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Abstract
The purpose of this thesis is to develop spatio-temporal statistical models
for glaciology, using the Bayesian hierarchical framework. Specifically,
the process level is modeled as a time series of computer simulator outputs
(i.e., from a numerical partial differential equation solver or an emulator)
added to an error-correcting statistical process, closely related to the
concept of model discrepancy. This error-correcting process accounts for
spatial variability in simulator inaccuracies, as well as the accumulation
of simulator inaccuracies forward in time. For computational efficiency,
linear algebra for bandwidth-limited matrices is used for evaluating the
likelihood of the model, and first-order emulator inference allows for the
fast approximation of numerical solvers. Additionally, a computationally
efficient approximation for the likelihood is derived. Analytical solutions
to the shallow ice approximation (SIA) of the full Stokes equation system
for stress balance of ice are used to examine the speed and accuracy of
the computational methods used, in addition to the validity of modeling
assumptions. Moreover, the modeling and methodology within this thesis
are tested on data sets collected by the University of Iceland Institute
of Earth Science (UI-IES) glaciology team, including bi-yearly mass
balance measurements at 25 fixed sites at Langjökull (a glacier) over
19 years, in addition to 100 meter resolution digital elevation maps. As
a byproduct of the construction of the Bayesian hierarchical model, a
novel finite difference method is derived for solving the SIA partial
differential equation (PDE). Although the application domain of this
work is glaciology, the model and methods developed in this thesis can
be applied to other geophysical domains.

The thesis is structured around three papers. The first of these papers
reviews dynamical modeling of glacial flow, introduces a second-order
finite difference method for solving the SIA PDE, presents a Bayesian
hierarchical model involving this numerical solver, and validates the
model with analytical solutions to the SIA PDE. The second of these
papers generalizes the statistical model of the first paper, probes higher-



order random walks for representing model discrepancy, incorporates
first-order emulators, and analyzes methods for efficient log-likelihood
evaluation. The third of these papers applies the model framework of the
first two papers to mass balance and surface elevation data at Langjökull.

The major contributions of the thesis are the derivation of a new
numerical method for solving the SIA PDE in two spatial dimensions and
time, the use of a random walk to represent model discrepancy (i.e., an
error-correcting process), efficient methods for log-likelihood evaluation,
and the application of spatio-temporal statistical modeling to Langjökull,
one of Iceland’s main glaciers.
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Útdráttur
Markmið þessarar ritgerðar er að þróa tíma- og rýmisháð tölfræðileg
líkön fyrir jökla með því að nota stigskipt Bayesísk líkön. Hér er sá hluti
stigskipta Bayesíska líkansins sem snýr að undirliggjandi líkani fyrir
ferlið sem er verið að skoða, útfærður þannig að tímaraðirnar sem koma
frá tölulegum hermi (þ.e. frá tölulegri lausn á hlutafleiðujöfnu eða nálgun
á slíkri tölulegri lausn) eru lagðar saman við líkindafræðilegt ferli sem
hefur það hlutverk að leiðrétta fyrir mismuninn á milli tölulega hermisins
og raunverulega ferlisins, og er nátengd hugmyndinni um misræmi líkana.
Þetta líkindafræðilega ferli leiðréttir fyrir rýmisháð frávik og tekur tillit
til að frávikin safnist upp yfir tíma. Til að flýta fyrir útreikningum þá er
línuleg algebra fyrir rýr fylki notuð til að reikna sennileikafall líkansins
og fyrstu gráðu hermar notaðir til að flýta fyrir útreikningum á tölulegum
lausnum hlutafleiðujafna eða öðrum kerfum. Að auki er ný reiknisparandi
nálgun fundin fyrir sennileikafallið. Fræðilegar lausnir á þunnjökla nálg-
uninni sem byggir á jöfnum Stokes fyrir spennur í jöklum, eru notaðar
til að meta reiknihraða og nákvæmni tölulegra nálgana, og hversu vel
líkanið fellur að gögnunum. Að auki er líkönunum og aðferðafræðinni
í þessari ritgerð beitt á raunveruleg gagnasöfn sem Jarðvísindastofnun
Háskóla Íslands hefur sett saman, þar með taldar afkomumælingar á
22-25 föstum stöðum sem teknar eru tvisvar á ári á Langjökli yfir 19 ára
tímabil, auk hæðarkorts sem hefur 100 metra upplausn. Aukaafurð sem
kom til við smíði á stigskipta Bayesíska líkaninu, er ný mismunaaðferð
til að leysa tölulega hlutafleiðujöfnuna fyrir þunnjökla nálgunina. Þó svo
að aðferðirnar sem hér eru settar fram séu fyrir jöklafræði þá má útfæra
þær fyrir önnur jarðeðlisfræðileg gögn og tilsvarandi líkön.

Ritgerðin byggir á þremur vísindagreinum. Í fyrstu greininni er
farið yfir þau líkön sem hafa verið þróuð til að lýsa hreyfingu jökla,
annarar gráðu mismunaaðferð til að leysa tölulegu hlutafleiðujöfnuna
fyrir þunnjökla nálgunina er kynnt sem og stigskipt Bayesískt líkan sem
notar tölulegu lausnina, og mat byggt á stigskipta Bayesíska líkaninu
er borið saman við fræðilega lausn þunnjökla nálgunarinnar. Í grein



tvö er fjallað um nánari útfærslu á tölfræðinni og útreikningunum fyrir
stigskipta Bayesíska líkanið, slembigangur af stigi hærra en einn er
skoðaður sem líkindafræðilegt líkan fyrir mismuninn á milli tölulega
hermisins og raunveruleikans, sýnd notkun á fyrstu gráðu hermum, og ný
reiknisparandi nálgun fyrir sennileikafallið er kynnt. Í þriðju greininni er
aðferðafræði fyrstu tveggja greinanna beitt á afkomugögn og hæðargögn
frá Langjökli.

Framlag ritgerðarinnar felst í: (i) nýrri annarrar gráðu mismunaaðferð
til að leysa tölulegu hlutafleiðujöfnuna fyrir þunnjökla nálgunina í tveim-
ur rúmvíddum og tíma, (ii) notkun slembigangs til að lýsa mismuninum
á milli tölulega hermisins og raunverulega ferlisins, (iii) nýrri reiknispar-
andi nálgun fyrir sennileikafallið, (iv) að beita nýju tíma- og rýmisháðu
tölfræðilegu líkani fyrir jökla við greiningu gagna frá Langjökli, einum
af stærstu jöklum Íslands.
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1 Introduction

1.1 Motivation
The main purpose of this doctoral thesis is to amalgamate Bayesian hier-
archical modeling approaches with physical modeling from glaciology.
While Paper 1 reviews Bayesian hierarchical modeling for physical-
statistical problems in greater detail, the motivation for this sort of mod-
eling is most aptly summarized in the abstract of Berliner (2003):

“Two powerful formulas have been available to scientists for more
than two centuries: Newton’s second law, providing a foundation for
classical physics, and Bayes’s theorem, prescribing probabilistic learning
about unknown quantities based on observations. For the most part the
use of these formulas has been separated, with Newton being the more
dominant in geophysics. This separation is arguably surprising since
numerous sources of uncertainty arise in the application of classical
physics in complex situations."

The current state of science, statistics, applied mathematics, and com-
putation is a particularly exciting one to be pursuing the Bayesian hierar-
chical approach in geophysics, for a number of reasons. One reason is the
trend in the sciences (i.e., geosciences, astronomy, and bioinformatics) to
store and retrieve prodigious amounts of data. A second reason is a rapid
growth in hardware to compute efficiently, for instance, with the aid of
supercomputing clusters, graphics processing units (GPUs), parallel com-
putation, and faster central processing units (CPUs). A third main reason
is the commensurate development of efficient computational method-
ologies and algorithms to deal with analytically intractable Bayesian
models. These include traditional Markov chain Monte Carlo (MCMC)
methodologies such as Metropolis-Hastings and Gibbs sampling (Tierney,
1994), more recent MCMC methodologies such as Hamiltonian Monte
Carlo (Neal, 2011) and slice sampling (Neal, 2003), and approximate
inferential techniques such as variational inference (Blei et al., 2017),

1



1 Introduction

integrated nested Laplace approximations (INLA) (Rue et al., 2009), and
approximate Bayesian computation (ABC) (Marin et al., 2012). Addi-
tionally, recent work in the uncertainty quantification and probabilistic
numerics branches of applied mathematics has focused on numerical
methods from a Bayesian perspective, such as gamblets and Bayesian
homogenization (Owhadi and Scovel, 2017), which come with proven
computational complexity results.

This work develops physical-statistical models and uses data from
Langjökull to validate the models and associated methods. Langjökull
is Iceland’s second largest glacier, with an area of 900 km2, a volume of
190 km3 and mean thickness of 210 m (Björnsson and Pálsson, 2008).
The small relative thickness of the glacier (in comparison to horizontal
dimensions) allows for valid application of the SIA (Fowler and Larson,
1978; Hutter, 1982, 1983; Flowers et al., 2005). While models applying
the SIA have been used for predicting the evolution of other Icelandic
glaciers, such as those from Aðalgeirsdóttir (2003) and Flowers et al.
(2005), an advantage of the Bayesian hierarchical approach is that it gives
full probability distributions for future glacial thickness values at various
spatial locations (instead of just point predictions). Furthermore, along
with a posterior predictive distribution for glacier thickness values at
various spatio-temporal coordinates, the Bayesian hierarchical modeling
approach yields full probability distributions over the ice viscosity and
basal sliding parameters, providing plausible ranges for these parameters
in light of the observed data. It is important to note that, even if a Bayesian
method is not used, these parameters are very difficult to directly measure,
and so some type of estimation is necessary.

In summary, this thesis develops spatio-temporal Bayesian hierar-
chical models for glacial thickness, validated with simulations and data
from Langjökull. The same approaches can be applied to glaciers and
ice sheets in other locations of the globe, such as Greenland. Besides
contributing new modeling approaches and methods to the statistics lit-
erature, the ideas developed within this thesis can be used to predict,
probabilistically, how glaciers will respond to a changing climate. More-
over, the physical-statistical modeling and methodology developed for
glaciology can be applied to other scientific and engineering domains.

The next few subsections of the introduction give a concise overview
of the key statistical elements employed in the three papers of this thesis:
Bayesian modeling, Bayesian hierarchical modeling, spatio-temporal

2



1.2 Bayesian modeling

statistics, computer simulators, model discrepancy, and emulators. These
subsections are followed by a brief overview of glacial dynamics and the
application of Bayesian modeling to glaciology.

1.2 Bayesian modeling
Because this thesis relies upon Bayesian modeling, it is important to give
an overview of what Bayesian modeling entails. In an empirical study,
one’s objective is typically to make inferential statements about unknown
quantities (e.g., scientifically relevant parameters or future, unobserved
quantities) given observed data (e.g., the results of one or many experi-
ments). Such inferential statements may then be used to make decisions
of practical importance or arrive at scientifically relevant deductions or
conclusions. For the sake of this exposition, it may be useful to refer
to the unknown objects of inferential interest as q , a vector in Rn, but
in a more general setting q may belong to an infinite-dimensional set.
The Bayesian approach models the joint distribution of all unknowns
and potentially observable data with a probability distribution. Typically,
this joint distribution is specified as a product of two components called
a likelihood function, a probability density for the observed data as a
function of q , and a prior distribution, a probability density for q . Finally,
inference regarding the unknowns is accomplished by deriving the dis-
tribution of the unknowns conditional on the observed data, canonically
referred to as the posterior distribution.

An important issue in Bayesian inference involves the choice, inter-
pretation, and subjectivity of the prior distribution. One interpretation
of the prior distribution is that it encodes an individual’s subjective prior
beliefs about inferential objects of interest before an experiment has been
conducted. In some instances, priors are chosen for analytical conve-
nience, such as in the case of conjugate priors, where the posterior is
analytically tractable and also happens to have some important theoretical
properties, as shown by Diaconis and Ylvisaker (1979) in the exponential
family setting. Other schools of thought attempt to define default priors
based on invariance principles, such as the Jeffreys priors (Jeffreys, 1946),
or information-theoretic principles such as reference priors (Berger et al.,
2009) and the penalized-complexity priors due to Simpson et al. (2017).
Yet another interpretation of the prior distribution is that it is a weighting
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function that regularizes estimates, and for instance both the widely-used
Lasso and ridge regression estimators have an interpretation in this vein.
That is, the Lasso estimate (Tibshirani, 1996) may be seen as the posterior
mode of a typical linear regression setup with independent, zero-mean
Laplacian priors on the coefficients, and the ridge regression estimate
(Hoerl and Kennard, 1970) can be seen as the posterior mode of a typical
linear regression setup with independent, zero-mean normal priors on
the coefficients. In addition to many variations for prior choice, it is
important to realize that the conditional distribution of the observed data
given the parameters of interest can be arbitrary, and it is also often times
used in a frequentist analysis.

Complementary to the Bayesian approach, the frequentist approach
provides a way of assessing the goodness of an inferential procedure. One
frequentist interpretation treats the inferential objects of interest as fixed
and unknown quantities, where any probability distribution ascribed to
them is ultimately an inferential construct. Variation in observable data is
thus modeled by the probability distribution underpinning the likelihood
function. In other words, the appropriate distribution to reference in a
frequentist validation is the conditional distribution of the data given the
unknowns, as opposed to the joint distribution of the data and unknowns.
A frequentist analysis answers the question: how does this estimator
or confidence interval perform under repeated sampling or observations
according to a particular data distribution, treating unknowns as fixed
quantities? So for example, a 95 percent confidence interval should,
in theory, contain the unknown of inferential interest in 95 percent of
samples over the long run. However, a given interval either does or does
not contain the unknown.

There are a number of mathematically rigorous ways to reconcile
Bayesian inference with frequentist criteria, of which two are highlighted.
The first justification is asymptotic; under weak regularity conditions and
assuming data are generated independently, identically, and conditioned
on a fixed, unknown parameter, the posterior concentrates around the
fixed parameter as more data are collected, e.g., as in the Bernstein
von Mises theorem (van der Vaart, 2000; Shen and Wasserman, 2001).
There are also similar nonparametric results, for instance in Castillo and
Nickl (2014). Nonetheless, the reader is pointed to the simulation studies
of Paper 1, which show an interesting sort of asymptotic behavior for
the posterior inference of ice viscosity when more data are collected in
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1.3 Bayesian hierarchical modeling

a fixed time window. The second justification comes from statistical
decision theory, in which the complete class theorem loosely states that
the admissible estimators are the generalized Bayes rules (Lehmann
and Casella, 2003); in particular, assuming continuity of risk functions
and a strictly positive prior distribution, Bayes rules (i.e., estimators
that minimize a loss function over the joint distribution of data and
unknowns) are admissible (see (Lehmann and Casella, 2003) for the
precise mathematical definition). The continuity of risk functions holds
in common settings, such as when the data distribution comes from the
exponential family (Lehmann and Casella, 2003; Robert, 2007).

1.3 Bayesian hierarchical modeling
As the terminology suggests, Bayesian hierarchical modeling is an ex-
tension of Bayesian modeling (Cressie and Wikle, 2011). A hierarchical
model specifies the data distribution through conditional distributions
and latent variables. By taking the product of these distributions, and
then marginalizing (i.e., integrating) out latent variables, one arrives at
the marginal distribution of the data. Let us introduce a latent variable,
S, and assume the data variable is Y . Their respective probability dis-
tributions are p(S) and p(Y ). Rather than specifying p(Y ) directly, it
may be conceptually simpler to specify p(S) and p(Y |S), the conditional
distribution of Y given S. In the context of modeling in Cressie and Wikle
(2011), S typically represents a latent physical process (e.g., humidity)
and Y represents observable data than can be easily linked to the physical
process (e.g., inches of rainfall in some region). The marginal distribution
of Y , p(Y ), can then be obtained as

R
p(Y |S)p(S)ds.

Furthermore, if there are physical parameters, represented as q , we
can denote the distribution of the process level as p(S|q), emphasizing
the dependence of the physical process on some physical parameters. Ad-
ditionally, a prior distribution, p(q), can be ascribed to q . Assuming that
Y is conditionally independent of q given S, then the distribution of the
data conditional on the physical parameter, p(Y |q), is

R
p(Y |S)p(S|q)ds.

Sometimes this integral can be computed analytically. This holds in
this thesis because the latent distribution (p(S|q)) and the data level
distribution (p(Y |S)) are multivariate normal. In such a situation, the
marginal distribution, p(Y |q), also has a multivariate normal form. How-
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ever, in cases when this does not hold, one can use other computational
procedures (e.g., MCMC (Tierney, 1994), INLA (Rue et al., 2009), etc.).

1.4 Spatial and spatio-temporal statistics
The most basic statistical models assume independent and identically
distributed (IID) (hence uncorrelated) measurements. In many real-world
problems, however, there will be correlation between data points. This is
true, for instance, in the case of time series; measurements that are taken
close together in time will tend to exhibit more correlation than those
that are taken far apart in time. Likewise, if data are spatially referenced,
it is natural to assume that nearby data points (e.g., measurements of
temperature) will tend to be more correlated, and this correlation drops
off as the distance between points increases.

Let s1,s2, ...,sm be elements of Rd . A common way of representing
spatial covariance is to assume that some stochastic process, Y , which can
be indexed spatially as Y (s1),Y (s2), ...,Y (sm), is distributed according to
a Gaussian process (GP), with some mean function µ(s) and a covariance
kernel that is often a function of the distance between points. For instance,
a common covariance kernel is the squared exponential kernel, in which
the covariance between points decays as the exponential of the squared
distance between points:

C(sa,sb) = s2 exp
�||sa � sb||2

2f 2 .

Here, s is the marginal standard deviation and f is the length-scale
parameter.

Another covariance function that is often used in spatial statistics is
the Matérn kernel (Bakka et al., 2018), which is described more in Paper
3, but whose formula is repeated here for sake of comparison:

C(sa,sb) = s2 21�n

G(n)
(
p

8n ||sa � sb||/r)Kn(
p

8n ||sa � sb||/r).

Here, s is the marginal standard deviation, r is the spatial range parame-
ter, n is the smoothness parameter, Kn is the modified Bessel function of
second kind with order n , and G is the gamma function.
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The squared exponential kernel is actually a version of the Matérn
kernel as the smoothness parameter tends to infinity (Rasmussen and
Williams, 2006). Both of these covariance functions are depicted below.
Besides these two kernels, there are other choices at the disposal of the
modeler, which can be found, for instance, in Rasmussen and Williams
(2006) and Banerjee et al. (2003).

Figure 1.1. Squared exponential covariance function as a function of
distance. Both s and f are 1.

Figure 1.2. Matérn covariance function as a function of distance. Both s
and r are 1, and the smoothness parameter is .55.

If data are spatially referenced to a lattice (i.e., a finite number of
spatial locations), and their joint distribution is a multivariate normal
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distribution, then we can refer to these data as a Gaussian Markov random
field (GMRF) (Rue and Held, 2005). A useful property of a multivariate
normal precision matrix (i.e., inverse of the covariance matrix) is that
0 entries imply conditional independence. Specifically, let Y have a
multivariate normal distribution with mean µ , precision matrix Q, and
the components of Y are referred to by subscript. Then Yi is independent
of Yj conditioning on all other components of Y if and only if Qi j =
0. Furthermore, it is possible to link geostatistical fields (discussed
previously) with GMRFs through stochastic partial differential equations
(SPDEs), an approach that is described more in Lindgren et al. (2011).
We use this approach, implemented in the R-INLA software, to make
mass balance predictions in Paper 3.

If data have both spatial and temporal coordinates, it is possible to
implement correlation structures that are a function of both space and
time. This thesis develops spatio-temporal correlation with a multivariate
random walk where the error term of the random walk is derived from
a squared exponential kernel. The full covariance under this model
specification is described in greater detail in Paper 2; in particular, there
is correlation across different space and time coordinates, consequently
inducing spatio-temporal correlation structure.

1.5 Computer simulators, model discrep-
ancy, and emulators

Consider the most basic linear model of the form Yi = b0 +b1Xi + ei; Yi
is the observed data, b0 is an intercept term, Xi is a covariate, and b1 is
an associated parameter. If ei is a Gaussian random variable (RV) with
mean 0, then Yi is a Gaussian RV with mean b0 +b1Xi, which is a linear
function of a covariate. However, in a physical situation, it is typical that
some nonlinear function, f (.), is used instead of a linear function. Such
a function is often times the output of a computer program or simulator,
such as a numerical PDE solver. This sort of a model takes the form
Yi = f (q ,f)+ ei, where q is a physically important parameter and f
represents additional parameters needed for the computer program to run.

Kennedy and O’Hagan (2001) consider such models,which are further
developed by Brynjarsdóttir and O’Hagan (2014). In particular, often
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times the output of a computer simulator will not perfectly capture the
physical process being modeled (e.g., due to numerical inaccuracy or
approximate dynamics upon which the simulator is based). For this
reason, Kennedy and O’Hagan (2001) suggest including an additional
term called model discrepancy, a function denoted by d (f). In other
words, Yi = f (q ,f)+d (f)+ ei. The introduction of Paper 2 elaborates
more on model discrepancy and its relationship to the model within this
thesis.

One complication in such models is that a computer simulator ( f (q ,f))
can take a lot of computational resources to evaluate, i.e., it takes a long
time to run. Most inference methods in such models will require repeated
evaluations of f (q ,f), which can take an unfeasible amount of time
if evaluating f (q ,f) is slow. Emulators (also referred to as surrogate
models) can mitigate this computational burden by replacing f (q ,f)
with a function g(q ,f) that mimics the output of f (q ,f), but is less
computationally expensive to evaluate. The emulator is constructed by
running f (q ,f) for some pre-defined values of q , f , and using the output
to train g. Paper 2 uses first-order emulation (Hooten et al., 2011) to
emulate the numerical PDE solver from Paper 1. In addition to first-order
emulators, there are other types of emulators in the literature, notably
polynomial-chaos expansions (Sargsyan, 2016) and Gaussian process
based emulators (Gu et al., 2018).

1.6 Glacial dynamics
The emphasis of the introduction has been on statistical concepts that are
used in this thesis, though a preliminary overview of glacial dynamics is
important to include. The time evolution of glacial thickness is attributed
to the flow of ice and the rate of change of ice mass, which is caused
mostly by melting of ice and snow accumulation (and compaction). Ice
flow is essentially caused by two sources: 1) deformation due to gravity
and 2) interaction of the bed of the glacier with bedrock, which can either
act in the direction of flow (sliding) or impede the flow (friction). The
direction of flow is in the negative of the surface gradient, confirmed
by observations from Minchew et al. (2015). In the SIA used for this
thesis, the exact formulation for deformation due to gravity comes from
Glen’s flow law (Glen, 1955), and the basal sliding component comes
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from Weertman’s sliding relation (Weertman, 1964); more is described
in Paper 1.

Additionally, besides deformation due to gravity and basal sliding,
there are other factors not included in the SIA that can have an effect
on glacial dynamics. One such factor is a glacial surge, when a glacier
suddenly flows at a much faster rate than usual. It is estimated that 40
km3 of ice had been transported from accumulation areas to melting areas
at Vatnajökull during the 1990s (Björnsson and Pálsson, 2008). Another
main event is a jökulhlaup, a flood that occurs when there is an outburst
of meltwater stored in a glacier. Such a flood is caused by geothermal
fields that continuously melt ice, the build up of water at ice dams, or a
volcanic eruption that melts ice that subsequently drains at the glacier
margin (Björnsson and Pálsson, 2008).

While the application of Bayesian modeling is relatively new to
glaciology, there have been some notable instances of such work in
the literature. Some important examples include Berliner et al. (2008),
Pralong and Gudmundsson (2011), Brinkerhoff et al. (2016), Isaac et al.
(2015), Minchew et al. (2015), and Guan et al. (2016). More details for
these papers are given in Paper 1. Our work differs from these treatments
because it includes both 2 spatial dimensions and time, as well as model
discrepancy, through a multivariate random walk.
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2 Materials and methods
All of the programming in this thesis was done in the R programming
language (R Core Team, 2016). Code was written for simulating glacial
dynamics based on the analytical solutions to the SIA model from Bueler
et al. (2005), implementation of the finite difference solver in Paper 1,
posterior inference within the main Bayesian hierarchical model, emula-
tion, and mass balance predictions. The major pieces of code are included
at the end of the thesis. The main R packages used in the thesis are:

1. mvtnorm_1.0-8 (for multivariate normal routines) (Genz et al.,
2019),

2. FastGP_1.2 (for the elliptical slice sampling method) (Gopalan and
Bornn, 2015),

3. randomForest_4.6-12 (for training emulators) (Liaw and Wiener,
2002)

4. raster_2.8-4 (for making spatial maps) (Hijmans, 2018), and

5. INLA_18.07.12 (for making mass balance predictions) (Rue et al.,
2009).

Additionally, R Studio Server was run on an Amazon Web Services
(AWS) instance (m4.2xlarge) for the analysis of Paper 3, which processes
Langjökull data. R version 3.3.1 was used, and with the exception of
the AWS server, R was run on a 2015 MacBook Pro, 2.7 GHz Intel Core
i5 processor with 8 GB 1867 MHz DDR3.

The main statistical approach used for constructing the models in
this thesis is the Bayesian hierarchical modeling framework. We used
the version of Bayesian hierarchical modeling as delineated in Cressie
and Wikle (2011). This is the parameter, process, data level hierarchical
modeling framework, described in more depth in the introduction of
Paper 1.
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The data used was provided by Finnur Pálsson, member of the glaciol-
ogy group of the University of Iceland Institute of Earth Sciences (UI-
IES). The first piece of data consists of a 100 m resolution surface digital
elevation map of Langjökull, based on measurements taken in late April
to early May of 1997. The second piece of data consists of a 100 m
resolution surface topographical map of the Langjökull bedrock, also
collected during late April to early May of 1997. The final piece of data
consists of the locations (i.e., latitude, longitude), surface elevation, and
summer and winter mass balance measurements at 22-25 measurement
sites across Langjökull, between 1997-2015 inclusive. More information
about the data and how they were collected is given in Section 2 of Paper
3.
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3 Summary of papers, contributions,
and conclusions

3.1 Summary of papers
The papers of this project were designed to develop models and validation
in a natural sequence. As such, the first paper introduces a prototypical
Bayesian hierarchical model for glacial flow that allows for the prediction
of glacier surface elevation and the inference of ice viscosity. This model
is validated with simulation studies that use analytical solutions to the
SIA PDE, introduced by Bueler et al. (2005). The process level of the
Bayesian hierarchical model embeds a second-order finite difference
solver for the SIA PDE, which is based on the Lax-Wendroff method
(Hudson, 1998). This paper is novel for constructing a Bayesian hierar-
chical model that operates in 2 spatial dimensions and time – previous
work either does not involve time or involves only one spatial dimension
with time (Berliner et al., 2008; Brinkerhoff et al., 2016; Guan et al.,
2016). Paper 1 has been published in The Cryosphere, a glaciology
journal (Gopalan et al., 2018).

