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Abstract 

The growing field of translational myology continually seeks to define and promote 

the generalizability of muscle research to clinical practice via optimizing the 

transition of a wide variety of investigative muscle assessment modalities. There 

are distinct challenges in all facets of this research, but understanding the 

physiological importance of mobility currently presents a strategic priority. The 

severe physiological consequences from the loss of mobility are experienced by all 

of us: whether induced by normative ambulatory challenges as we age or as sequela 

of lower extremity pathology. Indeed, a growing wealth of literature clearly 

implicates mobility loss with a plethora of comorbidities, leading to an increasingly 

deleterious quality of life and ultimately resulting in early mortality. The loss of 

mobility is concomitantly evidenced by the progressive decline of skeletal muscle 

size and quality – phenomena which altogether define muscle degeneration. 

Nonetheless, complete etiological definitions and methodological comparisons for 

the precise, non-invasive quantification of muscle degeneration remains 

disparately described in literature. 

This thesis focuses on the development, application, and assessment of novel 

methods in computational and mathematical modeling of medical images to 

quantify muscle degeneration and optimize our understanding of two mobility-

restorative procedures: Functional Electrical Stimulation and Total Hip 

Arthroplasty. Additional impacts of these methods are further explored in defining 

multimodal metrics for mobility analysis, characterizing the utility of 3D printing 

for surgical planning, modeling craniofacial electromyography, and computing 

pre-surgical periprosthetic fracture risk. Results from these investigations 

altogether present the efficacies and limitations of available image processing 

modalities, and introduce novel methodologies, such as nonlinear trimodal 

regression analysis of radiodensitometric distributions and computational 

interference fitting for periprosthetic femoral fracture analysis. Such analyses and 

perspectives are herein presented in both a theoretical and practical context. 

Standardizing computational modeling methodologies for medical image 

assessment in these contexts would allow for the generalizability of such research 

to the indication of respective compensatory targets for clinical intervention. 
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Útdráttur 

Vöðvafræði er vaxandi svið sem sækist að því að skilgreina og upphefja rannsóknir 

á vöðvakerfinu svo hægt sè að nýta þekkinguna í klínísku umhverfi. Þessu er náð 

fram með því að nýta þær rannsóknaraðferðir  við höfum nú þegar, til hins ýtrasta. 

Það eru fjölbreytilegar áskoranir og erfiðleikar framundan en það má ekki aftra 

okkur. Mikilvægi þess að skilja þörf líkamans fyrir hreyfingu er mikið 

forgangsatriði. Við höfum öll orðið vitni að því hvað gerist við fólk þegar 

hreyfigetan hverfur, hvort sem það er ellin sem kippir undan okkur  eða afleiðingar 

sjúkdóma, þá benda rannsóknir til þess að takmarkanir á hreyfigetu  dragi verulega 

úr lífsgæðum fólks og stuðlað að hærri dánartíðni. Minnkuð hreyfigeta er bókfærð 

með mælingum á stærð og gæðum beinagrindarvöðva - Hlutir sem skilgreina 

vöðvarýrnun. Engu að síður eru læknisfræðilegar skilgreiningar og óáreitandi 

aðferðum við öflun gagna ekki einhvað sem er vanalega lýst í greinargerðum 

Þessi ritgerð einblínir á þróun, nýtingu og mat á nýjum aðferðum sem hægt er að 

nota við öflun gagna og nýtingu þeirra við þær tvær aðferðir sem við höfum til að 

hjálpa fólki með minnkaða hreyfigetu: rafstuðsmeðferð og gerfiliðaraðgerð á 

mjöðm. Áframhaldandi afleiðingar þessara aðferða er kannað enn frekar í: 

skilgreiningar á fjölþátta tölfræði  greiningu á hreyfanleika, skilgreiningar á 

nýtingu þrívíddarprentunar við undirbúning skurðaðgerða, modeling craniofacial 

electromyography og tölfræðilegir útreikningar á brotlíkum beinstoðtækja fyrir 

aðgerð. Niðurstöður þessara aðgerða hafa leitt í ljós möguleika og hindranir 

tækninnar sem nú er notuð og hjálpað til við að auðga flóruna m.a. með 

nýstárlegum leiðum til að greina brotlíkur þegar beinagrindarstoðtækjum er komið 

fyrir við lærlegg sem er brotinn eða í brothættu. Að koma upp staðli fyrir aðferðir 

sem beitt er við módelgerð myndi flýta mikið fyrir því að þessar aðferðir finni 

praktísk hlutverk innan heilbrigðisstofnana. 
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Chapter 1 

Introduction 

 

The growing field of translational myology continually seeks to define and promote the 

generalizability of muscle research to clinical practice via optimizing the transition of a wide 

variety of investigative muscle assessment modalities. There are distinct challenges in all 

facets of this research, but understanding the physiological importance of skeletal muscle 

and its relationship with mobility presents a current strategic priority. Alterations in our 

mobility are experienced by all of us: whether induced by normative ambulatory challenges 

as we age or as sequela of increasingly-common pathology impacting lower extremity 

function. A growing wealth of literature clearly indicates that the loss of mobility presents 

severe physiological consequences – not only in deleterious changes to overall quality of 

life, but with a plethora of comorbidities that ultimately result in early mortality. Indeed, 

these effects of mobility loss are considerably evidenced by the progressive, deleterious 

changes in both skeletal muscle size and quality – phenomena which altogether define 

muscle degeneration. Whether diagnosed as sarcopenia, cachexia, or muscle degeneration 

from sequela of trauma, complete etiological definitions and methodological comparisons 

for the precise, non-invasive quantification of these phenomena remain disparately 

described in literature.  

In the clinical context, medical imaging remains a vital tool for diagnostic and clinical 

investigations. For the purposes of mobility assessment, though both the lenses of 

translational myology and surgical planning, the optimization and standardization of soft 

tissue assessment methodology has beet of particular importance. Indeed, visually simplistic 

medical imaging methods that can enable the noninvasive, high-resolution assessment of 

diseased or damaged tissues have implicated a wide variety of extant computational and 

mathematical modeling methods as preferential for investigation in this regard. However, 

the optimal employment of such methods remains debated, and reported techniques may not 

be sufficient for various avenues of research in translational myology or surgical planning. 

This thesis focuses on the development, application, and assessment of novel methods in 

computational and mathematical modeling of medical images to quantify muscle 

degeneration and optimize our understanding of mobility-restorative procedures, such as 
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Functional Electrical Stimulation and Total Hip Arthroplasty. Additional impacts of these 

methods are further explored in characterizing the utility of 3D printing for surgical 

planning, modeling craniofacial electromyography, and computing pre-surgical 

periprosthetic fracture risk. These investigations altogether present the efficacies and 

limitations of available image processing modalities, and results and perspectives are herein 

presented in both a theoretical and practical context. Standardizing computational modeling 

methodologies for medical image assessment in these contexts would allow for the 

generalizability of such research to the indication of respective compensatory targets for 

clinical intervention. 

Contributions:  

The remainder of this thesis is organized into eight chapters. Chapter 2 outlines the state of 

the art in translational myology and medical image analyses by computational and 

mathematical modeling, highlighting the scope and implications of current research. The 

main contributions of this thesis are then presented in Chapters 3 to 8, before concluding 

and outlining future directions in Chapter 6. The bulk of the main contributions in this thesis 

are derived from a series of publications in their respective topics; it is important to note 

that many of these results represent a cumulative and procedural line of investigation and 

some preliminary results are therefore further expanded in later, related chapters. It is to our 

belief that this representation does not invalidate the reported findings; rather, organization 

in this regard serves to inspire a thorough discussion of each topic, defining branching points 

for commensurate iteration in future or parallel works. The main contributions of Chapters 

3 to 8 are hereby summarized as follows: 

 Chapter 3: The focus of this chapter is on the introduction of the impacts of modern 

methods for X-Ray Computed Tomography image analyses in the contexts of 

investigating muscle degeneration, functional electrical stimulation, and total hip 

arthroplasty. The intent of the collection of these works is to inspire a discussion of 

extant assessment methods and therapeutic interventions currently investigated by 

the fields of translational myology and surgical planning. 

 Chapter 4: The focus of this chapter is on the definition and utility of our novel 

method for quantifying muscle quality by radiodensitometric attenuation 

distribution analysis using a combinatorial methodology involving nonlinear 

trimodal regression analysis and histogram iteration via a generalized reduced 

gradient algorithm. This method was tested first with three subjects with varying 

degrees of muscle quality defined by their respective conditions as a proof-of-

concept. Following this, the utility of the method was demonstrated with a cohort of 

total hip arthroplasty patients to investigate changes in periprosthetic muscle quality 

according to implant procedure and post-surgical normalization of ambulation. 

 Chapter 5: This chapter continues the investigation on the utility of the 

abovementioned nonlinear trimodal regression analysis method by assembling 

computed tomography radiodensitometric distributions, cross-sectional areas, 

average Hounsfield unit values, lower extremity function biometrics, and sarcopenic 

comorbidities in the AGES-II database of 3,162 aging subjects. This investigation 

highlights the specificities of each muscle quality metric as quantitative indicators 
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for sarcopenia. 

 Chapter 6: This chapter describes the novel assembly of biometric assessment and 

computational modeling modalities from a 100-patient total hip arthroplasty cohort 

as a first step towards creating patient-specific applications that rehabilitators and 

orthopedic surgeons can utilize for prescribing their respective surgical procedures. 

Along with outlining further utility of the previously-described nonlinear trimodal 

regression analysis method for muscle quality assessment, this investigation reports 

notable aspects of each patient’s dataset and compares these results across available 

subgroups of the cohort, highlighting the combinatorial utilities of each reported 

modality. 

 Chapter 7: The objective of the research presented in this chapter was to continue 

computational modeling discussion in the context of surgical support by describing 

a novel finite elements analysis methodology for patient bone mineral density and 

fracture risk evaluation before total hip arthroplasty surgery. The presented results 

highlight the feasibility of the methodology as a foundation to develop a clinical 

database for correlating bone mineral density obtained from computed tomography 

images with computational methods for assuming fracture risk and predicting patient 

outcomes. 

 Chapter 8: This chapter contains two additional computation and mathematical 

modeling applications across the aforementioned fields of translational myology and 

surgical planning. The first of these studies describes the recapitulation of 

craniofacial morphology as a crucial first step in developing an anatomical model 

for the isolation and removal of confounding low-amplitude craniofacial 

electromyographic signals from electroencephalography datasets. The second study 

reports the integration of 3D-printing process with diffusion tensor imaging for 

neurosurgical planning, in association with surgical navigation systems. 

Chapter 9 is a conclusion of the contributions made to this thesis. 
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Chapter 2 

Background 

 
2.1 The Biological Importance of Skeletal Muscle Quality 

and its Impact on Mobility and Mortality 

Muscle degeneration, characterized by the progressive loss of muscle mass, strength, and 

function, has been consistently identified as an independent risk factor for high mortality in 

both aging populations and individuals suffering from neuromuscular pathology or injury 

[1-7]. When associated with aging, this phenomenon is defined as sarcopenia, and while its 

prevalence has been readily linked with profound decreases in both physical activity and 

vitality, a precise, quantitative method for defining its diagnosis and etiology remains 

unknown [8-10]. However, despite the absence of a universally accepted definition, extant 

clinical literature commonly acknowledges the association of sarcopenia with the loss of 

both skeletal muscle structure and function, and many mechanisms have been implicated to 

govern these changes [11-20]. Regardless of origin, the loss of skeletal muscle mass, quality, 

and strength have all been directly correlated to eventual mortality in middle-aged and 

elderly adults [25, 26]. With a suggested prevalence of over 50% in individuals aged over 

80 years, it is clear that identifying a normative clinical definition for sarcopenia is of 

considerable importance in an increasingly aging world [7]. 

Regardless of the cause for muscle degeneration, it is clear that one of the key, deleterious 

impacts of the loss of muscle form and function is on personal mobility. Mobility is not only 

critical for maintaining one’s physical independence, but also for establishing normative 

biological function. Indeed, studying how changes in muscle mass and quality affect 

mobility is the prime motive for the field of investigative lower extremity function (LEF), 

which cites LEF as the main indicator for mobility as a clinical screening tool [27]. LEF is 

generally assessed by measuring both walking capacity (gait speed) and leg strength [28], 

and in the context of sarcopenia research, a growing wealth of literature cites regular 

physical activity in early life as being associated with increased mobility and delayed onset 

of sarcopenic muscle degeneration in old age [24, 27-31]. Many such studies additionally 

cite the association of diagnosed sarcopenia with decreasing LEF performance and induced 

mobility impairment, incident disability, and eventual mortality [24-26, 32, 33]. Such 

investigations solidify the critical importance of mobility and sarcopenia research to the 
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field of translational myology, as an intimate understanding muscle would further sharpen 

the potential biological mechanisms of muscle degeneration that govern changes in LEF 

biometrics. This chapter serves to outline many of such mechanisms and are herein 

discussed in detail; to begin, we will discuss these mechanisms in the context of sarcopenia.  

Sarcopenia was originally described only decades ago as the age-related loss of skeletal 

muscle mass, in association with decreases in both muscle strength and impaired mobility 

[34, 35]. Despite its prevalence being characterized by both high mortality and profound 

decreases in physical activity and overall quality of life, a normative quantitative definition 

for its diagnosis and etiology remains debated around the world [8-10, 34-36]. Nonetheless, 

investigations into the decline of muscle mass across the adult lifespan generally agree that 

the onset of sarcopenia typically occurs in the third to fourth decade of life [37, 38].  

However, the rates of loss in these metrics have likewise been shown to be highly variate: 

the loss of muscle strength being as high as 1-3% per year, whereas the loss of muscle mass 

seems to be comparatively less, at 0.4%–2.6% per year [39, 40]. While muscle biopsy 

remains the investigative gold standard for assessing these changes, the procedure remains 

highly invasive and thereby impractical for consistent, non-essential lifecourse assessment 

in aging individuals. Instead, a host of non-invasive biometric assessment modalities have 

been implicated for their comparative utility in this regard: from more clinically “exotic” 

modalities like dual X-ray absorptiometry (DXA) or bioelectrical impedance (BIA) [41] to 

traditional medical imaging modalitites such as magnetic resonance imaging (MRI) or X-

Ray Computed Tomography (CT) [13, 23, 36, 42-47]. Sections 2.5 through 2.7 further 

explore the respective utilities of mycological assessment with a host of such medical 

imaging modalities – notions which are further supported by publications embodying 

several chapters in this thesis. 

Aside from highly evident mycological assessment metrics, such as cross-sectional area and 

mass, additional changes to muscle occur that may be somewhat obfuscated. The most 

challenging of these phenomena to model is the non-contractile tissue infiltration of muscle 

volumes, known as myosteatosis, which has been consistently associated with muscle 

degeneration. Myosteatosis, in accordance with the loss of muscle size and mass, has been 

shown to be a direct metric for increased risk for frailty, disability, and eventual 

hospitalization [24, 29-31, 36]. Many investigations define a commensurate metric for 

myosteatosis as “muscle quality” – or the degree to which inter- and intramuscular fat tissue 

is present in a given muscle. While theoretically simplistic in definition, a standardized 

methodology for robust, quantitative muscle quality assessment remains undefined in 

literature; although, many mechanisms have been shown to influence muscle quality, 

including muscle architecture, fiber type, aerobic metabolism capacity, fibrosis and 

myoneural activation. Section 2.2 discusses these underpinning mechanisms in detail and 

highlights their potential for serving as metrics for muscle quality. 

In addition, the potential mechanisms that govern muscle degeneration in sarcopenia have 

likewise been identified within the context of neuromuscular pathology (cachexia) or injury. 

Indeed, the dramatic deleterious changes in muscle composition and function exhibited in 

these patients have been implicated as accelerated analogues to the changes evidenced in 

sarcopenia. This notion is especially evident in patients with spinal cord injury (SCI), as 

paralysis from lower motor neuron denervation drastically reduces skeletal muscle mass and 

increase local muscle adiposity and fibrosis [44, 45]. One extreme sequela of SCI is 

irreversible Conus and Cauda Equina syndrome. In this syndrome, ischemic and/or 
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infective complications may extend the traumatic damage of the spinal cord, thus inducing 

the permanent disconnection of leg muscles from the nervous system. Soon after SCI, leg 

muscle fibers below the spinal cord lesion become inactive (flaccid) and atrophic, and 

within only a few years they are progressively replaced by fat and fibrous connective tissues 

[44, 47-56]. Sections 2.3, 2.7, and 3.2 in this thesis delve into further details in this regard, 

detailing several representative case studies and applied mycological assessment methods. 

 

2.2 Mechanisms of Skeletal Muscle Degeneration   

Whether by sarcopenia, cachexia, or sequela of trauma, methodological comparisons for the 

precise, non-invasive quantification of the progressive reduction of muscle quality remain 

disparately described in literature. Standardizing a quantitative methodology for myological 

assessment in this regard would allow for the generalizability of sarcopenia research to the 

indication of compensatory targets for clinical intervention. In the following sections, we 

discuss the mechanisms underpinning changes in muscle quality and highlight the potential 

ways to utilize them as quantitative metrics for myological assessment. 

 
2.2.1    Size and Myofiber Contractility 

The overall size of a particular muscle is largely determined by both the number and type of 

myofibers present within the tissue volume [36, 49]. A common metric for overall muscle 

size involves the segmentation of medical image cross-sections to compute cross-sectional 

area: a technique further explored throughout this thesis (procedural details and impacts are 

discussed primarily in Section 2.5.2). It may be somewhat apparent, but it is nonetheless 

important to note that muscle cross-sectional area has a proven direct correlation with 

overall muscle strength [50]. However, as a note of caution: increases in cross-sectional area 

do not always imply an increase in muscle quality: indeed, increases in overall muscle size 

is obfuscated by increased body mass index (BMI) in normal to obese men and women [51]. 

As previously mentioned, this type of hypertrophy may be induced by the phenomenon 

known as myosteatosis: more commonly referred to the infiltration of inter and intra-

muscular adipose tissue [49]. However, if myosteatosis is not apparent from medical image 

analysis, and one observes hypertrophy due to the increased presence of lean muscle tissue 

(e.g., a recapitulate normalization of muscle quality), a commensurate rescue of muscle 

strength is observed: Sections 2.3 and 2.4 discuss the recovery of muscle strength via 

increased myofiber number from volitional exercise and a home-based therapy known as 

functional electrical stimulation. 

Aside from myofiber number, as previously mentioned, myofiber type is likewise an 

important defining characteristic of overall muscle strength. However, myological 

assessment in this regard is distinctly challenging, as the only reliable extant method for 

myofiber analysis is that of invasive muscle biopsy. Nonetheless, analysis in this regard 

remains of key interest and importance to the field of translational myology – especially in 

the investigation of muscle degeneration. Myofiber type can be broadly categorized based 

on the metabolic capacities of the muscle in-question, and three of such types are generally 

identified: types I, IIa, and IIb. Type I myofibers predominately generate energy via 

oxidative mechanisms dictating long, low-amplitude force generation, whereas both type II 

myofibers, type IIa and IIb, induce high-force, quick force production via non-oxidative 

pathways [52]. Indeed, observation of athletes whose muscle utilization is purposefully 
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stratified is an effectual method for understanding the broad impacts of having more or less 

of each fiber type. Elite endurance athletes’ muscles are comprised primarily of type I fibers, 

as long-twitch activation gives rise to specialized muscles capable of withstanding long-

duration contractile activities; whereas, conversely, type IIa and IIb fibers facilitate short-

duration, high-twitch force activities in elite strength/power athletes [53]. Regarding the 

relative size of each fiber type, type I fibers exhibit relatively small cross-sectional areas 

compared to type II fibers, but their oxidative capacity is significantly higher – a predictable 

notion, given their relative physiological roles [54]. In advanced age, there is still much 

debate as to whether observable shifts in myofiber type composition occur: some 

investigations suggest a reduced presence of type IIb fibers with age [55], while others report 

no significant changes, when controlling for other age-related changes in muscle utility [56]. 

Indeed, since type I fibers predominantly govern low-impact activities such as general 

ambulation and ordinary mobility tasks in daily life, it is reasonable to expect that shifts in 

fiber type towards predominantly type I fibers would follow from general disuse atrophy 

and denervation observed in aging populations. Likewise, skeletal muscle with a 

significantly-reduced proportion of glycolytic type II muscle fibers in-turn directly elicits 

diminished myofibril contractility – a phenomenon likewise observed in aging muscle [11, 

12, 52-56].  Unfortunately, longitudinal changes in myofiber composition in aging humans 

remain disparately present in literature – most likely due to the expense and aforementioned 

invasiveness of muscle biopsy [60-63]. Likewise, whether this shift has any impact on 

overall mobility and lower extremity function remains contested and limited by the 

availability of such investigations [12, 57-59]. If, in fact, myofiber contractile properties are 

indeed preserved with age, this would imply that such differences in skeletal muscle function 

are related to muscle fibre size or number rather than the more quasi-quantitative changes 

observed in studying myofibril contractile characteristics. 

