models that 

here revealed strong attachment to nursery sites as juveniles, and demonstrated the 

importance of multiple, widely-dispersed nurseries as sources for a portion of the fished 

adult ‘sink’ population, irrespective of their presumed quality. 
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Introduction 

From where do fish within fished populations originate? This seemingly simple question 

remains unresolved for many commercially-targeted marine species, despite the fact that the 

best fishery-management decisions require reliable answers to it. Knowledge of natal 

origins, nursery location, arrangement and quality provides a means to identify and protect 

key juvenile habitats, to track dispersal and recruitment success, and ultimately, to ensure 

future fishery sustainability (Beck et al. 2001; Botsford et al. 2001; Cowen et al. 2007). 

Equally important in this context is information on the structure of the nursery-resident 

populations themselves. For example, quantifying juvenile retention or straying rates and 

connections among spatially-separated nursery populations can provide valuable inference 

on if, and how these might act as ‘sources’ for adult ‘sink’ populations subject to heavy 

fishing pressure (Rooker et al. 2008; Garavelli et al. 2018).  

Rapid advances in applied-tag technology, in genetic techniques, and in linkages between 

ocean-circulation models and species’ biological characteristics are allowing researchers to 

define the scales at which populations mix with increasing confidence (Treml et al. 2012; 

Grewe et al. 2015; Halfyard et al. 2017). Fish otoliths (ear stones) contain a similarly rich 

store of information for this purpose. Otoliths comprise life-long, individual-level data on 

chemical and morphological traits whose expression can vary strongly within and among 

populations (Burke et al. 2008; Macdonald and Crook 2010; Huey et al. 2014; Paper III). 

These aragonitic structures have proved themselves as remarkably effective ‘natural tags’ in 

population connectivity studies, used either alone (e.g. Geffen et al. 2011; Neubauer et al. 

2010; Wright et al. 2018), or in concert with other complimentary (aforementioned) 

approaches (e.g. Woods et al. 2010; Ashford et al. 2012; Taillebois et al. 2018). The daily 

deposition of permanent growth increments onto the otolith surface – increments that 

incorporate elements and stable isotopes reflecting intrinsic processes (e.g. physiology, 

metabolism, growth, age) and/or extrinsic (e.g. environmental) factors – highlights otoliths’ 

potential as individual-level, bio-environmental recorders and population markers (see Høie 

et al. 2003; Grønkjær 2016; Grammer et al. 2017; Izzo et al. 2018; Paper III).  

Whilst the value of otoliths as population-delineation tools for fishery management is clear 

(e.g. Burke et al. 2008; Rooker et al. 2008; Libungan et al. 2015), innovations in statistical 

approaches that use the chemical constituents of these structures as population markers may 

allow us to honour their full potential for such applications. Current approaches, while 

evolving (see Mercier et al. 2011; Niklitschek and Darnaude 2016; Jones et al. 2017), often 

neglect to incorporate new knowledge on the mechanisms driving inter-individual variability 

in chemical traits, and how this translates to population- or stock-level variability. Moreover, 

they rarely quantify data-related uncertainties, or those associated with ‘source’ 

classification, or source contribution to mixed ‘sink’ populations. This uncertainty is likely 

exacerbated when sampling coverage is sparse, or sample sizes low, and if overlooked, may 

potentially manifest in inaccurate or incomplete characterisation of source populations. Such 

outcomes can reduce confidence in the results of subsequent source-assignment tests for 

individuals within fished populations, results upon which management decisions often rest.  

Here, we present a Bayesian modelling framework in an attempt to negate many of these 

issues. We demonstrate our approach using otolith chemistry data from Atlantic herring 

Clupea harengus residing in Icelandic waters, and tackle some open questions pertaining to 

the connections among, and fidelity to nursery areas, and the contribution these make to 

fished adult populations. We focus on the Icelandic summer spawning (ISS) herring stock, 
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one that continues to support an important winter fishery for Iceland (Jakobsson and 

Stefánsson 1999; ICES 2018) despite undergoing substantial decline in recent years due to 

a combination of long-lasting and severe Ichthyophonus hoferi outbreaks (Óskarsson et al. 

2018a), poor recruitment and two mass-mortality events triggered through oxygen depletion 

in a small fjord in which the majority of the adult biomass overwintered in 2012/2013 (ICES 

2017; Óskarsson et al. 2018b).  

Following larval dispersal from spawning grounds, ISS herring settle in nurseries (often 

inshore, within fjords) that are distributed widely across the Icelandic coast (see Figure 1). 

The current life-history model contends that juveniles exhibit strong fidelity to these 

nurseries through their first two years of life (Guðmundsdóttir et al. 2007). They then leave 

at age 3 to join the adult component of the stock, which is targeted with purse-seine and 

pelagic-trawl gears on the wintering grounds between October and January (ICES 2018). 

The ecological significance of these nurseries as recruitment sources for the ISS stock 

remains uncertain. Indeed, although some areas are thought to be consistently important (see 

Guðmundsdóttir et al. 2007), a paucity of quantitative data on the spatio-temporal structure 

of the nursery populations has constrained our ability to estimate nursery-specific 

contributions to the fished wintering populations, and hampered efforts to identify and hence 

protect key recruitment sources. This is a sub-optimal situation, particularly for a stock 

already under pressure. 

To address these issues, we measured otolith elemental (i.e. Li, Mg, Ca, Mn, Zn, Sr, Ba) and 

stable isotopic (i.e. δ13C, δ18O) concentrations in three age classes of ISS herring captured 

over three autumns, and developed a modelling framework based around a series of Bayesian 

multivariate and finite mixture models with three main objectives. 1) To assess the spatial 

and temporal variability in otolith chemistry of nursery-resident age 1 and age 2 herring 

across their full distributional range. Specifically, we conduct a sensitivity analysis on 

simulated data to derive some new, quantitative rules that allow the scale(s) of variability in 

elemental and stable isotopic markers to be determined. We then classify juvenile 

populations from each nursery site into putative ‘source’ populations based on these rules, 

in conjunction with the spread of site-level posterior densities derived from the multivariate 

models. 2) To use the derived source classifications to test the long-standing hypothesis that 

following settlement, juveniles are retained within the same nursery between the ages of 1 

and 2, prior to joining the adult population at age 3. And 3), to estimate the contribution of 

each source population sampled for age 2 fish in 2014 to a population of age 3 fish captured 

in the winter fishery in 2015. In relation to this third aim, we ask two questions. First, do 

geographically ‘close’ nurseries contribute more to adult populations? And/or, do nurseries 

with a greater density of juveniles, taken as a proxy for nursery ‘quality’, contribute more to 

adult populations (sensu the ‘nursery-role hypothesis’ – Beck et al. 2001)?   

By estimating nursery connectivity, nursery fidelity and nursery-specific contributions to the 

fished ISS herring population, this work provides fundamental data needed to balance 

conservation, and fishery-management priorities in the region. In addition, we demonstrate 

a novel and generalisable modelling approach for exploring multivariate group differences 

in a Bayesian context, one applicable to other species, systems and settings for which 

continuous multi-response data are available. 
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Materials and methods 

Fish sampling 

Juvenile age 1 (i.e. ~15 months old) and age 2 (i.e. ~27 months old) ISS herring were 

collected from inshore nursery areas across the Icelandic coast, over three consecutive 

autumns (i.e. 2013, 2014, 2015) (Table 1, Figure 1). Sampling took place in October and 

November each year during the annual juvenile herring (acoustic and trawl) and northern 

shrimp Pandalus borealis (trawl) surveys that provide recruitment/biomass indices for these 

species. Juvenile herring are a common bycatch item in the shrimp trawls. We used a 

standard shrimp bottom trawl of 1010 meshes, with the cod-end comprising a 37-mm 

diamond-mesh. Tows were conducted during daylight hours, covering between 0.5 and 1.2 

nautical miles, with the vessel travelling at ~2 knots. Upon capture, fish were measured for 

standard length (SL) (± 1 mm), and frozen for transport to the University of Iceland. 

In addition, we obtained a sample of age 3 (i.e. ~40 months old) ISS herring (n = 79) from a 

fishing vessel operating in Kolluáll, west of Iceland, in November 2015 (Figure 1). Fish were 

frozen immediately upon capture and returned to the University of Iceland for processing. 

Each fish was measured for SL (± 1 mm) and the sex determined through examination of 

gonads, if visible, following Bucholtz et al. (2008).  

 

Otolith preparation and analysis 

We describe our otolith preparation and analysis steps in brief here, and refer readers to 

Supplement 1 for further details, including information on instrumentation, standards, 

analytical precision and detection limit calculations. Sagittal otolith pairs were removed, 

cleaned of adhering tissue, rinsed thoroughly with Milli-Q – Type 1 Ultrapure water (Merck: 

www.merckmillipore.com/AU/en) and stored dry in 0.5-ml polypropylene microtubes. We 

mounted one sagitta from each fish in thermoplastic glue (Crystalbond™) on an acid-washed 

glass slide, polished it to within 10-15 μm of the primordium in the sagittal plane, and 

verified the fish’s age in years through examination of annual growth increments viewed 

under reflected light at 20× magnification, and following standard ageing methods (Penttila 

and Dery 1988). We then used laser ablation-inductively coupled plasma-mass spectrometry 

(LA-ICP-MS) to measure the concentrations of seven elemental markers (i.e. 7Li, 25Mg, 
43Ca, 55Mn, 66Zn, 88Sr, 138Ba) in a ~40-μm wide × 11-μm deep disc of otolith material at the 

dorsal margin at a position equidistant between the pararostrum and antirostrum. These are 

termed ‘Eledge’ samples (Table 1). We estimate that these discs reflected otolith material 

accreted during the final < 2 weeks of each fish’s life (see Paper III). For age 2 and 3 

samples, we used a 40-µm spot size to ablate material accreted 1-year prior to the capture 

date, again at the midpoint between the pararostrum and antirostrum. These are termed 

‘Elmid’ samples (Table 1), and for each individual are representative of a < 2 week period of 

nursery residence experienced one-year earlier. 

The second sagitta from each fish was prepared for analyses of stable carbon and oxygen 

isotope ratios (i.e. δ13C, δ18O). Individual age 1 otoliths were ground to a fine powder in a 

mortar and pestle, with between 0.05 and 0.1 mg of the resulting powder analysed using 

isotope ratio mass spectrometry (IRMS). Each powder sample represented a full lifetime (i.e. 

~15-month) record of δ13C and δ18O for each age 1 fish, and these are expressed as ‘C/Owhole’ 

samples throughout (Table 1). Age 2 otoliths were sub-sampled. We used a high-resolution 

MicroMill system to plot a 200-µm wide × ~25-µm deep drill path along the otolith edge 
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(see Supplement 1 for details). Again, between 0.05 and 0.1 mg of powder was analysed per 

sample using IRMS, encompassing otolith material deposited during the last ~2 months of 

life (Clausen et al. 2007). These are termed ‘C/Oedge’ samples (Table 1). We kept the same 

drilling parameters for the age 3 otoliths, this time sampling growth increments laid down 

1-year prior to capture, i.e. as nursery-resident two year olds. We milled from the rostral end 

of the otolith along a path parallel to the ventral margin towards the postrostrum, and 

collected 0.05 and 0.1 mg of powder per sample, reflecting ~2 months of otolith growth 

deposited within nursery sites the previous year. These samples are termed ‘C/Omid’ samples. 