Paper 2 develops the general applicability of the model from Paper 1
and shows ways to improve computation. In particular, as an extension
of Paper 1, Paper 2:

1. Demonstrates the use of a first-order emulator instead of a numeri-
cal solver (the resultant speed-up in computation is demonstrated),

2. uses random walks (RWs) of order greater than 1 (the first paper
only considered RW(1)), and performs associated residual analyses,

3. derives sparsity results for log-likelihood evaluation,

4. derives the computational complexity of log-likelihood evaluation,

5. demonstrates empirical run-time results, and
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6. provides a method to fit an error-correcting process when little
prior information is available.

Additionally, connections are made to the literature on model discrepancy
(Kennedy and O’Hagan, 2001; Brynjarsdóttir and O’Hagan, 2014). This
paper has been selected as the winner of the 2019 American Statisti-
cal Association (ASA) Section on Bayesian Statistical Science (SBSS)
Laplace Award. Also, it has been published in the Journal of Agricultural,
Biological, and Environmental Statistics (Gopalan et al., 2019).

Paper 3 applies the methodology and modeling from the first two
papers to data sets from Langjökull. The data sets include the 1997
surface elevation of Langjökull, the bedrock topography as measured
with radio-echo sounding by the University of Iceland glaciology team,
and winter and summer measurements of mass balance from 1997-2015.
This paper includes the application of R-INLA to make spatial predictions
of mass balance at Langjökull, a new contribution to glaciology. It
also derives a posterior estimate for ice viscosity and predictions for
surface elevation at Langjökull. In contrast to the simulation studies of
Paper 1, the posterior for ice viscosity concentrates sharply at a single
value, which is in the domain of expected ice viscosity values to be
expected at Vatnajökull (Aðalgeirsdóttir et al., 2000). Additionally, the
surface elevation predictions for 2015 at the measurement sites, trained
on data from 1997-2014, are within a few meters of the observed surface
elevations. The final paper is in preparation for submission to the Annals
of Applied Statistics.

3.2 Contributions to the literature
It is important to underscore the contributions that these papers have
made to both the glaciology and statistics literature. The Bayesian hier-
archical spatio-temporal model contributed in this thesis is novel in that
it incorporates two spatial dimensions and time. Many of the previous
applications of Bayesian modeling in glaciology have either not included
time, or have included a dynamical equation that operates only along the
flowline in one spatial dimension (Berliner et al., 2008; Brinkerhoff et al.,
2016; Guan et al., 2016). The contribution of a Bayesian hierarchical
model in time and two spatial dimensions is important because it allows
for probabilistic forecasts of surface elevation across the entire area of
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the glacier, as opposed to a point estimate of how glaciers will develop
in the future (Aðalgeirsdóttir et al., 2006; Flowers et al., 2005). Since
there are numerous sources of uncertainty in glaciological modeling (e.g.,
physical model used, numerical inaccuracies, uncertainty in fundamental
constants), it is important that predictions for glacier evolution are proba-
bilistic. An additional contribution to the glaciology literature is a new
finite difference method, based on the Lax-Wendroff method, which is a
second-order method. Most of the finite difference methods in glaciology
have been first-order, such as in Bueler et al. (2005); Jarosch et al. (2013);
Aðalgeirsdóttir (2003). Nonetheless, the numerical errors of this method
are qualitatively similar to the errors exhibited by first-order finite differ-
ence methods, as demonstrated in Bueler et al. (2005). This knowledge
was used in constructing the error-correcting process of the aforemen-
tioned Bayesian hierarchical model. A third main contribution to the
glaciology literature is using a formal spatio-temporal statistical model
to make mass balance predictions (i.e., interpolations) at Langjökull.
Previously, this has been done manually (Pálsson et al., 2012).

This thesis contributes to the statistics literature as well. One main
contribution is the use of a random walk model to account for model
discrepancy (i.e., the deviation between a numerical PDE solver and the
real spatio-temporal physical process). Model discrepancy has mostly
been inferred with a GP prior over a space of functions (Kennedy and
O’Hagan, 2001; Brynjarsdóttir and O’Hagan, 2014). It has been shown
that, under the random walk model, the log-likelihood can be computed
exactly in an efficient manner, due to the use of bandwidth-limited matrix
algebra. Moreover, an easily-parallelizable approximation to the log-
likelihood has been developed as well. The computational complexity
for the evaluation of both the exact and approximate likelihood has
been derived. Additionally, simulating from the posterior predictive
distribution can be done simply in such a model. Another major statistical
contribution is the use of first-order emulation for emulating a numerical
PDE solver; in Paper 2, a computational improvement is afforded without
any appreciable difference in the posterior as compared to a posterior
derived from a numerical PDE solver.
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3.3 Conclusions
One conclusion of this work is that prior knowledge for the error-correcting
process (i.e., model discrepancy), embedded in the covariance matrix of
the random walk, can reduce the bias of physical parameter estimates.
This is consistent with a conclusion of Brynjarsdóttir and O’Hagan (2014).
In Papers 1 and 2, this phenomenon is demonstrated by using prior knowl-
edge of the discrepancy between finite difference solutions and exact
analytical solutions to the SIA, from the work of Bueler et al. (2005).
Another main conclusion is that the Bayesian hierarchical model can gen-
erate good predictions of glacial surface elevation, which is demonstrated
both in the simulation studies of Paper 1 and the Langjökull data of
Paper 3. Unexpectedly, however, the posterior for ice viscosity has much
higher precision in the real-data test case in comparison to the simulation
studies of Papers 1 and 2. Another main conclusion is that computational
improvements are possible for performing Bayesian inference within
the proposed model, by using bandwidth-limited matrix linear algebra,
a parallelizable approximation to the log-likelihood, and emulating a
numerical PDE solver with first-order emulators.

The three papers that this thesis consists of suggest that the Bayesian
hierarchical model developed, along with associated methodologies, pro-
vide a useful, computationally efficient way to understand glaciological
systems and make probabilistic forecasts of surface elevation of temperate
glaciers.
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4 Paper 1
A Bayesian hierarchical model for glacial dynamics based on the shal-

low ice approximation and its evaluation using analytical solutions

Gopalan, G., Hrafnkelsson, B., Aðalgeirsdóttir, G., Jarosch, A. H.,
and Pálsson, F.: A Bayesian hierarchical model for glacial dynamics
based on the shallow ice approximation and its evaluation using analytical
solutions, The Cryosphere, 12, 2229-2248, https://doi.org/10.5194/tc-12-
2229-2018, 2018.

Abstract: Bayesian hierarchical modeling can assist the study of
glacial dynamics and ice flow properties. This approach will allow
glaciologists to make fully probabilistic predictions for the thickness of a
glacier at unobserved spatio-temporal coordinates, and it will also allow
for the derivation of posterior probability distributions for key physical
parameters such as ice viscosity and basal sliding. The goal of this pa-
per is to develop a proof of concept for a Bayesian hierarchical model
constructed, which uses exact analytical solutions for the shallow ice
approximation (SIA) introduced by Bueler et al. (2005). A suite of test
simulations utilizing these exact solutions suggests that this approach is
able to adequately model numerical errors and produce useful physical
parameter posterior distributions and predictions. A byproduct of the de-
velopment of the Bayesian hierarchical model is the derivation of a novel
finite difference method for solving the SIA partial differential equation
(PDE). An additional novelty of this work is the correction of numerical
errors induced through a numerical solution using a statistical model.
This error-correcting process models numerical errors that accumulate
forward in time and spatial variation of numerical errors between the
dome, interior, and margin of a glacier.
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4.1 Introduction
The shallow ice approximation (SIA) is a nonlinear partial differential
equation (PDE) that describes ice flow when glacier thickness is relatively
small compared to the horizontal dimensions. Derived from the prin-
ciple of mass conservation, the SIA PDE depends on two key physical
parameters: ice viscosity and basal sliding (sometimes described as basal
friction or drag). The primary objective of this paper is to develop a
Bayesian hierarchical model (BHM) for glacier flow utilizing the frame-
work espoused by Wikle (2016) and Cressie and Wikle (2011), which
allows one to: 1) infer ice viscosity and basal sliding parameters and 2)
make probabilistic predictions for glacial thickness at unobserved spatio-
temporal coordinates. This BHM relies upon a finite difference scheme
for solving the SIA that is inspired by the Lax-Wendroff method (Hudson,
1998). To validate this BHM, we utilize exact analytical solutions from
Bueler et al. (2005). Hence, in addition to the development of a BHM
for shallow glaciers, this paper serves as a case study for the strategy
of using exact analytical solutions to validate or tune BHMs governed
by physical dynamics. Moreover, the BHM developed can be applied to
the general “physical-statistical" problem (Berliner, 2003). This BHM is
verified and diagnosed through a combination of assessments of posterior
probability intervals, checks of predictive accuracy for glacial thickness
prediction, and a comparison between observed and expected errors due
to the numerical solution of the SIA.

4.1.1 An overview of Bayesian modeling and BHMs

Before describing how BHMs are used in physical-statistical models,
particularly for geophysical problems, a very terse overview of Bayesian
modeling and Bayesian hierarchical modeling is given for the uninitiated
reader. A main component of Bayesian statistics is the use of probability
distributions to model parameters thought to be fixed quantities (i.e., sci-
entific constants); this assumption allows one to use rules of conditional
probability (i.e., Bayes’ theorem) to derive probability distributions for
scientific quantities of interest, such as physical constants or predictions
of future quantities of a system being studied. Typically, the major as-
sumptions required as input to the analysis are prior distributions for
parameters as well as a probabilistic model for the data. The output is a
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probability distribution for parameters or predictions conditional on data
that has been collected or observed; canonically, this is referred to as the
posterior distribution.

A BHM is a Bayesian model in which the probabilistic model for data
is specified in a hierarchy. Working with such a hierarchy has a number of
advantages – it is usually easier to conceptualize the probabilistic model
for the data, and it is also easier to model various parts of a system of
interest modularly instead of all at once. Such an approach is conducive
to the construction of a probabilistic model that tightly corresponds to
a scientific system of interest, which is naturally thought of in separate
components or modules. In a BHM, the rules of conditional probability
can be used to specify the relevant distributions. For example, let us
consider a mock system that has parameter vector q , an intermediate un-
observed vector S, and observations Y . q might be statistical or physical
parameters, S could be a quantity of scientific interest, and Y could be
noisy observations of S. A schematic for such a model is given in Figure
4.3, and the joint probability distribution is

p(q ,S,Y ) = p(q)p(S|q)p(Y |S,q).

The distribution p(q) represents prior beliefs about parameters before
data are collected, while p(S|q) represents prior knowledge or assump-
tions for how S is generated given parameters. For instance, this prior
knowledge could entail clustering or some dependence between the ele-
ments of S. The process that models Y conditional on S and q is p(Y |S,q).
The posterior distribution of scientific quantities of interest, p(q ,S|Y ), is
proportional to p(q ,S,Y ) by Bayes’ theorem. Estimates and assessments
of uncertainty of scientific parameters and quantities can be extracted
from the posterior distribution.

4.1.2 Physical-statistical modeling with BHMs

The case for applying Bayesian hierarchical modeling and methodology
in geophysics is strongly made by Berliner (2003), which he describes as
“physical-statistical modeling". Particularly, employing the Bayesian hier-
archical approach has the primary advantage of incorporating all relevant
sources of uncertainty and randomness into one coherent probabilistic
framework. The sources typically modeled together are: 1) measurement
errors in the data collection process, 2) lack of full knowledge of the
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θ S Y

Parameters Latent (unobserved) 
scientific quantities Observed data

Figure 4.3. Schematic of a simple Bayesian hierarchical model; here, q
represents physical parameters, S represents unobserved scientific
quantities of interest, and Y represents the observed data.

precise functional form of the underlying physical equations describing
the physical phenomenon being modeled, or else simplification of the
physical system description 3) numerical errors induced while approx-
imating the solution to a system of partial differential equation PDEs,
and 4) lack of precise knowledge of fundamental parameters (constants)
in the underlying PDEs describing said phenomenon. In the Bayesian
hierarchical framework (Berliner, 1996; Wikle, 2016; Cressie and Wikle,
2011) each of these sources of uncertainty is modeled by conditioning
on the appropriate quantities, and inference is performed by sampling
from or approximating the posterior distribution (the distribution of the
unknown quantities of interest conditional on the observed data).

At the highest level of a BHM, prior probability distributions are
laid out for the physical parameters of interest. At the intermediary
level, a probability distribution for the physical process of interest is
laid out conditional on the parameters, which is typically motivated by
a numerical scheme for solving PDEs. In particular, this level may
be modeled as the sum of the output from a numerical solver and an
error-correcting process. Finally, at the observed level, a probability
distribution is set forth for the observed data conditional on the latent
physical process and other relevant measurement parameters, which
include variances of measuring procedures or devices. The product
of these probability distributions specifies the joint distribution of all
relevant quantities, which is proportional to the posterior distribution
by the definition of conditional probability. While a traditional analysis
may handle each of these disparate sources of uncertainty in an ad-hoc
and disjointed fashion, the Bayesian hierarchical approach leverages
probability measures to cohesively model major sources of uncertainty
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and undertake inference in a principled manner. Figure 4.4 diagrams what
a prototypical physical-statistical Bayesian hierarchical model might look
like.

Physical parameters 

Initial conditions + boundary conditions

Numerical PDE solver

Error correcting statistical model

Observations

-

Figure 4.4. Schematic of a prototypical physical-statistical Bayesian
hierarchical model. At the top layer, physical parameters, initial
conditions, and boundary conditions are fed into a numerical solver, and
the output of this is corrected with an error-correcting process; finally
the actual observations are dependent on the actual physical process
values.

While the BHM approach to physical-statistical problems offers many
advantages, it is not an infallible approach. In particular, while construct-
ing a BHM may be straightforward, actually fitting a BHM to data can
be computationally difficult. In the analysis that follows, there are only
one to two physical parameters and the likelihood function is tractable,
so posterior computation is not difficult. In more complex scenarios with
many physical parameters (e.g., a basal sliding field with a parameter
for each grid point), it becomes more difficult to compute the posterior
or draw samples from it. There are now many new tools, however, for
Bayesian inference of complicated and high dimensional posterior distri-
butions, such as Stan (Stan Development Team, 2018) and INLA (Rue
et al., 2017). Another potential difficulty in using BHMs for physical-
statistical problems is that solving for a set of dynamical equations with
a numerical method can be computationally onerous, generally speaking;
while this is not a detriment in the work that follows, this can be a prob-
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lem for posterior computation. One way to circumvent this issue is to
emulate a numerical solver, using techniques as in Hooten et al. (2011).
Another methodology that can be used to efficiently solve PDEs using
Bayesian numerical analysis comes from Owhadi and Scovel (2017). Fi-
nally, Calderhead et al. (2008) suggests methodology to avoid explicitly
solving ordinary differential equations by using Gaussian processes.

To put the contributions of this work into context, we briefly review
glaciology papers that have employed Bayesian modeling. In Berliner
et al. (2008), a Bayesian hierarchical approach is used to model ice
streams in one spatial dimension, and an error-correcting process is uti-
lized to account for a simplification in the physical model. A combination
of Markov chain Monte Carlo (MCMC) and empirical Bayes methodol-
ogy is used to fit the model, and basal shear stress and resistive stresses
are included. Furthermore, wavelets are used for dimensionality reduc-
tion purposes so as to make the computations more feasible. In Pralong
and Gudmundsson (2011), a Bayesian model is constructed for an ice
stream where the likelihood and prior are Gaussian. The observed data
are surface topography, horizontal and vertical surface velocities, and
the latent system state is basal topography and slipperiness. The goal
is to infer the system state given the observed data, and ultimately a
maximum a posteriori (MAP) point estimate is used for inference in
conjunction with an iterative method for posterior maximization. Physics
is incorporated by solving for the steady state solution with a finite el-
ement method (FEM) solver, given the system state. In Brinkerhoff
et al. (2016) a flowline model of the SIA is considered with vertically
integrated velocities. Gaussian process priors are used for all unknowns,
and the Metropolis–Hastings algorithm is used to fit the model. The
approach yields convincing results in simulations and a real data set.
In Isaac et al. (2015), numerical methods are presented for solving a
nonlinear Stokes equation boundary value problem for an ice sheet in
Antarctica. The method ultimately uses a low rank approximation to a
covariance matrix for the posterior distribution of a basal parameter field.
Finally, and perhaps most directly related to this research, in Minchew
et al. (2015) interferometric synthetic aperture radar (InSAR) is used to
determine velocity fields at Langjökull and Hofsjökull in early June 2012.
The velocity directions match the surface gradient, but magnitudes do
not appear to coincide with the theoretical predictions of other authors
(likely due to the inappropriate modeling of basal sliding).

22



4.2 Description of Models

The same approach within this work can be used for non-SIA prob-
lems in cryosphere science, and the Bayesian hierarchical model does
not necessitate analytical solutions; the analytical solutions are used for
the evaluation of the particular BHM in the paper based upon the SIA.
However, in general, the biggest difficulty will be in developing a statisti-
cal error-correcting process that appropriately models numerical errors
for an arbitrary scenario, where a numerical solver for a different set of
dynamical equations is used. In the SIA context, we can rely on prior
studies of Bueler et al. (2005) to tell us something about how the numeri-
cal errors will look like in the SIA case – i.e., spatial variation in the scale
of numerical errors between the dome, interior, and margin. This error
pattern will not hold in general for other geometries and systems, and so
either different prior studies must be utilized, or if these don’t exist, the
hierarchical model must be extended to include a more general model for
the error-correcting process (e.g., a spatially varying field for the log of
the scale of numerical errors with a Gaussian process prior).

The main differentiating contribution of this paper is to utilize the
exact analytical solutions from Bueler et al. (2005) to evaluate the BHM
employed. An additional novelty is the derivation and utilization of a
novel finite difference method for solving the SIA PDE that operates
in two spatial dimensions; consequently, the Bayesian model employed
also operates in two spatial dimensions, in addition to time. Finally,
we explicitly model the errors due to a numerical solver with a spatio-
temporal statistical process, which accounts for different scales of spatial
variability within the dome, within the interior, and within the margin of
the glacier, as well as accumulation of numerical errors forward in time.

4.2 Description of Models
4.2.1 Shallow ice approximation

The physics of glaciers is an extensive topic; hence, only the portions
which are most relevant to this paper are described. The reader is pointed
to the comprehensive works by Cuffey and Paterson (2010) and van der
Veen (2013) for further reading on the subject. PDEs for glaciers are
derived from the following considerations. First, glaciers are modeled as
very slowly moving and viscous fluids. By applying the principle of mass
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conservation, the net ice flux moving in or out of an infinitesimal column
of the glacier located at some spatial coordinate, plus the net mass change
due to precipitation or melting, yields the change in the height of the
column over an infinitesimal time interval. Such a heuristic argument
provides a PDE in two dimensions for a glacier, with averaged velocities
in two spatial dimensions. The PDE relates the time derivative of the
thickness of the glacier to the flux and net mass change (i.e., mass bal-
ance). The main assumptions are that ice is isotropic and homogeneous,
and also that longitudinal and transverse stress terms can be ignored,
which is reasonable when the overall thickness of the glacier is small
in comparison to its width. Under these assumptions, the velocity of
the ice is made up of two additive components. The first component of
the velocity is based upon deformation due to gravity, which acts in the
direction of steepest descent of the surface and is a function of the ice
viscosity parameter. The second component of velocity also acts along
the gradient of the glacier surface and is a function of the basal sliding
parameter field. The formulations stem from Glen’s flow law (Glen, 1955,
1958) and Weertman’s sliding relation (Weertman, 1964).

Written in terms of glacial thickness, H(x,y, t), the SIA PDE is:

Ht = �[ūH]x � [v̄H]y + ḃ.

�[ūH]x = �[�C0g(�rgH[H +R]x)H +
2B

n+2
(rga)n�1Hn+1(�rgH[H +R]x)]x

�[v̄H]y = �[�C0g(�rgH[H +R]y)H +
2B

n+2
(rga)n�1Hn+1(�rgH[H +R]y)]y

a =
q
[H +R]2x +[H +R]2y

Here H(x,y, t) is the thickness of the glacier at spatial coordinate (x,y)
and time t, ū is the average velocity in the x direction and v̄ is the
average velocity in the y direction. This model is vertically integrated,
and hence only two spatial dimensions are modeled. R(x,y, t) is the
bedrock elevation which is assumed to be constant in time, so it can
be written as R(x,y); ḃ(x,y, t) is the mass balance field, B and C0g are
physical parameters governing the viscosity and basal sliding; r governs
the mass density of the ice; and finally n is Glen’s flow law constant,
typically set to 3. Initial conditions (i.e., H(x,y,0)) are assumed to be
given, and the boundary condition H � 0 is assumed, just as in Table
2 of Bueler et al. (2005). Additional derivations and details on the SIA
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are covered in a variety of sources, including Fowler and Larson (1978),
Hutter (1982), Hutter (1983), and Flowers et al. (2005).

It is important to make explicit that there are some limitations of this
PDE. Besides ignoring longitudinal and transverse stress terms, the PDE
does not model subglacial hydrology, tunneling systems, jökulhlaups, or
surges, the dynamics of which are believed to contribute to dynamics
of glaciers as a whole. Nonetheless, one hopes these equations may
serve as a first approximation for shallow glacier dynamics. In addition
to dynamics, another important physical consideration of glaciers is
the relationship between temperature and viscosity, which follows an
Arrhenius relationship (Cuffey and Paterson, 2010). However, in the
context of Icelandic glaciers like Langjökull, this is not consequential
since they are temperate (i.e., their temperature is at melting point).

4.2.2 Bayesian hierarchical model

In this section, we provide an overview and set–up of the BHM employed
in addition to notation for the key parameters, both statistical and physical.
The reader is referred, however, to Table 4.1 for a summary of the model
parameters utilized and a schematic illustrating the BHM in Figure 4.5.
We use index i to refer to spatial coordinates (for this model space is
assumed to be discretized into squares) and index j to refer to time
coordinates. Furthermore, the notation S., j refers to the surface elevation
at all spatial coordinates for a particular time index j. Keeping in line
with the Bayesian hierarchical modeling framework from Wikle (2016)
and Cressie and Wikle (2011), we delineate the models used for the data
level, process level, and parameter level. The primary inferential goals
are to infer physical process parameters (i.e., ice viscosity and basal
sliding) and to predict the height of the glacier at various time points
and spatial locations besides those that have been observed (aligned to
a grid for which we have bedrock and initial surface height conditions).
Within the Bayesian framework, all inferential goals may be achieved
by determining the posterior distribution of these quantities (i.e., their
probability distributions conditioned on observed data).

At the data level, the observed height for each grid point is modeled
with a normal distribution (denoted with the notation N(µ ,t2), where
µ is the mean and t2 is the variance), where the mean is the physical
process value, and the variance is assumed to be known. In particular
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it is assumed that Yi j ⇠ N(Si j,s2), where Yi j is the observed surface
elevation of the glacier at location i and time index j, Si j is the latent (i.e.,
unobserved) surface elevation at location i and time index j (equivalent
to sum of the glacier thickness and bedrock level), and s2 is the variance
of the measurement errors for the surface height observations, a fixed and
known quantity. The number of observed spatial indices is assumed to
be much smaller than the number of total spatial indices modeled at the
latent level.

At the process level, S., j = f (S0,B, ḃ,C0g, j)+Xj, where f is a nu-
merical solution to the SIA at time index j, and Xj is an error-correcting
process at time index j. A finite difference version of the SIA PDE is
described in full detail in Appendix A. In principle, however, the function
f may be derived from other numerical solvers. Additionally, it should
be made clear that f is the output of a numerical solver for the underlying
dynamics Also, S0 denotes the glacier surface elevation values at the ini-
tial time point, which are assumed to be known; e.g., with high precision
light detection and ranging (LIDAR) initial conditions provided by the
Institute of Earth Sciences at the University of Iceland. ḃ., j is the mass
balance field for time index j at all the grid points, which is assumed to
be fixed and known for the purpose of this analysis. B is the ice viscosity
parameter and C0g is the basal sliding field, which itself is parametrized
with µmax as in equation (16) of Bueler et al. (2005) and, furthermore, is
static in time. For compact notation, q is used to refer to B in test cases
B-D and (B,µmax) jointly in test case E.

Since we believe numerical errors will accumulate over time (Bueler
et al., 2005), we define the error-correcting process as follows: Xj+1 =
Xj + e j+1, where e j+1 is MV N(0,S). (MVN stands for multivariate nor-
mal, and the first argument is the mean and the second is the covariance.)
S is block diagonal, with three blocks for indices corresponding to the
margin, interior, and dome of the glacier (the margin is defined as the
last grid squares before the glacier drops to 0 thickness, and the dome
is the origin grid square), respectively. Each block is defined from a
squared exponential kernel with the same length scale, denoted by f , but
distinct marginal variances, s2

interior, s2
margin and s2

dome. The motivation
for using different marginal variance parameters is to account for the
widely different errors exhibited at the dome, interior, and margin, as
is demonstrated by Bueler et al. (2005) and Jarosch et al. (2013). This
error-correcting process leads to a tractable likelihood function, as is

26



4.2 Description of Models

shown in Appendix B.
Finally, at the parameter level, B and µmax are endowed with trun-

cated normal distributions as priors. B has a normal prior with mean
3.5⇥ 10�24, standard deviation 3⇥ 10�24, truncated to have support
[1,70]⇥10�25. µmax has a normal prior with mean 3⇥10�11 and stan-
dard deviation 1⇥10�11, truncated to have support [1,70]⇥10�12. (Units
are s�1Pa�3 for ice viscosity and Pa�1ms�1 for basal sliding.) The prior
supports for B and µmax provide plausible values for temperate ice caps.

