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Abstract

Scientific communities engaging in big data analysis face numerous challenges in man-
aging complex computations and the related data on emerging and distributed computing
infrastructures. Large-scale data analysis requires applications with simplified access to
multiple resource management systems. Several generic or domain-specific technolo-
gies have been developed to exploit diversified computing environments, but due to the
heterogeneity of computing and data architectures they are not capable of enabling real
science cases. Scientific gateways and workflows are one such example which requires
the management of jobs on multiple kinds of batch systems using heterogeneous super-
computing architectures and access to advanced distributed file systems. To support
these requirements, a unified architectural framework is presented in this dissertation
that coalesces the right combination of standards and adequate middleware realisation.
This framework manages concurrent access for diversified user communities through
consistent and robust computing and data interfaces oriented to current application and
infrastructure demands.

The investigations reported in this dissertation were mainly motivated by physical
and machine-learning models, represented by two scientific case studies: biophysics and
Earth sciences. In the field of biophysics, the UltraScan scientific gateway is enhanced
to enable the processing of domain-specific data through standards-based job and data
management interfaces in High-Performance Computing (HPC) environments. The sec-
ond domain deals with Earth sciences and automates the processing of machine-learning
algorithms (e.g. classification of remote sensing images) using scalable and parallel
implementations. As proof of concept, both the case studies are supported through open
source implementations, in the form of middleware realisation, client APIs and their
integration with state-of-the-art science gateway frameworks.

Keywords— High-Performance Computing, Scientific Workflows, Distributed Comput-
ing, Open Standards, Job Execution, Data Analysis






Utdrattur

Visindasamfélog sem vinna med stortek gogn kljast vid margskonar dskoranir { sam-
bandi vid medhondlun flékinna utreikninga, og géognum peim tengdum, 4 komandi og
dreifdum kerfum. Stértek gagnagreining kallar 4 lausnir med einféldudu adgengi ad
margvislegum tolvurekstrarkerfum. Margar almennar og sértakar adferdir hafa verid
préadar til ad nota sibreytileg reiknikerfi, en vegna 6likra reikniadferda og peirra gagna-
skipan geta par ekki framkvamt alvoru visindarannséknir. Visindalegar gagnagéttir og
vinnuferli eru demi um slikt sem parfnast verkmedhondlunar 4 margvislegum bunka-
kerfum 4 élikum ofurtdlvuhogum og adgengi ad hapréudum dreifdum skraarkerfum. Til
ad stydja pessar krofur er 1 pessari doktorsritgerd kynntur hogunarrammi sem sameinar
réttu samsetninguna af stodlum og uppsetningu fullnegjandi millibinadar. Pessi rammi
medhondlar samhlida adgang fyrir fjolbreytta notandahdpa { gegnum 6flug og dreidanleg
reikni- og gagnasnid sem eru snidin ad porfum forrita og tolvukerfainnvidum.

Rannséknanidurstodurnar sem eru kynntar { pessari doktorsritgerd eru adalega
rokstuddar med raun- og vélarndimsmodelum fra tveimur demum frd jafnmorgum
fredasvidum: lifedlisfredi og jarvisindum. Fyrir lifedlisfredi er UltraScan visindagatt-
in betrumbett til pess ad gera henni kleift ad medhondla sértek gégn 1 gegnum stédlud
verkumsjonar- og gagnastjérnunarsnid { hahrada télvukerfum (HPC). Seinna freedisvidid
er jardvisindi og gerir medhondlun vélarndmsadferda sjalfvirka (t.d. greiningu fjarkonn-
unarmyndefnis) med stigvaxand utferslum sem haegt er ad keyra samhlida. Demin fra
bedum fredisvidum eru studd med opnum hugbiinadi { formi millibinadartitfarsina,
bidlaraforritaskil med bestu gittarommum sem fyrirfinnast { dag, til pess ad sanna gildi
peirra.

Lykiloro— Ofurtolvureikningar, Visindalegt vinnufledi, Dreifd dtreikningar, Opinn
stadall, Verkmedhondlun, Gagnagreining
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1 Introduction

1.1 Motivation

In the present business and industrial environment, there is an increasing dependence
on data and related services. Therefore, data-oriented services play an important role in
devising meaningful models and results. For example, social networks or sophisticated
search engines are all based on data-intensive analysis. To this end, scientific initiatives
are progressing towards the exploitation of data for discovering and extracting useful
information. A few large experiments can be mentioned as examples: the Sloan Digital
Sky Survey (SDSS) — central data for spectroscopic survey [37]; In-service Aircraft for
a Global Observing System (IAGOS) — a data infrastructure for climate change and air
quality [9]; and PANGAEA, one of the largest data collections for Earth sciences [44].
With such a flood of data from scientific experiments which are potential data sources,
it is very challenging to assimilate and interpret meaningful insights. This emerging
trend is gradually raising the bar for service and technological ecosystems enabling
the processing of data on distributed computing infrastructures. It is therefore critical
to offer a working functional basis for unified, user-friendly, portable and robust data
analysis and management platforms or interfaces that manage the processing of large
data sets on disparate and distributed computing clusters.

As the computing clusters supporting the data-intensive scientific applications often
consist of High-Performance Computing (HPC) platforms and services, it is imperative
for the data analysis layer to consider the HPC environment as the target platform.
There are several publicly funded initiatives that have led to the development of diversi-
fied HPC infrastructures, for example, PRACE [106], DEISA [56] and XSEDE [105].
These projects aim to provide supercomputing resources to multiple, more versatile
and science-agnostic user communities. Considering the heterogeneity of HPC infras-
tructural capabilities, the serial and manual analysis becomes unmanageable because it
requires automated and unified mechanisms to scale with the increasing magnitude of
data sets and resource requirements. Managing multiple computations and their input
and output data poses the following challenges. Firstly, there is a lack of convenience
in accessing the complex combination of geographically dispersed data, computing
services, and reliable data processing tools, which is considered to be a hindrance
to scientists. Secondly, the wide variety of parallel and distributed systems, such as
computing clusters with the emerging hybrid architectures, and the techniques and
infrastructures available to scientists require more intuitive forms of scientific analysis
to perform remote processing of data (e.g., entire data sets) which contrasts with tradi-
tional sampling. Last but not least, parallel and scalable implementations supporting
machine learning applications are not advanced enough to allow users to undertake the
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semi-automatic tuning and identification of parameters.

To lower the barrier between scientists and HPC-oriented data analysis, community
or application-oriented science gateways are being developed which relieve users of
the system’s technical intricacies and enable them to focus on science through Web-
and desktop-based interfaces for accessing HPC and High-Throughput Computing
(HTC) platforms. For this reason, many science gateways have emerged in the past
decade to provide scientific communities with usable, interactive, reproducible and
domain-specific portals. A few examples are, UltraScan [43], Chem Compute [92],
CyberGIS [107] and CIPRES [81]. One major shortcoming in the existing scientific
gateways is that they cannot be used with different resource management systems or
data management services. By chance, if some can be used in this way, then they
are statically confined to specific target computing services by separate technology
specific connectors. In this approach, one gateway must maintain a separate client
implementation of each job or type of data management service. As a consequence,
it becomes more impractical to maintain many connectors (so-called adaptors) in a
longer run. To provide these gateways with unified access for consistent user experience
in heterogeneous HPC environments, it is indispensable to have a common layer of
abstraction that exposes a generic set of job and data management models and interfaces.
This layer should not only be transparent enough to expose real computing resource and
data management capabilities but should also cater for user requirements coming through
a variety of user interface methods, science gateways, desktop clients or client APIs.
This dissertation defines an architectural model that identifies, combines and extends
multiple standards with the goal of forming a common mechanism for encouraging multi-
domain scientific application users to manage their computations on HPC infrastructures.
This addresses not only the above mentioned issues but also offers extensibility of future
capabilities (e.g., access to other standards-based infrastructures). In this dissertation, a
science gateway use case is employed as a motivation for in-depth analysis by eliciting
key requirements and then offering useful realisations.

Learning models represent the wide area of data mining and machine learning algo-
rithms. These models serve as the basis for this dissertation to automate the complex
workflow and life cycle of the data analysis. Several challenges are encountered in data
analysis phases. One of them is to execute machine learning algorithms multiple times
but with a different set of application parameters. In terms of implementation, for the job
submission, each combination of the parameter instance and the algorithm needs a sepa-
rate job request to the batch system. In addition to the generated multiple job submission
requests steered by the parameters, there is also an overhead once they are successfully
submitted. That is the management and monitoring of the running, parameter-generated
jobs. In this process, after all the computations have been completed, the next phase
is essentially data aggregation, in which the job results of all the parametric computa-
tions have to be structured and gathered for further analysis. Evidently, this becomes
non-trivial if all the steps of parameter sweep are performed manually as there is no
generic mechanism available that automates the iterative compute and data-oriented
executions in HPC environments. To support the parametric scenarios abstractly, in
this dissertation open and standards-based models are selected and implemented which
ensure the management of parametric, parallel and data-intensive computations and
their large data sets in a robust, intuitive and automated manner.



1.2 Thesis Objectives

In order to enable and automate scientific models through scientific gateways and
parametric interfaces, this dissertation analyses the three following case studies belong-
ing to two broad scientific areas of data analysis: domain-specific simulation science
models and learning models. Domain specific simulations refer to the generation and
interpretation of models based on established, well-defined theories and algorithms, i.e.
using numerical methods with known physical laws. On the other hand, general learning
models are produced through algorithms devised in the field of statistical data mining,
machine learning and computer vision. These models are adopted in many domain-
specific applications and include in many cases some form of optimisation method.
The challenges and problems described above and the briefly presented methods for
solutions are motivated by the following three scientific use cases:

1. Facilitate the processing of hydrodynamic data from ultracentrifugation experi-
ments by using the specialised UltraScan science gateway. This science gateway
uses the parallel UltraScan application for analysing high sedimentation veloc-
ity data through its HPC modules, specifically, 2-dimensional spectral analysis,
genetic algorithms, and Monte-Carlo analysis.

2. Perform semi-automated remote sensing data analysis including different pre-
processing methods such as Principal Component Analysis (PCA) using various
Support Vector Machine (SVM) kernel parameters in HPC settings.

3. Enable real-time semi-automatic outlier detection methods using different al-
gorithms such as Density-based spatial clustering of applications with noise
(DBSCAN) with parameters (e.g. algorithm grid search or execution environment
configuration, etc.) using a distributed computing architecture.

1.2 Thesis Objectives

The main Thesis Objectives (TOs) of this research project are to enable scientific
communities to lower barriers for complex and data-intensive scientific workflows on
distributed HPC infrastructures through a unique set of interfaces and their respective
implementations. The TOs are achieved through the use of open and widely known
computing and data standards, and their implementations by using state-of-the-art HPC
middleware platforms. The use of HPC middleware is essential here as it defines a layer
of abstraction that provide users with a unified interface to run parallel computations by
encapsulating the heterogeneity of the underlying scientific application, batch system,
network, operating system, and hardware. One of the HPC middleware platforms is
chosen as a basis for selected reference implementations of the thesis findings.
The TOs with associated papers are summarised below:

¢ TO 1: Elicit the requirements of two fundamentally different data analysis
approaches, physical and learning models.

e TO 2: Compare and contrast requirements from the two different (learning and
physical) models, and identify a set of primary functions required to support the
envisioned architectural elements.
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* TO 3: Develop an architectural design based on primary functional components,
which form the building blocks of a unified solution to enable a variety of scientific
applications with similar set of requirements.

* TO 4: Implement the software prototypes that realise the architectural design
elements, thereby forming a technical basis for the scientific case studies to access
multiple computing and data services.

¢ TO 5: Adopt the software prototypes in the form of distinct case studies, pri-
marily aimed at enabling different scientific communities using distributed and
heterogeneous, computing and data infrastructures.

Figure 1.1 shows the research methodology in Business Process Model and Nota-
tion (BPMN 2.0) [13], which outlines a clear research path taken to fulfil the highlighted
thesis objectives of this doctoral dissertation. As a very first step, the research com-
menced with a survey of existing technologies and then proceeded to the use case
analysis of two major learning approaches on distributed HPC infrastructures. The next
phase compared and contrasted the requirements, which resulted in a functional analysis.
This functional analysis was further taken as a basis for developing a core architectural
design. The work done in the architectural design has been contributed to several
standard documents as cross-interoperability excursions and experience documents.
Following the architecture, the implementation phase included the scientific gateway,
support for parametric applications and integration of HPC-based job execution services
with HTC-based storage systems. Each of these aspects resulted in several middle-
ware enhancements and client Application Programming Interfaces (APIs). The final
phase delivers the designed solution to the relevant scientific communities by providing
them with prototypical and service deployments on production computing and data
infrastructures.
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1.3 Contributions

The main contributions of this doctoral dissertation are divided into four areas. They
are i) analysis of scientific case studies from different learning models, ii) enhancing
scientific gateways to access multi-resource and cross-infrastructural services through
standards-based client APIs, iii) bridging computing and data services from two differ-
ent (HPC and HTC) resource architectures, and iv) enabling and automating parallel,
scalable and iterative machine learning models. The first contribution is the analysis of
scientific case studies from physical and learning models, specifically referring to Earth
sciences and biophysics. In this contribution, the established scientific communities
are involved, from whom the application requirements were initially gathered and then
followed by the architecture design. This takes the TO1, TO2 and TO3 objectives
into account and offers the associated implementation. Along these lines, the second
contribution focuses on scientific gateways. Its realisation commenced with the concrete
design, which is based on open source gateway middleware, and then provides the corre-
sponding implementation in the form of generic and domain-agnostic client Application
Programming Interfaces (APIs). Since the client APIs are based on standards-based
models and can be used generically, they can easily be integrated with multiple scientific
portals and gateway frameworks. Enabling scientific gateways caters for 703, TO4
and 7O5. The third contribution fulfils 703, TO4 and TO5 by providing an integra-
tion base-line for integrating cross-architectural HTC and HPC case studies through a
shared, federated and distributed file system. That in turn is a unique contribution as it
supports the realisation of complex scientific workflows bridging two different (HTC
and HPC) infrastructure paradigms simultaneously. This effort also partly contributes
to the area of security, which is cross-cutting with respect to the architectural layer
that facilitates users to access distributed computing resources while interacting with
remote jobs and data and the services managing them. It particularly develops the
provision of multi-identity authorisation access models realising complicated scenarios
that allow end users who hold multiple secure identities and perform inter-organisational
data analysis. The fourth contribution enables scalable machine learning models of
parametric nature by leveraging the open and standards-based parameter sweep models
in HPC environments. In this contribution two parallel machine learning algorithms
are targeted: Density-based spatial clustering of applications with noise (DBSCAN)
and Support Vector Machines (SVMs). As most of the machine learning models require
iterative computations with varying parameters at some point in the data analysis, this
contribution is very useful in effectively managing long running parallel and parametric
computations. This contribution facilitates the implementation of 704 and TO5.

1.4 Outline

This dissertation is compiled in a cumulative form with a collection of research papers
that are included as an appendix. The main thesis contributions have been published
in several peer-reviewed journals and conference proceedings. The following chapters
provide a summary of all the case studies, their requirements, and corresponding
realisations.



1.4 Outline

1.4.1 Structure

Chapter 1 - Introduction outlines the motivation for the research project and defines
the overall thesis objectives.

Chapter 2 - Background provides a comprehensive but essential background on the
data analysis approaches, case studies, supporting standards and distributed computing
middleware technologies used.

Chapter 3 - Automated and Standards-based Data Processing in HPC derives an
open standards-based, distributed computing architecture for supporting multidisci-
plinary data analysis applications on distributed and heterogeneous high performance
computing resource environments. This chapter presents related work, a summary of
requirements, with functional component analysis that summarises the contributions
presented in the List of Publications.

Chapter 4 - Summary of Publications presents a summary of appended papers and
shows that each of them is aligned with the respective thesis objective.

Chapter 5 - Conclusions ends the thesis and present prospects for the relevant research
topics.

1.4.2 Relation of Publications and Thesis Objectives (TO)

As the dissertation primarily focuses on the automated processing of two scientific
models, which are presented in detail in the publications shown in Table 1.1. Paper I,
Paper 111, Paper IV and Paper V focus on the learning models. Paper I also discusses a
reference implementation to support HPC and HTC workflows through the integration
of UNICORE and the Global Federated File System (GFFS), and thus contributes to
the realisation of multi-tier identity authorisation scenarios.

Table 1.1. Association matrix of learning / physical models and scientific publications.

Model / Paper  PaperI PaperIl PaperIll PaperIV Paper V

Learning Model X X X X
Physical Model X

Paper II1, Paper IV and Paper V present more insights into the adoption of standards-
based parameter sweep models and show how they can be used to automate big data
analysis scenarios based on massively parallel Density-based spatial clustering of
applications with noise (DBSCAN) and Support Vector Machine (SVM) methods.
Paper II highlights the remote processing of physical models. It also enables them to be
realised through science gateway frameworks in combination with the platform-agnostic
and standards-based client APIs.

The building blocks presented in this thesis are not only confined to the learning and
physical models presented here, but they can also be applied to more generalised and
domain-agnostic scientific models. Table 1.2 summarises the association of the thesis
objectives and the publications.

The research carried out for this dissertation resulted in a contribution to several open
source software libraries and scientific publications. Table 1.3 depicts the relationship
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Table 1.2. Association matrix of thesis objectives and scientific publications.

TO /Paper Paperl PaperIl PaperIll PaperIV Paper V
TO 1 X X X X
TO2 X X
TO 3 X X X
TO 4 X X X
TOS X X X X

of the developed software artefacts and related scientific publications. The software
contributions are most notably distributed as production versions and are actively
supported by multiple organisations through open source collaborative platforms, such
as SourceForge! and Apache Software Foundation?.

Table 1.3. Association matrix of software contributions and scientific publications.

Software / Paper PaperI PaperII Paper Il Paper IV  Paper V
UNICORE-BES X X X X X
unicore-client-wrapper X X
JSDL-Sweep X X X X
Airavata-GFAC-BES X
UNICORE-GFFS X

Thttps://sourceforge.net
2http://apache.org



2 Background

A wide range of literature is available on the data analysis approaches involved, which
includes a cohort of algorithmic variations and methods, as well as various data process-
ing and management middleware technologies that enable those methods on distributed
infrastructures. Therefore, it is not feasible to describe all of them. For the sake of
brevity, this chapter only highlights the relevant methods, computing and data standards,
and middleware technologies that primarily support the motivation behind the case stud-
ies analysed in this dissertation. This chapter begins with the data analysis approaches
and later examines the case studies where these approaches are applied. Further, it
also describes how these approaches are realised through the adoption of standards and
middleware technologies.

2.1 Data Analysis Approaches: Physical and Learn-
ing Models

Data analysis provides an overall methodology and platform using a myriad of tools
and technologies [66, 64] for processing large and complex data sets. This methodol-
ogy applies to the complete life cycle including different processing phases to derive
meaningful information to support useful scientific conclusions. This chapter describes
potential use cases from two different areas of modelling — physical and learning models.
Specifically, it explores the algorithms and tools from the domains of biophysics and
Earth sciences.

2.1.1 Analysis of Physical Models

Computer simulations are based on physical laws and are produced by running physical
models based on parallel programming models often employing numerical methods.
Pragmatically, these simulations are depend on data from various experiments and
observations. There are many examples, but to name a few: molecular modelling,
nuclear incident modelling, car crash simulation, human brain modelling and climate
change patterns.

To support applications and complex simulations on distributed computing infras-
tructures, scientific computing provides two system architectures, High-Performance
Computing (HPC) and High-Throughput Computing (HTC). HPC uses a cluster-based
architecture in which computing cores are tightly integrated through fast network inter-
connects. It is suitable for scientific applications where performance is a critical factor.
On the other hand, HTC architecture [83] consists of computing cores that are coupled
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loosely, including low-cost commodity clusters connected with non-high-performance
network interconnects. It has proved to be more suitable for applications with less
demanding run-time performance.

Several programming models are available to harness the capabilities of the above-
mentioned processing infrastructures. Prominent examples are, Message Passing In-
terface (MPI) [80], Open Multi-Processing (OpenMP) [89] and OpenACC [28]. They
enable computing processors to work in a cooperative manner using different pro-
gramming models which are divided into two methods: Single Program Multiple
Data (SPMD) [38] refers to data parallelism whereby multiple processors work on
different parts of the data; whereas Multiple Program Multiple Data (MPMD) [29]
allows each processor to perform execution using a different code and data. Applications
developed on these programming models are placed locally at the resource or site level.
This implies that if a scientist intends to access and run applications remotely, a layer of
software and interfaces is required that allows the management and monitoring of the
computations in-progress and their data.

2.1.2 Data Intelligence: Data Mining and Machine Learning

Statistical data mining is an area which encompasses a wide spectrum of algorithms and
methods to find interesting patterns from data. In some cases, this field is interchange-
ably referred to as machine learning, although the two fields have minor distinctions in
terms of overall objective. The term machine learning is defined by Tom Mitchell as
[82], “A computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.”
In broad terms, machine learning problems are categorised into three groups,

» Supervised learning: In this method, a given data set already has output assigned,
so that the input and output association is learned in a straightforward way.
Supervised learning deals with two kind of problems: regression and classification.
Regression problems involve predicting through continuous function, which
means that the output is a real number. Classification problems discover results
from a discrete function. There are several classification methods that enable
supervised learning problems to deal with, such as, decision trees [95], SVM [33],
k-Nearest Neighbour (kNN) [94] and Neural Networks [74].

» Unsupervised learning: Unsupervised learning tackle problems without labelled
response, which means that an input and output relation has to be created. This
contrasts with supervised learning problems where we have a data set that is
already labelled and which to some extent guides the process of data understand-
ing. Unsupervised learning problems use several clustering approaches to form
the association of data attributes. Several unsupervised learning algorithms have
been developed in the last few decades. For instance, K-means [69], hierarchical
clustering [65] and DBSCAN [47].

* Reinforcement learning: Reinforcement learning tackles problems by using a
graded response for each given input in a particular learning context. It is often
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applied in game theory and is not a major part of this thesis. It is listed here for
the sake for completeness.

2.2 Case Studies

2.2.1 UltraScan: Analysis of Ultracentrifugation (AUC) Experiments

UltraScan [6, 41] is a data analysis application suite which processes the data gener-
ated from high-resolution analytical ultracentrifugation (AUC) [32] experiments using
sedimentation velocity centrifugation methods. This application provides useful in-
sights in order to understand biological macromolecules and synthetic polymers, which
help in investigating complex relationships among biological systems such as different
kind of tumors. Scientists can perform noise analysis by using 2-dimensional spectral
analysis (2-DSA) [23], genetic algorithm optimisation [24] and Monte Carlo analysis
methods [42]. Most of the functionality offered by this application is accessible through
its Web-based interface called the UltraScan science gateway (US3-LIMS) [6]. As
US3-LIMS only supports a limited type of resource interfaces, it cannot be seamlessly
invoked on different computing sites with various resource management systems. To
address this concern, the US3-LIMS gateway was enhanced as part of this doctoral
thesis to perform cross-organisational, seamless and resource-management-agnostic
computations through standards-based interfaces and models.

2.2.2 Outlier Detection on Point Cloud Data

The identification of outliers on a 3-D point cloud data set motivated the research carried
out in this thesis. Specifically, the point cloud data [71] of the city of Bremen, Germany,
is taken as a use case. The underlying outlier analysis is performed using the DBSCAN
[47] algorithm which groups densely populated data points that are in proximity to
each other. The algorithm finds the number of clusters automatically. Of these the low-
density clusters are grouped as noise, and they are then reserved for application-specific
analysis.

The outlier analysis method used in this dissertation is realised through HPDBSCAN
[59], a parallel HPC DBSCAN-based implementation. It uses the combination of MPI
and OpenMP (hybrid approach) to attain parallel processing. This thesis takes the
implementation described in [59] as a basis for performing standards-based remote
outlier analysis. Further details are elaborated in Paper I.

2.2.3 Classification of Remotely Sensed Images

The Support Vector Machine (SVM) [33] is one of the most intuitive machine learning
methods available today. It belongs to the class of algorithms applicable for supervised
learning, i.e., for classification and regression analysis. The main idea of SVMs is to
form a maximum margin boundary which separates training samples from different
classes. Initially, SVMs are used for linear decision boundaries, that is to say binary
classification, which is not useful for most real scientific case studies as they generally

11
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have any number of classes. This situation led to the development of kernel functions
[98]. One drawback of SVM is the algorithm’s sensitivity to the choice of the kernel
function and its cost parameters.

piSVM [25] is a libSVM-based [30] parallel implementation of SVMs, particularly
supported for HPC architectures. The first version was published at pisvm.sourceforge.net.
Due to its shortcomings with respect to performance and storage access, this thesis
preferred to use a more enhanced implementation presented in [27], which efficiently
utilises parallel compute resources, and handles large data sets by the state-of-the-art
parallel I/O methods. This implementation is based on MPI and Hierarchical Data
Format (HDF5) [2] in optimising multiple data analysis life cycle phases.

2.3 Standards

2.3.1 Job Request Model: Job Submission and Description Language
(JSDL)

Job Submission and Description Language (JSDL) [8] is a comprehensive specification
published by the Open Grid Forum (OGF) [4]. It comes with a rich data model as
XMLSchema [22], covering a wide spectrum of concepts that are used to express
application, compute and data management requirements. The model structure consists
of four major elements, job identification, application, resources and data staging. Each
of these elements further contains hierarchically more data structures.

The JSDL specification mentioned above represents a core set of information, but
still lacks integration with the emerging requirements of science. Therefore it offers a
number of profiles. The profile embodies auxiliary but useful data models that include
additional structure and constraints based on JSDL specifying, for instance, different
data access protocols or parametric job requirements in a single job request instance.

