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Abstract: To improve the performance of land-cover change detection (LCCD) using remote
sensing images, this study utilises spatial information in an adaptive and multi-scale manner.
It proposes a novel multi-scale object histogram distance (MOHD) to measure the change magnitude
between bi-temporal remote sensing images. Three major steps are related to the proposed MOHD.
Firstly, multi-scale objects for the post-event image are extracted through a widely used algorithm
called the fractional net evaluation approach. The pixels within a segmental object are taken to
construct the pairwise frequency distribution histograms. An arithmetic frequency-mean feature is
then defined from the red, green and blue band histogram. Secondly, bin-to-bin distance is adapted
to measure the change magnitude between the pairwise objects of bi-temporal images. The change
magnitude image (CMI) of the bi-temporal images can be generated through object-by-object.
Finally, the classical binary method Otsu is used to divide the CMI to a binary change detection map.
Experimental results based on two real datasets with different land-cover change scenes demonstrate
the effectiveness of the proposed MOHD approach in detecting land-cover change compared with
three widely used existing approaches.

Keywords: land use and land cover; remote sensing application; detection algorithm;
histogram distance

1. Introduction

Land-cover change detection (LCCD) using bi-temporal very-high-resolution (VHR)
remote sensing images is a research hotspot in the remote sensing field [1–7]. Various change detection
approaches, such as ecosystem monitoring [3,8,9], Earth resource utilisation trend analysis [10–12]
and urban development planning [13–15], have been promoted and applied in practice.

Based on the differences of ‘unit’ in prior research [16–18], in the current study, ‘unit’ is
the fundamental analysis scale for inprocessing, and it usually relates to sub-pixel, pixel and object.
The developed approaches can be classified into two, namely, pixel-based change detection (PBCD)
and object-based change detection (OBCD) approaches [19–21]. The PBCD approach usually relates
to two steps: Generating the change magnitude image (CMI) and providing a binary threshold to
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divide the CMI into a binary change detection map (BCDM). Numerous methods can be used to
generate the CMI, such as difference and ratios [22,23], change vector analysis [19] and spectral
gradient difference [18]. In addition, a binary threshold is necessary for distinguishing whether a pixel
in CMI is changed or unchanged, such as the most commonly used Otsu [20,24] and expectation
maximisation [25]. Despite the many traditional PBCD approaches applied in practice, numerous
existing PBCD approaches cannot provide satisfactory detection results with the use of VHR remote
sensing images because, although superior in visual performance, these images are usually insufficient
in the spectra [26–28]. Contextual information around a pixel is usually considered to solve this
problem; for example, Lv et al. proposed an LCCD approach for VHR images based on adaptive
contextual information [20], Zhang et al. promoted a level set evolution with local uncertainty
constraints (LSELUC) [4] for unsupervised change detection [4] and Celik developed a principal
component analysis and k-means clustering (PCA-Kmeans) approach [29].

Apart from the aforementioned PBCD methods, OBCD is widely used for LCCD while employing
remote sensing images with high spatial resolution. In general, a pre-step for the OBCD method
is multi-scale segmentation, which generates a group of multi-scale segments. The designation
for detecting land-cover change is based on the candidate segments. For example, Silveira et al. applied
an object-based LCCD approach to detect Brazilian seasonal savannahs through a geostatistical object
feature [30], and Dronova et al. presented an object-based LCCD method for monitoring wetland-cover
type changes in Poyang Lake region, China [31]. Despite the advantages of OBCD in the smoothing
noise of change detection map, these approaches still have limitations, including the fact that OBCD
performance is determined by multi-scale segmentation algorithms. Therefore, some researchers
fused pixel- and object-based change detection together to enhance the detection performance.
Cai et al., for example, developed a fusion strategy for utilising the advantages of different methods
(AMC-OBCD) [32]. Further comparisons between pixel- and object-based LCCD approaches are
available [17,30,33,34].

A multi-scale object histogram distance (MOHD) for LCCD using bi-temporal VHR images is
proposed in this study. Firstly, multi-scale objects of the post-event image are extracted through
the fractional net evaluation approach (FNEA) multi-resolution segmentation algorithm [35,36].
Secondly, the multi-scale object set is overlaid on the bi-temporal images, and the pixels within
an object are considered in building a spectral frequency distribution histogram. Then, the arithmetic
frequency-mean feature (AFMF) of each histogram is proposed for each VHR image band.
Thirdly, bin-to-bin (B2B) distance is used to measure the change magnitude between the pairwise object
histogram of the bi-temporal VHR images. In this context, a CMI can be obtained whilst the entire
bi-temporal image is scanned object-by-object. Two widely used PBCD methods and one relatively
new OBCD approach, namely, LSELUC [4], PCA-Kmeans [29] and AMC-OBCD [32], respectively,
are employed to investigate the performance of the proposed MOHD for LCCD using VHR images.
These methods compared the proposed MOHD approach based on two land-cover change events
using VHR images.