It is prudent to discuss the motivations and justifications of the various
modeling choices employed in the model previously delineated. The data
level is assumed to have independent normal errors with fixed variance;
this is justified because of the uniformity of the measuring technology
used from site to site (e.g., digital GPS) and symmetry of errors. On
the other hand, the precise functional form of the data level is chosen
somewhat arbitrarily as a Gaussian, which affords one analytical conve-
nience. Similarly, the error-correcting process at the process level uses
a zero mean Gaussian process with a parameterized covariance kernel
(e.g., squared exponential), mostly as an analytically manageable way to
induce spatial correlation in the error-correcting process. Spatial correla-
tion in numerical errors has been demonstrated, for instance, in Bueler
et al. (2005).

Moreover, it is appropriate to consider potential variations of this
model for slightly different scenarios; naturally, these could fall into: al-
ternate choices of covariance kernel at the process level (e.g., Matérn, to
allow for a less smooth error-correcting process) and varying errors at the
data level, to account for compaction or densification that occurs between
seasons. For the latter, a suggestion is to use conjugate inverse-gamma
distributions for the variances, so that sampling can be accomplished with
a Gibbs sampler. Additionally, as aforementioned, one can conceivably
use any numerical solver for a PDE at the process level. Future variations
may consider utilizing non-zero mean Gaussian processes for the error
correction process, which may be more computationally costly yet per-
haps more realistic. Generally, this model can be adapted to any science
or engineering system that is driven by physically meaningful parameters,
whose dynamics are solved by noisy numerical methods, and for which
noisy and continuous data are collected with well probed errors.

The mathematical details for how to do posterior computation within
this model are given in Appendix B, which includes a derivation of
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Parameter Name Symbol
Time index j
Spatial index i
All spatial points for a time index ., j
ice viscosity B
Basal sliding C0g
Max basal sliding µmax
Physical parameters q
Measurement error s
Error-correcting covariance matrix S
Error-correcting parameters (sdome,sinterior,smargin,f)
Mass balance field ḃ., j
Initial surface elevation S0

Table 4.1. A summary of main parameters and notation utilized.

an approximation to the log-likelihood that allows for computational
efficiency. In summary, we compute the posterior of physical parameters
directly on a grid since there are at most two physical parameters, and
we use samples from the posterior distribution of physical parameters to
generate predictions for glacier thickness in the future.

4.3 Experiments to assess the Bayesian
hierarchical model

4.3.1 Analytical solutions

In Bueler et al. (2005), analytical solutions to the SIA are presented as
benchmarks for numerical solvers of the SIA. As opposed to using other
benchmarks such as the EISMINT experiment (Payne et al., 2000), which
itself is based on numerical modeling and hence subject to numerical
errors, the benchmark solutions provided in this work can be treated as
ground truth to compare to. (This is in the sense that these are exact
solutions of the SIA, but it must be stressed that the SIA is an approxima-
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 θ Parameter Level: Ice viscosity and basal sliding.

f(θ,j,S_0,b) Numerical solver for the SIA PDE.

        t_0           t_0+△t   t_0+2△t       t_0+3△t   t_0+4△t   t_0+5△t   ……         t_0+T△t

        t_0           t_0+△t   t_0+2△t       t_0+3△t   t_0+4△t   t_0+5△t   ……         t_0+T△t

X_j, Σ Error correcting statistical model.

Time

Time

S_j Physical Process Level: Glacier thickness values at discrete time points.

        Y_0                                                                                   Y_5         …..            Y_T

Y, σ Data Level: Glacier thickness at regularly spaced time intervals and sparsely sampled and fixed spatial locations.

-

Figure 4.5. Schematic of the physical-statistical BHM that has been
constructed based on the SIA PDE. The main parameters and variables
for each module of the physical-statistical model are highlighted in red.
The main levels of a physical-statistical model shown in Figure 4.4 are
displayed here, along with the parameters and variables describing each
level.

tion of the true physical dynamics governing a glacier.) These analytical
solutions serve as a basis for simulating data sets to validate the Bayesian
hierarchical approaches developed in this paper. In other words, the exact
analytical solutions provide the latent process in the BHM, conditioning
on given initial conditions and mass balance functions. Hence to simulate
data from the BHM, one can bypass the need to numerically solve the
PDE and introduce errors.

We make use of four analytical solutions from Bueler et al. (2005)
that are summarized here, but the reader is referred to the original paper
for the exact mathematical formulation and derivation of these analytical
solutions. All of the analytical solutions assume a flat bedrock. Test
case B includes no mass balance or basal sliding, and, consequently, the
motion of the glacier is only attributable to deformation due to gravity.
Test case C makes use of a mass balance field that is inversely proportional
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to time and directly proportional to thickness, but there is no basal sliding
field modeled. Similarly, test case D utilizes a mass balance field with
no basal sliding field modeled. In distinction from test case C, however,
the mass balance field of test case D is such that the overall solution
for glacial thickness is periodic in time. Finally, in contrast to the other
tests, test case E has a spatially varying basal sliding field, yet the overall
solution is static in time. Note that test A was not utilized in this study
because it is a steady state solution without a varying mass balance or
basal sliding field.

4.3.2 Simulation study test details

Conditions of the simulation study have been chosen as to closely emulate
the data collected at Langjökull ice cap by the Institute of Earth Sciences
at the University of Iceland (IES-UI). In particular, 20 years of data are
assumed, which is comparable to data provided by the IES. 25 fixed
measurement sites are used for bi-annual surface elevation measurements,
which are geographically distributed on the glacier in a manner that is
comparable to the real data provided by the IES-UI. Figure 4.6 illustrates
the locations of these measurement sites on the glacier. Surface elevation
measurements for these sites are taken twice a year (i.e., for summer and
winter mass balance measurements). The surface elevation measurements
are generated by adding Gaussian noise (zero mean, unit variance) to
the analytical solutions at the spatio-temporal coordinates of the fixed
measurement sites. The choice of unit variance is larger than the errors
produced by digital-GPS measurements. Remaining physical parameters
were chosen using the values from Bueler et al. (2005) Table 2 to allow
for comparisons to this work and the EISMINT I experiment (Payne et al.,
2000).

4.4 Results
Validation and diagnostics of the BHM were achieved through a combi-
nation of an assessment of posterior probability intervals, a test of the
predictive error of thickness values 100 years from the initial time point
t0, and a comparison between observed and expected values for numerical
errors based on the error-correcting process utilized. As is discussed in
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Figure 4.6. An illustration marking the 25 measurement sites on the
glacier. This is a top level view of the glacier, where the blue points
indicate the glacier, the red points indicate the measurement locations,
and the black points indicate locations surrounding the glacier with no
glacial thickness.

more detail below, these assessments suggest that the BHM is useful for
inference of posterior probability distributions for physical parameters,
prediction of future glacial thickness values on the order of 100 years,
and the modeling of numerical errors at the margin, interior, and dome of
the glacier.

Table 4.2 contains posterior credibility intervals for ice viscosity in
test cases B-D. A 3-sd credibility interval was computed with mean +/- 3
standard deviations of the posterior samples. In all of these test cases, the
3-sd credibility interval covers the actual ice viscosity. Furthermore, as
is apparent in Table 4.3, the predictive error, relative to thickness values
on the order of a kilometer, appears be small overall, particularly at the
interior; predictive error is the root mean squared difference between
predictions and the exact analytical values for each of the test cases.
Note that test E was not included with the predictive checks since it is
static in time. Consistent with Bueler et al. (2005) and Jarosch et al.
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(2013), however, errors are greatest at the margin and dome of the glacier
(evident in Figure 4.8). Nonetheless, the predictive distributions cover
the actual thicknesses even at these extremes. This illustrates the utility
of the BHM for accounting for errors induced by the numerical solution
of the SIA. Additionally, an illustration comparing the posterior and prior
distributions for test case D is shown in Figure 4.9.

To investigate the frequentist properties of the posterior probability
distribution for ice viscosity (i.e., its performance under repeated sam-
pling of data), 500 simulations were completed under repeated sampling
of the surface elevation data at the 25 fixed measurement sites for test
cases B-D. The coverage of ice viscosity for a 3-sd interval was computed
for each of the simulations, where coverage for a given interval is binary;
either the actual parameter value is in the interval or it is not. For test
case B, in 499 of 500 simulations the 3-sd credibility interval covered the
actual value of ice viscosity. In test cases C and D, the 3-sd credibility
interval covered the actual value of ice viscosity in all of the simulations.
This suggests that the frequentist coverage probability of the credibility
interval is at least 99 percent.

For test case E, one assumes that the field is described by parameter-
ized equation (16) of Bueler et al. (2005). That is, in polar coordinates
with radius r and angle Q:

C0g(r,Q) =
µmax4(r� r1)(r2 � r)4(Q�q1)(q2 �Q)

(r2 � r1)2(q2 �q1)2

for q1 <Q< q2 and r1 < r < r2, and C0g = 0 otherwise. In addition to ice
viscosity, the inferential object of interest is the scale parameter µmax. The
3-sd posterior credibility interval for B is [1,43] in units of 10�25s�1Pa�3,
and for µmax it is [1,50] in units of 10�12Pa�1ms�1. The actual values for
B and µmax are 32⇥10�25s�1Pa�3 and 25⇥10�12s�1Pa�1ms�1, respec-
tively. Hence, the credibility intervals cover both parameters. A figure
illustrating the posterior distribution of µmax is given in the supplemental
materials.

While the credibility intervals achieved coverage of the actual values
of the parameters, it was noticed that the posterior distribution for physi-
cal parameters and predictions are biased. Brynjarsdóttir and O’Hagan
(2014) exhibit the same phenomenon in a simple physical system with a
single physical parameter, and they demonstrate that the bias of a physi-
cal parameter posterior distribution reduces as better prior information
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is encoded to model the difference between the output of a computer
simulator of a physical system and the actual physical process values (i.e.,
what we have termed as an error-correcting process). To demonstrate
that this also holds in the BHM presented in this paper, we consider the
following comparison. To assign prior information to the error-correcting
process, we consider a discrete parameter set for s2

interior, s2
margin and

s2
dome: {.1,1,10,100} in units of m2, which corresponds to different or-

ders of magnitude for variability. In one case, we ignore prior information
from Bueler et al. (2005) and put equal probability mass on the parameter
space for these parameters. In the second case, we encode more realistic
prior information into the scales of errors at the three regions: equal mass
on 10 and 100 at the margin, equal mass on .1 and 1 at the interior, and
equal mass at 1 and 10 at the dome (all units are m2). In both cases,
the parameter f is fixed at 70 km to place emphasis on the scales of
error. The results of inferring the posterior distribution for ice viscosity B
are shown in Figure 4.10. Consistent with Brynjarsdóttir and O’Hagan
(2014), the posterior distribution of the physical parameter B is much
less biased when prior information is encoded into the error-correcting
process.

To assess how the posterior distribution for ice viscosity evolves
under different sampling plans of the data, we conducted a series of
simulations in test case D under varying sampling periods. In particular,
we considered data samples once every 10 years, once every 5 years,
once a year, and twice a year; the resulting posteriors for ice viscosity
are in Figure 4.11. The general pattern is that the bias of the posterior
distributions reduces as the period gets shorter, although the posterior
becomes more diffuse. The result that some posterior uncertainty does
not go away with more collected data is also consistent with the results
in Brynjarsdóttir and O’Hagan (2014). The particular period we chose in
this analysis (data collected twice a year) was meant to model how the
UI-IES glaciology team collects data, that is, twice a year due to summer
and winter mass balance measurements.

To assess the accumulating error-correcting process model, we es-
timated the marginal variances of the error-correcting process for each
of the time points with observed data in test case B, by examining the
residuals formed by the difference between the numerical solver and the
observed data. According to the model, the standard deviation of these
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residuals at the interior of the glacier should grow as
q

s2 + ts2
interior,

where t is the number of time steps (and likewise at the dome and margin).
Figure 4.12 shows a match between observed and expected in this regard,
and, in particular, the 99 percent confidence bands appear to cover the
expected variability as time progresses. Also apparent from this figure
is that, as time progresses, the errors at the margin, dome, and interior
contribute more error than measurement error, which is on the order of 1
meter. Moreover, this is also evident in Table 4.4, since after 200 time
steps from t0 (i.e., 20 years), the marginal variances will be 200s2

interior,
200s2

margin, and 200s2
dome based on the accumulating errors model; all of

these values exceed 1, the measurement variance.

Figure 4.7. Grid map used to interpret the following box-plots in Figure
4.8. Eight randomly chosen grid points are selected for testing
predictions; these are not the same as the measurement locations. Only
one quadrant of the glacier is shown due to symmetry as is done in
Figures 9,10, and 12 of Bueler et al. (2005), and the width of each cell is
105m. Additionally, the red squares indicate locations at or close to the
margin, the blue squares indicate locations that are between the dome
and margin of the glacier, and the black squares indicate locations at or
close to the dome of the glacier. Moreover, glacier grid squares with
non-zero thickness are shaded in grey, as to indicate the glacier location.
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Figure 4.8. Thickness prediction samples 100 years from t0 for test case
B (i.e., no mass balance field or basal sliding). Triangles indicate the
actual thickness values from the analytical solution. The first set of plots
are close to the margin (red squares of Figure 4.7), the second set of
plots are between the dome and margin of the glacier (blue squares of
Figure 4.7), and the final set of plots are toward the dome of the glacier
(black squares of Figure 4.7). Refer to Figure 4.7 for a grid map to
spatially reference each of the box-plots. As can be expected according
to Bueler et al. (2005), largest errors occur at the dome and the margin.
Note on interpretation: the middle of each box is the median, the
interquartile range is denoted by the box, and 1.5 of the interquartile
range beyond the first and third quartile is illustrated with the whiskers.
Those points that are more than 1.5 of the interquartile range beyond the
first and third quartiles are outliers, and they are denoted with circles.
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Figure 4.9. Comparison of posterior and prior distributions of ice
viscosity for test case D (i.e., mass balance field producing a periodic
SIA solution).
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Figure 4.10. A comparison of posteriors under strong and weak prior
information for the error-correcting process in test case D (i.e., mass
balance field producing a periodic SIA solution); prior information for
the error-correcting process leads to a less biased posterior, though with
slightly more posterior uncertainty.

37



4 Paper 1

Figure 4.11. A comparison of posteriors in test case D (i.e., mass
balance field producing a periodic SIA solution) under different
sampling periods: data sampled once every 10 years, every 5 years, once
a year, and twice a year. The general trend is that the posterior tends to
become less biased as the period of sampling decreases, although the
posterior becomes more diffuse. The University of Iceland Institute of
Earth Sciences glaciology team takes measurements twice a year for
summer and winter mass balance measurements.
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Figure 4.12. An illustration comparing the expected variability of the
error-correcting process (as per the Bayesian hierarchical model) to the
observed variability of residuals at the interior, margin, and dome for
test case B (i.e., no mass balance field or basal sliding). These residuals
are the differences between the observed data and the numerical
solution.
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Test Case Actual Viscosity 3-sd Credibility Interval
Bueler B 32 [7,34]
Bueler C 32 [5,33]
Bueler D 32 [11,42]

Units 10�25 s�1Pa�3 10�25 s�1Pa�3

Table 4.2. Ice viscosity posterior intervals

Test Case Dome RMSE Interior RMSE Margin RMSE
Bueler B 66 20 75
Bueler C 76 22 82
Bueler D 1.4 17 49

Units m m m

Table 4.3. Results of prediction at t0 +100 years. RMSE stands for root
mean squared error. This is calculated by taking the average of the
squared difference between the actual glacial thickness values and
predicted glacial thickness values, and then taking the square root.

Test Case s2
dome s2

interior s2
margin f

Bueler B 1 .1 15 71
Bueler C 1 .15 15 64
Bueler D .1 .1 10 62
Bueler E .1 .1 10 60

Units sq. m sq. m sq. m km

Table 4.4. Error-correcting process hyper-parameters; s2
dome is the

error-correcting process variance at the dome, s2
interior is the

error-correcting process variance at the interior, s2
margin is the

error-correcting process variance at the margin, and f is the length
scale parameter.
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4.5 Summary, discussion, and future work
The primary contribution of this work has been to construct a BHM for
glacier flow based on the SIA that operates in two spatial dimensions and
time, which successfully models numerical errors induced by a numerical
solver that accumulate with time and vary spatially. This BHM leads to
full posterior probability distributions for physical parameters as well as
a principled method for making predictions that takes into account both
numerical errors and uncertainty in key physical parameters. Furthermore,
the BHM operates in two spatial dimensions and time, which, to our
knowledge, is new to the field of glaciology. An additional contribution
is the derivation of a novel finite difference method for solving the SIA.
When tested using simulated data sets based on analytical solutions
to the SIA from Bueler et al. (2005), the results herein indicate that
our approach is able to infer meaningful probability distributions for
glacial parameters, and, furthermore, this approach makes probabilistic
predictions for glacial thickness that adequately account for the error
induced by using a numerical solver of the SIA. A future goal is to create
an R package for fitting a generalized version of the model used within
this work, where the function f (.) is provided by the user. This will allow
glaciologists to extend the modeling approach we have developed to other
similar scenarios in which the physical dynamics are more complex than
the SIA. An additional scenario for which this package can be useful is
when the numerical method is not a finite difference method; e.g., a FEM.
To this end, we will attempt to utilize emulator inference (Hooten et al.,
2011); this will be crucial to ensure that the methodology scales well
computationally, since each posterior sample requires a forward PDE
solve. Finally, and perhaps most importantly, future work will involve
the application of the modeling and methodologies developed within
this paper to real data collected by the IES-UI, which includes bedrock
elevation and mass balance measurements.

4.6 Appendix A: finite difference method
Here a finite difference scheme is derived for the SIA PDE. The overar-
ching strategy in developing this finite discretization scheme is to take
a second-order Taylor expansion for H(x,y, t) with x,y fixed, and then
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equate the resultant time derivatives, Ht and Htt , to functions of spatial
derivatives by using the original SIA PDE. That is, one starts with the ap-
proximation H(x,y, t +Dt) ⇡ H(x,y, t)+Ht(x,y, t)Dt +Htt(x,y, t)Dt2/2
and uses the first equation of Section 4.2.1 to write Ht and Htt in terms of
spatial derivatives. Finally, central differences in space are substituted
for the spatial derivatives. This finite difference scheme is motivated
by the Lax-Wendroff (Hudson, 1998) method, which is generally better
than finite difference methods that use only a single order Taylor expan-
sion (indeed, in the advection-diffusion equation such methods may be
unconditionally unstable).

In the following derivations note that the subscripts mean ‘derivative
with respect to’ (e.g., Ht means derivative of H with respect to t).

Ht = �[ūH]x � [v̄H]y + ḃ,
Htt = �[ūH]xt � [v̄H]yt + b̈.

Now we solve for these derivatives in terms of spatial derivatives
in H(x,y, t), the glacier thickness, and R(x,y), the bedrock level. The
derivation makes repeated use of the differentiation rule for products,
the chain rule for differentiation, and equality of mixed partials (e.g.,
Hxt = Htx).

�[ūH]x = �C0grgT1 +
2B

n+2
(rg)nT2

T1 = [2HHx(Hx +Rx)+H2(Hxx +Rxx)]

T2 = T21 +T22

T21 = [an�1]x[Hn+2Hx +Hn+2Rx]

T22 = an�1[(n+2)Hn+1H2
x +(n+2)Hn+1HxRx +Hn+2Hxx +Hn+2Rxx]

By symmetry in x and y, �[v̄H]y can be analogously derived:

�[v̄H]y = �C0grgT3 +
2B

n+2
(rg)nT4

T3 = [2HHy(Hy +Ry)+H2(Hyy +Ryy)]

T4 = T41 +T42

T41 = [an�1]y[Hn+2Hy +Hn+2Ry]

T42 = an�1[(n+2)Hn+1H2
y +(n+2)Hn+1HyRy +Hn+2Hyy +Hn+2Ryy]
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Derivatives [an�1]x and [an�1]y:

[an�1]x =
n�1

2
(S2

x +S2
y)

n�3
2 (2SxSxx +2SySyx)

[an�1]y =
n�1

2
(S2

x +S2
y)

n�3
2 (2SySyy +2SxSxy)

Now we derive �[ūH]xt :

�[ūH]xt = �C0grgT1t +
2B

n+2
(rg)nT2

t

T1t = [2HtH2
x +4HHxHxt +2HHxtRx +2HHxRxt +2HtHxRx +T1 ⇤+T2⇤]

T2⇤ = 2HHtHxx +H2Hxxt

T1⇤ = 2HHtRxx +H2Rxxt

T2t = [T5 +T6 +T7 +T8]

T5 = [an�1]xtHn+2Hx

T6 = [an�1]xtHn+2Rx

T7 = [an�1]x[(n+2)Hn+1HtHx +Hn+2Hxt +(n+2)Hn+1HtRx +Hn+2Rxt ]

T8 = [an�1]xtHn+2Hx +an�1
x (n+2)Hn+1HtHx +an�1

x Hn+2Hxt

+ [an�1]xtHn+2Rx +an�1
x (n+2)Hn+1HtRx +an�1

x Hn+2Rxt

+ [an�1]t(n+2)H(n+1)H2
x +an�1(n+2)(n+1)HnHtH2

x

+ an�1(n+2)Hn+12HxHxt

+ [an�1]t(n+2)Hn+1HxRx

+ an�1(n+2)(n+1)HnHtHxRx

+ an�1(n+2)Hn+1HxtRx

+ an�1(n+2)Hn+1HxRxt

+ [an�1]tHn+2Hxx

+ an�1(n+2)Hn+1HtHxx

+ an�1Hn+2Hxxt

+ [an�1]tHn+2Rxx

+ an�1(n+2)Hn+1HtRxx

+ an�1Hn+2Rxxt

Note that terms with a time derivative of bedrock such as Rxt can be
set to 0 since R is assumed to be static in time. However, we keep the
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time derivatives for R in the above equation for full generality in case a
scenario is revisited where this does not hold. Next we derive [an�1]t :

[an�1]t =
n�1

2
(S2

x +S2
y)

n�3
2 (2SxSxt +2SySyt)

Next we derive [an�1]tx:

[an�1]tx =
n�1

2
[
n�3

2
(S2

x +S2
y)

n�5
2 (2SxSxx +2SySyx)(2SxSxt +2SySyt)

+ (S2
x +S2

y)
n�3

2 (2SyxSyt +2SySytx +2SxxSxt +2SxSxtx)]

Next we derive [an�1]ty:

[an�1]ty =
n�1

2
[
n�3

2
(S2

x +S2
y)

n�5
2 (2SxSxy +2SySyy)(2SxSxt +2SySyt)

+ (S2
x +S2

y)
n�3

2 (2SxySxt +2SxSxty +2SyySyt +2SySyty)]

Note that Stx = Rtx +Htx = Htx since R is assumed to be fixed as a
function of t. Note that the same argument holds for other derivatives of
S with respect to t. Next we derive Htx,Htxx,Hty,Htyy,Htyx:

Htx = �[ūH]xx � [v̄H]yx + ḃtx

Htxx = �[ūH]xxx � [v̄H]yxx + ḃtxx

Hty = �[ūH]xy � [v̄H]yy + ḃty

Htyy = �[ūH]xyy � [v̄H]yyy + ḃtyy

Htyx = �[ūH]xxy � [v̄H]yyx + ḃtyx

Hence, these partial derivatives allow us to substitute purely spatial
derivatives into the forward in time approximation for H. Without loss
of generality, we use a central difference approximation for all spatial
derivatives. Furthermore, we used Dt = .1 years and Dx = Dy = 105 m for
the analysis in this paper. In total, 441 grid squares were modeled (i.e.,
21 by 21) with the dome grid square at the origin. While a coarse grid
was chosen for computational convenience, it is expected that numerical
errors will go to zero as the grid width goes to zero, as is demonstrated
both by Bueler et al. (2005) and Jarosch et al. (2013).
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4.7 Appendix B: model fitting
In the following subsections, we go through the key details regarding
Bayesian computation for the model used in this work. Assume n total
grid points are modeled, of which m << n are observed. Let Xj 2 Rn

be the error-correcting process at time j, S j 2 Rn be the latent glacier
surface values at time j, f (q , j) 2 Rn be shorthand for the output of the
numerical solver at time point j, and e j be an independent and identically
distributed (IID) multivariate normal noise term at time j with mean 0
and covariance matrix S. MVN stands for multivariate normal, and the
first argument is the mean and the second is the covariance.) Furthermore,
assume that data are collected regularly at every kth time point, such
that one observes Yk,Y2k, ...,YNk 2Rm, and the corresponding observation
error Zk,Z2k, ...ZNk is IID MV N(0,s2I). For convenience, we denote Nk
as T . Finally, let A 2 Rm⇥n be a matrix which selects the grid squares
of the latent process S that are observed; that is, its rows are unit basis
vectors corresponding to those indices that are observed.

4.7.1 Calculating the likelihood p(Yk, ...,YT |q)
In this subsection, we derive both the likelihood of the observed data:
p(Yk, ...,YT |q) and an approximation to the likelihood.

Though Section 4.2.2 specifies the BHM in greater detail, the process
and data levels of the BHM (i.e., conditioning on q ) are concisely written
as follows.

Xj = Xj�1 + e j

S j = f (q , j)+Xj

Yck = ASck +Zck

Assume j 2 1,2, ...T and c 2 1,2, ..N; hence there are N total spatial
vectors observed with a period of length k. Furthermore, X1 is marginally
MV N(0,S). That is, the process level vectors, S j, are modeled condi-
tional on the parameter level and the error-correcting process. The data
level vectors, Yck, are generated conditional on the process level Sck.
Throughout the following, we condition on q being fixed.
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4.7.2 The exact likelihood

Conditional on q , the distribution of (Yk, ...,YT ), viewed as one long
random vector, is multivariate normal. Also, conditional on q , the
mean of (Yk, ...,YT ) is (A f (q ,k), ..A f (q ,T )) because both (Xk, ...,XT )
and (Zk, ...,ZT ) have mean 0. It suffices to thus derive the covariance ma-
trix for (Yk, ...,YT ) conditional on q . To do this, we note that Var(Yck) =
Var(ASck +Zck) =Var(ASck)+Var(Zck) = [A(ckS)A|]+s2I. Addition-
ally, for a < b:

Cov(Ya,Yb) = Cov(ASa +Za,ASb +Zb)

= Cov(ASa,ASb)

= Cov(A[ f (q ,a)+Xa],A[ f (q ,b)+Xb])

= Cov(AXa,AXb)

= Var(AXa)

= [A(aS)A|]

Therefore, the covariance matrix for the observed data can be written
as M ⌦ (ASA|)+s2I, where Mi j = kmin(i, j) and M 2 RN⇥N . This is
a useful matrix representation because the inverse of M is band-limited
and sparse, for which there exist efficient computationally efficient linear
algebraic routines (Rue, 2001).