This dissertation has significantly contributed to three out of the many available
JSDL profiles by providing input from the selected use cases. The profiles are briefly
introduced here as follows:

» HPC FileStaging Profile [109]: This specification models extensions for rep-
resenting HPC-oriented concepts for data transfer and access. For instance, it
lets the client pass credential information while submitting job requests. The
specification is useful for constructing job requests with different data transfer
protocols (e.g., File Transfer Protocol (FTP), Secure Copy Protocol (SCP)) and
their corresponding required security credentials.

* JSDL-SPMD (Single-Program-Multiple-Data) [97]: This specification is an ex-
tension based on JSDL for expressing job requests with the parallel application
and run-time environment elements as part of the JSDL instance. It contains a
variety of concepts used while running MPI- or OpenMP-based jobs. For in-
stance, it gives clients the option of specifying what kind of parallel run-time
environment (e.g., OpenMPI or MPICH) and what number of processes are re-
quired. The JSDL-SPMD extension overrides the application element of the
JSDL specification. Therefore all the extension elements are placed inside this
structure.

12
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* JSDL-Parameter Sweep (JSDL-PS) [45]: The JSDL-PS extension captures the job
submission requests of a parametric nature. Many scientific applications require
such functionality to manage many jobs intuitively as part of one simulation.
This specification allows parameter sweeps to be formulated within the main
job request in which a set of parameters or parametric constraints are specified.
The sweep model defines an XML instance that includes which parts of the job
request are parametric and which are not. This is defined through the X-PATH
[85] query language. The JSDL-PS specification supports two fundamental types
of sweeps: document and file sweep. Document sweep is particularly suitable for
the parametrisation of application arguments and environment variables enclosed
in the job request. File sweep provides a more invasive approach that parametrises
the content of the input files used by the submitted job.

2.3.2 Job Management and Monitoring Interfaces: OGSA-Basic Execu-
tion Service

In order to provide several scientific disciplines with a convenient and unified computing
experience, common, convenient and unified interfaces and models are required. To
serve this purpose, the job management and monitoring standards deliver interoperable
access to different distributed computing middleware clients and services. The OGSA-
Basic Execution Service (OGSA-BES) [51] specification is one of the emerging job
submission and management standards considered in this dissertation. It provides a web
services-based interfaces to manage and monitor distributed and remote computations.
OGSA-BES stands on a set of SOAP [35]-based specifications, such as Web Services
Interoperability (WS-1) [5], Web Services Addressing (WS-A) [36] and Web Service
Resource Framework (WSRF) [18]. It includes separate interfaces for job submission,
management, and monitoring concerns. The service interfaces are briefly described
below:

* BESFactory: This provides an interface to create and monitor sets of activi-
ties, and also allows capabilities of an HPC resource management system to be
exported.

* BESActivity: This interface logically represents a single job instance. In this
manner, it exports a set of functions to control individual jobs, such as abort,
pause, and resume.

¢ BESManagement: This is an administrative interface for managing BESFactory
endpoints, which instructs the BESFactory interface whether to accept or reject
any new job submission requests from the user.

Apart from the interfaces, the OGSA-BES specification contains the data models
that significantly represent the complex concepts and associations of HPC architectures.
This includes the computing site’s deployed resource management system, storage
capabilities and managed jobs. In addition to this information, the middleware service
information can also be represented. The specification further provides a state model for
capturing the complete job life cycle. It is similar to a state machine. The information
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model is part of the BESFactory interfaces to represent back-end resource management
attributes such as the total jobs being managed, the total number of cores, and number
of nodes, etc.

2.3.3 Resource Capabilities: GLUE2 Information Model

The GLUE specification [15] models compute and store entities in the natural language
representation. It is an abstract model with theoretical representation. However, it
has several machine-readable renderings in XML Schema [16], Lightweight Directory
Access Protocol (LDAP) Schema [14] and JavaScript Object Notation (JSON) [103]. In
this dissertation, the XML Schema rendering is used as an extension to the BESFactory
attributes. It is used to accommodate more sophisticated types of hardware and software
resource capabilities. A typical scenario is a logical conceptualisation of a computing
cluster that offers an OGSA-BES-compliant service instance, application and runtime
environment capabilities also including storage and hardware configurations.

2.4 UNICORE: HPC Grid Middleware

HPC middleware is a software abstraction that encapsulates the complexity of underlying
layers of a batch system, data distribution, and file management capabilities. According
to [34] the middleware is defined as:

“The term middleware applies to a software layer that provides a programming
abstraction as well as masking the heterogeneity of the underlying networks, hardware,
operating systems and programming languages.”

UNICORE is distributed computing middleware which provides a layer of encap-
sulation over multiple kinds of batch systems, platform-agnostic deployment, data
management, and transfer mechanisms. It supports a variety of use cases which are
most common while performing distributed job submissions on HPC resources. It works
not only for single resources, but can be used for a set of computing clusters, grouped
in an infrastructure. Examples of such computing infrastructures are XSEDE [105] and
PRACE [106].

UNICORE is based on a client-server architectural pattern [34] and follows a Service
Oriented Architecture (SOA) style of software design. In this respect, it provides all
of the major functionalities, such as job management, data transfer, storage manage-
ment, resource brokering, and workflow execution and enactment in the form of web
services. In a service-oriented design, the client-side applications can be independent
of server-side implementations or services. Therefore, the clients that are based on
other middleware stacks, though not directly developed for UNICORE, can be written
to interact with UNICORE services, for example by following the client-proxy design
pattern [55].

Figure 2.2 depicts the UNICORE architecture from a broader perspective with two
major layers of client and server-side components. On the client side, it provides a thick
client called UNICORE Rich Client (URC), with the capability to manage complex
scenarios. It is developed with the Eclipse Rich Client Platform (RCP) [73] framework
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Figure 2.2. An architectural view of the UNICORE middleware

and comes with an interface for users ranging from novice to advance system expertise
through which they can construct and edit complex scientific workflows. This not only
allows a user to interact with different computing sites but also provides a rich interface
to visually set up workflows through a canvas and interactively submit and monitor
remote jobs. The UNICORE Command-line Client (UCC) is a command-line interface
for more advanced users willing to interact with a server tier.

When a user interacts with a UNICORE instance, the very first component that
receives the request is the UNICORE Gateway. This ensures a mutual client-side
authentication based on the SSL protocol [53]. The components beneath are responsible
for performing authorisation and managing jobs and data. Immediately below the server
tier, there is the lower level resource management layer called the system tier on which
the Target System Interface (TSI) resides. The TSI allows incoming user requests
through the job management service to be translated into the target batch system specific
commands. In this manner, the TSI layer provides the request and response translation
of several batch systems, e.g., SLURM, LoadLeveler, and Load Sharing Facility (LSF).

As far as the enabling of scientific applications is concerned, the server tier provides
multiple applications in a declarative manner, i.e., through an extendable configuration
database on which multiple scientific applications, run-time environments and their
pre- and post-execution requirements are specified. UNICORE has a well-supported
framework of user-facing components to enable science requirements. Nevertheless,
it lacks standards-based interfaces to support science communities using their own
client applications. In the research covered by this thesis, UNICORE is considered as a
frame-of-reference for providing reference implementations of the abstract concepts
addressed in this thesis. It is used for introducing standards so that other scientific
clients can leverage the remote management of jobs and data for High-Performance
Computing (HPC) deployments. Details on what standards are used, how they are
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applied and integrated into UNICORE are given in the context of the corresponding
research later in this thesis.

2.5 The Global Federated File System (GFFS)

The Global Federated File System (GFFS) [61] is a distributed file system to federate
distributed remote compute and data resources in a secure and standardised manner.
All the interfaces of the GFFS are based on an SOA design, thus exporting all the
functionalities as a set of web services. In particular, the core of the service interfaces is
built upon the OGF’s Resource Naming Service (RNS) [84] standard.

As part of this dissertation, the GFFS is extended and integrated with the job
execution service of UNICORE. This is to provide the HPC-based jobs with access to
the GFFS-managed storage pools, because the GFFS was primarily designed to support
HTC infrastructures. With this extension, cross-HPC and -HTC resources can be
simultaneously used. Specifically, this is comprehensively discussed in Paper I, which
covers the outlier analysis of data in the GFFS space running through HPC-oriented
UNICORE job management and execution services.
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This chapter covers the main research contributions which are comprehensively de-
scribed in the List of Publications. It begins with the work related to the research
undertaken as part of this dissertation. The chapter then highlights significant require-
ments and subsequently explores how these requirements are realised through the
functional component analysis. The identified functional components are the main
building blocks, each forming a group of similar functions which are discovered during
the design and implementation phase of the tools supporting the case studies.

3.1 Related Work

Extensive research has been performed in the area of distributed computing and data
infrastructures. However, little research has been published that provides a design
integrating the elements of, application-centred scientific gateways, cross—infrastructural
and distributed file systems, and automated and scalable parametric computations,
combined in one coherent, standards-based architectural framework supporting different
case studies. In view of this, the following section examines the initiatives which are
closely related to the research work presented in this dissertation.

Science gateways have benefited a larger set of scientific communities than the
community-specific portals which are limited to use by individual applications, server-
side protocols or computing clusters. It is evident that the integration of scientific
gateways is founded upon client APIs. This concept is also used in the architectural de-
sign of this thesis, while adhering to established software engineering methods. Hence,
several client APIs have been developed to support different communities. Examples
include the Vine toolkit [67, 96], which is a JAVA-based API that provides a client-side
layer containing a separate sub-API for each middleware. Initially developed for Grid-
sphere [86] it was subsequently released as an independent library for other portals.
It provides separate connectors for UNICORE and gL ite, but in a proprietary format.
Thus, they cannot be used by scientific applications that are standards-compliant. The
Simple API for Grid Applications (SAGA) [58] is a state-of-the-art API specification de-
veloped by the Open Grid Forum (OGF). It supports multiple programming models (e.g.
map-reduce, replication and parametric executions, very similar to the Apache Airavata
framework. In this way, the Simple API for Grid Applications (SAGA) framework [58]
and it’s implementation bindings [79] in combination with the client API developed in
this dissertation can offer more value for both Airavata and SAGA-based scientific gate-
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ways and portals. The P-Grade portal [63] is yet another closely related development
concerning scientific gateways. This portal bridges multiple middleware clients through
different adaptors. It provides a separate component for standard interfaces. However, it
comes with a limited support of standards, which may not be sufficient for enabling the
scientific case studies presented in this dissertation which use multiple and distributed
HPC infrastructures.

In this research project, the machine learning models use the DBSCAN [47] al-
gorithm and its parallel implementation [91], automated through the combination of
UNICORE-BES and the Global Federated File System (GFFS) thus enabling remote
management of job executions in heterogeneous resource environments. Similar to
this endeavour, GridFTP [72], one of the data transfer mechanisms used by many open
source and commercial vendors, is integrated with UNICORE by following the same
pattern of UNICORE and GFFS realisation. In contrast to the GFFS integration, the
GridFTP extension comes with a separate security model that encapsulates user creden-
tials in the job request model and also the extension of the native execution framework
of UNICORE with a dedicated file transfer component which facilitates the actual
data transfer and management. While submitting UNICORE jobs with GridFTP data
staging a user has to include a chain of X.509 proxy certificates, as part of the message
payload. In this approach, the complete credential hierarchy is exposed as plain text,
although the message payload is encrypted, which still might not be intuitive and secure
as administrators can see this information. On the other hand, this is not what the GFFS
integration does. It transports an encrypted set of credentials as Security Assertion
Markup Language (SAML) assertions — even in the client request payload, see Paper [
for more details. With GridFTP, there is a web-based data transfer service known as
GlobusOnline [49]. This mainly uses GridFTP for providing one-to-one and third-party
data transfers. Comparing GlobusOnline and the Global Federated File System (GFFS),
in terms of concept and functionality they share many functionalities. However, one
major benefit of integrating UNICORE-BES with the GFFS is to let users access and
manage, distributed and cross-site HPC (UNICORE) and HTC (GenesisII) workflows.
Similar to the approach followed in this dissertation, ARC [46] integrates with the
data management platforms, dCache [54] and Distributed Data Management (DDM)
[20]. This integrated solution is oriented towards the Large Hadron Collider (LHC)
particle physics community known as ATLAS [104]. Functionality-wise, the dCache
and GFFS platforms offer the same kinds of services, but they are based on different
sets of standards. The GFFS adopts RNS and BytelO standards, whereas dCache is
based on the Storage Resource Management (SRM) [10] interface. The integration of
the GFFS with the WS-PGRADE / gUSE (grid and cloud user support environment)
[63] science gateway framework is closely related to the research on which thesis is
based. The WS-PGRADE / gUSE framework connects with the GFFS [7] and allows
jobs to be submitted to UNICORE and ARC services through the OGSA-BES interface.

In addition to the enabling of standards-based job executions and data management,
parametric computations are imperative for automating learning models used in different
scientific domains. For that reason, the research work for this dissertation produced the
JSDL-Sweep library, a lightweight, standards-based, technology and platform-agnostic
API implementation of the JSDL-PS specification. While analysing the related work,
there are a few initiatives that are closely related to the research presented in this thesis
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in the context of enabling semi-automatic processing of jobs in HPC environments.
gEclipse [57] is one such related research project that is based on Eclipse framework
[73]. It provides individual client adaptors for several types of computing middleware,
such as gLite, ARC and UNICORE. gEclipse is the first implementation of the JSDL-
PS specification, and it also provides an automatic generation of JSDL-PS requests
through Eclipse’s Graphical User Interface (GUI). That means users are relieved of
the complex XML representation of their parametric job requests. It is encouraging in
terms of usability. However, gEclipse is tightly integrated with the underlying Eclipse
libraries, which hinders third-party scientific clients, gateways or Workflow Management
System (WMS) from adopting it in their environments. In the area of parametric
executions, glite’s Workload Management System (WMS) is a meta-scheduler and
comes with the provisioning of parametric computations. This implementation builds
upon its own proprietary specification called Job Description Language (JDL). In
contrast to the JSDL-PS specification, the JDL structure has two major short comings.
Firstly, it is very specific to the gLite clients, thus other non-gLite clients cannot be
integrated in a straightforward manner. Secondly, the JDL’s structure of parametric
requests only handles the sweeps of a single parameter within the scope of the whole job
request. This contrasts with the approach followed in this doctoral dissertation which
relies on the adoption of standards. The research led to the JSDL-Sweep implementation
that is based on the rich structure of JSDL-PS for representing the parallel, multi-variant
and complex hierarchy of parametric job request structures.

3.2 Requirement Analysis

This section summarises the requirements for realising the learning and physical models.
The requirements were gathered through personal interviews, passively observing user
interactions, and studying the characteristics of the applications with respect to compute
and data access patterns. During this phase, the emphasis was placed on allowing users
to focus on science rather than dealing with the complex system access intricacies, such
as distributed batch system interaction, data management and security. The requirement
elicitation and analysis presented in this section implements thesis objectives 7O and
102.

R1-Remote job submission: This requirement comprises a scenario in which a user
may submit jobs to remote execution service. This scenario should be performed through
standards-based protocols because scientific applications often require a complex set
of input and output parameters to be qualified for successful computation. In this
respect, the standards-based structure plays an important role as it captures a variety of
application and data representations. Most notably these include, application, compute
and data resource requirements. To support this functionality, there should be a standard
for the job submission interface and model that conceptualises the user’s job execution
request and response protocol. The standard should also provide a set of methods
representing the overall job submission phase.

R2-Remote job management and monitoring: Job management and monitoring
realise remote execution and monitoring scenarios. Job submission to the resource

19



3 Automated and Standards-based Data Processing in HPC

management system only captures the scenario of channelling the user’s job request to
the batch system or queue while the job management and monitoring scenario envisions
the interaction of users with the running remote job, such as pause, abort and resume,
push-based data staging and status monitoring.

R3-Resource discovery and registration: Several computing sites are involved within
a distributed computing infrastructure. Each of these computing sites can deploy a
different variation of execution services. Resource discovery is essential for scientific
clients and computing sites so that the existence and availability of desired execution
sites should be known.

R4-Security: This is one of the fundamental requirements in order to support remote
job and data management scenarios. It allows scientific clients to communicate securely
with the target execution or data service. With this requirement, the target service should
be capable of authenticating and authorising the identity of the client requesting the
job submission. In the case of distributed file system integration, after passing through
various layers of different services (e.g., identity provider or meta-scheduler), scientific
clients present multiple identities to the job management service. To vet these complex
requests, a secure validation and delegation model is required to parse and verify multi-
assertion and nested authorisation tokens, known as assertions. Furthermore, integration
with MyProxy [87] services should also be realised for supporting the computing
resources deployed across XSEDE [105]-managed services.

R5-Enabling science gateways: Science gateways provide domain-specific user
interfaces. Mostly they are available in the form of web portals. Science gateways
accessing resources and running compute and data-intensive jobs require components
to understand remote system interfaces. Therefore, the gateways should be extended to
include client-side components that can communicate the target resources and execution
interfaces on the users’ behalf.

R6-Parametric executions: Several scientific applications and complex simulations
require recurring executions with different parameters. In parametric computations, the
basic run-time environment specification of the application remains constant while the
application parameters are variable. The job management services should provide a
data model and appropriate implementation to accommodate and monitor parametric
job executions.

R7-Job provenance: Job submission through middleware may go through several
tiers until the final output is produced. To diagnose any errors or inconsistencies
during the job execution life cycle phases, typically pre-processing, processing and post-
processing phases, adequate information is required for analysing any unexpected job
execution failures. Therefore, a data model should be available that provides an ample
provenance record on various job execution phases. This may lead to a data structure
enabling scientific applications to project and search for interesting information events
for debugging job failures.

R8-Federated job and data management: This requirement complements the elicited
requirements by allowing scientific clients to manage multiple jobs and their data on
distributed computing infrastructures. Running cross-infrastru-ctural computations
sometimes requires accessing both HPC and HTC sites and has a tremendous potential
for supporting a wide range of scientific case studies, specially for managing distributed
scientific workflows consisting of many tasks connected to each other forming compu-
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tational graphs. Paper I particularly covers the scenario in which data processing such
as clustering using Highly Parallel DBSCAN (HPDBSCAN) as well as access via the
GFFS is based on two different infrastructures.

Requirements R1-R8 presented above lead to the analysis of the functional com-
ponents that provide a unified and standards-based framework for distributed and
HPC-oriented scientific applications. These requirements are summarised in Paper I,
Paper II, Paper 1V, and Paper V.

3.3 Functional Component Analysis

This section describes the functional components which are motivated by the require-
ments presented above and the scientific case studies originating from physical and
learning models. The design of the functional components ensures that the users access-
ing scientific applications should have seamless management of remote data processing
and management interfaces. The analysis of functional components fulfils thesis ob-
jectives TO3, TO4 and TOS5. Furthermore, in combination these components form
a generic architectural framework following open standards. Thus, interoperability
among other standards-based tools is achieved. The development of the functional
components also contributed the experiences and lessons learned for inclusion in the
standard specifications. From the implementation perspective, this framework provides
technology-agnostic abstractions for heterogeneous, data-intensive and distributed HPC
infrastructures.

3.3.1 Remote Data Processing

Remote data processing refers to a set of scenarios capturing job management and
monitoring in distributed computing environments.

As part of this research project, one objective was to facilitate resource-management-
agnostic submission and monitoring of jobs on remote sites. In order to support multiple
resource management systems, standards-based interfaces play a significant role in
enabling multiple computing sites. Job submission and management is realised through
the OGSA-Basic Execution Service (OGSA-BES) specification.

The OGSA-BES interfaces described in the first version of the specification lacked
support for expressing adequate resource capabilities, for example nodes, cores-per-
node, and network-type. In pursuit of a standards-based job management service
exporting state-of-the-art batch systems, the GLUE2 specification model is incorporated
as an extension to the OGSA-BES’s BESFactory interface. The resulting BESFactory
implementation is deployed as a server-side component to expose the computing capabil-
ities of the target site. With the GLUE2 extensions, this would require client-side tools
or APIs to adhere to the GLUE2 specification for communicating with the server-side
endpoints. The related client tools and APIs have been enhanced with the provision
and understanding of GLUE2 elements, which are then used while expressing service
request and response payloads.

The first OGSA-BES implementation was realised as part of the thesis: UNICORE-
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BES. The initial results on this implementation have been published by the author of
this thesis in [76]. UNICORE middleware is used as one of the building blocks, as its
web services environment provides intrinsic support for stateful services [50] through
WSRF-based [18] standards. One reason for using a stateful services environment
was that the OGSA-BES specification mainly focuses on use cases referring to the
stateful nature, such as job execution services and managed job related information.
To implement a stateful service is not a mandatory requirement, since it can also be
developed through a stateless service framework. For instance [46, 68, 75] are built
upon the established WS-I [5] stack of Web service interfaces.

3.3.2 Remote Data Transfer and Access

Data transfer and management is an essential element to support job execution and
management systems. During job execution, data management is either accomplished
through an automated middleware abstraction or by invoking interactive SSH sessions.
In both cases the data should be made available a priori to the job execution phase and
normally requires transfer to or from different kinds of data sources, such as remote
data repositories [17] or specialised storage management systems [54, 61].

In this respect, different data transfer protocols such as SCP [112], UFTP [101],
GridFTP [72], SFTP [70] and HTTP (S) [21] are extensively used in scientific comput-
ing. Specifically, GridFTP provides support for secure and parallel streams [12] and
therefore appear to be more commonly used among scientific communities. As part of
the present research work, this is considered to be one of the mainstream requirements
to enable communities from multi-disciplinary backgrounds given that appropriate data
models have been developed and integrated with standards-based interfaces. UNICORE-
BES has been enhanced by the author of this thesis to support job submissions that
access GridFTP-based data sources or sinks. The extension follows JSDL’s HPC-FSP
[109], HPC profile [97] and WSREF basic profile [52].

The implementation is deployed and used by multiple computing centres across
the computing sites participating in the XSEDE project [105]. The UNICORE-BES
implementation with GridFTP access has successfully undergone several interoper-
ability tests in comparison with other similar implementations, for instance GenesisII
[1]. These interoperability tests ensure that the implementations are compliant with
the mandatory specification elements, particularly envisioning the combined use of
JSDL and OGSA-BES specifications and their HPC related profiles. The realisation of
this functional component is demonstrated in the form of an UltraScan gateway imple-
mentation that bridges UNICORE-BES and GridFTP in order to run computations on
the Jiilich Supercomputing Centre’s JURECA [3] cluster accessing data from XSEDE
deployed file systems.

Bridging HPC and HTC infrastructures is one of the critical aspects in execut-
ing cross-site scientific workflows. In this approach, the Global Federated File Sys-
tem (GFFS) is integrated with the UNICORE-BES implementation. The GFFS is a
distributed file system that provides a set of components to connect many different
data resources across geographical boundaries into one logical data space known as the
GFFS storage pool. As the GFFS embraces open standards-based interfaces, ByteIO
and Resource Naming Service (RNS), and is used by scientific applications running on
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HTC infrastructures, it is an optimal option to promote scenarios in which HPC-oriented
computing jobs analyse data placed on HTC-managed storage. With this integration of
UNICORE-BES and the GFFS, the users running computations on HPC can import or
export data from the GFFS storage space. The main idea was to enable the scientific
communities to perform some part of their computations on HTC and then use the
results produced as input to massively parallel computations on other distributed HPC
sites. One good example is presented in Paper I, in which a use case of unsupervised
learning (HPDBSCAN) is showcased. In this approach, the data-oriented workflow is
realised through UNICORE-BES and GFFS integration. The first pre-processing job
runs on an HTC site managed by the GenesislI execution interface, whereas the second
task of data clustering runs on an HPC cluster managed through UNICORE-BES. For
this workflow, one common, shared GFFS storage space is used, where all the input,
intermediate and output data is stored.

3.3.3 Standard Interfaces and Data Models

As part of this research, standards played a significant role in bringing together mul-
tidisciplinary scientific communities, various tools and infrastructures. The standards
mentioned in Section 2.3, directly and indirectly, contributed to the development and
validation of those specifications. They are primarily the experience documents of
BytelO [31], the High Performance Computing Basic Profile (HPCBP) [108] and the
EMI-Execution Service (EMI-ES) [99] for harnessing the capabilities of emerging HPC
environments. Furthermore, this thesis made tangible contributions to the modelling of
job provenance, tracking and check-pointing on distributed computing infrastructures,
in the form of the Activity Instance Document [111] specification published by the
OGF.

3.3.4 Parameter Sweep

Many complex simulations and data analysis tasks running on distributed infrastructures
are often parametric. The Parametric jobs require the same application to be executed
multiple times but with different input parameters, for example application arguments,
environment variables, varying input file names and file contents. Providing such a
model for distributed and parallel applications is a challenging task. To this end, the
OGF has therefore published the JSDL-Parameter Sweep (JSDL-PS) [45] specification
to model parameter sweep use cases.

As part of this thesis, a standalone, platform-independent and open source imple-
mentation of the JSDL-PS specification, known as the JSDL-Sweep library [45] has
been developed. The JSDL-Sweep library implementation was inspired by an initial
version produced by the GenesisII middleware team. To implement the thesis objectives,
it was then refactored and improved with the aim of making it more abstract, reusable
and generalised for different middleware technologies. As proof of integration, the
UNICORE’s XNIJS (eXtended Network Job Superviser) [100] is considered as the
first candidate to be integrated with the newly developed JSDL-Sweep library. The
capabilities of XNJS are extended in two dimensions: i) for accepting and understanding
the parametric job request with respect to the JSDL-PS compliance and ii) for managing
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the execution of the individual resulting sweep job requests. Figure 3.3 presents an
integrated architecture showing how JSDL-Sweep is connected to the UNICORE’s
middleware services. It also depicts how the sweep-based jobs are executed in the
case of parametric or composite computations. The JSDL-Sweep library processes
the request by first validating it and then generating multiple sweeps according to the
user’s parameter configuration. These sweeps are later transformed into the actual
incarnation and execution of multiple normal JSDL-based job requests. Each JSDL
request generated is considered as a sub-job and lies within the scope of a composite
sweep job. During the execution of the sweep job, data redundancy is one of the issues
while maintaining sub-job’s working or session directories. This situation is eliminated
by using the master-slave pattern. Full implementation details are given in Paper III.

