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Abstract. This study used optical remote sensors to identify surface hydrothermal alteration and 

thermal anomalies in Krýsuvík geothermal field. Multispectral Landsat and ASTER satellite 

images were used to identify hydrothermal alteration minerals and thermal anomalies. A 

hyperspectral image from Hyperion was used for the analysis of absorption features. Spectral 

analysis from the visible (VIS) to the short wavelength infrared (SWIR) allowed the 

identification of possible sulfur, iron oxides, and montmorillonite. A time series analysis of 

thermal anomalies using the nighttime satellite images from 2002 to 2017 detected extinct 

surface hydrothermal activity southwest of the study area, and a thermal anomaly possibly 

affected by crustal deformation in the southeast. In Seltún area, thermal infrared (TIR) images 

acquired by a camera on an unmanned aerial vehicle (UAV) were compared with ground 

measurements; the aim was assessing the accuracy of the TIR images regarding the distance 

between the camera and the ground. The TIR image taken at 30 m elevation was used to calculate 

radiative heat flux; values were in same order of magnitude than the heat flux through the soil 

estimated by using ground measurements. This study provides insights for monitoring natural or 
induced changes on the surface geothermal activity of geothermal fields. 

1.  Introduction  

The Krýsuvík high-temperature geothermal field is located in a central part of Reykjanes peninsula, in 

the southwest of Iceland. Krýsuvík belongs to a volcanic fissure swarm which subglacial volcanism 

during the late Pleistocene produced long hyaloclastite ridges arranged in echelons at approximately 

45˚NE [1]. The main surface activity is confined to the southeast of the Sveifluháls ridge, mostly within 

the areas of Seltún and Hveradalir, areas characterized by intensive surface alteration, steam vents, mud 

pots and hot springs. A simplified geothermal map of the study area is shown in  Figure 1.
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Figure 1. Simplified geothermal map of Sveifluháls. The mapping of surface alteration used aerial 

photographs [2]. Faults and dykes were mapped taking as reference previous geothermal maps [3][4][5]. 

 

The objective of this study was to identify hydrothermal alteration minerals and thermal anomalies 

in Sveifluháls by using optical remote sensors. We use multispectral and hyperspectral satellite images, 

and thermal infrared (TIR) images acquired by a camera mounted on an unmanned aerial vehicle (UAV) 

also called drone. 

The combination of processing techniques, spectral and spatial resolution of the sensors, as well as 

the time range of the images acquisition, allowed regional and local analysis of the surface activity of 

the area that led to identify areas where the surface geothermal activity has changed over the time.  

2.  Data and methodology 

2.1.   Data 

Spectral signatures of alteration minerals were identified by using multispectral satellite images from 

Landsat and ASTER, and one hyperspectral image from Hyperion. The satellite images were selected 

avoiding as much as possible clouds coverage. Landsat and ASTER were also used for identifying 

thermal anomalies; nighttime images (satellite in ascending mode) were chosen in order to avoid the 
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solar contribution. The acquisition date of the satellite images is shown in Table 1. The satellite images 

were downloaded as GeoTIFF files from the USA Geological Survey (USGS) EarthExplorer webpage.  

For surveying, a TIR camera (7.5-13.5 μm) Zenmuse XT by FLIR was mounted on a UAV DJI 

Inspire 1 V2.0. TIR images were taken over the same target at 10m intervals, from 10 to 100 m. For 

comparison and further calibration of the TIR images, ground temperature measurements over the area 

covered by the TIR images were taken by using a type-K thermocouple temperature probe. 

Measurements were taken in soil at 1cm, 5 cm, and 12.5 cm deep, and also in the water and surrounding 

mud of the fumaroles covered by the images. GPS coordinates were taken for each point. 

 

 

Table 1. List of satellite images used for this study. Data were downloaded from the USGS 

EarthExplorer. 