While human research in these topics remains generally underperformed, many studies 

utilizing animal models report intriguing findings. As an example, the Ku80+/− knockout 

mouse, an animal displaying accelerated muscle aging while in the presence of normal 

postnatal growth, has shown an increased proportion of slow type I fibers with a decreased 

proportion of faster type II fibers in the soleus muscle, highlighting many of the 

aforementioned human sarcopenia studies involving muscle biopsy [60-63]. Conversely, 

however, a follow-up study identified that rhesus monkeys with characteristic sarcopenia 

exhibited shifts in both oxidative phosphorylation (a marker for mitochondrial metabolism) 

and fiber type composition away from type I fibers towards myosin heavy chain (MHC)-

rich type II fibers [64]. This oppositional shift has been likewise identified in human 

patients, but these changes were evidenced in generalized disuse atrophy rather than 

sarcopenia, wherein fiber size was shown to decrease in the transition from type I to type II 

fibers, yet with the maintenance of overall fiber number [60, 65-67]. With these studies in 

complete contrast, it remains clear that additional mechanisms in muscle degeneration may 

exist that encourage either type of fiber type transition. 

 
2.2.2    Architecture and Fibrosis 

In addition to observations regarding changes in myofiber type and contractility with age, 

the overall muscle architecture has likewise shown intriguing changes. Muscle architecture, 

broadly defined, is dictated by the overall arrangement of myofibers within the muscle 

volume, which may be evidenced by either parallel or pennated patterning. The degree to 
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which myofiber pennation is present, as well as the magnitude of relative pennation angles, 

has been shown to impact both fascicle length and total lean cross-sectional area [36, 68]. 

In aging, ultrasonography has been utilized to assess these effects in the gastrocnemius 

medialis muscle in elderly adults, showing decreases in both fascicle length and pennation 

angle with advanced age [69]. However, once again this notion seems to be different in 

relative disuse atrophy, as muscle degeneration from long-term bedrest has not shown 

significant changes in pennation angle [70]. Such contradiction in literature again reinforce 

the need for further longitudinal investigation in aging individuals with cachexia and 

sarcopenia. 

Alongside changes in muscle architecture, muscle fibrosis has been observed due to the 

relative impairment of muscle repair processes in both individuals with sarcopenia or muscle 

degeneration as a sequela of traumatic injury. Fibrosis, on a biological level, is characterized 

by the deposition of structural extracellular matrix (ECM) proteins (most predominantly 

collagen) instead of more functionalized proteins involved in the various complex signaling 

pathways of muscle repair, restoration, and normative function [71, 72]. The process of 

pathological fibrosis can be thought of as the final step in the biological procedure of injury 

repair, first involving inflammation, muscle degeneration, and ECM-depositing fibroblast 

proliferation [71, 72]. Furthermore, in the context of the aforementioned presence of 

myosteatosis in aging muscle, the commensurate presence of fibrosis has been observed [73, 

74]. Likewise, stem cells in the pre-myocyte lineage have been shown to transition from 

myogenic to fibrogenic lineage in aging mice [75]. While precise analysis of this transition 

requires tissue resection and intensive labwork, tissue fibrosis is detectable using traditional 

medical imaging modalities, such as CT, MRI, or ultrasound, to a degree; however, their 

traditional employment methods aiming to detect and diagnose pathological hepatic fibrosis 

may not be optimized for detecting minute changes associated with the onset of sarcopenia 

or cachexia. Indeed, the contribution of fibrosis to traditional metrics of muscle quality 

remains an essential target for further investigation. 

 
2.2.3    Aerobic Capacity 

As is true with the aforementioned characteristics of muscle, shifts in aerobic metabolic 

capacity are likewise key determinants of muscle quality and function. Myological aerobic 

capacity is defined as the maximal ability of muscle to utilize oxygen to meet the demands 

of the physical activity being performed. In this regard, aerobic capacity reflects not only 

the degree to which cardiovascular adaption for the transport of oxygen is exhibited, but 

also specific adaptations within muscle to utilize delivered oxygen. Many of these 

adaptations, such as mitochondrial DNA content, mRNA abundance, and adenosine 

triphosphate (ATP) production, have been shown to decrease along with increasing age in 

older adults [76, 77]. Evidently, aerobic capacity, as measured by skeletal muscle 

mitochondrial capacity and efficiency, has also been implicated as a strong predictor for 

general mobility, as measured by average gait speed in advanced age [78, 79]. For the 

purposes of further discussion, the effects of volitional exercise in early age and how this 

affects the onset of sarcopenia in older adults is further explored in Section 2.3 of this thesis. 

While many mechanisms have been identified for their utility in measuring skeletal muscle 

metabolism, whole-body glucose uptake presents a particularly useful metric. Due to 

skeletal muscle’s significant overall demand for glucose, even subtle decreases in muscle 

mass and consumption can lead to pronounced insulin resistance and equivocal reduction in 
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insulin-mediated glucose uptake [80, 81]. However, as in aforementioned metrics, evidence 

for the singular utility of insulin resistance as a direct metric for the onset and progression 

of sarcopenic or cachectic muscle degeneration remains contradictory, as many potentially-

obfuscating factors exist that could confound results, such as volitional physical fitness, 

BMI, and myosteatosis [19, 36, 81-84]. 

 
2.2.4    Myosteatosis 

In recent years, myosteatosis, or the aforementioned presence of inter- and intramuscular 

adipose tissue, has emerged as a primary target for muscle quality research. The increased 

muscle adiposity and decreased contractility associated with myosteatosis has been linked 

to mitochondrial dysfunction and impaired oxidative metabolism, which has been shown to 

secondarily induce metabolic insulin resistance and Type 2 diabetes mellitus in patients [29, 

85]. In general, non-contractile tissue infiltration, in accordance with a loss of muscle mass, 

confers an increased risk for frailty, disability, reduced mobility, and eventual 

hospitalization [30]. In addition to muscle infiltration, much of the detrimental 

consequences in myosteatosis additionally arise from the migration of subcutaneous adipose 

tissue to intermuscular barriers near or within vital organs [49, 86]. Indeed, a direct link 

between aging and increasing degrees of non-contractile tissue infiltration in thigh muscle 

has been observed [30, 31]. However, a precise definition for the onset of myosteatosis 

contains a number of often-interchangeable parameters, such as the direct measurement of 

ectopic adipose tissue under the muscle fascia, or the presence of low radiodensitometric 

attenuation values in muscle morphology measured by CT [36, 43]. MRI has likewise shown 

feasibility in correlating the direct measurement of muscle lipid droplet content, which has 

likewise been implicated as the most robust predictor of mobility in sarcopenia patients, 

compared to strength and quadriceps lean muscle cross-sectional area [87]. However, 

despite the superior soft tissue contrast in MRI and non-dependence on the use of ionizing 

radiation, CT has higher spatial resolution and is comparatively less obfuscated by technical 

variations in machine preparation and acquisition protocols [71, 88]. These notions are 

critical when attempting to discern diagnostically-relevant information from cross-sectional 

images of soft tissue, and further discussion on the comparative utility of CT can be found 

throughout this thesis, but primarily in Section 3.1. 

 
2.2.5    Neuromuscular Activation 

In addition to alterations in muscle composition and form, components of the neuromuscular 

system and its activation are likewise commensurate with the degeneration of muscle. 

Skeletal muscle fibers are organized into bundles known as motor units. Each motor unit is 

innervated by its own respective motoneuron which is activated by the translation of 

volitional motor cortex depolarization events transmitted through alpha motoneurons 

connected to the central nervous system (CNS) via the spinal cord. Throughout out lifespan, 

motor units naturally undergo phases of remodeling, denervation, and reinnervation. 

However, investigations estimating the number of motor units, measured by both surface 

electromyography (EMG) and isometric muscle strength, indicate that there is some degree 

of progressive denervation in advanced age [89, 90]. However, surface EMG signals are 

sensitive to the presence of adipose tissue; thus, changes in myosteatosis, which clearly 

follow the onset of sarcopenia as previously mentioned, could hamper the interpretation of 

EMG signals. For this reason, the general efficacy of EMG to discern these changes remains 
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debated. It likewise remains unclear whether the loss of motoneurons or the degradation of 

motoneural axons leads directly to the loss of overall muscle strength, as oftentimes adjacent 

motoneurons respond to the phenomenon by adjacent remodeling via terminal axonal 

sprouting, which in-turn rescues the innervation ratio of downstream motor units [91, 92]. 

It has likewise been shown that improvements in neuromuscular activation precede 

complimentary increases in muscle mass following resistance training, suggesting the 

importance of including neuromuscular activation as an essential metric for muscle quality 

[89]. Section 2.3 discusses further evidence from the positive, recapitulative effects of 

exercise on overall muscle health. 

In contrast, long-lasting, complete denervation of skeletal muscles has been shown to result 

in permanent lower motoneuron (LMN) death in patients with either acute damage, such as 

spinal cord injury (SCI), or pathological conditions, such as peripheral nerve lesions that 

result in severe muscular atrophy, apoptosis, and eventual myosteatosis in muscle tissue 

[93-104]. In either case, the progression of denervation in muscle fibers begins with 

spontaneous activation, i.e. fibrillation, and eventually leads to myocyte hypertrophy, 

ultrastructural changes of excitation-contraction coupling, and the gradual loss of 

excitability via external electrical stimulation using standard commercial electrical 

stimulators [104]. Finally, muscles enter severe conditional atrophy, wherein myofibers 

undergo internalization of coil subsarcolemmal myonuclei, resulting in the regrouping of 

tens of myonuclei at a time within the center of myofibers and the complete disappearance 

of long segments’ contractile apparatuses [105]. Eventually, muscle fibers all but 

completely disappear, while fibrous and adipose tissue accumulates [106]. Additionally, 

based on recent results from the CIR-myo-Bank of human muscle biopsies depicting LMN-

denervation, the time course of human skeletal muscle atrophy and degeneration has been 

shown to be longer than what was previously accepted in previous literature [106-108]. The 

mid and late phases in such degeneration present two very contrasting myofiber populations: 

beside those which are severely atrophic with internalized groups of myonuclei, large type 

II myofibers continue to be present four to six years following SCI [109]. With such a 

window of opportunity for designing methods for clinical intervention, it is key to continue 

developing robust, non-invasive quantitative methods for mycological assessment. 

 

2.3 The Effects of Volitional Exercise on Recovery from 

Muscle Degeneration  

Regular, volitional physical activity is a powerful natural stimulus to help retain or 

recapitulate aerobic muscle capacity, which can in-turn facilitate the maintenance of muscle 

function and mobility as we age [110]. Indeed, exercise has shown significant protective 

effects against the onset of sarcopenia in individuals who are aerobically active in their 

youth and middle years, as studies have elicited higher muscle strength in these individuals 

compared to their sedentary peers [36, 93, 106, 111, 112]. The focus of this section is to 

outline several recent investigations into the mechanisms and impacts of exercise on both 

the proctection and recovery from muscle degeneration. These studies altogether highlight 

evidence from elite atheletes and aging cohorts alike and further reinforce the importance 

of aerobic physical activity throughout one’s lifespan. 
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2.3.1    Exercise and Sarcopenia 

As previously outlined in this thesis, sarcopenia is a clinically-diagnosable phenomenon 

used to describe the loss of muscle mass and function as well as the reduction in force 

generation and mobility that occurs in elderly persons. Contributing factors include 

decreased nutrition and muscle disuse which can result in a severe decrease in both myofiber 

size and number, in particular a loss of the most powerful fast type muscle fibers. 

Concomitant effects in motor neurons are accompanied with reinnervation by surviving 

slow type motor neurons [95, 96]. Reduced mobility and functional limitations promote a 

sedentary lifestyle, leading to a cycle of worsening muscle performance, decreased quality 

of life, and a predisposition to increased risks of disabilities and mortality. In addition to a 

progressive loss of muscle mass, aging skeletal muscle also presents with a conspicuous 

reduction in myofiber plasticity and alterations in muscle-specific transcriptional 

mechanisms [105, 113, 114]. During the aging process, protein synthesis rates decrease and 

an increase in protein degradation follows [115, 116], affecting biochemical, physiological 

and morphological characteristics of muscle fibers [117]. It is generally accepted that a 

cumulative failure to repair damage is a primary cause of functional impairment in aging 

muscle [118-121] and that this failure to repair damage is related to an overall decrease in 

anabolic processes, which promotes the detrimental replacement of functional contractile 

muscle with fibrous tissue [117]. 

Volitional physical exercise can reverse these damaging processes [96, 122]. Interestingly, 

it has been shown that both acute and prolonged resistance exercise stimulates the 

proliferation of satellite cells in healthy sedentary elderly subjects [123-127], although a 

recent report suggests that, relative to younger people, the response is blunted in elderly 

people; this fact may possibly be explained by the reported increased levels of myostatin 

protein [128] (a negative regulator of muscle mass [129]) in the older individuals. 

Autophagy, a physiological process by which selected cell organelles and molecules are 

destroyed, is modulated by physical exercise and plays an important role in muscle 

homeostasis [130]. An increase in autophagy in the muscle of athletic people has been 

reported [131, 132], suggesting that exercise may activate an important system that 

detoxifies muscle cells. Another major factor that is associated with physical exercise is 

Insulin-like Growth factor 1 (IGF-1) [133]. IGF-1 production by muscle increases after 5–

10 min of moderate to high-intensity exercise [134-136]. The evidence suggests that training 

and regular exercise, by modulating functional autophagy, myokines (IL-6) and IGF-1 

expression, can increase muscle strength and attenuate the pathological signs of sarcopenia, 

thereby decreasing the risk of falls [137-139]. 

Volitional exercise likewise appear to reverse the effects of myosteatosis. As previously-

mentioned, myosteatosis is characterized by the presence of inter- and intramuscular 

adipose tissue and has emerged as a primary target for muscle quality research. This 

increased muscle adiposity has been shown to directly incur decreased myofiber 

contractility, mitochondrial dysfunction, and impaired oxidative metabolism, which has in-

turn been linked to secondarily-induced metabolic insulin resistance and Type 2 diabetes 

mellitus [29, 85]. However, after six months of aerobic exercise training and healthy weight 

loss in subjects aged 60 years, a recent investigation shows decreased intramuscular adipose 

tissue with concomitant improvement in fasting plasma glucose and glucose tolerances 

[140]. Conversely, four weeks of enforced sedentariness in healthy youn adults induced by 

unilateral lower limb suspension resulted in a 15-20% increase in myosteatosis and a 
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commensurate loss of lower limb strength, calculated after correction for the overall loss of 

muscle mass [141]. 

As discussed in previous sections, the increased presence of inter- and intramuscular adipose 

tissue confers fibrosis and further muscle functional impairment in advanced age. However, 

modest improvements in overall muscle architecture have been shown after four to five 

weeks of resistance training in older adults [142]. Likewise, such investigations have shown 

these changes to occur prior to muscle hypertrophy, suggesting the onset of a progressive 

recapitulative process [142, 143]. As such, the identification of non-invasive, as-home 

assessment techniques (a form of ultrasound, for example) for individual use would be of 

significant practical utility to older adults who would benefit from retaining normative 

muscle architecture. 

 
2.3.2    Decline in Muscle Power Evidenced from Aging Elite Athletes 

The rate of muscle power deterioration that occurs with aging has been studied with many 

different approaches [40]. A famous 1925 paper by Professor A.V. Hill stated that valuable 

information concerning the physiology and pathology of mobility may be found in the 

records of sport competitions [93]. Following this suggestion, we studied the performance 

of world record holding “elite” athletes in various track and field events and deduced 

relevant hints about the pattern of changes in muscle function from the noted decline over 

time [94]. Our results showed that age-related power decline typically commences after age 

30 and continues to decrease toward complete dysfunction, which, according to our models, 

is suggested at approximately the age of 110 years (Figure 2.1). 

 

Figure 2.1: Age-related decline of skeletal muscle power derived from world records of 

running, jumping and throwing events of elite athletes within different age classes [94]. 

Each progression is detailed by the individual profession record: light blue: 100m run; red: 

400m run; blue: long jump; gray: high jump; yellow: shotput, green: hammer throw.  
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What we believe is the most surprising finding of our investigation is that muscle power 

declines in a linear fashion and that this loss of power is a rather consistent 25% every 20 

years [94]. It is important to note that at any fixed time, each world champion is the best in 

his area, representing just one out of billions of people. Even these exceptional athletes 

(conceivably, with optimal genetic backgrounds, focused attitudes towards training and 

performing, and access to the best personal trainers) lose power drastically as they age. 

Thus, it appears that something in our genome dictates this decline, and nothing (as of yet) 

has been found to fully prevent it. Of course, billions of people have performance lines 

which fall under those of these elite athletes, but for healthy people, the overall trends 

reported here will, conceivably, be very similar: they will be at their best around age 30, and 

their performance will analogously decline relatively linearly until their death. Luckily, at 

seventy years of age, we still have roughly 50% of the power we had in our youth - more 

than enough for a “normal” lifestyle within a typical lifespan. The size and power of our 

muscles can go up and down several times in our lifetime in accordance with our nutritional 

and activity statuses, as well as with our general lifestyle and health; however, no matter 

how well we may fight aging, in the end, we will lose. Elite athletes may remain stronger 

than average individuals for decades, but they also are fighting against the same genome-

dictated life expectancy. 

 
2.3.3    Degeneration and Reinnervation in Average Individuals 

Age-related changes in muscle performance occur even in exceptionally active people – as 

previously noted by elite athletes [94]. To address the situation for non-exceptionally 

athletic persons, we also collected data and compared the muscles of young sportsmen with 

those of two groups of seniors, who were either sedentary persons or those with a lifelong 

history of a high activity level. The overall evidence here suggested that age-related muscle 

degeneration is strongly influenced by one’s lifestyle (activity level, in particular), and that 

the pehenomenon is also brought about by the loss of motoneurons and/or motor axons [40, 

95, 96]. Electrophysiological and histological measurements of skeletal muscle in older 

adults have detected reductions in the number of motor units and the presence of fiber type 

groupings (7-10) that are suggestive of denervation; these occurrences may contribute to 

aging-related muscle weakness and myofiber atrophy and loss [101-10]). In sedentary 

seniors, the vast majority of muscle fibers appear to co-express both slow and fast Myosin 

Heavy Chain (MHC) proteins, and some of these fibers are peculiarly small and angulated 

in appearance – likely a result of being denervated [96]. In contrast, there are larger muscle 

fibers in the senior amateur sportsmen, and most interestingly, there is a larger number of 

slow fiber type groupings in these muscles [96]. The “type grouping” is strong evidence that 

the grouped muscle fibers were “denervated” and then “reinnervated” by different 

motoneuron axons [96,105]; their number and distribution, however, do not suggest a 

process of muscle fiber transformation related to the kind of exercise performed by these 

very active seniors [95, 96, 105].  
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Figure 2.2: Denervation/reinnervation process starts with a checkerboard cluster of muscle 

fibers. a) Green fluorescence identifies fast MHC type fibers, while b) the red indicates 

slow MHC type fibers. Fibers that co-express both fast and slow MHC (circled in c) are 

either normal-sized or atrophic (white star). It is likely that these are fibers which have 

been denervated by axonal damage and then reinnervated by a single regenerated motor 

axon 

Figure 2.2 shows that the denervation/reinnervation process starts with a checkerboard 

cluster of muscle fiber types that are denervated by axonal degeneration and then 

reinnervated by a single regenerating motor axon. Incremental summation of 
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denervation/reinnvervation processes may occur to such a degree that whole muscle 

biopsies might exhibit very large, almost complete reinnervation of the constituting muscle 

fibers [96]. Furthermore, and more importantly, in the senior sportsmen, muscle fibers co-

expressing both slow and fast MHC are normal in size and often fill in the gaps that occur 

between clusters of slow myofibers. We suggest that these fibers were once of the fast type, 

but have been reinnervated by axons sprouting from nearby slow motoneurons [96]. 

Consonant findings are reported in a recent study of older obese adults, showing that five 

months of resistance training enhanced skeletal muscle innervation [106]. Furthermore, 

indirect evidence of the occurrence of background denervation in aging was reported from 

the electrostimulation of leg muscles in old rats. A stimulation protocol that maintained 

mass and force of denervated extensor digitorum longus muscles of young adult rats 

analogously maintained these properties in old rats during a two month period of age-

induced decline [107]. Contractile activity generated by the electrical stimulation eliminated 

age-related losses in muscle mass and reduced the deficit in force by 50%, providing support 

for the hypothesis that during aging, decreased contractile activity in fibers contributes to 

muscle atrophy and even more weakness. 

Why muscle fibers are preferentially reinnervated by axons sprouting from slow 

motoneurons with age is a critical question. Our opinion is that this is related to the fact that 

slow motoneurons are activated much more often per day than fast motoneurons [108] and 

that their frequent firing preferentially spares them [109]. Thus, greater activity maintains 

the slow-type motoneurons and muscle fibers. It is possible that as much as 1% of fibers 

lose innervation and are almost all reinnervated every month past the age of 30 [40]. This 

may not seem impactful, but over a time-span of 40 years, this 1% per month results in a 

substantial series of denervation/reinnervation events. Furthermore, it may, at least in part, 

explain why older people have slower muscles. Regardless, the fact is that sedentary senior 

people and lifelong, highly active seniors have different distributions of both muscle fiber 

diameter and type. The senior sportsmen who were highly active up to the day of the muscle 

biopsies had been active for as much as 40 years prior. This is majorly different from 

participating in sport activities for only 10 years during one’s youth. 