4.7.3 An approximation to the likelihood

The joint distribution p(Yk, ...,YT |q) can be written as p(Yk|q)p(Y2k|Yk,q)
...p(YT |Yk, ..,Y(N�1)k,q). Since we expect that the data level errors
are quite small (on the order of 1m) in comparison to the overall sur-
face elevation measurements (on the order of 1 km), we can approxi-
mate p(S(c�1)k|Yk, ..,Y(c�1)k,q) with p(S(c�1)k|Y(c�1)k,q). Consequently,
p(Yck|Yk, ..,Y(c�1)k,q) will be close to p(Yck|Y(c�1)k,q). From the above
recursive relationship, we can write:

Yck = Y(c�1)k +A[ f (q ,ck)� f (q ,(c�1)k)]+Zck �Z(c�1)k +
ck

Â
j=(c�1)k+1

Ae j

This expression motivates approximating p(Yck|Yk, ..,Y(c�1)k,q) as MVN
distribution with mean Y(c�1)k +A[ f (q ,ck)� f (q ,(c�1)k)] and covari-
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ance matrix A(kS)A|+2s2I. A similar expression shows that p(Yk) is
multivariate normal with mean A f (q ,k) and covariance matrix A(kS)A|+
s2I. Nonetheless, we must be clear: p(Yck|Y(c�1)k,q) does not exactly
follow a MVN with mean Y(c�1)k +A[ f (q ,ck)� f (q ,(c�1)k)] and co-
variance matrix A(kS)A|+2s2I; this is because Z(c�1)k and Y(c�1)k are
dependent. A simple example illustrating this approximation is presented
in the supplemental materials.

4.7.4 Posterior computation

Posterior inference is accomplished with grid sampling (Gelman et al.,
2013); this approach directly computes the posterior distribution,
p(q |Yk, ...,YT ) of the parameter, proportional to p(Yk, ...,YT |q)p(q), on
a grid of plausible values. The likelihood is derived in the previous
subsection. Parameters for the error-correcting process are selected using
knowledge elicited from the studies of Bueler et al. (2005). To verify
the sensitivity of grid sampling to the grid width, three grid widths for B
are considered: .25, .50, and 1, and the grid’s range is from [1,70] (all
in units of 10�25 s�1Pa�3). The summary statistics for generating 106

posterior samples from more to less fine (.25, .50,1) are given below:

• Min: (5.25,5.00,6.00)

• 1st Quartile: (23.8,23.5,24.0)

• Median: (27.0,26.5, 27.0)

• Mean: (27.1,26.7,27.1)

• 3rd Quartile: (30.5,30.0,30.0)

• Max: (51.50,49.0,51.0)

The similarity of summary statistics across grid widths indicates that the
posterior samples are not very sensitive to grid width; a grid width of .50
was used for the analyses within. Moreover, the posterior samples in this
check were generated for test case D (i.e., mass balance field producing a
periodic solution to the SIA).
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4.7.5 Predictions of glacial surface elevation

In this section, we give details for how to make predictions under the
proposed Bayesian model. Denote STend 2 Rn for future glacier elevation
values we want to make a prediction for at time point Tend. Our goal
is to approximate the posterior predictive distribution p(STend |Yk, ...YT ).
To make this computationally simple, our first assumption (as in the
computation of the likelihood) is to suggest that p(ST |Yk, ...YT ,q) is
approximately equivalent to p(ST |YT ,q). This is because relative to the
overall glacier surface elevation values (an average of about 2000 m), the
measurement errors are small, on the order of 1 m. Moreover, based on the
model specified above, we know that STend = XT +ÂTend

j=T+1 e j+ f (q ,Tend).
This suggests the following iterative procedure to generate a posterior
sample for the prediction of STend: for each independent sample ql from
p(q |Yk, ...,YT ), generate a sample from a multivariate normal whose mean
is 0 and covariance given by (Tend �T )S, add the sample to f (ql,Tend),
and then add this sum to a sample from p(XT |q = ql,YT ).

We must then determine how to sample from the distribution of
p(XT |q = ql,YT ). Let XTobs 2 Rm be a subvector of XT corresponding
to the indices that are observed at the data level, and XTpred 2 Rn�m

be a subvector of XT corresponding to unobserved indices. The dis-
tribution for p(XTobs|q ,YT ) is multivariate normal due to conjugacy.
The precision, denoted by Qobs, is s�2I + [A(T S)A|]�1. The mean,
denoted by µobs, is Q�1

obs(s
�2IYT + [A(T S)A|]�1A f (q ,T ))�A f (q ,T ).

p(XTpred|XTobs,q ,YT ) is multivariate normal, whose mean and variance
can be derived with the well-known conditional multivariate normal for-
mula, as in Theorem 2.44 of Wasserman (2010). That is, the mean is
T Spred,obsQobs and the variance is T Spred,pred �T Spred,obsQobsT Sobs,pred.
Here, Spred,obs is the submatrix of S that contains the rows of S that corre-
spond to the indices that are to be predicted, and the columns correspond
to the indices which are observed. Sobs,pred is analogously defined.
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A hierarchical spatio-temporal statistical model motivated by glaciol-

ogy

Gopalan, G., Hrafnkelsson, B., Wikle, C.K., Rue, H., Aðalgeirsdóttir,
G., Jarosch, A. H., and Pálsson, F.: A Hierarchical Spatio-Temporal
Statistical Model Motivated by Glaciology. Published in the Journal of
Agricultural, Biological, and Environmental Statistics, 2019. Winner of
the 2019 American Statistical Association (ASA) Section on Bayesian
Statistical Science (SBSS) Laplace Award.

Abstract: In this paper, we extend and analyze a Bayesian hierarchi-
cal spatio-temporal model for physical systems. A novelty is to model
the discrepancy between the output of a computer simulator for a phys-
ical process and the actual process values with a multivariate random
walk. For computational efficiency, linear algebra for bandwidth-limited
matrices is utilized, and first-order emulator inference allows for the fast
emulation of a numerical partial differential equation (PDE) solver. A
test scenario from a physical system motivated by glaciology is used
to examine the speed and accuracy of the computational methods used,
in addition to the viability of modeling assumptions. We conclude by
discussing how the model and associated methodology can be applied in
other physical contexts besides glaciology.

5.1 Introduction
Scientists and engineers often study a physical system with the goal of
making spatio-temporal predictions (e.g., temperature or glacier thick-
ness) and inferring unknown quantities governing the system (e.g., atmo-
spheric density or ice viscosity). This system’s dynamics can often be
phrased in terms of spatio-temporal partial differential equations (PDEs)
that are based on approximations. The scientist or engineer may also be
able to simulate the physical system with a computer simulator, such as a
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numerical PDE solver, which is subject to imperfections (e.g., numeri-
cal error). Moreover, the scientific constants entering into the system’s
dynamical equations such as density, friction, or viscosity may not be
known precisely, but their range can be constrained to some set of plausi-
ble values. Additionally field data, though potentially scarce and noisy,
can be incorporated into the analysis.

Such scenarios can be modeled with a variant of a Bayesian hier-
archical spatio-temporal model that was introduced in Gopalan et al.
(2018) for glacial dynamics, if considered more generally. We delineate
three methods to make posterior inference efficient: The first is to uti-
lize bandwidth-limited linear-algebraic routines for likelihood evaluation
(Rue, 2001), the second is to utilize an embarrassingly parallel approx-
imation to the likelihood, and the third is to use first-order emulators
(Hooten et al., 2011) for speeding up computer simulators. Though our
modeling and numerical results are still within a glaciology context, we
conclude with a discussion of how the model can be applied to other phys-
ical scenarios. Before introducing the Bayesian hierarchical model and
associated methodology for computationally efficient posterior inference,
it is appropriate to summarize relevant statistical literature developed
over the last two decades.

Bayesian hierarchical modeling for geophysical problems was intro-
duced in Berliner (1996) and Wikle et al. (1998), and summarized in
Berliner (2003), Cressie and Wikle (2011), and Wikle (2016). In this
modeling approach, prior distributions are specified for physical parame-
ters of interest, a physical process is modeled at the intermediary, latent
level (conditional on the physical parameters), and the data collection
process is modeled conditional on the latent physical process values.
Both numerical error and model uncertainty can be incorporated at the
process level, while measurement errors can be modeled at the data level.
This approach has been applied in a variety of scientific contexts, includ-
ing the study of ozone concentrations (Berrocal et al., 2014), sediment
loads at the Great Barrier Reef (Pagendam et al., 2014), precipitation in
Iceland (Sigurdarson and Hrafnkelsson, 2016), Antarctic contributions to
sea level rise (Zammit-Mangion et al., 2014), and tropical ocean surface
winds (Wikle et al., 2001) (among many others). In Gopalan et al. (2018),
the motivating example for the work in this paper, a Bayesian hierarchical
model for shallow glaciers based on the shallow ice approximation (SIA)
PDE was developed and evaluated.
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Kennedy and O’Hagan (2001) suggest constructing Bayesian statis-
tical models that incorporate the output of a computer simulator of a
physical process, such as a numerical solver for the underlying system of
PDEs. Fundamental to their approach is the inclusion of a specific term
that represents the deviation between the output of a computer simulator
and the actual process values, known as model discrepancy or model
inadequacy. This framework is developed in Higdon et al. (2004), Hig-
don et al. (2008), and Brynjarsdóttir and O’Hagan (2014). In particular,
Higdon et al. (2008) use a Bayesian model along with a principal compo-
nents based approach for reducing the computational overhead of running
a computer simulation with high dimensional output multiple times (an
approach termed as emulation). Brynjarsdóttir and O’Hagan (2014) note
that the prior for model discrepancy must be chosen carefully to mitigate
bias of physical parameters and predictions. In particular, as more prior
information is incorporated into a model discrepancy term through a
constrained Gaussian process (GP) prior over a space of functions, the
less biased inferences and predictions tend to become. The notions of an
emulator, a computer simulator, and model discrepancy enter naturally
into the aforementioned Bayesian hierarchical framework. Conditional
on physical parameters coupled with initial and/or boundary conditions,
the physical process values at the latent level can be written as the sum
of a computer simulator or emulator term and a model discrepancy term.

To be precise, let us assume that the physical process S can be in-
dexed through time, i.e., as S j, and S j is a vector where each element
corresponds to a distinct spatial location. One can specify the process
level conditional on physical parameter q as

S j = f (q , j)+d ( j) (1)

where d (.) is a vector valued model discrepancy function that is indepen-
dent of q , and f (q , j) is the output of a computer simulation or emulator
for physical parameter q at time index j. If, for instance, at each time
point j an observation Yj of S j is made with associated measurement
error h j, then observations can be written as

Yj = f (q , j)+d ( j)+h j, (2)

which is analogous to Eq. 5 of Kennedy and O’Hagan (2001).
In Kennedy and O’Hagan (2001), d (.) is a fixed but unknown function

independent of q that is learned with a GP prior distribution. Similarly,
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d (.) has a constrained GP prior in Brynjarsdóttir and O’Hagan (2014).
The approach in this paper instead assumes a temporally indexed stochas-
tic process (with spatial correlation) that follows a multivariate random
walk, rather than a deterministic function. Additionally, in Liu and West
(2009), the authors frame a computer emulator of time series run un-
der multiple inputs as a dynamic linear model (DLM). As part of their
approach, they allow for time varying auto-regressive coefficients that
follow a random walk process, to embed non-stationarity into the model.

While the approach taken in this paper most closely follows the
above literature (i.e., Bayesian hierarchical modeling, model discrepancy,
and emulation), we briefly review literature in probabilistic numerics
and Bayesian numerical analysis; the emphasis in Bayesian numerical
analysis is to use probabilistic methods to solve numerical problems,
whereas, in the Bayesian hierarchical setup, one is also interested in infer-
ence of scientifically relevant parameters and predictions of the physical
process. In Conrad et al. (2017), a probabilistic ordinary differential equa-
tion (ODE) solver is developed that adds stochasticity at each iteration;
conditions for the convergence of this method to the ODE solution are
given. Chkrebtii et al. (2016) utilize GPs for solving ODEs; moreover,
Calderhead et al. (2008) use a GP regression based method to avoid
explicitly solving nonlinear ODEs when performing inference for param-
eters that provides computational speed ups; additionally, Owhadi and
Scovel (2017) present a gamblet-based solver that comes with provably
computationally efficient solutions to PDEs. The approach is derived
from a game theoretic and stochastic PDE framework.

In the spatio-temporal model described in this paper, stochasticity
is induced with an error-correcting process that is separated from the
numerical solution. In general, another way to achieve this is to define a
stochastic process by equating a PDE to a white noise term – that is, the
solution X to a stochastic partial differential equation (SPDE) L[X ] =W ,
where L is a differential operator and W is a white noise process (indexed
by spatio-temporal coordinates). For instance, a fractional Laplacian
operator yields the Matérn covariance function (Whittle, 1954, 1963;
Lindgren et al., 2011). We employ the former approach mainly because
it is difficult to derive exact covariance functions for arbitrary differential
equations (e.g., in the presence of nonlinearities), though we highlight the
utility of the latter approach in situations where an analytical covariance
function can be derived exactly.
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A major feature of this work is to represent the discrepancy between
real physical process values and the output of a computer simulator for
these physical process values as a multivariate random walk; typically,
model discrepancy is endowed with a GP prior or a constrained GP
prior over a space of functions as in Kennedy and O’Hagan (2001) and
Brynjarsdóttir and O’Hagan (2014). A random walk model is motivated
by the notion that the inaccuracy of a computer simulator is most likely
going to increase forward in time; conveniently, a random walk’s variance
grows through time as well. Along with this model is the development
of two ways for making computations faster: the first is harnessing
first-order emulator inference (Hooten et al., 2011) for speeding up the
computation of a numerical solver, and the second is the use of bandwidth-
limited numerical linear algebra (Rue, 2001) for computing the likelihood
efficiently. Moreover, in the regime of a high signal-to-noise ratio, an
embarrassingly parallel approximation to the likelihood can be employed.
Finally, methodology to fit a spatial Gaussian field for the log of the scale
of numerical errors is discussed.

We must also be clear about what distinguishes this work from its
predecessor, Gopalan et al. (2018). This includes the use of emulators,
probing higher order random walks besides order 1, derivation of sparsity
and computational complexity of log-likelihood evaluation, empirical run
time results, and methodology to fit an error-correcting process when little
prior information is available. The structure of this paper is as follows:
First a test system from glaciology is described. Then the statistical
model that is the focus of this work is presented in detail (in the context
of the glaciology test case), followed by the exact and approximate
likelihood. Then this model is analyzed in terms of computational run
time and accuracy of inference, based on the test system from glaciology;
moreover, the random walk error-correcting process is assessed with
residual analysis. Afterward, we discuss how the model and associated
methodology can be applied to other physical scenarios, and conclude by
summarizing the model, method, and limitations of the approach.
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5.2 Description of a test system from glaciol-
ogy

Before delving into the specifics of the Bayesian hierarchical model and
computational subtleties, we begin with a brief discussion of glaciology.
Glaciology is the study of physical systems consisting mostly of ice
and snow. This broad definition includes the study of the crystalline
nature of ice, the transformation and compaction of snow into ice, the
dynamics of the flow of ice and water in a glacier, the relationships
between fundamental quantities like viscosity, temperature, and pressure,
the relationships between precipitation and meteorology with said ice
systems, the interaction of ice systems with other geological systems such
as volcanoes and bedrock, and so on. As such, glaciology synthesizes
elements from a multitude of scientific disciplines including continuum
mechanics, fluid mechanics, hydraulics, chemistry, and meteorology.

Bueler et al. (2005) introduce analytical solutions for the SIA PDE, a
commonly used model for the dynamics of glaciers (Fowler and Larson,
1978; Hutter, 1982; Flowers et al., 2005; Cuffey and Paterson, 2010;
van der Veen, 2013; Brinkerhoff et al., 2016; Guan et al., 2016; Gopalan
et al., 2018). Based on the principle of conservation of mass, the SIA
dictates that glacier flow is in the direction of the (negative) gradient of
the glacier surface and is due to gravity and basal sliding (also referred to
as friction or drag if in the direction of the positive gradient). While an
explanation of the SIA PDE is given in Gopalan et al. (2018), our focus
is on ice viscosity, B. Intuitively, this parameter controls the softness of
the ice. The other main physical parameter, which is not the subject of
this paper, is C0g . This controls basal sliding or friction.

For the analysis that follows, we focus on a periodic solution to the
SIA in which the thickness of the glacier oscillates through time; H(r, t),
the thickness of the glacier as a function of two dimensional space (in
polar coordinates) and time, is

H(r, t) = Hs(r)+P(r, t), (3)

P(r, t) = Cp sin(2pt/Tp)cos2


p(r�0.6L)
.6L

�
; if 0.3L < r < .9L,(4)

P(r, t) = 0; if 0  r  0.3L or if r � 0.9L. (5)

In Eq. 3, Hs is a static initial profile of the glacier (i.e., a dome as in
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Eq. 21 of Bueler et al. (2005)), P is a perturbation (e.g., precipitation)
function, L is the margin length, Cp is the magnitude of the periodic
perturbation, and Tp is the period of the perturbation. Bueler et al. (2005)
derive a mass balance function that achieves this periodic solution for the
SIA PDE. Qualitatively, this test case appears like a dome with a periodic
oscillation in thickness around an annulus defined by 0.3L < r < .9L. In
Figure 5.13, an illustration of the oscillations of glacier thickness through
time is displayed.

The value of each surface elevation measurement is the value of the
exact analytical solution above added to a zero-mean Gaussian random
variable with standard deviation of 1 meter, larger than errors of the
digital-GPS instruments employed by the UI-IES. We use the same values
of parameters as in Bueler et al. (2005) to make for easier comparison
to that work and the EISMINT experiment. In particular, H0 = 3600 m,
L = 750 km, Cp = 200 m, and Tp = 5000 years.

Employing the same set up as Gopalan et al. (2018), glacial surface
elevation measurements are assumed to be collected for 20 years, twice
a year, and at 25 fixed spatial locations across the glacier, to emulate
how the glaciology team at the University of Iceland Institute of Earth
Sciences (UI-IES) collects data at Icelandic glaciers (e.g., see Figure 5.14
illustrating Langjökull and the mass balance measurement sites).

Figure 5.13. An illustration of the periodic oscillatory exact solution to
the SIA PDE that is used for the analysis. Since the solution is radially
symmetric, only a radial cross section is illustrated. This solution is
stationary except for an annulus defined by 0.3L < r < .9L, where L is
750 km; in the annulus, the glacier thickness vibrates back and forth
periodically, as illustrated.
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Figure 5.14. A digital elevation map of Langjökull along with
measurement sites demarcated on the right, provided by the University of
Iceland Institute of Earth Sciences (UI-IES). Langjökull is Iceland’s
second largest glacier by area, at 900 sq. km, and its mean thickness is
210 meters above sea level (Björnsson and Pálsson, 2008), so Langjökull
is shallow.

5.3 The hierarchical spatio-temporal model
and its properties

Now that we have acquainted the reader with some facts about glaciology
and the particular test case used for the analysis in this paper, we next
delineate the hierarchical spatio-temporal model that is the focus of this
work, by specifying its variables, parameters, and properties, including
efficient computation of the likelihood and connections to other modeling
frameworks. For the sake of specificity of the presentation, the glaciology
example is referenced, similarly to the set up in Gopalan et al. (2018).
We assume that n spatial locations are modeled at the latent level, and m
of those locations are observed, where m is typically much smaller than n.
We use the index j to refer to time indices and i to refer to spatial indices;
while space and time are discretized, the differences between successive
time and spatial points can be made as small as desired depending on
the context of the application and computational resources available.
Throughout, we use bolded notation for vectors and uppercase, unbolded,
and non-italic notation for matrices. All other mathematical symbols are
scalars.

We introduce the Bayesian hierarchical model in the parameter, pro-
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cess, data level framework of Berliner (1996). We denote the physical
parameters as q and initial and/or boundary conditions for the physical
process as f . At the parameter level, one possibility is to use a truncated
normal distribution for q if the support of the parameter value can be
constrained, as was done in Gopalan et al. (2018), where q represented
ice viscosity. However, more generally, the distribution can be specified
based on domain knowledge or expertise. We denote the output of a
computer simulator, which could be either a numerical solver or an emu-
lator, at time j with the notation f (q ,f , j), which, in full generality, is an
element of Rn. While some values could be negative (e.g., temperature),
in many cases the computer simulator output can be restricted to the
nonnegative real numbers. For a specific example, in Appendix A of
Gopalan et al. (2018), f (q ,f , j) is a second-order finite difference solver
for glacier thickness, which is constrained to be nonnegative based on a
boundary condition. Evidence for a nonnegative support for the physical
process, in glaciology, can be found in Gopalan et al. (2018). Particularly,
this is evident in Figure 6 of that paper, which shows the process (i.e.,
glacier thickness) predictions across the glacier, and the distributions are
all greater than zero. Specifically, the minimum of the smallest box-plot is
more than 750 m. Nonetheless, the reader is suggested to think carefully
about whether a negligible amount of probability mass is below zero in
different applications (e.g., temperature models).

The process level of the model, conditional on q and f , can be written
as:

Xj = Xj�1 + e j, (6)
S j = f (q ,f , j)+Xj, (7)

where X0 is a vector of zeros.
In the above expressions, e j is MV N(0,S) and independent of el

for j 6= l. Furthermore, Xj, e j, f (q ,f , j), and (consequently) S j are
members of Rn. In Gopalan et al. (2018), {X1,X2, ...,} was referred
to as an error-correcting process because it was meant to represent the
difference between the numerical solver and the exact solution to the
SIA PDE. Note that in Gopalan et al. (2018), S j referred to glacial
thickness at a particular time point, where each component referred to
the glacial thickness at a particular grid point. In more generality, the
error-correcting statistical process can be a random walk of higher order;
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a multivariate RW process of order q (RW (q)) is given by:

Xj +
q

Â
p=1

(�1)p
✓

q
p

◆
Xj�p = e j (8)

where e1,..., eq are independent and marginally MV N(0,S). This form of
a higher order random walk is a multivariate extension of the integrated
auto-regressive process given in Chapter 5.6 of Madsen (2007). For q= 2,
this corresponds to RW(2) of Rue and Held (2005).

At the data level, it is assumed that data are regularly sampled at
every k-th time point, so that one observes Yk,Y2k, ...,YNk 2 Rm; in the
glaciology test case, the variables Y referred to glacial surface elevation
measurements, and k was set to 5, to represent the fact that the glaciol-
ogists take a set of measurements in the summer and winter, or twice
a year. The corresponding observation errors hk,h2k, ...,hNk are IID
MV N(0,s2I), and represent GPS measurement errors in the glaciology
example. We define the matrix A 2Rm⇥n to be such that its rows are unit
basis vectors (i.e., an incidence matrix as in Cressie and Wikle (2011)).
That is, Aab = 1 if and only if the bth index of the process level vector S
has been observed, and Aab = 0 for all other entries. Then the data level
model, conditional on the process S, is

Yck = ASck +hck, (9)

where we assume that j 2 {1,2, ...,T} and c 2 {1,2, ...,N}, so there are
N total observed spatial vectors, observed with a period of length k.

Conditional on q , f , and a computer simulator, the model can be
thought of as a hidden Markov model (HMM) (Baum and Petrie, 1966);
the latent physical process evolves according to a RW(1) process added to
a numerical solution, and it is observed indirectly with Gaussian noise. It
can also be thought of as a conditional general state space model. This is
because, conditioning on q , f , and a computer simulator, one can write:

S j = S j�1 +[� f (q ,f , j�1)+ f (q ,f , j)]+ e j, (10)
Yck = ASck +hck. (11)

Here, the state evolves linearly with a time-dependent offset term: //
[� f (q ,f , j�1)+ f (q ,f , j)]. The notation ck is used in Eq. 11 to indi-
cate that observations of the process are only observed every kth time
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point, whereas the latent process evolves at every time step j. The reader
who is interested in further understanding the connection between Gaus-
sian processes and state space models may consult Solin and Särkkä
(2014).

5.3.1 Exact likelihood

An advantage of using this model is that the likelihood, p(Yk,Y2k, ...,YNk|q ,f),
can be computed exactly in an efficient manner. It can also be ap-
proximated in a way that leads to embarrassingly parallel computation
when the signal-to-noise ratio is high. The next several sections pro-
vide more details for these considerations. The likelihood of the model,
L(q ,f) = p(Yk,Y2k, ...,YNk|q ,f), has a multivariate normal PDF form:

L(q ,f) =
1

(2p)(mN)/2|Sl|1/2 exp�(Y�µl)
T S�1

l (Y�µl)/2, (12)

where the mean is:

µl = (A f (q ,f ,k), ...,A f (q ,f ,Nk)), (13)

and the covariance matrix is:

Sl = U⌦V+s2I, (14)

where Uab = k min(a,b) with U 2RN⇥N , and V = ASA|. Also, the sym-
bol ⌦ stands for the Kronecker product. Yck is multivariate normal (condi-
tioning on q and f ) as a direct consequence of Equations 7 and 9, noting
that Xck and hck are independent conditional on q and f . Moreover, the
linearity property of expectations can be used to show that the mean of Yck
is E[ASck+hck] = E[ASck]+E[hck] = E[A f (q ,f ,ck)+AXck]+E[hck] =
E[A f (q ,f ,ck)]+E[AXck]+E[hck] = A f (q ,f ,ck)+0+0 (again, condi-
tional on fixed q and f fixed). Appendix A contains more details of the
covariance matrix.