Elemental data are expressed as molar ratios to Ca throughout (e.g. Li:Ca), with stable 

isotopic measurements reported relative to the Vienna Pee Dee Belemnite (VPDB) reference 

standard, and expressed in δ-notation (in ‰). Note that second sagittae were not available 

for age 1 herring captured in 2014. In addition, sample sizes were often lower for stable 

isotopic measurements compared with elemental measurements due to technical issues with 

the MS operation and consequent loss of samples (Table 1). We consider these data as 

‘missing completely at random’ (Rubin 1976). 

 

Statistical analysis 

Exploring spatial and temporal variation in otolith chemistry 

We developed a series of multivariate linear models to assess variation in juvenile ISS 

herring otolith chemistry among nursery sites, and among sampling months and years. 

Models were fitted in a Bayesian framework using Markov Chain Monte Carlo (MCMC) 

sampling in the ‘MCMCglmm’ R package (Hadfield 2010). Our models comprised six or 

eight response variables (i.e. Li.Ca, Mg:Ca, Mn:Ca, Zn:Ca, Sr:Ca, Ba:Ca, δ13C, δ18O), with 

‘site’ or ‘year’ included as fixed effects. Given recent evidence for strong ontogenetic 

influence on otolith chemistry in juvenile ISS herring (Paper III), we chose to model age-

specific spatial variation in otolith chemistry among nursery sites, and built separate models 

for each year of the study (i.e. 2013, 2014, 2015). This resulted in six final models 

incorporating all age-class/year combinations. At four nursery sites, we captured juveniles 

of the same age-class in two or more consecutive years at the same location, so we fitted an 

additional four models (i.e. one per site) to explore evidence for temporal stability in otolith 

chemistry at an annual time scale. 

In each model, we removed the global intercept to directly obtain site-level and year-level 

posterior densities for each elemental and stable isotopic marker. We used the model outputs 

to estimate the scale of spatial and temporal variability in otolith chemical signatures across 

the full distributional range of the juveniles, creating a framework for characterising ‘source’ 

population structure for later assessment of source contribution to a ‘mixed’ adult population 

(see ‘Mixed stock analyses’ below). All analyses were run in R 3.5.1 (R Core Team 2018). 

Datasets and R code to reproduce these analyses are available from the Dryad Digital 

Repository. 

 

Exploratory data analysis 

Prior to model fitting, the distributions of the response variables were visualised and 

screened for potentially influential values. Four Eledge samples with large values on Li:Ca 

and/or Mn:Ca and Zn:Ca were detected, identified as measurement errors, and removed from 
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subsequent analysis. Elemental ratios were natural log transformed, which improved the 

normality of residuals and stabilised the error variance in subsequent modelling. δ13C and 

δ18O values were left untransformed. All response variables were then scaled to have mean 

= 0, SD = 1 (Hadfield 2010). Multivariate normality was checked using functions in the 

‘MVN’ package, and we screened for multivariate outliers based on robust Mahalanobis 

distances (Korkmaz et al. 2015). The assumption of homogeneity of variance-covariance 

matrices was assessed using Box’s M test in the ‘biotools’ package (da Silva et al. 2017). 

 

Model fitting 

We fitted each model to the data three times, obtaining three independent Markov chains 

initialised using dispersed values. We ran each chain for 250,000 iterations, discarding the 

first 50,000 as burn-in, and using the remaining 600,000 samples to calculate posterior 

summaries. Chain convergence was assessed through inspection of trace plots and by 

computing Gelman-Rubin diagnostics (R̂). Autocorrelation between successive samples was 

explored using the set of ‘autocorr’ functions in the ‘coda’ package (Plummer et al. 2006). 

Finally, we calculated Monte Carlo standard errors for all estimated parameters using 

overlapping batch means in the ‘mcmcse’ package (Flegal et al. 2017).  

 

Priors 

We assigned vague normal priors N(0, 1000) for the ‘site’ or ‘year’ effects and an inverse 

gamma (IG) prior with shape = scale = 0.001 for the residual variance. This latter prior is 

equivalent to an inverse Wishart (IW) with scale = 1, and degree-of-belief parameter = 0.002, 

and is weakly informative when the posterior distribution does not have large support near 

0 (see Appendix S2 in Paper III for a sensitivity analysis on prior choice).   

 

Model checking 

For each model, we examined the spread of residuals and ran posterior predictive checks as 

a test of within-sample predictive capacity (Gelman et al. 1996). We generated simulated 

datasets from each model, and gauged how closely these data matched the observed otolith 

chemistry by calculating posterior predictive p-values (i.e. ppp-values). These values 

represent the proportion of simulated means that exceed the empirical means for two test 

quantities: 1) the mean and 2) the SD of the marker(s) of interest. Values close to 0.5 indicate 

strong concordance between simulated and observed data distributions.  

 

ΔDIC test of multivariate group differences 

For each series of among-site and among-year comparisons, we developed an omnibus test 

of the degree of difference among multivariate group means based on the deviance 

information criterion (DIC). Put simply, the test involves fitting two Bayesian multivariate 

models: 1) an intercept-only ‘null’ model, and 2) an ‘effects’ model, including a ‘site’ or 

‘year’ effect, and using the DIC to test if the addition of the ‘site’ or ‘year’ term improves 

model fit compared with the null model.  

To gauge the sensitivity of this DIC-based test, we simulated 500 multivariate normal 

datasets reflecting scenarios typically encountered by otolith chemistry researchers wanting 
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to assess variation in otolith chemical signatures among ‘groups’. To clarify, ‘groups’ in this 

context could refer to spatially-distinct sampling sites, or sampling years, among other 

possibilities. We explored a series of plausible scenarios ranging from 1) no differences, to 

2) substantial differences among multivariate group means. We varied the number of groups 

n_group = (2, 3, …, 8); the number of samples within each group n_sample = (10, 20, 50); 

and the number of response variables rv = (2, 3, …, 8) in our datasets to encompass the scale 

of most studies focussed on population delineation using otolith chemistry analyses. Each 

response variable, representing a simulated elemental or stable isotopic marker, was drawn 

from a normal distribution with mean μn_group and common standard deviation σ = 0.5. Note, 

we found that varying σ, within- or among-groups had minimal influence on our results. 

For each of the simulated datasets, we next ran a one-way MANOVA using the ‘lm’ function 

in the ‘stats’ package, and two Bayesian multivariate models in the ‘MCMCglmm’ package, 

using the same priors as stated earlier. To reiterate, the Bayesian models fitted were 1) ‘null’ 

models (i.e. no group-level effects), and 2) ‘effects’ models (i.e. group-level effects 

included). Our expectation was that if the null hypothesis of no group-level differences is 

supported by a non-significant MANOVA result (i.e. at α = 0.05), the DIC of the ‘null’ 

model would be < DIC of the ‘effects’ model, and vice versa if a significant MANOVA 

result is returned. If this expectation did not hold, then we trusted that our simulations would 

expose the consistency of the change in DIC (denoted ΔDIC) between ‘null’ and ‘effects’ 

models. This could be then be related to a range of specified α levels (i.e. 0.001, 0.01, 0.05, 

0.1) as returned directly from Pillai’s trace statistics in the MANOVA models. Hence, our 

approach provides some rules of thumb by which the DIC could be used to understand the 

magnitude of group differences in a Bayesian modelling setting. Full R code for this analysis 

can be accessed in the Dryad Digital Repository. 

 

Characterising source distributions for use as a baseline 

In instances where our ΔDIC test indicated a strong difference among site (or year) means 

in multivariate space, we developed a post-hoc test to determine which sites (or years) 

differed and on which markers. For each age-class and year separately, we examined the 

overlap in posterior densities for each marker among all sampled nursery sites. Where 95% 

highest posterior density credible intervals (hereafter, 95% CIs) overlapped for all markers 

included in the model, we pooled data from these sites, forming a smaller number of better 

characterised sources for use as ‘baseline’ samples in subsequent mixed stock analyses. 

Next, we drew samples (n = 100) at random from each source’s posterior marginal 

distributions for each otolith chemical marker, in order to appropriately characterise marker 

variability within each source. A key advantage of the Bayesian approach for characterising 

sources in this way is that the models return the full distribution of parameters of interest, 

allowing us to draw samples of any size from this distribution. This confers at least two 

benefits: 1) It reduces the influence of sampling bias, as we are not constrained by small 

samples sizes at certain sites that may be wholly due to patchy or limited sampling coverage 

rather than the actual density of fish present; and 2) we can assign prior probabilities for 

source contribution that are consistent with ecological theory, are based on previous data, or 

are designed to test specific hypotheses concerning source-sink dynamics. 
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Mixed stock analyses (MSA) 

We ran two sets of analyses to assess the relative contribution of the sampled nursery sources 

(n = K) to mixed samples of juveniles or adults of unknown origin. In the first set (i.e. 

Nursery retention tests) we tested the hypothesis that age 2 juveniles have remained within 

the nursery areas they resided in at age 1. Such tests were possible at five sites in which age 

1 herring were captured in one year (i.e. year t), and age 2 herring were captured from that 

same site the following year (i.e. t + 1). The five mixed samples of age 2 herring are denoted: 

Ísam, Öxarm, Arnam, ÍsaD4-50m and ÍsaD4-60m (see Table 1 for reference, data highlighted 

in bold). We treated the Elmid data from age 2 fish captured in t + 1 as the mixture, with the 

Eledge values from all age 1 fish captured in t used as a baseline of possible sources. Assuming 

all possible sources are adequately characterised, if the capture site is the most likely source, 

this provides strong evidence of nursery-site fidelity following settlement (at least between 

age 1 and age 2). This approach enabled us to estimate rates of staying or straying in nursery-

resident juveniles. 

In the second set of analyses (i.e. Adult assignment tests), we treated the Elmid and C/Omid 

data from the fishery-caught age 3 herring as the mixture, denoted Kolluállm, and estimated 

the relative contribution of seven putative source populations to this population of first-time 

wintering adults. The baseline samples in this case comprised the Eledge and C/Oedge values 

from age 2 herring captured on the nursery grounds during October/November 2014. 

We fitted a series of Bayesian finite mixture models implemented in the ‘MixSIAR’ R 

package (Stock and Semmens 2016a; Stock et al. 2018) to estimate source contributions to 

the mixed samples, and to quantify the uncertainty (i.e. 95% CIs) around these estimates. 

 

Priors for MSA 

Priors were needed for the vector of source proportions p = (p1, …, pk) contributing to a mixed 

sample. In instances where two putative sources (i.e. K = 2) were defined, we specified a 

uniform prior, U(0, 1), on p1, making all potential combinations of p1 and p2 equally likely 

a priori. When K > 2, we used the Dirichlet distribution to place a prior on p. The Dirichlet 

distribution is defined by a vector of concentration parameters α = (α1, …, αk), and we set 

each element of α = 1. This prior is considered uninformative on the simplex, giving equal 

probability to all possible sets of source proportions. 