The idea that denervation occurs naturally with aging is based on evidence of reinnervation, 

and we may say this because in the normal muscle of young sportsmen, there are few to no 

type-groupings [137]. In a recent review, Hepple RT and Rice CL state that “ … changes 

… affecting the ageing motor unit manifest structurally as a reduction in motor unit number 

secondary to motor neuron loss, fiber type grouping due to repeating cycles of denervation-

reinnervation, and instability of the neuromuscular junction ... Regular muscle activation in 

postural muscles or through habitual physical activity can attenuate some of these structural 

and functional changes ...” [144]. We may underscore these statements because, when the 

type of lifelong sporting activity of seniors is correlated with the extent of type groupings 

detected, there is no relationship [96]. In our opinion, the key factor is the increased amount 

of activity, whether this is strength or endurance training. Our conclusion is that senior 

sportsmen have greater myofiber diameters, a lower percentage of denervated myofibers, 

and a higher number of type groupings because they are more physically active. It confirms 

that exercise has beneficial effects on age-related muscle degradation because it promotes 

muscle fiber reinnervation, preferentially rescuing slow type motoneurons. Indeed, opposite 

behavior, i.e., increased inactivity in aging, increases muscle weakness and atrophy and the 

percentage of fast type motor units in the disused muscles [40, 95, 96, 105]. Thus, activity 

not only maintains the muscle fibers, but also the motoneurons and/or their axon sprouting 
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potentials [40, 96, 106, 144]. 

 

2.4 Reviewing a Potential Restorative Muscle Therapy: 

Home-Based Functional Electrical Stimulation   

Unfortunately, elderly people may be unable to adequately participate in physical exercise. 

Therefore, an at-home, alternative approach to volitional physical exercise for improving 

muscle function is of particular interest to the field of aging research and translational 

myology. The focus of this section is to introduce the procedure known as home-based 

functional electrical stimulation (h-bFES) and initiate a discussion regarding its potential 

restorative utility in this regard. 

The investigation of h-bFES began with the design of a stimulator for neuromuscular 

electrical activation that was motivated to especially suit the requirements of elderly people 

with diminished motor skills [145]. As detailed in Kern et al. [115], initial h-bFES research 

involved exposing subjects to regular neuromuscular h-bFES training for a period of nine 

weeks. The outcomes reported here were threefold: subjects exhibited an increase in muscle 

strength, an increase in overall myofiber number, and, most importantly, an increase in 

percent composition of fast type-II fibers (which, as previously detailed in this thesis, are 

directly related to the power of skeletal muscle) [115]. Because insulin-like growth factor 1 

(IGF-1) is one of the signaling molecules activated during physical exercise, whether h-

bFES would induce an increase in expression of IGF-1 in these subjects, along with certain 

other known components of the IGF-1 downstream signaling pathways, was of prime 

interest. Indeed, we discovered that h-bFES increases expression of IGF-1 and markers of 

both satellite cell proliferation and extracellular matrix remodeling, and this increase in 

expression downregulated the expression of protein-degradative enzymes. These data 

demonstrated that h-bFES stimulates not only anabolic pathways, but downregulated 

muscle catabolism [115]. In this work, collagen expression was likewise explored, and it 

was reported that analogous myological remodeling was present during both volitional 

physical exercise and h-bFES. Indeed, three different forms of collagen (I, III and VI) were 

upregulated in electrically stimulated muscle, but these increases in collagen likely did not 

stimulate the process of fibrosis, as was shown by both morphological evidence and the 

expression of miR29, an important regulator of fibrosis [146, 147]. 

 
2.4.1    H-bFES: Materials and Methods 

A typical protocol for h-bFES is herein reported [115, 148]. In this and analogous 

investigations, patients were provided with stimulators and electrodes in order to perform 

h-bFES independently for five days per week as described [115, 148]. Large (180 cm2) 

electrodes (Schuhfried GmbH, Mödling, Austria), made of conductive polyurethane, were 

placed on the skin surface using a wet sponge cloth (early training) and fixed via elastic 

textile cuffs. As soon as the skin was accustomed to the necessary high current density, gel 

was used under the polyurethane electrodes to achieve minimal transition impedance. The 

electrodes were flexible enough to maintain evenly distributed pressure to the uneven and 

moving skin, thus providing homogeneous current distribution throughout the entire contact 

area. The particular h-bFES training strategy consisted of four combined stimulation 

programs, as reported in the literature [148-152]. 



Kyle Joseph Edmunds  17 
 

In this study, since the progression of recovery by h-bFES is inherently slow, patients were 

clinically evaluated every 12 weeks by physiatrists who progressively modified their 

training protocols according to the patient’s improvements [153, 154]. At two years, 90% 

of h-bFES trained subjects recovered/increased tetanic contractions and 25% stood during 

electrical stimulation in parallel bars. Minimal functional improvements were associated 

with long time elapses between SCI and initiation of h-bFES and, possibly lower 

compliance with training. In single case reports, low compliance substantially decreased the 

effects of training, yet in the same subjects the mass of thigh muscles increased when the 

patient resumed h-bFES [155-157]. Important additional benefits for the patients were the 

improved cosmetic appearance of lower extremities, the enhanced cushioning effect for 

seating, and the reduction of leg edema. Further outcomes of our studies are new 

noninvasive imaging procedures designed and implemented to objectively demonstrate the 

improvements of muscle mass and contractility, despite permanent LMN denervation [158-

160]. 

 
2.4.2    The Effects of h-bFES on Recovery from Sarcopenia 

Several longitudinal studies have shown that regular exercise may extend life expectancy 

and reduce morbidity in aging people [40, 110, 122, 133, 144]. Thus, we sought to compare 

the effects of regular exercise and h-bFES on senior people.  The Interreg IVa project 

recruited sedentary seniors with a normal life style who were trained for nine weeks with 

either leg press exercise [161] or h-bFES [145]. Before and after training, subjects were 

submitted to mobility functional tests, and muscle biopsies were harvested from the vastus 

lateralis muscles of both legs [114, 115]. Functional tests of trained subjects showed that 

leg press and h-bFES induced improvements of leg muscle force and of mobility [146, 162]. 

Morphometric and immunofluorescent analyses of muscle biopsies showed that h-bFES 

significantly increased the size of fast type-II muscle fibers (p<0.001), together with a 

significant increase in the number of Pax7 and NCAM positive satellite cells (p<0.005). 

However, a significant decrease in slow fiber type-I diameter was observed in the muscle 

of both training groups (p<0.001). Further, no signs of muscle damage and/or of 

inflammation were observed in muscle biopsies after either training. Altogether the results 

demonstrate that physical exercise, either voluntary (leg press) or induced by h-bFES, 

improves the functional performance of aging muscles; however, neither training can stop 

the aging process as we have learned from the Master Athletes. Further, the data show that 

electrical stimulation in this regard is a safe, home-based method that is able to counteract 

the atrophy of fast type muscle fiber, a biomarker of skeletal muscle aging [105, 114]. This 

is especially helpful to individuals unable to exercise adequately as a result of injury, illness, 

or lack of motivation and knowledge. 

In conclusion, physical exercise is partly able to counteract the negative effects of aging on 

skeletal muscle, and h-bFES, which can be applied to people who cannot or are reluctant to 

carry out normal physical activity, modulates factors associated with volitional physical 

exercise [117]. Altogether, these data may serve to aid in the design of rehabilitation 

strategies that seek to counteract muscle weakness and atrophy, delaying sarcopenic muscle 

degeneration in advanced aging. 
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2.4.3    The Effects of h-bFES on Recovery from Spinal Cord Injury 

A crucial question remains for patients suffering from these types of SCI: Is there anything 

that can be done in this extreme situation to prevent muscle degeneration? First, we should 

look at the effects of long-term denervation on human muscle (Figure 2.3). Four phases 

have been identified: 1) ultrastructural disorganization and loss of contraction in response 

to ES (within several months); 2) muscle atrophy (up to two years after SCI); 3) muscle 

degeneration with severe muscle atrophy (three to six years after SCI); and 4) loss of 

myofibers (more than three years after SCI).  

 

Figure 2.3: Permanent long-term denervation simulates premature aging in muscle. EU 

Program RISE: use of electrical stimulation to restore standing in paraplegics with long-

term denervated degenerated muscles (Contract no. QLG5-CT-2001-02191) [47]. 

At some point, after more than ten years of permanent denervation, there are almost no 

muscle fibers remaining in the thighs of these patients. Obviously, the consequences of this 

degree of muscle loss can be devastating, resulting in increased morbidity and mortality in 

these patients [148].  On the other hand, in the case of SCI with only upper motor neuron 

lesions (i.e. below the level of damage requisite to prevent muscle reflex activity or 

spasticity triggered by stimulation) muscle fiber disuse induces, at most, a 50% decrease in 

size, which remains stable for at least 20 years post SCI. Additionally, such patients exhibit 

a stable histochemical ATPase checkerboard pattern, although the slow-type fibers stain 

more lightly [163]. We have shown that h-b FES of permanently denervated muscles stops 

and reverses the degeneration of skeletal muscle tissue [48-56]. 2D Muscle Color Computer 

Tomography scans of thigh muscles in a transverse section (Figure 2.4) demonstrate the 

effect of h-b FES on long term permanently denervated leg muscles. 
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Figure 2.4: 2D Color CT evidence of recovery from permanent denervation (i.e., 

premature muscle aging) by home-based Functional Electrical Stimulation (h-bFES). 

Color scans of thigh muscles before (b–e) and after 2 years (g–j) of h-bFES. Each panel 

Cross-sectional area and the quality of quadriceps muscles in patients starting h-bFES at 

different time points after denervation (b 1.2; c 1.7; d 3.2; e 5.4 years) increased after 2 

years of home training (g–j, respectively). Moreover, the interstitial tissues that increased 

with post-denervation time (compare yellow, green and blue areas in b–e) decreased in the 

respective patient after 2 years of h-bFES (g–j, respectively) [47] 

Here, the relative amount of muscle increased in each patient after 2 years of h-b FES with 

a concomitant decrease in the abundance of interstitial tissues. Please note panels B to E 

(Figure 2.4), wherein we show that following SCI, there is progressive loss of muscle tissue 

(in red) with an increase in interstitial tissue (yellow, green, and blue represent fat, loose 

connective, and fibrous connective tissues, respectively). After two additional years of 

permanent denervation, but with FES treatment (Figure 2.4, G to J), the muscles began to 

resemble normal tissue. The most impressive evidence for the positive effects of FES on 

permanently denervated muscles is the extreme differences seen between panels E and J of 

Figure 2.4. Even after tissue degeneration was evident (at 5.4 years from SCI), two years of 

home based electrical stimulation substantially improved the percent of muscle content (red 

area). Indeed, the colors represent different tissues, computed on the basis of their 

radiodensity (i.e., the amount of attenuated x-rays, in Hounsfield Units). These results are 

quite astonishing, highlighting the utility of FES to greatly improve even badly degenerated 

muscle tissue. 

Indeed, if people are compliant with the use of h-b FES, then the atrophy of completely 

denervated leg muscles can be reversed. Despite difficulties with obtaining a response from 

denervated muscle to surface electrical stimulation, there are protocols involving this 

technique which defer the onset of the late phases of muscle degeneration. In particular, if 

FES training is started within the first year following SCI, the retention of muscle is much 

greater – even almost complete. If one induces many contractions daily in those muscle 

fibers, that are otherwise destined to die, these fibers will survive and contract for up to 

dozens of years, but only if one stimulates them with very long, high amplitude impulses 

delivered by large surface electrodes designed for stimulating denervated muscles. In short, 

appropriate electrical stimulation coupled with progressive training against increasing load 
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will recover tetanic stimulation during the first year of training [49-53] and may even rescue 

the ability to stand up and perform “walking in place” exercises during the second year of 

FES [54].  Commercial devices that are designed for electrical stimulation of long term 

permanently denervated muscles and are capable of producing the needed stimulation 

patterns are currently available. Therefore, this excellent therapy should become accessible 

to more people for the preservation of skeletal muscle. Thus, one must ask why FES is not 

more widely used and why it is considered ineffective for treatment of permanently 

denervated muscles by many specialists in the medical field. This may be due in large part 

to the fact that the generic words “electrical stimulation” alone are meaningless. For FES to 

be effective, one has to know which kind of electrical stimulation pattern to use and how 

much and how often it should be administered. That is, one must know how to correlate 

appropriate protocols with desired clinical effects. 

The RISE trial was designed to determine the effects of treatment on denervated muscle. 

The final report of this trial was published in the best of the neurorehabilitation journals, 

Neurorehabilitation and Neural Repair (2010) [54]. Afterward, researchers familiar with  

our publications ceased to criticize FES for use with denervated muscles. Indeed, research 

conducted over the past 50 years has demonstrated that muscle activity, not neurotrophic 

substances, is the most important factor in the regulation of size and of specific 

physiological and biochemical properties of muscle fibers. Application of this knowledge 

has led to considerable experimentation with chronic electrical stimulation as a possible 

clinical tool for the treatment of denervated muscles. Evidence accumulated from animal 

studies has indicated that direct electrical stimulation of denervated muscles can, to a 

significant extent, directly substitute reinnervation and preserve or restore the normal 

properties of these muscles. Appropriate stimulation parameters were critical for successful 

intervention, and the best results were obtained when the stimulation pattern resembled the 

differential firing pattern of motoneurons [109, 164, 165]. Nonetheless, even now, the vast 

majority of neurologists and physiatrists, who are not yet aware of those results, profess that 

denervated muscle cannot be maintained and certainly not regenerated [49, 56, 166]. 

Furthermore, based mainly on animal studies of the removal of polyneural innervation in 

developing muscle fibers [167], there is a common sentiment that FES may even hamper 

reinnervation despite the mounting evidence of the role of exercise in maintaining the 

integrity of the neuromuscular junction [168]. There are also claims that regular muscle 

activation may lose its efficacy with very advanced age, and that, at least in rodents, this 

exercise may exacerbate age-related motor neuron death [144].  Contrastingly, many 

pioneering and recent experiments are showing the contrary. Denervated muscles, 

stimulated electrically for four days prior to reinnervation, can preserve the structure of the 

endplate as well as accelerate recovery of normal function in reinnervated muscle fibers 

after eleven days of denervation [169]. Further discussion into the investigations into the 

utility of FES can be found in Sections 2.7.3, 3.2, and 3.3 in this thesis. 

 

2.5 Advanced Techniques in X-Ray Computed 

Tomograpahy Image Analysis 

In the clinical context, medical imaging remains a vital tool for diagnostic and clinical 

investigations. Of the many facets of the field, most current research aims to improve aspects 

of instrumentation design, data acquisition methodology, image processing software, and 
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computational modeling. Indeed, three-dimensional (3D) visualization of the internal 

anatomy provides valuable information for the diagnosis and surgical treatment of many 

pathologies, but every modality has its inherent limitations. For the purposes of clinical 

assessment in particular, visually simplistic imaging methods that can optimize the 

noninvasive, high-resolution assessment of diseased or damaged tissues have readily been 

identified as a strategic priority in clinical research, and extant imaging modalities have 

certainly been identified as preferential. However, their employment via standard 

methodology may not be optimal for various avenues of translational myology research. 

The implementation of traditional imaging modalities, in the context of a variety of novel 

case studies, can significantly impact this process of methodology optimization. 

X-Ray Computed Tomography (CT) remains one of the most often-utilized imaging 

modalities in the field of muscle research, as it allows for the precise recapitulation of soft 

tissue morphologies. Indeed, CT images are often utilized for both diagnostic and 

therapeutic purposes in a wide variety of medical disciplines. 2D slices from CT scans are 

of particular utility in identifying key changes in both subcutaneous and intramuscular fat 

content, selected from defined locations identified from morphological landmarks. As many 

studies suggest, increased adiposity in this regard can be directly linked to decreased mucle 

quality and performance, which in turn has severe physiological consequences. This chapter 

introduces important analytical concepts in CT image analysis that will be further expanded 

upon in later sections of this thesis. 

 
2.5.1    Radiodensitometric Attenuation: Distribution Matrices 

The principal objective of medical imaging is to recapitulate morphologies of interest as a 

digital image consisting of matrices of pixels or voxels. This chapter will focus on X-ray 

Computed Tomography (CT) – a modality whose image matrices consist of linear 

attenuation values that are calculated from the specific x-ray absorption characteristics of 

present tissue. These linear attenuation coefficients may then be linearly transformed into a 

scale known as the Hounsfield Unit (HU) scale [45, 47]. 

The HU scale is defined by referencing the radiodensity of distilled water at standard 

temperature and pressure, thereby defining water and “water equivalent” tissue as having a 

zero HU value [45, 47]. In this scale, the radiodensity of air under analogous conditions is 

defined as -1000 HU, and a change of one HU represents a deviation of 0.1% from the 

attenuation coefficient of water. Equation 1 defines the computation of any image element’s 

HU value according to its linear attenuation coefficient, µ. 

 

𝐻𝑈 =
𝜇𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙−𝜇𝑤𝑎𝑡𝑒𝑟

𝜇𝑤𝑎𝑡𝑒𝑟
× 1000     (2.1) 

When considering CT images of soft tissue, HU distributions of pixel/voxel values typically 

range from around -200 HU for fat, up to 200 HU including dense connective and muscle 

tissues [45, 47]. Further sections of this thesis will illustrate a precise, novel method for 

quantifying these HU distributions, but we will first describe 2D and 3D CT image 

segmentation, reconstruction, and qualitative analyses. These methods are commonly 

utilized in both a clinical and experimental context and are important tools for establishing 
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a baseline for improving our understanding of the mechanisms and implications of changes 

in muscle. 

 
2.5.2    Soft Tissue Segmentation and 3D Modeling 

The dramatic deleterious changes in muscle quality, as evidenced by qualitative CT image 

assessment, can be further captured by 3D image analysis and soft tissue segmentation. 3D 

images can be assembled in this regard by the careful slice-by-slice reassembly of a CT 

scan, which is typically automated by specialized algorithms in CT acquisition. Despite the 

procedure’s utility, the segmentation of particular morphologies from CT images is still 

relatively uncommon in a clinical context – but indeed, the procedure receives considerable 

attention in current muscle research literature. 

In CT, all tissue types elicit varying degrees of radiodensitometric attenuation, allowing for 

the precise segmentation of particular tissues of interest. The particular computational 

method described here is founded upon this critical HU thresholding criteria, which is used 

in-turn to define different tissues within the muscle. Further details and applications are well 

cited in literature and described further in this thesis [45, 47]. The main advantage of using 

this segmentation technique is that it provides the option to reconstruct and analyze entire 

muscles or muscle groups as a 3D model, which makes it significantly simpler for clinicians 

to diagnose and visualize discrete changes in any muscle architecture of interest.  

The first step in this segmentation process is to establish a threshold, which discriminates 

tissues of interest from the rest by their grey values, more specifically defined as either CT 

numbers or Hounsfield Unit (HU) values via the typical CT modality. Visually, this 

thresholding process allows pixels to be highlighted by colorization, thereby distinguishing 

pixels with certain HU values from others. 

The second segmentation tool which typically follows thresholding is known as region 

growing. Region growing is an image segmentation approach in which neighboring pixels 

of the current region’s boundaries are examined and added to the region class if no edges 

are detected (or, more generally, if some inclusion criteria is met). This process is iterated 

for each boundary pixel in the region, and an arbitrary pixel seed is then chosen and 

compared with neighboring pixels. This region is then grown from the pixel seed by adding 

neighboring pixels that are similar, increasing the size of the region. This entire process is 

continued until all pixels belong to a region. Thus, if there are several compact bones not 

connected directly to each other in the dataset, region growing enables the display of these 

bones individually although they indeed have the same threshold.  

 



Kyle Joseph Edmunds  23 
 

 
Figure 2.5: Example of 3D soft tissue segmentation utility. This patient was a 52 year old 

male who had suffered a right pelvic mass infiltration of the sciatic nerve, causing A) 

complete denervation and severe muscle degeneration of the rectus femoris muscle. B) 

Utilizing the same 3D muscle segmentation technique, clinicians were able to observe 

significant reinnervation and rescue of normative muscle architecture after one year of home-

based functional electrical stimulation [83]. 

As a preliminary example of the utility of this procedure in 3D, we see in Figure 2.5 a case 

study with complete and total muscle degeneration. This patient was a 52 year old male who 

had suffered a right pelvic mass infiltration of the sciatic nerve, which had to be partially 

sacrificed during surgery, and despite the progressive reinnervation of the thigh and 

posterior leg muscles using home-based functional electrical stimulation, complete 

denervation of the rectus femoris was once again confirmed after one year post-surgery [83]. 

Using 3D muscle segmentation and image reconstruction, one may readily isolate the rectus 

femoris as the muscle belly of interest and observe changes in its volume as a function of 

treatment, as depicted. Further details from this case study and others can be found in 

Sections 2.7.3 and 3.2 in this thesis. 