Furthermore, UNICORE integration with the JSDL-Sweep library is demonstrated
in the form of automated supervised and unsupervised learning models. The detailed
use case analysis and results are published in, Paper II1, Paper IV and Paper V.

3.3.5 Reusable and Secure Client APIs

User-facing job submission and management services can be more adaptable if they
provide consistent and unified client-side APIs. Client APIs expose server side func-
tionality to interact with job management and monitoring, data transfer and access
interfaces through convenient abstractions. In this research project, the standards-based
API known as the unicore—client-wrapper [77] was implemented to support gateway
access and integration. Paper Il deals with the API usage in the light of science gate-
ways and web portals. It shows the benefits of the Airavata framework by using the
unicore—client—wrapper API to support multiple heterogeneous resource infrastructures
through standards-based models and interfaces.
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3.3.6 Gateway Access and Integration

Many scientific communities running data-intensive workflows and computational
simulations require a convenient and user-friendly interface that would dispense with
the need to interact with low-level details of the resources (resource management
system or file system) where these applications are deployed and running. Science
gateways or science portals emerged primarily to support this objective. They express
application-specific and usable front-end services that provide a rich web-based interface
to manage job and data management tasks. Despite the convenient interfaces, there
are still challenges with these gateways, specifically connecting end users with the
resources providing computing and data capabilities. The R5-Enabling science gateways
requirement represents this in more detail, for instance in a scenario where n scientific
communities with corresponding n gateways access computing resources through m
services, then n x m client adaptors will be required on the gateway side. This thus leads
to a bottleneck for multi-disciplinary communities or users accessing multiple resources
for one use case. To fulfil that requirement, gateway middleware frameworks are being
developed to reduce the overhead of providing a generic bridge for heterogeneous
science gateways in order to integrate multiple kinds of computing and data resources.
Since the UltraScan gateway concerns the area of scientific gateways, the Apache
Airavata framework [93] is used as the gateway middleware. The author of this thesis
contributed to the Airavata framework’s GFAC component, which is specifically a
separate sub-component following the proxy-based [55] approach for communicating
multiple HPC- and HTC-based execution management systems. The implemented
extension integrates the client API with the support of standards-based (OGSA-BES and
JSDL) job submission and management interfaces. Figure 3.4 depicts an architectural
sketch of multiple kinds of job execution services, showing both the proprietary and the
implemented extension based on standards. This architecture portrays how the standards
play a bridging role while seamlessly integrating multiple job execution service, i.e.
standards compliant deployments overcoming different organisational and technological
boundaries. More comprehensive details are presented in Paper I1.

As the scientific applications or workflows are mostly accessed through gateways
and gateway frameworks, the Airavata’s GFAC extension developed in this thesis can
enable many gateway users to manage their remote jobs and data on a variety of HPC
and HTC infrastructures. This extension is not only capable of supporting UltraScan
gateway users but is also useful for other Airavata-enabled gateways, e.g. CIPRES [81]
and Chemcompute [92].

3.3.7 Secure Access

Security plays an important role in protecting compute and data resources. Two major
contributions have been published on the provision of secure access; Paper I and Paper
II furnish more details. In this area, Paper I contributes to the conceptual design
and implementation of authentication and authorisation in scenarios where the user or
subject holds multiple identities, for instance, when one user has access to multiple
infrastructures, i.e. a separate identity for each of them. For this security model, the
UNICORE services framework has been extended to integrate with the GFFS server and
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Figure 3.4. UltraScan Gateway access to multiple execution services through
standards-based and proprietary interfaces. ©John Wiley & Sons, Inc.

client components. One result of this research has made contribution to the XSEDE’s
Architecture document (also called security profile) [48], purely based on the Security
Assertion Markup Language (SAML) specification. The scenario presented in Paper
1 is considered to be a vital contribution to the middleware community as there is no
initiative yet available that supports the standards-based authentication and authorisation
of handling multi-hop user requests. The software artifacts thus produced are deployed
on XSEDE’s service provider computing centres. Further, Paper II contributes to the
scientific gateways that extend a security model of the Airavata framework to integrate
with the services offered by standards-compliant HPC and HTC middlewares. The
overall architecture implements the scenario of a science gateway user submitting remote
massively parallel jobs: the request includes several sequences of steps implementing
the authentication and validation of the job submission request, and then forwards it to
the target HPC job execution services.
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4 Summary of Publications

This section summarises the papers that contributed to this doctoral dissertation. These
papers provide more detail on the requirements and functional analysis of the scientific
case studies outlined in the previous chapters.

4.1 Enabling Scalable Data Processing and Man-
agement through Standards-based Job Execu-
tion and the Global Federated File System

M. S. Memon, M. Riedel, A. S. Memon, C. Koeritz, A. Grimshaw, H. Neukirchen.
Enabling Scalable Data Processing and Management through Standards-based Job Exe-
cution and the Global Federated File System, Journal of Scalable Computing: Practice
and Experience, Vol 17 No 2, 115-128 (2016).

This publication partially serves the first thesis objective — TO1 — that involves the
requirements’ analysis of the learning models. In the fundamental design of the system
architecture this paper also contributes to TO4 and TOS i.e. software implementation
and adoption of standards-based models.

This paper focuses on the elicitation of requirements in the course of securely
integrating a distributed file system, termed the Global Federated File System (GFFS),
with the standards-based job submission and management middleware, UNICORE,
through the OGSA-BES standard known as UNICORE-BES. As part of the architectural
implementation, a security model has been designed and implemented as an extended
package in addition to the OGSA-BES interface for accessing large data sets placed on a
GFFS-managed storage space. This scenario is motivated by a machine learning use case
in which the computations need to be managed on both HPC and HTC resources, in a
sequential manner. The paper presents a solution in which the standards-based interfaces
of GFFS, Genesisll and UNICORE are integrated in a secure and seamless manner.
The data set required for the computation is pre-processed on a GenesislI instance in
an HTC manner, whereas processing occurs on a HPC site through UNICORE-BES.
Figure 4.5 provides a simplistic view of the realisation by showing a single user running
a learning model workflow using the GFFS client instance and performing computing
on both HPC and HTC clusters.

The implementation produced by this research is successfully demonstrated by a
use case from the Earth science domain. The scenario uses the 3D point cloud data
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Figure 4.5. A holistic view of the integrated Global Federated File System (GFFS) and
UNICORE architecture. ©SCPE.

set that is gathered in the form of a large number of points, which are a set of groups
representing different object surfaces (i.e. the inner city of Bremen in Germany). The
HPDBSCAN [59] application is used underneath to perform anomaly detection using
the DBSCAN [47] algorithm in an HPC environment.

4.2 Advancements of the UltraScan Scientific Gate-
way for Open Standards-based Cyberinfrastruc-
tures

M. S. Memon, M. Riedel, F. Janetzko, B. Demeler, G. Gorbet, S. Marru, A. Grimshaw,
L. Gunathilake, R. Singh, N. Attig, T. Lippert. Advancements of the UltraScan Scien-
tific Gateway for Open Standards-based Cyberinfrastructures, Journal of Concurrency
and Computation, Vol 26 Issue 13, 2280-2291 (2014)

This publication analyses the requirements of physical models and shows the cor-
responding software artefacts developed in the context of supporting scientific gateway
frameworks. The research conducted for this publication was motivated by the Ultra-
Scan science gateway and fulfils the objectives: TO1, TO2, TO3 and TO5.

UltraScan is a state-of-the-art application package for processing data produced by
Analytical Ultracentrifugation (AUC) experimentation. The UltraScan user community
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4.2 Advancements of the UltraScan Scientific Gateway for Open Standards-based
Cyberinfrastructures

employs a scientific gateway called the UltraScan Laboratory Information Management
System (USLIMS) to run and manage complex simulations. USLIMS uses the Airavata
framework [93] to enable computing and data management on different kind of resources
in a proprietary manner. As part of the research, the Airavata framework was designed
and implemented to access execution services and manage remote jobs and data transfers
through standards-based protocols.
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Figure 4.6. Architectural realisation of the UltraScan gateway, the Apache Airavata
[framework and its integration with the open standards-based job and data management
remote services through client APIs. ©John Wiley & Sons, Inc.

The first part of the publication analyses the existing state of the UltraScan gateway,
and identifies its limitations. One of the main contributions of this research is enabling
the UltraScan gateway to access different kind of HPC resources and middlewares. As
mentioned above, this is supported by introducing the security model and integrating the
standards-based client API through which an abstract Airavata extension is realised that
helps to manage distributed and remote job executions and their corresponding data.

The second part of the manuscript focuses on the architectural design and imple-
mentation aspects. The implementation is deployed on production computing sites at
Jiilich Supercomputing Centre, Germany. Figure 4.6 depicts an architectural view of
the different software components involved.

The underlying research resulted in a client API that was published to the Apache
Software Foundation (ASF) repository. Due to active contributions, the author has
been granted formal Apache developer rights to make source code contributions. The
resultant client API is also part of the stable distribution of the Airavata framework [93].
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4.3 Enhanced Resource Management Enabling
Standard Parameter Sweep Jobs for Scientific
Applications

S. Holl, M. S. Memon, B. Schuller, M. Riedel, Y. Mohammed, M. Palmblad, A.
Grimshaw. Enhanced Resource Management enabling Standard Parameter Sweep Jobs
for Scientific Applications, International Conference on Parallel Processing — The
42nd Annual Conference ICPP 2013 Ninth International Workshop on Scheduling and
Resource Management for Parallel and Distributed Systems (SRMPDS), Lyon, France,
1 October 2013, IEEE, pp. 783-790 (2013)

This publication contributes to objectives TO2 and TOA4, that provides a technological
basis for enabling massively parallel scientific applications, in particular of parametric
nature. Pragmatically, computing learning models are mostly parametric and require
multiple iterations until some threshold is achieved. This work demonstrated the au-
tomation of supervised and unsupervised learning approaches.

This paper focuses on the core design and realisation of a standards-based parameter
sweep model. The implementation is based upon the OGSA-BES specification and
UNICORE’s execution management framework. Although the OGSA-BES interface
comes with a request and response protocol for job management and monitoring,
it does not define the contents of the job submission request contents. The JSDL-
Parameter Sweep (JSDL-PS) [45] specification is an extension of JSDL and provides
an abstract model definition for parametric jobs. As part of this dissertation, the
research presented in this paper also contributed to the interoperability tests with other
computing middleware providers. Conventionally, a parametric job incarnates to an
ensemble of jobs generated on certain criteria, such as a list of application arguments,
file names or environment variables. In order to form this structure a mechanism
should be in place to resolve the composite nature of job submission and management
requests. Thus, in this dissertation a multi-job management pattern is derived and
implemented that orchestrates multiple parametric jobs in reply to a single user request.
The master-worker pattern helps to curb challenges of parametric jobs spawned due to
more complex nested structures (e.g. lists or sets). The adoption of a master-worker
pattern here supports the implementation in two ways, i) structuring and incarnating
before submission ii) managing the job session data with complex and nested parameter
combinations. As proof of implementation, UNICORE’s execution framework, XNJS
[100] is extended. The output of this research endeavour resulted in the standards-based,
stable and platform-agnostic parameter sweep library known as JSDL-Sweep [78].

Furthermore, this paper gives more insight into the implementation details of the
JSDL-Sweep library, which is compliant with the JSDL-Parameter Sweep (JSDL-PS)
specification. Finally, the paper compares the performance of running a single para-
metric job request with a separate statically generated job requests. It demonstrates a
significant performance gain by reducing the number of web service invocations and
having a smaller data foot print of the overall composite job.
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Harnessing the Standards based Parameter Sweep Model

4.4 Enhancing the Performance of Scientific Work-
flow Execution in e-Science Environments by
Harnessing the Standards based Parameter
Sweep Model

M. S. Memon, S. Holl, M. Riedel, B. Schuller, A. Grimshaw. Enhancing the Perfor-
mance of Scientific Workflow Execution in e-Science Environments by Harnessing the
Standards based Parameter Sweep Model, Proceedings of the Conference on Extreme
Science and Engineering Discovery Environment: Gateway to Discovery (XSEDE’13),
San Diego, California, USA, July 22-25 2013, ACM Press, pp. 56, 56:1-56:7 (2013)

This publication enables a scientific workflow with a focus on achieving parameter opti-
misation through standards-based parameter sweep models. In this work, the Taverna
workflow system is extended to run parametric workflow jobs on different HPC sites
through the UNICORE middleware. This contribution serves objectives TO1, TO3 and
TO05.

The research work underlying this paper was also motivated by learning models
and enables a scientific workflow through an automated parameter sweep mechanism.
The underlying research focuses on a scientific workflow that uses the Taverna [88]
workflow management system at the user end and UNICORE on the server side. The
use case aims to perform parameter optimisation using genetic algorithms. For this
purpose, a specialised parameter sweep plugin for Taverna is implemented. This plugin
uses the JSDL Sweep library [78] along with the native UNICORE client libraries in
order to submit scientific workflows on UNICORE managed execution service instances.
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Figure 4.7. The figure shows the integration of the Taverna workflow engine with the
JSDL-Sweep library and the UNICORE middleware. ©ACM 201 3.
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Figure 4.7 depicts the software integration of Taverna and UNICORE in conjunction
with the sweep functionality. It also shows the flow of a parametric sweep job request.
The figure presents a sequence that starts with 1) the definition of two parameters ax
and bx, ii) Taverna creates several parallel workflow instances, iii) the sweep generator
takes them and creates a JSDL-PS job request iv) that is sent as a remote job request
to a UNICORE Server instance and (v) then the request is finally processed at the
Target System layer. See Paper IV for more details. This paper describes significant
performance improvements while running multiple sub-workflows concurrently.

4.5 Facilitating Efficient Data Analysis of Remotely
Sensed Images using Standards-based Param-
eter Sweep Model

M. S. Memon, G. Cavallaro, M. Riedel, H. Neukirchen. Facilitating efficient data
analysis of remotely sensed images using standards-based parameter sweep model, Pro-
ceedings of IEEE International Geoscience and Remote Sensing Symposium (IGARSS
2017), Fort Worth, Texas, USA, 23 July-28 July 2017, IEEE, pp. 3680-3683 (2017).

The research that is described in this publication enables an automated classification of
remotely sensed images (learning models) using the standards-based job submission and
parameter sweep models. Image classification is performed through a parallel version
of a Support Vector Machine (SVM), termed PiSVM. Classifying data is a workflow
of multiple steps, and cross-validation is one of its essential steps. In this research
endeavour, the critical phase of cross-validation is automated for model generation
and testing. The JSDL-Sweep library is used for automating the cross-validation phase
and UNICORE-BES is applied for the remote execution of HPC jobs. This publication
achieves the objectives of TO1, TO3, TO4 and TO5.

The research in the paper focused on the classification of the Indian Pines data set
by using Support Vector Machine (SVM)s. Indian Pines [19] is a well known data set
used in most of the remote sensing research papers. It was acquired in 1992 by the
AVRIS sensor recording information from fields and a variety of crops. To extract any
meaningful information from Indian Pines is critical as it consists of 30 features and
1417 x 617 pixels (with a spatial resolution of 20m).

The research presented in this paper focuses on automating massively parallel ma-
chine learning workflows, i.e. to optimise the identification of hyper plane parameters C
and G, through the grid-search method. This process is called the cross-validation phase,
which then leads to model generation. The research prototype presented is based on
the JSDL-Parameter Sweep (JSDL-PS) standard in combination with OGSA-Basic Exe-
cution Service (OGSA-BES). In particular, the implementation uses UNICORE-BES
and supporting Python and Bash scripts. The realisation of the automated classification
of the Indian Pines data set enables parallel cross-validation on HPC in a single step.
The only requirement is to prepare the corresponding parameter look-up files, known as
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the data dictionary, with possible enumeration values for the grid-search. The imple-
mented software further performs all the processing and produces one pair of C and G
parameters.
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Figure 4.8. The figure compares the (a) manual and the (b) automated process of
cross-validation. ©2017 IEEE.

Figure 4.8 compares two workflows with i) manual analysis and ii) automatic
parameter identification. The experiment with the automated mechanism shows a
significant impact with respect to usability and overall workflow runtime. The paper not
only points the way to the robust classification life cycle of the given use case, but also
provides an avenue for other parameter-oriented and parallel machine learning methods
through a standards-based mechanism.
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5 Conclusions

5.1 Summary

This thesis was motivated by multiple scientific case studies from different disciplines.
It comprised four main Thesis Objectives: TO1 — assess the requirements of two funda-
mentally different data analysis approaches; TO2 — compare and contrast requirements
from two different (learning and physical) models; 703 — develop an architectural
design based on primary functional components; 704 — provide technical realisation of
the software prototypes; 7O5 — adoption of the produced software prototypes in the form
of distinct case study implementations. The thesis objectives TO1 and TO2 are fulfilled
by exploiting the case studies in order to elicit the requirements, while 703, TO4 and
TOS are achieved in the form of the concrete design and implementation of solutions for
enabling physical and machine learning models on distributed computing infrastructures.
This doctoral dissertation produced several contributions in the form of design solutions
and their implementations which have become part of the production middleware plat-
forms. These contributions are devised to form a generic standards-based framework
to enable and facilitate the semi-automated remote processing of complex applications
and access to distributed data sets. The standards-based implementation mitigates
major obstacles while running computations in distributed, multi-resource management
environments. Different data analysis concepts are evaluated and compared for their
suitability for addressing selected scientific case study needs. As part of the work,
architectural designs were produced to support multi-disciplinary scientific scenarios.
A strong focus was placed on enabling convenient access for end users of HPC and
HTC infrastructures and scientific gateways, most notably in the form of automated data
analysis, which mainly covers a generic mechanism for reusability by other scientific
and engineering applications. This thesis has also directly and indirectly contributed to
several OGF[4] standards, e.g. EMI-ES [99], Activity Instance Document [111], and
to the following standard interoperability experience documents, e.g. BytelO [31] and
High Performance Computing Basic Profile (HPCBP) [108].

The job submission scenario enabled users to manage and monitor their jobs running
on disparate and remote execution services. The sequence of this scenario starts with
a user request that is processed and accepted by the remote execution service after a
response is returned. This scenario and the request and response data structure concerned
are realised through the OGSA-BES specification. The implementation was performed
as part of this thesis: UNICORE-BES [76] which is compliant with standards-based
job submission and management interfaces. Paper I-V are based upon UNICORE-
BES with respect to the technical and application adoption scenarios. The benchmark
analysis of the preliminary UNICORE-BES implementation is stated in [62]. The
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OGSA-BES specification provides a generic interface and model for job management.
Nevertheless, it has still some deficiencies while providing user-centred interactions,
such as resource capability advertisement, job chaining or dependency representation,
and server- or client-initiated data transfers. In response to these requirements, primary
extensions necessitated an upgrading of the existing model of the specifications, which
has been contributed by the author of this thesis to the Open Grid Forum (OGF) standard
publication as EMI-Execution Service (EMI-ES) [99].

The GLUE?2 [15] specification, particularly its XML Schema-based rendering [16]
is used to identify the sites and resource capabilities through end-user clients and
resource brokers. As part of this doctoral dissertation, the GLUE2 model was carefully
analysed while integrating the OGSA-BES standard with the subset of the extensive
GLUE2 model. The outcome of this work is useful in cross-infrastructural workflows
spanning HPC and HTC sites. Also, the GFFS and UNICORE-BES implementations
are integrated with the purpose of bridging heterogeneous services. The authentication
and authorisation model has been developed to support the provisioning of multi-identity
assertions. More details are provided in Paper I. The research prototypes produced are
now included in the UNICORE and GenesislII’s software repositories [77, 78, 60].

The client API plays a vital role in emerging scientific gateway communities by
providing essential utilities and functions required by gateway frameworks and end-user
portals. The research presented here identified and engaged real scientific communities
by running their computations on distributed HPC infrastructures. In particular, the
UltraScan gateway is considered as a motivational use case, providing concrete user
and scientific requirements, and the standards-based client API and the Airavata GFAC
extension were developed on this basis. More detailed results are presented in Paper I1.
Furthermore, the client APIs contributed to the Activity Instance Document [111]
standard that provides additional support for debugging and error analysis purposes.

In order to support workflows related to the learning models, the standards-based
JSDL-Parameter Sweep (JSDL-PS) model has been adopted to support the semi-
automatic processing of a typical machine learning life cycle, e.g. classification and
clustering. The data model presented in JSDL-PS is particularly used to automate the
submission and execution of multiple jobs for identifying the optimal hyper parameter
space. For instance, when using the Support Vector Machine (SVM) method together
with the Radial Basis Function (RBF) [26] kernel configuration (during the cross-
validation phase), the identification of the best single parameter combination is obtained
to produce a model with the highest accuracy. The development and integration of
the platform-independent and open-source JSDL-Sweep library aims to offer a general
purpose utility for diversified scientific workflows, including machine learning and data
mining. Paper IV and V describe the use case and present the implementation details.

5.2 Future Work

In the emerging and dynamic technological environment of computing architectures
where distributed programming models are continuously evolving, it is essential for
data models to address the hardware and software systems deployed. In view of this
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concern, the learning and physical models presented may pose multiple challenges
when accessing current resource management systems and computing architectures.
One prominent scenario is the case of a single computing cluster with heterogeneous
and modular hardware architectures grouped in mini-clusters with different CPUs and
memory configurations. The EU-funded DEEP-EST project [40] is one such example
that develops multi-purpose and modular supercomputing architectures catering for
different kinds of workloads and applications by providing different node groups with
the most suitable resource capabilities in terms of network, processors and storage.
In addition to multiple hardware specifications, the DEEP-EST managed cluster is
laden with various parallel programming runtime environments. As future work, a
relevant information and data model is required to conceptualise such set-ups with
adequate access abstractions. This scenario will eventually affect the OGSA-BES
and GLUE2-based interfaces and will require an extension to the existing research
prototypes. Embracing this change at the standards level will impact the range of
services starting from the core job execution or middleware layer up to and including to
the libraries for the end users.

Learning models are attracting increasing attention as data-oriented computing
frameworks have evolved. The open source Hadoop framework [110] is one of such
major enabler providing an ecosystem of tools, execution frameworks, programming
models [39] and distributed file systems [102]. Another example is the more recent
Apache Spark [113] framework that provides APIs and tools for processing relational-
and graph-based data structures on general-purpose cluster computing systems. Both
Hadoop and Spark are not only used by commercial applications, but have also been
adopted by scientific communities. Integrating HPC and Hadoop- or Spark-based
services can support cross-site data and compute-intensive workflows through common
interfaces and models. To widen the scope of the work presented in this dissertation, the
above-mentioned standards and models and their implementations, OGSA-BES, JSDL
and GLUE?2, and respective client APIs have to be adjusted to accommodate functional
capabilities through a common set of APIs and implementations.

In facilitating the fast-paced evolution of learning models and the respective method-
ologies such as the application of deep neural networks for processing complex image
and video data sets, it becomes imperative to align the middleware abstraction models
accordingly. The state-of-the-art frameworks offering distributed deep learning imple-
mentations are Tensorflow [11] and PyTorch [90]. As a future direction, the workflow
of automating deep learning scenarios on HPC architectures can be realised through the
functional components presented in this dissertation. Specifically, this effort envisions
the processing of large data sets obtained through remote sensing devices. The initial
approach is published in Paper VII.

Apart from the job management and monitoring representations, the underlying
research focused on the use and impact of the iterative execution of learning mod-
els through standards-based parametric data structures. However, the current JSDL-
Parameter Sweep (JSDL-PS) specification lacks parametric operators to represent new
sophisticated user-defined functions for evolving learning models. It is therefore nec-
essary to have enhanced functional operators permitting new operations. For this
endeavour, the development will be integrated with the existing model of the JSDL-PS
specification, and also implemented in the JSDL-Sweep library [78].
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Abstract.

Emerging challenges for scientific communities are to efficiently process big data obtained by ex-
perimentation and computational simulations. Supercomputing architectures are available to support
scalable and high performant processing environment, but many of the existing algorithm implemen-
tations are still unable to cope with its architectural complexity. One approach is to have innovative
technologies that effectively use these resources and also deal with geographically dispersed large
datasets. Those technologies should be accessible in a way that data scientists who are running
data intensive computations do not have to deal with technical intricacies of the underling execution
system. Our work primarily focuses on providing data scientists with transparent access to these
resources in order to easily analyze data. Impact of our work is given by describing how we enabled
access to multiple high performance computing resources through an open standards-based middle-
ware that takes advantage of a unified data management provided by the the Global Federated File
System. Our architectural design and its associated implementation is validated by a usecase that
requires massivley parallel DBSCAN outlier detection on a 3D point clouds dataset.

Key words. UNICORE, Genesis II, statistical data mining, data processing, distributed file
system, security, standards, parallel processing

1. Introduction. An ever increasing number of datasets from scientific experi-
mentation such as earth observatories or computational simulations generate an enor-
mous amount of information for discovering useful knowledge. In order to analyze
data, the area of statistical data mining provides useful methods and tools to extract
and explore useful patterns or prediction models. The field of statistical data mining
comes with intuitive methods to learn from data, using a wide variety of algorithms
for clustering, classification and regression. Several implementations are available, for
example, Matlab, R, Octave [3], or scikit-learn. Mostly, these tools offer serial im-
plementation of the algorithms, which is quite challenging (i.e. insufficient memory,
extremely long running times, etc.) for processing the volume of data having terabytes
or petabytes of magnitude. Considering that amount, the resources running the data
processing tools require large number of processors, as well as much more primary
and secondary storage. Therefore, parallel tools and platforms such as Hadoop [15]
implementing the map reduce paradigm [18] and selected massively parallel algorithm
developments based on the MPI and OpenMP environments are commonly used.