From the viewpoint of methodology, the contribution of our study lies in the promotion of
an MOHD to measure the change magnitude between bi-temporal remote sensing images with
very high spatial resolution. In theory, the proposed MOHD utilises spatial information through
the multi-scale object, which is more intuitive than using a regular window in traditional methods.
From the following experimental results, the proposed MOHD can achieve competitive detection
results compared with those of LSELUC [4], PCA-Kmeans [29] and AMC-OBCD [32].

The remainder of this paper is organised as follows. Section 2 provides a detailed description of
the proposed MOHD approach. Section 3 demonstrates the experiments and analysis. Section 4 states
the conclusions of this study.
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2. Proposed Multi-Scale Object Histogram Distance

The aim of the proposed MOHD lies in measuring the change magnitude through a spectral
frequency distribution histogram of pairwise multi-scale objects. As shown in Figure 1, the proposed
MOHD approach is composed of the following steps. (1) Multi-scale segmentation algorithm is
applied to extract multi-scale objects based on the post-event image. Each object is then taken
as a local region to extract histograms from the corresponding geographical area of bi-temporal images.
(2) Histogram feature vector of the bi-temporal image is defined based on the frequency and spectral
distribution. (3) B2B distance is promoted based on the definition of arithmetic frequency-mean feature
(AFMF). In the following sections, details of the proposed MOHD are given when the change
magnitude between bi-temporal images is calculated object-by-object and Otsu binary threshold
is employed to divide the CMI into BCDM.
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2.1. Brief Review of a Multi-Scale Segmentation Algorithm

In the proposed MOHD, multi-scale object extraction is a pre-condition for the continuous
process. Herein, a widely used multi-scale algorithm called FNEA [35] is adopted in the proposed
approach. FNEA generates the multi-scale object from a pixel, and the optimisation procedure attempts
to minimise the average heterogeneity and maximise the respective homogeneity for the given
number of image objects. The total count number of the objects for a given image is usually
determined by the parameter of scale. In general, a multi-scale object for image analysis has
three advantages [18,37,38]: (1) more image features can be utilised for land-cover classification
or change detection compared with the pixel-based method; (2) object-based methods can reduce
noise in the detection map; and (3) the segmental object has the ability to depict the shape, size
and structure of a target. Given these advantages of object-based image analysis, in the proposed
MOHD approach, multi-scale objects are extracted using the FNEA algorithm, which is embedded in
the software eCognition 8.7. In addition, a tool called estimation of scale parameter (ESP) is suggested
to estimate the multi-segmentation scale [39] for the adopted FNEA. Under this context, the object set
OT1 is first extracted from the pre-event image and defined as OT1 =

{
ot1

1 , ot1
2 , ot1

3 . . . ot1
n
}

, and the object

set OT2 from the post-event image is defined as OT2 =
{

ot2
1 , ot2

2 , ot2
3 . . . ot2

n
}

. Notably, OT1 and OT2 are

equal in terms of total number and object shape in the spatial domain. However, the feature of each
corresponding object is extracted from the corresponding temporal image. Generally, if a ground
target in an area does not change, then histograms of the ground target in different images may
have higher similarity in terms of shape, trend and statistical features. On the contrary, if the target
changes from one to another, then histograms of the target area in different images will be different.
For example, in the object-based histograms for the change and unchanged areas shown in Figure 2,
the two left sub-figures are the histogram for an object in unchanged areas in the bi-temporal image,
and the two right sub-figures are the changed areas. The histograms for the changed area are different,
whereas the histograms for the unchanged area have high similarity.
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To demonstrate the different performance of multi-scale segmentation with different
scale-parameters, the segmental objects based on the dataset-A are shown in Figure 3.
As the observation of the highlighted segments in Figure 3 shows, despite the fact that a different
scale-parameter will generate different segments, the different segments depict the same shape and size
of the landside area, preserving the same boundary of landslide area. Therefore, when the post-event
segments are overlaid on the pre-event image, if a target is not changed, the shape and size can be
depicted by the segments. Therefore, when we measure the change magnitude between the bitemporal
images in the same segment, if there is no change, the change magnitude will be less. On the contrary,
when the change occurs, the change magnitude will be larger.
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2.2. Definition of Histogram Feature and OHD