As the variance in each source distribution is directly incorporated through our posterior 

draws, we decided not to consider process error in our models, and instead, included a 

‘residual error only’ structure for the mixture variance Σ. Here, Σ is given an IW prior, where 

Σ ~ IW(I, J + 1), I is the identity matrix and J is the number of otolith chemical markers 

included in the model (see Stock and Semmens 2016b; Stock et al. 2018: Supplemental 

material for details and alternative error structures). 

 

MSA model fitting and checking 

The mixture models were implemented using JAGS 4.3.0 (Plummer 2003 – 

www.sourceforge.net/projects/mcmc-jags) called from R, making use of the ‘rjags’ 

(Plummer 2016) and ‘R2jags’ (Su and Yajima 2015) packages. For each fitted model, we 

obtained three independent Markov chains of 100,000 iterations each, discarding the first 
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20,000 as burn-in on each chain. We used a thinning interval of 10, and collated the 

remaining 3 × 8,000 = 24,000 samples for calculation of posterior summaries. We assessed 

chain mixing and autocorrelation, and calculated Monte Carlo standard errors for all 

parameters following the procedures outlined earlier for the ‘MCMCglmm’ models. 

 

Relationships between source contribution, distance and density of age 2 

To test if nursery source contribution scaled with the proximity of source populations to the 

overwintering grounds, we used Google Earth Pro (www.google.com/earth/versions/#earth-

pro) to measure the minimum distance by water (± 0.01 km) from each source location 

sampled in autumn 2014 to the fishery capture location at Kolluáll (see Figure 1). We then 

modelled source contribution as a linear function of distance from the overwintering 

grounds. To test if juvenile densities in the nurseries influenced source contribution, we 

extracted nursery-specific counts of age 2 herring estimated from acoustic surveys conducted 

aboard RS Dröfn in November 2014 (see Óskarsson and Reynisson 2015 for datasets used), 

and used a linear model to explore the relationship between source contribution and the % 

(by nursery) of the total density of age 2 surveyed. 

 

Results 

Sampling and analytical coverage  

Our sampling targeted the major nursery grounds for juvenile ISS herring across the three 

years of the study (Figure 1). The bulk of the juveniles were collected from fjords on the 

north and west coasts of Iceland, with some age 2 herring also encountered off the south-

east and south-west coasts (Figure 1, Table 1). A total of 207 age 1 fish were captured, 206 

otoliths of which were analysed for Eledge and 42 for C/Owhole (Table 1). Some 255 age 2 fish 

were collected, all otoliths of which were analysed for Eledge, with 250 and 158 age 2 otoliths 

analysed for Elmid and C/Oedge, respectively. Missing El and C/O analyses were due either to 

measurement errors or instrumental issues, as described earlier. All 79 age 3 herring captured 

by the fishery at Kolluáll were analysed for Elmid and C/Omid. Substantial length variation 

was evident within each age-class (i.e. age 1: 55–118 mm SL, age 2: 97–149 mm SL [see 

Table1], age 3: 170–250 mm SL). Our age 3 sample contained a predominance of males (n 

= 65), six females and eight fish of indeterminate sex. 

 

Model diagnostics 

The individual Markov chains obtained for the estimated parameters displayed low serial 

dependence at lag one in all fitted models. Values of R̂ were always < 1.01, indicating chain 

convergence to the target distribution and reliable samples for computing posterior 

summaries. Monte Carlo standard errors were < 0.1 in all cases. Posterior predictive checks 

revealed no major discrepancies between simulated observed data distributions, with ppp-

values for the mean (± 1SE) = 0.53 (± 0.01), and for the SD (± 1SE) = 0.56 (± 0.01) calculated 

across all MCMCglmm models. 
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Sensitivity of the ΔDIC test 

Our ΔDIC test proved reliable in detecting the magnitude of multivariate group differences 

for scenarios involving between 2 and 8 multivariate normally distributed response variables 

(rv’s), sampled from between 2 and 8 groups, at sample sizes of 10, 20 and 50 per group 

(Figures 2, 3). The overall spread of ΔDIC values in the simulations increased with the 

number of rv’s, with the number of groups included in the model, and with the number of 

observations within each group (Figure 2). We expected a priori that if the null hypothesis 

of no significant group-level differences was true, then the ΔDIC value would be negative. 

This was true in the vast majority of cases, but not always (e.g. see data above the horizontal 

zero lines, and right of the vertical dashed p = 0.05 lines in Figure 2). However, the 

consistency of our results allowed us to develop some guidelines for assessing multivariate 

differences when fitting Bayesian multivariate linear models. To illustrate, with reference to 

Figure 3, in a hypothetical study aimed as assessing multivariate differences in otolith 

chemistry among say four nursery sites, with 20 fish sampled per site, a ΔDIC value > -5 

would indicate a significant difference among sites at α = 0.05 in 100% of cases. In the same 

study, a ΔDIC value of > 20 would be needed to ensure (with 100% confidence) a significant 

site-level difference at α = 0.001 (see Figure 3). By contrast, when n = 10 at each of these 

four sites, any ΔDIC value < -5 would signify a non-significant difference at α = 0.05 in 

100% of cases. 

 

Spatial (and monthly) variation in age 1 otolith chemistry  

Age 1 otolith chemistry varied strongly among nursery sites sampled in 2013 and 2014, but 

not in 2015, as revealed through ΔDIC values and examination of site-level posterior 

densities (Figure 4)1. Although age 1 herring were captured from just three sites in autumn 

2013, we found evidence of variation in otolith chemistry at a coast-wide (i.e. among-fjord) 

scale across the north coast. Fish from site 531 (Öxarfjörður) were generally lower in most 

markers compared with individuals from 529 (Ísafjarðardjúp) and 530 (Eyjafjörður). The 

latter two sites could not be clearly separated, with 95% CIs overlapping for all eight 

elemental and isotopic markers included in the model (Figure 4, left-hand panels). Among-

site variation was driven mainly by Li:Ca, Mn:Ca and δ13C. 

 

Age 1 herring were sampled from nine nursery sites during autumn 2014 (Table 1). Again, 

we found marked variation in site-level Eledge values at a coast-wide scale, with the strongest 

differences seen in Li:Ca and Mn:Ca (Figure 4, middle panels). In general, Eledge values were 

more similar in juveniles sampled from Arnafjörður and Ísafjarðardjúp than those captured 

at sites in Miðfjörður, Eyjafjörður and Öxafjörður. We observed some overlap in otolith 

chemical signatures in geographically-close sites (i.e. within a fjord). For example, age 1 

herring from sites D7-C and D7-B (both in Arnafjörður) could not be separated (at the 95% 

credible level) on all six elemental markers, with a similar pattern evident for sites D7-A and 

D7-B, and for D9-7 and D7-C (all located in Arnafjörður). However, within-fjord differences 

were seen in some instances; age 1 Eledge values in fish from D7-A and D7-B (both in 

                                                 

1 In Figures 4 and 5, note that the y-axes for all markers within a year (i.e. within each column) are kept 

consistent, and although the values on the x-axes may differ, their ranges are consistent. This allows a direct 

comparison to be made of the shapes of the densities for each nursery site and otolith chemistry marker 

within a year. The same logic applies for the temporal analyses (see Figure 6). 
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Arnafjörður) were substantially higher than those from D9-7 (Arnafjörður) (Figure 4), 

despite being separated by < 14 km by water. 

 

The near-identical location of sites D7-A (Arnafjörður, sampled mid-October 2014) and D9-

7 (Arnafjörður, sampled mid-November 2014), and sites D7-92 (Isafjarðardjúp, sampled 

mid-October 2014) and D9-6 (Isafjarðardjúp, sampled mid-November 2014) gave us an 

opportunity to investigate this within-fjord variation in further detail. Indeed, we were able 

to test for monthly variation in Eledge values in age 1 herring within these two nurseries. Fish 

from each pair of sites displayed marked differences in Li:Ca (Figure 4), indicative of 

temporal shifts in this otolith marker at a monthly scale, though in the case of D7-92 and 

D9-6, which were separated by ~1.5 km, fine scale spatial differences cannot be ruled out. 

 

Age 1 herring were captured from two sites in 2015. We detected slightly lower Eledge Li:Ca 

and Zn:Ca in Hrútafjörður (site D5-18) compared with the adjacent Miðfjörður site (D5-19), 

with otoliths from Miðfjörður exhibiting lower Mn:Ca values. These differences were not 

sufficient to separate the two sites at the 95% credible level (Figure 4, right-hand panels). 

 

Spatial variation in age 2 otolith chemistry 

Spatial variability in age 2 otolith chemistry generally increased with geographic distance 

among nursery sites. Age 2 juveniles were captured from five sites in the autumn 2013 

surveys. Fish from D1-2 in Breiðafjörður were lowest in Eledge Li:Ca, Mg:Ca, and C/Oedge 

δ13C and δ18O, and could be delineated from all other sites at the 95% credible level based 

on one or more of the abovementioned markers (Figure 5, left-hand panels). Sites D5-102, 

D5-110 and D5-115, all located in close proximity to one another in Ísafjarðardjúp, could 

not be separated on any of the eight markers considered. Again, we found some evidence of 

within-fjord variation; herring from site 529 (also in Ísafjarðardjúp) exhibited lower Mg:Ca 

than those from D5-110. However, fish from both sites differed little on all other markers. 

 

The nine nursery sites sampled for age 2 fish in 2014 covered the full distributional range of 

ISS herring juveniles. Preliminary analyses revealed that posterior densities from the three 

capture sites located offshore southwest of Iceland (i.e. Vestmannaeyjar, Jökuldjúp north 

and south) overlapped strongly on all eight markers, so we pooled these data into a single 

‘SW’ site for further analysis. Each of the resulting seven sites was clearly distinguishable 

(at the 95% credible level) based on variation in one or more of the measured otolith 

chemical markers (Figure 5, middle panels). Site-level differences were most pronounced in 

Li:Ca, Mn:Ca, δ13C and δ18O. 

 

The four nursery sites from which age 2 juveniles were collected in 2015 overlapped in seven 

of eight otolith chemical markers analysed at the otolith edge (Figure 5, right-hand panels). 

Li:Ca exhibited the greatest site-level variability (i.e. D5-18 in Hrútafjörður was higher than 

D4-50 and D4-60, both in Ísafjarðardjúp, at the 95% credible level). D4-50, D4-60 (both in 

Ísafjarðardjúp) and D4-14 (Arnafjörður) could not be separated based on all markers at the 

95% credible level. Similarly, D5-18 in Hrútafjörður was indistinguishable from D4-14 in 

Arnafjörður on all markers. 
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Annual variation in otolith chemistry 

We found strong differences among years in most elemental markers at three out of four 

sites for which multi-year data were available (Figure 6). In Ísafjarðardjúp, age 2 fish 

captured in 2013 exhibited markedly higher Mg:Ca and Zn:Ca concentrations compared with 

those sampled in 2014 and 2015. There was also substantial variation in Sr:Ca at this site 

across the three sampling years, and in δ13C between 2013 and 2015 (Figure 6, left-hand 

panels). In Arnafjörður, age 2 fish captured in 2014 and 2015 differed dramatically in Mn:Ca 

and Zn:Ca, but displayed similar Sr:Ca and Ba:Ca concentrations. δ13C and δ18O differed 

slightly between years, but could not be separated at the 95% credible level (Figure 6, 

middle-left panels). 