Since evaluating Eq. 12 requires the calculation of the inverse of
the matrix Sl and its determinant, these must be calculated efficiently
(generally this takes O(N3m3) operations, which can grow very quickly
with more space and time observations). Since U�1 is tridiagonal, the
bandwidth of U�1 is 1, and the band-limited nature of U�1 allows us to
compute S�1

l and |Sl| in O(Nm3) time (Rue, 2001; Golub and Van Loan,
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2012). More details for this derivation are given in Appendix A. While
using band-limited matrix algebra routines can improve computation, in
the next subsection we derive an approximation to the likelihood that is
embarrassingly parallel and can therefore accelerate computation even
more.

5.3.2 An approximate likelihood

Here we show how to approximate the likelihood in a way that leads to
embarrassingly parallel computation. The likelihood p(Yk, ...,YNk|q ,f)
can be equivalently written as p(Yk|q ,f)p(Y2k|Yk,q ,f)...
p(YNk|Yk, ..,Y(N�1)k,q ,f). First note that:

Yk = A f (q ,f ,k)+hk +Ck, (15)

where Ck = Âk
j=1 Ae j. Hence, p(Yk|q ,f) is multivariate normal with

mean A f (q ,f ,k) and covariance matrix A(kS)A|+s2I. More generally,
we have the relationship:

Yck = Y(c�1)k +A[ f (q ,f ,ck)� f (q ,f ,(c�1)k)]+hck �h(c�1)k +Cck,

where Cck = Âck
j=(c�1)k+1 Ae j. Thus we can approximate p(Yck|Yk, ..,Y(c�1)k,q ,f)

as a MVN distribution with mean Y(c�1)k +A[ f (q ,f ,ck)� f (q ,f ,(c�1)k)]
and covariance matrix A(kS)A|+2s2I. Nonetheless, to clarify,
p(Yck|Yk, ..,Y(c�1)k,q ,f) is not exactly a MVN with mean
Y(c�1)k +A[ f (q ,f ,ck)� f (q ,f ,(c�1)k)] and covariance matrix A(kS)A|+
2s2I because Y(c�1)k and h(c�1)k are dependent. However, when the mag-
nitude of the observation error h(c�1)k is much smaller in comparison to
the magnitude of the observation Y(c�1)k, and for Z ⇠ MV N(0,s2I) with
Z independent of Y(c�1)k, Y(c�1)k �h(c�1)k ⇡ Y(c�1)k �Z.

This approximation is embarrassingly parallel because each of the N
terms in the product form of the likelihood p(Yk, ...,YT |q ,f) = p(Yk|q ,f)
p(Y2k|Yk,q ,f)...p(YNk|Yk, ..,Y(N�1)k,q ,f) (or sum, if computing the log-
likelihood) can be evaluated independently of each other. Therefore, in
parallel, the computation comes down to evaluating a multivariate normal
PDF of dimension m – this can be done in O(m3).
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5.3.3 Computational complexity summary

If no attention is paid to the structure of Sl , the cost of evaluating
L(q ,f) is limited by the evaluation of S�1

l and |Sl|, which generally
takes O(N3m3) operations. However, the exact likelihood evaluation can
be reduced to O(Nm3) using band-limited numerical linear algebra. The
computational complexity of the approximation is also O(Nm3) (if no
parallelism is used). While an exact likelihood is preferred to an approxi-
mation, a benefit of the approximation is that it is embarrassingly parallel
– if parallelized, the time complexity is that of evaluating a multivariate
normal PDF of dimension m, which is O(m3). Nonetheless, there also
exist parallel versions of sparse Cholesky decomposition, for instance
in Gupta and Kumar (1994). Empirical comparisons of the exact and
approximate likelihood computations are presented in Section 5.4.5.

5.4 Analysis of the model and associated
methodology

The purpose of this section is to motivate the various modeling choices
introduced in this paper using the previously described test system from
glaciology, both in terms of computational run time and quality of infer-
ences. In particular, we compare an emulator based posterior inference to
finite difference method based posterior inference, motivate the use of the
random walk error-correcting process with residual analysis, examine the
impact of prior information encoded into the error-correcting process on
the bias of posterior distributions for physical parameters, and compare
the run-time and accuracy of the likelihood approximation versus the
exact likelihood. The physical parameter of interest in these examples is
ice viscosity, B, whose actual value is the same as Bueler et al. (2005),
Payne et al. (2000), and Gopalan et al. (2018): 31.7⇥10�25 in units of
s�1Pa�3.

Consistent with Gopalan et al. (2018) is the choice of settings for
the numerical PDE solver: a 21 by 21 grid (so n = 441) is used with
Dx = Dy = 105 m and Dt = .1 years. Note that, consequently, the number
of simulator runs (25) is much smaller than the dimensionality of the
output of the solver (441).

61



5 Paper 2

5.4.1 An emulator compared to a numerical PDE solver

In this section, we conduct an empirical study to examine how a first-
order spatio-temporal emulator (i.e., an emulator based on the method
in Appendix B) compares to a numerical solver of the PDE, both in
terms of run-time of computations and posterior inference of ice viscosity.
While the precise technical details for constructing a first-order spatio-
temporal emulator are given in Appendix B, the idea is to approximate
the numerical solver output for each time point that there is collected
data. To do this, we train an emulator using the following values for
ice viscosity: {10,12.5,15.0, ...,70.0} in units of 10�25s�1Pa�3, a grid
of values that is intentionally coarser than the values used for posterior
computation, since in this case the emulator must be used for parameter
values not in the training set. We used the rbenchmark (Kusnierczyk,
2012) package to benchmark the run-time of the log-likelihood of the
model evaluated at the actual parameter value computed with a numerical
solver versus a first-order spatio-temporal emulator, using a MacBook
Pro early 2015 model with a 2.7 GHz Intel Core i5 processor and 8 GB
1867 MHz DDR3 memory. The emulator version performs 14.5 times
faster (.354 seconds for the emulator based log-likelihood versus 5.148
seconds for the numerical solver based log-likelihood). We also generated
samples from the posterior distribution of ice viscosity with grid sampling
(grid [10,70] inclusive with grid width .50 in units of 10�25s�1Pa�3),
using both the numerical PDE version and the emulated version. The
summary statistics of 106 posterior samples for ice viscosity using both
the emulator and numerical solver are given in Table 5.5. Qualitatively,
the summary statistics are similar.

The principle behind choosing the ice viscosity parameter values in
the training set is to fill the space of the support for ice viscosity, but not
to choose a grid as fine as the one used for posterior sampling. (Such an
approach would be circular, in that the emulator would just be generating
predictions inside of the training set.) However, such a heuristic will not
be feasible as the number of parameters grows beyond one parameter (the
number of design points would need to grow exponentially in the number
of dimensions). In such cases, we suggest using other space-filling
designs: notably, a latin hypercube design has been used extensively in
the computer experiments literature, for instance in Higdon et al. (2008).
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Test Case Min 1st Quartile Median Mean 3rd Quartile Max
Emulator 15.0 26.5 27.0 27.4 29.0 38.5
Numerical 15.0 24.5 26.5 26.3 28.0 37.5

Table 5.5. Summary statistics of 106 posterior samples of the ice
viscosity parameter using an emulator for the SIA and a numerical
solver for the SIA; qualitatively, these posterior samples are similar.
Units are in 10�25s�1Pa�3.

5.4.2 Assessing a random walk

The choice of using a random walk to correct for deviations between the
output of a computer simulator and the actual physical process values has
a few important motivations:

1. The inaccuracy of a spatio-temporal computer simulation is most
likely going to increase as it is run further into the future. Conve-
niently, a random walk’s variance increases with time – for example
a RW(1) has marginal variance jS at time j.

2. As shown in Appendix A and Section 5.3.1, the likelihood involves
band-limited matrices, for which there exist specialized numerical
linear algebra routines. However, there is a trade-off in bandwidth
and the order of the random walk utilized.

3. Spatial correlations in the inaccuracies of a computer simulation
can be captured with the covariance matrix S.

In addition to these motivations, the purpose of this section is to
empirically assess how a random walk model performs for correcting the
output of a numerical SIA PDE solver. To do this, we use the analytical
SIA solution as a gold standard. This is a simplification in the sense that
the real glacial dynamics will not follow the SIA PDE and therefore the
analytical SIA solution exactly, but nonetheless this is a way to check the
veracity of the random walk error model in some capacity – at the very
least, as a model for numerical error but not model uncertainty.

Figure 5.15 displays the differences between the analytical SIA PDE
solution for glacial thickness and the numerical SIA PDE solution for
glacial thickness at all of the glacier grid points, run forward for 5000
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time steps (i.e., 500 years). More precisely, the points in blue are at the
margin of the glacier, the points in red are at the interior, and the points
filled in black are close to the top (also referred to as the dome) of the
glacier. Recall from Figure 5.13 that the glacier looks like a shallow
ellipsoid sliced in half (in the x-y plane), and so the panel on the right
of this figure is a top view of the glacier grid points, which looks like a
circle of radius 750 km projected onto the x-y plane. In comparison, the
height is 3600 m.

Figure 5.15. An illustration of the difference between the exact analytical
solution and the numerical solution for the SIA PDE. On the right panel
is a top view of the glacier, whose shape looks like a dome, and therefore
the projection on to the x-y plane is a circle. The blue points signify the
margin of the glacier (where it drops down to zero thickness), the red
points are at the interior of the glacier, and the black points are toward
the top of the glacier. The points that are not filled in signify the border
of the glacier, where there is no ice thickness. On the left panel the
discrepancies between the analytical SIA PDE solution and the
numerical SIA PDE solution for all grid points are shown. Specifically,
the color of each path corresponds to the grid points on the right panel.
Additionally, the paths are shown for 500 years, or 5000 time steps.

The differences are all very smooth (i.e., continuous) functions of
time, implying that the numerical SIA PDE solver is producing continu-
ous output as well – we know that the analytical solution is continuous
based on the functional form in Eqs. 3-5. Thus, it appears that a random
walk of at least a few orders is necessary to represent these differences.
Moreover, as expected from Bueler et al. (2005), the largest errors occur
at the margin, whereas the interior and dome differences are less extreme.

To assess if a random walk model is appropriate, for each time point
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j and for orders 1-7, we computed residuals, in other words, the left
hand side of Eq. 8, which should theoretically be distributed like e j
(i.e., independent MV N(0,S) random variables). To compute Xj, we take
the difference S j � f (q , j), where S j is the analytical glacial thickness
solution to the SIA PDE at time j (i.e., the real physical process for the
purpose of this analysis), and f (q , j) is the numerical glacial thickness
solution to the SIA PDE at time j. We examine the residuals for two
randomly selected grid points of the glacier (one at the interior and one
at the margin) in Figure 5.16 and 5.17.

Figure 5.16. This figure displays residuals in units of meters (i.e., the
term e j in Eq. 8) for RW(q) of orders 1-7 for a randomly selected
interior grid point. The first four panels display values on different
scaled y-axes to better show the shapes, whereas the bottom four panels
have the same scaling for the y-axis to be able to compare across the
figures. RW(5) and above look like white noise processes, though RW(5)
has the smallest variance.

A few important observations should be emphasized based on the
empirical analysis displayed in these figures. The first is that a single
order random walk substantially filters the discrepancy; for the interior
grid point, it is reduced from the order of 10 m to the order of .01 m (1000
times reduction in magnitude), and for the margin grid point from the
order of 100 m to .05 m (more than 1000 times reduction). Additionally,
for both the interior and margin grid points, it appears that RW(5) is
optimal in the sense that the residuals closely resemble a white noise
process and have the smallest variance. While the residuals from higher
order RW processes also resemble white noise, the magnitude of the noise
is larger. Nonetheless, we believe that real physical processes will not
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Figure 5.17. This figure also displays residuals in units of meters (i.e.,
the term e j in Eq. 8) for RW(q) of orders 1-7 for a randomly selected
margin grid point. Just like the previous figure, the first four panels
display values on different scaled y-axes to better show the shapes,
whereas the bottom four panels have the same scaling for the y-axis to
be able to compare across the figures. Just as in the previous figure,
RW(5) and above look like white noise processes, though RW(5) has the
smallest variance.

always be as smooth as the analytical SIA PDE solutions, and hence it is
likely that a lower order RW process will be preferred for real scenarios.

5.4.3 Reducing bias for the posterior distribution of q
In Brynjarsdóttir and O’Hagan (2014), when prior information about
the model discrepancy term is introduced in a simple physical system
(i.e., a constrained GP over a space of functions), the bias of a posterior
distribution of a physically relevant parameter reduces. We have found
that a very similar phenomenon occurs in the glaciology test case, a result
that was pointed out in Gopalan et al. (2018). Specifically, in Bueler
et al. (2005), it is shown that there is large spatial variation in the scale
of deviations between the exact solution to the SIA and a numerical
finite difference solver of the SIA. Specifically, there is spatial variation
between the dome, interior, and margin of a glacier, with deviations at the
margin being markedly larger than at the interior and dome. To investigate
the effect of such prior information, we choose the matrix S to be such
that it is block diagonal with 3 blocks, Sint , Sdome, and Smargin. Each
of these blocks is derived from a square exponential covariance kernel

66



5.4 Analysis of the model and associated methodology

with the same length-scale parameter f = 70 km, but differing variance
parameters s2

int , s2
dome, and s2

margin. If we ignore prior information from
Bueler et al. (2005), we assume that there is an equal prior probability
that each of s2

int , s2
dome, and s2

margin is in the set {.1,1,10,100} in units
of m2. If we use prior information from Bueler et al. (2005), we instead
assume equal prior probability on {.1,1} for s2

int , {1,10} for s2
dome, and

{10,100} for s2
margin (again all units are m2). As shown in Gopalan

et al. (2018), the posterior for ice viscosity is less biased in the case that
incorporates prior information for the scale of errors; this phenomenon is
explored again in the next section.

While in the above discussion we have not been precise about the term
bias, the following ought to make this notion more rigorous. Let q0 be
the true parameter, and q̂ be an estimator of q0. The frequentist definition
of bias is usually E[q̂ � q0], where the expectation (i.e., average) is
taken over the sampling distribution, p(Y |q0). The Bayesian notion of
bias used informally in the preceding paragraph (and essentially the
same notion as in Brynjarsdóttir and O’Hagan (2014)) is b(Y,q0) =
E[q � q0], where the expectation (i.e., average) is taken with respect
to the posterior distribution of q , p(q |Y ). Consider E[b(Y,q0)], where
the (outer) expectation is taken with respect to the sampling distribution.
Then E[b(Y,q0)] = E[E[q �q0]] = E[E[q ]�q0] = E[q̂ �q0], which is
the frequentist bias. In other words, the frequentist bias is equivalent to
the average of b(Y,q0) over the sampling distribution, if the posterior
mean is chosen as an estimator. In the glaciology test case, we have
(informally) not noticed much variability in the posterior for ice viscosity
over repeated sampling of the data, and hence the distinction between
Bayesian bias and frequentist bias is not significant.

The reader may wonder why a fixed q0 was assumed in the preceding
paragraph, despite that a Bayesian model has been presented in this paper.
In fact, it is typical to assume that the actual value of a parameter is
fixed, despite ascribing a probability distribution to it in the form of
a prior or posterior. Conceptually, such a probability distribution is a
representation of a modeler’s uncertainty regarding the fixed, unknown
value of the parameter. For more on this interpretation of Bayesian
statistics, the reader can consult results of statistical decision theory (e.g.,
on admissibility) in Lehmann and Casella (2003) and Robert (2007).
This viewpoint is also taken in Bayesian asymptotic analysis, such as the
Bernstein-von Mises theorem (van der Vaart, 2000; Shen and Wasserman,
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2001).

5.4.4 Inferring S

The covariance matrix S, first introduced after Equation 7 in Section 5.3,
determines the spatial correlation inherent in the error-correcting process,
X . Since spatial correlation in the error-correcting process is important to
model (which is particularly evident in the glaciology example of Bueler
et al. (2005)), we need to discuss how S ought to be specified. Choosing
S can be difficult if no or little prior information is available, and in such
a case, we suggest:

S = diag(v)R diag(v),

where log(v) ⇠ MV N(µv,Sv), Sv is derived from a GP kernel such as
squared exponential or Matérn kernel, and R is a correlation matrix also
derived from a GP kernel. To avoid non-identifiability and complexity
of inference, it is suggested to pre-specify the parameters of these GP
kernels. This approach is similar to the modeling strategy employed in
Geirsson et al. (2015). The intuition behind this approach is that the
term v encodes spatial variability in the scale of deviations between the
output of a computer simulator and the true physical process, and spatial
correlation in these deviations is strongly enforced with non-diagonal
terms in both Sv and R.

Figure 5.18 illustrates a map of the mean posterior field for the vari-
ances of the error-correcting process, where the area of each circle is
proportional to the inferred posterior mean of variance; due to a multi-
variate normal prior on log(v), elliptical slice sampling is used as the
method for posterior sampling (Murray et al., 2010). Consistent with
Bueler et al. (2005), the variances tend to increase at the margins and are
smaller at the interior. Additionally, the scaled differences between the
analytical solution and numerical solver at the final time point the simu-
lator is run (where scaling is inverse of the posterior mean of standard
deviation) should theoretically approach a mean zero normal distribution
according to the model. The p-value for an Anderson-Darling test is .436,
suggesting that the scaled differences between the analytical solution and
numerical solver are consistent with a normal distribution. Moreover, the
sample mean for these scaled differences is .079 and the sample standard
deviation is .409.
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Figure 5.18. Inferred posterior variance field of the error-correcting
process, where the area of each circle is proportional to the variance at
the grid point centered at the circle. Qualitatively, this field behaves as
one would expect from the the work of Bueler et al. (2005), where the
authors demonstrate that numerical inaccuracies for the SIA PDE are
greatest toward the margin, but much smaller at the interior of the
glacier.

As is discussed in the previous subsection, prior information for S
has an effect on the inference of physical parameters (i.e., ice viscosity),
and in particular, a lack of prior information can lead to a very biased
posterior distribution for physical parameters. To compare the fitted
S using a GP field against the S matrices discussed in the previous
section, we show in 2.4.4 a comparison of posterior inference for the ice
viscosity parameter for three choices of S. The first choice of S is the
posterior mean of samples assuming the structure S = diag(v)Rdiag(v),
with log(v)⇠ MV N(µv,Sv). In the second and third scenarios, S is block
diagonal with three variance parameters for each of the three blocks.
A weakly informative case assumes that s2

int = s2
dome = s2

margin = .1,
whereas a more informative case (using prior information from Bueler
et al. (2005)) has s2

int = s2
dome = .1 and s2

margin = 10 (all units are m2).
The scenario for weak prior information for S results in a very biased
posterior distribution whose support does not cover the actual parameter
value (31.7⇥ 10�25 in units of s�1Pa�3) – the maximum in this case
is 26.5⇥10�25 in units of s�1Pa�3. While the (absolute) biases of the
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posterior for ice viscosity for the GP field version compared to the prior
information from Bueler et al. (2005) are comparable (5.09 versus 4.01
in units of 10�25s�1Pa�3), the posterior variance is markedly larger in
the former case. This result suggests that prior knowledge from a domain
expert is likely to be useful in determining S, though in a case when that
does not exist, the methodology described in this section is an adequate
alternative.

Test Case Min 1st Quartile Median Mean 3rd Quartile Max
GP S 10.0 21.0 36.0 35.7 50.5 70.0

Strong prior 18.0 25.0 26.5 26.6 28.0 35.5
Weak prior 12.5 18.5 19.5 19.5 20.5 26.5

Table 5.6. Summary statistics of 106 posterior samples of the ice
viscosity parameter under three versions of S. While the
weakly-informative case leads to a very biased posterior, the biases for
the ice viscosity posterior in the first two S matrices are comparable.
Nonetheless, the posterior variance is much less in the case with prior
information from Bueler et al. (2005).

5.4.5 Exact versus approximate likelihood

In Section 5.3.1, we showed an exact way to calculate the model likeli-
hood as well as an approximation in Section 5.3.2. In this subsection,
our purpose is to compare these two methods of likelihood computation
in terms of run-time and posterior inference. Using a MacBook Pro
early 2015 model with a 2.7 GHz Intel Core i5 processor and 8 GB 1867
MHz DDR3 memory (as before), one component of the log-likelihood
approximation (which can be computed in an embarrassingly parallel
fashion with the other components of the sum) takes .0179 s, whereas
the full log-likelihood calculation, as in Section 5.3.1, is .354 seconds
(in both cases, using a first-order emulator). The results of comparing
posterior samples for the ice viscosity parameter are given in Table 5.7 –
thus, while the mean, median, first, and third quartiles are comparable,
the approximate version has larger posterior uncertainty than the exact
version as is evidenced by the wider tails. These results suggest that,
while there is likely a computational speed-up afforded by using the
approximation (i.e., at least an order of magnitude), the price to pay is
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increased posterior uncertainty.

Test Case Min 1st Quartile Median Mean 3rd Quartile Max
Exact 15.0 26.5 27.0 27.4 29.0 39.5

Approx. 10.0 26.0 28.0 27.7 31.0 52.5

Table 5.7. Summary statistics of 106 posterior samples of the ice viscosity
parameter using an exact likelihood and a likelihood approximation
(units are in 10�25s�1Pa�3). While the 1st quartile, median, mean, and
3rd quartile are similar, the tails in the approximation are much wider.

5.5 Generality of the model and methodol-
ogy

Though we have tested the model and methodology in the previous
sections in the context of a glaciology example, it should be noted that
they can be used in other physical systems with similar components. In
essence, this modeling and methodology can be applied in scenarios
where:

1. A computer program (i.e., computer simulator) is available to
simulate a continuous physical process through space and time, but
there is a deviation between the output of the computer simulator
and the actual physical process.

2. The deviations between the computer simulator output and the
actual physical process values tend to grow with time and exhibit
spatial correlation structure.

3. Measurements of the physical process are available, but they are
potentially scarce both in space and time.

4. Physical parameters governing the physical process are uncertain
but can be constrained with domain knowledge for the random
walk error covariance (i.e., S).

Recall that at the process level, the model stipulates that:

S j = f (q ,f , j)+Xj. (16)
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To apply the same setup to another physical scenario, a different version
of f (., ., .), such as a numerical PDE solver for another system of spatio-
temporal PDEs besides the SIA, can be used. However, while f (., ., .)
will need to be tailored to another physical scenario based on a different
numerical scheme or physical model, the Xj term would be modeled in
the same way (i.e., with a random walk).

5.6 Conclusion
The objective of this work has been to set forth a versatile physical-
statistical model in the Bayesian hierarchical framework that incorporates
a computer simulator for a physical process, such as a numerical solver
for a system of PDEs. Posterior inference for physical parameters (and,
consequently, posterior predictions of the physical process) can be com-
putationally demanding within this model, since each evaluation of the
likelihood requires a full PDE solve and computing the inverse and de-
terminant of a large covariance matrix. Therefore, we have set forth two
main ways to speed up computation: first is the use of bandwidth-limited
linear algebra in a manner similar to Rue (2001) for quickly handling
the covariance matrix in the likelihood, and the second is the use of
spatio-temporal emulation in a manner similar to Hooten et al. (2011)
to emulate a PDE solver that is expensive to evaluate. An additional
method for speeding up computation is to approximate the likelihood in
a way that leads to embarrassingly parallel computation. The utility of
this model and corresponding inference methodology is demonstrated
with a test example from glaciology.

A unique feature of this work is how we represent the discrepancy
between a computer simulator for a physical process and the real physical
process values. One approach, as in Kennedy and O’Hagan (2001) and
Brynjarsdóttir and O’Hagan (2014), is to assume that this is a fixed yet
unknown function that can be learned with a GP (or constrained GP)
prior distribution over a space of functions. Instead, we assume that
this discrepancy is a spatio-temporal stochastic process (i.e., a random
walk), which is motivated by the fact that a computer simulation is likely
to become less accurate as it is run further forward in time, as well as
exhibit some degree of spatial correlation in inaccuracies. An interesting
consequence of this modeling decision is that linear algebraic routines
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for band-limited matrices can be utilized for evaluating the likelihood
of the model in an efficient manner. Another interesting artifact of this
approach is that when prior information is used for the random walk’s
error term (i.e., in S), the bias for the posterior distribution of q is reduced.
The same phenomenon is exhibited in the work of Brynjarsdóttir and
O’Hagan (2014), where a constrained GP prior over a space of functions
ends up reducing the bias of the physical parameter posterior distribution.

Despite that the model and methodology appear to perform well in
the analysis of this paper, it is important to comment on some potential
drawbacks of the approach, particularly when applied to other physical
contexts. In this paper, emulation works adequately with a single param-
eter, though emulators do not always work well in other applications or
higher dimensional parameter spaces. For example, Salter et al. (2019)
document some shortcomings of a principal components based emulator
in climate modeling. The second main computational advantages stem
from log-likelihood evaluation speed-ups. The use of bandwidth-limited
matrix algebra for the exact log-likelihood can be used so long as the
model holds, which may not always be the case (e.g., with a non-Gaussian
data distribution). Additionally, the log-likelihood approximation holds
when the measurement errors are small relative to the signal modeled,
which depends on the measurement instruments used to collect the data.
For instance, on common geophysical scales of thousands of meters, light
detection and ranging (LIDAR) or digital-GPS data have maximum errors
on the order of a meter.

Additionally, if it is not possible to program the computer simulator
to produce output at the data measurement locations, there are essentially
two main ways to handle such a scenario. The first is to use spatial kriging
to predict the value of the computer simulator at the spatial locations
where data are collected, given the output of the computer simulator at
the grid points. A simpler approach is to use inverse-distance weighting
of the simulator output at the nearest neighbors; that is, take a weighted
average of the four nearest grid points of the simulator, where the weights
are proportional to the inverse of distance. Such an approach, for example,
has been used in Geirsson et al. (2015).

Future research will include predicting Langjökull glacier surface
elevation using the modeling and methodology within this paper, based
on actual data collected by the UI-IES.
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5.7 Appendix A: the exact likelihood and
computation

As was shown in Appendix B of Gopalan et al. (2018), the covariance
matrix for the observed data can be written as U⌦V+s2I, where Uab =
k min(a,b) with U 2RN⇥N , and V = A(S)A|. It can be verified that U�1

is tridiagonal, so it has bandwidth one – more specifically:

U�1 = k�1

2

66666664

2 �1 0 . . .
�1 2 �1 0 . . .
0 �1 2 �1 0 . . .

0 0 . . . . . . . . .
0 ... �1 2 �1
0 ... �1 1

3

77777775

.