Platform - Satellite Acquisition date 
Mapping 

purpose 

Landsat 7 ETM+ March 26th, 2002 (nighttime scene) 

Thermal 

anomalies 

Landsat 7 ETM+ September 28th, 2003 (nighttime scene) 

Terra - ASTER September 22nd, 2010 (nighttime scene) 

Terra - ASTER October 27th, 2011 (nighttime scene) 

Terra - ASTER November 12th, 2011 (nighttime scene) 

Terra - ASTER November 1st, 2013 (nighttime scene) 

Landsat 8 OLI&TIRS February 15th, 2014 (nighttime scene) 

Landsat 8 OLI&TIRS April 23rd, 2015 (nighttime scene) 

Landsat 8 OLI&TIRS July 30th, 2016 (nighttime scene) 

Landsat 8 OLI&TIRS August 18th, 2017 (nighttime scene) 

Landsat 5 TM September 15th, 1998 
Hydrothermal 

alteration 

minerals 

Terra – ASTER June 26th, 2007 

EO1 – Hyperion December 2nd, 2010 

Landsat 8 OLI&TIRS July 30th, 2016 

 

The flight using the TIR camera by the UAV was carried out by the company ReSource International 

on November 1, 2017, between 17:00 and 17:30 hrs. (after the sunset during fall). The direct ground 

measurements were taken immediately after the flight. 

Geographically, all data were projected using Universal Transverse Mercator (UTM) projection zone 

27 North, and the World Geodetic System (WGS) 1984 as geographic coordinate system, datum and 

spheroid. ENVI® 5.1 software was used mainly for processing and ArcGIS® 10.4.1 for georeferencing 

and displaying. 

2.2.  Methodology 

2.2.1.  Pre-processing. Daytime Landsat and ASTER images were used for mineral identification. The 

images were radiometrically calibrated by using the radiometric calibration module of ENVI® 5.1. To 

obtain the surface reflectance filtrating the scattered radiation by the atmosphere; the dark-object 

technique [6] from ENVI® 5.1 was used. After this, the visible and near infrared (VNIR) bands of 

ASTER (band 1,2 and 3) were resized from 15m to 30m for further processing.     

For thermal analysis, the nighttime Landsat and ASTER images were radiometrically calibrated and 

then atmospherically corrected for atmospheric up-welling radiation and atmospheric attenuation in 

ENVI® 5.1. 

The hyperspectral image from Hyperion was used for mineral identification. 81 bands from the total 

of 242 bands were used. Uncalibrated bands, bands with water absorption and with strong vertical 

striping were avoided. The atmospheric calibration was performed by using the FLAASH® (Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes) module included in ENVI® 5.1. 
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The TIR images acquired by the UAV were converted to absolute temperature by multiplying the 

counts by the scale factor of 0.04 (according to the Zenmuse XT specifications). For georeferencing the 

thermal images, GPS coordinates were taken at known reference points and used to create links to the 

images. The georeferencing process was executed in ArcGIS® 10.4.1 by using the adjust 

transformation. 

2.2.2.  Identification of minerals. As first approach to identify areas of hydrothermal alteration, the 

spectral bands of Landsat and ASTER were used to form false colour images by applying band 

combinations. The band ratio technique was used to identify spectral signatures of specific minerals. 

The chosen bands for the band ratios classification technique have to have contrasting responses within 

the absorption features of the reflectance curve of the target mineral or group of minerals. For that, target 

minerals were taken as reference from a summary of alteration minerals in Krýsuvík identified by a 

previous geochemistry study [7]. Those minerals were: kaolinite, montmorillonite, hematite, goethite, 

anatase, pyrite, gypsum, covellite, anhydrite, antlerite, amorphous silica, antigorite, and native sulfur.  

The multispectral images were also analyzed by the principal component analysis (PCA). The PCA 

was performed according to the Crosta technique which allows the identification of iron oxides (F) and 

hydroxyl (H) [8] by locating the PCs with the eigenvectors most influential in the absorption and 

reflectance of F and H minerals. 