 

Annual variation in Eledge was greatest in Miðfjörður (Figure 6, middle-right panels). Li:Ca, 

Mg:Ca and Mn:Ca were substantially lower (at the 95% credible level) in 2015 compared 

with 2014. Zn:Ca and Sr:Ca were higher in 2015, but credible intervals for these two 

markers’ distributions overlapped between years. Ba:Ca did not vary through time. A degree 

of temporal stability was evident in Eyjafjörður, with 95% CIs for all elemental markers in 

the 2013 samples overlapping those of the 2014 samples (Figure 6, right-hand panels).  

 

Source classifications 

The MSAs we wished to conduct necessitated the creation of three ‘baseline’ datasets 

comprising otolith chemistry data representative of the putative source populations. For the 

Nursery retention tests, we derived two baseline datasets. The first (i.e. Base1) comprised 

Eledge and C/Owhole data for age 1 juveniles captured in 2013. Informed by the spread of the 

nursery-site level posterior densities (see Figure 4, left-hand panels), we defined two 

potential sources, classifying site 531 in Öxarfjörður as a north-eastern source, denoted 

Öxars, and combining sites 530 (Eyjafjörður) and 529 (Ísafjarðardjúp) into a north/north-

western source (i.e. Eyja / Ísas) (Figure 7a). Our second baseline dataset (i.e. Base2) 

comprised Eledge data from age 1 fish captured in autumn 2014. As D7-92 (Ísafjarðardjúp) 

and D7-C (Arnafjörður) could not be separated based on all six elemental markers, we chose 

to exclude these sites. This could be justified as follows. D7-92 exhibited strong overlap 

with D9-6 in all elements except Li:Ca, so fish from D9-6 would capture the main 

characteristics of D7-92. Moreover, marker densities for site D7-C closely mirrored those of 

D7-B and/or D9-7 (Figure 4, middle panels). This left five source populations for Base2: a 

combination of D7-A and D7-B in Arnafjörður (i.e. Arnas), D9-4 in Eyjafjörður (i.e. Eyjas), 

D9-6 in Ísafjarðardjúp (i.e. Ísas), D7-154 in Miðfjörður (i.e. Miðs) and D7-140 in Öxarfjörður 

(i.e. Öxars) (Figure 7b).  

 

A third baseline dataset (i.e. Base3) was needed for the Adult assignment tests. Base3 

comprised Eledge and C/Oedge data from age 2 fish captured in 2014. Given that each of the 

seven nursery sites could be clearly delineated based on the posterior densities of the otolith 

markers (Figure 5, middle panels), we opted to treat each site as a separate source population, 

and coded these as follows: D7-B in Arnafjörður (Arnas), D9-6 in Ísafjarðardjúp (i.e. Ísas), 

D7-154 in Miðfjöður (Miðs), D7-140 in Öxarfjörður (Öxars), D7-113 in Skagafjörður 

(Skags), B7-466 in Breiðamerkurdjúp (i.e. SthEasts) and the SW sites (i.e. SthWests) (Figure 

7c). 

 

186



Mixed stock analyses 

The Nursery retention tests were designed to gain inference on rates of nursery-site fidelity 

in juvenile herring aged between 1 and 2 years old. We estimated nursery contribution to 

five ‘mixed’ samples of age 2 fish captured in 2014 and 2015 (see bolded data in Table 1), 

and in three out of five cases, showed that the major contributor to these mixed populations 

was the nursery from which they were captured (see ‘Ísam’ in Figure 7a, ‘Arnam’ and 

‘Ísa.D450m’ in Figure 7b). In the remaining two cases, the major contributor was the next 

most geographically-close nursery (see ‘Öxarm’ in Figure 7a, ‘Ísa.D460m’ in Figure 7b). 

The Adult assignment tests revealed a relatively even contribution from the seven putative 

source populations to the mixed population of age 3 herring captured by the fishery in 

Kolluáll (Figure 7c). Nurseries off the south-east coast (SthEasts), in Miðfjörður (Miðs) and 

in Arnafjörður (Arnas) were estimated to contribute most, although all sources had a non-

zero contribution (Figure 7c). Finally, we found no relationships between source 

contribution and both the geographic distance of the source from the overwintering location, 

and the nursery-specific densities of age 2 herring estimated from the acoustic surveys 

(Supplement 2: Figure S1). 

Discussion 

In this study we developed some quantitative rules for assessing the scale of spatial and 

temporal variation in otolith chemistry within a Bayesian modelling framework, and applied 

them to data spanning the entire geographic range of a commercially-harvested herring 

stock. Our findings offer several novel insights into the structure and connectedness of 

juvenile and adult populations of ISS herring. Namely, we show that population-level 

differences in otolith chemical markers generally scale with both geographic distance among 

nursery sites, and time between sampling bouts, resulting in patterns of coast-wide 

heterogeneity in marker expression that vary through time. This information allowed us to 

define the structure of source populations of ISS herring around Iceland in a statistically 

robust manner, building confidence in outputs from mixture models designed to estimate 

source identity for fish of unknown origins. Such models here confirmed a tendency for 

juvenile herring to exhibit strong year-to-year fidelity to nursery sites, and demonstrated the 

importance of multiple nurseries as sources for a component of the fished adult population. 

Quantifying the scale(s) of otolith chemical variability 

For commercially-harvested marine fishes, reliable information on how populations of 

conspecifics connect across an ocean scape allows management units to be aligned more 

closely with the true scales of ecological processes. The life-time sensitivity of 

morphological and chemical traits stored in otoliths to environmental, physiological, 

metabolic and/or genetic factors (Campana and Casselman 1993; Høie et al. 2003; Cardinale 

et al. 2004; Grammer et al. 2017; Izzo et al. 2018) underscores the benefits of using these 

structures to guide spatial management decisions (e.g. Burke et al. 2008; Rooker et al. 2008; 

Libungan et al. 2015). Yet, to fulfil otoliths’ full potential along these lines, appropriate 

modelling approaches are needed – approaches informed by knowledge on the intrinsic and 

extrinsic mechanisms governing chemical incorporation into otoliths, while concurrently 

accounting for data- and model-related uncertainties. Here, we present such a modelling 
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framework, one that allows the spatial and temporal scale of otolith chemical trait variability 

to be accurately defined. Focussing on the ISS herring stock, our approach harnesses new 

information regarding ontogenetic influences on elemental uptake (Paper III) and, guided 

by results from simulation tests, quantifies how individual-level variation in otolith chemical 

traits translates to variability among spatially- and/or temporally-separated populations. 

Our simulations highlight the efficacy of an omnibus test for multivariate group differences 

based on ΔDIC between ‘null’ and ‘effects’ models; the sensitivity of this test allowing 

quantitative rules of thumb to be developed upon which the scales of multivariate trait 

variation among putative groups could be estimated with high confidence. Although the 

scenarios we tested reflected the numbers of groups, response variables, and sample sizes 

typically encountered in otolith chemistry applications, the derived rules are equally 

applicable to any situation where trait variation among groups is of interest, and for which 

individual-level, continuous, multi-response data are available. We focussed on one-way 

multivariate linear models in these simulations, with ‘group’ acting as the single fixed effect. 

This reflected our needs in exploring ‘site’ or ‘year’ effects in models fitted to the empirical 

otolith data. However, the R code we provide could be easily modified to generate similar 

rules for more complex suites of models, involving multiple fixed and/or random effects. 

We adopted these rules in evaluating output from models fitted to Eledge, C/Oedge and C/Owhole 

data derived from nursery-resident juvenile ISS herring sampled across their full geographic 

range, over three years. Informed by recent work on this herring stock that found consistent 

negative effects of fish age on otolith elemental composition, particularly for Li:Ca, Mg:Ca, 

Mn:Ca and Sr:Ca (Paper III), we elected to model each age class separately. This decision 

enabled us to generate cohort-specific atlases of individual- and population-level trait 

variability around Iceland that could be compared among months or years at nursery sites 

for which a particular age class was captured at more than one time point (i.e. to assess the 

degree of temporal stability in chemical trait expression). Though we accounted for age-

related influences on trait expression in our models, the concentrations of several elemental 

and stable isotopic markers within otoliths are also known to be under strong environmental 

(e.g. salinity, temperature, water chemistry, pH) control (Elsdon and Gillanders 2004; Martin 

and Wuenschel 2006; Mirasole et al. 2017), either directly, or indirectly through synergies 

between environmental and intrinsic processes (see Holt and Jørgensen 2014). Therefore, 

owing to the island-wide distribution of the nursery sites, many of which are located inshore 

within fjords fed by rivers that arise in different geological zones, and may vary dramatically 

in water chemistry (Gíslason et al. 1996; Kristmannsdóttir et al. 2002; Louvat et al. 2008), 

we still expected to find spatial and temporal heterogeneity in otolith chemistry at the 

population level. We also expected that island-wide patterns in otolith chemistry would be 

partly shaped by the steep north-south temperature and inshore-offshore salinity gradients 

that characterise the local oceanography (Valdimarsson et al. 2012; Logemann et al. 2013), 

potentially leading to broader-scale differences between inshore and offshore populations. 

Indeed, our models exposed marked spatial differences in Eledge data among nursery 

populations (particularly in Li:Ca and Mn:Ca) and less dramatic, but still notable spatial 

differences in C/Oedge and C/Owhole for both juvenile cohorts in two out of three years of 

sampling (Figures 4, 5). Moreover, population-level variability in edge Mg:Ca was greater 

for age 2 versus age 1 herring, with differences in concentrations of most elemental markers, 

δ13C and δ18C generally increasing with distance between nursery sites across both cohorts. 

Additionally, we observed strong temporal variation in otolith chemistry at four out of five 
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sites for which longitudinal sampling of a particular age-class was possible (see Figures 4, 

6). Taken together, our results point to a pattern of coast-wide variability in otolith edge 

chemistry for nursery-resident juvenile herring, one that is temporally dynamic at monthly 

to annual scales. In the spatial dimension, this scale of marker heterogeneity accords well 

with predictions from spatially-explicit models of juvenile ISS herring otolith chemistry that 

included both ontogenetic and environmental covariates (see Paper III). Interestingly, the 

degree of temporal variability we see here far outweighs that predicted from models 

presented in Paper III, which were based on snapshots of local environmental conditions 

and nursery population composition. Both of these factors can fluctuate over relatively short 

time scales, and not considering such fluctuations likely led to underestimation of the 

system’s true temporal variability in those models. 

 

As mentioned previously, the mechanisms underpinning the patterns we observed here are 

likely manyfold, involving interactions between extrinsic and intrinsic processes (see 

Grammer et al. 2017; Izzo et al. 2018; Reis-Santos et al. 2018a). The relative influences of 

such processes are challenging to disentangle, even in light of new insights gained into 

chemical incorporation pathways and ion-binding dynamics within otoliths (Melancon et al. 