One useful property of the Kronecker product is that (U⌦V)�1 =
U�1 ⌦V�1. Therefore:

(U⌦V)�1 = U�1 ⌦V�1

= k�1

2

66666664

2V�1 �V�1 0 . . .
�V�1 2V�1 �V�1 0 . . .

0 �V�1 2V�1 �V�1 0 . . .

0 0 . . . . . . . . .
0 ... �V�1 2V�1 �V�1

0 ... V�1 V�1

3

77777775

,

whose bandwidth is O(m).
Let us denote U⌦V as W. By the matrix inversion lemma, it fol-

lows that (s2I+W)�1 = s�2I�s�2(W�1 +s�2I)�1Is�2. The matrix
W�1 +s�2I has bandwidth O(m) since W�1 has bandwidth O(m) as
shown previously, so this expression can be computed in O(Nm3) (Rue,
2001; Golub and Van Loan, 2012).

Similarly, by the matrix determinant lemma, log[det(s2I+W)] is
log[det(I+s2W�1)det(W�1)�1] = log[det(I+s2W�1)]-log[det(W�1)].
Since both terms are log-determinants of square matrices of dimension
Nm and bandwidth O(m), this can be calculated in O(Nm3) due to the
efficient Cholesky factorization of band-limited matrices (Rue, 2001;
Golub and Van Loan, 2012).
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5.8 Appendix B: first-order spatio-temporal
emulators

In the examples of this paper, the function f (., ., .) (i.e., the computer
simulator) can take one of two forms: a numerical PDE solver for the SIA,
or an emulator constructed from the numerical PDE solver for the SIA.
The numerical method for solving the SIA PDE is as given in Gopalan
et al. (2018), and the emulator is constructed based on the finite difference
solver in a manner as suggested in Hooten et al. (2011), termed first-order
emulation.

That is, we start with a set of plausible values for ice viscosity:
{q1,q2, ...,qp} and, for each time point there is collected data ck, we
store a matrix Mck, where the q-th column of matrix Mck is the output
of the numerical solver using parameter value qq after running for ck
time steps forward. Thus, each matrix Mck is of dimension n by p, and
without essential loss of generality we can assume that the number n is
much larger than p, and each matrix Mck is of rank p.

For each matrix, Mck, we compute a singular value decomposition
(SVD), UckDckV|

ck. The goal is to find a (vector valued) function vck(q⇤)
such that the emulated output at time ck for parameter value q⇤ is
UckDckvck(q⇤). To find the q-th element of vck, we train a random forest
(Breiman, 2001; Liaw and Wiener, 2002) with (q1,(V

|
ck)q1),

(q2,(V
|
ck)q2), ...,(qp,(V

|
ck)qp) as training data, where (V |

ck)q1 is the first
element of the q-th right singular vector, (V |

ck)q2 is the second element
of the q-th right singular vector, and so on. Not all of the right singular
vectors need be used in emulation, and a heuristic such as an elbow-scree
plot or the randomization procedure of Friedman et al. (2001) can be used
to determine the number of right singular vectors to keep. However, if
the number of simulator runs (p) is much smaller than the dimensionality
of the output (n), all of the right singular vectors can be utilized with
computational savings, as is done in the experiments of this paper.

We have assumed the initial conditions and boundary conditions are
known, since this is the case in the glaciology problems we have studied,
where the boundary condition is that glacial thickness is nonnegative, and
the initial glacier profile (i.e., a dome) is known. In general, however,
f may be incorporated into the analysis above by considering q and
f jointly. Additionally, a variant is to directly emulate the likelihood
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function. However, since there is flexibility in the choice of S (which
enters into the likelihood), unless one is set on using a particular value of
S, it is sensible to emulate the numerical solver as opposed to retraining
a likelihood emulator for each potential choice of S.
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Spatio-temporal statistical modeling of Langjökull

Gopalan, G., Hrafnkelsson, B., Aðalgeirsdóttir, G., and Pálsson, F.:
Spatio-temporal statistical modeling of Langjökull, to be submitted to
the Annals of Applied Statistics, 2019.

Abstract: The Bayesian hierarchical model and methodologies of
Papers 1 and 2 are applied to Langjökull, a main glacier of Iceland.
The data consist of a 100 m resolution digital elevation map, a 100 m
resolution map of bedrock topography, and mass balance and surface
elevation measurements at 22-25 sites collected twice a year, from 1997
to 2015. Mass balance predictions are attained with a spatio-temporal
statistical model implemented in R-INLA. In contrast to the simulation
studies of Paper 1, the posterior for ice viscosity concentrates around a
single value (5.05⇥10�24, s�1Pa�3), a value that is within the expected
range of values in the glaciology literature. Additionally, the prediction
intervals capture 20 of 22 surface elevation measurements during spring
2015, having been trained on surface elevation data from 1997-2014.

6.1 Introduction
About 10 percent of Iceland’s area is covered by glaciers (Björnsson and
Pálsson, 2008), and the glaciers of Iceland provide a natural laboratory to
study the ramifications of a changing climate. The subject of this paper
is Langjökull, which is Iceland’s second largest glacier by area (and third
by volume). Langjökull is 900 km2 in area, 190 km3 in volume, 210 m
mean thickness, with a max thickness of about 650 m.

To provide context for the analysis contained in this paper, the prede-
cessors of this work are summarized in the following paragraphs. Paper 1
first introduces a prototypical Bayesian hierarchical model (BHM) involv-
ing a computer simulator of glacial dynamics (a novel finite difference
solver to the shallow ice approximation partial differential equation, or
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SIA PDE). Subsequently, Paper 1 evaluates the BHM with simulation
studies involving analytical solutions to the SIA PDE in idealized test
scenarios. A conclusion of this work is that posterior inference for ice vis-
cosity and predictions for glacial surface elevation can be biased, though
this bias can be reduced by incorporating prior information into a model
discrepancy term (what we called an error-correcting process for reasons
discussed in Paper 2).

Paper 2 focuses on computational improvements to the model intro-
duced in Paper 1, particularly by using bandwidth-limited matrix algebra
and first-order emulation for speeding up the computer simulator of
glacial dynamics. An approximation to the log-likelihood is also dis-
cussed. Moreover, higher-order random walk models are assessed for
representing model discrepancy, again in a test scenario with an analyti-
cal solution to the SIA PDE. A random walk is a natural choice, since
the uncertainty of a computer simulator is likely to increase as it is run
forward in time. A conclusion of Paper 2 is that first-order emulation and
bandwidth-limited linear algebra can significantly improve computation,
and a random walk error-correcting process is a good representation of
model discrepancy.

As the final part in this sequence of papers, Paper 3 applies the
Bayesian hierarchical model and associated methods from the previous
two papers to real data from Langjökull, as opposed to simulations based
on analytical PDE solutions. As in Paper 1, the primary inferential goals
are to calculate the posterior distribution of ice viscosity, as well as to
make probabilistic forecasts of glacier surface elevation. A key scientific
quantity necessary for achieving these goals is mass balance (MB) – this
is the rate of change of mass (through melting or the accumulation of
snow) at the glacier surface with respect to time. Unlike Paper 1 and
Paper 2, in Paper 3 MB is not available at every grid point along the
glacier, but at 22-25 fixed sites. Therefore, a subgoal is to make MB
predictions for the entirety of the glacier, using the MB measurements at
these 22-25 sites.

This paper is structured as follows. First, we delineate the Langjökull
data sources available from the UI-IES: 1) 100 meter resolution initial
surface elevation conditions at 1997 derived differential GPS measure-
ments, 2) GPS surface elevation measurements at 22-25 measurement
locations for 1997-2015 measured twice a year, 3) summer and winter
MB measurements at the measurement sites, 4) 100 meter resolution
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bedrock measurements with radio-echo sounding instruments. Second,
we describe MB predictions derived from R-INLA, briefly reviewing its
methodology and the use of penalized-complexity (PC) priors. Third, we
recapitulate the BHM from Papers 1 and 2, and follow the same methodol-
ogy to produce a posterior distribution for ice viscosity and probabilistic
predictions for ice viscosity. Finally, we conclude by discussing some
future directions of work, including the application of the BHM to infer
bedrock topography, and incorporating uncertainties for MB predictions
from R-INLA.

6.2 Data
As previously discussed, MB (i.e., rate of change of mass with respect
to time) is a critical quantity that is necessary for glacial-dynamical
equations, such as the form of the SIA PDE that is stated in Section 4.2.1.
For the purposes of the current work, MB is needed for all spatial points
on the 100 m resolution grid and all years between 1997-2015, as input
to the PDE solver we use in the Bayesian hierarchical model of Papers 1
and 2.

In glaciology, MB is a pivotal quantity defined as the rate of change
of mass at the surface at a particular glacier location. This change in mass
is essentially attributable to precipitation, snow drift, and the melting
of ice. Since MB varies both temporally and over spatial regions of the
glacier, this is a function of spatio-temporal coordinates, i.e., x,y, and t.
As is delineated in more detail in Paper 1, the dynamics of glaciers are
essentially due to deformation caused by gravity, interaction of the ice
with bedrock, and MB.

The glaciology team at the University of Iceland Institute of Earth
Sciences (UI-IES) has measured MB at the Icelandic glaciers twice a year
annually, and for Langjökull since 1997. To measure summer balance,
a measurement is taken in October to early November (i.e, change in
mass over the summer, usually due to snow and ice melt), and to measure
winter MB (i.e., change in mass over the winter time, usually due to
snow accumulation), a measurement is taken between late April and mid-
May. Measurements are accomplished using a stratigraphic method, by
measuring the depth to the previous summer’s layer by drilling ice cores
(in the case of winter MB). The net MB for the year is the sum of the
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winter and summer MB values, in units of meters (water equivalent) per
year. Water equivalent means that the value is calculated using the density
of water, so that measurements across different years are comparable on
the same unit. The measurements are taken at 22-25 fixed measurement
sites, which are chosen to cover the range of elevation of Langjökull and
lie along major flow lines of the glacier. While in Pálsson et al. (2012)
a manual interpolation (which is informed with spatial kriging) method
is used to produce MB predictions over other portions of the glacier not
measured, in this work we will use a Bayesian spatial statistical model
with the R-INLA software, which is discussed in more detail in the next
section.

In addition to MB measurements, the UI-IES has collected surface
elevation data. In particular, during 1997, the UI-IES surveyed the
glacier surface using a differential GPS methodology along lines of
length approximately 1 km (see Figure 3 of Pálsson et al. (2012)), with
an estimated 1.06 m standard deviation in errors. The resultant data
are of resolution 100 m. In addition to this high resolution data, the
UI-IES collects digital-GPS measurements of surface elevation at the MB
measurement sites twice a year.

Simultaneously, during the 1997 campaign to map surface elevation
at Langjökull, the UI-IES conducted radio-echo sounding to determine
bedrock elevations – the glacier rests upon bedrock with a widely varying
topography. The radio-echo sounder was designed by members of the
University of Iceland Science Institute (Sverrisson, Marteinn and Jóhan-
nesson, Ævar and Björnsson, Helgi, 1980). It consists of transmitting and
receiving dipole antennas that are 30 m long: the transmitter issues a .2
microsecond pulse at a frequency of 1 kHz, and the receiver passes the
reflected signal through a band-pass filter of 2-5 MhZ. More details and
method are given by Björnsson (1986). The result is a map of bedrock
of surface elevation, also of 100 m resolution on a grid that matches the
surface elevation data.

To aid the reader in understanding these data (which form the basis
of subsequent analysis), we show below a series of figures. The first
figure is a map of Langjökull surface elevation at 1997, along with points
specifying MB and surface elevation measurement sites. The second
figure displays box-plots of the annual MB measurements across 23
measurement sites, between 1997 and 2015. The third figure is a map of
Langjökull bedrock topography collected with radio-echo sounding by
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the UI-IES glaciology team.

Figure 6.19. Surface elevation of Langjökull at 1997. Though the axes
are scaled to be from 0-1, the length of each axis is 46.4 km. The units of
elevation are in meters.

Figure 6.20. Range of annual MB measurements for each of the 23 sites
in the previous figure.

The Langjökull surface elevation at 1997 is of a 100 m resolution,
with minimum 436.3 m above sea level (ASL) and maximum 1442
m ASL. The grid that contains the surface elevation data and bedrock
measurements is of dimensions 43800 m by 46400 m. Langjökull is
about 50 km and 20 km wide, which explains the name “long glacier".
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Figure 6.21. Langjökull bedrock elevation in meters. The bedrock
elevation was obtained by means of a radio-echo sounding device
developed at the University of Iceland.

6.3 Mass balance predictions
MB (i.e., rate of change of mass with respect to time) is a critical quantity
that is necessary for glacial-dynamical equations, such as the SIA PDE
as is written in Section 4.2.1. For the purposes of the current work,
it is needed for all spatial points on the 100 m resolution grid and all
years between 1997-2015, as input to the PDE solver we use in the
Bayesian hierarchical model of Papers 1 and 2. Pálsson et al. (2012) use a
manual interpolation method (assisted with spatial kriging) to make MB
predictions away from the sites at which MB measurements are taken (the
sites that are depicted in Figure 6.19). Instead, we use a spatial statistical
model to make MB predictions on the 100 meter resolution grid described
in the previous section, for the years 1997-2015. In particular, we use a
linear model with latitude, longitude, and elevation as fixed effects, and a
spatially varying random effect that follows a Matérn covariance kernel.

The use of a linear model for MB is motivated by the glaciology
literature. For instance, Aðalgeirsdóttir et al. (2006) model precipitation
(which is directly linked to MB) with a linear relationship in x-coordinate,
y-coordinate, and z-coordinate (i.e., elevation) (equation 4). Additionally,
Figure 6 of Pálsson et al. (2012) shows a nearly linear relationship be-
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tween MB and elevation, with the exception of higher elevations. One
possible reason for this finding for winter balance is that higher elevations
tend to exhibit snow drift.

For a fixed year, site i, the winter MB is:

MBwi = b0w +b1wxi +b2wyi +b3wzi +Uw(si)+ ew(si). (17)

Similarly, for a fixed year and at site i, the summer MB is:

MBsi = b0s +b1sxi +b2syi +b3szi +Us(si)+ es(si). (18)

Note that si is the spatial coordinate of the i-th location, and it consists
of xi, yi, and zi, which are the longitude (or x-coordinate), latitude (or
y-coordinate), and elevation coordinates of the i-th location, respectively.
Moreover, b0s and b0w are summer and winter intercepts for (and likewise
for the remaining b parameters). es and ew are unstructured zero mean
normal error terms. The processes Us and Uw have mean 0, and the
covariance is determined by the Matérn covariance function:

C(sa,sb) = s2 21�n

G(n)
(
p

8n ||sa � sb||/r)Kn(
p

8n ||sa � sb||/r).

Here, s is the marginal standard deviation, r is the spatial range param-
eter, n is the smoothness parameter, Kn is the modified Bessel function
of second kind with order n , and G is the gamma function (Bakka et al.,
2018). A process with Matérn covariance is the solution to the following
stochastic partial differential equation (SPDE):

(k2 �D)a/2(tU(s)) = W (s)

where s 2 Rd , t > 0, D is the Laplacian, k > 0, a > d/2, and W is a
Gaussian white noise process.

As shown in more detail in Lindgren et al. (2011) the approach of
Lindgren et al. (2011) approximates the solution to this SPDE as a linear
combination of basis functions, which are derived from a finite element
method (FEM). For instance, the finite element mesh for our analysis is
displayed in Figure 6.22. Using the FEM approach results in a sparse
precision matrix for the coefficients in the linear combination, and sparsity
can be used to make computations more efficient. The computational
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benefits of sparsity when working with Gaussian Markov random fields
(GMRFs) are described in Lindgren et al. (2011) and further used in Paper
2, and essentially rely upon bandwidth-limited matrix algebra routines
like those found in Golub and Van Loan (2012).

Figure 6.22. The R-INLA mesh we used for the SPDE model, with red
points indicating MB measurement sites. We tried slightly finer and
coarser meshes, but found negligible difference in MB predictions.

The R-INLA software (Rue et al., 2009) uses a fully Bayesian ap-
proach. The scale and range parameters have penalized-complexity (PC)
priors (Simpson et al., 2017). These priors are based on parameterizations
in terms of the KL-divergence to a base-model; the prior is essentially an
exponential distribution in this parameterization where the exponential
distribution hyper-parameter is selected based on controlling a tail-area
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probability (i.e., user-defined scaling). In R-INLA, the PC-priors can
be instantiated with the inla.spde2.pcmatern function, where r0 is set
to the grid-width of 100, and the tail area probability pr is set to .01
(a fairly small value). Based on Pálsson et al. (2012), s0 is set to 30
cm with ps set to .05. To clarify, the pr and r0 values specify the left
tail-area probability for the prior on the spatial range parameter, r (i.e.,
P(r < r0) = pr ). Similarly, ps and s0 specify the right tail-area for
the prior on s , (i.e., P(s > s0) = ps ). This is in accordance with the
user-defined scaling principle for PC priors, described more in Simpson
et al. (2017).

By default, priors for the fixed effect parameters are normally dis-
tributed with mean 0 and precision .001, and the intercept has a normal
prior with mean 0 and precision 0 (i.e., flat). We began by fitting the
models with the default settings, but noticed a large variability in the
posteriors on a year to year basis. For example, see Figure 6.23, which
shows the year to year variability in the posterior for the latitude fixed
effect parameter, for the summer MB model.

Moreover, regularizing linear model coefficients tends to be good for
prediction (e.g., ridge regression (Hoerl and Kennard, 1970)). Therefore,
we decided to change the fixed effect parameter variances and make them
smaller than the 1000 default setting. To help motivate the choice of
precisions for each of the fixed effect parameters (i.e., elevation, latitude,
and longitude), we have fit several linear models for both winter and
summer MB (i.e., with the lm function in R) using all of the years worth
of data together, as opposed to separate models for each year:

1. MB ⇠ Long+Lat +Elevation,

2. MB ⇠ Year+Long+Lat +Elevation,

3. MB ⇠ Year ⇤Long+Lat +Elevation,

4. MB ⇠ Long+Year ⇤Lat +Elevation,

5. MB ⇠ Long+Lat +Year ⇤Elevation,

6. MB ⇠ Year ⇤Long+Year ⇤Lat +Elevation,

7. MB ⇠ Year ⇤Long+Lat +Year ⇤Elevation,

8. MB ⇠ Long+Year ⇤Lat +Year ⇤Elevation,
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Figure 6.23. Posterior for the latitude fixed effect parameter, through
time, when the default prior setting in R-INLA is used. The red points are
the 2.5th and 97.5th percentiles, whereas the black points are the
medians. This is for summer MB.

9. MB ⇠ Year ⇤Long+Year ⇤Lat +Year ⇤Elevation.

The notation used above is essentially syntax used for linear modeling
in R; i.e., the * refers to an interaction between variables. The fit of each
model is compared with the resultant Akaike information criterion (AIC)
(Akaike, 1974), and the results are displayed below.
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Model Number Summer Mass Balance AIC Winter Mass Balance AIC
1 1127.6260 725.7081
2 914.6192 532.9997
3 921.8139 540.4028
4 925.0915 550.2093
5 907.4420 524.8316
6 936.5179 551.0461
7 915.9444 524.0919
8 909.0320 524.5416
9 909.6316 523.7783

Table 6.8. A comparison of linear model fits using AIC. The purpose of
this analysis is to determine prior precisions for fixed effect parameters.

The idea behind this approach is to see if an interaction between year
and each of latitude, longitude, or elevation is needed. If there is such
an interaction, then the prior variance for the corresponding fixed effect
parameter should be chosen to be larger than the prior variances for the
other fixed effect parameters i.e., as to induce greater yearly variation.
For the winter MB, the best fitting model in terms of AIC was Year*Long
+ Year*Lat + Year*Elevation, implying equal prior variances for all the
fixed effect parameters. However, the best fitting model (again, in terms
of AIC) for the summer MB data was Long + Lat + Year*Elevation,
implying smaller prior variances for long and lat than elevation. Based
on this result, we used a precision of .1 for elevation and 1 for both
longitude and latitude, as to allow for greater prior variance in elevation
than longitude and latitude for summer MB. We evaluated the efficacy
of this hyper-parameter setting by performing leave-one-site-out cross
validation on a randomly selected year, 2007. This combination of
parameters produced the smallest root mean square error (RMSE) of 0.53
m/year. In comparison the RMSE for all precisions set to .001 (default),
.1, 1, and 1000 were 0.54, 0.54, 0.59, and 0.61 m/year, respectively.
For illustrative purposes, Table 6.9 yields the leave-one-site-out cross
validation during 2007, summer MB.
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Site Actual MB MB Prediction Squared Residual SD
1 -8.02 -6.01 4.04 0.17
2 -5.52 -5.71 0.04 0.19
3 -3.98 -4.28 0.09 0.13
4 -3.38 -3.67 0.09 0.12
5 -2.87 -2.91 0.002 0.11
6 -2.35 -2.24 0.01 0.12
7 -1.46 -1.56 0.01 0.13
8 -1.29 -0.71 0.33 0.16
9 -1.22 -1.03 0.04 0.21

10 -2.38 -2.83 0.21 0.17
11 -4.87 -4.46 0.17 0.22
12 -4.29 -4.46 0.03 0.19
13 -3.72 -4.24 0.28 0.17
14 -2.14 -2.31 0.03 0.13
15 -1.91 -2.38 0.22 0.10
16 -1.60 -1.78 0.04 0.12
17 -1.45 -1.31 0.02 0.13
18 -1.19 -0.79 0.16 0.17
19 -2.04 -1.69 0.12 0.17
20 -3.61 -3.84 0.05 0.22
21 -2.36 -2.58 0.049 0.19
22 -4.25 -3.75 0.25 0.24
23 -2.73 -2.21 0.27 0.14

RMSE = .53

Table 6.9. 2007 summer MB leave-one-site-out prediction results. MB
units are meters (water equivalent) per year. The resultant RMSE is 0.53
m per year.

Additionally, the posterior (2.5 percentile, 50 percentile, and 97.5
percentile) for standard deviation for 2007 summer MB was (0.011, 0.082,
0.429), all in units of meters per year (water equivalent). Likewise, the
posterior (2.5 percentile, 50 percentile, and 97.5 percentile) for the range
parameter for 2007 summer MB was (91.09, 506.2, 3313), in units of
meters. For perspective, 506.2 m is about 5 grid widths long.

Using the models in Equations (17) and (18) implemented in R-INLA,
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we made predictions of summer and winter MB for all of the years from
1997 to 2015, inclusive. To aid in the speed of computation, we set up R
Studio Server on an Amazon Web Services (AWS) instance (m4.2xlarge),
which has 8 virtual CPUs. For illustration, we show the output of summer
MB, winter MB, and net MB for the years 1997 and 2015 in Figures 6.24-
6.27. Additionally, we tested to see how the number of MB measurement
sites affects the accuracy of MB predictions. To do so, we randomly
subsampled 5 of 25 sites (a fifth), 12 of 25 sites (about a half), and 20
of 25 sites (four fifths) for a training set, and predicted MB on the left
out sites (using RMSE as the measure of predictive accuracy). Box-plots
illustrating the RMSE of each of the random subsamples, for both winter
and summer MB, are illustrated in Figure 6.28. The median of RMSEs
decreases as more sites are subsampled, though much more so from 5
to 12 samples than 12 to 20 samples. Also, while the minimum RMSE
for both summer and winter MB is achieved with 20 training sites, there
is a larger variance in RMSE for 20 training sites, partially because of a
smaller number of left out sites.
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Figure 6.24. On the left are the winter MB predictions across Langjökull
during 1997. On the right are summer MB predictions across Langjökull
during 1997. As to be expected, MB values tend to be negative during
the summer due to melting.

Figure 6.25. On the left are the winter MB predictions across Langjökull
during 2015. On the right are summer MB predictions across Langjökull
during 2015. MB values tend to be negative during the summer due to
melting, though less melting is observed than during 1997.
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Figure 6.26. Net MB predictions (sum of summer and winter) during
1997.

Figure 6.27. Net MB predictions (sum of summer and winter) during
2015, which appear to be less negative (i.e., less melt) than 1997.

6.4 Results of inference and prediction
For the final part of the analysis of Langjökull data, we used the Bayesian
hierarchical model from Paper 1 and Paper 2 to infer ice viscosity and
make surface elevation predictions at the 22 sites for which there are
measurements for all years from 1997 to 2015. Some important details
in implementing the model and methodology from the previous papers
are addressed in the following paragraphs.
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Figure 6.28. Box-plots of MB predictions for random training sets of size
5, 12, and 20. Generally, RMSE decreases as more sites are sampled,
though the reduction appears larger going from 5 to 12 sites as opposed
to 12 to 20 sites.

We used years 1997 to 2014 for fitting the S matrix, the covariance
matrix for the random walk error term that is defined in Section 4.2.2
of Paper 1, Section 5.3 of Paper 2, and is discussed more in Section
5.4.4 of Paper 2. The year 2015 was used to test the prediction of
surface elevation, while model fitting (i.e., training) used only data from
1997-2014. Hence, this was a leave-last-year-out scenario. The surface
elevation measurements were assumed to be taken a year apart (though
in reality there may be a week or so of variation), starting at the end of
April of each year from 1997 to 2015, inclusive. We considered only the
first 22 sites since these had no data gaps for all of the years between
1997 to 2015.

The computer simulator used was based upon the numerical solver
for the SIA PDE from Paper 1, where Dx and Dy were taken to be the grid
width of the digital elevation map, 100 m. Additionally, Dt was taken
to be .1 years, as in the previous papers. The initial surface elevation
input into the computer simulator was the digital elevation map of 100
m resolution, measured in late April of 1997 as discussed in Section 6.2.
We also input the MB predictions generated from R-INLA, discussed
in the previous section. The MB at a particular location was assumed
to be constant throughout the year, and is equivalent to the sum of the
predicted summer and winter MB values across the 100 m resolution grid.
Because the initial conditions are at the end of April 1997, the current
year’s summer MB and the next year’s winter MB are added together in
determining the net MB. Additionally, we needed to account for the fact
that the site locations are not exactly aligned to a grid. Since the grid
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was of a high resolution, we simply used a weighted average of the four
nearest grid points, where the weighting is proportional to the inverse
of squared distance; this method is also implemented in Geirsson et al.
(2015).