We observe mainly tools for (High Performance Computing) HPC and High
Throuput Computing (HTC) paradigms evolving concurrently, but each supporting
their own set of requirements. Scientific communities, either from biology, physics and
medicine adopt more conservative approaches in order to retain their focus on scien-
tific findings and as such traditional HPC environment still play a major role in the
relatively new realm of ’big data’. Given the stability of HPC environments and its
benefits using locally parallel filesystems with parallel 1/O techniques motivates our
work to enable straightforward job executions managed by HPC sites that seamlessly
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access data from a distributed file system service which has not been traditionally
supported in HPC-based execution services.

We validate our approach with a use case from earth science using 3D points cloud
obtained from devices that measure a large number of points of an object surface (i.e.
in our case the inner city of Bremen). The data analysis of this dataset has the goal to
cluster special data points and identify any noise elements. In this paper we describe
the architectural design and implementation necessary to run data analysis jobs on
HPC resources through standards-based UNICORE middleware [10] and uses data
from the Global Federated File System [28] that we derive from the architecture of the
Extreme Science and Engineering Discovery Environment (XSEDE) [24]. UNICORE
is a HPC middleware and deployed on production on XSEDE supercomputing sites,
whereas the GFFS is a distributed network file system which is an integral component
of the Genesis II platform, that is also consider to be a middleware element in XSEDE.
Our architectural design overcomes the limit that the data is hosted by the GFFS
cannot be easily made available to the job executions that perform data clustering
over the points cloud data set.

The paper is structured as follows. Section 2 describe the basic background of
the technologies and standards used as part of our research. Section 3 lists a detailed
requirement analysis we obtained during the course of the integration effort. Section
4 describes the security model and the implementation we derived for supporting the
requirements from Section 3. Section 5 offers detailed insights on our architectural
design and its realization that enable the UNICORE and GFFS integration while
addressing the selected requirements. Section 6 takes a massively parallel data analysis
application in order to validate our work based on a real world use case. Section 7
provides a brief overview of the related work, and the paper concludes in Section 8.

This article is a joint and extended version of [34] and [40].

2. Background. This section gives a brief background of the technologies, al-
gorithms and standards that supported our work.

2.1. UNICORE. UNICORE is an HPC middleware which is built upon the
priniciples of Service Oriented Architecture (SOA). It realizes compute, information
and data functions through a set of stateful web services [42]. These services are
designed in such a way that they enable seamless access to heterogeneous high per-
formance computing resources. In this sense, the middleware layer to these clusters
provides access and location transparency to compute and and thus offers scientists
a unique environment hiding low level technical complexities (i.e. avoiding writing
and submitting error-prone scheduler dependent job scripts). The compute access
transparency enables an abstraction of different flavors of resource management sys-
tems (sometimes also referred to as schedulers), such as SLURM [45] or Torque [6],
and more notably through a unified and standard interface. Figure 2.1 depicts the
basic UNICORE architecture that is composed of layers with distinct functionality,
including Client, Services and Target System Interface.

The client layer provides API and end user interface, which include interfaces for
constructing and sending client requests to remotely deployed services. The client
side API is useful for scientific communities which are not necessarily using the UNI-
CORE’s povided interface, but instead their own clients such as their application
specific science portals or gateways (e.g. UltraScan Scientific Gateway [33]. Hence,
all important functionality of the middleware services can be invoked through the di-
rect client API interaction. The end user interface offers a rich client interface called
UNICORE Rich Client (URC) [19], with advanced user controls to compose and or-
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Middleware

UNICORE UNICORE
core services' XNJS core services = XNIS

Resource
Management

Fic. 2.1. Basic UNICORE architecture with example deployments of two HPC' systems in
Juelich (JUDGE and JUROPA).

chestrate scientific workflows. The second variant is a command line client called
UNICORE Command Line (UCC), which provides an interface for advanced users
who know the low level details of writing job request scripts to be executed jointly on
the batch system. For a more detailed architecture explanation we refer to [10].

The Services layer plays a vital role in enabling job execution and data manage-
ment by means of SOAP [16] over XML based web services. Not only the Services
layer implement the core functionalities, but also the hosting environment which can
host and deploy stateless and stateful web services, for instance, WS-I (Web Services
Interoperability) [5] and WS-RF (web Services Resources Framework) [42]. Job man-
agement functionality implements a complete life cycle through which job passes, and
that includes submission, monitoring and data staging. The job management func-
tionality is supported by UNICORE’s embedded scheduling and execution framework,
called XNJS (Extended Network Job Supervisor) [43]. It manages the incoming mid-
dleware requests against the hosted application and resource capabilities (for example
number of available nodes, processors per node etc.). The Services layer gives a con-
figuration based interface to expose underlying cluster resource and environment, so
that XNJS can perform resource match making upon the client initiated job requests.
After validating the job request, the XNJS component formats the job to the generic
UNICORE protocol, and then sends it to the resource manager specific implementa-
tion of Target System Interface. This is the layer where the generic UNICORE script
gets translated to the request formatted according to the batch system.

As a summary, a simple job execution sequence comprises of, client job submission
to the Services layer, then the request is forwarded to XNJS, and then it is communi-
cated to the Target System tier. This tier in turn directly interacts with the low level
batch system, and fetch job statuses, and manage underlying running file transfers
during the job’s execution life cycle.
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2.2. The Global Federated File System. The Genesis II Global Federated
File System (GFFS) [28] is a distributed file system that provides researchers with
tools for securely managing and sharing their scientific data. The GFFS offers a set of
interfaces that manage jobs and provide access to the required scientific data. This is
achieved through the GFFS-Queue component, which is also based on SOA wherein
standards-based interfaces are adopted for storing and accessing remote compute and
data resources. In order to support federation across different organizational enti-
ties, the GFFS provides a hierarchical file system structure with standard namespace
locations for storing user profiles, groups, directories, and service elements such as
meta-scheduling queues and Basic Execution Service endpoints (BES) [29] for pro-
cessing jobs. Figure 2.2 provides an overview of the integrated architecture with
Genesis IT and UNICORE Basic Execution Service (BES) endpoints interacting with
the GFFSs root container.

Kerberos STS
| Credential .

| fetch - "

H ( e Secure Token Service

GFFS Root Container

Data placement

Brokering

GFFS Storage
Genesisll- UNICORE-
% BES o BES = Sl o
Atomic Job Executions Shared storage

FiG. 2.2. The Global Federated File System (GFFS) architecture.

The GFFS implements many of the standard Unix commands (such as cp and
mv) in a console mode through the so called grid shell. There is also a GUI view
of the GFFS, which supports rich drag and drop file management. The GFFS also
provides a FUSE file system interface [2] that allow users to mount the GFFS on
a Unix directory and operate on files in the GFFS as if a user is interacting with
her local file system. The GFFS has an export feature like NF'Sv4 that allows users
to share part of their own file system visible within the GFFS, and to other users
part of the broader federated infrastructure. The GFFS Queue is a metascheduler
that supports submission of multiple jobs for subsequent distribution to the execution
service endpoints connected to the queue. The GFFS Queue provides researchers with
a mechanism for managing and controlling their computations via a GUI as well as
with familiar command line tools such as ”qgstat” and ”qkill”. Jobs will be distributed
to BES resources automatically by the GFFS Queue, but can also be rescheduled as
needed. The XSEDE project benefits from the GFFS by giving researchers a way to
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securely share data with their colleagues and by providing a high level view of the
computational resources available at the XSEDE infrastructure through the GFFS
Queue.

2.3. Standards. RNS (Resource Namespace Service) [36] is an Open Grid Fo-
rum initiative that standardizes the naming of distributed resources that form an
infrastructure. It has a simple set of operations for managing grid and cluster ser-
vices mapped as file system operations such as rm, mkdir or cp. The RNS specification
provides client applications to couple WS-Addressing [22] based endpoints with hu-
man readable notations. For instance, a job execution service managing multiple jobs
can be represented as a parent directory and individuals jobs are child directories
which may further contain the contents of their working directories.

Considering the stateful service based endpoints, wherein web service resources
can have a nested heirarchical structure, the RNS representation is very helpful in
providing an access and location transparency to underlying resources. The GFFS
mentioned earlier implements the core RNS and its Web Services Resource Framework
(WSRF) [37] rendering to access service endpoints. The statefulness gives individual
access which is very much analogous to the domain of distributed remote objects.
As far as the data transfer is concerned the GFFS primarily uses the ByteIO [35]
standard. BytelO provides a set of interfaces to interact with bulk data sources and
sinks. The BytelO standard enables large amount of data in an efficient way. It has
two interfaces, RandomBytelO and StreamableBytelO. RandomBytelO provides an
interface to access bulk data in a stateless and random manner. This interface is
normally being called when a client transfer large files. StreamableBytelO interface
allows data transfer data in a stateful manner. It is normally used for accessing short
files, in most cases standard outputs of managed jobs.

The Job Submission and Description Language (JSDL) [8] is an XML-based com-
prehensive data model for specifying computational job requirements consisting of
application, resources and data concepts. UNICORE and Genesis II clients specify
job requirements in the JSDL format. UNICORE server side implements most of the
JSDL, and also its related profiles and extensions.

The JSDL specification has a generic model for representing multiple type of re-
source settings, such as HPC and HTC. The JSDL model further provides a set of
profiles which imposes constraints on requirements according to the type of resource
architecture. These requirements may include, file staging modalities, parallel exe-
cution environments and parametric jobs. This paper mainly targets HPC resource
types which normally use parallel execution environments and a resource manage-
ment system. HPC resource profile [12] enable users to specify more internal HPC
architecture specific requirements in combination with restrictions on the execution
service. The HPC file staging profile [44] captures data movement specific elements to
be used within heterogeneous cluster environments. This profile impose constraints
on using HPC specific data staging attributes as part of the job submission request.
For instance, the request may contain FTP user name and password credentials for
the BES instance to carry out third-party file transfers on user’s behalf.

The related technologies presented above provide a base for providing a seamless
and robust middleware platform to tackle big data challenges. One of the common big
data processing machinery requirement is to have an iterative execution for discovering
optimal set of algorithm parameters. Specifically, data clustering algorithms such as
K-Means or DBSCAN require certain parameters before their processing. In the case
of iterative execution multiple runs with a varying set of parameters are required.
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If we combine these runs into a single composite job then this kind of job is called
parametric. UNICORE as our base execution middleware supports parametric jobs
through the JSDL Parameter Sweep extension [23]. This specification provides an
intuitive model to parametrize multiple parts of job request per se. It may allow client
application to sweep over a list of arguments, file transfer locations and environment
variables specified under the JSDL request. The sweep model can represent different
kind of iterations, either be it a element-wise iteration on a set or a counter with
configurable stepping factor. There are two major kind of sweeps the specification
provides, Document sweep and File sweep. The Document sweep provides a model
to modify a requested JSDL instance. The File sweep is an advanced model which
presents a data structure to modify the contents of the files imported before the job
execution phase. This kind of sweep is applicable to text based files. UNICORE
middleware implements both kind of sweeps through its client API and command line
client (UCC). This specification is used to automate the iterative data clustering on
the points cloud data set we use in this paper.

OGSA-Basic Execution Service (BES) [8] is an Open Grid Forum (OGF) ini-
tiative which provides a web services-based interface for managing and monitoring
computational jobs in HPC and HT'C environments. For a job submission use case
BES interface accepts a JSDL instance and its related profiles as a parameter and
then runs it on back-end resource. The focus of this paper is based on a scenario in
which UNICORE server expose it computing capabilities via BES model, and Genesis
II client use this interface to invoke remote calls on the UNICORE endpoint.

2.4. Unsupervised Learning. While the overall architectural design in this
paper is applicable to many learning models, our work is using parallel version of the
Density Based Spatial Clustering for Application with Noise (DBSCAN) algorithm
[21]. The focus is rather on the access of the algorithm implementation through
the UNICORE middleware and the GFFS based file system. Therefore, this section
briefly introduces the DBSCAN method. Goetz et al. describes more details on the
algorithm implementation in [27], which gives more detail on what parallelization
strategies are used to achieve scalability and high performance while analyzing large
data sets. DBSCAN [21] is an unsupervised density based clustering algorithm. The
cluster based on density is represented by a number of points MinPoints within a
specified radius Epsilon. These are the important user defined parameters of the
algorithm to identify the clusters.

i) Core point: A central point in a dense region, it has more than a specified
number of minimum points MinPoints within its neighborhood (or radius) Epsilon.

ii) Border point: A point that lies on the border of the dense region, it fewer than
minimum points MinPoints within its neighborhood (or radius) Eps

iii) Noise point: A point that is neither a core point nor a border point

DBSCAN intrinsically enables maximizing the local point density recursively. It
sets apart from other clustering algorithms as it detects the clusters of arbitrary shapes
and sizes. Notably, it is resistant to noise and suitable for finding anomalies or filter
specific noise signals from the data. We use the parameter-based DBSCAN learning
algorithm as a specific example of how our architectural design and its implementation
can be generically used by a wide variety of learning algorithms in this paper.

3. Requirement Analysis. During the course of transparent integration for
bridging both technologies, we identified multiple requirements which not only aims
at superficially combining them, but also some extensions in the UNICORE services
layer which will help to tackle ”big data” challenges from machine learning and data
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# Requirements

Description Environment
R1 | Secure Trust Delegation GFFS and UNICORE
R2 | Openness OGSA-BES, JSDL
R3 | Data transport RNS, BYTEIO
R4 | Infrastructure integration XSEDE, MYPROXY
R5 | Transparency UNICORE Server
R6 | Parameter sweep JSDL Parameter Sweep
R7 | Extensible resource and job model | GFFS and UNICORE

TABLE 3.1

Summary of Requirements

mining. The integration has taken XSEDE infrastructure as an example, but the im-
plementation is applicable to any distributed computing and storage infrastructure.
The major integration requirements from both the technologies’ perspective are sum-
marized together with relevant technology environments in Table 3. They lie in the
following areas. R1) Secure Trust Delegation: As in a distributed service interaction
a user interacts with a portal or meta scheduler which then forwards the request to
a service that takes care of the job execution and also calls upon data management
services to pull and fetch data. While the user is participating in the very beginning,
then the following phases are to be done by other services, require some kind of trust
delegation which the user entity assigns to the target job execution and data man-
agement services to act on her behalf. In our scenario a user communicates a data
oriented job request with a set of input data staging elements, therefore trust delega-
tion has to be implemented by the UNICORE platform to understand the GFFS user
requests. R2) Openness: In any kind of communication between a user and the GFFS
or UNICORE, it should support standards-based protocols, so that users or services
from different middleware backgrounds can easily interact through UNICORE and
the GFFS client-side APIs. R3) Data transport: As UNICORE jobs are intended to
use data from the GFFS, the running jobs should be able to upload and download
data from the file system space. R4) Infrastructure integration: XSEDE-based iden-
tity management should be understandable to both layers of job submission and data
management middlewares. R5) Transparency: The jobs managed by UNICORE in
an HPC environment which accesses data from the GFFS data should not know the
physical location and also on how the data is structured across data nodes within the
file system space. R6) Parameter sweep: This requirement is very specific to jobs
which require re-running the same application but with different parameters:these are
called composite or parametric jobs. In a parametric job, the execution middleware
iterates through a set of parameters provided by a user job submission request and
creates a separate job internally for each parameter combination. In this case UNI-
CORE middleware should be capable of interpreting and incarnating parametric jobs.
R7) Extensible resource and job model: As supercomputing architectures are evolving
to support data and network intensive applications, the hosting middleware should
be adaptive to new changes and thus possess an extensible model for users specifying
sophisticated requirements. For instance number of GPGPUS or use of execution
environment.
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4. Interoperable Security Model. The GFFS security model is based on the
Security Assertion Markup Language (SAML) [41] standard, and takes the UNICORE
SAML profile [14] as a reference implementation. The GFFS extends the UNICORE’s
SAML profile to represent the trust delegation chains of the Genesis II security model.
A delegation chain encompasses that a user has delegated some level of trust to a
service in the GFFS in order to achieve a task, such as processing a job. Mostly,
delegation operations include three entities, (1) a grid user (for our example, called
U, (2) a TLS connection identified by an X.509 certificate (called C), and (3) a grid
resource (called R). Longer delegation chains usually contain all three of these types
of entities as the first links in the chain.

In the GFFS, the first entity U is always a user defined as a grid STS (Secure Token
Service) object. This entity is the prime mover for any operations that are performed
in the GFFS. The user’s rights within the grid’s access control list permission system
dictates what that user can and cannot do with regard to every grid resource.

The client software must authenticate as the grid user U to obtain services from
a GFFS container. This is where the second security entity C comes in; it is the con-
nection by the client software at the behest of the user. Initially, the client credentials
only contain C, as one makes the connection before STS authentication occurs. In the
XSEDE login process, this connection is always based on X.509 credentials obtained
from a certificate authority service, the so called XSEDE MyProxy server. Thus, it
can be a well-known identity within both Genesis (via a Kerberos-based STS) and
UNICORE (via the grid-mapfile). In the example, the client software first authenti-
cates to MyProxy by using user name and password to obtain the certificate C. Then,
the client authenticates to the Kerberos STS in the GFFS to obtain grid user U.

Kerberos
STS

e

t

Grid ServicE =

Fia. 4.1. End User interaction with security and grid services.

End User

After the user authenticates, the client software’s credential wallet will contain
the first delegation of trust, U—C. This states that the grid user U trusts the TLS
connection C to act on its behalf. Afterward, all of the actions taken by the TLS
connection C are understood to be U’s actions. Any access that provides U with
permissions will also be granted to C. That may include submitting a job to a BES
named R. This is the second point where trust is delegated; the certificate for TLS
connection C signs a new trust delegation that expresses ”C trusts R” to perform a
job execution. This extends the length of the delegation chain by one, so that it now
has all three entities involved in two trust delegation objects. This can be represented
with delegation arrows such as:

e First delegation: U—C (The grid user trusts the TLS connection)
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e Second delegation: C—R (The TLS connection trusts the resource)
e Full Chain: U—-C—R (The user U trusts the connection C which trusts R to
run a job)

This new delegation chain can be presented by resource R when it needs to do
further actions on the grid user’s behalf. Moreover, actions might include storing file
staging results back to RNS space (U—C—R—D, where D is a Data folder or possibly
submitting the job to another BES for final processing. The important point is that
entity D is just another resource to which trust can be delegated, and the chain can
be continued in that manner for as long as its delegation depth limit allows. Figure
4.1 depicts a typical interaction of an end user with the security services and a target
grid (execution or data management) service.

One challenge while interoperating between the GFFS and UNICORE integration
arose due to a difference in interpretation of the SAML assertions. The delegation
chains in the GFFS are tightly-coupled, and do not allow mixing and matching of
individual entities. This is not directly provided by the UNICORE SAML implemen-
tation, which permits the receiver to mix and match any delegations provided in a
message (U—C—R is considered to be two separable delegations U—C and C—R).
In the GFFS model, a delegation chain must be used in its entirety or not at all.

To address this difference, the GFFS implementation of SAML adds a unique
identifier to each SAML assertion. A chain such as U—-C—R is built by embedding
the identifier of the U—C assertion in the C—R assertion. To make this cryptograph-
ically secure, the signature of the U—C assertion is also embedded in the C—R as-
sertion before C—R itself is signed. This enforces the connections between the GFFS
delegation chains while still leveraging the UNICORE’s Security Assertion Markup
Language (SAML) implementation. Upon reception, the chains are reassembled and
any assertions that are referenced by a longer delegation chain are removed from the
pool of available assertions.

The Genesis delegation chain model supports having multiple chains in a creden-
tial wallet. This supports the user possessing multiple different types of identity and
authorization on resources. The users will always have their own identity as a cre-
dential, which allows them access to resources where the user has been given explicit
permission. The user will also usually have at least one group credential, which allows
them access to portions of the grid file system. Additional group credentials may con-
vey access to different BES or queue resources within the grid. Thus the credential
wallet approach supports a flexible authorization appropriate to the variety of grid
resources, possibly across multiple administrative domains, that may be required for
the user’s work.

The signing of credentials ensures that it is computationally infeasible to create a
fraudulent credential chain where a new identity is inserted into the credential chain.
Each credential records the signature of the prior element in the chain, along with
its unique identifier. Thus an attacker would have to compute a valid XML digital
signature inside a valid trust delegation object, where the unique id is also properly
signed by that signature.

To ensure that the credential wallet cannot be easily compromised and used for
playback attacks (where the valid credentials of a user are stolen and used by a differ-
ent user), all credentials must be ”anchored” with the current TLS session credential
of the grid client. At least one link in the credential chain must be identical to the
TLS session certificate. This ensures that playback is very difficult indeed, since the
stolen credentials must be based on the TLS session key that the user was employing
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at the time the valid credentials were minted. This mitigates attacks upon the server,
where the container database is compromised. Attacks using an entire set of stolen
client credentials are also somewhat mitigated, since the TLS session certificate is
based on a short-lived key pair.

With respect to the requirements mentioned in Table 3, the given security model
implementation covers R1-Secure Trust Delegation. XSEDE’s MyProxy access is
provided to allow XSEDE users run job with their infrastructure credentials. This
feature relates to R4-XSEDE MyProxy integration.

5. Integrated Architecture and Implementation. We have extended UNI-
CORE’s server tier to accept the incoming requests incoming from Genesis II remote
clients. The remote clients here implies the GFFS’s GFFS-Queue component which
is an entry point for a user to submit job. The GFFS-Queue acts as a meta sched-
uler that schedules the user’s request based on its resource requirements on a set of
available BES-based computing endpoints. Even though UNICORE understands BES
protocol, but still the execution service should know how to interpret, authenticate,
and authorize the incoming GFFS Queue requests. A separate UNICORE server ex-
tension is implemented that is invoked when server finds a security token containing
GFFS-related information in the incoming client request. The extension validates the
SAML chain by looking into every element of the chain. These elements are entities
(described in the previous section) which contain every stakeholder including end user
or service through which the request was passed. The standards-based access and the
validation of incoming requests required to trigger the data transfers serve the re-
quirements R2-Openness and R3-Data transport. The user doesn’t need to provide
the actual physical location of the GFFS hosted data, instead she uses the symbolic
RNS qualified hierarchical paths. This feature is inclined to support R5-Transparency.

Before a Genesis II client is able to send jobs to a UNICORE BES endpoint, a
Genesis II container should recognize and link the UNICORE BES instance into the
RNS space. The linking is achieved through the Endpoint Reference Minting process.
An EPR (Endpoint Reference) is the basic component of the RNS. Every location in
the GFFS namespace has an EPR that identifies (1) where the resource lives and (2)
the X.509 certificate that represents the resource. Minting an EPR is the process of
creating a new EPR as an XML document that represents an external resource, such
as a UNICORE BES instance. The process of minting an EPR combines the URI
where the resource is located with the X.509 certificate expected as the resource’s
identity (which it would report over a TLS connection). Once an EPR is minted, the
EPR’s XML document can be stored locally as a file or added as a new link to the
grid namespace. When linked into the grid, a user with appropriate credentials can
see the entry in the GFFS files system and can use it to obtain whatever services the
resource provides.

The user’s XSEDE identity is extracted from the delegation chain, and the re-
trieved identity is validated against the authorization store of the UNICORE server
deployment. If the user is found under the authorization store then the required user
context is created for carrying out GFFS data staging invocations. After the context
creation phase, the server extension releases its control and job moves to the next
phase of execution. In the beginning of the execution phase the request is processed
further to carry out the GFFS-based data stagings of jobs. Figure 5.1 shows the
job request encoded in JSDL containing application requirements and data staging
elements pointing to the GFFS space. Note that the job will be executed on the
UNICORE site, therefore Genesis II-BESes are not involved in this sequence.
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The GFFS-based data transfer is realized through an XNJS extension. The GFFS
download component prepares a command to pull data from the GFFS. The command
(such as ’grid cp remote-source job-working-directory’) will be forwarded to
the Target System Interface (TSI) that invokes the Genesis II 'grid’ command grace-
fully and downloads the data to the job’s working directory. In a likewise manner
the GFFS upload takes care of uploading output files to the remote GFFS location.
Any failure will make UNICORE fail the job and abandon any further processing
related to it. For every job which is sent by the Genesis II client UNICORE server
extension maintains an additional folder in each of the job’s working directory that
contain user’s contextual information.

The pictorial representation of a simple job submission sequence is shown in
Figure 5.1. In the first step, the Genesis II GUI client asks a user to log-in through
an XSEDE provided credentials. After the authentication phase (step 2), she uploads
data to the GFFS folder (step 3). In step 4 the user then submits a job request with
application details, and location of the data to be downloaded. In a similar manner,
output data paths are also specified. The user then selects a UNICORE endpoint and
run the job. Steps 5 and 7 shows a submission of request to the TSI and the target
batch system. As soon as the job has been submitted to the execution service, the
client continuously monitors the job until it reaches to a terminal state. Once the
job is finished successfully the output is fetched back from the remote job working
directory which is located on cluster’s file system to the GFFS space. Steps 6 and 8
depicts the TSI and the GFFS interaction. For the sake of brevity only a sequence of
major steps are being highlighted.

o Genesisll Command Line Client AuthN: Username ) .
[“‘" & Password (XSEDE login [‘E‘ Client & User

Client

A
4 I @2 Grrs identity Fetch 3 A @ sosic Authentication
Job submr=s:on f JoDato upload v
|
1 1| | @ XSEDE Kerberos sTs : i @R MyProxy Protocol Server@
1 XSEDE
1 : AN : MyProxy (CA) [ A Previously Created ID (IGTF Certificate) ]
. ! -
BES/JSDL} I v === TV

v

[ GFFS Kerberos [ ® ~ Short Lived Credential ] [ GFFS Queue (SOAP / BES)
@
Global Federated UVa

File System

69 Download Job data

)| Genesisll
ﬁ:] and GFFS

€= —-————

- : : i
= AUthN (x.509 SLC) [ == AL W £28 oGsa-BES(ISDL) = auhz 1 UNICORE
UNICORE Gateway UNICORE/X A Process JsDL job| @ (Gridmap file) 1 o

5

y
| \l' 8 Upload ob data

v

. s
Target
"“ MS (Torque, o (5o unicoretsi )| o[ (@ errscient ] ch
SLURM) -
7 HPC Access Resource File System Resource
HPC Resource Batch submit

Fia. 5.1. The UNICORE and the GFFS integration showing a job submission sequence with
data staging.