2009; Sturrock et al. 2014; Thomas et al. 2017). Yet, irrespective of the precise processes at 

play, if trait differences do exist, and the scale of these differences is measured appropriately 

while respecting the mechanistic knowledge at hand, we can still glean crucial information 

on how individual trait variability manifests at the population level, and how source 

populations are structured – both central foci in this study. 

 

Individual- to population-level variability 

The population- (and year-level) variability in otolith chemistry we detected must arise from 

characteristics of the individuals captured within them. For example, we observed substantial 

individual-level differences in the expression of otolith chemical markers within populations 

captured at the same time point, and from the same location (illustrated by the widths of the 

95% CIs for site-level posterior densities in Figures 4 and 5). Such individual-level 

variability in trait expression is widespread in otolith chemistry studies (Kalish 1989; 

Macdonald and Crook 2010; Panfili et al. 2015), yet is not often acknowledged explicitly; 

the factors governing it proving difficult to pin down. In our case, this variation cannot be 

ascribed to environmental heterogeneity, but could be a function of sample size, fish growth 

variation within sites and cohorts (see Table 1, Stanley et al. 2015; Paper III), and/or inter-

individual differences in unmeasured intrinsic factors (e.g. physiology, metabolism) thought 

to influence otolith chemical composition (Høie et al. 2003; Grammer et al. 2017). 

Moreover, evidence for inter-individual behavioural plasticity within species and 

populations is growing (e.g. Crook et al. 2017), and as individual behaviour can feedback to 

affect growth (Fiksen et al. 2007) and physiology, we suggest that behavioural flexibility 

within each cohort and nursery site might have also contributed to the individual-, and hence 

population-level variability in otolith chemical traits we found.  

 

Population mixing: insights into juvenile population structure 

Results from the multivariate models also contribute to our understanding of connectivity 

and mixing among ISS nursery populations, the Bayesian approach allowing uncertainties 

in data and modelling to be fully incorporated in classifying putative source populations for 
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subsequent MSAs. Our models, in general, uncovered higher among- versus within-

population variance in edge chemistry for age 1 and age 2 ISS juveniles sampled across key 

nursery areas around Iceland. These findings provided us the information needed to 

confidently define source population structure for each age-class, and to create appropriate 

baseline samples based on site-level posterior estimates for each otolith chemical marker 

(see Materials and methods for details). Ecologically-speaking, they also suggest that 

juvenile movements among distant nurseries are unlikely, and that long-term nursery 

retention might be the norm. 

 

This idea was investigated further in the finite mixture models. In the Nursery retention tests, 

we tested the hypothesis of limited mixing among geographically-distant juvenile ISS 

herring populations; specifically, that juveniles are retained within particular nurseries 

between the ages of 1 and 2. Our results largely support this hypothesis. Three out of five 

mixed samples of age 2 herring were assigned with highest probability to the nursery site 

they were captured from, with the remaining two samples assigned to the next closest nursery 

(Figure 7a,b). Sites deep within Ísafjarðardjúp and Arnafjörður showed the highest retention 

rates, while > 80% of age 2 herring captured in Öxafjörður in 2014 were assigned to nurseries 

in either Eyjafjörður or Ísafjarðardjúp. Although the potential for missing sources to 

contribute in some years is real, given the sparsity of sampling for age 1 fish (e.g. in 2013), 

our findings strongly infer a high degree of site-attachment in nursery-resident ISS herring 

as alluded to by Jakobsson and Stefánsson (1999) and Guðmundsdóttir et al. (2007). Our 

models also highlight the potential for some mixing between geographically-close 

populations (e.g. within-fjords); however, embarking on large-scale movements between 

nurseries further afield, while possible (Figure 7a) appears uncommon during the juvenile 

phase. We speculate that this strategy may have evolved through energetic and mortality 

costs associated with long-distance, exploratory behaviour outweighing the potential 

rewards of finding better ‘quality’ nursery habitats (see Alerstam et al. 2003), although 

further work is needed to explore this.  

 

Population mixing: insights into source-sink dynamics 

The second part of the MSAs was focussed on the Adult assignment tests. Our results 

demonstrated a relatively even contribution of the age 2 source populations to the mixed 

sample of age 3 fish (Figure 7c), with no source dominating as a supplier of recruits to the 

fished population at Kolluáll, west of Iceland. The Kolluáll area provided the bulk of the 

fishery catch during the 2015/2016 winter season (ICES 2016), but harboured only 10% (by 

numbers) of the age 3 cohort surveyed acoustically, with the remaining 90% located south 

and east of Iceland (Óskarsson 2016). We recognise that our age 3 samples are representative 

of only a small fraction of the age 3 population, yet importantly, we estimated that the 

SthEasts (i.e. Breiðamerkurdjúp) source contribute most, despite it being the most distant 

source (i.e. > 500 km by water) from the Kolluáll wintering grounds.  

 

These findings are indicative of substantial mixing of widely-distributed juvenile 

populations during their first year of adulthood. Whether this occurs first during the summer 

spawning period when multiple age classes meet on the spawning grounds south of Iceland 

(Jakobsson and Stefánsson, 1999) (though only ~ 20% of age 3 are estimated as mature – 

ICES 2018), during the pre- or post-spawning feeding seasons, or on the wintering grounds 

themselves, is difficult to tease apart based on our data. However, no clear relationship was 

found between the magnitude of source contribution and the distance of the source to the 
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wintering grounds (Figure S1a). And, as long-distances themselves (Alerstam et al. 2003), 

or the ecological costs associated with crossing them, could be expected to act as 

impediments to the rapid, large-scale, coordinated movements needed for migrants from 

disparate sources to unite first on these grounds in October/November, we propose that 

mixing likely occurs prior to overwintering (see also Geffen et al. 2011). 

 

We also failed to detect a relationship between source contribution and nursery-specific 

densities of age 2 herring surveyed in 2014 (Figure S1b). We considered juvenile density as 

a proxy for nursery ‘quality’ that could be used in a test of the ‘nursery-role hypothesis’ in 

ISS herring (Beck et al. 2001). In their seminal paper on clarifying the ‘nursery-role concept’ 

in the interests of conservation and management of critical juvenile habitats, Beck et al. 

(2001) laid out their hypothesis along the lines that under certain conditions, some inshore 

juvenile habitats contribute disproportionally to the production of individuals that recruit to 

adult populations. Several requirements need to be met for a formal test of this hypothesis, 

summarised as follows: 1) geographic separation between juvenile and adult habitats; 2) 

comparisons of nursery quality must be made on a unit-area basis; 3) all potential juvenile 

habitats must be sampled; 4) nursery habitats are a subset of juvenile habitats; and 5) 

movement of individuals from juvenile to adult habitats must be estimated. 

 

The life-history transitions between spatially-discrete juvenile and adult habitats in herring 

make them ideal test subjects (Geffen et al. 2011; Huse 2016), and indeed, at least three out 

of five of Beck et al.’s requirements were adhered to in our study (i.e. 1, 3 (possibly), 4, 5). 

Even so, we found no clear evidence in favour of the nursery-role hypothesis based on the 

data presented here. All sources contributed to the age 3 population captured at Kolluáll, 

with posterior mean contributions varying at most by 7.6% (Figure 7c). Furthermore, nursery 

quality appeared to play little role in shaping source contribution, though this may be a 

function of how ‘quality’ was defined. We chose to compare nursery quality based on indices 

of age 2, rather than age 1 abundance derived from acoustic surveys, the latter index 

currently favoured in forecasting year-class strength at age 3 in assessment models for the 

stock (see Guðmundsdóttir et al. 2007; ICES 2017, 2018). Our reasoning relates back to the 

limited sampling coverage of age 1 herring in 2013 (see Table 1) which precluded their use 

in the Adult assignment tests, and to the island-wide sampling of age 2 in 2014 from which 

we generated a larger, more robust baseline sample. As the age 2 otolith data was used to 

estimate nursery contribution, we felt that nursery-specific age 2 densities provided the most 

direct proxy for characterising nursery quality in this instance. 

 

Whether these trends are specific only to the fishery in 2015, or are more general, we cannot 

say at present. However, they suggest either that our density metric was a poor proxy for 

nursery quality, that nursery quality per se is not of critical importance in this system, that 

key source populations were missed or inaccurately characterised (see requirement 3, and 

below), and/or that the environmental and migratory flexibility displayed by herring 

(Maravelias and Reid 1997; Paper II) shrinks the reliance on any particular nursery for 

recruit supply, an adaptation that may increase the resilience of the stock to local 

perturbations. We suggest that the answer lies in a combination of these factors – factors that 

an expansion of the present work over a number of years might disentangle. 
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Otoliths as management tools 

The propensity for conspecifics of differing origins to mix at certain life stages is well known 

in fishes (e.g. Grabowkski et al. 2012), including herring (Fridriksson and Aasen 1950; 

Brophy and Danilowicz 2002; Husebø et al. 2005; Johannessen et al. 2009; Geffen et al. 

2011), a situation that can pose serious challenges to effective spatial management when 

data on population origins and mixing rates are few. For example, in Icelandic waters, adult 

ISS herring commonly mix with the Norwegian spring spawning (NSS) stock during the 

summer feeding period off the east coast (Óskarsson 2018). Examination of maturity stage 

is the traditional approach to delineating these two stocks for management purposes. Yet, 

the method lacks precision, motivating recent refinements in otolith shape analysis that have 

the potential to improve provenance estimates in the mixed summer fishery (see Libungan 

and Pálsson 2015; Libungan et al. 2015).  

 

Within fish stocks, otoliths’ chemical constituents can offer even greater sensitivity as 

population markers (e.g. Longmore et al. 2010), and we made use of these here, developing 

a Bayesian modelling approach to generate estimates of nursery connectivity and 

contribution of direct relevance for the management and protection of nursery-resident 

herring populations in Icelandic waters. Our findings point to a tendency for older juveniles 

to remain within, or very close to the nursery areas they inhabited as one-year olds (see 

Figure 7), though our data, and inference from other studies (Guðmundsdóttir et al. 2007) 

also suggest that some straying is possible (see Figure 7a). Sampling limitations precluded 

a test of retention rates across all nurseries, but if the generality of long-term, nursery-site 

attachment or straying can be verified, this would act to enhance confidence in using 

recruitment indices based on either age 1 and/or age 2 abundance as inputs into stock 

assessment models (see Guðmundsdóttir et al. 2007; ICES 2017, 2018). 

 

As a second key result, we estimated a near-equal contribution from several nurseries to a 

fished sample of age 3 ISS herring. Whilst our findings are applicable to only a small 

proportion of the age 3 cohort, the existence of such patterns across the broader population 

may simplify, yet concurrently complicate management decisions focused on nursery 

protection with a view to ensuring fishery sustainability. For example, resilience to local 

perturbations or overexploitation through (currently poorly-quantified) bycatch from 

commercial shrimp fishing vessels (Thorsteinsson 1992; Jónsdóttir et al. 2017; DNVGL 

2018) or natural mortality from whales and other predators (Vikingsson et al. 2014; Samarra 

and Foote 2015) is increased under such a scenario, making efforts to protect only one or a 

few key nurseries less critical. Saying this, the collective importance of multiple nurseries 

makes it harder to obtain the accurate indices of juvenile abundance needed for the 

assessment models, requiring an expansion of survey effort and among-year consistency in 

survey coverage, which can be both costly and logistically challenging (e.g. ICES 2018).  