The hyperspectral image Hyperion, was used to analyse absorption wavelength position and depth 

following the simple linear approximation method of the absorption features parameters [9]. The 

absorption features were analysed by using the continuum-removed spectrum of each pixel into DISPEC 

3.2.  

2.2.3.  Identification of thermal anomalies. The kinetic land surface temperature (LST) was retrieved 

from Landsat and ASTER nighttime images by using the emissivity normalization method [10] executed 

in ENVI® 5.1. The constant emissivity value was 0.95 (mean for basalts). The kinetic LST corresponds 

to the integrated temperature over the pixel size of 30x30 m for Landsat and 90 x 90 m for ASTER. It 

was calculated for the ten images used for thermal mapping in this study. In order to normalize the 

results, the thermal anomalies were categorized according to standard deviations (SD) above the 

background (BG) temperature.  

2.2.4.  Heat flux estimation. The TIR images taken by the UAV were used for heat loss calculations over 

Seltún on an area with warm ground and fumaroles. For those conditions, heat losses can be related to 

conduction trough the soil and radiation. Because of from the thermal images we can just obtain the 

surface temperature, the only heat loss mechanism taking into account was radiation. The radiation heat 

loss was obtained using the Stefan-Boltzman law, equation ( 1 ): 

 

Hr=Aεσ (TP
4-TATM

4 ) 

( 1 ) 

Where A is the area of the pixel in m2, 𝜀 is the emissivity constant (0.95), 𝜎 is the Stefan-Boltzman 

constant (5.68 x 10-8 J/sm2), TP is the pixel temperature value in Kelvin, and TATM is the air temperature 

in Kelvin (275.05 K at the moment of the flight). Calculations were executed in the band math of ENVI® 

5.1. 

For comparison, the direct ground temperature measurements were used to estimate the heat flux 

density through the soil by using the method of Dawson (1964) [11], equation ( 2 ). This method was 

initially calibrated at the Wairakai geothermal field at New Zealand, and used for heat flux estimation 

through soil in Reykjanes geothermal area [12]. 
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=5.2 × 10-6 t15

4  

( 2 ) 

This method uses t15 that corresponds to the soil temperature at 15 cm depth (in degrees Celsius). For 

this study, the maximum depth measured in the soil was 12.5 cm, thus, the results were proportionally 

adapted to this depth.  

3.  Results and discussion 

For easier analysis, it is suggested to focus the attention within the geothermal areas of Seltún and 

Hveradalir. The areas of surface geothermal alteration were identified first by using aerial photographs 

[2] and then by band combinations of the multispectral images. The 5,6,7 false color image using 

Landsat 8, and 9,2,4 for ASTER shown good contrast. 

The results of the band ratios technique are shown in Figure 2. The map corresponds to a RGB false 

color composite using 6/7, 6/5, 2/1 band ratios of Landsat 8 from July 30, 2016. Taking as reference the 

target minerals, the ratios can be interpreted as: high 2/1 as possible sulfur, anatase and covellite; high 

6/7 as possible montmorillonite, kaolinite and antigorite; and high 6/5 as possible hematite and goethite. 

The RGB composite has to be interpreted by taking into account the reflectance curve of the target 

minerals and the RGB additive theory of colors. In this way, magenta colors that are formed with red 

and blue represent areas where the ratios 6/7 and 2/1 have large values. The yellow colors, formed with 

red and green, represent high 6/7 and 6/5 ratios. The bright white colors represent areas where the three 

ratios have large values. As it can be noticed, high 6/7 ratio (interpreted as kaolinite and 

montmorillonite) seems to be widely spread within the geothermal area. Outside the geothermal area, 

the red colors represent vegetation and the green the unaltered rocks. 

 

Figure 2. Band ratios 

6/7,6/5,2/1 composite from 

Landsat 8 (July 30, 2016). 

Within the geothermal area 

the ratio 6/7 (associated to 

kaolinite and 

montmorillonite) seems to be 

widely spread and mixed 

with: sulphur, anatase, and 

covellite in magenta pixels; 

and with iron oxides like 

hematite and goethite in the 

yellow pixels. 