Another building block for supporting semi-automated data analytics is to allow

user running jobs of parametric nature. Specially, the use case presented in the next
section needs multiple runs required to identify optimal set of application parame-
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ters. By using the JSDL Parameter Sweep extension implementation of UNICORE
[32] users can run multiple jobs as a single request. This is a very useful feature that
has a positive impact on the overall data analysis life cycle. Considering, if manually
running many jobs and compiling resultant outputs by hand, it will take user’s consid-
erable time just for book keeping the previous and next set of runs. We experimented
by sending parametric jobs via Genesis II client and UNICORE BES implementation,
and compared this model with manual SSH based submissions. By following this
approach the user’s administrative and usability overhead has significantly reduced.
Figure 6.1 shows the snapshot of the used JSDL Parameter Sweep instance for the
application.

6. Usecase: Point Cloud Anomaly Detection. Anomaly or outlier detection
algorithms primarily identify a set of data points that appear to be different than
the remaining data. There are different data clustering approaches which help data
scientists to discover anomalies and a meaningful set of clusters from data. Several
methods exist, for instance K-Means and Agglomerative clustering, have been used
in commercial and scientific domains.

In this paper we place our focus on the DBSCAN [21]] algorithm which allows
to reduce noise factor of the 3D point cloud dataset. A point cloud dataset captures
objects in three dimensional space representing the external surface of objects by a
point cloud. In our case, we use a data set that contains a point cloud for landscape
elements, such as different kind of buildings, monuments or bridges, of the city of Bre-
men, Germany. This points cloud has approximately 81 million data points. We use
DBSCAN to detect outliers in particular noise artefacts produced by the 3D scanner
when recording the 3D point cloud. In practice if the dataset is processed using serial
algorithm, it may take a couple of days. Therefore, it is imperative to have a parallel
implementation of DBSCAN, which not only improves the performance, but also uses
storage and memory requirements in an efficient manner. Another requirement is to
have an implementation that adequately exploits execution environments of HPC. In
order to support the application, HPDBSCAN [27] implementation is used. It is an
initiative of Juelich that provides parallel implementation of DBSCAN. For efficient
data storage and access, it uses the HDF5 data format.

We deployed this application on XSEDE infrastructure. We specifically used
the BlackLight cluster that is deployed at Pittsburgh Supercomputing Center (PSC).
A UNICORE service instance has been deployed and linked with the XSEDE-wide
GFFS. Before the job execution, the dataset is placed on the GFFS node at the Indiana
University’s Mason cluster. The data staging was done by using the UNICORE’s
GFFS extension that copies data from the file system space to the local job’s working
directory.

The identification of anomalies from the point cloud dataset is the main objective
of the clustering application. This requires to find an optimal set of application argu-
ments: MinPoints M, and epsilon (also called radius) e which influence the clustering
of new point cloud instances or different variants of the same data, respectively. In
terms of data mining this phase is called post-processing. The discovery of optimal
arguments is achieved by analyzing each of the completed job’s output which con-
tains the cluster distribution and noise factor. Within the output, the criterion is to
select the job configuration containing the minimum noise factor combined with the
best cluster distribution. The whole process of optimization requires multiple manual
runs of the same application but with different M and e values. In order to avoid
that users need to run these multiple jobs manually, the extended JSDL Parame-
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Clustering
Application

[280-320]; ‘ .
[ s |=»@® P

<sweep:Sweep>
<sweep:DocumentNode> ..
<sweep:Match>//jsdl-posix:Argument[Se]</sweep:Match> </sweep:DocumentNode>
<sweepfunc:LooplInteger start = “280” end="320" step="10">
<sweep:Sweep> .
<sweep:DocumentNode> .
<sweep:Match>//jsdl-posix:Argument[SM]</sweep:Match> </sweep:DocumentNode>
<sweepfunc:LooplInteger start = “80” end="120" step="10">
</sweep:Sweep>
</sweep:Sweep>

Fia. 6.1. HPDBSCAN representation in the JSDL Parameter Sweep format depicting applica-
tion with arguments: epsilon (e) and MinPoints (M) sweeping through a range of values.

Access Mode / Execution Phase | Data Transfer Data Processing Post Processing
. i Job script for every BT ; :
Manual SCP, GridFTP, different rosource Create script manually

BytelO, FTP for every variation

Single JSDL-PS template
for the specified parametric
variations

and batch system

Middleware Automated through the supported | One JSDL instance for
(UNICORE & the GFFS) data transfer protocols all kind of backends

TABLE 6.1
The user perspective of the Data analysis lifecycle using manual and automated mechanisms.

ter Sweep implementation which is provided by UNICORE’s execution back-end was
used. This allows using just a single job request which is not only more convenient
for the user, but also faster, reproducible and less error-prone. The parameter sweep
implementation serves the requirement R6-Parameter Sweep. Even though the user
submits only one job, multiple child jobs are automatically generated according to
the number of parameter iterations and nested sweeps. Figure 6.1 shows the sample
HPDBSCAN JSDL job description making use of the parameter. The sweep factor of
epsilon (e) and MinPoints (M) shown in Figure 6.1 will spawn 25 jobs in total with
each generating a separate output.

Table 6 summarize the steps user need to perform data analysis in manual (script-
based) and middleware-hosted environment. It is also evident from the illustration
that the use of JSDL and JSDL-PS is more intuitive and avoids a need to write custom
job requests for each flavor of the target resource management system. Furthermore,
the data transfer event here applies to the pre-execution and fetch outputs phase.

7. Related Work. In this section we present the related job execution middle-
ware technologies which are integrated with distributed file systems as well as work
related to DBSCAN.

GridFTP [31] is one of the major data transfer protocols used in today’s scientific
and commercial data infrastructures. Specifically, GlobusOnline [25] data transfer
service is mainly using this protocol to move data across widely distributed end-
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points. UNICORE’s GridFTP extension [7] helps scientists to submit job executions
on UNICORE and using GridFTP-based data endpoints for data stagings. From the
implementation perspective, both the GridFTP and GFFS extensions are integrated
following the same approach, that is by using the XNJS programmatic interfaces. In
the case of GridFTP integration, the clients requiring UNICORE servers to perform
data staging on user’s behalf, need to send at least X.509 proxy certificate chain along
with the job submission request. For the GFFS the entities communicating the job
request to the server must send a set of SAML assertions.

The GlobusOnline [25] service is a web portal to help end users perform GridFTP
based high performance data transfers across different data endpoints. From the data
management aspect, GlobusOnline and the GFFS are sharing a common set of fea-
tures. By bridging the data access and processing (i.e. the job submission and ex-
ecution, and execution service mount-point) services simultaneously distinguish the
GFFS from GlobusOnline. The processing part is capable of attaching high perfor-
mance (GenesisII) and high throughput computing (UNICORE) in a standard way.
A very positive aspect of GlobusOnline is usability as it offers a ready to use data
transfer service through a common web brower, whereas the GFFS user interaction
is native desktop-based, which is not very intuitive and responsive as compare to
browser-based applications.

ARC [20] is a middleware suite used by high throughput computing communities.
ARC’s integration with [26] and DDM (Distributed Data Management) [13] solutions
are mostly used by the ATLAS [13] particle physics community at the Large Hadron
Collider. dCache and DDM are distributed data management platforms providing
storage and retrieval of huge amounts of data. dCache and the GFFS share mostly
the same set of scenarios, but the major difference is that the GFF'S expose its interface
via RNS and BytelO, whereas dCache is accessed through the SRM [9] interface.

WS-PGRADE / gUSE (grid and cloud user support environment) [30] is an open
source scientific gateway framework that allows access to heterogeneous grid and cloud
resources. gUSE provides a client extension in the form of DCI bridge [1] to the GFFS
by invoking Genesis II clients. It is much similar to the way UNICORE integrates
the GFFS. The frame- work provides access to UNICORE and ARC job submission
services through the OGSA-BES interface.

In the context of worfklow (e.g. Taverna [38], Kepler [11], etc.) enabling data min-
ing methods on distributed computing infrastructures. Da Silva et al. [17] describe
workflows with serial implementation of DBSCAN. According to our understanding
their approach is not using the parallel DBSCAN implementation and in contrast
to our approach that is intended for production usage in a high performance com-
puting environment, the paper rather describes a research project than a production
implementation.

PDSDBSCAN-D [39] is an implementation of DBSCAN, based on the MPI and
OpenMP frameworks. According to [27] the HPDBSCAN application is more perfor-
mant on various earth science data sets, among which the points cloud data is one. It
performs better due to efficient pre-processing of spatial cells and use of density-based
chunking to balance the local computation load on each node. Furthermore, HPDB-
SCAN uses the HDF5 [4] data format to store data and uses its library for achieving
better parallel input and output performance.

8. Conclusion. In this paper, we have derived and implemented an integrated
architecture which covers a set of requirements for providing transparent, secure and
interoperable data processing tasks. Also provide these tasks access to the datasets
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managed by the Genesis II’s Global Federated File System (GFFS). This is mainly
achieved by the technical integration of UNICORE and the GFFS. The most impor-
tant requirements are: R1 expresses a need for a secure trust delegation model, but
should be standards-based and extensible (R2). As part of the integration the GFFS
uses the SAML-based profile provided by the UNICORE’s execution service. On the
other hand, we extended UNICORE’s identity validation that understand the GFFS-
based requests containing multi-chain delegation assertions. R2 is also fulfilled by
having the standards-based job execution and data management interfaces through
the OGSA-BES and RNS specifications, respectively. The BytelO standard is used
to manage the data transport, thus the functionality implements R3.

While jobs are managed by UNICORE execution services, its internal service
implementation is taking care of any status update delays through time out based
probes against the target resource management system. In addition to that, the
execution service also handles gracefully if the parallel file system on which the job’s
working data is stored becomes temporarily unresponsive, quite normal in production
environment. The requirement R5 is served in this case.

For the Extensible resource and job model requirement R7, the resource model
of the OGSA-Basic Execution Service (BES) and Job Submission and Description
Language (JSDL) standards are extensible. But it will be only helpful if the compliant
implementations are with minimal effort supporting the standard-allowed extensions.
The technologies in our focus, UNICORE and the GFFS, are providing server and
client side APIs to easily extend the resource model. This feature will be much more
useful for community specific science gateways and next generation infrastructures
with varying requirements. The XSEDE infrastructure has been used to demonstrate
our implementation and data analysis excursion. This would require any technology
and users entering the domain of an infrastructure should abide by its security model
and its policies. With the GFFS client and UNICORE-based server, we used XSEDE-
provided credentials to execute data processing jobs on a production deployment.

In our observation, most of the machine learning and data mining job submissions
are parametric in nature, thus they need to be running multiple times. UNICORE’s
standard-based parameter sweep implementation helps to support our point cloud
data clustering tasks. If we are able to represent the HPDBSCAN application re-
quirement through JSDL and its parameter sweep extension, then any other data
mining application can easily be supported. For the sake of implementation validity,
we are analysing other methods of data mining, for example classification algorithms.
One usability issue with the UNICORE’s parametric sweep implementation is to pro-
duce a single job output based on some user specified criteria, which is currently not
supported. The realization of this feature will reduce an overhead for data scientists
to manually sort and merge the resultant job outputs. We intend to support this
feature through a rule-based convergence of all the results from different parametric
jobs into a single meaningful output. Another useful aspect is to avoid submitting
multiple jobs to the batch system and rather use its internal feature of chaining mul-
tiple jobs. By enabling this feature the management and monitoring of complex job
composites can be much more intuitive and usable.
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SUMMARY

The UltraScan data analysis application is a software package that is able to take advantage of computa-
tional resources in order to support the interpretation of analytical ultracentrifugation experiments. Since
2006, the UltraScan scientific gateway has been used with Web browsers in TeraGrid by scientists studying
the solution properties of biological and synthetic molecules. UltraScan supports its users with a scientific
gateway in order to leverage the power of supercomputing. In this contribution, we will focus on several
advancements of the UltraScan scientific gateway architecture with a standardized job management while
retaining its lightweight design and end user interaction experience. This paper also presents insights into
a production deployment of UltraScan in Europe. The approach is based on open standards with respect to
job management and submissions to the Extreme Science and Engineering Discovery Environment in the
USA and to similar infrastructures in Europe such as the European Grid Infrastructure or the Partnership
for Advanced Computing in Europe (PRACE). Our implementation takes advantage of the Apache Airavata
framework for scientific gateways that lays the foundation for easy integration into several other scientific
gateways. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Scientific gateways have emerged as a lightweight access layer on top of complex middleware setups
that typically include different security paradigms and heterogeneous computational resources.
They provide simple access to remote resources and permit scientists to focus on their research
questions instead of technical low-level configuration details. Scientific gateways therefore have
become an indispensable tool for domain-specific scientists and enable various benefits. Examples
of these benefits include minimizing the amount of errors from manual inputs by checking input
parameters, or by just offering correct combinations of input configuration parameters and their
relationships that actually make sense from the science perspective as convenient options in the
GUI. As a consequence, scientific gateways have been implemented in a broad range of scientific
disciplines, and their use is even expected to grow in various scientific domains. The focus of this
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contribution is a scientific gateway known as the UltraScan Laboratory Information Management
System (US-LIMS), which is used worldwide, primarily in biochemistry, material science, and
polymer science. Its underlying UltraScan data analysis application [1, 2] is a software package
that enables the use of computational resources in order to support the interpretation of analytical
ultracentrifugation (AUC) experiments. The UltraScan scientific gateway was used in TeraGrid, the
predecessor of Extreme Science and Engineering Discovery Environment (XSEDE), by scientists
studying the solution properties of biological and synthetic molecules. The job management was
traditionally limited to proprietary protocols based on one specific underlying middleware known
as Globus [3]. At the same time, we observe an increased usage of middleware systems that offer
open standard interfaces (e.g., UNICORE [4], GENESIS [5], and GridSAM [6]), because of two
major reasons. First, open standard interfaces avoid vendor-locks, thus offering resource providers
the possibility to change their systems, if needed, without requiring a change in the end user open
standard-based client setup. Second, the open standards in the distributed computing domain have
become extremely stable in the last couple of years after already having been intensively used in
various scientific domains, which increases the trust in adopting them in different technologies.

In this paper, we provide insights about advancements of the UltraScan scientific gateway
architecture to leverage open standard-based interface to supercomputing for extracting very
high-resolution information from the experimental data. This contribution will focus on several
improvements of the UltraScan scientific gateway that enable a standardized job management while
retaining its lightweight design in order to not disturb the established user experience of researchers
that use UltraScan in daily science. The current US-LIMS scientific gateway, which is used to
access remote computational resources with these interfaces, has been in constant use since 2006 by
several hundred users worldwide, with computational resources available from TeraGrid, XSEDE,
Universities in the USA and Australia, as well as one commercial site in the USA. This system is
stable and mature and undergoes only very minor changes in the user interface that contributes to
its maturity.

The paper is structured as follows. After the introduction in Section 1, the rationale behind our
work is given in Section 2, explaining the scientific case underlying UltraScan, and providing the
context for the relevance of scientific gateways. Section 3 lists the identified limitations of the
UltraScan scientific gateway. Section 4 then describes how we overcome the identified limitations of
the framework with various architectural improvements. One concrete deployment of our proposed
integrated architecture is presented in Section 5 with insights into its use in a production setup.
Section 6 will bring out significant experiences acquired during the course of gateway integration
and application enabling. After presenting related work in Section 7, this paper ends with some
concluding remarks.

2. RESEARCHERS USING ULTRASCAN

Researchers wishing to perform computationally intensive analysis of ultracentrifugation data on
high performance computing (HPC) resources have long been able to use a gateway that is highly
integrated with the UltraScan application and databases. This section gives an overview on the
UltraScan application and further reveals an interaction between the gateway and researchers.
Since the early 1990s, digital data acquisition from the analytical ultracentrifuge laid the
foundation to analyze sedimentation data using powerful computational resources. The UltraScan
data analysis application [1, 2] became a well-known multi-platform software package that is able
to take advantage of HPC resources. It supports the interpretation of complex, high-resolution
analytical ultracentrifugation (AUC) experiments in various application domains. These include
biophysics, biomedicine, material science, nanotechnology, pharmaceutics, and other industrial
applications. UltraScan not only provides sophisticated parallelized optimization algorithms but
also offers guidance with the design of sedimentation experiments, addresses data management
challenges that arise from large data sets, and provides visualization routines to assist with result
interpretation. UltraScan is organized into five modules: (1) a parallelized application using the
message passing interface (MPI) for solving optimization problems on massively parallel compute
clusters. This application includes a finite element solver for the Lamm equation [7] and implements
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three fundamental optimization algorithms, the two-dimensional spectrum analysis [8] for finding
the size and anisotropy distributions, genetic algorithms for parsimonious regularization [9], and a
Monte Carlo implementation to identify confidence regions and provide parameter statistics [10].
Other modules include (2) a relational database for data management and result storage and (3) a
laboratory information management system (LIMS), which is available through the XSEDE Science
Gateways [11]. It serves the user with a common interface for the collaboration with other users, for-
mulates all HPC analysis job requests, and sends them to a remote cluster for analysis [12]. Module
(4) integrates grid middleware functionality for job abstraction that is based on Airavata [13] and
manages submitted computational UltraScan jobs. The final module (5) provides a multi-platform
GUI to assist with interpretation and visualization of analysis results. The UltraScan science gate-
way hides the arcane tedium of submitting supercomputer jobs from the user, and thereby makes the
UltraScan software package user-friendly, and avails its data analysis methods to a broad commu-
nity. As a result of these designs, the utility of the software was continously improved and was more
accessible to novice users. The UltraScan science gateway is used worldwide, serving approximately
800 academic and industrial users today.

In more detail, a unique component of the UltraScan software is a PHP web interface that
allows the user to interact with their data in the MySQL database and to submit data for analysis
to a remote cluster. The LIMS system also offers an extensive reporting system that dynamically
generates analysis reports based on available datasets in the database and allows the user to share
their data with colleagues over the Web to facilitate collaborations. Job submissions can be con-
veniently tracked through the LIMS queue viewer that updates the user on the status of all active
UltraScan jobs. Multiple analysis methods can be selected by researchers for submission to a remote
compute resource, and individual parameters for each analysis method (e.g., fitting ranges, number
of Monte Carlo iterations, genetic algorithm parameters, and others) can be conveniently adjusted
through the Web interface. An administrator function is available for tracking job submissions and
reviewing standard error and output files from each job, and providing experimental project infor-
mation, and uploading ancillary and supporting data needed for the analysis. The US-LIMS system
takes advantage of the Apache Airavata system, which is further described in the succeeding text,
but largely responsible for the job staging on the requested computational resources. The US-LIMS
system and its interfaces are illustrated in Figure 1.

Researchers use the tool by logging into their LIMS Web instance (using the underlying Apache
Web server) and selecting one or more datasets from the MySQL database for analysis. After
selecting the analysis method and setting up the parameters for the analysis, the researcher selects
a computing resource and submits the job. At this point, a unique identifier is created in a second

UTHSCSA Local disk Apache
Portal A
HTTP (Restful) - Airavata |
Nven ] (GFAC)
> ¥
LIMS3 DB LIMS-3
[— Mysql - BES/JSDL, GRAM
{ [ Instance 2 GFAC DB " &
ser uster 1
LIMS-3 A —
> Queue Instance n A ResTurce
Viewer CRON listen.php
gridctrl.php sendmail
| A
UDP Feedback

Figure 1. The UltraScan-LIMS science gateway architecture with its entities and relationships to
computing resources.
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database called Generic Application Factory (GFAC) that tracks all active jobs. The data are
extracted from the database, and an XML file containing the job parameters is written to a local disk.
A tar archive containing the experimental data is also created and placed into the GFAC database,
and then the job is forwarded to the Apache Airavata system. The job request is issued for the
targeted resource, using the abstractions provided through GFAC. The GFAC database is now con-
tinually being updated with information from the Airavata software. A grid daemon (gridctrl.php),
controlled by crontab, running on a server at UTHSCSA monitors every job sent from any LIMS
instance by periodically querying the GFAC database and updating the information in the LIMS
queue viewer. Any cluster can also send messages over UDP to a specified port on the UTHSCSA
server, which is read by the listen.php daemon running on the UTHSCSA server. This UDP stream
contains information about the job status known only to the MPI master process in the UltraScan
parallel application. The information includes details about iteration numbers and parameter posi-
tions. All such information are recorded in the GFAC database and also updated in the queue viewer
by the gridctrl.php daemon. When the job is finished, the status in the database is updated to sig-
nal that the job has completed and all results have been transferred to the GFAC database. At this
point, gridctrl.php updates the queue viewer, retrieves all job information from the GFAC database,
and places it into the LIMS/MySQL database. Finally, an email is generated with the result code
from the job, and the researcher is notified. The aforementioned process is using entities illustrated
in Figure 1.

3. IDENTIFIED LIMITATIONS

In order to understand the two identified key limitations of the approach described in the previous
section, we explain several entities of Figure 1. The latest US-LIMS gateway uses the Apache Aira-
vata [13] software framework to access a variety of computational resources. As shown in Figure 1,
the GFAC component within Airavata wraps command-line driven science applications and turns
them into robust grid middleware-agnostic services. Airavata has a pluggable architecture that sup-
ports submission to different middleware systems using their corresponding proprietary protocols
(e.g., using Globus [3]). We identify this direct vendor dependence of Airavata as limitation A
inherent in the previous design that also affects the end user by being limited to those infrastructures
that offer the corresponding specific proprietary interface as access method. The framework also
provides access through Secure Shell (SSH) to remote machines, Amazon EC2, or clusters using
Apache Hadoop. All of these access methods are mostly based on proprietary protocols to a broad
set of different technologies or are very basic (e.g., access via SSH) requiring manual intervention
by researchers. A deeper analysis of the Apache Airavata software reveals that it is designed on
service-oriented architecture principles, which allow abstraction, extension, and component encap-
sulation. As illustrated in Figure 2 (i), different plugins (e.g., JGlobus, EC2 API, etc.) can be added to
Airavata to authenticate, authorize, move data, submit jobs, and monitor progress. All of them need
to be maintained separately. We identify this maintenance overhead of n technologies as limitation
B, that is, especially problematic when you consider m different versions of the same technology
deployed across infrastructures over time (i.e., maintenance of up to nxm different technologies).
Apache Airavata is comprised of GFAC and several other components [13] to provide science gate-
way capabilities. GFAC provides a generic framework to wrap an application as a service interface
in Java. This service layer separates the invocation from the communication layer supporting mul-
tiple protocols like SOAP, REST, or JSON. The application provider first describes the application
through inputs, outputs, deployment information, temporary working directories, and remote access
mechanisms for file transfers and job submissions, and registers this information with a registry
service. Once applications are registered, the GFAC’s distributed application management handles
the file staging, job submission, and security protocols associated with executions. During execu-
tion, the application schedule is determined, and the input data files specified by input parameters
are staged to the computational resource. The underlying application is then executed using a job
submission mechanism. The framework monitors the status of the remote application and periodi-
cally publishes activity information to a so-called event bus. Once the invocation is complete, the
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(i) Proprietary Protocol Space
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Figure 2. Overview of limitations by providing proprietary protocols (top) instead of open standards
(bottom).

application service tries to access the results of the application invocation by searching the standard
output for user-defined patterns or by listing a prespecified location for generated data.

Based on the aforementioned details, we are able to identify the limitations in Figure 2 (i).
A direct comparison with identified solutions to overcome the limitations is shown in Figure 2
(ii). Our standard-based client integration into Apache Airavata offer a mature and stable resource
access interface and overcomes the limitation A as standard interfaces evolve slowly. As part of
this contribution, we integrated a client that enables standard-based grid middleware (e.g., UNI-
CORE [4] or GENESIS [5]). This solution also overcomes the limitation B by avoiding vendor-locks
and is thus not limited to use only infrastructures with Airavata deployment having one particular
proprietary interface installed. To sum up, apart from saving maintenance efforts (identified as
limitation A) by just providing one open standards adapter, the adoption of the open standards
protocols also provides access to a diverse range of computational resources offered by multiple
infrastructures worldwide.

4. ARCHITECTURAL ADVANCES

This section provides an introduction to the relevant open standard protocols used to improve the
architecture analyzed in the previous section, gives an overview on UNICORE middleware, and
describes our architectural advances.

4.1. Relevant open standard protocols

There are three relevant open standards in the field that are of relevance to the Apache Aira-
vata’s standard-based extensions presented in Section 5. These are named as the Job Submission
and Description Language (JSDL) [14], BytelO [15], and the Open Grid Services Architecture
Basic Execution Service (OGSA-BES) [16] specification (often named BES for simplicity). These
standards are well defined and although being very basic in nature, they are extremely mature
and stable.

Basic Execution Service provides a Web services based interface and a state model and informa-
tion schema to represent job management requirements. The major interface operations generally
include create, monitor, and terminate actions for computational jobs. The job state machine defined
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Figure 3. An adoption of open standards in the overall UltraScan integrated architecture.

in BES is an extensible model depicting complete life cycle of the job. The computing resource
capabilities can be expressed through the information schema.