As described in more detail in Paper 2, a crucial component in the
model is the matrix S of the error-correcting process. To fit the ma-
trix S we used the same methodology from Section 5.4.4 of Paper 2.
Additionally, to run the numerical SIA PDE solver from Paper 1, we
needed to start with initial estimates of the viscosity and basal sliding
parameters. The initial ice viscosity parameter was from Minchew et al.
(2015), 2.4⇥10�24s�1Pa�3. Using this value for B, and the horizontal
velocities as mapped in Minchew et al. (2015), and the horizontal ve-
locity equation (Equation 24) from Flowers et al. (2005), an estimate of
�9.51⇥10�12Pa�1ms�1 for C0g (basal sliding parameter) was used.

The prior mode for the truncated-normal prior for ice viscosity was
set to be 2.4⇥10�24s�1Pa�3, to be consistent with Minchew et al. (2015).
Otherwise, the same parameter values from Paper 1 were used, and the
posterior was computed in the same manner as in Paper 1. The resul-
tant estimate for ice viscosity was 5.05⇥10�24s�1Pa�3 – nearly all of
the posterior mass concentrated on this value. This is in contrast to the
simulation studies of Paper 1, in which there was much more posterior
uncertainty. Nonetheless, the value of 5.05⇥ 10�24s�1Pa�3 is within
the range from Cuffey and Paterson (2010). Using the methodology of
Appendix B of Paper 1, we then made posterior predictions of surface
elevation at the 22 sites in 2015. The resultant predictions are shown
below, along with marginal standard deviation values based on the error-
correcting process variance. As can be seen, 20 of 22 of the prediction
intervals contain the observed surface elevation value, yielding a cov-
erage of 90.9 percent. Moreover, the average standard deviation of the
predictions is 5.74 m, which is small in comparison to distances on a
glacial scale, though comparable to the measurement errors of 1 m.
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Site Observed Elevation Predicted Elevation Standard Deviation
1 588.7 592.1 7.09
2 742.1 743.3 10.6
3 878.9 878.9 5.86
4 984.3 984.6 4.74
5 1102.6 1105.9 4.53
6 1197.0 1195.6 3.74
7 1282.8 1282.5 3.97
8 1406.9 1410.1 5.74
9 1376.1 1375.1 5.55

10 1127.7 1130.3 4.98
11 992.1 992.7 3.41
12 826.6 828.8 7.04
13 880.2 880.5 7.69
14 1152.4 1152.8 5.59
15 1182.5 1185.9 5.78
16 1260.6 1259.9 6.03
17 1358.1 1344.3 3.59
18 1434.7 1427.5 3.19
19 1278.1 1282.7 5.90
20 1091.5 1096.4 9.90
21 1148.5 1151.6 6.43
22 951.3 957.0 4.88

Table 6.10. Predictions and associated standard deviations for surface
elevation at Langjökull for late April, 2015, based on training the
Bayesian hierarchical model on data from 1997 to 2014. The observed
elevations are included, for comparison.
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Site Lower Bound Upper Bound Coverage
1 577.9 606.3 1
2 722.1 764.4 1
3 867.2 890.6 1
4 975.1 994.1 1
5 1096.9 1115.0 1
6 1188.1 1203.1 1
7 1274.6 1290.5 1
8 1398.6 1421.6 1
9 1363.9 1386.2 1

10 1120.4 1140.3 1
11 985.8 999.5 1
12 814.7 842.9 1
13 865.1 895.9 1
14 1141.6 1163.9 1
15 1174.4 1197.5 1
16 1247.8 1271.9 1
17 1337.1 1351.5 0
18 1421.2 1433.9 0
19 1270.9 1294.5 1
20 1076.6 1116.2 1
21 1138.8 1164.5 1
22 947.2 966.7 1

Table 6.11. Prediction intervals for surface elevations at Langjökull for
late April, 2015, based on training the Bayesian hierarchical model on
data from 1997 to 2014. The lower bound is formed by taking the
prediction and subtracting 2 standard deviations (see previous table).
Likewise the upper bound is formed by taking the prediction and adding
2 standard deviations. 20 of 22 sites cover, and the interval lengths are
on the order of 10 meters.
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6.5 Future directions and conclusion
There are a few ways to extend this work. The first is to use the Bayesian
hierarchical model to infer the spatially-varying basal sliding field, which
was assumed to be constant in the previous section. Another possibility
is to use the model to infer bedrock topography. These are more complex
problems that require inferring a parameter for every grid point – 110,704
in total. Additionally, we could apply the same model and methodology
to other glaciers or ice sheets, in Iceland and in other parts of the world,
such as Greenland. Additionally, we have not used the standard deviation
estimates, returned by R-INLA, for MB predictions, but rather only the
posterior predictive means. The standard deviations returned by R-INLA
could be used for a prior over MB values.

In conclusion, this paper has applied the Bayesian hierarchical model
and methodology from Paper 1 and Paper 2 to Langjökull MB and surface
elevation data that was collected by the UI-IES. MB predictions across a
100 m grid were derived using a linear model with elevation, x-coordinate,
and y-coordinate as fixed effects, and a random spatially varying effect
with spatial correlation determined by a Matérn covariance kernel; the
model was fit with the R-INLA software. The resultant posterior for ice
viscosity concentrates sharply around the value of 5.05⇥ 10�24, units
of s�1Pa�3, a plausible value that is in the range given by Cuffey and
Paterson (2010). Nonetheless, the sharp concentration for the posterior
of B is an unexpected result, based on the simulation studies of Paper
1. Moreover, 20 of 22 prediction intervals capture the observed surface
elevation values at 22 sites at 2015; the predictions are generated using
surface elevation data from 1997-2014 as well as the MB predictions
derived from R-INLA. As a complement to the simulation studies of Paper
1 that give predictions for 100 years, these prediction results suggest
utility for yearly forecasting of surface elevation for glacier elevation
measurement sites; nonetheless, it must be noted that the quality of these
surface elevation predictions relies upon accurate MB predictions.
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7 R code
This section includes the main pieces of R code used during the work of
this thesis. All of the code was written in the R programming language,
version 3.1. While this code has been tested and used throughout the
thesis, it is possible that some of it can be made faster (e.g., by replacing
for loops). Additionally, some of the code has been split to take two lines
instead of one, as to be able to fit onto a page without running off the
right margin.

7.1 R packages
The packages we had used are as follows:

• mvtnorm_1.0-8 (Genz et al., 2019)

• randomForest_4.6-12 (Liaw and Wiener, 2002)

• raster_2.8-4 (Hijmans, 2018)

• INLA_18.07.12 (Håvard et al., 2009)

Additionally, base R was used as well.

7.2 Physical constants

#PART 1: p h y s i c a l c o n s t a n t s
# ##########################
# x�w i d t h
d e l _x <� 10^5
#y�w i d t h
d e l _y <� 10^5
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# t s t e p
d e l _ t <� . 1

#max range t o go o u t t o
RANGE <� 10^6

# f l a t bedrock
R <� matrix ( rep ( 0 ,M*N) , nco l =N)
# p h y s i c a l c o n s t a n t s
C_0 <� 0
gamma <� 0
rho <� 910
g <� 9 .80665
g_ c o n s t <� 9 .80665
n <� 3
B <� 10^(�16) / (31556926)
mu_max <� 2 . 5 * 10^(�11)
C_1 <� (31556926) * (2 *B) * ( ( rho *g ) ^ n ) / ( n +2)
R_0 <� 750 * 10^3
H_0 <� 3600
lambda <� 0
f <� 0
t _0 <� 5000
N <� dim (H_mat_ f u l l ) [ 2 ]
H <� H_mat_ f u l l
R <� matrix ( rep ( 0 ,M*N) , nrow=M)

7.3 Analytical solutions
These analytical solutions are used for the simulations of Paper 1 and
Paper 2.

7.3.1 Bueler et al. (2005) test B

ALPHA <� (2�( n +1) * lambda ) / (5 *n +3)
BETA <� ( 1 + ( 2 *n +1) * lambda ) / (5 *n +3)

t _0 <� BETA /C_1* ( ( 2 *n +1) / ((1� f ) * ( n + 1 ) ) ) ^ n*
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R_ 0^ ( n +1) / (H_ 0^(2 *n + 1 ) )
# h e i g h t f u n c t i o n i n p o l a r
H_ t r u e<� f u n c t i o n ( r , t )
{

H_0* ( t / t _ 0)^(�ALPHA) *
(1 � ( ( t / t _ 0)^(�BETA) * r /R_ 0 ) ^ ( ( n +1) / n ) ) ^ ( n / (2 *n + 1 ) )

}

7.3.2 Bueler et al. (2005) test C

lambda <� 5
ALPHA <� (2�( n +1) * lambda ) / (5 *n +3)
BETA <� ( 1 + ( 2 *n +1) * lambda ) / (5 *n +3)
t _0 <� BETA /C_1* ( ( 2 *n +1) / ((1� f ) * ( n + 1 ) ) ) ^ n*
R_ 0^ ( n +1) / (H_ 0^(2 *n + 1 ) )
# h e i g h t f u n c t i o n i n p o l a r
H_ t r u e<� f u n c t i o n ( r , t )
{

H_0* ( t / t _ 0)^(�ALPHA) *
(1 � ( ( t / t _ 0)^(�BETA) * r /R_ 0 ) ^ ( ( n +1) / n ) ) ^ ( n / (2 *n + 1 ) )

}
MB <� f u n c t i o n ( r , t )
{

re turn (5 *H_ t r u e ( r , t ) / t )
}

7.3.3 Bueler et al. (2005) test D

t _0 <� 5000
R_0 <� 30* 10^3
f <� 0
L <� 750* 10^3
T_p <� 5000
C_p <� 200
C <� (1� f ) ^ n*C_1*H_ 0^(2 *n +2) / (2 *(1�1 / n ) *L ) ^ n

X <� f u n c t i o n ( r )
{

re turn (4 * r / (3 *L)�1 / 3+(1� r / L ) ^ ( 4 / 3)�( r / L ) ^ ( 4 / 3 ) )
}
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X_ d e r i v <� f u n c t i o n ( r )
{

�4* ( ( r / L ) ^ ( 1 / 3)+(1� r / L ) ^ ( 1 / 3)�1) / (3 *L )
}
g_ d e r i v <� f u n c t i o n ( r )
{

�p i * s i n ( p i * ( r �.6*L ) / ( . 3 *L ) ) / ( . 6 *L )
}
g_d_ d e r i v <� f u n c t i o n ( r )
{

re turn (� p i ^2 * cos ( p i * ( r �.6*L ) / ( . 3 *L ) ) / ( . 1 8 *L ^ 2 ) )
}
X_d_ d e r i v <� f u n c t i o n ( r )
{

�4* ( ( r / L)^(�2 / 3)�(1� r / L)^(�2 / 3 ) ) / (9 *L^2)
}
H_ s s <� f u n c t i o n ( r )
{

3*H_0*(�5*X( r )^(�13 / 8) / 8* (X_ d e r i v ( r ) ) ^ 2 +X( r ) ^
(�5 / 8) *X_d_ d e r i v ( r ) ) / (8 * (2 / 3 ) ^ ( 3 / 8 ) )

}
H_p_d_ d e r i v <� f u n c t i o n ( r , t )
{

H_ s s ( r )+C_p* s i n (2 * p i * t / T_p ) *g_d_ d e r i v ( r )
}
H_ s _ d e r i v <� f u n c t i o n ( r )
{

3*H_0*X( r )^(�5 / 8) *X_ d e r i v ( r ) / (8 * (2 / 3 ) ^ ( 3 / 8 ) )
}
H_p_ d e r i v <� f u n c t i o n ( r , t )
{

re turn (H_ s _ d e r i v ( r )+C_p* s i n (2 * p i * t / T_p ) *
g_ d e r i v ( r ) )

}
g <� f u n c t i o n ( r )
{

re turn ( cos ( p i * ( r �.6*L ) * ( . 6 *L ) ^ ( �1 ) ) ^ 2 )
}
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M_ s <� f u n c t i o n ( r )
{

s <� r / L
re turn (C* ( s ^ (1 / n)+(1� s ) ^ ( 1 / n ) �1)^( n�1)*
(2 * s ^ (1 / n)+(1� s ) ^ ( 1 / n �1)*(1�2* s )�1) / ( L* s ) )

}
H_ s <� f u n c t i o n ( r )
{

s <� r / L
re turn (H_0 / (1�1 / n ) ^ ( n / (2 *n + 2 ) ) *
( ( 1 + 1 / n ) * s�1 / n+(1� s ) ^ ( 1 + 1 / n)� s ^(1+1 / n ) ) ^
( n / (2 *n + 2 ) ) )

}
P <� f u n c t i o n ( r , t )
{

v a l <� 0
i f ( r < . 9 *L && r > . 3 *L )
{

v a l <� C_p* s i n (2 * p i * t / T_p ) *
cos ( p i * ( r �0.6*L ) / ( 0 . 6 *L ) ) ^ 2

}
re turn ( v a l )

}
H_p <� f u n c t i o n ( r , t )
{

re turn (H_ s ( r )+P ( r , t ) )
}
M_ c <� f u n c t i o n ( r , t )
{

v a l <� 0
i f ( r < . 9 *L && r > . 3 *L )
{
T_1 <� 2* p i *C_p*g ( r ) * cos (2 * p i * t / T_p ) / T_p
T_2 <� �M_ s ( r )
T_3 <� �C_1*H_p ( r , t ) ^4 *H_p_ d e r i v ( r , t ) ^2 *
(H_p ( r , t ) *H_p_ d e r i v ( r , t ) / r +5*H_p_ d e r i v ( r , t )^2+
3*H_p ( r , t ) *H_p_d_ d e r i v ( r , t ) )
v a l <� T_1+T_2+T_3
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}
re turn ( v a l )

}
# ######
H_ t r u e <� f u n c t i o n ( r , t )
{

re turn (H_ s ( r )+P ( r , t ) )
}
H_ i n i t <� f u n c t i o n ( r )
{

re turn (H_ s ( r )+P ( r , t _ 0 ) )
}
MB <� f u n c t i o n ( r , t )
{

re turn (M_ s ( r )+M_ c ( r , t ) )
}

7.3.4 Bueler et al. (2005) test E

R_0 <� 30* 10^3
H_0 <� 1000
gamma <� (31556926) *2*B* ( rho *g ) ^ n / ( n +2)
t _0 <� 5000
n <� 3
f <� 0
L <� 750* 10^3
M_0 <� . 3
r _1 <� 200 * 10^3
r _2 <� 700 * 10^3
t h e t a _1 <� 10
t h e t a _2 <� 80

C_v <� ( 2 ^ ( n�1)*M_0 / gamma ) ^ ( 1 / (2 *n + 2 ) )
w <� f u n c t i o n ( r )
{

L^(1+1 / n)� r ^(1+1 / n )
}
H_v<� f u n c t i o n ( r )
{
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C_v*w( r ) ^ ( n / (2 *n + 2 ) )
}
H_v_ d e r i v <� f u n c t i o n ( r )
{

�.5*C_v* r ^ (1 / n ) *w( r )^( ( �n�2) / (2 *n + 2 ) )
}
mu <� f u n c t i o n ( r , t h e t a )
{

i f ( r _1 < r && r < r _2 &&
t h e t a _1 < t h e t a && t h e t a < t h e t a _ 2)

{
re turn (mu_max*4* ( r�r _ 1) * ( r _2� r ) *4*
( t h e t a � t h e t a _ 1) * ( t h e t a _2� t h e t a ) /
( ( r _2� r _ 1)^2 * ( t h e t a _2� t h e t a _ 1 ) ^ 2 ) )

}
re turn ( 0 )

}
mu_ d e r i v <� f u n c t i o n ( r , t h e t a )
{

i f ( r _1 < r && r < r _2 &&
t h e t a _1 < t h e t a && t h e t a < t h e t a _ 2)

{
re turn (mu_max*4* ( t h e t a � t h e t a _ 1) * ( t h e t a _2� t h e t a ) *
( t h e t a _2� t h e t a _ 1)^( �2) *
4* ( r _1+ r _2�2* r ) * ( r _2� r _ 1)^ ( �2) )

}
re turn ( 0 )

}
H_v_d_ d e r i v <� f u n c t i o n ( r )
{

�C_v*w( r )^( ( �3 *n�4) / (2 *n + 2 ) ) *
( r ^((1�n ) / n ) *w( r ) + ( n +2) * r ^ (2 / n ) / 2) / (2 *n )

}
M_b <� f u n c t i o n ( r , t h e t a )
{

re turn (� rho *g* (H_v ( r ) ^2 *H_v_ d e r i v ( r ) *
( r ^(�1) *mu( r , t h e t a )+mu_ d e r i v ( r , t h e t a ) ) +
mu( r , t h e t a ) *H_v ( r ) * (2 *H_v_ d e r i v ( r )^2+
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H_v ( r ) *H_v_d_ d e r i v ( r ) ) ) )
}
MB <� f u n c t i o n ( r , t h e t a )
{

M_0+M_b ( r , t h e t a )
}
b <� matrix ( rep ( 0 , dim (D ) ) )
H_ t r u e <� f u n c t i o n ( r , t )
{

re turn (H_v ( r ) )
}

7.4 Log-likelihood evaluation (with approx-
imation)

l o g _ l l h _B_ approx <� f u n c t i o n (B_prop )
{

l o g _ l l h _ s c o r e <� 0
H_ cur <� matrix ( u_ 0 , nrow=M)
f o r ( index i n 1 : Time )
{

H_ cur <� matrix ( f o r w a r d _ compute (
H_cur ,H_ cur+R , R , B_prop , 0 , t _0+ d e l _ t *
( index �1) ) , nrow=M)
H_ vec <� as . v e c t o r (H_ cur )
i f ( index %i n% t ime _ sample s )
{

i n d <� which ( index == t ime _ samples )
i f ( index == 5)
{

l o g _ l l h _ s c o r e <� l o g _ l l h _ s c o r e +
dmvnorm (Y[ ind , ] , mean=H_ vec [ s p a c e _ sample s ] ,
s igma= t ime _ p e r i o d * Sig _ p h i +
diag ( l e n g t h ( s p a c e _ sample s ) ) * measurement _var ,
l o g =TRUE)

}
e l s e
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{
l o g _ l l h _ s c o r e <� l o g _ l l h _ s c o r e +
dmvnorm (Y[ ind , ] ,
mean=H_ vec [ s p a c e _ sample s ]�
H_ vec _ prev [ s p a c e _ sample s ]+Y[ ind �1 , ] ,
s igma= t ime _ p e r i o d * Sig _ p h i +
2* diag ( l e n g t h ( s p a c e _ sample s ) ) * measurement _var ,
l o g =TRUE)

}
H_ vec _ prev <� H_ vec

}
}
re turn ( l o g _ l l h _ s c o r e )

}

7.5 Log-likelihood evaluation (exact)

kronecker _mat <� matrix ( rep ( 0 , l e n g t h ( t ime _ sample s ) *
l e n g t h ( t ime _ sample s ) ) , nrow= l e n g t h ( t ime _ sample s ) )
f o r ( i i n 1 : l e n g t h ( t ime _ sample s ) )
{

f o r ( j i n 1 : l e n g t h ( t ime _ sample s ) )
{

kronecker _mat [ i , j ] <� t ime _ p e r i o d *min ( i , j )
}

}
f u l l _ Sig <� kronecker ( kronecker _mat , S ig _ p h i )

l o g _ l l h _B_ e x a c t <� f u n c t i o n (B_prop )
{

l o g _ l l h _ s c o r e <� 0
H_ cur <� matrix ( u_ 0 , nrow=M)
o u t p u t _ v e c t o r <� c ( )
f o r ( index i n 1 : Time )
{

H_ cur <� matrix ( f o r w a r d _ compute (H_cur ,
H_ cur+R , R , B_prop , 0 , t _0+ d e l _ t * ( index �1) ) , nrow=M)
H_ vec <� as . v e c t o r (H_ cur )
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i f ( index %i n% t ime _ sample s )
{

o u t p u t _ v e c t o r <� c ( o u t p u t _ vector ,
H_ vec [ s p a c e _ sample s ] )

}
}
l o g _ l l h _ s c o r e <� dmvnorm ( as . v e c t o r ( t (Y) ) ,
mean= o u t p u t _ vector ,
s igma= f u l l _ Sig +measurement _ var *
diag ( dim ( f u l l _ Sig ) [ 1 ] ) , l o g =TRUE)
re turn ( l o g _ l l h _ s c o r e )

}

7.6 Emulator code
7.6.1 Code to train the emulator

t h e t a _ t r i a l <� seq (10 * 10^( �25) ,70 * 10^( �25) ,
2 . 5 * 10^( �25))
X_ t r a i n <� matrix ( rep ( 0 , l e n g t h ( t h e t a _ t r i a l ) ) )
t r a i n i n g _ data <� array ( rep ( 0 , l e n g t h ( t ime _ sample s ) *
l e n g t h ( u_ 0) * l e n g t h ( t h e t a _ t r i a l ) ) ,
dim=c ( l e n g t h ( t ime _ sample s ) ,
l e n g t h ( u_ 0 ) , l e n g t h ( t h e t a _ t r i a l ) ) )

f o r ( i t e r i n 1 : l e n g t h ( t h e t a _ t r i a l ) )
{

p r i n t ( i t e r )
t h e t a _prop <� t h e t a _ t r i a l [ i t e r ]
X_ t r a i n [ i t e r , ] <� t h e t a _prop
H_ cur <� matrix ( u_ 0 , nrow=M)
f o r ( index i n 1 : Time )
{

H_ cur <�
matrix ( f o r w a r d _ compute (
H_cur ,H_ cur+R , R , t h e t a _prop , 0 , t _0+
d e l _ t * ( index �1) ) ,
nc o l =M)
i f ( index %i n% t ime _ sample s )
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{
t r a i n i n g _ data [ which ( index == t ime _ sample s )
, , i t e r ] <� as . v e c t o r (H_ cur )

}
}

}

SVD_ l e f t _ s i n g _ v e c t o r <�
array ( rep ( 0 , l e n g t h ( t ime _ sample s ) *
l e n g t h ( u_ 0) * l e n g t h ( t h e t a _ t r i a l ) ) ,
dim=c ( l e n g t h ( t ime _ sample s ) ,
l e n g t h ( u_ 0 ) , l e n g t h ( t h e t a _ t r i a l ) ) )
SVD_ s i n g _ v a l <�
matrix ( rep ( 0 , l e n g t h ( t h e t a _ t r i a l ) *
l e n g t h ( t ime _ sample s ) ) ,
nrow= l e n g t h ( t ime _ sample s ) )
SVD_ r i g h t _ s i n g _ v e c t o r <�
array ( rep ( 0 , l e n g t h ( t ime _ sample s ) * l e n g t h ( t h e t a _ t r i a l ) *
l e n g t h ( t h e t a _ t r i a l ) ) ,
dim=c ( l e n g t h ( t ime _ sample s ) , l e n g t h ( t h e t a _ t r i a l ) ,
l e n g t h ( t h e t a _ t r i a l ) ) )

f o r ( i i n 1 : l e n g t h ( t ime _ sample s ) )
{

p r i n t ( i )
Y_SVD <� svd ( t r a i n i n g _ data [ i , , ] )
SVD_ l e f t _ s i n g _ v e c t o r [ i , , ] <� Y_SVD$u
SVD_ s i n g _ v a l [ i , ] <� Y_SVD$d
SVD_ r i g h t _ s i n g _ v e c t o r [ i , , ] <� Y_SVD$v

}
t h e t a <� matrix ( t h e t a _ t r i a l , nco l =1)
t e s t _ vec <� matrix ( rep ( 0 , l e n g t h ( t h e t a _ t r i a l ) ) , nc o l =1)

# t r a i n random f o r e s t s
R F o r e s t s <�v e c t o r ( mode=" l i s t " ,
l e n g t h = l e n g t h ( t ime _ samples ) )
f o r ( index i n 1 : l e n g t h ( t ime _ sample s ) )
{
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R F o r e s t s [ [ index ] ] <� v e c t o r ( mode=" l i s t " ,
l e n g t h = l e n g t h ( t h e t a _ t r i a l ) )

}
f o r ( index i n 1 : l e n g t h ( t ime _ samples ) )
{

f o r ( i i n 1 : dim (SVD_ r i g h t _ s i n g _ v e c t o r [ index , , ] ) [ 1 ] )
{

R F o r e s t s [ [ index ] ] [ [ i ] ]<�
r a n d o m F o r e s t ( t h e t a ,SVD_ r i g h t _ s i n g _ v e c t o r [ index , , i ] )

}
}

7.6.2 Code for log-likelihood with an emulator

l o g _ l l h _ t h e t a _ e m u l a t o r _2 <� f u n c t i o n ( t h e t a _prop )
{

l o g _ l l h _ s c o r e <� 0
o u t p u t _ v e c t o r <� c ( )
index <� 1
f o r ( index i n 1 : l e n g t h ( t ime _ sample s ) )
{

f o r ( i i n 1 : dim (SVD_ r i g h t _ s i n g _ v e c t o r [ index , , ] ) [ 1 ] )
{

t e s t _ vec [ i ] <�
p r e d i c t ( R F o r e s t s [ [ index ] ] [ [ i ] ] , t h e t a _prop )

}
H_ vec <� SVD_ l e f t _ s i n g _ v e c t o r [ index , , ]
o u t p u t _ v e c t o r <�
c ( o u t p u t _ vector ,H_ vec [ s p a c e _ sample s ] )

}
l o g _ l l h _ s c o r e <� dmvnorm ( as . v e c t o r ( t (Y) ) ,
mean= o u t p u t _ vector ,
s igma= f u l l _ Sig +measurement _ var * diag ( dim ( f u l l _ Sig ) [ 1 ] ) ,
l o g =TRUE)
re turn ( l o g _ l l h _ s c o r e )

}

7.7 R-INLA code
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# s e e B o l i n and L i n d s t r o m ( 2 0 1 7 ) R t u t o r i a l :
# h t t p s : / /www. s t a t . w a s h i n g t o n . edu / p e t e r / 591 / INLA . h tm l
# o f which t h e f o l l o w i n g code i s based on
cur _ yr <� data . frame ( read . csv ( f i l e s [ cur _ f i l e ] ) )
names_ d a t <� names ( cur _ yr )
names_ d a t [ 4 ] <� ’ e l e v a t i o n ’
names ( cur _ yr ) <� names_ d a t