 

 

Figure 3 displays the PCA for Landsat 5 from September 15, 1998, using the Crosta technique and 

the F, H+F,H composite [8].  From the map, red pixels within the geothermal area represent the iron 

absorption (F), interpreted as possible hematite and goethite, dark blue pixels represent the hydroxyl 
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absorption (H) and are interpreted as possible montmorillonite and kaolinite; orange and cyan represent 

a mixture where, in the first case, the iron absorption dominates, and in the second case the hydroxyl 

absorption dominates. 

Figure 4 plots the wavelength positions of the main absorption features from Hyperion image from 

December 2, 2010. Just selected pixels within Hveradalir and Seltún were analysed. The wavelength 

positions are grouped into two spectral ranges: 0.671 to 1.500 µm and 1.500 to 2.224 µm, corresponding 

to the NIR and SWIR respectively. In general, iron oxides will have absorption features dominated by 

electronic processes in the VIS and NIR, while the absorption features in the SWIR are related to 

vibrational processes where H2O, OH- and CO3
-2 are present [9]. 

 

 
 

 
 

 

 

 
 

 

 

 

Figure 3. PCA-F,H+F,H composite from Landsat 5 (September 15, 1998). Red pixels represent iron 

absorption (F), and dark blue hydroxyl absorption (H). 
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Figure 4. Wavelength position of the main absorption feature from Hyperion (December 2, 2010). 

 

Figure 5 shows the time series of thermal anomalies from 2002 to 2017 by using Landsat and ASTER 

nighttime images. Thermal anomalies go from 2 standard deviations (SD) above the background (BG) 

temperature in yellow, to more than 6SD>BG in red. The BG temperature is shown in grey. 

Thermal anomalies seem to be largely consistent within the geothermal area over the time. However, 

there is a thermal anomaly at the southeast of the study area that is not detected on September 22, 2010 

and November 12, 2011 (marked with purple in Figure 5). Those dates are close to the beginning and 

the end of a change in trend of the vertical component detected by CGPS stations around Krýsuvík 

(Figure 6). Around that time, there is a reported uplifting period [13]. The absence of the thermal 

anomaly can be related to the peaks of the deformation trend.  Further studies for that specific area are 

needed for better interpretation. The thermal anomaly in Seltún on September 22, 2010 is not detected 

because of a cloud covering that area. Differences among all the maps for thermal anomalies of 2SD>BG 

can be related to the different seasonal acquisition time. 
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Figure 5. Thermal anomalies over the Sveifluháls sub-geothermal field. Thermal anomalies were 

categorized by standard deviations (SD) above the background (BG) temperature. LT and AST are 

for Landsat and ASTER respectively. Within purple oval the thermal anomaly possible affected by 

crustal deformation. Blue oval shows the area where hydrothermal alteration was identified but no 

thermal anomalies are currently noted.   

 

Figure 5 also shows a zone at the southwest of the study area where hydrothermal alteration was 

identified but no thermal anomalies are noted, at least since 2002. This zone is marked within the blue 

oval in Figure 5 for the first image but the same lack of thermal anomaly prevails for all the images. 

This observation reveals that the zone had thermal anomalies in the past but not anymore. This could be 

related for example to cooling of that part of the field, clogging of the fractures or changes in the water 

table level. Further studies are needed for better interpretation. 
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Figure 6. Time series of vertical displacements detected by CGPS around Krýsuvík. The red 

arrows are located on September, 2010, and November 2011. The stations belong to the Institute 

of Earth Sciences of the University of Iceland. 