Job Submission and Description Language is an Open Grid Forum standard that defines clear
syntax and semantics for describing the requirements of scientific applications that are intended
to execute via a middleware abstraction on computational platforms. Applications invoked via the
aforementioned BES interface must be specified in JSDL. The JSDL specification comes with
several profiles such as the single-program-multiple-data (SPMD) extension [17] and the JSDL
parameter sweep extension [18] that offer standard abstractions projecting common functionality
required by researchers on higher-levels (e.g., parameter sweeps). In the context of this contri-
bution, the JSDL SPMD is used by an UltraScan client to express job submission requests. This
extension allows the client to specify a number of processes and processes per host required by the
job. Section 5.1 further elaborates the usage of JSDL SPMD for representing the UltraScan applica-
tion requirements. The deployment presented in Figure 3 shows that data stagings to job locations
are performed through the BytelO standard. This protocol is already adopted in several middle-
ware implementations such as within UNICORE, GenesislI [5], and OGSA-DAI [19]. The BytelO
specification consist of Web services based interfaces allowing data read and write in a stateful and
stateless fashion.

4.2. Open standards-based middleware

In this section, we demonstrate the advantages of our approach by describing one middleware system
(UNICORE) that adopts the relevant standards described in the previous section. UNICORE is an
open source, platform independent middleware abstraction for most of the production HPC systems.
It is a service-oriented architecture providing most of its functionality through Web services. Many
of these services are compliant with open computing, data, and security standards.

In more detail, UNICORE consists of a server containing multiple Web services and multi-
ple clients, such as UNICORE Rich Client, a graphical client, and the UNICORE Command-line
Client. The server tier adopts the OGSA-BES interface to enable standard-based job submission and
management. The backend execution of the BES interface is performed by the Extended Network
Job Supervisor (XNIJS), which is an execution manager that processes an incoming job request.
Through XNIJS, the request is verified and validated against the JSDL compliance, and the resource
requirements are matched against the computing site’s resource capabilities, such as the number of
compute nodes or processors per node. Once the request is successfully validated, it is then prepared
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for submission to a remote target batch system, often also named as resource management sys-
tem (e.g., Torque, Loadleveler, etc.). At the batch system tier, there is a separate component called
Target System Interface (TSI). It is a tiny Perl based daemon process deployed on the login node
of a batch system that takes the abstract submission request from XNJS and converts it to a batch
system specific job command script.

4.3. Integrated architecture

Figure 3 illustrates the adoption of the aforementioned open standard protocols in the integrated
architecture that includes the UltraScan scientific gateway and the Apache Airavata framework. It
illustrates the standardized access via grid middleware to computational resources in production
systems that are similar to those in infrastructures such as XSEDE or PRACE. The integrated archi-
tecture overcomes the limitations identified in the previous sections by stable standard protocols that
do not change often.

The benefits of this integrated architecture are twofold. First, the BES and JSDL Client Classes
Plugin of GFAC enable the standardized job submission to any standard-compliant middleware
that adopts these standards. Examples of grid middleware that offer an OGSA-BES (including
JSDL) compliant access include UNICORE, GENESIS, and GridSAM [6]. They ensure a sta-
ble interface for job management, independent of the underlying grid middleware services, which
can be exchanged, when needed, while the Airavata framework implementation stays the same.
More benefits in this context can be found in our previous work on open standard reference
architectures [20].

The second benefit for the Airavata framework as a whole is the lowered maintenance overhead by
just managing one standard-based plugin instead of multiple proprietary plugins. This is particularly
crucial in e-Science production infrastructure deployments where separate plugin is desired for dif-
ferent middleware versions. There is certainly more administrative and community overhead when
new version comes out which might require client and server update at the infrastructure scale.

5. CONCRETE DEPLOYMENT

This section describes a concrete production deployment of our proposed architecture
advancements.

5.1. Hardware and software environment

For the application setup and job runs the Juelich Supercomputing Centre’s JUROPA cluster
[21] had been used. The UltraScan software package was installed on the JUROPA system. This
application is MPI parallelized and uses the Qt4 library. In order to ease the usage of UltraScan
and to avoid the necessity to manually set the correct environment, it is accessible as a Linux
environment module. The UNICORE server is configured to trust UltraScan users and also exports
the UltraScan application details, which includes executable name and the environment variables
required during the runtime of the application. Figure 4 refers to the related JSDL-SPMD com-
pliant instance used as a job execution request token to the UNICORE deployment on JUROPA.
us_mpi_analysis is the target executable of the job run. Because the application is MPI-based, the
SPMD describes this information by leveraging the SPMDVariation element, which indicates what
MPI runtime flavor should be used.

5.2. Job management advancements

In the previous section, we described our general approach of the integrated architecture, whereas
this section focuses on one specific job submission and management flow to illustrate the feasibility
and benefits of using open standards. Prior to job submission on JUROPA, it is assumed that a user
is known to a UNICORE deployment and has enough allocation to acquire compute time on the
cluster. In the first step, the end user needs to bind his personal identity with the credential service
within the Apache Airavata system using the X.509 certificate of the end user. Hence, during daily
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<spmd:SPMDApplication>
<spmd:NumberOfProcesses>256</spmd : NumberOfProcesses>
<posix:Executable>us_mpi_analysis</posix:Executable>
<posix:0Output>stdout</posix:Output>
<posix:Error>stderr</posix:Error>
<posix:Argument>hpcinput.tar</posix:Argument>
<spmd:SPMDVariation>

http://www.ogf.org/jsd1/2007/02/ jsdl-spmd/MPI

</spmd:SPMDVariation>

</spmd: SPMDApplication>

Figure 4. UltraScan job as a Job Submission and Description Language (JSDL) single-program-multiple-
data (SPMD) instance.

operation, the end user will start by presenting her username and password to authenticate at the
UltraScan3 scientific gateway (local login). After successful authentication, the end user configures
the corresponding computational job with a choice of instrument data inputs and user information
associated with a grant and analysis parameters in the US-LIMS. The Apache Airavata API com-
municates the job to the framework in which it is specifically received by the workflow interpreter
that analyzes the job request and forwards it to the GFAC component.

Before the job request is prepared for the target middleware service (i.e., UNICORE in our case),
GFAC generates the right credential from the user information, which was communicated previously
through US-LIMS. These credentials are persisted to the Airavata’s Credential Store service. Next,
the request can proceed job submission. At this stage, we take advantage of the solutions proposed in
Section 3. We implemented an open standard compliant plugin within Apache Airavata using BES
and JSDL. Although UNICORE Client Classes have been used for the implementation, in principle
any BES/JSDL client could have been used (e.g., GENESIS BES client or JSAGA, for example).

As part of the submission process, the job’s temporary directory is created on the JUROPA’s
shared file system. The directory is a temporary location where the job input and output files are
copied from the job’s actual working directory. After the directory is created, any input files are
uploaded to the input directory. BytelO is used as a data transfer mechanism for transferring the
job’s input files. Once GFAC knows all the files are staged-in to the temporary location, the JSDL
instance generation will take place by combining the UltraScan application parameters, executable
name, and environment variables in a single JSDL instance. The generated instance will also contain
names of the required input and output files.

The UNICORE BES/JSDL client plugin will then take this JSDL instance and fire job submission
request to JUROPA’s BES endpoint. After the successful submission takes place, the job status is
continously monitored, unless it reports a finished state. The finished state implies that the JUROPA
BES instance has copied all output files to the temporary directory. Once they are copied, the client
plugin will be able to download all the output files to the location where GFAC is deployed. After
the job outputs are fetched, GFAC uploads them to the gateway’s desired location.

At the server side, UNICORE/X forwards the job request to the TSI [4]. The TSI interacts with
the resource management system that is Moab/Torque in our case.

6. GATHERED EXPERIENCES

The section provides details on the benchmarks captured during the UltraScan job execution runs
and also compiles a list of issues faced during the process of enabling the application on Airavata
and UNICORE layers.

6.1. Job submission benchmarks
In order to illustrate our new open standard-based approach, we compare it with existing middle-
ware deployments of UltraScan on XSEDE infrastructure. The observation is made on the basis of
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Figure 5. A graphical representation of the job runtimes captured from different production computing sites.

time-to-solution. Both general experience and a specific set of benchmarks show that throughput
for Airavata initiated jobs for UNICORE middleware is comparable to that of the GRAM middle-
ware. Figure 5 summarizes execution times for various job types on XSEDE'’s Stampede, Lonestar,
Trestles, and Juelich’s JUROPA supercomputing. All the jobs shown in this figure ran UltraScan
with the same application version and runtime parameters. Figure 5 depicts job statistics showing
the genetic algorithm - Monte Carlo (GA-MC) jobs average 80 min (1 h and 20 min). These jobs
typically use 256 processors. The chart shows run times for four different jobs run on four different
clusters. Three of the clusters (Stampede, Lonestar, and Trestles) are in the XSEDE system. The
final one (JUROPA) is part of PRACE. The XSEDE clusters used GRAM, whereas the PRACE
cluster used UNICORE as compute middleware.

The run times are greatly affected by the size of the data and by parameterization. The tests on
different clusters used exactly the same data and parameterization. The relative run times are a fair
comparison of processing speeds on the clusters. Further, the run times primarily reflect processor
speed and memory available on each cluster rather than the middleware. The chart does illustrate
that the JUROPA cluster has a speed that is near the average of all clusters and that its results (using
Airavata and UNICORE) is comparable to the others. The four jobs run are all Monte Carlo runs
of two types: 2DSA (two-dimensional spectrum analysis) and genetic algorithm (GA). 2DSA-MC
typically run very quickly. A GA-MC job can take a long time. GA-MC1, GA-MC2, and GA-MC3
correspond to the same application but with different runtime application parameters, one such
runtime parameter is a variation in the number of Monte Carlo iterations.

6.2. Integration experiences

Scientific gateways provide a seamless access to different computing insfrastructures via convenient
user interfaces. They are mostly Web browser based interfaces that aggregate application require-
ments in response to user interaction. Users must be registered and properly authenticated before
using any functionality of the gateway. The security here is enforced by a gateway portal rather than
a target end resource used for computing. In this manner, the complexity of computing middleware
access and site security intricacies are hidden behind the gateway portal. The scientific gateway as
a community is solely responsible for arranging credentials on behalf of the user and carries out job
submission. The US-based scientific UltraScan gateway is configured with a single community cre-
dential to function on behalf of multiple users. Because of legal and policy constraints, this was not
possible on a European cluster, that is, JUROPA. In order to adhere to the policy requirements, the
security model of UltraScan/Airavata and UNICORE integration has been revisited, and a special
field in the US-LIMS Web interface is introduced that captures a user login (unixID on JUROPA)
for every user who intends to target JUROPA.
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In our experience, the file system availability appears to be a critical factor when hundreds of
jobs are simultaneously reading and writing to a shared file system. JUROPA has a Lustre file
system. We observed that 30% of jobs failed because UNICORE receives a delay in file system
response. The response time varies from a few seconds to a minute. In order to have job submission
be resilient to the file system delays, a time-out grace factor was introduced into the UNICORE
server, which prevents job failure until a certain time interval has passed. After this configuration,
we have experienced a negligible number of job failures because of file system delays.

As described in Section 4.3, TSI acts as a thin layer for submitting and monitoring UNICORE
managed jobs to the MOAB scheduler. One observation shows during peak loads on JUROPA the
underlying batch system does not return any status of the submitted job. This occurs even when the
job is not completed. In this case, the UNICORE server reports those jobs for which the status is
not shown as finished, because the middleware tier assumes the job is completed, even though it is
still running. In several cases, a finished job status was incorrectly issued. To overcome this issue,
we introduced a status update grace interval configuration into UNICORE, which enables it to wait
until the actual job status can be retrieved. Introduction of this property has greatly reduced the
incidence of false status reports in production UNICORE deployments.

7. RELATED WORK

There is a wide variety of related work but we focus on those that are of direct relevance to our
approach. First, the Vine Toolkit [22] provides Java based adapters for various middleware technolo-
gies and represents a high-level API for managing jobs on specific target sites. It is optimized to run
in browser-based setups that act as the client tool for the GridSphere portal. Vine supports not only
gLite and UNICORE (e.g., SSL key generation, and job-based management, etc.) but also Virtual
Organization Membership Service (VOMS) (e.g., proxies, registering and un-registering users, etc.).
In order to send jobs to a middleware, the Vine Toolkit has dedicated client classes for each mid-
dleware. The Uniform Resource Identifier (URI) of this container and the corresponding gateway
portal is typically at a fixed location that end users can use to perform their daily scientific applica-
tion runs. In contrast to our approach, its several features include the use of proprietary UNICORE
interface elements for job management.

The ‘Simple API for Grid Applications’ (SAGA) [23] is another concrete example of related
work. SAGA has two notable characteristics. First, SAGA is an open standard [24] to promote ‘Grid
interoperability on the application level’ developed by the Open Grid Forum. Second, the SAGA
framework is actively developed by a team that adopts the SAGA standard as described in [23]. This
framework is similar to the Airavata framework and enables a high-level programming abstraction,
which significantly facilitates the development of scientific applications. As such, it provides a lot
of application patterns (e.g., map-reduce, replication, parameter studies, etc. [25]) that are useful
for end users. Apart from being a high-level application framework, [25] reveals that it can work
on top of the open standards used in this contribution (i.e., OGSA-BES, JSDL, etc.). Despite being
previously bounded to proprietary interfaces of middleware systems as described in [23] and [24],
the SAGA framework has now been extended towards OGSA-BES. Hence, SAGA is not only a
standard but also an application framework that provides many features that could be beneficial to
the Apache Airavata framework. In the context of our work, this option might be a candidate for
future integration once the BES in SAGA is properly tested and used by various stakeholders.

Closely related to scientific gateways is the P-Grade Portal [26]. This portal can also be considered
as a building block for various scientific gateways and consists of many proprietary middleware
adapters. P-Grade was not used, because UltraScan already takes advantage of the Apache Aira-
vata framework for accessing middleware and we wanted to keep the changes at minimum to
ensure stability.

8. CONCLUSIONS

The results of our pilot activities of enabling scientific gateways with open standard interfaces lead
to a couple of interesting conclusions. We can conclude that using an abstraction framework within
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the UltraScan scientific gateway is extremely useful for two reasons. First, it enables the UltraScan
gateway to focus on its domain-specific functionality (i.e., US-LIMS, etc.). In other words, the
source-code to access the wide variety of heterogeneous computational resources and middleware
systems does not need to be directly included in the scientific gateway. Second, the Apache Airavata
plugin for open standards is available through the Apache open community. As it is developed
through an open source process, it can be reused within a wide variety of other scientific gateways.
This lowers the maintenance overhead required by potentially many scientific gateways that all need
to perform job submissions and management activities. In summary, our work holds the potential
that the standard-based plugin within Apache Airavata will be reused many times by being integrated
in various scientific gateways we already have started to analyze for possible integration (cf. to
XSEDE scientific gateways). A major conclusion is the benefit of using open standard interfaces to
access computational resources (e.g., such as JUROPA [21]). We have shown one particular detailed
deployment in Europe based on the UNICORE middleware, but the approach can be applied to
a wide variety of other resources that use standard-compliant middleware such as GENESIS and
GridSAM. For example, any GENESIS installation on the FutureGrid testbed can be easily used by
just changing the URI within the BES/JSDL client classes. This requires neither redevelopment of
the plugin within Apache Airavata nor a tuning of the GENESIS BES/JSDL implementation. Also,
the XSEDE architectural process includes the use of open standards such as BES, JSDL, and ByteIO
while these interfaces already can be used to access European EGI and PRACE resources if needed.
This represents a key benefit of using a standardized and stable interface approach. Furthermore,
even if some middleware system will not be available in the future (perhaps because of lack of
funding), the use of standardized interfaces will enable an easy switch to another middleware system
that adopts the standard interface.

The enhancements discussed in this paper are integrated with production versions of the Ultra-
Scan gateway. Since September 2013, European users of the UltraScan gateway have been using our
contributions and computational resources in Juelich. As a future work, we intend to use the inte-
gration effort as a basis for the UltraScan users of the XSEDE infrastructure. Once we have more
than one UltraScan and BES deployments, we will perform interoperability tests. In summary, we
conclude that our approach lowers risk and increases trust because it is based on standard interfaces
that do not change as often as proprietary interfaces. Especially, for large-scale infrastructures such
as XSEDE, PRACE, or EGI, it is important that the interface elements do not change. In the past,
many proprietary interfaces changed their protocols often, which resulted in loss of trust in the grid
middleware systems. Also, switching from one middleware version to another version is a very slow
process in several infrastructures. That means that old versions of the proprietary interfaces within
middleware systems are still supported in order to support end users that are not able to change their
client setup or that are faced with resource providers that also do not want to frequently reinstall
their middleware software. The use of stable standards reduce this change as BES or JSDL did not
change in the last couple of years.
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Abstract — Parameter sweeps are used by researchers with
scientific domain-specific tools or workflows to submit a large
collection of computational jobs whereby each single job of it
only varies in certain parts. They require a more fine-grained
distribution of jobs across resources, which also raise a
significant challenge for efficient resource management in
middleware environments that have been not specifically
designed to perform parameter sweeps. This paper offers
insights into parameter sweep solutions that support multi-
disciplinary science environments via abstraction from resource
management complexities using middleware. The solutions are
based on use case requirements, enable efficient submission,
enhanced usability, and standard compliance. We also apply a
use case taken from the life science domain to demonstrate
usefulness and efficiency of the solutions.

Index Terms—Parameter Sweep Jobs,
Standards, Taverna, Proteomics

HPC, UNICORE,

1. INTRODUCTION

For scientific experimentation and analysis the efficient job
and data management is considered to be the most significant
functionality. In most of the cases the applications are being
accessed or executed through a layer of middleware
abstraction. This abstraction can have a potential to interface
with multiple computing and data platforms. The computing
platforms here could be either high performance computing
(HPC) or high throughput computing (HTC) resources. We
have witnessed in different scientific domains that the use of
middleware abstraction over the mentioned resource
management systems is becoming useful.

There are certain scientific use cases which might need to
have applications running with different parameter sets. This
could happen for instance in the field of simulation sciences,
where applications are executed in parallel within pipelines i.e.
scientific workflows. It is often observed that the simulation is
regenerated by sending the same application with different
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parameter and data sets. In a likewise manner we can easily
identify multiple e-Science use cases which possess this
requirement. One such use case is [20], in which the workflow
implementation is re-reading same data multiple times, thus
degrading workflow performance. In scientific computing this
problem has been tackled through a concept of parameter
sweep. The computational jobs that are required to re-run with
different parameters are named parametric jobs. The
parameters could be any of application arguments,
environment variables and file staging parameters.

While considering the parametric job enactment as an
important functionality in supporting scientific user
communities, the UNICORE [1] consortium initiated an effort
to take this as a potential requirement. As a result of this
initiative UNICORE’s execution tier is extended to generate
and execute parametric jobs. The implementation is built on the
open standards based Job Submission Description Language
(JSDL) [16] Parameter Sweep extension [17]. The execution
tier is a server side functionality, theoretically it could benefit
all UNICORE user clients or client side API adopters. The
impact of API users is wider as it may benefit a diversified set
of scientific tools that are not UNICORE per se, but are willing
to use UNICORE based services. One of the examples is the
Taverna-UNICORE [5] integration, which is using the
UNICORE client side API to submit and monitor jobs on
UNICORE servers through the Taverna workbench [6].

The remainder of the paper is structured as follows.
Section I introduces the problem space of parameter sweeps in
scientific computing. After introducing basics of resource
management and middleware in Section II, Section III models
the problem space and offers a requirement analysis. Section
IV describes solutions to overcome known limitations that are
then validated with scientific applications in Section V. A
survey of related work is in Section VI, while the paper ends
with some concluding remarks.
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Figure 1 Standard UNICORE Resource Management and overview of parameter sweep adoption in context

II. STANDARD RESOURCE MANAGEMENT WITH UNICORE

UNICORE is a middleware that provides a seamless
computing and data abstraction to a wide range of
computational resources such as high performance computing
(HPC) supercomputers or high throughput computing (HTC)
oriented geographically distributed resources. The overall
architecture follows a standard three-tier architecture as shown
in Figure 1, including the ‘virtual’ Grid infrastructures tier
representing on which part of Grid infrastructures the
deployment belongs to.

A. CLIENTS

UNICORE Clients offer a user facing tier to interact with
server side functionality. UNICORE Rich Client (URC) [18] is
a platform agnostic desktop client implemented on the Eclipse
framework. It offers a complete set of functionality, which can
be provided through the web services. They include managing
jobs, data, and accessing remote file systems through a
convenient desktop interface. In case of job submission, the
URC generates a JSDL instance based on user request and
submits it to the client selected UNICORE target system.

UNICORE Command-line Client (UCC) is a platform
independent software that provides a command line based
access to the server tier, as shown in Figure 1. For the job
submission phase UCC can accept job request as a JSDL
instance in the form of XML or JSON, it validates the request
and submits it to a remote job management service. Once the
job is submitted the UCC client tracks the job status and finally
stages output files to the user machine.

Apart from user facing interfaces, UNICORE provides
client side APIs, which can be used separately for non-
UNICORE based user interfaces or portals.

B. SERVICES

UNICORE is based on the principles of service oriented
architecture, thus exporting its major capabilities such as job
execution and data management via a set of web services.
Figure 1 depicts an overview of the UNICORE architecture.
By following the architecture in an optimal environment
UNICORE clients prepare a job request which is then sent to a
remotely deployed web service. The UNICORE core services
shown in Figure 1 contain job and data management web
services. Once the request is validated, the job management
web service forwards the request to a backend execution
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Figure 2 The Taverna workbench with UNICORE plugin and an example scientific workflow

system named as Extended Network Job Supervisor (XNIJS).
XNIS is an integral part of UNICORE’s job and data
management framework. It vets incoming job requests by
checking them against JSDL compliance. It also checks the
incoming request with compute and data capabilities available
on backend resources, they include for instance, application
support (whether it is serial or parallel), number of compute
nodes, number of cores per node, total physical memory and
wall time etc. XNJS also implements a support for performing
file transfers required for job data stagings.

Its major design decisions are based on open standards to
enable a mature and stable access to computing resources and
thus it can be exchanged with any other standard compliant
technology in the field of middleware.

C. TSI and Ressource Management:

The UNICORE middleware abstraction provides a layer
above commercial and open source batch and scheduling
systems such as Torque, Load Leveler, SLURM, LSF, just to
list a few out of the supported batch systems. UNICORE is
used by a wide range of scientific disciplines such as
computational biology, physics, or chemistry. While
supporting scientific communities, the resource management
capabilities of UNICORE focused on providing a simple yet
powerful interface keeping many low-level details out of sight
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for scientific end-uses. It provides extensible access interfaces
for managing and monitoring computations and any associated
data which is typically required as the standard resource
management functions to perform scientific experimentation
and analysis with middleware.

UNICORE has been used by Fusion and Virtual
Physiological Human communities through its standards based
interfaces. From usage and deployment perspective
UNICORE has been deployed on production e-Science
infrastructures such as DEISA [2] and PRACE [3]. At the time
of writing it is being considered as a HPC middleware service
platform deployed on supercomputing centers taking part in the
XSEDE project [4].

III. SCIENTIFIC USE CASE ENVIRONMENT REQUIREMENTS

In the life science domain, the Taverna workflow
management system [6] has been widely used since many
years. Taverna's components are implemented in Java and
available as open source. Figure 2 shows the so-called
‘Taverna workbench’ that provides a GUI client for the design
and monitoring of scientific workflows. Their execution is
managed by the Taverna workflow engine. This engine comes
along with the client or standalone as Taverna server. Taverna
is the common working environment for life scientists and as
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such this should not be changed to any other form of clients.
Hence, the use of the UNICORE Clients such as the Rich
Client or UCC is not possible that represents the first
requirement added to Table 1. In terms of scientific
applications, Taverna provides to the user a considerable
number of ‘bio-informatic activities’ representing Web
Services, Java classes, or local scripts.

Services can be easily added and activity types can be
extended within Taverna. Accordingly, some of the authors
extended Taverna with a UNICORE activity [5] to enable
simple job submission to a UNICORE environment in order to
take advantage of its strength in resource management
capabilities. Hence, in earlier work, we already created a
plugin to enable the job submission via JSDL to UNICORE.
In particular, the support of the wide range of resource
management systems was a motivational factor and its
adoption of open standards. Hence, also the standard-based
job submission in particular with JSDL is another key
requirement in order to enable also the job submission to other
technologies than UNICORE if needed. We added this as
requirement to Table 1.

Taverna offers an easy to use parallelization mechanism for
activities, by referring to the depth of an input port and the
incoming data object. If the depth of the input data is higher
than the input port can consume — for example the input port
can consume only one data item, results in depth 0, but the
input consists of an array of data items, results in depth 1 —
Taverna creates a set of parallel executing activities each
consuming one of the data items. The original UNICORE
plugin managed this behavior of parallel executed jobs as a
single job instance for each activity, which means one JSDL
per job instance. In order to increase the performance of
parallel job execution of UNICORE jobs in Taverna we
extended the existing UNICORE plugin with the parameter
sweep approach, further described in [7]. The extension
handles the parallel activity execution by creating a parameter
sweep JSDL. It identifies global and individual input values
and uses the individual inputs as parameter sweep values. The
outcome of this is that globally used files only have to be
staged in once.

# Requirements
Description Technology
(1) Use Taverna Client as working environment C/[T;szf;ém
Taverna
) Open standard-based job submission Client
plugin,
UNICORE
Taverna
3) Increase performance of parallel job Client
submission plugin,
UNICORE

Table 1 Simple Requirements Summary

This enables researchers to focus on their scientific
problems rather than ‘thinking technically’ how these parallel
jobs can be separated across different target systems. In
addition, the server-side handling of the generation of

potentially tens, hundreds or thousands of JSDLs lowers the
load of Taverna clients. This also paves the way for specifying
and modeling sophisticated science workflows on mobile
devices while the server remains to be the powerful part in the
workflow execution. We summarized this requirement as the
increase of performance with parameter sweeps in Table 1.