Histogram feature and object histogram distance are defined in detail in this section.
Firstly, pairwise objects ot1

i and ot2
i are selected from the set. Then, the pixels within the pairwise objects



Remote Sens. 2018, 10, 1809 6 of 14

are taken to construct the corresponding spectral frequency distribution histogram, and object ot1
i is

assigned Ht1
1 {r}, Ht1

1 {g} and Ht1
1 {b} for the red, green and blue bands (R-G-B), respectively. Based on

the assignments, an arithmetic frequency-mean feature (AFMF) for a histogram is quantitatively
defined as follows:

mt1
r =

1
Sn

k=16

∑
k=1

fk × pm
k (1)

where mt1
r is the AFMF spectral histogram feature of the histogram Ht1

1 {r}. In the preceding definition,

fk is the frequency of the k-th bin of the histogram Ht1
1 {r}, and pm

k is the middle spectral value of

the k-th bin. In addition, k is the count of bins for the histogram, with k ranging from 1 to 16. Sn is
the total number of pixels within the object ot1

1 . From the proposed defined equation of histogram
feature, mt1

r indicates the mean expectation of the histogram, which is related to a group pixel within
an object. In this manner, the mean spectral histogram feature for the R-G-B band can be obtained,

and the feature vector can be given as Mt1
oi
=
{

mt1
r , mt1

g , mt1
b

}
. Similarly, the feature vector for the other

histogram is Mt2
oi
=
{

mt2
r , mt2

g , mt2
b

}
.

On the basis of the feature definition of object-histogram for each band and inspired by
the histogram distance promoted in the literature [22,40,41], B2B distance is promoted to measure
the change magnitude between pairwise histograms through the aforementioned definition of AFMF.
Therefore, B2B distance can be calculated as follows:

∆ di =
1

2× 3

h=3

∑
h=1

‖mt1
h (i)−mt2

h (i)‖ (2)

where ∆ di is the B2B distance between the objects ot1
i and ot2

i . In addition, mt1
h and mt2

h represent
the histogram mean of the h-band at pre- and post-event images, respectively. In general, the large ∆ di
demonstrates a large change between the area of the corresponding objects ot1

i and ot2
i .

Clearly, the CMI can be generated by mutually calculating the two multi-scale object sets, namely,

OT1 =
{

ot1
1 , ot1

2 , ot1
3 . . . ot1

n
}

and OT2 =
{

ot2
1 , ot2

2 , ot2
3 . . . ot2

n
}

, as discussed above. The proposed MOHD

approach for measuring the change magnitude between bi-temporal VHR images is also promoted
based on the following objective assumptions: (1) multi-scale segmentation based on the pre-event
images is similar to that of the post-event images for the unchanged area; and (2) despite the pixels with
high homogeneity within an object, these pixels are also very different in terms of their detailed spectral
value, and the spectral mean frequency feature of an object’s histogram is regarded as the expected
feature of the object.

2.3. Threshold for Obtaining Binary Change Detection Map

Apart from existing LCCD methods, a binary threshold is necessary to obtain the BCDM based
on the CMI results. In the present study, a well-known automatic binary threshold named Otsu
is preferred. Otsu is a widely used threshold approach in many existing LCCD methods [20,24].
Its main goal is to automatically compute a threshold via grey-level histograms to divide the CMI into
the BCDM. In the proposed MOHD approach, a threshold is automatically determined by the Otsu
approach to generate the BCDM and separate the CMI into a BCDM, which consists of two classes:
Changed and unchanged.

3. Experiments and Analysis

Two VHR remote sensing images related to two land-cover change events were adopted
in the experiments for comparison to test the performance of the proposed MOHD in LCCD.
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Additional details, including dataset description, experimental setting and comparison of results,
are provided in the following sections.