Regarding the TIR images acquired by using the UAV, once the images were georeferenced and in 

degrees Celsius, the pixel temperature values were extracted from the same points where the ground 

measurements were taken. Then, those values were plotted against the ground measurements at 1 cm 

deep and the water of the fumaroles. The depth of 1 cm is because of it corresponds to the tip of the 

temperature probe where the measurements are taken, and can be acceptably comparable with the 

surface temperature obtained from the thermal camera.  The plots (Figure 7) show a linear relationship 

at all altitudes. The linear regression equations were fitted by using Microsoft Excel and those equations 

were used to calibrate the thermal images. The coefficient of determination (R2) for the linear regressions 

was about 0.95 for TIR images taken from 10 m to 30 m high and decreased with altitude of the camera 

to reach 0.77 at the 100 m high image. The highest temperatures that correspond to the water of the 

fumaroles, increase dispersion by increasing the elevation. This makes sense because of the water of the 

fumaroles covered a small area, so, due to the fixed field of view (FOV) of the camera, by increasing 

elevation, the pixel size increases and the temperature of the pixel becomes integrated (average 

temperature within the pixel). 

Heat flux estimation was done by using the TIR image taken from elevation of 30 m. This image 

was chosen because it covers all the points where the ground measurements were taken and because of 

its high R2 value. 
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Figure 7. Plots of temperatures extracted from the TIR images acquired by the camera on the UAV at 

different altitudes vs. ground temperature measurements of water and soil at 1 cm deep.  

Linear regression equations and R2 are also displayed. 
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In this way, the thermal radiant loss or the instant radiated thermal power was calculated for the 

pixels of the calibrated thermal image (in Kelvin) (Figure 8) using the equation ( 1 ) where 1.39 x10-3 

m2 was the pixel area. Then, the thermal radiant loss of the pixels contained within the isotherm of 6.35 

°C (279.5 K) were summed up. This isotherm represents the main thermal anomaly. The obtained heat 

flux was 4.09 kW in an area of 102.5 m2. 

 

 

Figure 8. TIR image taken 

from elevation of 30 m, 

calibrated by its linear 

regression equation and in 

Kelvin. The pixel values were 

used for estimation of the heat 

flux by radiation. The red and 

yellow lines surrounding the 

thermal anomalies correspond 

to the isotherms of 13.95°C 

and 6.35 °C respectively and 

were used as reference for the 

calculation of heat flux through 

the soil. The colored dots are 

where the ground 

measurements were taken. 
 

 

With the ground temperature measurements, the heat flux density through the soil was obtained by 

the method of Dawson (1964) ( 2 ). Then, the heat flux density value of each point was classified 

according to its position within the isotherms of 6.35 °C and 13.95 °C. So, heat flux density values 

within the 6.35 °C isotherm but out of the one of 13.95 °C, were averaged and multiplied by the area of 

82.23 m2, while heat flux values within the 13.95 °C isotherm were averaged and multiplied by 20.24 

m2. The total heat flux through soil was 5.17 kW in 102.5 m2. Heat flux value obtained by using the TIR 

images, and the value obtained by using the ground measurements are of the same order of magnitude.  

As reference Figure 9 shows the area covered by the 30 m high TIR image taken by the UAV (dark 

rectangle) and how the area is seen by the Landsat and ASTER satellite based sensors. For Landsat and 

ASTER, the area belongs to a pixel which thermal anomaly is around 2SD>BG. Given the size of the 

hot spots, the use of the UAV data was an important key for heat flux estimation; at the spatial resolution 

of the satellite images it is not effectively solved.  

The analysis of the satellite images enabled us to categorize the geothermal activity in Sveifluháls. 

The results show that three groups of spectral signatures can be recognized in the study area according 

to the position of the main absorption feature: absorption in the VIS, NIR and SWIR. Spectral signatures 

which main absorption is located in the VIS and NIR, match with thermal anomalies that are greater 

than 4SD>BG. Spectral signatures with absorption in the SWIR are widely distributed in the geothermal 

area, but they are dominant where thermal anomalies are around 2SD>BG. This arrangement can be 

grouped into three levels (Figure 10): 

 High activity. Characterized by thermal anomalies 6SD>BG, and absorption in the VIS and NIR 

that can be interpreted as spectral signatures of sulfur and iron oxides. For those areas, all the 

geothermal surface manifestations are present, including hot springs, steaming ground, fumaroles, 

and mud pots. 
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 Medium activity. Thermal anomalies are 4SD>BG, the spectral analysis suggests a mixture of 

minerals with absorption in the NIR and SWIR, but the NIR predominates. This can be associated 

to iron oxides like hematite and goethite. Those areas host small fumaroles and hot ground. 