 
2.5.3    CT-Based Finite Element Modeling 

As a novel method to estimate the risk of intra-operative periprosthetic proximal femur 

fracture in Total Hip Arthroplasty, we herein define the CT-based finite element modeling 

procedure. This model relies on a pre-operative, calibrated CT scan of the patient, as well 

as knowledge of the volumetric data and the positioning of the broach and prosthesis. A 

geometry-based, finite element model is constructed by processing the densitometric and 

geometric CT information, assuming elastic-plastic constitutive behavior of the bone as 

function of the local density. Expansion of the broach volume is considered to resemble 

actual surgery. Distributions of stress and strain inside the femur are then computed, and a 

strain-based fracture risk factor is estimated in early post-elastic stage. 

In order to derive the mechanical properties of bone from the CT scan data, CT numbers or 
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HU values are first converted into bone densities. Then, bone material properties, in terms 

of Young’s modulus and strength, may be estimated from these data. The relationship 

between bone density and CT numbers is obtained using a calibration phantom with known 

material densities. This relationship may be considered linear in the range of interest and 

can be described by the following equation [446]: 

          
( )app phrs HU phri   P

       (2.2) 

where phrs and phri are the linear slope and rescale intercept.  

Moreover, the value of ash density,
( )ash P

, is related to apparent density, 
( )app P

, by 

means of the following equation [447]: 
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The relationship between bone density and bone elasticity has been deeply discussed [448-

450]. Most investigations report modeling the human femur as isotropic, omitting the 

orthotropic behavior if the inhomogeneous character of the bone was considered in the 

model [450-454]. As a consequence, non-homogeneous and isotropic behaviors of femurs 

are often assumed, giving each point P the following correlation between the Young's 

Modulus, E, and the local density,
( )ash ash  P

: 
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where E represents the actual local stiffness (MPa) at the generic point P . 

The choice of a very fine mesh in the FE-model ensures that structural gradients over the 

Representative Volume Element (RVE) result very small, avoiding conflicts in terms of the 

relationship between structural gradients and elastic symmetry [455]. 

Since values of the ultimate tensile stress of trabecular bone are approximately 79% of the 

compressive yield stress, and values of the ultimate tensile stress of cortical bone are 

approximately equal to 76% of compressive yield stress [455], symmetrical bilinear 

isotropic hardening material models have been adopted, neglecting this negligible 

difference. The yield stress, which corresponds with the mean yield strain, can likewise be 

set to 0.7% [455], while the tangent modulus can be set to five hundredths of the 

corresponding elastic modulus [456], depending on local density. Up to four hundred 

different materials may be implemented in order to mechanically describe the bone tissue 

behavior in the entire range of density. Poisson’s ratio of the bone is typically set to 0.4 

[455, 456]. THA prostheses may be modeled as isotropic with Young’s modulii equal to 

109,000 MPa, and their Poisson’s ratios may be set to 0.3. Finally, the model must be 

constrained in the distal part. 
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To simulate the actual press-fitting phenomenon (i.e. the interaction between prosthesis and 

femur), a volumetric expansion of the broach volume should be considered. This expansion 

may be obtained by applying a temperature gradient ΔT to the broach nodes (a temperature 

rise corresponds to a volume expansion): 

 

          3

V
T




 

         (2.5) 

where ΔV is the percentage difference between the broach and prosthesis volumes and   is 

the linear coefficient of thermal expansion of the broach, which was set to 
5 11.2 10x K 

. 

Finally, the difference between the ultimate strain and the yield strain of the bone ult Y  , 

expressed in terms of the ash densities, may be set equal to the following expression [447, 

455, 456]: 

 

          

0 0.433

( ) 15
( 0.00315 0.0728 ) 0.433

3

ash

ult Y

ash ash

if

if




 






 
  



P

   (2.6) 

When the resultant value of the total mechanical Von Mises strain in a given point P 
( )VM P

  

is less than the yield strain Y , the femoral element can be considered at a low risk of failure 

(i.e. safe); when
( )VM P

is between Y and ult
, the bone tissue has to be considered prone to 

fracture, and finally, when
( )VM P

is greater than ult
, the femoral element is at a high risk 

of fracture. 

 

2.6 Noninvasive Functional Assessment of Engineered 

Muscle Tissue and Implantable Myogenic Biomaterials: 

Reviewing Imaging Modalities 

Tissue engineering and regenerative medicine are rapidly growing fields of research that 

aim to use a multi-disciplinary approach to restore or replace tissues that have either been 

lost or damaged through trauma or disease. Although strategies for restoring function and 

structure typically vary considerably, most investigations involve the use of cells, 

biomaterial scaffolds, and various inducible factors which are either directly implanted in 

vivo or first incubated in bioreactors. The complex environments that these components and 

methodologies generate present unique challenges – not only in generating functional 

engineered tissue, but in monitoring and assessing outcomes both in vitro and in vivo. 

Of the many tissue types under investigation in these fields, the creation of new muscle 

through tissue engineering represents a promising alternative to the replacement of tissue 

after either severe damage or degeneration from various myopathies [170-173]. Surgical 

reconstruction in patients with significant muscle tissue loss typically utilizes transferred 

tissue from local and/or distant sites, which often results in significant local denervation, 

functional loss, and/or volume deficiency [174, 175]. The engineering of lost connective, 
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nervous, and muscular tissue on a patient-specific basis has been suggested by many to 

represent the future of muscle surgical reconstruction [176-178]. Likewise, tissue 

engineering approaches have been suggested for treating musculoskeletal myopathies such 

as spinal muscular atrophy or Duchenne muscular dystrophy (DMD) [179-181]. However, 

a common challenge remains in either approach to muscular regeneration – how best to non-

invasively assess the viability and function of engineered or extant muscular tissue, both in 

vitro and in vivo. This section outlines extant medical imaging modalities and their 

respective utilities in quantitative muscle or myogentic biomaterial analyses, as published 

in the European Journal of Translational Myology [71]. 

 
2.6.1    Extant Functional Assessment Methods and the Expanding Role of 

Imaging 

As is the common goal in every focus of tissue engineering, engineered muscular tissues 

should exhibit biomimetic functional properties and recapitulate native structure – 

specifically with regards to densely packed and uniformly aligned myofibers throughout the 

tissue volume [170]. As such, methods for assessing cellular viability, proliferation, 

biological integration, and/or differentiation are crucial to understanding the optimal tissue 

generation strategies. What is herein broadly referred to as the "functional assessment" of 

engineered muscular tissue and/or implantable biomaterials depends largely on the 

methodology employed in the particular investigation. In the case where large volumes of 

muscular, nervous, and connective tissue must be replaced, regeneration may not be possible 

by the exclusive transplantation of autologous cells – rather, a bioreactor-based approach 

may be prescribed, wherein large-volume tissue formation is initiated and controlled prior 

to implantation. In contrast, in considering general musculoskeltal degeneration due to a 

particular myopathy, regeneration might be optimally achieved through the injection of 

myoctyes or relevant multipotent progenitor cells, both with or without biomaterials and/or 

therapeutic factors, to stimulate the release of soluble signals, the formation of extracellular 

matrix (ECM), and/or the incorporation of new tissues. In either approach to regeneration, 

functional assessment of engineered cells or large-volume tissues remains a crucial step in 

quantitatively and non-destructively characterizing and monitoring the dynamic and 

complex interactions of the host site and engineered cells and/or large-volume muscular 

tissue [182]. Such assessments are crucial in understanding the optimal methods for rational 

control of muscular tissue structure and function via complex, temporally-dependent 

interactions between cells, biomolecules, and engineered scaffolds. 
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Figure 2.6: Types of functional assessment metrics for various tissue engineering studies. A) 

Proliferation of cardiomyocytes measured by immunohistochemical staining of 

phosphohistone H3 [184]. B) Muscle cells viability measured in cells stained with 

CellTracker™ Green and propidium iodide showing dying myocytes [305]. C) Periphery of 

implanted engineered muscle showing neonatal rat satellite cells and their myogenic 

predifferentiation via f-actin filamentous formation and integration with extant, CD31-

labeled endotheilial cells [306]. D) CT reconstructions of denervated thigh muscle that was 

electrically stimulated for growth, highlighting a possible modality for measuring 

myogenesis in engineered muscular tissue [312, 313]. E) Changes in redox ratios observed in 

adipogenic differentiation with TPEF along with characteristic, non-autofluorescent lipid 

droplets [219]. 

There are many standard analysis methods that are currently available for tissue engineers 

to utilize at both the individual cell and whole-tissue level, but all of them have their innate 

limitations (Figure 2.6). For example, metabolomics assays offer only a temporal snapshot 

of tissue physiological function – an assessment that likewise kills the construct in question 

[173, 183, 184]. MTT assays can be used as a quick and relatively simple assay for cellular 

metabolic activity (and, indirectly, viability) but is limited by the use of the tetrazolium dye, 

as only certain cells can participate in its reduction [185]. Other methods such as fluorescent 

immunohistological staining or tissue biopsy are labor intensive, invasive, and destructive; 

thus, multiple timepoints and endpoint studies must be performed and temporal correlation 

inferred. Rendering engineered cells unrecoverable is of particular concern in cell therapy 

investigations, where cells and implantable biomaterials are introduced to their hosts and 

tracked over time to assess both viability and cell fate [182, 186-189]. 
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Figure 2.7: Standard destructive methods for the functional analysis of engineered tissue. A) 

Method outlining the theory behind quantitative immunohistochemistry [30]. B) MTT assay 

for measuring mitochondrial reduction by the eventual formation of insoluble formazan 

[308]. C) Histological H&E staining of a renal tissue sample [309]. D) Graphical abstraction 

of metabolomics [310]. 

To alleviate these concerns, several noninvasive imaging techniques have recently been 

developed to obtain information on both cell metabolism and fate in engineered tissues [190-

198]. These methods exploit a number of intrinsic cellular phenomena, such as 

autofluorescence and tissue glycolysis. While many of these methods have shown 

considerable promise, it is important to comprehensively distill their respective benefits and 

limitations, as there exists a clear need for the development of an assessment platform that 

not only operates in real-time, but also operates at relevant tissue depths and may also be 

relevantly employed in vivo. 

High resolution imaging methods that can allow for noninvasive, real-time assessment of 

cellular and tissue-level function within engineered muscle could provide significant aid to 

the fields of tissue engineering and regenerative medicine. These methods have readily been 

identified as a strategic priority in other venues of tissue engineering research, and extant 

applicable imaging modalities have been identified; however, their employment via 

standard methods may not be optimal when considering advances in myological research 
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[199]. While researchers continue to address many of these concerns, there is yet relatively 

little literature offering a comprehensive assessment of modern approaches to noninvasive 

functional imaging of engineered muscle and myogenic biomaterials. The following 

sections seek to present these modalities to guide and promote current discussion on the 

development and evaluation of optimal methods of their employment. 

 
2.6.2    Two-Photon Excited Fluorescence 

As previously mentioned, non-invasive imaging techniques that take advantage of the 

endogenous fluorophores of cells have been in development for decades [200-203]. Many 

of these modalities have investigated the quantification of cellular and tissue metabolic state 

through fluorescent excitation of both the primary electron donor and receptor in cellular 

respiration: nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide 

(FAD), respectively. In its reduced form, NADH may be fluorescently excited at 350 nm 

(emission maximum at 460 nm), whereas its oxidized counterpart, NAD+, is non-

fluorescent [204]. Likewise, FAD has fluorescent excitation and emission maxima of 450 

nm and 535 nm, respectively [205]. During high tissue metabolic demand, the ratio of 

mitochondrial NADH to NAD+ decreases, resulting in a markedly reduced fluorescent 

profile which therein allows for the single-channel (350 nm) assessment of respiration 

within the mitochondrial matrix space [206, 207]. Alternatively, both a 350 nm and 450 nm 

excitation may be employed to obtain an approximation of the mitochondrial oxidation-

reduction ratio, or the ratio of the fluorescent intensity of FAD to that of NADH. 

Two-photon excited fluorescence (TPEF) is a promising method for the imaging of 

mitochondrial redox ratios in vivo, since it offers high resolution (approx. 400 nm) at 

relatively large tissue depths (approx. 1 mm) [205, 208, 209]. Two-photon excitation occurs 

when a fluorophore interacts with two photons whose energies are equal to half of the 

excitation energy of that particular fluorophore. These fluorophores can be the same target 

probed by single-photon fluorescence [210]. Both NADH and FAD can be readily excited 

by two-photon excitation at near infrared wavelengths (650-900 nm). Excitation 

wavelengths from 710-780 nm results in NADH excitation, whereas oxidized flavoprotein 

in FAD may be excited from 700-900 nm, and these wavelength ranges are both relatively 

safe, yet highly penetrative, due to reduced scattering and absorption as the excitation 

volume is inherently confined by its non-linear dependence on incident beam intensity [211-

213. As such, many recent investigations have employed TPEF of NADH and FAD to 

monitor metabolism of many tissue types, including cardiac, corneal, pancreatic, and brain  

[21, 213-221]. TPEF is a promising modality for the functional assessment of glycolysis 

and oxidative phosphorylation in engineered tissues due primarily to its non-destructive use 

of infrared light, as opposed to UV excitation otherwise inherent to single-photon excited 

fluorescence. However, despite TPEF being a relatively deeply-penetrating optical method, 

its maximum penetration depth of 1 mm is its greatest drawback when considering the 

assessment of deeper tissues. 

 
2.6.3    Photoacoustic Microscopy 

Photoacoustic Microscopy (PAM) is a hybrid modality combining principles of ultrasound 

detection and what is known as the photoacoustic effect. In PAM, pulses of near-infrared 

light are absorbed rapidly by a tissue and quickly converted to heat which leads to a transient 
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thermoelastic expansion. This expansion propagates as an ultrasonic wave and is eventually 

detected by an ultrasound transducer [222, 223]. Structural and functional information of 

various tissue morphologies can be readily determined, as photoacoustic absorption varies 

strongly with oxyhemoglobin content. As such, many recent studies have successfully 

resolved both the structure and oxygenation levels of complex tissues and vasculatures 

down to the capillary level [224, 225]. 

PAM has been suggested by many for its utility in tissue engineering applications. Due to 

its inherent ability to detect functional vasculature, PAM has already been used to resolve 

angiogenesis in tumors: a crucial metric in assessing the biological integration of engineered 

tissue [226-228]. Likewise, neovascularization and cellular distribution within implantable 

biomaterials, such as porous polymer foams [225-229], mesenchymal stem cell seeded 

hydrogels [230], and cell-free hydrogels containing the growth factor FGF-2 [231], have 

been monitored using PAM. Introducing contrast agents such as gold particles to engineered 

tissues, biomaterials, or injected cells has likewise proven successful for researchers 

investigating blood oxygen saturation levels and stem cell trafficking [232-234]. In general, 

PAM offers a number of benefits over other functional imaging methods, but its maximum 

depth of penetration (approx. 3 mm) and its dependency on local laser fluence might make 

longitudinal studies of deeper tissues prohibitively difficult to perform. 

 
2.6.4    Fluorescence-Lifetime Imaging Microscopy 

As previously mentioned, improvements in the field of multiphoton microscopy present a 

great opportunity for both high-resolution and long-term imaging of engineered tissues and 

biomaterials. Due to both its intrinsic 3D resolution and high depth of penetration, 

multiphoton microscopy allows for the investigation of a local environment in femtoliter 

volumes located deep within tissues [209, 235]. Investigations utilizing multiphoton 

microscopy take advantage of the autofluorescent nature of endogenous fluorophores, such 

as collagen, elastin, porphyrin, flavin, hemoglobin, serotonin, and as previously discussed, 

NADH and FAD [211, 213-221]. However, using emission wavelengths to discriminate 

between multiple fluorescent species within the same focal volume is majorly limited by 

their emission spectra overlap [211]. 

Fluorescence-Lifetime Imaging Microscopy (FLIM) is a promising imaging modality that 

has elicited many successes in monitoring the differentiation of stem cells [190, 197, 236, 

237]. Additionally, FLIM has been shown to have utility in separating NADH and NADPH 

emission spectra, aiding greatly in the study of the photochemistry of living tissues [192, 

219, 238, 239]. While FLIM has shown considerable flexibility and utility in a number of 

studies in the field of tissue engineering, there is still much discussion regarding the 

optimum FLIM analysis methodology. 

One such method, known as phasor analysis, has proven its utility as a fit-free and label-

free approach to probing cellular environments and identifying biologically relevant details 

regarding cell fate. Rather than fitting multiple lifetimes of one or multiple species, Phasor 

analysis represents each lifetime as a vector defined by its modulation and phase – thereby 

removing the need for a priori knowledge of each species' specific lifetimes [190]. This 

likewise means that relative concentrations of each species can readily be determined by 

simply ascertaining the ratio of their phasor representations. This method has recently been 
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employed in characterizing the different metabolic and differentiation states of both C. 

Elegans and human endothelial stem cells [190, 236]. However, for species that are close to 

each other on the phasor diagram, phenomena such as photo-bleaching and quenching could 

account for significant error in assessing relative species' concentrations. Nonetheless, as a 

non-invasive, non-destructive, and label-free imaging modality that can identify cellular 

differentiation and metabolic states, the phasor approach to FLIM is a promising imaging 

modality for future muscular tissue engineering applications. 

 
2.6.5    Optical Coherence Tomography 

Another potential strategy for the real-time, non-invasive, and label-free assessment of the 

structure and function of engineered tissue is optical coherence tomography (OCT). OCT is 

an interferometry technique that uses broadband near-infrared light at wavelengths greater 

than 800 nm, allowing for deeper tissue penetration (approx. 2000 mm) than previously-

mentioned near-infrared imaging modalities [239-242]. OCT has been utilized extensively 

to monitor cell location, migration, differentiation, and interaction with local biomaterials 

[243-245]. Thanks to its near-cellular level resolution, OCT has been employed in 

investigations that would have otherwise been prohibitively challenging with other imaging 

modalities, such as the study of structural changes in the retina [246], the 3D 

characterization of polylactate and chitosan scaffolds [247], and the kinetics of cell 

integration into collagen, agarose, and other hydrogels [241, 242, 244, 248, 249]. In 

addition, OCT has also been utilized to monitor the optical attenuation of cells that were 

cultured within agarose gels [250]. Other studies have utilized OCT to monitor macroscopic 

tissue regeneration via such processes as calcification in gelatin scaffolds and the growth of 

skin models [244, 248, 249, 251-254]. 

In many recent studies, OCT has been combined with other imaging or processing 

techniques to image cells and assess their deposition onto engineered tissue scaffolds in 

vitro. Additionally, the combination of OCT and Doppler velocimetry has revealed a 

technique that can image micron-level fluid flow, allowing for noninvasive and real-time 

imaging of engineered tissue rheological and elastic properties [244, 252]. Another type of 

OCT, known as Time Domain OCT, has likewise been utilized for the noninvasive imaging 

of the porosity of polymer foam scaffolds that have been seeded with aggregates of cells 

[255]. In this investigation, cell proliferation and extracellular matrix deposition could be 

monitored as a function of the allowable imaging depth and the degree to which porosity 

could be detected over time. In another type of OCT, whole-field OCT was employed, along 

with the use of magnetic beads as a contrast agent, to observe changes in cellular 

morphology within engineered bone tissue in vitro [255]. Likewise, OCT has been shown 

to have efficacy in combination with fluorescence imaging techniques to optimize cellular 

or material visibility within engineered scaffolds, enabling the investigation of how scaffold 

porosity and structural architecture can play a role in governing cell morphology [244, 249, 

256]. The overall adaptability of OCT to many different types of investigations, in addition 

to its being noninvasive, non-destructive, and label-free, makes it an encouraging imaging 

modality for use in future tissue engineering applications. 
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2.6.6    Positron Emission Tomography 

Position Emission Tomography (PET) is an extremely valuable clinical diagnostic imaging 

modality that aims to assess physiological function in situ in the human body in a non-

invasive manner. PET relies on the emission of a positron from a radioactive 

pharmaceutical, or radiopharmaceutical, which then decays into two coincident photons that 

can be collected and traced by imaging equipment. This technique has been especially useful 

in the diagnosis of many types of cancer, and has likewise shown efficacy in diagnosing 

hyperthyroidism and detecting localized inflammation through mapping the distributions of 

leukocyte [257]. While many radiopharmaceuticals may be used as Fluorine-18 positron 

emitters (Table 2.1), the most common by far is 18F-fluorodeoxyglucose (FDG) which, as 

a functional glucose analogue, may be used as a direct metric for cellular glycolysis – even 

from extremely low cell concentrations [258-560]. 

Table 2.1: Target pathophysiology of various 18F-containing radiopharmaceuticals [261]. 

Target 

Pathophysiology Radiopharmaceutical 

Metabolism 18F-fluorodeoxyglucose (18F-FDG) 

Cell Proliferation 

3’-deoxy-3’-18F-fluorothmidine (18F-

FLT) 

Gene Expression 

9-(4-fluoro-18F-3-

hydroxymethylbutyl) guanine (18F-

FHBG) 

PET imaging in accordance with the use of FDG could provide considerably more 

information when measuring the metabolic capacity of engineered tissue constructs. 