IV. ENHANCED RESOURCE MANAGEMENT CONCEPTS

For several computational simulations we observed that for
certain use cases the applications need to be executed with
different set of parameter sets in order to obtain its results.
Normally this is achieved by running multiple computational
jobs for each iteration of the parameters. These parameters
could be for instance application input arguments or
environment variables and depend normally very much on
underlying scientific code or research application.

A. Overview of the enhanced support with parameter sweeps

The accurate description of the computational resources (i.e.
HPC or HTC resource capabilities such as CPU/cores,
memory, etc.) is typically provided by an information service.
As shown in Figure 1, one example of an information service
that works with UNICORE is the common information service
(CIS) [8]. This service based on the GLUE2 open standard
information model [9]. This also includes the description of the
available scientific applications with possible sets of
parameters.

As described in Section III, we faced several scientific
communities that raise the demand for applications with such
parameter sweeps. This section therefore described how we
enhanced the standard resource management architecture of
UNICORE as described in Section II in order to enable
parametric jobs for a wide range of scientific applications. This
also has been done without losing sight of the importance of
using open standards within UNICORE. Hence, we adopted
the JSDL parameter sweep extension (JSDL + AA) [7] that
represents an open standard for the description of parameter
sweep jobs.

Figure 1, provides an overview of this enhancement
whereby in each case of parameter sweeps, the computational
job requests are represented as a single instance. But this single
instance in turn represents a standardized abstraction of various
application and data parameters which leads to multiple
invocations of the job on different resources for described
parameter sets (i.e. 1,2, ... n).

In more detail, OGF produced a mature set of job
management and modeling standards. The JSDL specification
is the most adopted standard among science middleware
communities today. JSDL comes with a core specification
followed by a set of profiles which are extensions to the core.
Examples include the High Performance Computing
Application Extensions [10] or the Single Program Multiple
Data (SPMD) extension [11].

In the context of this work, the JSDL parameter sweep
extension is implemented, which encapsulates an XML
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representation of parametric job requests. This specification
has two types of parameters that are Document and File sweeps
explained briefly in the next paragraphs.

The Document sweep is a function to manipulate the
original JSDL instance that was submitted. For instance, if
there is an application and it has an argument which is to be
substituted by a set of values in the existing JSDL request. This
can easily be modeled through the JSDL parameter sweep
schema extensions.

The File sweep type provides a capability to manipulate the
contents of a file that is to be staged-in before the job execution
starts. This functionality only provides a way to search and
replace set of tokens within the file. Both of the above sweep
types use an iteration function such as numeric loops or a
discrete set of values if needed. It is possible that these two
sweep types mentioned above may not be sufficient for all
scientific use cases, therefore the specification is providing
extension points for introducing additional kind of sweeps and
iteration functions. This enables an extension to the most
possible degree without breaking the standard compliant job
submission encapsulated as JSDL documents. In this paper our
focus is mainly showing a usage of Document sweep types,
although the File sweep was also implemented in parts.

B. Details on resource management and JSDL parsing

More details on the UNICORE implementation with
respect to resource management enhancements are as follows.
The UNICORE XNJS in particular was enhanced to support
parametric jobs through standards based JSDL parameter
sweep extensions. By adopting this standard, UNICORE job
management services are capable of accepting user requests as
fully JSDL parameter sweep compliant instances that can
describe multiple computational jobs to be executed each on
the computational resource. Figure 4 describes how the
parametric jobs are being handled in a step wise manner in
order to understand the handling within the JSDL parsing
entity that is part of the XNJS.

The UNICORE XNIJS receives a job submission request
from a Web service interface that is not the focus of this paper
and thus is only abstractly described. The submission request is
a JSDL instance including possible different extensions it is
bringing along. XNJS delegates this request to the
JSDLProcesssor component that is responsible of parsing and
validation checks of the job descriptions. In turn, the
JSDLProcessor parses the corresponding job description
instance with standard and possible many extensible JSDL
elements. If the request contains the JSDL parameter sweep
extension elements, it is forwarded to the so called
SweepProcessor. This component is responsible for validating
and resolving parametric requests by analyzing its sweep type
(i.e. Document or File type) and the applied parametric
function.

For the subsequent resolution phase the SweepLibrary is
being invoked which checks if the number of generated JSDL
instances are exceeding the middleware threshold (pre-defined
parameter to engage in denial-of-service attacks with millions
of small trivial jobs for example). The middle ware threshold is
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Figure 4 Sequence of steps during JSDL +AA parsing.

a server side configuration property that is used as a constraint
on the allowable number of JSDL instances generated per
sweep request. After performing initial checks, plain JSDL
instances are generated, and then forwarded to the execution
engine which takes care of translating commands to the
UNICORE TSI. If there is no sweep element found in the job
request, the XNJS doesn’t contact the SweepProcessor instead
it prepares submission to the target batch system through the
TSI process directly as shown in Figure 4.

The TSI component is not part of the XNJS, it is a PERL
based component deployed on a login node of a resource
management system as shown in Figure 1. Its main job is to
translate XNJS commands into the batch system specific job
scripts. It also carries out the submission of the job script using
batch system submission commands. In a similar manner it
performs job management and monitoring after the job is
successfully submitted. Typically, there are multiple plain
JSDL instances generated after a sweep request and the XNJS
submits those as different jobs to the underlying batch system
but keep track of them via the so-called ‘parent job'.

XNJS LRMS

Figure 5 showing the hierarchical structure of the XNJS
managed composite and simple jobs, and their relationship
with working directories created on target batch system. In
order to perform job monitoring, XNJS only exports the parent
job’s status. Its status is estimated by calculating the overall
children jobs” status. Specifically, if all the child jobs are done,
the parent job is set to be completed, irrespective of any child
job’s failure or success.

In more detail, the UNICORE XNJS considers each sweep
job (i.e. JSDL + AA) as a composite of many simple jobs,
thereby it creates a parent job for the composite which serves
only as access point for a set of child jobs. As far as the
management of job working directories is concerned, XNJS
manages a separate directory for every job, either it is parent or
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child. But a sweep job from a user perspective is only a single
entity, which is accessed through a Web service interface as
shown in Figure 1.

Behind this interface there could be hundreds or thousands
of child jobs but the user will see only the parent jobs as single
job. XNJS creates a directory for a composite sweep job and
therein creates a child folder for each of the generated simple
jobs. For data-stagings, XNJS download files for generated
jobs only once into a parent working directory. Afterwards
typical soft links are created within each of the child working
directories. It implies that we avoid performing duplicate data
transfers. However, this approach has one caveat, if a job
request is parametrically sweeping hostnames with same
filenames, then XNJS will end up overriding already
downloaded files.

C. Differences to the UNICORE workflow engine

The adoption of the parameter sweep job extension in JSDL
sounds very similar to the UNICORE workflow engine
concept, but we describe in this section briefly some
differences in order to avoid confusions. UNICORE workflows
are defined as directed acyclic graphs (DAGs) and
relationships are specified between different jobs (e.g. loops) or
input and output data for subsequent dependent jobs. Each
computational job within a DAG is described via its own JSDL
element and the whole workflow is submitted to the UNICORE
workflow engine for handling the submission process.

In principle, one could model the same functions we have
implemented with the parameter sweep job extension, but this
would require a tremendous amount of configurations within
the definition process of the workflow DAG, especially when
huge parameter sets are used (e.g. iteration of one value from
one to 100) as specific parameter of one workflow element.

In addition, the workflow functionality of UNICORE
enables that parts of the workflow can be submitted to any
UNICORE resource available to the end-user that involve
potentially geographically distributed resources. Instead, the
parameter sweep extension is particularly optimized for
submission on one specific computational resource, but using
varying parameters and arguments for the job itself.
Nevertheless, as shown in the Taverna requirements in Section
III, also workflow engines could model one node as JSDL
parameter sweep.

V. USE CASE VALIDATION

In this paper we used an existing workflow [12] taken from the
proteomics domain to verify the execution performance of
parallel jobs via parameter sweeps. The workflow shown in
Figure 2 performs a typical task in mass spectrometry (MS)-
based proteomics [13], where tandem mass spectra are matched
to peptide sequences using X!Tandem (tandem) and
subsequently validated using PeptideProphet (PeptideProphet),
both described in [19]. Scientific background: a common
approach in MS-based proteomics is the identification of
proteins “bottom-up” via enzymatic digestion of the proteins
into peptides. The peptides are then separated by liquid
chromatography coupled to mass spectrometry. In liquid

chromatography, the peptides are separated by their
physicochemical properties, such as size, charge and
hydrophobicity. In the mass spectrometer, the peptides are
separated with very high resolving power based on their mass-
to-charge ratios. Individual peptides are then selected and
fragmented using collisions with neutral gas or ion-electron
reactions. The output is a set of tens of thousands of peptide
masses and associated fragmentation spectra. These spectra are
compared against those predicted from the genome by one or
more algorithms — here X!Tandem — by comparing measured
spectra with calculated spectra for all peptides of similar mass
that could possibly be generated by the enzyme used from the
biological species. After this step, PeptideProphet estimates the
probability of each peptide-spectrum match assigned by
X!Tandem by a mixture model of the X!Tandem score
distribution, assuming there will be some correctly and some
incorrectly identified spectra.

To speed up the calculation of X/Tandem, Mohammed et.
al.  [12] developed an mzXMLDecomposer and
pepXMLComposer to split up the input file into several small
input files and after execution join the results. Using these parts
as inputs for the tandem activity in Taverna, several tandem
instances are being created, each of which consuming one of
the input file parts. This parallel execution was performed on
the one hand by the traditional plugin, sending one JSDL for
each parallel execution and on the other hand by the extended
plugin, using UNICORE's JSDL parameter sweep extension
sending only one single JSDL job for all executions.

For the evaluation of the extended parallel sweep execution
the mass spectrometry workflow was used as described in the
previous section. As input set a human dataset was used with a
human fasta library. The library was 37.4 MB and the input
data set was 113.8 MB. To speed up the execution, the input
file was split into 32 sub files (between file size 3.0 MB and
4.2 MB); following represent an individual input for the sweep
JSDL whereas the database file is used by each execution and
needs to be staged-in during sweep execution only once.

The non sweep classic solution submits for each of those
sub-files one job to the Grid (in total 32) each including the
library and one sub file (41 MB upload per job). These 32 jobs
are monitored by sending every 2 seconds a web service call to
receive the job status. The developed sweep extension executes
one job and uploads the library once and all sub-files together
(151.2 MB). The single job is monitored by sending a web
service call every 2 seconds.

Table 2 shows the analysis in detail; the extended plugin
performs during the single job execution and the overall
workflow execution faster than the common submission
mechanism. This is mainly based on the avoided stage-ins for
job execution. The CPU load was monitored for Taverna
during the executions by using the top command, showing that
the load could be shifted to the server component, as the client
now only has to monitor one job instead of several job
instances. The total packets and transferred bytes were
captured by using the tool ‘Whireshark
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(http://www.wireshark.org) using a filter for the target registry
and corresponding port.

Common job Job submission via
submission sweep extension
Single tandem job
runtime (in 55 4.2
minutes)
Overall workflow
runtime (in 10.3 84
minutes)
Total web service 4032 126
calls
Average CPU load
on 43.7 14.1
the client in %
Total packets 458,353 15,244
Totally transferred ;37 53 pgg 190,571,550
bytes
Total file upload in 32 x 44MB + 1x44MB +
MB 32x4.5MB 32x4.5MB
=~ 1555MB ~ 19IMB

Table 2 showing the performance for job execution and data
stage-in of the common UNICORE plugin and the extended
parameter sweep

VI. RELATED WORK

This paper integrates work concepts from several different
fields of related work that can be categorized roughly in
workflow engine support and distributed processing of jobs.

Starting with surveying the field of workflow management
systems and middleware developments there has been a
tremendous amount of research to exploit the concept of
parameter sweep for enhancing the performance of scientific
applications. But in this section we relate to those
developments which are very much close to existing
middleware implementations in the standards space, or
highlighting a proprietary approach.

gEclipse [14] is an Eclipse based framework that provides
an integrated development environment for researchers. It
allows an abstraction layer to plugin different grid middleware
stacks. gEclipse supports JSDL and many of its extensions.
Most notably it is the first implementation of the JSDL
parameter sweep specification that is named as ‘JSDL-Param
library’. 1t provides a graphical editor to let users configure
JSDL based job requests without being exposed to the
internals of JSDL's XML format. gEclipse generates JSDL
instances from JSDL parameter sweeps at the client side and
forwards them to the intended execution site.

In contrast to our approach, gEclipse doesn't send JSDL
parameter sweep job instances directly to the target
middleware, because at the time when this extension was
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implemented no middleware implementation was able to
support this type of JSDL extension. But the JSDL-Param
library is rather tightly integrated with the Eclipse platform.
Thus, it will be challenging for other clients, or middleware
providers which may use this library independent of the
extensive Eclipse platform dependencies.

Another workflow management system in context is the gLite
Workload Management System (WMS) [15] that offers an
interface and meta-scheduler that provides an interface for
describing parametric jobs. In contrast to our approach, within
the WMS client, a job's parametric space is represented
through the JDL (Job Description Language) which is a
proprietary language to describe job submission requests.
Within JDL, different parameter functions can be specified
such as start, end, and step, similar to JSDL standard
extension with parameter sweeps. In addition, the parametric
iterations can be applied to more than one program arguments
in one JDL instance, with a flexibility to specify them in a
linear range, or a discrete set of values. But to our observation,
a single instance of JDL is limited to only single parametric
modification functions. The JSDL parameter sweep instance
instead enables to specify a set of parallel, and nested sweep
modification functions as part of the XML description. Thus
our implementation supports that feature and can handle a
complex hierarchy of parallel parameter sweeps. From an
interoperability perspective, JDL is a proprietary language,
thus it is not trivial for other scientific workflow or portal
clients to adopt them.

VII. CONCLUSIONS

We have shown in this paper a further specialized support
for a specific set of scientific use cases requirements based on
earlier work that generally enables UNICORE with Taverna. In
order to overcome the requirement (1) in Table 1, Taverna was
still used but enhanced with the client support of specifying
JSDL parameter sweep jobs. Hence, the working environment
of life scientists does not need to change and the load of the
Taverna client remains low.

Requirement (2) of Table 1 raised the demand of using
open standards rather than proprietary job description schemas
for parameter sweeps (cf. to WMS proprietary language in
Section V). JSDL itself is an open standard adopted by many
middleware systems and the JSDL normative extension for
parameter sweep jobs is another standard profile where several
adoptions are emerging (e.g. within GENESIS). Using these
standards, it is possible to exchange UNICORE with any other
standard compliant middleware technology.

Table 1 also lists requirement (3) that represent the
functionality of the sweep jobs in itself. For this not only the
Taverna client plugin for UNICORE was enhanced, also
UNICORE itself needed to be enhanced with an approach to
support parameter job extensions to JSDL. Section IV explains
in detail the taken approach that is seamlessly integrated into
the UNICORE middleware without major changes to its
components. In other words, the same submission interface can
still be used and is not changed while the JSDL schema is just
extended with additional XML elements that are exactly
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defined in the OGF JSDL parameter sweep extension
specification.

We can also conclude that the support for parameter sweeps
is highly relevant for scientific workflows, but is typically not
covered by workflow engines to this level of granularity. We
described in Section IV some differences, but also outline the
use of parametric jobs as parts of a larger scientific workflow
such as those defined using the UNICORE workflow or
Taverna workflows.

Future works remains on the full support of the File sweep
parameter sweep extension as specified in the JSDL
specification. Also, we noted that if all the child jobs are done,
the parent job is set to be completed, irrespective of any child
job’s failure or success. Future work includes more
sophisticated approaches of reliability and fault tolerance
potentially taking advantage of the dynamic configuration of
networks of HPC machines that arise in some of the more
recent HPC architectures and network providers (e.g. Mellanox
and JUROPA3 system in Juelich). If an error occurs, the HPC
machine in itself may reconfigure and redistribute the job and
thus we need to synchronize this status with executions
performed with or without parameter sweeps in UNICORE.
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ABSTRACT

Certain scientific use cases possess complex requirements to
have Grid jobs executed in collections where the jobs’ re-
quest contains only some variation in different parts. These
scenarios can easily be tackled by a single job request which
abstract this variation and can represent the same collection.
The Open Grid Forum (OGF) standards community mod-
eled this requirement through the Job Submission and De-
scription Language (JSDL) Parameter Sweep specification,
which takes a modular approach to handle different varia-
tions of parameter sweeps (e.g. document and file sweep). In
this paper we present the UNICORE server environment im-
plementing this specification build upon its existing JSDL
implementation. We also demonstrate the application of
UNICORE’s parameter sweep extension for optimizing job
executions, which are submitted as a sub-activity of a Tav-
erna based scientific workflow. Further we validate our ap-
proach by analyzing performance of the workflow with and
without using the parameter sweep extension.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks|: Distributed
Systems— Distributed applications; D.2.12 [Software Engi-
neering]: Interoperability— Data mapping

General Terms

Management, Design, Performance, Standardization, Hu-
man Factors
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1. INTRODUCTION

In e-Science, job submission and management is one of the
significant functionalities to manage scientific simulations.
Most scientific disciplines such as, physics, chemistry, and
biology, use computational simulation as a significant tool to
perform simulations based on numerical methods or known
physical laws, that also includes data analysis in a more
effective and precise manner. However, for executing several
tasks within such an experiment, scientific workflows have
successfully being used in e-Science [25]. scientific workflows
are widely used to ease complex computational simulations
in most scientific disciplines.

Computing science is continuously in the pursuit of tech-
nological [21, 15] and infrastructural advancements [20,
26, 1]. From the technical perspective there is an extensive
set of open standards from OGF [2]. Many of these stan-
dards are actually an outcome of lessons learned from the
production Grid infrastructures, therefore most of them are
easily adoptable in real scientific environments. JSDL [4],
for example, is a basic building block for representing job
requests.

Certain scientific use cases have a requirement that sev-
eral identical jobs are executed with the same executable but
with varying a magnitude of parameter values. As a result
user facing clients need to submit hundreds and thousands of
sweep generated jobs to a target resource. Therefore the ex-
ecution service receiving these requests see multiple submis-
sions with each may have an overhead to perform separate,
and most likely duplicated data stagings. Considering a sit-
uation in which the client that submitted multiple jobs need
to monitor each of them, the server will be busy in replying
to the numerous incoming monitoring requests. Apparently,
the client generated jobs are not optimal to data oriented
applications where huge amount of data is fetched to the
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remote computing elements.

The open standards community introduced the JSDL ex-
tension that specifically addresses this requirement through
the JSDL Parameter Sweep specification (JSDL-PS) [7].
This extension is capable of representing multiple job re-
quests in a single abstract job where parameter type and
range of values to be iterated are defined. Middleware can
easily adopt this specification to enhance the overall perfor-
mance of jobs having parametric behavior.

The application of parameter sweep has emerged as an
essential tool for scientific workflow management systems.
As an example we have identified a Taverna [17] based sci-
entific application. Taverna is a widely used workflow man-
agement system that is able to perform the job executions
in parallel. While taking a scientific use case into account,
we presented in [13], how in one step Taverna is performing
120 parallel Grid job executions. This parallel submission
can become a bottleneck as 120 jobs not only have to be
sent and monitored during the execution phase but also the
input files have to be uploaded for each job in a repetitive
manner. As a result, we have a high cpu load on the client
machine [11] and many unnecessary replicated file uploads.
Hence, the workflow step that is required to generate mul-
tiple jobs for analysis, can be enhanced through the use of
parameter sweep that is the key contribution in this paper.

After the introduction, Section 2 will describe the real-
ization of JSDL-PS in the UNICORE middleware. The in-
tegration of this method into the client layer is outlined in
Section 3. In Section 4, we show our use case exploiting the
parameter sweep implementation. The performance analy-
sis of this use case is given in Section 5. Related work is
presented in Section 6 and finally the paper ends with con-
cluding remarks and future work in Section 7.

2. PARAMETER SWEEP IMPLEMENTA-
TION

UNICORE [24] is an open source, standards based mid-
dleware, allowing a transparent, secure, and seamless ac-
cess to distributed high performance computing (HPC) re-
sources. It adopts several distributed computing standards
often required by end users of e-Science infrastructures and
thus for the over all scientific computing community. UNI-
CORE supports several OGF standards, such as JSDL, OGSA-
BES (8], and ByteIO [19]. In order to carry out job submis-
sions, it offer a convenient, and extensible middleware plat-
form to process the JSDL compliant requests. UNICORE is
implemented on the basis of a service oriented architecture.
The vital functionalities such as job submission and man-
agement, and data management are realized in the form of
SOAP [5] web services.

While implementing the JSDL-PS into the UNICORE ser-
vice environment, it was not trivial to decide that, at what
level of the UNICORE architecture, which is shown in Fig-
ure 1, the resolution of parametric jobs should be imple-
mented. To our analysis there are two alternatives. First
option is to have this process at the client tier that can
generate the resultant sweep jobs, and subsequently start
submitting each of them. This tier typically may consist of
client APIs, scientific gateways, and workflow management
systems. As mentioned before, this approach inevitably ex-
poses compute site with multiple remote calls, therefore it
could possibly waste significant amount of infrastructure re-

1.Job Request
(SDL-PS)
Web Services
I TSS | ’ JMs ‘ | SMs
>
1 3. Generate Jobs
2. Validation 1

! XNJS
1

»‘ JSDL-Sweep

TTTTTT e

Resource Management
1

Figure 1: UNICORE Architecture

Torque, LSF,
Loadleveler

sources. Another alternative is to have the parametric reso-
lution at the execution layer - the entity responsible for job
execution. In this case the client sends a single job request
compliant with the JSDL-PS format to the remote execution
site. Following to that the job request will be analyzed, and
according to the parameter range and type the compute site
will initiate the consequent job runs. This approach relieves
UNICORE site from staging application data files multiple
times, thus it saves the amount of network bandwidth, and
also efficiently utilize the amount of storage space allocated
to a user submitting that job. Considering a fact that sci-
entists normally perform simulation analysis and simulated
experimentation on public funded computing infrastructures
where compute and data resources are limited. The second
approach appears to be more feasible to UNICORE imple-
mentation.

Figure 1 gives an architectural view of UNICORE, and
also describe the interactions happened during the job sub-
mission and execution phase. In the first step Client in-
teracts with the Target System Service (TSS) web service
to create a job. As a response of this request Client re-
cieves a WS-Adressing [6] compliant Endpoint Reference
(EPR) of the Job Management Service (JMS). JMS is a WS-
Resources [10] compliant web service that provides an inter-
face to represent and manage individual job instances. The
Client starts a job and waits until it is completed. Once the
job is successfully finished Client can easily fetch the output.
During the job submission phase, the request flows through
the JMS interface to the back-end execution system called
Extended Network Job Supervisor (XNJS) [22]. The XNJS
manages the life cycle of each job managed within the UNI-
CORE services container. The job lifecycle is generally con-
sist of creation, incarnation, and finished states. This com-
ponent is responsible for carying out the basic JSDL parsing,
validation, and most notably translating the XML format-
ted JSDL instance to the target batch system specific scripts.
The XNJS handles the parsing of JSDL named as JSDLPro-
cessor. In order to support any extensions of JSDL, XNJS is
required to have an extended processor that understands the
incoming job’s extension elements. By complying to this de-
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sign principle, it has been extended to support the JSDL-PS
specification. It is implemented as a subentity to JSDLPro-
cessor, and it is called SweepProcessor. The SweepProcessor
is activated on-demand, that occurs when an incoming job
request contains the parameter sweep elements, otherwise it
is not even instantiated. Figure 3 is one such instance of
the JSDL-PS compliant job request. The SweepProcessor
performs the validation in two consecutive phases. Firstly
it validates the incoming request against the allowable limit
of future generated jobs to be executed by XNJS. This limit
is a constant and can easily be configured within XNJS to
set the maximum threshold of the jobs allowed per sweep
request. After successfully passing through the validation
phase it finally resolves the sweep parameters into a list of
plain JSDL instances. The SweepProcessor performs these
both functions using the JSDL-Sweep library [18] which is
part of the GenesisII middleware [18]. The UNICORE team
extended this library to be compatible with XNJS. As soon
as the JSDL instances are generated the JSDLProcessor ex-
ecutes them on a target resource management system (e.g.
Torque, PBS).

As it is mentioned above, a parametric job is a single
JSDL-PS instance, which may lead to hundreds and thou-
sands of separate jobs. To have an individual JMS service
instance for each of the resultant sweep job is not scalable,
and therefore affect server’s responsiveness if it recieves mul-
tiple parametric jobs at the same time. It is also pragmati-
cally unfeasible to let Clients communicate with such num-
ber of JMS instances spawned from a single sweep request.
‘We tackled this problem by introducing a single parent job,
that is linked to the JMS instance that was created at the
time of Client’s initial job request. At the XNJS level the
parent job is supervising and tracking all the compute jobs
generated in response to the sweep request. The parent is
not executed per se, rather it provides a proxy to the Client
through which the status of the child jobs can be monitored.
‘While executing the generated jobs our implementation en-
sures that for the common set of files the data staging is
performed only once. But if the input data set is unique for
each child, the files are staged-in separately to the respective
job’s working directory. As far as monitoring is concerned,
the status of the generated jobs is mapped to the status of
the parent job. It means when all the generated jobs are
done with executing, the status of the parent is set to com-
pleted, and this is irrespective to the status of the children
whether they are finished successfully or failed.

3. TAVERNA’S EXTENSION FOR SUP-
PORTING PARAMETER SWEEP

The Taverna workflow management system [17] has been
widely used in the field of life science informatics in recent
years. Taverna’s components are implemented in Java and
are available as open source. The Taverna workbench pro-
vides a graphical client for the design and monitoring of
workflows. Workflow execution is managed by the Tav-
erna workflow engine, which comes along with the client
or standalone as Taverna server. Taverna provides to the
user a considerable number of so-called bioinformatic activ-
ities that can be invoked via Web Services, Java classes,
local scripts or other special services. Services can be easily
added and activity types can be extended. Accordingly, we
extended Taverna with a UNICORE activity [13] to enable
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job submission to a UNICORE environment.