# e x t r a c t mass b a l a n c e da ta
# ( t o g g l e f o r summer or w i n t e r b a l a n c e )
Y <�cur _ yr $bw
e l e v a t i o n <� cur _ yr $ e l e v a t i o n

setwd ( ’ / home / ec2�u s e r / R_ Data ’ )
# c a l c u l a t e t h e bor de r
load ( ’ x_ i n d e x . RData ’ )
load ( ’ y_ i n d e x . RData ’ )
load ( ’ bed rock _ m a t r i x . RData ’ )
load ( f i l e = ’ s u r f a c e _ m a t r i x . RData ’ )
x_ v a l s <� x_ index
y_ v a l s <� y_ index
t o p _ b o r d e r <�
matrix ( rep ( 0 , l e n g t h ( x_ v a l s ) * 2 ) , nco l =2)
f o r ( i i n 1 : l e n g t h ( x_ v a l s ) )
{

t o p _ b o r d e r [ i , ] <�
c ( x_ v a l s [ i ] , y_ v a l s [ 1 ] )

}
bot tom _ b o r d e r <�
matrix ( rep ( 0 , l e n g t h ( x_ v a l s ) * 2 ) , nco l =2)
f o r ( i i n 1 : l e n g t h ( x_ v a l s ) )
{

bot tom _ b o r d e r [ i , ] <�
c ( x_ v a l s [ i ] , y_ v a l s [ l e n g t h ( y_ v a l s ) ] )

}
l e f t _ b o r d e r <�
matrix ( rep ( 0 , ( l e n g t h ( y_ v a l s )�2) * 2 ) , nco l =2)
f o r ( i i n 2 : ( l e n g t h ( y_ v a l s ) �1))
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{
p r i n t ( i )
l e f t _ b o r d e r [ i �1 ,] <�
c ( x_ v a l s [ 1 ] , y_ v a l s [ i ] )

}
r i g h t _ b o r d e r <�
matrix ( rep ( 0 , ( l e n g t h ( y_ v a l s )�2) * 2 ) , nco l =2)
f o r ( i i n 2 : ( l e n g t h ( y_ v a l s ) �1))
{

r i g h t _ b o r d e r [ i �1 ,] <�
c ( x_ v a l s [ l e n g t h ( x_ v a l s ) ] , y_ v a l s [ i ] )

}
PRborder <� rbind (
t o p _ borde r , bo t tom _ borde r , l e f t _ borde r , r i g h t _ b o r d e r )
# s c a l e a p p r o p r i a t e l y
l o c a t i o n s <� as . matrix ( cur _ yr [ , 1 1 : 1 2 ] )
# s c a l e _ l o c a t i o n s f o r INLA
s c a l e d _ l o c a t i o n s <� l o c a t i o n s
s h i f t _x <� min ( PRborder [ , 1 ] )
s h i f t _y <� min ( PRborder [ , 2 ] )
# s c a l e _ f a c t o r <� max ( PRborder )
s c a l e _ f a c t o r <� 50000

s c a l e d _ l o c a t i o n s [ , 1 ] <� s c a l e d _ l o c a t i o n s [ ,1] � s h i f t _x#
s c a l e d _ l o c a t i o n s [ , 2 ] <� s c a l e d _ l o c a t i o n s [ ,2] � s h i f t _y#
PRborder [ , 1 ] <� PRborder [ ,1] � s h i f t _x
PRborder [ , 2 ] <� PRborder [ ,2] � s h i f t _y
PRborder <� PRborder / s c a l e _ f a c t o r
coords <� s c a l e d _ l o c a t i o n s / s c a l e _ f a c t o r

# c r e a t e a mesh f o r SPDE method .
m1 <�

i n l a . mesh . 2 d ( coords , l o c . domain=PRborder , max . edge = . 1 )

# o b s e r v a t i o n m a t r i x A
A <� i n l a . spde . make .A( prmesh , l o c = coords )
#PC p r i o r s
spde <� i n l a . spde2 . pcmate rn ( prmesh , a l p h a =2 ,
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p r i o r . range = c ( . 0 0 2 , . 0 1 ) , p r i o r . s igma = c ( . 3 , . 0 5 ) )

# i n l a . s t a c k f u n c t i o n
mesh . index <� i n l a . spde . make . index ( name= ’ f i e l d ’ ,
n . spde = spde $n . spde )
s t k . d a t <�
i n l a . s t a c k ( data= l i s t ( y=Y) ,A= l i s t (A, 1 ) , t a g =" e s t " ,
e f f e c t s = l i s t ( c ( mesh . index , l i s t ( I n t e r c e p t = 1 ) ) ,
l i s t ( l o ng = i n l a . group ( coords [ , 1 ] ) ,
l a t = i n l a . group ( coords [ , 2 ] ) ,
e l e v a t i o n = i n l a . group ( e l e v a t i o n ) ) ) )

# l i n e a r model w i t h SPDE random e f f e c t
f . s <� y ~ �1 + I n t e r c e p t + long + l a t +
e l e v a t i o n + f ( f i e l d , model = spde )
#INLA f i t w i t h non�d e f a u l t f i x e d e f f e c t s
r . s <� i n l a ( f . s , f a mi ly =" t " ,
data= i n l a . s t a c k . data ( s t k . d a t ) ,
v e r b o s e =TRUE,
c o n t r o l . p r e d i c t o r =
l i s t (A= i n l a . s t a c k .A( s t k . d a t ) , compute=TRUE) ,
c o n t r o l . f i x e d =
l i s t ( p r e c = l i s t ( e l e v a t i o n = . 1 , l ong = . 1 , l a t = . 1 ) ) )

References
Akaike, H. (1974), “A new look at the statistical model identification,” in

Selected Papers of Hirotugu Akaike, Springer, 215–222.
Aðalgeirsdóttir, G. (2003), “Flow dynamics of Vatnajökull ice cap, Ice-

land,” Mitteilungen der Versuchsanstalt fur Wasserbau, Hydrologie und
Glaziologie an der Eidgenossischen Technischen Hochschule Zurich.

Aðalgeirsdóttir, G., Gudmundsson, G. H., and Björnsson, H. (2000),
“The response of a glacier to a surface disturbance: a case study on
Vatnajökull ice cap, Iceland,” Annals of Glaciology, 31, 104–110.

Aðalgeirsdóttir, G., Jóhannesson, T., Björnsson, H., Pálsson, F., and Sig-
urðsson, O. (2006), “Response of Hofsjökull and southern Vatnajökull,
Iceland, to climate change,” Journal of Geophysical Research: Earth
Surface, 111.

111



References

Bakka, H., Rue, H., Fuglstad, G.-A., Riebler, A., Bolin, D., Illian, J.,
Krainski, E., Simpson, D., and Lindgren, F. (2018), “Spatial modeling
with R-INLA: A review,” Wiley Interdisciplinary Reviews: Computa-
tional Statistics, 10, e1443.

Banerjee, S., Carlin, B., and Gelfand, A. (2003), Hierarchical Modeling
and Analysis for Spatial Data, Chapman & Hall/CRC Monographs on
Statistics & Applied Probability, CRC Press, URL https://books.
google.com/books?id=A\_R4AgAAQBAJ.

Baum, L. E. and Petrie, T. (1966), “Statistical Inference for Probabilistic
Functions of Finite State Markov Chains,” Annals of Mathematical
Statistics, 37, 1554–1563, URL https://doi.org/10.1214/aoms/
1177699147.

Berger, J. O., Bernardo, J. M., and Sun, D. (2009), “The formal definition
of reference priors,” Annals of Statistics, 37, 905–938, URL https:
//doi.org/10.1214/07-AOS587.

Berliner, L. M. (1996), “Hierarchical Bayesian Time Series Models,” in
Hanson, K. M. and Silver, R. N. (editors), Maximum Entropy and
Bayesian Methods, Dordrecht: Springer Netherlands.

— (2003), “Physical-statistical modeling in geophysics,” Journal of
Geophysical Research: Atmospheres, 108, n/a–n/a, URL http://dx.
doi.org/10.1029/2002JD002865. 8776.

Berliner, L. M., Jezek, K., Cressie, N., Kim, Y., Lam, C. Q., and van
der Veen, C. J. (2008), “Modeling dynamic controls on ice streams: a
Bayesian statistical approach,” Journal of Glaciology, 54, 705–714.

Berrocal, V., Gelfand, A., and Holland, D. (2014), “Assessing exceedance
of ozone standards: a space-time downscaler for fourth highest ozone
concentrations,” Environmetrics, 25, 279–291.

Björnsson, H. (1986), “Surface and Bedrock Topography of Ice Caps in
Iceland, Mapped by Radio Echo-Sounding,” Annals of Glaciology, 8,
11–18.

Björnsson, H. and Pálsson, F. (2008), “Icelandic glaciers,” Jökull, 58,
365–386.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017), “Variational
Inference: A Review for Statisticians,” Journal of the American Statis-
tical Association, 112, 859–877, URL https://doi.org/10.1080/
01621459.2017.1285773.

Breiman, L. (2001), “Random Forests,” Machine Learning, 45, 5–32,
URL https://doi.org/10.1023/A:1010933404324.

112



References

Brinkerhoff, D. J., Aschwanden, A., and Truffer, M. (2016), “Bayesian
Inference of Subglacial Topography Using Mass Conservation,” Fron-
tiers in Earth Science, 4, 8, URL http://journal.frontiersin.
org/article/10.3389/feart.2016.00008.

Brynjarsdóttir, J. and O’Hagan, A. (2014), “Learning about physical
parameters: the importance of model discrepancy,” Inverse Problems,
30, 114007, URL http://stacks.iop.org/0266-5611/30/i=11/
a=114007.

Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., and Bowman,
L. N. (2005), “Exact solutions and verification of numerical models
for isothermal ice sheets,” Journal of Glaciology, 51, 291–306.

Calderhead, B., Girolami, M., and Lawrence, N. D. (2008), “Acceler-
ating Bayesian Inference over Nonlinear Differential Equations with
Gaussian Processes,” in Proceedings of the 21st International Con-
ference on Neural Information Processing Systems, NIPS’08, USA:
Curran Associates Inc., URL http://dl.acm.org/citation.cfm?
id=2981780.2981808.

Castillo, I. and Nickl, R. (2014), “On the Bernstein–von Mises phe-
nomenon for nonparametric Bayes procedures,” Annals of Statistics,
42, 1941–1969, URL https://doi.org/10.1214/14-AOS1246.

Chkrebtii, O. A., Campbell, D. A., Calderhead, B., Girolami, M. A., et al.
(2016), “Bayesian Solution Uncertainty Quantification for Differential
Equations,” Bayesian Analysis, 11, 1239–1267.

Conrad, P. R., Girolami, M., Särkkä, S., Stuart, A., and Zygalakis, K.
(2017), “Statistical analysis of differential equations: introducing prob-
ability measures on numerical solutions,” Statistics and Computing,
27, 1065–1082.

Cressie, N. and Wikle, C. K. (2011), Statistics for Spatio-Temporal Data,
John Wiley & Sons.

Cuffey, K. M. and Paterson, W. (2010), The Physics of Glaciers, Aca-
demic Press, 4 edition.

Diaconis, P. and Ylvisaker, D. (1979), “Conjugate Priors for Exponential
Families,” Annals of Statistics, 7, 269–281, URL https://doi.org/
10.1214/aos/1176344611.

Flowers, G. E., Marshall, S. J., Björnsson, H., and Clarke, G. K. (2005),
“Sensitivity of Vatnajökull ice cap hydrology and dynamics to climate
warming over the next 2 centuries,” Journal of Geophysical Research:
Earth Surface, 110.

113



References

Fowler, A. C. and Larson, D. A. (1978), “On the Flow of Polythermal
Glaciers. I. Model and Preliminary Analysis,” Proceedings of the Royal
Society of London. Series A, Mathematical and Physical Sciences, 363,
217–242, URL http://www.jstor.org/stable/79748.

Friedman, J., Hastie, T., and Tibshirani, R. (2001), The Elements of
Statistical Learning, volume 1, Springer series in statistics New York,
NY, USA:.

Geirsson, Ó. P., Hrafnkelsson, B., and Simpson, D. (2015), “Computa-
tionally efficient spatial modeling of annual maximum 24-h precip-
itation on a fine grid,” Environmetrics, 26, 339–353, URL https:
//onlinelibrary.wiley.com/doi/abs/10.1002/env.2343.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and
Rubin, D. B. (2013), “Bayesian Data Analysis, 3rd edition,” .

Genz, A., Bretz, F., Miwa, T., Mi, X., Leisch, F., Scheipl, F., and Hothorn,
T. (2019), mvtnorm: Multivariate Normal and t Distributions, URL
https://CRAN.R-project.org/package=mvtnorm. R package ver-
sion 1.0-10.

Glen, J. (1958), “THE FLOW LAW OF ICE A discussion of the as-
sumptions made in glacier theory, their experimental foundations and
consequences,” International Association Hydrological Sciences Pub-
lications, 47, 171–183.

Glen, J. W. (1955), “The creep of polycrystalline ice,” Proceedings
of the Royal Society of London. Series A, Mathematical and Physi-
cal Sciences, 228, 519–538, URL http://www.jstor.org/stable/
99642.

Golub, G. H. and Van Loan, C. F. (2012), Matrix Computations, volume 3,
Johns Hopkins University Press.

Gopalan, G. and Bornn, L. (2015), “FastGP: An R Package for Gaussian
Processes,” arXiv preprint arXiv:1507.06055.

Gopalan, G., Hrafnkelsson, B., Aðalgeirsdóttir, G., Jarosch, A. H., and
Pálsson, F. (2018), “A Bayesian hierarchical model for glacial dynam-
ics based on the shallow ice approximation and its evaluation using
analytical solutions,” The Cryosphere, 12, 2229–2248.

Gopalan, G., Hrafnkelsson, B., Wikle, C. K., Rue, H., Aðalgeirsdóttir,
G., Jarosch, A. H., and Pálsson, F. (2019), “A Hierarchical Spatio-
Temporal Statistical Model Motivated by Glaciology,” arXiv e-prints,
arXiv:1811.08472.

Gu, M., Wang, X., and Berger, J. O. (2018), “Robust Gaussian stochastic

114



References

process emulation,” Annals of Statistics, 46, 3038–3066, URL https:
//doi.org/10.1214/17-AOS1648.

Guan, Y., Haran, M., and Pollard, D. (2016), “Inferring Ice Thickness
from a Glacier Dynamics Model and Multiple Surface Datasets,” ArXiv
e-prints.

Gupta, A. and Kumar, V. (1994), “A scalable parallel algorithm for
sparse Cholesky factorization,” in Proceedings of the 1994 ACM/IEEE
Conference on Supercomputing, Supercomputing ’94, Los Alamitos,
CA, USA: IEEE Computer Society Press, URL http://dl.acm.org/
citation.cfm?id=602770.602898.

Håvard, R., Sara, M., and Nicolas, C. (2009), “Approximate
Bayesian inference for latent Gaussian models by using inte-
grated nested Laplace approximations,” Journal of the Royal Sta-
tistical Society: Series B (Statistical Methodology), 71, 319–
392, URL https://rss.onlinelibrary.wiley.com/doi/abs/
10.1111/j.1467-9868.2008.00700.x.

Higdon, D., Gattiker, J., Williams, B., and Rightley, M. (2008), “Com-
puter Model Calibration Using High-Dimensional Output,” Journal of
the American Statistical Association, 103, 570–583.

Higdon, D., Kennedy, M., Cavendish, J. C., Cafeo, J. A., and Ryne,
R. D. (2004), “Combining Field Data and Computer Simulations for
Calibration and Prediction,” SIAM Journal on Scientific Computing,
26, 448–466.

Hijmans, R. J. (2018), raster: Geographic Data Analysis and Mod-
eling, URL https://CRAN.R-project.org/package=raster. R
package version 2.8-4.

Hoerl, A. E. and Kennard, R. W. (1970), “Ridge Regression: Bi-
ased Estimation for Nonorthogonal Problems,” Technometrics, 12,
55–67, URL https://www.tandfonline.com/doi/abs/10.1080/
00401706.1970.10488634.

Hooten, M. B., Leeds, W. B., Fiechter, J., and Wikle, C. K. (2011),
“Assessing First-Order Emulator Inference for Physical Parameters in
Nonlinear Mechanistic Models,” Journal of Agricultural, Biological,
and Environmental Statistics, 16, 475–494, URL https://doi.org/
10.1007/s13253-011-0073-7.

Hudson, J. (1998), “Numerical Techniques for Conservation Laws with
Source Terms,” Technical report, Engineering and Physical Science
Research Council.

115



References

Hutter, K. (1982), “A mathematical model of polythermal glaciers and ice
sheets,” Geophysical & Astrophysical Fluid Dynamics, 21, 201–224,
URL https://doi.org/10.1080/03091928208209013.

— (1983), Theoretical Glaciology: Material Science of Ice and the
Mechanics of Glaciers and Ice Sheets, Mathematical Approaches to
Geophysics, Springer, URL https://books.google.com/books?
id=75kqTGNKV9wC.

Isaac, T., Petra, N., Stadler, G., and Ghattas, O. (2015), “Scalable and ef-
ficient algorithms for the propagation of uncertainty from data through
inference to prediction for large-scale problems, with application to
flow of the Antarctic ice sheet,” Journal of Computational Physics,
296, 348 – 368, URL http://www.sciencedirect.com/science/
article/pii/S0021999115003046.

Jarosch, A. H., Schoof, C. G., and Anslow, F. S. (2013), “Restoring
mass conservation to shallow ice flow models over complex terrain,”
The Cryosphere, 7, 229–240, URL https://www.the-cryosphere.
net/7/229/2013/.

Jeffreys, H. (1946), “An invariant form for the prior probability in esti-
mation problems,” Proceedings of the Royal Society of London Series
A, 186, 453–461.

Kennedy, M. C. and O’Hagan, A. (2001), “Bayesian calibration of com-
puter models,” Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 63, 425–464.

Kusnierczyk, W. (2012), rbenchmark: Benchmarking routine for R, URL
https://CRAN.R-project.org/package=rbenchmark. R package
version 1.0.0.

Lehmann, E. and Casella, G. (2003), Theory of Point Estimation,
Springer Texts in Statistics, Springer New York, URL https://
books.google.com/books?id=0q-Bt0Ar-sgC.

Liaw, A. and Wiener, M. (2002), “Classification and Regression by
randomForest,” R News, 2, 18–22, URL https://CRAN.R-project.
org/doc/Rnews/.

Lindgren, F., Rue, H., and Lindström, J. (2011), “An explicit link between
Gaussian fields and Gaussian Markov random fields: the stochastic
partial differential equation approach,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 73, 423–498.

Liu, F. and West, M. (2009), “A dynamic modelling strategy for Bayesian
computer model emulation,” Bayesian Analysis, 4, 393–411, URL

116



References

https://doi.org/10.1214/09-BA415.
Madsen, H. (2007), Time Series Analysis, Chapman and Hall/CRC.
Marin, J.-M., Pudlo, P., Robert, C. P., and Ryder, R. J. (2012), “Approx-

imate Bayesian computational methods,” Statistics and Computing,
1–14.

Minchew, B., Simons, M., Hensley, S., Björnsson, H., and Pálsson, F.
(2015), “Early melt season velocity fields of Langjökull and Hofsjökull,
central Iceland,” Journal of Glaciology, 61, 253–266.

Murray, I., Adams, R. P., and MacKay, D. J. (2010), “Elliptical slice
sampling,” Journal of Machine Learning Research W&CP, 9, 541–
548.

Neal, R. (2011), “MCMC Using Hamiltonian Dynamics,” Handbook of
Markov Chain Monte Carlo, 113–162.

Neal, R. M. (2003), “Slice sampling,” Annals of Statistics, 705–741.
Owhadi, H. and Scovel, C. (2017), “Universal Scalable Robust Solvers

from Computational Information Games and fast eigenspace adapted
Multiresolution Analysis,” ArXiv e-prints.

Pagendam, D., Kuhnert, P., Leeds, W., Wikle, C., Bartley, R., and Pe-
terson, E. (2014), “Assimilating catchment processes with monitoring
data to estimate sediment loads to the Great Barrier Reef,” Environ-
metrics, 25, 214–229.

Pálsson, F., Guðmundsson, S., Björnsson, H., Berthier, E., Magnússon, E.,
Guðmundsson, S., and Haraldsson, H. H. (2012), “Mass and volume
changes of Langjökull ice cap, Iceland, 1890 to 2009, deduced from
old maps, satellite images and in situ mass balance measurements,”
Jökull.

Payne, A. J., Huybrechts, P., Abe-Ouchi, A., Calov, R., Fastook, J. L.,
Greve, R., Marshall, S. J., Marsiat, I., Ritz, C., Tarasov, L., and
Thomassen, M. P. A. (2000), “Results from the EISMINT model
intercomparison: the effects of thermomechanical coupling,” Journal
of Glaciology, 46, 227–238.

Pralong, M. R. and Gudmundsson, G. H. (2011), “Bayesian estimation of
basal conditions on Rutford Ice Stream, West Antarctica, from surface
data,” Journal of Glaciology, 57, 315–324.

R Core Team (2016), R: A Language and Environment for Statistical
Computing, R Foundation for Statistical Computing, Vienna, Austria,
URL https://www.R-project.org.

Rasmussen, C. and Williams, C. (2006), Gaussian Processes for Machine

117



References

Learning, Adaptative computation and machine learning series, Uni-
versity Press Group Limited, URL https://books.google.com/
books?id=vWtwQgAACAAJ.

Robert, C. (2007), The Bayesian Choice: From Decision-Theoretic Foun-
dations to Computational Implementation, Springer Texts in Statistics,
Springer New York, URL https://books.google.com/books?id=
NQ5KAAAAQBAJ.

Rue, H. (2001), “Fast sampling of Gaussian Markov random fields,” Jour-
nal of the Royal Statistical Society: Series B (Statistical Methodology),
63, 325–338.

Rue, H. and Held, L. (2005), Gaussian Markov Random Fields: Theory
and Applications, CRC press.

Rue, H., Martino, S., and Chopin, N. (2009), “Approximate Bayesian in-
ference for latent Gaussian models by using integrated nested Laplace
approximations,” Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 71, 319–392.

Rue, H., Riebler, A., Sørbye, S. H., Illian, J. B., Simpson, D. P., and
Lindgren, F. K. (2017), “Bayesian Computing with INLA: A Review,”
Annual Review of Statistics and Its Application, 4, 395–421.

Salter, J. M., Williamson, D. B., Scinocca, J., and Kharin, V. (2019),
“Uncertainty Quantification for Computer Models With Spatial Output
Using Calibration-Optimal Bases,” Journal of the American Statistical
Association, 0, 1–24, URL https://doi.org/10.1080/01621459.
2018.1514306.

Sargsyan, K. (2016), Surrogate Models for Uncertainty Propagation and
Sensitivity Analysis, Cham: Springer International Publishing, 1–26,
URL https://doi.org/10.1007/978-3-319-11259-6_22-1.

Shen, X. and Wasserman, L. (2001), “Rates of convergence of posterior
distributions,” Annals of Statistics, 29, 687–714, URL https://doi.
org/10.1214/aos/1009210686.

Sigurdarson, A. N. and Hrafnkelsson, B. (2016), “Bayesian prediction of
monthly precipitation on a fine grid using covariates based on a regional
meteorological model,” Environmetrics, 27, 27–41, URL https://
ideas.repec.org/a/wly/envmet/v27y2016i1p27-41.html.

Simpson, D., Rue, H., Riebler, A., Martins, T. G., and Sørbye, S. H.
(2017), “Penalising Model Component Complexity: A Principled,
Practical Approach to Constructing Priors,” Statistical Science, 32,
1–28, URL https://doi.org/10.1214/16-STS576.

118



References

Solin, A. and Särkkä, S. (2014), “Explicit Link Between Periodic Covari-
ance Functions and State Space Models,” in Kaski, S. and Corander,
J. (editors), Proceedings of the Seventeenth International Conference
on Artificial Intelligence and Statistics, volume 33 of Proceedings
of Machine Learning Research, Reykjavik, Iceland: PMLR, URL
http://proceedings.mlr.press/v33/solin14.html.

Stan Development Team (2018), “RStan: the R interface to Stan,” URL
http://mc-stan.org/. R package version 2.17.3.

Sverrisson, Marteinn and Jóhannesson, Ævar and Björnsson, Helgi
(1980), “Instruments and Methods: Radio-Echo Equipment for Depth
Sounding of Temperate Glaciers,” Journal of Glaciology.

Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), 58,
267–288, URL http://www.jstor.org/stable/2346178.

Tierney, L. (1994), “Markov Chains for Exploring Posterior Distribu-
tions,” Annals of Statistics, 22, 1701–1728, URL https://doi.org/
10.1214/aos/1176325750.

van der Vaart, A. (2000), Asymptotic Statistics, Asymptotic Statistics,
Cambridge University Press, URL https://books.google.com/
books?id=UEuQEM5RjWgC.

van der Veen, C. (2013), Fundamentals of Glacier Dynamics, CRC Press,
2 edition.

Wasserman, L. (2010), All of Statistics: A Concise Course in Statistical
Inference, Springer.

Weertman, J. (1964), “The Theory of Glacier Sliding,” Journal of Glaciol-
ogy, 5, 287–303.

Whittle, P. (1954), “ON STATIONARY PROCESSES IN THE PLANE,”
Biometrika, 434–449.

— (1963), “Stochastic processes in several dimensions,” Bulletin of the
International Statistical Institute, 40, 974–994.

Wikle, C. K. (2016), Hierarchical Models for Uncertainty Quantification:
An Overview, Springer International Publishing, 1–26.

Wikle, C. K., Berliner, L. M., and Cressie, N. (1998), “Hierarchical
Bayesian space-time models,” Environmental and Ecological Statistics,
5, 117–154, URL https://doi.org/10.1023/A:1009662704779.

Wikle, C. K., Milliff, R. F., Nychka, D., and Berliner, L. M. (2001), “Spa-
tiotemporal Hierarchical Bayesian Modeling Tropical Ocean Surface
Winds,” Journal of the American Statistical Association, 96, 382–397.

119



References

Zammit-Mangion, A., Rougier, J., Bamber, J., and Schön, N. (2014),
“Resolving the Antarctic contribution to sea-level rise: a hierarchical
modelling framework,” Environmetrics, 25, 245–264.

120