 Low activity. The thermal anomalies are 2SD>BG mainly because of warm ground.  Spectral 

signatures show absorption in the SWIR and can correspond to montmorillonite. 

Gypsum is a mineral mapped in all previous studies. However, its spectral signature can be confused 

with other minerals when using multispectral satellite images. In the case of kaolinite, its spectral 

signature is very similar to montmorillonite and in this study it was not possible to distinguish between 

them. However according to the description of the previous geochemistry study [7], the occurrence of 

kaolinite is associated to high activity and montmorillonite to low activity areas. Thus, the SWIR 

absorption can be attributed to kaolinite in areas of high thermal anomalies, and to montmorillonite in 

areas of low thermal anomalies. The use of hyperspectral data can help to solve those minerals, so it is 

suggested the use of hyperspectral cameras mounted on planes or UAVs, or the use of portable 

hyperspectral remote sensors that allow the discrimination of those minerals by remote sensing.  

  
Figure 9. Comparison between spatial resolutions. The dark rectangle represents the area covered by 

the TIR imagen from the elevation of 30 m with the UAV. The yellow squares are the 2-4SD>BG 

thermal pixels from Landsat (a) and ASTER (b). 

4.  Concluding remarks 

Based on the wavelength position of the main absorption feature from the multispectral and 

hyperspectral satellite images, three groups of spectral signatures can be recognized within the 

Sveifluháls-Krýsuvík geothermal area: absorption in the VIS, NIR and SWIR. Specific minerals for each 

group can be proposed/interpreted by using geochemistry analysis as reference. Absorption in the VIS 

and NIR were interpreted as sulfur and iron oxides like hematite and goethite and they were found in 

areas of thermal anomalies more than 4 SD above the background temperature. Absorption in the SWIR 

was interpreted as spectral signature of montmorillonite in areas of thermal anomalies 2 SD above the 

BG.  

The kinetic LST retrieved from the TIR bands of Landsat and ASTER allowed a time series analysis 

of thermal anomalies from 2002 to 2017. The analysis showed consistent spatial distribution of the 

thermal anomalies in the study area. This time series of thermal anomalies revealed a zone at the 

southeast of the study area where thermal anomalies were not detected on September 22, 2010 and 

November 12, 2011. Those dates match with the beginning and the end of an uplifting period detected 

by the CGPS stations around Krýsuvík. Further studies of seismicity and crustal deformation for that 

specific area are needed for better interpretation. The analysis of thermal anomalies also detected a zone 

at the southwest of the study area where hydrothermal alteration was identified but no thermal anomalies 
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are currently noted. This can be related to cooling of that part of the field, clogging of the fractures or 

changes on the water table level; further studies are needed. 

The use of the high spatial resolution TIR images taken from a UAV allowed detailed thermal 

analysis on Seltún. Radiation heat flux calculated using the TIR image taken at 30 m elevation gave 

4.091 kW over an area of 102.5 m2; same order of magnitude than the heat flux through the soil estimated 

by using ground temperature measurements. Detailed mapping of thermal anomalies and heat flux 

estimations using TIR cameras on UAV can give reliable results if the TIR images are acquired and 

processed properly. Flights at 30 m of elevation seem to be appropriate.  

This study demonstrates that the combination of processing techniques, the use of sensors with 

different spectral and spatial resolution, as well as using images with different acquisition dates, allows 

regional and local analysis of the surface manifestations in a geothermal field. This study provides 

insights for monitoring natural or induced changes on the surface geothermal activity in other 

geothermal fields. 

 

 

Figure 10. Schematized cross section over Hveradalir. The three proposed activity levels are shown. 

The section shows the topography of the area but is off-scale. The dyke intrusion is inferred 

from previous maps [3,5]. 
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