 

Whilst providing an initial guide for management-related discussion, we stress that the scope 

of our study is somewhat limited; encompassing three years of nursery sampling, and one 

year of fishery data from a small component of the total age 3 population. Extending data 

collection over several years, and incorporating other fishery-derived samples across a 

broader geographic range would allow us to gain deeper insight into the questions we posed, 

while building confidence in otolith chemistry analysis as a routine tool for management. 

One key issue is the potential for missing source populations to have influenced our 

conclusions on mixed stock identity. It is likely that there are sources that we have missed 

and/or that were not adequately characterised, particularly in the Nursery retention tests (see 
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Guðmundsdóttir et al. 2007), issues that our finite mixture models cannot alleviate. Infinite 

mixture modelling approaches deal with this explicitly (Neubauer et al. 2013; Loff and 

Neubauer 2018; Reis-Santos et al. 2018b), and we plan to pursue these in a follow-up paper. 

Re-running the MSA using these models would provide quantitative corroboration of the 

number of likely sources, as well as taking uncharacterised sources into account in 

estimating individual assignment probabilities. 

 

Conclusions 

In this paper, we present fundamental data on source-sink dynamics in the ISS herring stock 

derived from the chemical traits in otoliths, and develop statistical methods that we hope will 

inspire further investigation into the links among juvenile and adult populations. Though our 

analysis centred on herring, by incorporating intrinsic effects and explicitly quantifying data- 

and model-related uncertainties, the Bayesian framework we present offers a quantitative 

and easily-adaptable template for assessing the scale of connections among putative sources, 

elucidating nursery-residence patterns, and clarifying the role of nurseries as contributors to 

harvested populations more generally. With ever-improving understanding of the 

mechanisms governing otolith chemical trait expression (e.g. Thomas et al. 2017), efforts to 

refine modelling approaches for these traits that honour this new knowledge will ensure that 

otoliths reach their full potential in population-delineation studies and fishery-management 

applications. 
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Figure 1. Locations of nursery sites sampled for juvenile ISS herring (i.e. age 1: triangles, age 
2: circles) during October / November 2013 (black symbols), 2014 (orange symbols) and 
2015 (red symbols) (see Table 1 for site details). The red star denotes the capture location 
for a sample of age 3 herring (n = 79) caught by the fishery targeting overwintering 
adults at Kolluáll off Iceland’s west coast in November 2015. Nursery sites sampled in 
different years that overlap exactly in space are offset slightly for clarity. Depth contours (in m 
– black lines) are overlaid.
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Figure 2. Results from simulations designed to assess the sensitivity of the deviance information 
criterion (DIC) in detecting differences in otolith chemical signatures among nursery sites. In the 
plots, each symbol represents a simulated multivariate normal dataset, comprising differing 
numbers of (1) response variables (rv’s) – in our case, reflecting otolith elemental and stable 
isotopic measurements; (2) nursery sites; and (3) numbers of fish captured per site. For each 
dataset, we ran a one-way MANOVA and two Bayesian multivariate linear models; one with no 
site-level effects (i.e. ‘null’ model), and the other including site-level effects (i.e. ‘effects’ model). 
We derived a p-value for the null hypothesis of no multivariate differences among nursery sites 
from the MANOVA based on Pillai’s trace statistic, and plotted this against the difference in DIC 
values between the Bayesian ‘null’ and ‘effects’ models (i.e. ΔDIC (null-effect)).   
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Figure 3. Plots summarizing the simulation output presented in the bottom-left panel of Figure 
2 (i.e. results from datasets with 8 rv’s). Shown here is the proportion of models for which the 
p-value (derived from a one-way MANOVA) is < α, where α = 0.1 (solid line), 0.05 (dashed
line), 0.01 (dot-dashed line) and 0.001 (dotted line) in relation to the change in DIC values
between ‘null’ and ‘effects’ models (i.e. ΔDIC (null-effect)).
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Figure 4. Posterior estimates for age 1 herring, illustrating spatial variation in elemental and 
isotopic markers among nursery sites sampled in 2013 (left-hand column of plots), 2014 (middle 
column of plots) and 2015 (right-hand column of plots). Within each sampling year, the 
posterior densities for each nursery site are presented for each otolith chemical marker included 
in the model for that year, along with their posterior means (triangles) ± 95% CIs (segments). 
Data for each site are displayed in a different colour (i.e. 2013: blacks; 2014: oranges; 2015: 
reds). Means ± 95% CIs are referenced to the x-axis only, and positioned vertically at half of the 
maximum density value for that site, for clarity. Note that y-axes for all otolith chemical markers 
within a year (i.e. within each column) are kept consistent, and the ranges of the x-axes are also 
kept constant. This allows a direct comparison of density shape and magnitude among nursery 
sites for each otolith chemistry marker within a year. Shown also are the ΔDIC (null-effect) for 
each year’s model, and the associated p-value derived from the smallest sample size tested in 
our simulation study, i.e. n = 10) (see Figures 2, 3).  
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Figure 5. Posterior estimates for age 2 herring, illustrating spatial variation in elemental and 
isotopic markers among nursery sites sampled in 2013 (left-hand column of plots), 2014 
(middle column of plots) and 2015 (right-hand column of plots). Within each sampling year, 
the posterior densities for each nursery site are presented for each otolith chemical marker 
included in the model for that year, along with their posterior means (circles) ± 95% CIs 
(segments). All other information as for Figure 4. 
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Figure 6. Temporal variation in elemental and isotopic markers at four nursery sites sampled 
in two (Arnafjörður, Miðfjörður, Eyjafjörður) or three (Ísafjarðardjúp) consecutive years. 
Within each nursery site, the posterior densities for each year (2013: black lines and symbols; 
2014: orange lines and symbols; 2015: red lines and symbols) are presented for each otolith 
chemical marker included in the model for that site, along with their posterior means (age1: 
triangles; age 2: circles) ± 95% CIs (segments). Similar to Figure 4, means ± 95% CIs are 
referenced to the x-axis only, and positioned vertically at half of the maximum density value for 
that year. Y-axes for all otolith chemical markers within a site (i.e. within each column) are 
kept consistent, and the ranges of the x-axes are also kept constant. Also shown are the ΔDIC 
(null-effect) for each site’s model, and the associated p-value derived from Figures 2 and 3.  
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(a) and (b) concern the ‘Nursery retention tests’. For example, panel (a) displays the
proportion of age 2 fish captured in Ísafjarðardjúp (i.e. Ísam) in 2014 and Öxarfjorður (i.e.
Öxarm) in 2014 (i.e. the mixed samples) estimated to have resided in nurseries within
Ísafjarðardjúp and Eyjafjörður combined (i.e. Eyja / Ísas), or in Öxarfjörður (Öxars) as age 1
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age 2. Panel (c) shows results for the mixed sample of age 3 herring captured by the
winter fishery at Kolluáll in November 2015, based on seven putative source
populations of age 2 fish captured in October/November 2014.
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Supplement 1 - Otolith preparation and analysis 

Sagittal otolith pairs from all fish were removed under a dissecting microscope, cleaned of 

adhering tissue, triple-rinsed with Milli-Q – Type 1 Ultrapure water (Merck: 

www.merckmillipore.com/AU/en) and stored dry in polypropylene microtubes. One sagitta 

from each fish was selected for measurement of elemental concentrations using laser 

ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Otoliths were first 

mounted individually, sulcus downwards, on an acid-washed glass slide in thermoplastic 

glue (Crystalbond™) and polished them to within 10-15 μm of the primordium using a series 

of wetted lapping films (9, 5, 3 μm). We then transferred each polished otolith to a master 

slide, on which otoliths from all capture sites were arranged randomly in Crystalbond™. 

Master slides were triple-rinsed in Milli-Q – Type 1 Ultrapure water and air-dried overnight 

in a class 100 laminar flow cabinet at room temperature. 

We used a depth-profiling approach to ablate a ~40-μm wide × 11-µm deep disc of otolith 

material at the dorsal margin of each age 1 and age 2 sample at a position equidistant between 

the pararostrum and antirostrum. These are termed ‘Eledge’ samples (see Table 1 main text). 

Based on daily growth increment widths immediately adjacent to the ablation site, we 

estimate that this disc reflects otolith material deposited during the final < 2 weeks of life 

prior to the fish’s capture. For age 2 and 3 samples, we used a 40-µm spot size to ablate 

material accreted in the period one-year prior to the capture date, again at a position 

equidistant between the pararostrum and antirostrum. These are termed ‘Elmid’ samples 

(Table 1 main text), and for each individual are representative of a < 2 week period of nursery 

residence experienced one-year earlier.  

Elemental measurements were made using a Varian 810 quadrupole ICP-MS, coupled to a 

HelEx (Laurin Technic, and The Australian National University) laser ablation system 

located at the University of Melbourne, Australia. The HelEx system is built around a 

Compex 110 (Lambda Physik, Gottingen, Germany) excimer laser. Master slides were 

placed in the sample cell and the target ablation site on each sample was then digitally plotted 

using GeoStar v6.14 software (Norris Software: www.norris.org.au). Ablation occurred 

inside a sealed chamber in an atmosphere of pure He (flow rate: 0.3 l min-1) with the 

vaporised material transported to the ICP-MS in the Ar carrier gas (flow rate: 1.23 l min-1) 

via a signal-smoothing manifold. Prior to data acquisition, a pre-ablation step was 

implemented in which 3 laser pulses were fired (at 78 mJ output energy) at the target sites 

to remove any surface contaminants. Using the same energy settings, the laser was then 

pulsed at 5 Hz for 40 s per sample. For each otolith sample, the first 3 s of data in the 

acquisition sequence were excluded, and the next 15 s retained, encompassing the target disc 

of otolith material.  

Concentrations of seven elements: 7Li, 25Mg, 43Ca, 55Mn, 66Zn, 88Sr and 138Ba were 

monitored, with 43Ca used as an internal standard. Dwell times were 0.03 s for all elements 

except Li (0.05 s). Data were processed offline using Iolite version 3.31 (School of Earth 

Sciences, the University of Melbourne: www.iolite-software.com) (Paton et al. 2011). 

Subtraction of background ion counts from otolith counts was followed by the normalisation 

of each element to Ca using a glass reference standard (National Institute of Standards and 

Technology: NIST 612) which was analysed after every 10th otolith sample. Measurement 

precision (% relative standard deviation [RSD]) was calculated based on twenty 20-s 

analyses each of NIST 610 and MACS-3 (United States Geological Survey) reference 
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standards run concurrently with the otolith samples. Mean RSDs for the NIST 610/MACS-

3, respectively, for normalised data, were Li: 0.60/6.23, Mg: 1.21/6·60, Mn: 0.59/3.95, Zn: 

1.10/7.92, Sr: 0.34/6.27, Ba 0.34/3.99. Detection limits (DL) were calculated as the mean +3 

SD of the background samples. Li, Mg, Mn, Sr and Ba were measured well above DL in the 

otoliths, but Zn was within 5% of DL in 4.6% of cases. However, given the relatively low 

RSD for Zn, we elected to include it in our statistical analysis. Elemental data are expressed 

throughout as molar ratios to Ca (e.g. Li:Ca). 