3.1. Dataset Description

The first dataset is a pair of aerial orthophoto images depicting a landslide change event in
Lantau Island, Hong Kong, China. This dataset was acquired via a Zeiss RMK TOP-1 aerial camera in
April 2007 and July 2014. The size of the dataset is 1252 × 2199 pixels with a spatial resolution
of 0.5 m/pixel, as shown in Figure 4a,b. The ground truth image of the landslide area is shown in
Figure 4c.
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The second dataset depicts a land-use change event in Ji Nan City, Shan Dong Province,
China. The pair images were acquired by the QuickBird satellite on April 2007 and February 2009.
The size of the dataset is 950 × 1250 pixels with a spatial resolution of 0.6 m/pixel, as shown in
Figure 5a,b. This change event is a typical scene in the countryside of developing China, with numerous
plant-covered areas changed into buildings. The ground truth image of the dataset is generated by
photo interpretation, as shown in Figure 5c.
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3.2. Experimental Setting

Three LCCD methods, including two popular pixel-based methods and one relatively new
object-based method, are compared with the proposed approach in this study to test the feasibility
and effectiveness of the proposed MOHD approach for LCCD. The three methods are LSELUC [4],
PCA-Kmeans [29] and MAC-OBCD [32], respectively. Furthermore, the parameters of each approach
are optimised using the trial-and-error method to guarantee fairness of comparison. Details of
the parameter setting and ground reference are provided in Tables 1 and 2, respectively.

Table 1. Parameter setting of each LCCD method for two datasets.

Method
Parameter Settings

Dataset A Dataset B

LSELUC [4] S = 9 S = 3
PCA-Kmeans [29] h = 9, s = 3 h = 3, s = 3
MAC-OBCD [32] depth = 5, area = 3 depth = 5, area = 3

Proposed approach Scale = 40, compactness = 0.8, shape = 0.9 Scale = 45, compactness = 0.8, shape = 0.9

Table 2. Details of ground reference pixels for each dataset.

Dataset No. of Unchanged Pixels No. of Changed Pixels

dataset A 2,639,914 113,234
dataset B 987,017 200,483

3.3. Results and Analysis

3.3.1. Evaluation Measurements

To quantitatively evaluate the accuracy and performance of each approach, the following three
standard measures, which have been used in published literature [42], were employed: (1) false alarm

rate (FA): FA = Nuc
NTC
× 100%; (2) missed alarm rate (MA): MA = Ncu

NTU
× 100%; and (3) total error

(TE): TE = Nuc+Ncu
NTC+NTU

× 100%, where Nuc is the number of unchanged pixels detected as change pixels,

NTC is the total number of changed pixels within THE ground reference map; Ncu is the number of
changed pixels detected as unchanged pixels; and NTU is the total number of unchanged pixels within
the ground reference map.
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3.3.2. Results Based on Dataset A

For dataset A, the BCDM is obtained by the proposed MOHD approach and three compared
methods (Figure 6). From these figures of comparisons, the performance of the proposed MOHD
approach demonstrated the least noise in the detection map compared with that of LSELUC [4],
PCA-Kmeans [29] and MAC-OBCD [32]. When these approaches were compared in terms of quantitative
accuracies, the proposed MOHD evidently achieved similar accuracies as well as MAC-OBCD [32]
in terms of FA, accuracies which are better than those of LSELUC [4] and PCA-Kmeans [29].
However, the proposed MOHD clearly has superior outcomes to those of other approaches in terms of
MA and TE. For example, the MA of the proposed MOHD decreased from 24.32% to 3.78% compared
with that of MAC-OBCD [32].Remote Sens. 2018, 5, x FOR PEER REVIEW  9 of 13 
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3.3.3. Results Based on Dataset B

To further investigate the proposed MOHD approach, the comparisons based on dataset B with
different LCCD methods are shown in Figure 6. These comparisons demonstrated that the proposed
MOHD is superior to LSELUC [4], PCA-Kmeans [29] and MAC-OBCD [32]. For example, the FA of
the proposed approach is 9.96%, which is the lowest false detection compared with that of other
methods. This result means that the proposed approach can detect more changed pixels correctly.
The detection results in Figure 7 indicate that the change detection map achieved by the proposed
approach presents less noise.
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To further investigate the relationship between segmentation scale and detection accuracy,
we obtained a series of detection results using our proposed method with different scale parameters
of multi-scale segmentation. Given that segmental objects with high homogeneity and regular
shape are expected, the parameters of compactness and shape were fixed at 0.8 and 0.9, respectively.
Under this context, Figure 8. shows the relationship between segmentation scale and detection
accuracy for dataset B. The figure reveals that segmentation scale has a slight effect on the detection
accuracy because it affects the number of segmental objects. Nevertheless, the inherent shape, structure
and size of a given target will remain even when the number of segments for compositing vary. This is
the fundamental characteristic of the multi-scale segmentation method [43]. For example, regardless of
whether the area of a building in the image is depicted by different numbers of segmental objects,
the shape, boundary and size will still be preserved and described by these different scale objects.
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Figure 8. Relationship between segmentation scale and detection accuracy for dataset B.