However, even the smallest commercially-available PET scanners, typically used in nuclear 

medicine departments in veterinary facilities, are excessively bulky to directly be 

repurposed for small tissue construct imaging. Additionally, average system resolutions for 

these scanners are typically on the order of 4.5- 5.0mm and would thereby be ineffectual for 

resolving important details in tissue engineered constructs any smaller than this size [174]. 

Design proposals therefore must include some method of controlling the resolution loss 

attributed to positron blur – the governing source blur in PET imaging. 

To ameliorate the reduction of resolution from positron blur, simultaneous imaging with 

PET and magnetic resonance imaging (MRI) have been proposed and have recently been 

utilized for small animal studies [262-264]. The presence of a unidirectional magnetic field 

was originally theorized in combination with PET imaging [265, 266], but its effects on 

image resolution have only recently been characterized (Figure 2.8) [182]. However, recent 

advances in the electronics involved with such a system have made it possible to fabricate 

a working device. In order to construct the proposed device, one would have to take into 

account issues with function due to the interferences between the PET imaging mechanism 

and the magnetic field. For instance, PET detectors are typically comprised of scintillation 

crystals coupled with photomultiplier tubes. The sensitivity of these tubes, along with other 
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electrical and radiofrequency components, towards an magnetic field would be a major 

constraint, but recently, silicon photomultipliers have been considered for use in 

combination with magnetic fields present from MRI imaging [267-269]. These 

photomultipliers have been shown to be able to resolve most of these issues, as silicon based 

avalanche photodiodes utilize very short optical fiber bundles, which are not affected by the 

presence of external electromagnetic field fluxes up to 4.0T. 

 

 
Figure 2.8: The potential function of a portable simultaneous PET/MR scanner. A) 

Theoretical design abstraction of a portable simultaneous PER/MR scanner. B) Example 

output of a small-animal PET/MR scan.142 C) Monte Carlo simulation comparing the 

positron pathlengths in traditional PET (blue) and simultaneous PET/MR (red), illustrating a 

greatly-increased resolution in PET/MR. 

Simultaneous imaging with PET and MRI combined modalities may become a powerful 

monitoring technique for the functional assessment of engineered muscular tissue – 

especially in regards to the characterization of engineered muscle glycolosis versus fatty 

acid metabolism. However, to accurately discern its utility in this regard, further research 

on the miniaturization of these scanners for use on engineered tissue constructs will be 

necessary. 

 
2.6.7    Bioluminescent Imaging 

Bioluminescent Imaging (BLI) is an imaging technique that relies on emitted light from the 

enzymatic generation of luminescence in living organisms. BLI typically requires the 

introduction of the luciferase gene from Photinus pyralis into a receptive cell line or tissue. 

The luciferase and luciferin reaction results in the emission of photons from 500-620 nm 

(blue-green to yellow-orange) wavelengths, with peak emission at 612 nm at 37C [270, 

271]. However, luciferase from the Renilla wildtype emits light from 460-490 nm [272, 

273]. Additionally, small genetic changes in these luciferase reporters' encoding DNA can 

be made to adjust their emission wavelengths without significant changes to the biochemical 
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reaction – thereby allowing for the potential to utilize multiple luciferase reporters in the 

same engineered tissue to simultaneously investigate multiple biological processes [214]. 

Aside from transfection, luciferase may be introduced to tissue via simple diffusion – a 

technique employed by many investigations to characterize perfusion in vascularized tissue 

constructs or live animal models [270, 274]. 

Many studies utilize BLI to track cells following implantation, providing detailed 

information on cell viability, migration, differentiation, and integration with surrounding 

scaffolds and/or tissues [257, 275, 276]. Additionally, stem cell viability, migration, and 

proliferation have been monitored for months using BLI on various engineered polymer 

scaffolds in both bioreactor and non-bioreactor culture conditions [277-279]. The potential 

for lengthy investigations has given rise to many current projects aiming to monitor 

temporal changes in not only cytotoxicity, but also cell gene expression, the progression of 

infection, and the growth and angiogenesis of tumors [280]. Investigations on the formation 

of bone in mice in vivo have likewise relied on luciferase transfection to gauge the degree 

to which bone formation from extant bone and introduced stem cell sources occurred [257, 

275, 281-283]. BLI has recently become a modality of great interest from within the tissue 

engineering community – primarily for its noninvasive, non-destructive, and longitudinal 

imaging of cells and engineered tissue, both in vivo and in vitro.  However, transfection of 

a luciferase reporter gene is invasive and potentially destructive to target cells and tissues, 

and spatial information is limited to two dimensions. Current BLI research calls for the 

development of optimum luciferase transfection or introduction strategies, along with an 

imaging system that allows for simultaneous 3D spatial acquisition. 

 
2.6.8    Micro X-ray Computed Tomography 

Micro X-ray Computer Tomography (μCT) is another promising imaging modality for the 

functional assessment of engineered tissue, as it allows for the non-destructive 

quantification of many aspects of engineered scaffolds, such as porosity, pore size, and 

interconnectivity [284-291]. Inferring cellular integration and interaction with its 

engineered scaffold is made possible in μCT, as images can be acquired sequentially over 

time with minimal negative effects to cells from X-ray dose [292, 293]. However, in order 

to achieve suffiecient X-ray absorption (contrast), soft tissues and biomaterials oftentimes 

need to be freeze-dried or kept under dry conditions instead of standard culture conditions 

– a notion which can significantly affect certain cell or tissue types. Due to this X-ray 

absorption issue, μCT is most commonly associated with the characterization of engineered 

bone tissue, as the comparatively high X-ray absorption of calcium eliminates the need for 

freeze-drying in mineralized tissues and hydrogels (Figure 2.9) [294, 295]. In these types of 

studies, μCT can allow for the noninvasive, non-destructive, and label-free assessment of 

mineralization as a function of time with minimal effect to the tissue or engineered construct 

being imaged [296, 297]. 
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Figure 2.9: μCT image and its corresponding 3D model of an implantable biomaterial 

scaffold. A) μCT image of an engineered bone construct with B), its corresponding 3D 

model. 

In studies involving μCT on-mineralized tissue, many techniques have otherwise been 

imployed to minimize the aforementioned negative effects of conventional μCT use. For 

example, contrast agents such as heavy metal, barium sulfate, or Microfil may be used to 

image anything from 3D scaffold architectures to blood vessel or neural tissue integration 

and neovascularization within engineered tissues [298-303]. High resolution μCT has also 

been utilized in vivo to identify stem cells that were labeled with magnetic nanoparticles 

following an intra-arterial transplant [304]. However, the use of contrast agents, dyes, or 

radioactive labels always results in the destruction of engineered tissue, so functional 

assessment of engineered constructs or post-transplant engineered tissues is limited to 

longitudinal studies assessing multiple timepoints from individual subjects or constructs. 

 

2.7 Applications of 3D Medical Image Modeling   
 
2.7.1    Total Hip Arthroplasty: Modeling Periprosthetic Muscle and 

Femoral Biomechanics 

As one of the most ubiquitously successful procedures in orthopedic surgery, Total Hip 

Arthroplasty (THA) aims to restore function and ameliorate pain in the hip by prosthetic 

replacement of diseased or damaged acetabula and femoral heads. The hip is a load bearing 

joint, constantly subjected to high loads which lead to the gradual degradation of articular 

surfaces. Over time, this degradation (arthrosis) can cause functional impairment and pain. 

Arthrosis can gradually lead to osteoarthritis of the hip or fracture-induced osteonecrosis of 

the femoral head or neck, necessitating the complete replacement of the joint and proximal 

femur. THA has been historically prevalent in countries with relatively high life spans, like 

the Nordic community [312-314]. With increasing life expectancies in many populations 

worldwide, THR rates have increased considerably over the last few decades and are 

projected to continue to increase in the future [315]. However, despite its increasing 

prevalence, annual reports from national arthroplasty registries indicate differences in 

choices of implant brands, fixation methods, and overall prosthetic survival [316-318]. 
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While THA remains one of the most efficacious surgical modalities for both reducing 

patient pain and restoring hip function, post-operative complications and revisions are 

relatively common, primarily due to localized fracture or periprosthetic unloading [319, 

320]. These notions altogether necessitate the development of innovative and collaborative 

approaches to THA planning. 

About 80% of people who undergo THA report improved mobility, normalized ambulation, 

and an overall reduction in periprosthetic pain. However, even after full recovery, gait 

asymmetries may be present, typically caused by prosthetic length discrepancy, articular 

surface degradation (arthrosis), variability in rehabilitation protocol, or periprosthetic 

changes in stress distributions, as dictated by the type of implant [321]. Since there exists 

much inherent variance in repetitive load amplitudes subjected to each individual’s hip, the 

degree to which these conditions may affect an individual post-THA can vary considerably. 

Current surgical philosophy dictates that a non-cemented prosthesis should only be used if 

a patient's femur can withstand both the forces incurred by compressive stresses during the 

press-fitting and the functional loading after the operation. Additional consideration is given 

to whether eventual bone ingrowth can be both predictable and sufficient. Unfortunately, 

there is no straightforward approach to make this assessment, since quantitative pre-

operative bone quality measurement is not performed, despite knowing that it would have a 

positive influence on the success of the operation. Additionally, the use of extant literature 

resources is problematic since large studies comparing non-cemented to cemented THA 

have shown contrasting outcomes [322]. Instead, orthopedic surgeons must carefully 

evaluate each particular patient's individual situation and choose an optimal protocol based 

upon acquired or shared intuition – a difficult task for novice surgeons. Initially, both the 

patient’s age and gender are taken into account, since bone mineralization decreases with 

aging and differs between men and women [323, 324]. In general, cemented implants are 

more frequently used for older, less active people and/or people with weak bones, while non 

cemented implants are more frequently used for younger and/or more active people. 

However effective these generalizations may be in prescribing THA procedures, there may 

be many other relevant differences between individual patients; thus, the development of a 

patient-specific, quantitative methodology is needed. 

After THA, patients' gaits typically exhibit improvement, but still exhibit asymmetries even 

after full recovery [325-329]. However, even with the continued development of gait 

analysis techniques there is a general lack of understanding regarding joint motion of the 

lower extremities in the THA population, which can make certain patient's rehabilitation 

challenging and lengthy. The densities of the quadriceps muscles in patients undergoing 

THA have been shown to correlate with femoral bone mineral density. Both bone and 

muscle densities tend to be lower in the operative side [330] which may be caused by the 

patient's shielding the involved side due to pain. However, muscular strength tends to 

increase substantially on this side following the first post-operative year [331]. 

Indeed, many recent investigations have involved a variety of assessment metrics to observe 

and characterize periprosthetic THA pathophysiology. Results from such studies not only 

identify preoperative factors that may affect surgical outcome, but likewise hold promising 

utility in assessing the efficacy of post-THA rehabilitation. For example, correlating bone 

mineral density (BMD) with factors affecting osseointegration, osteonecrosis, and primary 

osteoarthritis have been of particular interest in current literature [332-336]. Other 
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investigations report developing computational models to recapitulate forces experienced in 

THA fixation and postsurgical ambulation – most notably utilizing finite element analysis 

(FEA) [335-339]. Of these investigations, interference fitting via principal strain 

computational modeling has been particularly identified as a promising tool for estimating 

bone mineral density (BMD), computing ultimate bone strength, and predicting the 

propagation of proximal femoral fractures [338, 339]. Additional investigative metrics 

include local electromyography (EMG) to show peripheral neurogenic processes [340-342], 

functional gait analyses to better understand the efficacies of different rehabilitation 

methods [344–345], and radiodensitometric profiling to assess discrete changes in local soft 

tissue composition [45, 346, 347].  

While many of these assessment tools may indeed characterize specific effects of THA 

prosthetic fixation, there is no clear indication of their utility in a clinical context. Indeed, 

before surgery, prosthetic fixation methods are primarily determined by an orthopedic 

surgeon’s own experiences and quasi-qualitative generalizations of suggested indicators for 

bone quality (gender, age, and qualitative assessment of CT images) [348]. Likewise, 

postsurgical rehabilitation methods tend to follow generalized guidelines rather than operate 

on a quantitative, patient-specific level [345]. The prevalence of periprosthetic failure and 

discrepancies in patient outcome together necessitate the development of biometric gold 

standards for THA assessment. Chapters 6 and 7, along with Sections 3.4 and 8.3, detail 

investigations into complimentary methodologies for pre- and post-surgical THA 

assessment and offer a complete discussion on their implementation in a clinical context. 

 
2.7.2    Source Localization and Electroencepholography 

Of the many obfuscating phenomena that have been identified and studied in the field of 

electroencephalography (EEG), craniofacial eletromyographic (EMG) artifacts remain of 

great concert in clinical research applications [349-351]. The notion that craniofacial EMG 

activities contaminate EEG data is not a new concept, but its urgency has only become 

apparent after a study by Whitham et al. in 2007 suggested that most scalp EEG data above 

20 Hz might simply be recorded EMG activity [350]. Indeed, results from many recent 

investigations have further contributed to this notion and thereby further necessitate the 

development of reliable techniques for characterizing and isolating EMG artifacts [349, 

352-356]. 

Not all noise from EMG activity is difficult to disseminate from EEG data. Any large-

amplitude muscle activity is readily visible in any EEG data set and can therefore be easily 

removed with the use of signal processing techniques such as filtering, spectral analysis, 

and/or Principle or Independent Component Analysis (ICA) [357-366]. On the contrary, the 

efficacy of many of these signal processing techniques is questionable and unreliable in the 

separation of low-amplitude EMG activity from EEG data, as these two signals may be of 

comparable amplitude [355, 356]. Aside from amplitude, the frequency spectra of EMG and 

EEG can overlap – a phenomenon which is particularly prevalent in scalp EEG, whose 

ripple frequency measurements are typically between 80-250 Hz may be significantly 

affected by high-frequency craniofacial EMG artifacts [367-369]. 

In order to generate an accurate and clinically-relevant model of the signal contribution of 

craniofacial EMG, detailed morphological information must likewise be known. The use of 

segmented magnetic resonance imaging (MRI) has previously been developed to model the 
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electrical behavior of the human brain under normal and pathological conditions [291]. This 

imaging modality can be utilized to accurately characterize extant coupled non-linear 

physical mechanisms and how they impact the propagation of EMG and EEG signals 

through the inhomogeneous media of the head [370]. In the generation of a 3D model from 

segmented MRI images, most major tissue surfaces can readily be identified in each slice 

[291, 371, 372]. 

In general, the successful application of modern EEG signal processing methods requires a 

detailed knowledge of both the topography and frequency spectra of low-amplitude 

craniofacial EMG. This information remains limited to clinical research, and as such, there 

is no known reliable technique for the removal of these artifacts from EEG data. Section 8.1 

of this thesis outlines a preliminary investigation of both craniofacial EMG frequency 

spectra and 3D MRI segmentation that offers insight into the development of an 

anatomically-realistic model for characterizing these effects. Such a model then can be 

applied in a clinical setting to excise low-amplitude EMG activity and ultimately help to 

extend the use of EEG in various clinical roles. 

 
2.7.3    False-Color CT: Clinical Impact of Modeling Segmented Tissue 

Morphologies 

The ever-expanding field of medical imaging utilizes a wide variety of techniques and 

processes to produce non-invasive images of various internal and external tissue 

morphologies. In the clinical context, medical imaging remains a vital tool for diagnostic 

and clinical investigations. Of the many facets of the field, most current research aims to 

improve aspects of instrumentation design, data acquisition methodology, image processing 

software, and computational modeling. Indeed, three-dimensional (3D) visualization of the 

internal anatomy provides valuable information for the diagnosis and surgical treatment of 

many pathologies, but every modality has its inherent limitations [373, 364]. For the 

purposes of clinical assessment in particular, visually simplistic imaging methods that can 

optimize the noninvasive, high-resolution assessment of diseased or damaged tissues have 

readily been identified as a strategic priority in clinical research, and extant imaging 

modalities have certainly been identified as preferential. However, their employment via 

standard methodology may not be optimal for various avenues of myological research. The 

implementation of traditional imaging modalities, in the context of a variety of novel case 

studies, can significantly impact this process of methodology optimization. 

Despite being widely used as an imaging modality in cardiology, the false color approach 

to spiral CT is typically ignored in clinical imaging-based evaluations of skeletal muscle 

tissue [373, 374]. Despite this notion, the use of false-color CT in the context of clinical 

myology has shown great utility – indeed, many of the investigations reported in this thesis 

utilize this approach to visualize and quantify soft tissue compositions in a host of 

investigative contexts. Further details in this regard are widely available throughout the 

forthcoming chapters. 

To illustrate the false color methodology and introduce its utility, we may begin here with 

an example of a typical spiral CT scanning protocol where 3D image data are gathered by 

scanning a patient’s lower limbs with a spiral CT machine. As evidenced by Figure 2.10, a 

typical leg scan starts above the head of the femur and continues down to the knee joint, 

covering both legs with one scan. Slice increments are typically set to 0.625mm, resulting 
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in a total of about 750–900 CT slices, depending on the patient’s size. Each slice consists 

of 512x512 pixels, and each pixel has a radiodensitometric gray value in the HU scale 

containing up to 4096 values, meaning that pixels may be represented by a 12 bit value. 

This dataset is effectively a complete 3D description of the particular morphological 

structure, including all tissue types. The size of the volumetric element (voxel) in the dataset 

is about 0.7 mm3; therefore, the CT number assigned to the voxel represents, in effect, an 

average of different tissue elements, present within a single elementary volume. For 

instance, in the case of normal muscle tissue, such a voxel would contain the transverse 

section of 20 to 50 muscle fibers, which is approximately one tenth of the volume accessed 

by a typical muscle needle biopsy [55, 158]. 

Throughout many of the investigations discussed in this thesis, results of this microstructural 

analysis are presented both as the percentage of three different soft tissues (muscle, loose 

and fibrous connective tissue, and fat). In our example here, these tissues are depicted in the 

total volume of the Rectus femoris muscle as a 3D muscle reconstruction, displaying the 

first cortical layer of voxels that describes the muscle epimysium (Figure 2.10). 

 

 

Figure 2.10: 3D false-color CT reconstruction of a Rectus femoris muscle from a healthy 

patient, including the epimysium at the cortical level in A) gray and B) false colors, along 

with C) the corresponding cross-section at mid belly. The total volume is 4.2×105 mm3, 

and from this volume, 3% is fat [-200; -10] HU, 28.7% is loose connective tissue and low-

density (atrophied) muscle [-9; 40] HU, and  68.3% is normal muscle [41; 200] HU. 

For the purposes of this and all segmentation investigations reported in this thesis, the 

imaging software MIMICS (http://www.materialise.com) was utilized for segmentation and 

3D reconstruction. Figure 2.10 here clearly illustrates that this is possible in the Rectus 

femoris – even when severely degenerated due to long-term denervation, as the muscle 

remains readily recognizable despite hypotrophy. 
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2.7.4    3D Printing of Segmented Tissues: Methods and Impacts 

Three-dimensional (3D) modeling and rapid prototyping technologies have recently shown 

great utility in a wide variety of applications in medicine and surgery [375] and [376]. In 

principle, the 3D recapitulation of patient-specific anatomical features provides surgeons 

with an immediate and intuitive understanding of even the most complex morphological 

geometries, enabling the accurate planning and emulation of a host of surgical procedures 

[377-384]. The employment of 3D anatomical models is additionally being considered for 

patient implantation procedures, such as dental crowning, craniofacial reconstruction, and 

tissue regeneration via biological scaffolds [378-380]. 

The first 3D rapid prototype was reported by Hideo Kodama in 1982, and the first use of 

the technology in support of surgical planning was reported in 1994 [385]. Since its 

inception, the development and use of 3D rapid prototyping in a medical context has been 

rapidly growing hand in hand with improvements in medical imaging modalities such CT 

and MRI. Modern rapid prototyping technology allows for the construction of anatomical 

models with layer thicknesses as low as 250 um, and with concurrent advancement in 

medical image contrast segmentation, these models are able to recapitulate almost every 

external or internal morphological structure [385]. Some of the main benefits for using rapid 

prototyping models include improving surgical planning, enhancing diagnostic quality, 

decreasing patient exposure time to general anesthesia, decreasing patient blood loss, and 

shortening wound exposure time [378]. However, each of these benefits is distinctly relative 

to both the particular type of surgery involved, as well as the individual patient case itself. 

As such, most extant literature on the use of 3D rapid prototyping in a clinical context 

outlines specific impacts to individual cases or theoretical applications [378]. In order to 

step back and critically assess the potential for this technology as an integrated service 

within a hospital, it is best to assemble a detailed critique of how a long-running, successful 

example of such a service has been operating, in a broad surgical context.  