We used the second sagitta from each fish for analysis of stable carbon and oxygen isotope 

ratios (i.e. δ13C, δ18O). Due to their small size, whole age 1 otoliths were ground, 

individually, to a fine powder using a mortar and pestle, and between 0.05 and 0.1 mg of the 

resulting powder transferred to a labelled 0.5 ml polypropylene microtube. The powder 

samples represent full-lifetime (i.e. ~15-month) records of δ13C and δ18O for each age 1 

individual, and are expressed as ‘C/Owhole’ samples throughout (Table 1 main text). Age 2 

and age 3 otoliths were larger, making sub-sampling possible. These were polished, 

mounted, cleaned and dried in an identical manner to otoliths prepared for elemental 

analyses (see above). For the age 2 samples, we used a high-resolution New Wave Research 

MicroMill system (New Wave Research Inc., Fremont, California, USA) to plot a 200-µm 

wide × ~25-µm deep drill path along the otolith edge, beginning at the rostrum, and 

extending along the ventral margin to the postrostrum. The drill speed was set to 5% and 

scan speed across the sample was 50 µm s-1. Between 0.05 and 0.1 mg of powder was 

collected per individual, encompassing otolith material deposited during the last ~2 months 

of the fish’s life pre-capture (Clausen et al. 2007). These are termed ‘C/Oedge’ samples (Table 

1 main text). In cases where insufficient material was recovered in the first drill pass, we 

continued drilling along the otolith’s dorsal edge from the pararostrum to the antirostrum.  

We kept the same drilling parameters for the age 3 otoliths, this time sampling the growth 

increments laid down one-year prior to capture, i.e. as nursery-resident two-year olds. We 

milled from the rostral end of the otolith along a path parallel to the ventral margin towards 

the postrostrum, and collected 0.05 and 0.1 mg of powder per sample, reflecting ~2 months 

of otolith growth deposited within nursery sites the previous year. These samples are termed 

‘C/Omid’ samples. 

Otolith powders were analysed using an automated carbonate preparation device (NuCarb) 

coupled to a Nu Instruments Perspective dual-inlet stable isotope ratio mass spectrometer in 

the School of Geography at the University of Melbourne. Three external standards with 

known δ13C and δ18O values (National Bureau of Standards NBS19, NEW1, NEW12) were 

run concurrently with the otolith samples. The latter two are in-house standards composed 

of Cararra marble, and calcite, respectively. The isotopic ratios of both these standards have 

been calibrated against NBS19 and NBS18 using mass spectrometry (Finnegan MAT251 

with an automated Kiel device) at the Australian National University. Estimated precision 

(RSD), based on repeated measurements of NBS19 (n = 5), New1 (n = 18) and New12 (n = 

15) across all analysis days was: 3.50, 1.73 and 0.40, respectively for δ13C, and 11.17, 2.43

and 0.53, respectively for δ18O. All stable isotopic measurements are reported relative to the

Vienna Pee Dee Belemnite (VPDB) reference standard, and expressed in δ-notation (in ‰).
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Figure S1. Relationships between the estimated (i.e. posterior mean) contribution of each 
source population to the mixed sample of age 3 adults captured by the fishery at Kolluáll in 
November 2015, and (a) the distance from each source to the fishery capture location, and (b) 
the density of age 2 ISS herring at each source, as estimated from acoustic surveys conducted in 
November 2014. 

Supplement 2 - Source contribution, distance and density 
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Abstract 

There is growing recognition that intense exploitation of fish populations may reduce their 

resilience to environmental change, and that fishing and climate can interact to influence the 

spatial dynamics of harvested species. However, changes in climate alone can be pervasive 

in rerouting migration paths and reshaping distribution patterns. An empirical means to 

reconstruct lifetime environmental histories for individual fish would, either alone, or in 

conjunction with simulation modelling, provide a valuable baseline for predicting how future 

ocean warming might drive range shifts in commercially-targeted species, and for planning 

how management strategies should best be adapted. Here, I present a detailed tutorial on the 

empirical aspect of this equation. Specifically, I measure stable oxygen isotope (δ18O) 

profiles across otoliths from five adult (i.e. age 6) Icelandic summer spawning (ISS) herring 

captured off Iceland’s east coast to define a contemporary thermal ‘niche’ and range for 

these individuals. I then apply this data to make predictions on how adult distribution might 

shift under projected changes in ocean temperature across the region. Assuming adherence 

to this niche throughout adult life (a large assumption), I predict that a 1°C increase in water 

temperature across a region off the northeast Icelandic coast, forecast to undergo warming 

of up to 2°C by 2046–2065, may create opportunities for poleward expansion in the adult 

component of the stock, all else being equal. I stress that the results presented here are  

preliminary, this tutorial serving primarily to illustrate methods to harness otoliths’ capacity 

for forecasting species’ responses to future environmental change. 
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Introduction 

Otoliths (fish ear stones) are beautiful structures that have many useful properties for both 

fish and humans interested in fish. Located in the fish’s inner-ear, and composed mainly of 

aragonite (a form of CaCO3), otoliths play a crucial role in the fish’s sensory functioning, 

balance and hearing. Like trees, otoliths display permanent growth bands that are typically 

deposited daily, the width of these bands reflecting the growth rate of the fish, and their 

chemical composition providing an ‘environmental diary’ of the fish’s life. These traits have 

allowed scientists to accurately determine fish age, to study the consequences of 

environmental change (e.g. increasing water temperatures) on fish growth and movement, 

and to reconstruct migration pathways, among several other applications. 

 

Here, I use stable oxygen isotopes (i.e. δ18O, the ratio of O18 to O16) measured in otoliths of 

Icelandic summer spawning (ISS) herring (Clupea harengus) to chart their individual 

temperature histories around Iceland. As the incorporation of δ18O from water to otolith is 

mediated by temperature, we can reconstruct the temperatures experienced by the fish 

provided that the δ18O values of the water in which they reside are known, or estimate 

relative temperature change if water δ18O is uncertain. Given sufficient numbers of samples, 

some simple equations and assumptions, this information can allow us to estimate the 

contemporary thermal ‘niche’ of individuals, or populations, across all life stages.  

 

By making use of projections of how water temperatures may increase under various climate 

change scenarios, we can then predict if individuals or populations may need to move in the 

future, and where they might move to. For commercially-important species like Atlantic 

herring, this type of data is invaluable for developing effective climate change adaptation 

strategies for fishery management. 

 

Materials and methods 

Our dataset ‘herring_otolith_data’ consists of δ18O profiles measured across otoliths of five, 

6-year old herring, captured offshore of Neskaupstaður on the east coast of Iceland in June 

2014 (see Appendix 1 for the full dataset). The first eight rows of the dataset look like this:-  

 

The first four data fields are the site of capture (capture_site), an identifier for each fish 

(fish_id), the age of that fish in months (fish_age) and the date when the otolith material 

analysed was accreted (date_accret). The fifth column (O_oto.VPBD) refers to 

measurements of otolith δ18O (δ18Ootolith) made via secondary ion mass spectrometry (SIMS) 

on the SHRIMP II instrument at the Australian National University (ANU), Canberra, 

Australia (see Long et al. 2014 for details on instrumentation). For each otolith, a series of 

25-μm diameter SIMS spots were acquired, with spots spaced ~100 μm apart (= 6 months 
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Otolith edge Otolith core 

of fish life), running from the core of the otolith (i.e. the time of hatching) to the dorsal edge 

(i.e. the time of capture), so incorporating the full life-history of each individual (Figure 1).  

 

Figure 1. Polished otolith section from a six-year old Atlantic herring viewed under a) 

transmitted light, showing annual growth increments, and b) reflected light, showing the 

locations of SIMS spots and the estimated age of the fish (in months) at each SIMS spot.  

 

We can plot the δ18Ootolith life-history profiles for each fish (Figure 2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. δ18Ootolith life-history profiles for five, 6-year old ISS herring captured off 

Neskaupstaður in June 2014. Each fish’s profile is assigned a different colour. 
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To convert these profiles into temperature histories we require some more information. First, 

we need the δ18O values of the water (δ18Owater) in which the fish resides. We often do not 

have this data, but we can estimate it, by integrating ecological knowledge on the life history 

of the species and exploiting the general relationship between δ18Owater and salinity:- 

δ18Owater = a + bS (eq. 1) 

where S is the salinity in Practical Salinity Units (PSU). 

The a and b coefficients in this relationship vary regionally, but as we know that these 

herring spend all their adult life in Icelandic waters, we use the following equation developed 

for Greenland/Iceland/Norwegian seas (LeGrande and Schmidt 2006):- 

δ18Owater = -20.71 + 0.6S (eq. 2) 

Using an ocean model developed for Icelandic waters (CODE – Logemann et al. 2013), we 

mapped mean sea surface salinity (SSS – data field 6) around Iceland for each 6-month time 

step associated with the date of otolith accretion at each SIMS spot. We then reduced the 

extent of the maps to include only the oceanic waters south of Iceland, and finally, converted 

the resulting SSS maps to δ18Owater maps (O_water.VSMOW – data field 7) (Figure 3). 

Figure 3. Example of the workflow we used to convert sea surface salinity (SSS) to 

δ18Owater.This example is for December 2008, and we followed this approach for all 6-month 

time steps. The value we use for SSS (data field 6) and O_water.VSMOW (data field 7) at 

each 6-month time step is the mean value of all grid cells in the top right and bottom right 

maps, respectively.  

Note that for carbonates such as fish otoliths, δ18O measurements are typically reported in 

‘per mil’ (‰) relative to the Vienna PeeDee Belemnite standard (VPDB) (see Figure 2). By 

contrast, δ18Owater measurements are usually reported relative to the Vienna Standard Mean 

Ocean Water standard (VSMOW), again in ‘per mil’ (‰) (see Figure 3, bottom right map).  

Before we can reconstruct the fish’s temperature histories, we must convert our water values 

from the VSMOW to the VPDB scale. We use the equation of Clark and Fritz (1997):- 

δ18Owater (VPDB) = -29.98 + 0.97002 δ18Owater (VSMOW) (eq. 3) 

the results of which are shown in data field 8 (O_water.VPDB). 
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Results and Discussion 

The isotopic partitioning of oxygen between otolith aragonite and ambient water can be 

described in terms of the isotopic fractionation factor, α, given by:- 

δ18Ootolith (VPDB)) / (1000 + δ18Owater (VPDB)) (eq. 4) 

Temperature-dependent fractionation can then be described by the linear relationship:- 

1000 ln a + bT (eq. 5)

Where a is the intercept and b the slope, both of which are typically empirically derived and 

may differ by fish species. T = 1000 / tempK, where tempK denotes the temperature in Kelvin. 

Here, we use a = -31.14 and b = 17.88, widely-used values determined experimentally by 

Kim et al. (2007) for fractionation between synthetic aragonite and water. Rearranging eq. 