4. Discussion

From the preceding experiments, the proposed MOHD is found to be feasible and effective
for detecting land-cover change using VHR remote sensing images. The performance of the proposed
MOHD is competitive compared with the three existing and popular methods. Two aspects of
the proposed approach are discussed below to promote its application in practice.
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Firstly, the automatic degree of the different methods is discussed with the proposed
MOHD. The preceding results show that LSELUC [4] has one necessary parameter(s),
whereas PCA-Kmeans [29] and AMC-OBCD [32] have two parameters that must be determined.
The optimisation parameters of an approach may vary with different LCCD datasets, and their
determination is time consuming. Despite the relation of the proposed approach to three parameters
in the pre-processing step of multi-scale segmentation, the determination of such parameters is
convenient because the spectra and shape of multi-scale objects in the proposed MOHD approach
are expected to be highly homogeneous and regular, respectively. Therefore, a relatively high shape
and the compactness of FNEA in eCognition are provided to obtain the multi-scale object with high
homogeneity and regular shape.

Secondly, the proposed MOHD has an expected balance in the three measurements of FA,
MA and TE. Low values of the three measurements indicate satisfactory detection performance.
However, in practical applications, the three measurements are usually in conflict with one another.
For example, in the comparisons based on dataset A with different LCCD methods in Figure 4,
although AMC-OBCD [32] achieved the best accuracies in terms of FA and TE compared with other
approaches, the improvement of AMC-OBCD [32] in FA and TE was achieved at the expense of
increasing MA. A similar conclusion can be obtained whilst analysing the quantitative results of
LSELUC [4] and PCA-Kmeans [29] in Figure 4. When attention was focused on the values of MA,
FA and TE in the proposed approach for the two datasets, the proposed MOHD demonstrated
the best balance amongst the three measurements of detection accuracies in practical application.
This balance is helpful for improving the usability of the proposed approach in LCCD using VHR
remote sensing images.

On the basis of the preceding discussion, (1) the proposed MOHD is found to be feasible
and effective for detecting land-cover change, and (2) the optimal parameter setting of the proposed
approach is more easily determined than those of LSELUC [4], PCA-Kmeans [29] and AMC-OBCD [32].
Moreover, the proposed approach can balance the value of the three measurements of quantitative
assessment. The aforementioned characteristics of the proposed MOHD approach are beneficial
for practical application.

5. Conclusions

In this work, a novel method named MOHD which uses VHR remote sensing images is proposed
for LCCD. Firstly, multi-scale objects based on pre- or post-event images are extracted through
FNEA, and the histogram of each object is built according to the spectral distribution of pixels
within the object. Secondly, an AFMF of the histogram is quantitatively defined for each histogram.
Therefore, the CMI can be obtained by measuring the distance between a pairwise histogram in B2B
distance. Finally, a classical binary threshold method named Otsu is employed to divide the CMI into
BCDM. The contribution of the proposed MOHD can be summarised as follows.

(1) The proposed MOHD approach can achieve competitive detection results. From the experimental
results based on two real land-cover change events, the proposed MOHD approach evidently
obtained better quantitative accuracies in terms of FA, MA and TE compared with those of
LSELUC [4], PCA-Kmeans [29] and MAC-OBCD [32].

(2) The proposed MOHD approach possesses an advantage in terms of usability. The preceding
discussion clearly indicates that the parameter setting of the proposed MOHD is more convenient
than that of existing methods, such as LSELUC [4], PCA-Kmeans [29] and MAC-OBCD [32].
The proposed MOHD can likewise achieve competitive results and simultaneously balance
the contradiction amongst FA, MA and TE. The advantage of the proposed approach is beneficial
for practical application, and the proposed MOHD approach has wide potential applications.

Despite the superiority presented by the proposed MOHD approach in certain aspects, it still
has some limitations, such as the need to conduct multi-scale segmentation before it can be applied.
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However, determining the parameters for multi-scale segmentation depends on the experience
of the practitioner. In future study, the focus will be on the automatic degree of determining
the parameters for multi-scale segmentation. In addition, to test the generality of the proposed
approach, it will be further investigated in another feature space. Furthermore, additional bi-temporal
VHR image datasets must be collected, and the robustness of the proposed MOHD must be investigated
through numerous remote sensing images referencing different land-cover change events.
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