With the aims of improving surgical outcomes, reducing future costs, and developing 

thorough clinical guidelines for enhancing surgical planning and assessment, the National 

University Hospital of Iceland, Landspitali, established an in-house service for 3D rapid 

prototyping. Since its inception in 2007, this service has allowed physicians and surgeons 

from different specialties to submit requests for a host of 3D models to be made available 

within 24 hours of submission. This process was simultaneously employed in research 

activities to study the anthropometry of human muscles [386] and the use of rapid 

prototyping as preparation for complex brain surgeries in combination with neurosurgical 

navigation systems [387]. Since then, the National University Hospital of Iceland has 

fabricated over 200 surgical models for patient cases in the fields of cardiac, orthopedic, 

and neurosurgery. The overwhelming success of the 3D rapid prototyping service has led to 

its solidification as an essential service within the hospital, and the rapid prototyping service 

continues to expand its impact on an increasing number of surgical cases. 
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Chapter 3 

A First Look: Preliminary Impacts of 

Modern Methods for CT Image Analyses 

in Translational Myology and THA 

 
3.1 Implicating Muscle Quality as a Clinical Comorbidity 

Index 

Muscle biopsy is the current gold standard for the assessment of muscle, but the procedure 

is invasive and occasionally limited in relevance by the small size of excised tissue. 

However, recent investigations have realized the potential of X-ray computed Tomography 

(CT) and Magnetic Resonance Imaging (MRI) to describe muscle quality and composition. 

This is often performed either quasi-quantitatively, via the visual grading of muscle 

structure morphologies [346, 388-390], or quantitatively via the computation of muscle 

cross-sectional areas and radiodensitometric absorption values in CT, measured in 

Hounsfield units (HU) [44-47, 166, 392]. Despite the superior soft tissue contrast in MRI 

and non-dependence on the use of ionizing radiation, CT has higher spatial resolution and 

is comparatively less influenced by technical variations in machine preparation and 

acquisition protocols [71, 88]. These notions are critical when attempting to discern 

diagnostically-relevant information from cross-sectional images of soft tissue. 

While the propensity of CT imaging literature describing sarcopenia differs largely 

regarding analytical methodology, one metric that remains ubiquitous is the use of average 

HU values to characterize muscle quality. Goodpaster et al report the utility of this 

methodology for quantifying skeletal muscle lipid content, highlighting the potential for the 

method to investigate the association between muscle composition and function [16, 43, 

393]. Hicks et al likewise utilized average HU values within lower back and posterior 

muscle groups to illustrate the inverse relationship between these muscle qualities and the 

prevalence of lower back pain [394]. Additionally, Sur et al utilized average HU values 

weighted by total muscle area to show a correlation between muscle quality in the psoas and 

serious post- Pancreaticoduodenectomy complications [395]. Likewise, Lang et al utilized 
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average HU attenuation values within thigh muscles to predict the propensity for hip fracture 

in elderly, otherwise healthy subjects [13]. 

While average HU values might indeed describe general shifts in adiposity, it is our 

hypothesis that generalizing CT image matrices in this regard may risk eliminating other 

distribution characteristics that could elucidate additional subtle changes in muscle 

properties. In Chapter 4 of this thesis, we introduce the utility of computational modelling 

involving entire radiodensitometric distributions using our novel nonlinear trimodal 

regression analysis (NTRA) method [45]. This paper outlines the eleven unique regression 

model parameters inherent to the NTRA method and shows their utility in characterizing 

muscle HU distributions in a preliminary THA cohort. Furthermore, Chapter 5 explores the 

further utility of this method using a large subject dataset in tandem with extant gold 

standard muscle quantity and quality analyses (cross-sectional area and average HU value). 

 

3.2 Monitoring Trophism Decay of LMN-Denervated 

Muscle and its Restoration by h-b FES Compliance 

Many of the tissue analyses employed to study structural changes occurring in LMN (Lower 

Motor Neuron) denervated muscle are usually performed with biopsies – i.e., the analysis 

of only a few milligrams of muscle. Complementary imaging techniques, such as CT scans, 

are also employed to assess and validate histological information and to study macroscopic 

changes. The combinatorial value of CT imaging methods, post-processing techniques, and 

segmentation can be demonstrated by studying the effect of h-bFES training entire muscle 

volumes [346, 391, 396]. An excellent example of such a case study involved the assessment 

of a patient with irreversible Conus and Cauda Equina syndrome who underwent five years 

of this stimulation treatment, followed by five years of non-compliance to h-Bfes [397]. The 

main novelty introduced in this work was the morphological analysis of the whole 

quadriceps in different pathological conditions and the quantification of the tissue 

compositions within the muscle volumes. 

 



Kyle Joseph Edmunds  43 
 

 
Figure 3.1: Example of a patient with irreversible Conus and Cauda Equina syndrome who 

underwent five years of compliance with h-bFES treatment, followed by another five years 

of non-compliance to h-bFES [397]. As is evident above, the 3D volume and density 

analyses readily identify changes in Rectus femoris volume and density (average HU value) 

over the timespan of the study [346]. 

Figure 3.1 presents the results for this Patient. The 3D model and voxel assessment of the 

Rectus femoris shows a clear increase in muscle volume and density during the h-bFES 

compliant period, and likewise shows a clear decline in these muscle characteristics after 

five years of non-compliance. 

 

3.3 Utility of 3D Muscle Segmentation in Monitoring 

Incomplete Denervation from Spinal Cord Injury 

In the second of these reported case studies, analogous soft tissue analyses and segmentation 

methods were used on CT images of a 53 year old male patient 15 years post SCI before 

and after h-bFES rehabilitation was performed [346]. The residual asymmetric innervation 

of the leg muscles and the effects of six weeks of h-bFES rehabilitation regime allowed the 

patient to perform short walks without crutches – a monumental improvement in function 

and quality of life after years of only heavily-supported walking and many daily hours of 

bed rest.  
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Figure 3.2: 3D soft tissue segmentation to compare the compositional changes between the 

calf muscles in both legs (A, before and B, after h-bFES rehabilitation). Note that soft tissue 

segmentation thresholds and colorizations are defined as: subcutaneous fat (yellow HU -200; 

-10), Intramuscular fat (orange HU -200; -10), low density muscle (cyan HU -9; 40), muscle 

(red HU 41; 70) and fibrous connective (gray HU 71; 150). E and F depict the HU 

distributions and changes within both legs (cyan: pre-rehabilitation, red; post-rehabilitation), 

and the pie charts contain corresponding compositional data changes. It is likewise important 

and useful to notice the qualitative muscle volume and quality differences between the SCI 

patient and a healthy subject (C+D) [346]. 

Figure 3.2 depicts the comparison between soft tissues before and after six weeks of h-bFES 

rehabilitation using the soft tissue segmentation method detailed herein [346]. The subject 

was treated each day for 30 minutes with electrical stimulation for denervated calf muscles 

– bilaterally on the anterior and lateral side of the leg. Additionally, the Histograms 

containing HU distributions show that fat is the dominant tissue type within the volume, 

especially on the left side where muscle content is almost absent. However, the distribution 

after the rehabilitation period (red) shows an increase in muscle density and a reduction in 

fat within the right leg. Furthermore, it is possible to analyze the specific soft tissue 

compositional changes within these muscles. The pie charts in Figure 3.2 depict these 

particular changes; indeed, it is evident that there was an increase of dense connective or 

fibrous tissue in both legs, to the detriment of loose connective tissue [346]. Finally, to 

compare whether there were any significant changes in the muscular composition outside 

of the h-bFES rehabilitation volume, analogous segmentation analyses were performed on 

the middle of the Rectus femoris thigh muscles. Figure 3.3 contains the corresponding HU 

histograms, showing, once again, the differences between left and right side, both pre and 

post h-bFES.  
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Figure 3.3: HU distribution comparison between left and right legs, as assessed at the mid-

thigh. Note that compositions in the left and right Rectus femoris muscles changed very little 

in the same time span, which is to be expected due to h-bFES being withheld in this region 

[346]. 

It is evident here that there are no remarkable changes between these time points. However, 

intriguingly, there was a slight shift towards higher density HU values on both legs. These 

results altogether present a useful first look at the quantitative efficacy of h-bFES. 

 

3.4 3D Muscle Segmentation and HU Distribution 

Analysis: Improving Patient Assessment in THA 
 
3.4.1    Introduction 

Total Hip Arthroplasty remains the gold standard of treatment for patients who suffer from 

a variety of hip-related pathological degeneration or trauma. These patients often exhibit 

significantly less post-operative pain and an increase in the range of motion of the joint, but 

there are still relatively common instances of debilitating periprosthetic complications that 

call into question the method for pre-surgical implant choice. Currently, there are two 

principal options for THA prostheses: cemented or noncemented. Utilizing the cemented 

procedure ensures a faster acquisition of adequate implant stability than with the 

noncemented procedure, but can eventually lead to an increased intraoperative 

periprosthetic fracture risk. Non cemented prosthetic stems are more frequently revised 
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within the first few years following THA due to periprosthetic fracture, but non cemented 

revision surgeries generally result in fewer complications than those of cemented implants. 

Surgeons typically rely on experience or simple patient metrics such as age and sex to 

prescribe which implant procedure is optimal, and while this may work for most patients, 

there is a clear need to more rigorously analyze patient conditions that correlate to optimal 

post-THA outcomes. The results from the investigation reported herein indicate that an 

understanding of how the percent composition and quality of a patient's quadriceps muscle 

in both healthy and operative legs may be a useful indicator for prosthetic choice [347]. 

Additionally, these data emphasize that the traditional metrics of age and sex inadequately 

predict changes in quadriceps composition and quality and thereby have comparatively 

minor utility in determining the patient-appropriate prosthetic type. 

 
3.4.2    Material and Methods 

 
3.4.2.1   CT Data Acquisition 

This study includes data from 68 patients: 38 females (an average age 64 years) and 30 

males (an average age of 56 years) who were scheduled to undergo their first total hip 

arthroplasty. Of the 68 patients, 40 of them received a noncemented implant, while 28 

received a cemented implant. The decision regarding prosthetic suitability was in the hands 

of the operating surgeon of each patient, who based his implant prescription on typical 

general patient characteristics or conditions, such as age and sex. All patients were scanned 

in a 64 slice Phillips Brilliance CT scanner. The scanning area reached from the iliac crest 

to the middle of the femur bone (Figure 3.4) with slice thicknesses of 1 mm [347]. 
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Figure 3.4: Representative subject’s CT scanning region, showing A) a CT slice in a coronal 

view showing the quadriceps muscles, B) the same slice after segmentation of the quadriceps 

muscles, and C) the quadriceps muscles and the femur in a 3D view after segmentation. D) 

Legend showing Hounsfield unit values and respective tissue coloring: muscles are labeled 

red, fat is yellow, and connective tissue is blue (none visible from this view) [347]. 

 
3.4.2.2   CT Dataset Processing 

After the scanning, all datasets were processed in MIMICS. The processing protocol was as 

follows. Firstly, each of the quadriceps muscles of both legs were segmented, dividing the 

muscles into sections according to tissue types defined by known HU values [27] (Figure 

3.4D). Finally, all Hounsfield values were exported so they could be further analyzed [347]. 

 
3.4.2.3   Hounsfield Unit Distribution Modeling 

To discern the average Hounsfield unit values for each compared condition (prosthetic type, 

sex, and age), each CT scan was binned into 20 Hounsfield unit bins, generating a histogram 

of Hounsfield unit values. These values were normalized to obtain histogram percentages, 

generating a normal distribution. This normal distribution was fitted to a theoretical 

Gaussian curve using the Solver function of Excel (Microsoft: 2007) and a generalized 

reduced gradient algorithm to maximize each R2 value and obtain an optimum curve fit. 

These distribution averages were then exported for further analysis [347]. 
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3.4.2.4   Statistical Analyses 

Statistical analyses were performed using appropriately sized ANOVA with posthoc testing 

carried out using a student’s T-test. Differences were considered statistically significant for 

p < 0.05. 

 
3.4.3    Results 

Following segmentation and thresholding for muscular, fat, and connective tissues, it was 

possible to observe changes in tissue composition in both legs as a function of various 

patient parameters. Patients were sorted firstly according to the type of prosthesis selected 

by their surgeon, or cemented versus non cemented (n of 28 versus 40, respectively). 

Secondly, patients were sorted according to their sex (n of 38 for females and 30 for males). 

Lastly, sorting was performed according to patient age, where patients were divided into 

four age groups: younger than 50 (n of 10), between 51 and 60 (n of 11), between 61 and 

70 (n of 16), and between 71 and 80 (n of 11). The results from these analyses are shown in 

Figure 3.5 [347]. 

 

 
Figure 3.5: The average composition of the quadriceps muscles for each of the specific 

patient groups and healthy versus operative legs. A) Compositions from patients with 

cemented (CEM) versus non cemented (NCEM) implants. B) Compositions from female 

patients versus males. C) and D) Compositions from healthy and operative legs, respectively, 

from patients within each of the four previously-mentioned age groups. Note that in each 
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patient group, muscular percent composition was significantly higher than either fat or 

connective tissue percentages in all conditions (*: p < 0.05) [347]. 

Following the compositional analyses, each patient group's average Hounsfield unit (HU) 

histogram was analyzed to discern both variation within patient groups and histogram 

location shift. To do this, each patient's CT scan was binned into 20 groups of HU values, 

ranging from -200 to 135, and normalized to generate a patient-specific, normally-

distributed histogram. Each of these histograms were then averaged to obtain an overall 

average curve for each patient group, which was then fit to a Gaussian distribution. The 

results from these analyses are displayed in Figures 3.6-3.8 for each respective patient 

group. 

 

 
Figure 3.6: Hounsfield unit (HU) distribution from -135 to 200, divided into 20 bins. Each of 

the plots show mean values of each patient condition with computed standard error (blue 

curve). The plots on the left side show the operative leg histograms, while the plots on the 

right show the healthy leg. The red curve indicated the Gaussian curve fit for each HU 

distribution, and the vertical red line denotes the Gaussian centroid value, "µ". A) and B) are 

non-cemented patients, while C) and D) are cemented patients [347]. 

As is apparent from Figure 3.6, when comparing the cemented and non-cemented implant 

groups, the healthy leg distribution elicited higher HU values, indicating the potential 

presence of more muscle in the healthy leg than within the operative leg. Additionally, HU 

values were higher in both legs in patients with the non-cemented prosthesis compared to 

those who were given a cemented implant. However, it is critical to note that statistical 

significances when comparing these values were not computed for average HU value 

analysis; further exploration in this regard is crucial to support physiological interpretation 

of these results. 
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Figure 3.7: Binned Hounsfield unit (HU) distribution for patients grouped by sex. The red 

and blue curves were generated analogously to those shown in Figure 3.6. A) and B) are 

female patients, while C) and D) are male patients [347]. 

When comparing female to male patients, what is immediately evident is that the HU peak 

is shifted to the right in both legs of male patients compared to those of females, indicating 

somewhat expectedly that male patients had higher muscular density in both legs. 

Additionally, once again patients of either sex exhibited higher HU centroids in healthy legs 

compared to those which were fitted with an implant, confirming the results depicted in 

Figure 3.6. 

 



Kyle Joseph Edmunds  51 
 

 
Figure 3.8: Binned Hounsfield unit (HU) distribution for patients grouped by age. The red 

and blue curves were generated analogously to those shown in Figures 3.6 and 3.7. A) and 

B) are patients less than 50 years old, C) and D) are patients between 51 and 61 years old, E) 

and F) are patients between 61 and 70 years old, and G) and H) are patients between 71 and 

80 years old [347]. 

Finally, when comparing HU distributions for patients grouped according to age, youngest 

patients had much higher HU centroid values than those of older patients, with minimum 

values in both legs corresponding to the largest (n of 16) patient group, or individuals from 

ages 61-70. Interestingly, once again in all conditions, average HU values were higher in 

the healthy leg than in the operated leg. In addition to the location of each HU curve peak, 

it is evident that patients in the oldest age group (71-80) exhibited much narrower HU 
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distributions than those of other conditions, suggesting that within both legs of these 

patients, there was much less variation in the tissue type that was present. However, again, 

the computation of statistical significance in these comparisons is crucial to support 

physiological interpretation or relevance. 

 
3.4.4    Discussion and Conclusions 

What is most evident from the data presented is that although the muscular composition of 

operated legs was higher than healthy legs in almost every patient group, the average HU 

distribution centroids were higher in healthy legs than in the operated side. Shifts in average 

HU values has traditionally been an indicator of overall muscle quality, with higher HU 

values indicating a greater amount of lean muscle than fat or loose connective tissue. The 

presented results suggest that comparing percent composition to HU distribution does not 

necessarily correlate, but instead suggest that while muscular composition might be highest 

in the operated legs of patients, the overall muscular density, e.g. quality, may yet be lower 

in this leg compared to the healthy side. Further exploration into which analysis 

methodology best prescribes the capacity for the operated muscle to withstand both the 

implantation procedure and post-surgical rehabilitation is crucial to develop better decision-

making in THA planning. In addition to this comparison of analysis methods, it also appears 

that males have higher percentages of muscle than females, but the significance of these 

differences must be computed to support the validity of this notion. The same notion is true 

when comparing patient age and implant procedure. These data together suggest that there 

is no clear utility in using traditional surgical metrics for governing THA prosthesis choice, 

such as age and sex. Finally, the distribution of HU values according to implant type 

indicates that the population of non-cemented patients is more similar in distribution 

(smaller variance), which thereby confirms the doctors' decisions to give them non cemented 

implants. The cemented patients’ distributions show higher percentages of HU voxel values 

around those that correspond to muscular tissue, while these patients also exhibit larger 

variance in these values, indicating that some of the patients may have erroneously been 

prescribed a cemented implant, while a majority clearly received the optimal one. In sum, 

the comparison of muscular composition and HU distribution is a useful first step in 

developing a better understanding of the optimum THA procedure. Additionally, showing 

the similarities in muscle composition and quality between patients grouped by traditional 

planning metrics of age and sex suggests that surgical planning should incorporate 

additional patient conditions to identify the optimum THA planning strategy.  
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Chapter 4 

Nonlinear Trimodal Regression Analysis 

of Radiodensitometric Distributions to 

Quantify Sarcopenic and Sequelae 

Muscle Degeneration 

 
4.1 Introduction 

Muscle degeneration, characterized by the progressive loss of muscle mass, strength, and 

function, has been consistently identified as an independent risk factor for high mortality in 

both aging populations and individuals suffering from neuromuscular pathology or injury. 

While there is much extant literature on its quantification and correlation to comorbidities, 

a quantitative gold standard for analyses in this regard remains undefined. Herein, we 

hypothesize that rigorously quantifying entire radiodensitometric Hounsfield Unit (HU) 

distributions can elicit much more information regarding muscle quality than extant methods 

that typically employ only average attenuation values. This study reports the development 

and utility of this method [45], wherein upper leg muscle quality was assessed with 

nonlinear trimodal regression analysis on radiodensitometric distributions from computed 

tomography (CT) scans of a healthy young adult, a healthy elderly subject, and a spinal cord 

injury (SCI) patient exhibiting complete lower motor neuron denervation. The method was 

then utilized with a total hip arthroplasty (THA) cohort to assess differences in healthy and 

operative legs, both presurgically and one-year following operation. Results from the initial 

representative models elicited high degrees of correlation to their HU distributions, and 

theoretical curve parameters highlighted notable, physiologically-evident differences 

between subjects. Likewise, results from the THA cohort echo initial physiological 

justification and additionally indicate significant improvement in muscle quality in both legs 

following surgery – a phenomenon most evident in the patients’ operative legs. Altogether, 

these results highlight the utility of entire HU attenuation value distributions and identify 

novel curve-fitting parameters that could provide further insight into how muscle 

degeneration may be optimally quantified. 
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4.2 Materials and Methods 
 
4.2.1    Subject Details and Recruitment 

To first ascertain potential differences in muscle degeneration pathways, as evidenced by 

subtle changes in HU distributions, three subjects were utilized in the first part of this study. 

The first of these subjects was a healthy, 35 year old adult male subject, and the second was 

a healthy 68 year old elderly male. Both subjects’ CT scans were obtained as part of a 

general volunteer dataset for research in our facility. The third subject was a 52 year old 

male who had suffered a right pelvic mass infiltration of the sciatic nerve, which had to be 

partially sacrificed during surgery. Both skin sensation and voluntary anterior-external leg 

movement were rescued following surgery, but despite the progressive reinnervation of the 

thigh and posterior leg muscles, complete denervation of the Tibialis anterioris and severe, 

partial denervation of the glutei and posterior muscles of the thigh was confirmed one year 

post-surgery. CT images at this time were obtained via academic collaboration with the 

RISE2-Italy project for the purposes of this study [42-44]. To further support the utility of 

the reported method, CT scans from healthy and operative legs of 15 primary THA patients 

were utilized. Patient data was obtained as part of our ongoing collaborative database with 

the Icelandic National Hospital (Landspitali, Reykjavik). 

 
4.2.2    CT Acquisition and Soft Tissue Voxel Segmentation 

All participants in the project were scanned with a 64 Philips Brilliance spiral-CT machine. 

The scanning region extended from the iliac crest to the middle of the femur (Figure 4.1). 