All those services can be used to design a workflow in
Taverna. A workflow consists of several user defined activi-
ties connected via its input and output ports. Thereby the
dataflow between activities and the overall workflow struc-
ture is defined. A very useful feature offered by Taverna,
is the parallel execution of activities. As Taverna has a
dataflow-centric workflow language, an activity is invoked
if all required data items have reached their corresponding
input ports. Input ports have a user defined depth, whereas
depth 0 represents one item, depth 1 represents an array
of items, and so on. If an input with a higher depth than
the port can consume reaches the input port, one individ-
ual service is executed for each data item. As an example,
for each item of an array with size x that arrives at a port
with depth 0 the service is invoked z times separately. If
several high dimensional inputs reaching input ports with
a lower depth, the cross or dot product of all input values
is consumed typically parallel by the service. In designing
such a workflow, our extended UNICORE activity can also
be executed in parallel in Taverna. The type of parallelism
and number of parallel jobs can be set by the user. The
parallel execution mechanism in Taverna was extended es-
pecially for UNICORE activities with the new UNICORE
parameter sweep mechanism, as shown in Figure 2.

Taverna a) b) c)
a,..a, b..b, p—
TR % =
NI
Generator

UNICORE

El— EEEE
[T

@

Figure 2: The figure shows the mechanism in Tav-
erna to create a sweep job. (a) Two value sets ar-
rive at the workflow input ports. (b) Corresponding
to the parallel execution in Taverna several parallel
workflows are instantiated. (c) The sweep genera-
tor collects all instantiations and creates one JSDL
sweep job for submission to UNICORE. (d) The
UNICORE server splits up the JSDL script into the
original number of executions. (e) The workflows
are executed on the target system.

Target
System

During the parallel invocation of a UNICORE activity in
a Taverna workflow, several activity instances are created.
‘We have implemented a sweep generator in our Taverna plu-
gin to collect all these instances. This sweep generator gains
information about the maximum number of allowed parallel
services and can collect as many allowed activities. When
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the maximum number is reached or all instantiated activ-
ities have been selected, the sweep generator creates a pa-
rameter sweep job for submission. Therefore, identical and
different inputs are identified. Identical inputs are set as
global job inputs, the differing inputs are defined as param-
eter sweeps. Each differing value defines one sweep function
value in the parameter sweep job description. In doing so,
globally used input files are only uploaded once. An exam-
ple JSDL file created by the sweep generator is shown in
Figure 3. The POSIXApplication node describes the appli-
cation specific parameter, including output and input pa-
rameter values. The Sweep node hosts all the elements for
a parameter sweep. The sweep Match element defines the
element that should be swept during execution, in this ex-
ample we are sweeping over jsdi:posiz:Evironment element
number 3. You can find this element in the POSIXAppli-
cation node, having the value 253. During the sweep this
value is replaced for each job by one of the values given in
the fun:Value elements.

¥ ¢ <isdtJobDefinition>
¥ ¢ <jsdlJobDescription>
¥ ¢ <isdtApplication>
v ¢ <isdl1:POSIXApplication>
¢ <isdl1:0utput>stdout</jsdl1:Output>
> ¢y <isdl1:Environment>workflow</jsdl1:Environment>
> ¢y <isdl1:Environment>results</jsdl1:Environment>
> ¢y <isdl1:Environment>253</jsdl1:Environment>
> ¢ <jsdlDataStaging>
> ¢ <jsdlDataStaging>
¥ ¢ <swe:Sweep>
¥ ¢ <swe:Assignment>
¥ ¢ <swe:DocumentNode>
> ¢ <swe:NamespaceBinding/>
¢4 <swe:Match>//jsdl-posix:Environment[3]</swe:Match>
v ¢ <fun:Values>
¢ <fun:Value>157</fun:Value>
s <fun:Value>186</fun:Value>

Figure 3: Example XML structure for a parameter
sweep job.

The sweep generator also stores the mapping of Taverna
jobs and instantiated sweep values. After the job submis-
sion and execution on the target system, the sweep generator
keeps track about the outputs files. Each output is down-
loaded as string, file or logical address and mapped to its
specific Taverna job. The output values are staged out to
the activities output ports for further usage in the workflow.

4. USECASE: ADVANCED WORKFLOW
OPTIMIZATION
The set up of a scientific workflow can be very challenging
for domain scientists with less computational background. A
reason is the enormous choice of similar applications, each
of which coming along with a considerable number of pa-

rameters. Scientists typically tend to use the already known
applications and their default parameters. However, default
parameters are often not the best suitable ones and may lead
to weak scientific results. Thus, we have implemented a plu-
gin [12] for the Taverna workflow management system to en-
able a semi-automated parameter optimization of scientific
workflows. The plugin uses a genetic algorithm [14] to sam-
ple the parameters search space. Additionally, ranges and
dependencies between parameters can be defined to narrow
the search space. The parameters are encoded as genomes
in the genetic algorithm. As typically only parts of a work-
flow need to be optimized, a sub-workflow can be defined
for the optimization. During optimization, several instances
of this sub-workflow are executed in parallel. Each instance
is set up with one parameter sample from the genetic al-
gorithm. After the parallel execution, the result values are
taken as fitness and a new generation of sub-workflows is
instantiated.

As the parallel execution of several sub-workflows might
lead to a high cpu load on the client machine, we have ex-
tended this plugin by workflow Grid submission [11]. This
extension allows to submit a bunch of sub-workflows to a
UNICORE infrastructure, which executes the sub-workflows
on a Taverna server on the target system. The submissions
of the parallel sub-workflows were performed by single jobs.
Our developed UNICORE parameter sweep plugin can be
used to perform these submissions in one single job. In do-
ing so, we use the extended parameter sweep mechanism as
described in Section 3 during the submission. During the
invocation of one generation, several sub-workflows are in-
stantiated for execution. The sweep manager again collects
these sub-workflows and only submits one sweep job defini-
tion for the bunch of sub-workflow executions. The sweep
job contains as sweep values the different parameter sets.
Again, identical input files have to be uploaded only once,
such as the sub-workflow file itself. After execution of the
sub-workflows, the outputs are taken as fitness values for
creation of the next generation.

5.  PERFORMANCE ANALYSIS

‘We have designed an example workflow in Taverna in or-
der to measure the performance of the developed parameter
sweep extension. The workflow execution was performed by
the two different submission mechanisms. The first one is
the conventional submission as described in [11]. This sub-
mission mechanism creates for each job an individual JSDL,
uploads all input files individually for each job and moni-
tors each jobs after submission. The other developed sweep
generator method collects all invocations, creates one JSDL,
uploads identical files only once and monitors a single job
after submission.

For the performance measurement we set up two different
use cases. The use cases have in common, that they perform
a parameter optimization with selected generation size of 20
and 5 generations, means 100 executions in total. The first
workflow has two string inputs. The second use case has
next to the same two string additional two file inputs (each
of size 17MB ). The file inputs remain the same for all execu-
tions whereas the string inputs are changeable parameters
and will thus be subject of the optimization process. We
have executed both workflows once with the conventional
submission method and once with the developed sweep gen-
erator method. In both cases, 100 executions are performed:
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Figure 4: The cpu load on the client during execu-
tion of the conventional submission mechanism.
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Figure 5: The cpu load on the client during execu-
tion of the sweep generator.

20 parallel workflow invocations are performed five times in
a series.

Figure 4 shows the recording of the cpu load on a client
machine with the conventional submission method (i.e. with-
out using our parameter sweep extensions) and Figure 5

shows results with the new sweep generator submission method.

As the two different use cases do not major differ in the
recordings, Figure 5 shows a small workflow example. The
chart shows that the initialization phase of the newly devel-
oped method takes a little longer but consumes in the av-
erage less than the conventional method. The other peaks
indicate the submissions of the jobs during the optimization
steps. It becomes apparent that the conventional method
requires in the average nearly twice as much cpu than the
newly developed method. Additionally, the noise between
the submissions, which represent the monitoring of the jobs,
is in the average more than fourth times higher in the con-
ventional method. This results from the higher number of
jobs being send and monitored by the conventional method
that includes a lot of polling WS calls for job status. Table 5
demonstrates statistics about the cpu load. Additionally, it
shows the more significant measurement namely the upload
of input files. Whereas the sweep generator identifies simi-
lar file inputs and uploads these only once, the conventional
method has no mechanism for this and have to upload each
file for each job repeatedly. In the average case, this is the
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Table 1: Statistics of the submission via the con-
ventional submission mechanism and the developed
sweep generator.

number of parallel executions multiplied by the file size for
each input file. This might mainly affect the time required
for the uploading step. We haven’t measured the time itself
here, because it critically depends on the used protocol for
stage-ins. We can recommend to use UFTP [23], which is
a high performance data transfer for UNICORE. Taken to-
gether, the performance measurement shows that the newly
method perform better considering the cpu load and more-
over perform much better regarding the upload rate.

6. RELATED WORK

In the landscape of workflow management systems, and
middleware developments there has been a tremendous amou
of research done to exploit the concept of parameter sweep
for enhancing the performance of e-Science applications. One
example is the parameter exploration mechanism implemente
in Kepler via Nimrod Directors [3]. It enables scientists
to perform various parameter sweeps over different parame-
ter without using any specific looping mechanism. Such as
the most worklfow management systems, the described im-
plementation is integrated into the workflow engine on the
client machine. Hence, in this section we relate to those
developments which are especially very much close to exist-
ing middleware implementations in the standards space, or
a proprietary approach.

gEclipse [9] is a Eclipse based framework that provides an
integrated development environment for researchers. It al-
lows an abstraction layer to plugin different grid middleware
stacks. gEclipse supports JSDL and its most of the exten-
sions. Most notably it is the very first implementation of
the JSDL-PS specification that is named as JSDL-Param li-
brary. JSDL-Param provides a graphical editor to let users
configure JSDL based job requests without being exposed
to the internals of JSDL’s XML format. gEclipse generate
JSDL instances from JSDL-PS at the client side and for-
ward them to the intended execution site. gEclipse doesn’t
send JSDL-PS instance directly to target middleware, it is
because at the time when this extension was implemented
no middleware implementation was able to support JSDL-
PS compliant job requests. Nevertheless, the JSDL-Param
library is appeared to be integrated with the Eclipse plat-
form. Thus, it will be challenging for other clients, or mid-
dleware providers which may use this library independent of
the extensive Eclipse platform dependencies.

gLite’ Workload Management System (WMS) [16] is a
key entry service and meta-scheduler that provides an in-
terface for describing parametric jobs. For a WMS client, a
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job’s parametric space is represented through the JDL (Job
Description Language) which is a propereitary language to
describe job submission requests. Within JDL, different pa-
rameter functions can be specified such as start, end, and
step, similar to JSDL-PS. Moreover, parameteric iterations
can be applied to more than one program arguments in one
JDL instance, with a flexibility to specify them in a lin-
ear range, or a discrete set of values. But to our observa-
tion, a single instance of JDL is limited to only single para-
metric modification functions, whereas JSDL-PS allows you
to specify a set of parallel, and nested sweep modification
functions. Thus our implementation supports that feature
can handle complex heirarchy of parallel parameter sweeps.
From a interoperability perspective, JDL is a proprietary
language, thus it is not trivial for other scientific workflow
or portal clients to adopt them unless middleware specific
APIs are not used.

7. CONCLUSIONS AND FUTURE WORK

In this paper we demonstrated the realization of the JSDL
parameter sweep specification in UNICORE service environ-
ments. This feature enabled UNICORE clients to increase
the performance of job runs where requested applications
intended to execute on definite parametric space. We devel-
oped not only the solution ready to use, but also identified an
existing scientific application that was explicitly submitting
jobs for each parameter iteration to production UNICORE
sites. This use case performed a workflow optimization and
executed 20 sub-workflows in parallel and was used to prove
our implementation. The performance analysis showed that
the parameter sweep library ensured the reduction of the
cpu load on the client machine and most notably a higher
performance for file uploads.

At the time of writing, the parameter sweep implementa-
tion has its first release part of the UNICORE main distri-
bution, thus we anticipate a couple of improvements, such
as the support for File type parameter sweeps. This kind
of sweep is intended for parametric iterations on textual file
contents. Furthermore, the usability of information exposed
through the master job can be enhanced in such a way that
the clients can have fine grained control and view of the child
jobs.
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ABSTRACT

Classification of remote sensing images often use Sup-
port Vector Machines (SVMs) that require an n-fold cross-
validation phase in order to do model selection. This phase
is characterized by sweeping through a wide set of param-
eter combinations of SVM kernel and cost parameters. As
a consequence this process is computationally expensive but
represents a principled way of tuning a model for better
accuracy and to prevent overfitting together with regulariza-
tion that is in SVMs inherently solved in the optimization.
Since the cross-validation technique is done in a principled
way also known as ’gridsearch’, we aim at supporting re-
mote sensing scientists in two ways. Firstly by reducing the
time-to-solution of the cross-validation by applying state-
of-the-art parallel processing methods because the sweep of
parameters and cross-validation runs itself can be nicely par-
allelized. Secondly by reducing manual labour by automating
the parallel submission processes since manually performing
cross-validation is very time consuming, unintuitive, and
error-prone especially in large-scale cluster or supercom-
puting environments (e.g., batch job scripts, node/core/task
parameters, etc.).

Index Terms— Remote sensing, Support Vector Ma-
chine (SVM), cross-validation, High-Performance Comput-
ing (HPC), Parameter Sweep, Middleware.

1. INTRODUCTION

Remote sensing image datasets are an important source of in-
formation for many interdisciplinary applications addressing
specific topics such as global and local climate change stud-
ies, ecological and environmental monitoring, or urban plan-
ning. These datasets can be complex (i.e., with high spec-
tral, spatial, radiometric and temporal resolutions) and not re-
liable (e.g., equipment failure, noise), thus they can not be
directly used by the applications. A powerful and automatic
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processing scheme for extracting reliable and valuable infor-
mation must usually include feature engineering approaches
(e.g., spatial information enhancement [1]) and data mining
methods (e.g., classification including validation and regular-
ization techniques). The classification of remote sensing im-
ages is the essential technique [2] used for extracting informa-
tion. A relevant example is the separation of different types
of land-cover classes. But the implicit complexity and dimen-
sionality of sensed images are responsible for extensive limi-
tations in classification. For instance problems arise when the
classification methods require fast and highly scalable solu-
tions for real-time applications (e.g., earthquake scenarios or
glacial surges). Selected developments in High-Performance
Computing (HPC) allow the classification algorithms to scale
to large datasets [3]) while yielding high accuracy and results
in a reasonable time.

Among the widely used remote sensing classifiers, Sup-
port Vector Machines (SVMs) [4] have often been found to
be more effective in terms of classification accuracies and sta-
bility of parameter settings. However, SVMs are very de-
manding with respect to the processing time, e.g., in tun-
ing the hyperplane parameters with cross-validation in order
to perform model selection. The cross-validation phase is
laborious if done manually by remote sensing scientists, as
it requires re-runs of SVM optimization corresponding to a
wide set of parameter combinations. Without any automa-
tion tool this phase takes a considerable amount of time and
is also error-prone especially when performed on HPC ma-
chines with even more low-level technical parameters (e.g.
number of cores, number of tasks per core, number of nodes,
memory) that are typically machine-specific. To simplify the
enhancement and usability of a parallelized cross-validation
phase, we are proposing the adoption of a standards-based
HPC middleware that handles an automated parameter sweep
model which may consist of complex parametric representa-
tions, in a single n-fold cross-validation computational job.

2. BACKGROUND AND RELATED WORK

We shortly introduce the two basic concepts SVM and mid-
dleware that have been combined in this paper.
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2.1. Support Vector Machines and piSVM

SVMs are one of the most powerful classification techniques
today. The general idea of SVMs lies in separating training
samples which belong to different classes by tracing maxi-
mum margin hyperplanes in the space where the samples are
mapped [4]. Hence, SVMs only demand training samples
close to the class boundary, and it is thus capable of handling
high dimensional data even if only a small number of train-
ing samples is available. SVMs were originally introduced
to solve linear classification problems. In order to general-
ize them to non-linear decision functions, i.e., more complex
classes that are not linearly separable in the original feature
space, the so-called kernel trick can be applied [5]. The sen-
sitivity to the choice of the kernel and the cost parameters can
be considered as the most important disadvantages of SVM.
We surveyed related work in [3] and have shown that de-
spite the availability of many SVM parallelization strategies,
only a very limited set of stable and scalable implementations
is available as open source software. We improved a version
of piSVM 1.2 [6] that was identified in [3] as a stable im-
plementation since it is based on the libSVM library. We op-
timized it using better parallel processing techniques such as
collective operations of the mature HPC standard Message
Passing Interface (MPI). This implementation offers signifi-
cant speed-ups for the cross validation, training and testing
steps while maintaining the same accuracy as achieved when
performing the classification with serial algorithms.

2.2. Standards-based Middleware and UNICORE

We use the middleware approach to abstract from low-level
HPC machine details to make it easier for non-experts to sub-
mit and monitor parallel remote sensing classification jobs.
To avoid vendor-locks, we rely on middleware based on stan-
dards for parallel job management and monitoring as well as
data transfer and management functions [7] such as OGSA-
BES [8], JSDL [9] and its extensions [10, 11]. The elements
of the SVM cross-validation step can be captured through
JSDL’s parameter sweep extension [10] for building job exe-
cutions of parametric nature. JSDL allows any part of job re-
quest to be parametrized, in particular application arguments.
UNICORE [12] is a middleware which offers a seamless layer
of abstraction to access different kinds of HPC environments
and implements those standards. UNICORE supports this ex-
tension on its client and server tiers [13].

Required parameter sweep functionality is also imple-
mented by gLite and gEclipse. But gLite’s Workload Man-
agement System uses a proprietary approach called JDL to
allow parametric job requests. gEclipse is a client-side appli-
cation, though it supports the JSDL standard but not the full
suite of extensions for HPC environments. We therefore have
chosen the UNICORE middleware.

3. EXPERIMENTAL ANALYSIS

‘We validate our approach by measuring the performance of
our parallel SVM implementation and the parameter sweep
functionality using UNICORE with a remote sensing dataset.

3.1. Remote Sensing Dataset

The Indian Pines hyperspectral dataset [14] was acquired in
June 1992 by the AVIRIS sensor over an agricultural site com-
posed of fields with regular geometry and with a variety of
crops. This data set represents a very challenging land-cover
classification problem dominated by similar spectral classes
and mixed pixels. The scene is made up of 1417x617 pix-
els (with spatial resolution 20 m) and 30 features, which were
obtained with the methods described in [3].

3.2. Experimental Setup

For evaluating the performance of our parallel piSVM imple-
mentation, we compared it to the serial SVM implementation
in MATLAB running on a laptop computer having one In-
tel Core i7-4710HQ 2.5 GHz CPU and 16 GB of RAM. The
piSVM was executed on the JURECA [15] cluster where each
compute node has two Intel Xeon E5-2680 v3 Haswell 12
core processors with 2.5 GHz and 128 to 512 GB of RAM. We
deployed the piSVM application and the UNICORE server on
the JURECA HPC cluster.

The evaluation was performed in two modes, with and
without UNICORE middleware adoption. Fig. 1 depicts the
steps required in the manual and in our automated UNICORE
workflow methodology.

For evaluation of our application of parameter sweeps
for the automated cross-validation, we have implemented
a workflow shown in Fig. 1(b) while Fig. 1(a) shows the
manual labour process by scientists when running a parallel
cross-validation job. The workflow runs tThe whole cross-
validation process as a single parametric job on piSVM appli-
cation parameters and performs model selection by picking
the best parameters according to estimated accuracies. The
concerned application parameters for our case study are C'
and G with C being the cost as regularization parameter, and
G the parameter of the choosen RBF kernel.

The manual workflow shown in Fig. 1(a) is rather low-
level and thus advanced HPC system knowledge is required
by a user, e.g. to access and monitor jobs. In the course of
job management, the user prepares the environment on the
cluster to create a job directory for each cross-validation pa-
rameter combination (Step 1). The required data then has to
be supplied explicitly to the job environment (Step 2). The
user then creates a job script which is hard-coded to the re-
spective HPC machine batch system (Step 3) that is SLURM
in our case. Once the job script is prepared, the user submits
individual jobs separately or by means of a wrapper script
(Step 4) that in turn requires sound UNIX knowledge. All
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Fig. 1. Flowchart of the (a) manual and the (b) automatic method.

Table 1. Serial 10-fold cross-validation (MATLAB)

Table 2. Parallel 10-fold cross-validation (piSVM, 24 cores)

G/C 1 10 100 1000 10000 G/C 1 10 100 1000 10000
2 4890(188) 6501(19.6) 7321(20.1) 756(225) 7442(21.2) 2 49.02(73)  65.12(8.6) 73.17(13.5) 75.76(225) 74.44(33.0)
4 5753(168) 7074 (139) 7594 (135) 76.04(14.0) 74.06 (15.6) 4 57.59(74) 7088(89) 7587(11.6) 76.02(147) 74.06(17.9)
8 64.18(183) 74.45(150) 77.00 (14.4) 7578 (14.7) 7458 (14.9) 8 6417(79) 7453(9.3) 77.02(104) 7579 (11.3) 74.42(12.2)
16 6837(232) 7620(21.9) 7651(20.7) 7532(19.6) 74.72(19.7) 16 6858(9.8) 76.07(10.6) 764(10.9) 7526(11.2) 74.53(11.3)
32 70.17(345) 7548 (34.8) 74.88(34.1) 74.08(34.0) 73.84 (38.8) 32 70.02(139) 7538(143) 7469 (14.6) 73.91(14.6) 73.73 (14.6)

the jobs have to be monitored individually (Step 5). After the
jobs are finished, then the user searches for the best C' and
G according to the accuracy somewhere in job output logs
(Step 6). As part of cross-validation, many parameter combi-
nations need to be tried, hence Steps 3, 4 and 5 are iterative;
if there is no sophisticated script to automatically deal with
parameter combinations, then individual job scripts and jobs
have to be created for each parameter setting. All in all this
process is error-prone and time consuming.

In the automated workflow, depicted in Fig. 1(b), the user
creates a job request which conforms to the JSDL [9] [11] and
Parameter Sweep [10] specification (Step 1). The job request
is formulated as an XML instance in which the user can spec-
ify what parameters shall be iterated together with a pointer
to the input data source. Once the job request is formalized,
the next step is to execute the workflow. In this step, a re-
mote request will be sent to a target server which interfaces
the backend cluster, which is in our case JURECA (Step 2).
The server validates the job requirements and then performs
the resolution of the parameters to be processed before execu-
tion. During execution, the server will generate the required
number of jobs; in our case, the parameter sweep equals the
cartesian product of five C and five G values (=25 jobs). The
input data set will also get transparently downloaded from the
data source. Furthermore, the server monitors all the gen-
erated sweep jobs (Step 3), but these sweep jobs are hidden
from the user, only one job is visible to her: the master job
representing the sweep. From the result, the best C' and G
values can be obtained (Step 4).
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3.3. Experimental Results

Tables 1 and 2 show the accuracies and the computation times
(in minutes shown as value in parentheses) of cross-validation
for the serial and the parallel SVM implementation, respec-
tively. When comparing the tables, a significant speed-up
was obtained for all parameter combinations while maintain-
ing the accuracies. The best accuracy is marked in bold and
indicates the optimal C' and G parameter combination which
is used in the training phase.

As can be seen, the cross-validation in the serial case is
computationally intensive. The reason is that the training-
validation is performed 10 times for each of the 25 combina-
tions of the C' and G parameters. The total processing time
is 534.6 minutes. Because each partition set is independent,
the cross-validation performed in parallel can achieve a sig-
nificant speed up, thus reducing the overall processing time to
322.25 minutes using 24 cores. The biggest impact is shown
when performing parallel and scalable cross-validation over
the so-called "gridsearch’ as each step in the grid can be also
performed in parallel. As a consequence, we implement a
two-level parallelization of the cross-validation phase com-
pared to serial MATLAB runs.

It should be noted that Table 2 shows the performance
of all parameter combinations without any overhead of UNI-
CORE middleware. In our experience, the use of UNICORE
brings additional delay of approximately 2 minutes for com-
pleting the whole sweep. Thus, for every single sweep it-
eration, a delay of few seconds is introduced, which we
think is not critical when keeping in mind that otherwise the
whole process of cross-validation would involve multiple and
time consuming and and error-prone manual user interactions
which are now avoided.
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In the manual sequence, the user has to engage in multiple
steps, e.g. creating batch system specific job scripts (for all
the parameters combinations), data management and transfer,
and job monitoring. Debugging of failed sweeps may be very
cumbersome. The automatic sequence is more high-level and
prevents user from manually interacting with individual runs,
except for creating and submitting the initial job request.

4. CONCLUSIONS

‘We conclude that one can obtain significant speed-ups of an
automated cross-validation phase used in classification of re-
mote sensing images by applying a parallel and scalable SVM
approach. We further conclude that using a standard-based
middleware that implements the concept of parameter sweeps
for cross-validation runs significantly increases the produc-
tivity of scientists when using HPC machines for the analysis.
The middleware approach allows not only reduces error-prone
and time-consuming and tedious manual labour but also sup-
ports the re-use of the workflow on different HPC machines
using other standards-based middleware.

In order to automate also other data analysis steps, we in-
tend to extend our cross-validation workflow to include model
generation and prediction phases which will directly use best
parameters resulted from it.

The described approach has applications in many other re-
mote sensing application areas. For our work, it is promising
to apply it to determine calving fronts of glaciers [16] where
we are already applying a UNICORE workflow to couple a
continuum ice sheet model and a discrete element calving
model [17].
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