5, we calculate temperature in Kelvin (temp_K – data field 9), then convert to °C (temp_C 

– data field 10) (eq. 6).

T = (1000 ln  + 31.14) / 17.88 

1000 / tempK = (1000 ln  + 31.14) / 17.88 

tempK = 17880 / (1000 ln  + 31.14) (see data field 8) 

tempC = tempK – 273.15 (see data field 9) (eq. 6) 

We can repeat these calculations at each time step and plot the individual temperature 

histories (Figure 4).  

Figure 4. Estimated temperatures (°C) experienced by ISS herring over six years of life. 

Each fish is assigned a different colour, consistent with Figure 2. 
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Defining a thermal niche and predicting future distributions 

Figure 4 shows some interesting patterns, and we can see that the herring seem to have spent 

most of their adult lives in waters between 8 and 12°C. We can define this as an approximate, 

contemporary thermal niche and/or thermal range for adult Icelandic herring (at least for 

these five fish!), within which they have survived, grown, reproduced, fed and migrated over 

the six years of their lives.  

If we consider this niche as providing strict thermal tolerance limits to the above activities 

(this is a big assumption), we are then in a position to explore how changing water 

temperatures predicted under scenarios of ocean warming may act to contract or expand the 

distributional range of adult Icelandic herring.   

For example, here’s a plot of annual mean sea surface temperature (SST) around Iceland for 

2014 (Figure 5a). By overlaying the 8 to 12°C temperature band (white area in Figure 5b), 

we can identify the contemporary thermal niche spatially. 

Figure 5. a) Mean annual SST for Icelandic waters in 2014, and b) the same plot with the 8-

12°C thermal window identified for adult herring overlaid in white.    

Future predictions of SST change in the Northwest Atlantic are regionally variable, with 

surface waters northeast of Iceland forecast to increase by up to ~2°C by the middle of the 

century, whilst temperatures to the south of the island remain relatively stable (Figure 6). 

Figure 6. Projected change in SST in Northwest Atlantic waters from the present day to 

2046-2065 (source: NOAA 2016).  

S
S

T
 (

°C
) 

a) b) 

218



Given these projections, it seems that adult herring may be a climate change winner; the 

increase in water temperatures to the northeast potentially opening up opportunities for range 

expansion, all else being equal. 

By simulating even a 1°C increase in SST north of 65°N and east of 20°W, we see that the 

region within the thermal-niche limits of adult herring expands poleward dramatically 

(Figure 7).  

Figure 7. a) An increase of 1°C in SST off the northeast Icelandic coast, as predicted for the 

middle of this century (see Figure 6), may allow adult herring to expand their range further 

north, b). As in Figure 6, panel a) shows mean annual SST for Icelandic waters in 2014, and 

panel b) is the same plot with the 8-12°C thermal window overlaid in white 

Whether they are able to colonise these new habitats, choose to do so, or are forced to do so 

by other external stressors (e.g. fishing pressure, prey scarcity) are questions for a future 

thesis. However, the approach we outline here, though based on a very small number of 

samples and some rather large assumptions, does highlight the potential of otoliths’ stable 

isotopic constituents for predicting how species might respond spatially to the rapidly 

warming oceans of our present and future (see IPCC 2013; Resplandy et al. 2018 and 

references therein). 
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Appendix 1 - ‘herring_otolith_data’ dataset 

capture_site fish_id fish_age date_accret O_oto.VPBD SSS O_water.VSMOW O_water.VPBD temp_K temp_C

Nesk N1-06 0 Dec-08 2.5 35.00690202 0.294141215 -29.69467714 3.566557779 7.232391652

Nesk N1-06 6 Jun-09 2.5 35.08826091 0.342956547 -29.64732529 3.565191794 7.339818743

Nesk N1-06 12 Dec-09 2 35.17434658 0.394607949 -29.5972224 3.531960669 9.978860641

Nesk N1-06 18 Jun-10 1.8 35.0876668 0.342600078 -29.64767107 3.527173854 10.36310178

Nesk N1-06 24 Dec-10 2.1 35.13640872 0.371845232 -29.61930269 3.543316406 9.071479964

Nesk N1-06 30 Jun-11 2 35.06293232 0.32775939 -29.66206684 3.538745258 9.436037474

Nesk N1-06 36 Dec-11 2.4 35.04322706 0.315936235 -29.67353553 3.561571019 7.624971103

Nesk N1-06 42 Jun-12 1.6 35.05753383 0.324520298 -29.66520882 3.512559793 11.54266258

Nesk N1-06 48 Dec-12 2.2 35.09580647 0.347483883 -29.64293368 3.545118123 8.928047983

Nesk N1-06 54 Jun-13 1.7 35.05522668 0.323136005 -29.66655161 3.520591392 10.89318723

Nesk N1-06 60 Dec-13 2.1 35.02725301 0.306351808 -29.68283262 3.54278851 9.113532577

Nesk N1-06 66 Jun-14 2.1 34.9533651 0.262019058 -29.72583627 3.545267266 8.916181482

Nesk N5-04 0 Dec-08 2.7 35.00690202 0.294141215 -29.69467714 3.580887174 6.110404298

Nesk N5-04 6 Jun-09 1.7 35.08826091 0.342956547 -29.64732529 3.520064015 10.93574269

Nesk N5-04 12 Dec-09 1.8 35.17434658 0.394607949 -29.5972224 3.519757069 10.9605168

Nesk N5-04 18 Jun-10 1.7 35.0876668 0.342600078 -29.64767107 3.519710893 10.96424413

Nesk N5-04 24 Dec-10 1.7 35.13640872 0.371845232 -29.61930269 3.516700818 11.20742812

Nesk N5-04 30 Jun-11 1.4 35.06293232 0.32775939 -29.66206684 3.504567694 12.19189875

Nesk N5-04 36 Dec-11 1.6 35.04322706 0.315936235 -29.67353553 3.517310536 11.15813538

Nesk N5-04 42 Jun-12 1.6 35.05753383 0.324520298 -29.66520882 3.516538008 11.22059338

Nesk N5-04 48 Dec-12 1.5 35.09580647 0.347483883 -29.64293368 3.506262228 12.05399644

Nesk N5-04 54 Jun-13 1.9 35.05522668 0.323136005 -29.66655161 3.533694262 9.839960619

Nesk N5-04 60 Dec-13 2.7 35.02725301 0.306351808 -29.68283262 3.577982552 6.337109163

Nesk N5-04 66 Jun-14 2 34.9533651 0.262019058 -29.72583627 3.539917783 9.342436647

Nesk N1-11 0 Dec-08 2.5 35.00690202 0.294141215 -29.69467714 3.567118852 7.188290254

Nesk N1-11 6 Jun-09 1.8 35.08826091 0.342956547 -29.64732529 3.524301181 10.59419456

Nesk N1-11 12 Dec-09 2.2 35.17434658 0.394607949 -29.5972224 3.544516105 8.975957488

Nesk N1-11 18 Jun-10 1.8 35.0876668 0.342600078 -29.64767107 3.523752515 10.63837498

Nesk N1-11 24 Dec-10 1.9 35.13640872 0.371845232 -29.61930269 3.529765293 10.15495569

Nesk N1-11 30 Jun-11 1.9 35.06293232 0.32775939 -29.66206684 3.532771312 9.913892784

Nesk N1-11 36 Dec-11 1.8 35.04322706 0.315936235 -29.67353553 3.524564385 10.57300543

Nesk N1-11 42 Jun-12 1.8 35.05753383 0.324520298 -29.66520882 3.527836355 10.30986017

Nesk N1-11 48 Dec-12 1.6 35.09580647 0.347483883 -29.64293368 3.514386293 11.39470184

Nesk N1-11 54 Jun-13 2 35.05522668 0.323136005 -29.66655161 3.536229241 9.637096596

Nesk N1-11 60 Dec-13 2.1 35.02725301 0.306351808 -29.68283262 3.544271543 8.995424746

Nesk N1-11 66 Jun-14 2.2 34.9533651 0.262019058 -29.72583627 3.552987748 8.303264403

Nesk N3-01 0 Dec-08 2.8 35.00690202 0.294141215 -29.69467714 3.581522579 6.060860155

Nesk N3-01 6 Jun-09 2.3 35.08826091 0.342956547 -29.64732529 3.553502915 8.262460897

Nesk N3-01 12 Dec-09 1.7 35.17434658 0.394607949 -29.5972224 3.51616194 11.25100797

Nesk N3-01 18 Jun-10 2.3 35.0876668 0.342600078 -29.64767107 3.555790185 8.081441672

Nesk N3-01 24 Dec-10 1.8 35.13640872 0.371845232 -29.61930269 3.522681002 10.72469637

Nesk N3-01 30 Jun-11 1.7 35.06293232 0.32775939 -29.66206684 3.517966492 11.10512362

Nesk N3-01 36 Dec-11 1.7 35.04322706 0.315936235 -29.67353553 3.522750102 10.71912813

Nesk N3-01 42 Jun-12 1.5 35.05753383 0.324520298 -29.66520882 3.508750971 11.85170243

Nesk N3-01 48 Dec-12 1.4 35.09580647 0.347483883 -29.64293368 3.503084023 12.31275039

Nesk N3-01 54 Jun-13 2.3 35.05522668 0.323136005 -29.66655161 3.553106765 8.293836642

Nesk N3-01 60 Dec-13 1.4 35.02725301 0.306351808 -29.68283262 3.503965587 12.2409307

Nesk N3-01 66 Jun-14 2.2 34.9533651 0.262019058 -29.72583627 3.550865619 8.471471308

Nesk N5-06 0 Dec-08 2.4 35.00690202 0.294141215 -29.69467714 3.563053767 7.50812792

Nesk N5-06 6 Jun-09 1.6 35.08826091 0.342956547 -29.64732529 3.514707359 11.36870892

Nesk N5-06 12 Dec-09 1.6 35.17434658 0.394607949 -29.5972224 3.512715009 11.53008293

Nesk N5-06 18 Jun-10 1.6 35.0876668 0.342600078 -29.64767107 3.514797142 11.3614411

Nesk N5-06 24 Dec-10 1.8 35.13640872 0.371845232 -29.61930269 3.525691689 10.48228785

Nesk N5-06 30 Jun-11 2.5 35.06293232 0.32775939 -29.66206684 3.5674283 7.163972953

Nesk N5-06 36 Dec-11 1.8 35.04322706 0.315936235 -29.67353553 3.529539502 10.17307924

Nesk N5-06 42 Jun-12 2 35.05753383 0.324520298 -29.66520882 3.538827919 9.42943668

Nesk N5-06 48 Dec-12 2 35.09580647 0.347483883 -29.64293368 3.533834625 9.82872033

Nesk N5-06 54 Jun-13 1.4 35.05522668 0.323136005 -29.66655161 3.502004213 12.4007701

Nesk N5-06 60 Dec-13 1.9 35.02725301 0.306351808 -29.68283262 3.533600077 9.84750343

Nesk N5-06 66 Jun-14 2.1 34.9533651 0.262019058 -29.72583627 3.546916655 8.785014921
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