The image protocol included slice thicknesses of 1 mm, with slice increments of 0.5 mm, 

and the tube intensity was set to 120 keV. In order to assemble 3D models of each patient’s 

leg for soft tissue voxel segmentation, each patient's CT scan was imported into MIMICS 

Software (Materialise, Leuven, Belgium). Tissue compositions within each leg volume were 

quantified by transforming CT numbers into HU values as previously reported [43]. These 

voxels were binned within the segmented volume into three HU intervals, which is 

evidenced in Figure 4.1 as follows: [-200 to -10], [-9 to 40], and [41 to 200] HU representing, 

respectively: fat (yellow), loose connective tissue and atrophic muscle (cyan), and normal 

muscle (red). 
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Figure 4.1: Segmented soft tissues and compositions within the Tibialis anterioris from A) 

the healthy control subject, B) the elderly subject, and C) the pathological subject. Three 

tissue types of distinct radiodensitometric domains were utilized for the purposes of this 

study as follows: [-200 to -10], [-9 to 40], and [41 to 200] HU representing, respectively: fat 

(yellow), loose connective tissue and atrophic muscle (cyan), and normal muscle (red). Note 

that the fat voxel elements of the right (healthy) muscle of this patient were almost entirely 

superficial (visible on the surface of the segmentation model) [45]. 

 
4.2.3    Voxel Distribution Binning 

For each subject, HU distributions were derived from summing and transforming each 

voxel’s CT number value according to the following linear transformation expression, 

defined by discretization of distributions into 128 CT bins from the total range [-200 to 200] 

as performed in literature [34, 43-46]: 

HU=CT×3.125-200        (4.1) 

Each resultant histogram was then exported for regression analyses. It should be noted that, 

for the purposes of comparing pathological muscle degeneration to sarcopenic degeneration, 

only the radiodensitometric distributions from subjects’ left legs were utilized in the first 

part of this study. However, both the healthy and operative legs were utilized for the analysis 

of THA patients. 

 
4.2.4    Statistical Analyses 

Results from the THA cohort analyses were assessed for statistical significance by two-

tailed heteroscedastic student’s T-tests. Differences were considered statistically significant 

for p < 0.05. 
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4.2.5    The Method: Nonlinear Trimodal Regression Analysis 

The method utilized to computationally define each HU distribution was a modified 

methodology for nonlinear regression analysis. First, the general equation for each 

distribution was defined as a quasi-probability density function by summing two skewed 

and one standard (α=0) Gaussian probability density functions (φ): 

 

          ∑ 𝜑(𝑥, 𝜇𝑖 , 𝜎𝑖, 𝛼𝑖)3
𝑖=1 = ∑  3

𝑖=1
𝑁𝑖

𝜎𝑖√2𝜋
𝑒

−
(𝑥−𝜇𝑖)

2

2𝜎𝑖
2

𝑒𝑟𝑓𝑐 (
𝛼𝑖(𝑥−𝜇𝑖)

𝜎𝑖√2
)   (4.2) 

where N is the amplitude, μ is the location, σ is the width, and α is the skewness of each 

distribution – all of which are iteratively evaluated at each CT bin, which is herein defined 

as the dependent variable, x. This definition is resultant from the hypothesis that each HU 

distribution is trimodal, in that they consist of three separate tissue types whose linear 

attenuation coefficients occupy distinct HU domains: namely, fat [-200 to -10 HU], loose 

connective tissue and atrophic muscle [-9 to 40], and normal muscle [41 to 200]. 

Additionally, we hypothesized that the inwardly-sloping asymmetries within the fat and 

muscle peaks could be described by skewnesses (defined by the error function component, 

erfc) of their probability density functions, whereas the central connective tissue distribution 

was assumed to be a normal, non-skewed Gaussian distribution. Utilizing this definition, a 

theoretical curve was generated by employing an iterative generalized reduced gradient 

algorithm via minimization of the sum of standard errors at each CT bin value, x, thereby 

generating an 11-parameter matrix of probability density function variables. This algorithm 

iterates each function variable according to the computed variance of each step, and the 

selection of new trial values is guided by computing the rates of change of this variance as 

new inputs are generated. The minimization of the sum of standard errors at each point, and 

thereby the maximization of the coefficient of determination, R2, was computed according 

to standard definitions [45]. 

An illustration of the results of this concept is shown in Figure 4.2, where each of the three 

tissue types and their respective probability density functions have been depicted. 
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Figure 4.2: Diagram depicting the three components of the trimodal radiodensitometric 

distribution utilized in this study. This figure illustrates the location and skewnesses of each 

probability density function, with tissue types as previously defined [45]. 

 

4.3 Results and Discussion 
 
4.3.1    Initial Case Studies: A Comparison of Degeneration Pathways 

As is evident from the results displayed in Figure 4.3, there are significant qualitative 

differences between the shapes of the HU distributions of the healthy, elderly, and 

pathological subjects. The curve of the healthy subject exhibits a definitively high-amplitude 

muscle peak and a comparatively blunted fat peak, whereas the fat and muscle components 

in the elderly subject’s curve is decidedly the opposite in appearance. Contrastingly, the 

pathological subject elicited a distribution with heavily skewed fat and muscle peaks which 

were likewise closer together and shifted towards negative HU values. 
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Figure 4.3: Radiodensitometric distributions showing their respective nonlinear regression 

curves and average HU values. A) The control subject’s curve showed a large muscle peak at 

around 55 HU, which directly contrasted with B) the elderly subject’s distribution. C) The 

pathological subject’s distribution was much lower in total pixel count (due to lower overall 

mass within the leg volume) and elicited fat and muscle peaks that are similar in amplitude 

with a large connective tissue regime between them [45]. 

When compared according to the typical metric of average HU value, it is evident that the 

healthy subject’s average HU value was significantly shifted towards the muscle peak in the 

distribution. However, the average HU values of the elderly and pathological subjects were 

nearly indistinguishable from one another. To better explore the clearly obtuse differences 

in their distributions, each regression analysis parameter was compiled and compared for 

the three subjects. The qualitatively distinguishable differences between HU distributions 

are further exemplified by the results from regression analyses and are compiled in Figure 

4.4. 
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Figure 4.4: Results from the three representative subjects’ nonlinear trimodal regression 

analyses. A) The amplitude parameter, N; B) the location parameter, µ; C) the width 

parameter, σ; D) the skewness parameter, α [45]. 

As is evident in Figure 4.4, each of the distribution parameters confers its own distinct 

differences and relationships between subjects. The amplitude parameter, N, elicits 

particularly intriguing results when accounting singular tissue types; the elderly subject’s 

fat amplitude is at least fourfold larger than those of the other subjects, and the control 

subject’s muscle amplitude is largest by at least twofold. However, the connective tissue 

amplitude is highest in the pathological subject; intriguingly, these values increase nearly 

linearly between subjects, with the lowest connective tissue amplitude in the control subject. 

These data are qualitatively apparent in the muscle and fat tissue peaks, but somewhat less 

obvious in the central connective tissue peak. It is important to recall that our definition for 

the connective tissue distribution accounts for water-equivalent and loose-fibrous tissues 

that are always part of healthy leg volumes, but degraded, unhealthy muscle with 

aforementioned significant fatty infiltration would likewise populate this central HU 

attenuation region. This notion is described very well by the connective tissue amplifications 

progressively increasing from the control subject to the elderly and pathological subjects. 

An analogous linearity is apparent when observing the fat tissue skewness, which is almost 

zero in the control subject and most extreme (highly negative) in the pathological subject. 

Interestingly, muscle skewness was zero in the elderly and control subjects, and nonzero but 

very small (0.07) in the pathological subject. These data suggest that the fat peak’s positive 

asymmetry could likewise be due to the progressive infiltration of fatty tissue into the much 

higher HU value muscle tissue. However, as this skewness relationship is not commensurate 

in the muscle peak, it remains unclear whether skewness as a variable can completely 
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describe muscle degeneration. 

The location parameter is almost identical between subjects’ fat distributions, but the muscle 

peak location was singularly high in the elderly subject. Likewise, the control subject had a 

singularly positive connective tissue HU location, whereas the other subjects’ values were 

negative. While less significant, perhaps, these results are still intriguing, as shifts in the 

connective tissue location parameter towards more negative HU values may physiologically 

implicate myosteatosis or the general infiltration of non-contractile tissue; indeed, the 

present results show that the central connective tissue regime shifted towards more negative, 

“fatter” HU values in the elderly and pathological subjects. However, the fat peaks remained 

unshifted, and, unexpectedly, the muscle peak was higher in HU value in the elderly subject 

and nearly identical in the control and pathological subjects. 

Finally, the width parameter exhibited noticeable differences between subjects. The control 

subject had the widest fat distribution, but the control muscle width was at least twofold 

lower than the other subjects. Likewise, while the elderly and pathological subjects had 

similar fat and muscle widths, the elderly subject elicited a comparatively much higher 

connective tissue distribution width. The physiological interpretation of width as a 

parameter is somewhat obscure, but one could argue that a sharply-defined muscle and/or 

fat peak might suggest a comparative reduction in muscle degeneration. This notion is 

supported by the control subject’s muscle peak being remarkably lower in width the other 

subjects’, but this is unsupported by the fat peak results. 

 
4.3.2    Assessing Changes in Muscle Following Total Hip Arthroplasty 

As previously mentioned, the potential utility of the reported method was further tested with 

a cohort of 15 THA patients to assess changes in their upper leg muscle following surgery. 

To do this, HU distributions from each patient were acquired from both presurgical and one-

year postoperative CT scans. Each distribution parameter was analyzed for both healthy and 

operative legs, and differences were assessed for statistical significance. 
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Figure 4.5: Results from the nonlinear trimodal regression analyses of the n=15 THA cohort. 

A) The amplitude parameter, N; B) the location parameter, µ; C) the width parameter, σ; D) 

the skewness parameter, α. Note that $ and * denote p < 0.05, and the results are presented 

for before (b) and one-year after (a) surgery [45]. 

As is evident in Figure 4.5, the results from our THA cohort analyses further support many 

aforementioned relationships between regression parameters and the degree of muscle 

degeneration, if one operates under the physiological assumption that patient operative legs 

would naturally be less utilized than their healthy legs. In general, fat amplitudes decreased 

while muscle amplitudes increased one year after surgery. However, it was only in the 

operative legs that a significant increase in muscle amplitude was observed. Connective 

tissue amplitudes were all significantly lower than fat and muscle. 

Regarding the location parameter, there were minimal shifts evident in muscle and fat peaks, 

but commensurate with previous observation, there were notable increases in connective 

tissue location values in both the healthy and operative legs one-year post surgery. This 

suggests the notion that connective tissue distributions may shift towards healthy muscle 

following one year of corrective ambulation and normative use. Indeed, once again, this was 

most evident and singularly significant in the operative leg. 

The width parameter elicited no significant or meaningful changes in either leg, but in 

accordance with previous observation, the connective tissue peak widths were significantly 

larger than either the muscle or fat peaks, which were both nearly identical in magnitude in 

both legs. While not apparently useful, it still remains intriguing that each distribution 

parameter seems to have its own sensitivity with respect to the population. 
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Finally, the skewness parameter decreased in magnitude in both the healthy and operative 

fat peaks, but remained relatively constant and small (less than one) in the muscle peak – 

with one exception: the preoperative muscle peak was significantly higher than each of the 

others. We previously saw that the pathological subject had a much more extreme (more 

negative) fat skewness than the other two initial subjects – suggesting the infiltration and/or 

buildup of intramuscular fat in his degenerating muscle. This was once again similarly 

evident here, as the operative legs of the THA cohort elicited significantly more extreme, 

negative skewnesses than the rest of the fat peak values. 

Altogether, these results indicate significant improvement in muscle quality in both legs 

following surgery – a notion which is most evident in patient operative legs. These data 

further support the notion that each HU distribution parameter may have a particular range 

of specificity when it comes to muscle assessment, thereby suggesting the method’s utility 

as a straightforward indicator for muscle degeneration. 

 
4.3.3    Exploring the Partial Volume Effect 

One of the more commonly-discussed topics regarding tissue segmentation from medical 

images is that of the Partial Volume Effect (PVE). This phenomenon may be defined as the 

loss of fidelity in small regions or morphologies from limitations in spatial resolution of a 

particular imaging modality, and PVE is of particular relevance in positron emission 

tomography (PET) and dissemination of intracranial tissues using magnetic resonance 

imaging (MRI) [48]. In regards to our study here, one might argue that it may be necessary 

to initially correct pixels on the boundary of muscle groups and subcutaneous fat, due to the 

PVE being highest in these pixels. While this may indeed allow for a better fat to muscle 

segmentation fidelity, it may be argued that the degradation of myofibers would readily 

dictate the prevalence of PVE within our CT images. The correction of boundary pixels 

would therefore correct the very pixels we wish to consider in our distributions, as it is clear 

that their presence could be utilized as a supportive metric for assessing muscle 

degeneration. 

To test this notion, we took the control subject’s HU CT scan and segmented a two-pixel 

wide boundary layer between fat and muscle tissues. These pixels were then subtracted from 

the distribution at their given HU values and redistributed to either the fat or muscle mean 

HU value based on their respective proximities to either tissue. The results from this analysis 

are shown in Figure 4.6. As is evident from these results, the subtraction of these pixels 

resulted in a great reduction in the central connective tissue distribution and elicited minimal 

changes in regression analysis parameter values. However, the significant reduction in the 

water-equivalent and loose connective tissue peak highlights the possibility for PVE 

correction to remove useful data – especially considering that degenerated muscle and 

infiltrative adipose tissue would most likely exist in this region. 
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Figure 4.6: Results from Partial Volume Effect pixel removal using the healthy control 

subject. A) Transverse CT cross section of the control subject’s leg with two pixel boundary 

layers segmented and corrected. B) Distributions illustrating the control subject HU 

distribution and the segmented PVE pixel layer distribution. C) Resultant distribution 

showing an almost nonexistent connective tissue central peak. D) Results from the corrected 

distributions with each parameter: i: N; ii: µ; iii: σ; iv: α [45]. 

 

4.4 Conclusions 

While there is much extant literature reporting the use of average HU values to investigate 

muscle quality and its utility as a comorbidity index, no studies have yet to utilize the entire 

radiodensitometric distribution. The increasing prevalence of sarcopenic and cachexic 

muscle degeneration necessitates the establishment of a robust quantitative myological 

assessment methodology. Herein, we hypothesize that rigorously quantifying entire HU 

distributions can elicit much more information regarding muscle quality than extant 

methods. This study reports the development and use of this method, wherein we assess 

upper leg muscle quality utilizing nonlinear trimodal regression analysis with 

radiodensitometric distributions from computed tomography (CT) scans of a healthy young 
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adult, a healthy elderly subject, and a spinal cord injury patient exhibiting complete lower 

motor neuron denervation. We show that physiological justification for these initial results 

is yet again evidenced by the use of a cohort of total hip arthroplasty (THA) subjects. While 

the use of more subjects and rigorous comparison to extant gold standard analyses will be 

essential to reinforcing the physiological claims reported here, these results altogether 

highlight the potential utility of our method and the importance of utilizing entire HU 

attenuation value distributions. We have likewise identified a host of novel regression 

parameters from these analyses that could provide further insight into how muscle 

degeneration can be optimally quantified. These notions support the conclusion that our 

method may be a pivotal first step in the development of a new gold standard for the analysis 

of muscle. 
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Chapter 5 

Advanced Quantitative Methods in 

Correlating Sarcopenic Muscle 

Degeneration with Lower Extremity 

Function Biometrics and Comorbidities 

 
5.1 Introduction 

Sarcopenic muscular degeneration has been consistently identified as an independent risk 

factor for mortality in aging populations. Recent investigations have realized the quantitative 

potential of computed tomography (CT) image analysis to describe skeletal muscle volume 

and composition; however, the optimum approach to assessing these data remains debated. 

Indeed, most extant literature reports average Hounsfield Unit (HU) values and/or 

segmented soft tissue cross-sectional areas to investigate muscle quality. However, 

standardized methods for these gold standard analyses and their utility as a comorbidity 

index remain undefined, and no existing studies compare these methods to the assessment 

of entire radiodensitometric distributions. Herein, we investigate the combinatorial utility of 

extant gold standard analyses and nonlinear trimodal regression analysis (NTRA) of entire 

radiodensitometric distributions in correlating mid-thigh muscle quality with continuous 

class lower extremity function (LEF) biometrics and sarcopenic comorbidities. CT scans, 

LEF biometrics (normal/fast gait speed, timed up-and-go, and isometric leg strength), and 

sarcopenic comorbidities (total solubilized cholesterol and body mass index) were obtained 

from 3,162 subjects, aged 66-96 years from the population based AGES-Reykjavik Study 

[398]. 1-D k-means clustering was utilized to discretize each biometric and comorbidity 

dataset into twelve subpopulations, in accordance with Sturges’ Formula for Class Selection. 

Dataset linear regressions were performed against eleven NTRA distribution parameters and 

gold standard analyses (fat/muscle cross-sectional area and average HU value). 

Additionally, NTRA parameters and gold standards were analogously assembled by age and 

sex. Results from gold standard analyses and specific NTRA parameters conferred linear 

correlation coefficients greater than 0.85, but multiple regression analysis of correlative 
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NTRA parameters yielded a correlation coefficient of 0.99 (P<0.005). These results 

highlight the specificities of each muscle quality metric to LEF biometrics and sarcopenic 

comorbidities and emphasize the utility of specific NTRA parameters from the analysis of 

entire radiodensitometric distributions. Standardizing a quantitative methodology for 

myological assessment in this regard would allow for the generalizability of sarcopenia 

research to the indication of compensatory targets for clinical intervention. 

 

5.2 Materials and Methods 
 
5.2.1    Subject Recruitment 

The 3,162 subjects in this study were recruited as part of the AGES-Reykjavik Study in 

Reykjavík, Iceland. This cohort served as a five-year follow-up investigation that consisted 

of the remaining participants from the original AGES-Reykjavik study. The follow-up 

occurred from 2007-2011 and the percent of original subjects who participated was 71%. 

Informed consent was obtained from all participants [398]. 

The follow-up group initially included 3,316 subjects whereof 3,168 were with CT scans of 

the mid-thigh. Seven were excluded due to their non-participation in biometric or 

comorbidity measurements. The remaining 3,162 subjects (1,327 males, 1,835 females, 

mean age 79.9±4.8) participated in least one of the investigation’s data measurements, and, 

in total, the percentage of participants in each measurement ranged from 93.9% to 98.8% of 

the cohort population. 

 
5.2.2    CT Acquisition and Segmentation 

All participants in the project were scanned with a 4-row CT detector system at 120-kV 

(Sensation; Siemens Medical Systems, Erlangen, Germany) as previously described [399, 

400]. The localizer scanning region extended from the iliac crest to the knee joints. For each 

subject, a single 10-mm thick transaxial mid-femur section was utilized in generating HU 

distributions and calculating fat and muscle cross-sectional areas. Prior to the transaxial 

imaging, the correct position for mid-femur imaging was determined by measuring the 

maximum length of the femur on an anterior-posterior localizer image, followed by locating 

the center of the femoral long axis.  

Fat and muscle lean areas were segmented using the fascial plane outline between muscle 

and subcutaneous fat as previously described [49]. A manual contouring program to draw 

the contours of the total muscle bundle, and a threshold was chosen within each region to 

select voxels with CT densities greater than the maximal density of fat, as documented [401]. 

The lean area of each muscle region was then calculated as the number of voxels above this 

threshold, and lean tissue attenuation was defined as the mean CT density of these 

thresholded voxels. The average values for the left and right legs were utilized; if data for 

one leg were missing or invalid, then the extant thigh was singularly used; this was the case 

for 34 participants (approximately 0.70% of the total population). 
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5.2.3    LEF Biometrics and Sarcopenic Comorbidity Measurements 

LEF biometrics were assessed as part of the aforementioned AGES-Reykjavik Study. 

Measurements included normal and fastest-comfortable gait speed (GSN and GSF, 

respectively), timed up-and-go (TUG), and isometric leg strength (STR). Gait speeds were 

calculated in seconds over a distance of six meters, and two trials were averaged for each 

subject according to published protocol [402]. The TUG test measured the time taken to 

stand from a seated position, walk three meters, turn around, walk back to the chair, and sit 

down; TUG is a well-reported screening metric for assessing balance problems and daily 

activity declination [403]. Finally, STR was measured via knee extension using an 

adjustable digital dynamometer on a fixed chair (Good Strength, Metitur, Palokka. Finland). 

STR was measured at a fixed knee angle of 60 degrees from full extension, and the subject’s 

ankle was fastened to a strain-gauge transducer. STR was measured by taking the greater 

measured force of two knee extensions; each trial was four seconds in duration, with a 30 

second rest between trials. 

The AGES-Reykjavik study included many measurements pertaining to sarcopenic 

comorbidities, but the present study only considered those whose variables were continuous 

in class. The two cited sarcopenic comorbidities in particular that were available for 

utilization in this study were body mass index (BMI) and total solubilized cholesterol 

(SCHOL). BMI was calculated as the subject’s weight (kilograms) divided by height (in 

meters) squared, as previously reported [404].  Fasting total solubilized cholesterol levels 

were measured via a Hitachi 912 with comparable enzymatic procedures (Roche 

Diagnostics, Mannheim, Germany) [405]. All body weight and lipid measurements fulfilled 

the criteria of the National Institute of Health and the National Cholesterol Education 

Program for accuracy and precision. 

 
5.2.4    Pixel Distribution Binning and Smoothing 

For each subject, HU distributions were derived from summing and transforming each 

pixel’s CT number value according to the following linear transformation expression: 

 

𝐻𝑈 = CT × 3.125 − 200     (5.1) 

Following transformation, HU values were binned into 128 bins, as typical for CT 

assessment protocols [333]. Resultant histograms were smoothed by a non-parametric fitting 

algorithm to obtain underlying empirical probability density functions (PDF) for each 

histogram. Each PDF was then exported for NTRA regression analyses. 

 
5.2.5    Nonlinear Trimodal Regression Analysis (NTRA) Method 

The method utilized to computationally define each HU distribution was a modified 

methodology for nonlinear regression analysis. First, the general equation for each 

distribution was defined as a quasi-probability density function by summing two skewed 

and one standard (α=0) Gaussian distributions: 
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where N is the amplitude, μ is the location, σ is the width, and α is the skewness  of each 

distribution – all of which are iteratively evaluated at each CT bin, x. This definition is 

resultant from the hypothesis that each HU distribution is trimodal, in that they consist of 

three separate tissue types whose linear attenuation coefficients occupy distinct HU 

domains: namely, fat [-200 to -10 HU], loose connective tissue and atrophic muscle [-9 to 

40], and normal muscle [41 to 200]. Additionally, we hypothesized that the inwardly-sloping 

asymmetries within the fat and muscle peaks could be described by skewnesses of their 

probability density functions, whereas the central connective tissue distribution was 

assumed to be a normal, non-skewed Gaussian distribution. Utilizing this definition, a 

theoretical curve was generated by employing a iterative generalized reduced gradient 

algorithm via minimization of the sum of standard errors at each CT bin value, x, thereby 

generating an 11-parameter matrix of PDF variables. This algorithm iterates each function 

variable according to the computed variance of each step, and the selection of new trial 

values is guided by computing the rates of change of this variance as new inputs are 

generated. The minimization of the sum of standard errors at each point, and thereby the 

maximization of R2, was computed according to their standard definitions: 

 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑆𝑆𝑇
 ,     𝑆𝑆𝑇 = ∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1

,     𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑓(𝑥𝑖))2 

3

𝑖=1

 

(5.3)    (5.4)    (5.5) 

An illustration of the results of this concept is shown in Figure 4.7, where each of the three 

tissue types and their respective PDFs have been depicted. 

 



Kyle Joseph Edmunds  69 
 

 

Figure 5.1: Diagram depicting the three components of the trimodal radiodensitometric 

distribution utilized in this study. This figure illustrates the location and skewnesses of 

each PDF, with tissue types as follows: I) Fat [-200 to -10 HU], II) Water Equivalent and 

Loose Connective Tissue [-9 to 40 HU], and III) Muscle [41 to 200 HU]. 

 
5.2.6    1-D K-means Clustering Discretization of LEF Biometrics and  

Sarcopenic Comorbidities 

With the modern adoption of electronic medical records (EMRs), the availability and 

breadth of clinical data for use in medical research has markedly increased [406]. 

Commensurately, there has been a rising interest in the development of novel algorithms 

from the fields of data mining and machine learning for the processing of medical data [407, 

408]. One of the common preprocessing steps utilized prior to the employment of many of 

these algorithms is the discretization of continuous variables. Discretization eliminates the 

necessity for presumptions regarding distribution characteristics, as the method employs the 

counts within the dataset to directly evaluate conditional probabilities [409]. 

For this reason, the present work identified the discretization of continuous class LEF 

biometrics and sarcopenic comorbidities as a strategic priority. Unsupervised methods for 

discretization were initially selected, as they eliminate the requirement for class labels and 

can eventually be utilized for multiple applications, unlike supervised discretization 

methods [410]. After investigation, the transformation of each continuous class variable was 

ultimately performed using one-dimensional (1-D) k-means clustering [411]. In this method, 
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each cluster-derived bin had observations sorted using a medoid-partitioning algorithm 

[412]. The number of groups (k) was calculated using Sturges’ formula for class selection, 

which implicitly bases bin sizes upon the range of the dataset, assuming a normal 

distribution of class values [409, 413]: 

 

𝑘 = ⌈log2 𝑛⌉ + 1       (5.6) 

where the brackets denote the ceiling function, n is the dataset population, and k is the 

number of bins. This yielded a k of twelve for each LEF and comorbidity parameter the 

study. Finally, to assess the fidelity of linear relationships between muscle quality gold 

standards and NATRA parameters, subjects were discretized by age and sex. Discretization 

was again unsupervised, but this time by equal frequency due to the truncated nature of age, 

which is, in concept, a continuous class variable [414]. Using Sturges’ formula here resulted 

in 11.4 bins for men and 11.8 for women, so twelve bins were again chosen for the sake of 

simplicity in assessing comparative linear regressions. This yielded bin populations of 111 

for men, and 153 for women. 

 
5.2.7    Statistical Analyses 

Simple linear regression models were utilized to statistically correlate the relationships of 

each independent variable (LEF biometrics and sarcopenic comorbidities) with respect to 

dependent variables (NTRA parameters and gold standard analyses). Multiple regression 

models were then utilized on assemblies of each dependent variable whose correlation 

coefficients described greater than 85% of the variance in each independent metric. One-

way ANOVA and F-tests for overall significance were compiled from each multiple 

regression model to illustrate statistically meaningful correlation. 

 

5.3 Results and Discussion 
 
5.3.1    Gold Standard Analyses on LEF Biometrics and Sarcopenic  

Comorbidities 

Figure 5.2 depicts the results from gold standard analyses on LEF biometrics and sarcopenic 

comorbidities. Each population bin is depicted with colored circles ranging from the most 

unhealthy comorbidity measurement or LEF value (red) to the healthiest group (green). 

Regression lines are likewise depicted for each data series, along with their respective 

coefficients of determination (R2). 
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Figure 5.2: Gold standards against A) LEF biometrics and B) sarcopenic comorbidities. 
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As is evident in Figure 5.2, the assessment of LEF biometrics and sarcopenic comorbidities 

with gold standard methods elicited a host of physiologically evident results that are, to our 

knowledge, presented in this manner for the first time. Firstly, fat cross-sectional areas held 

an inverse relationship with normal gait speeds, fast gait speeds, and isometric leg strengths, 

while conversely showing positive correlation with timed up-and-go speeds (although while, 

in general, capturing considerably less of the parameter variance: 0.80 and 0.77 for fat and 

muscle, respectively). At the same time, muscle cross-sectional areas showed a directly 

antithetical relationship with LEF biometrics, compared to fat. Likewise, average HU values 

show commensurately expected trends: the worse the LEF performance, the greater the shift 

in average soft tissue density towards fat (increasingly negative HU values). While these 

relationships are wholly explainable by our extant understanding of muscle physiology, the 

apparent trends evidenced by sarcopenic comorbidities are more intriguing: indeed, one 

might not have expected any significant relationships without the removal of potentially-

obfuscating, but entirely relevant patient details. In this regard, it is interesting to see how 

increasingly unhealthy BMI and Solubilized Cholesterol analogously conferred to 

increasing fat areas and greater shifts towards negative average HU values. However, with 

increasing BMI, both fat and muscle areas increased together, although the rate of increase 

in fat was greater than the increase in muscle area. Altogether, it is apparent that most gold 

standard metrics held linear regression coefficients of determination greater than 0.85, 

suggesting their general utility in capturing the population variance of each metric. 

 
5.3.2    NTRA Analyses on LEF Biometrics and Sarcopenic Comorbidities 

As a complimentary analysis to gold standard methods, NTRA parameters were analogously 

assembled. Figures 5.3 and 5.4 depict linear regressions of distribution amplitudes, 

locations, widths, and skewnesses against LEF biometrics. 
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Figure 5.3: NTRA parameters against gait speed LEF biometrics. 
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Figure 5.4: NTRA parameters against timed up-and-go and isometric strength biometrics. 
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What is first apparent from Figures 5.3 and 5.4 is the great variance in specificity among 

coefficients of determination. Many parameters yield strongly linear relationships on the 

order of or greater than gold standard analyses (R2>0.85), while others yield minimal or no 

correlation. It may be readily hypothesized that the amplitude parameter varies identically 

with cross-sectional area against these metrics, assumptively suggesting a direct relationship 

to the overall quantity of each soft tissue type. Indeed, this is readily apparent in fat and 

muscle amplitudes: we see increasing fat amplitudes with decreasing LEF performance, 

along with an antithetical muscle amplitude relationship. However, what is clearly different 

is the inclusion of the loose connective/water equivalent tissue regime, which according to 

these results seems less tied to quantity, and instead more to overall tissue quality – with the 

clear exception of isometric leg strength yielding a strong relationship with connective tissue 

amplitude. For instance, it is apparent here how connective tissue locations clearly shift 

towards more negative HU values with decreasing LEF performance. In the context of the 

aforementioned presence of myosteatosis in aging muscle, the commensurate presence of 

fibrosis has been observed [73, 74], but its precise measurement by gold standard metrics 

remains impossible. Pushing further into other medical imaging modalities such as MRI or 

ultrasound, to a degree, severe tissue fibrosis is detectable using traditional image processing 

modalities; however, as their employment methods are generally more tuned to detect and 

diagnose pathological hepatic fibrosis, they may not be optimized for detecting the 

comparatively-minute changes associated with the onset of sarcopenia. Indeed, the 

contribution of fibrosis to traditional metrics of muscle quality remains an essential target 

for further investigation; it is thereby enticing, perhaps, to observe how the inclusion of the 

present loose connective/water equivalent tissue regime in NTRA analysis may serve as a 

direct metric for fibrosis with further study.  

One may likewise hypothesize that the NTRA width parameter might be directly related to 

the overall variation in pixel values for each tissue regime, as an increasing range of HU 

values would simply imply an increasing Gaussian distribution width. These data suggests 

that this parameter is minimally related to gait speed and isometric leg strength, but is instead 

almost singularly tied to timed up-and-go duration, as decreasing width clearly confers 

longer TUG times. In all LEF metrics, however, we see the same relationship: increasing fat 

width and decreasing muscle width confer decreasing LEF performance. This could likewise 

be more related to notions of tissue quality, as myosteatosis would confer an increase in 

partial volume effect from an increase in the relative proximity of inter- and intramuscular 

fat and lean muscle. However, why this may be singularly apparent in the fat distribution 

remains unclear. 

In regards to the NTRA location parameter, as before, our results indicate that shifts in these 

values are less related to muscle and fat, but highly connected to loose connective/water 

equivalent tissue. The gold standard analogue in the case of location values would, of course, 

be the average HU value. Indeed, when comparing the linear relationships of these 

parameters, we see analogous shifts towards increasingly negative values in accordance with 

decreasing LEF performance. 

Finally, the NTRA skewness parameter may again be potentially thought of as a direct 

descriptor for muscle quality, as intermuscular adiposity may incur the migration of lean 

tissue pixels towards the center of the overall distribution, resulting in an increasingly-

skewed PDF shape. Intriguingly, all LEF parameters present the same trend: increasing 
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muscle skewness and less-negative fat skewness values inversely correlate with LEF 

performance However, this dependency seems more tied to muscle than fat – an explanation 

for which, again, remains unclear. 
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Figure 5.5: NTRA parameters against sarcopenic comorbidities. 
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Finally, Figure 5.5 depicts linear relationships with NTRA parameters in accordance with 

sarcopenic comorbidities. Here, one can immediately note analogous dependencies, as 

compared to LEF performance biometrics. Indeed, increasing fat amplitudes and decreasing 

muscle amplitudes confer healthier measurements for BMI and SCHOL levels. Likewise, 

shifts in connective tissue location confer increasingly negative values with greater BMI and 

higher SCHOL levels. Additionally, increasing fat widths and decreasing muscle widths 

analogously confer increasingly unhealthy comorbidity measurements; intriguingly, we also 

see increasing connective widths conferring higher SCHOL values. Finally, we again see 

increasing muscle skewnesses and less-negative fat skewnesses correlate with less healthy 

BMI and SCHOL values. To summarize these results, Figure 5.6 depicts the specificities of 

each NTRA parameter, showing associated LEF biometrics and comorbidities whose linear 

regressions yielded coefficients of determination of at least 0.85. 

 

 
Figure 5.6: Assembly of NTRA parameters whose LEF and comorbidity parameters yielded 

linear correlation coefficients greater than 0.85. 

Finally, multiple regression analyses were performed on all gold standards and NTRA 

parameters with individual linear regression coefficients of determination over 0.85 for each 

LEF and comorbidity metric. Results from these analyses produced multiple regression 

models involving each LEF and comorbidity metric, and all models yielded multiple 

correlation coefficients greater than 0.99 with ANOVA and F-test results with P<0.005. 

These results indicate the high fidelity of multivariate correlation and robust statistical 

significance when all highly-linear LEF biometrics and comorbidities are included. 

Additionally, such strong multivariate correlation suggests, at the very least, that these 

NTRA parameters should be included alongside extant gold standard methods for muscle 

quality quantification. 

 
5.3.3    NTRA and Gold Standard Analyses on Age and Sex 

Figure 5.7 depicts the results from NTRA and gold standard analyses on age and sex. 
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Figure 5.7: A) NTRA parameters along with B and C) gold standards against age and sex. 
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As an additional investigation, NTRA parameters and gold standards were assessed for 

linear correlation with age, stratified by subject sex. Figure 5.7 depicts these results. What 

is immediately evident is that, indeed, age and sex may be possible confounding factors in 

muscle quality analysis. However, while the linear dependencies of NTRA and gold 

standard metrics are clear in some cases (analogously greater than 0.85), correlation 

coefficients are overall much lower than those of LEF parameters and comorbidities. This 

altogether suggests the necessity for correcting our model for age and sex, but likewise 

underscores the comparative ineffectuality of classic clinical assumptions of sarcopenic 

muscle degeneration based on age and sex. Nonetheless, modeling muscle degeneration as 

depicted without such correction yet with high degrees of statistical significance is 

illuminating for further discussion, as being able to predict changes in LEF biometrics and 

comorbidities related to sarcopenia regardless of age and sex may be of considerable 

inherent value. 

 

5.4 Conclusions 

The increasing prevalence of Sarcopenic muscle degeneration necessitates the establishment 

of a robust quantitative myological assessment methodology. While there is much extant 

literature reporting the use of average HU values to investigate muscle quality as a 

Sarcopenic index, no studies have yet to utilize entire radiodensitometric distributions and 

define a generalized analytical tool for their assessment. Herein, we show that rigorous 

quantification of entire HU distributions can elicit many unique assessment parameters and 

therein provide additional information regarding muscle quality alongside extant gold 

standard methods. Likewise, the contribution of fibrosis to traditional metrics of muscle 

quality remains an essential target for further investigation, and the inclusion of the loose 

connective/water equivalent tissue regime in NTRA analysis may serve as a direct metric 

for fibrosis with further investigation. As is true in any such study, however, the use of more 

subjects and aging comorbidities will be essential to reinforcing any of the physiological 

interpretations reported here, and further discussion regarding potential applications and 

adjustments to the reported model will be requisite. Nonetheless, the present results 

highlight the importance of including the assessment of entire radiodensitometric 

distributions in accordance with the NTRA method and provide further insight into how 

muscle degeneration in Sarcopenia can be optimally diagnosed and quantified.  
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Chapter 6 

Multimodal Patient-Specific Pre- and 

Post-Surgical Assessment in Total Hip 

Arthroplasty 

 
6.1 Introduction 

The prevalence of periprosthetic failure and discrepancies in patient outcome together 

necessitate the development of biometric gold standards for THA assessment. With this 

motivation, the objective of the research presented herein was to describe novel assemblies 

of biometric assessment modalities from a 100-patient THA cohort as a first step towards 

creating patient-specific applications that rehabilitators and orthopedic surgeons can utilize 

for prescribing their respective procedures. We divide the results into two separate sections: 

presurgical and postsurgical biometric assessment. Firstly, we report multimodal 

preoperative assessment via employment of 3D BMD, FEA, and interference fit modeling 

to simulate induced strain from cementless fixation, the use of 3D soft tissue segmentation 

and volumetric assessment of the Rectus femoris, Vastus lateralis, and the Vastus medialis 

muscles, and the measurement and user-friendly assembly of 11 gait parameters. Next, we 

report multimodal postsurgical assessment via the analysis of one-year postsurgical changes 

in radiodensitometric profiling amplitudes of muscle, connective, and fat tissue regimes, the 

measurement of changes in aforementioned gait parameters following one year of 

rehabilitation, and the analysis of changes in EMG activation data in segmented Rectus 

femoris, Vastus lateralis, and Vastus medialis muscles. Presurgical results are dictated with 

respect to three representative cementless patients with varying THA outcomes and results 

from each modality. Postsurgical results are depicted for one of these subjects, “Patient X”, 

who had a successful press fitting procedure despite disconcerting presurgical results. 

Within each modality, we report notable aspects of each patient’s dataset and compare these 

results across available subgroups of our cohort, highlighting the combinatorial utilities of 

both reported assemblies. 
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6.2 Methods 
 
6.2.1    Cohort Recruitment and Representative Patients 

The cohort for this study compromised of primary THA volunteer patients as part of a 

national database at the Icelandic National Hospital (Landspitali, Reykjavík Iceland). 

Ethical approval for patient data acquisition was obtained by the Icelandic Science and 

Ethics Committee (RU Code of Ethics, cf. Paragraph 3 in Article 2 of the Higher Education 

Institution Act no. 63/2006). All of the patients were part of the presurgical data report, but 

as is common in such cohorts, some patients left the study or were unavailable for various 

one-year postsurgical assessments. The total numbers of patients who were available for 

each of these investigations have been reported in their representative results and discussion 

sections. 

As a first pass in illustrating the ultimate goal of this investigation in defining a user-friendly 

clinical tool for pre- and post-surgical evaluation, representative patients were chosen based 

primarily upon the degree to which their results elicited clear differences within the cohort, 

along with several other considerations. Namely, Patient X, a 64-year old female patient, 

was present in all pre and postsurgical assessments. Patient Y, a 48-year old female patient, 

exhibited very strong femoral bone strength, as evidenced by one of the highest average 

cortical BMD values in our cohort. Patient Z, a 46-year old female patient, was selected for 

her comparatively weak bones despite being the 6th youngest member of the cohort – a 

notion which directly contrasts common age-related orthopedic generalization. 

Additionally, Patient Z exhibited a periprosthetic fracture following her press-fitting 

procedure. In general, all representative patients were female and analogously received 

cementless prostheses. 

 
6.2.2    CT Data Acquisition 

All participants in the project were scanned with a 64 Philips Brilliance spiral-CT machine. 

Scanning occurred at three timepoints: immediately pre-surgery, and 24 hours and 52 weeks 

post-surgery. For the purpose of this study, only pre-operative and 24 hour post-operative 

data were used. The scanning region extended from the iliac crest to the middle of the femur 

(Figure 7.2). The image protocol included slice thicknesses of 1 mm, with slice increments 

of 0.5 mm and the tube intensity set to 120 keV. Prior to the study, the CT scanner was 

calibrated using a Quasar phantom to acquire the relationship between HU values and bone 

mineral density (BMD), and linear regression analyses of this calibration resulted in 

correlation coefficients of R2 ~ 0.99. 

 
6.2.3    Soft Tissue Segmentation for Volumetric and Density Assessment 

Soft tissue segmentation was performed on both legs, starting 14 cm from the pubic arch of 

the pelvis with male patients and 11 cm for women. To achieve this, each patient’s 

preoperative CT scan was imported into MIMICS Software (Materialise, Belgium) where 

contrast segmentation according to known attenuation and physiology was performed [30]. 

In total, volumetric segmentation and muscle densities were calculated over a 7 cm length 
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for the following muscles in both legs: the Rectus femoris, Vastus lateralis, and the Vastus 

medialis. An example of the results from this segmentation is depicted in Figure 6.1. Muscle 

density was computed via Matlab (Mathworks, Natick MA, USA) using average Hounsfield 

Unit (HU) values within each of the segmented muscles. Results were assessed by 

comparing differences in total soft tissue volumes (percent of muscle, fat, and connective 

tissues) within each leg, along with segmented muscle densities. 

 

 
Figure 6.1: Representative 3D soft tissue segmentation of the Rectus femoris, Vastus 

lateralis, and the Vastus medialis. Images were obtained from a 64-slice spiral CT scanner 

and assembled using MIMCS software. [337] 

 
6.2.4    3D Fracture Risk Analysis via Interference Fit Modeling 

Finite element meshes were created for both the prosthesis and the femur, based on the 3D 

segmentation of the CT images, likewise using Mimics software. Since the femoral neck 

and head are removed in surgery, it was necessary to simulate this osteotomy in order to 

accurately predict the effects of press-fitting in cementless THA. This was achieved via 

manually repositioning the femur in MIMICS’ presurgical spatial reference system, 

followed by Boolean subtraction from the vastus ridge (inferior border of the greater 

trochanter), 45% down the femoral neck to end at the superior margin of the femoral neck 

[31]. The resulting mask was then exported for 3D interference fit modeling in Ansys 

Mechanical APDL v.14.0 (©ANSYS, Inc;). Using a linear relationship based on a phantom 

calibration, the following equation was used to connect bone mineral density (BMD) values 

with HU values: 

 

𝐵𝑀𝐷 [
𝑔

𝑐𝑚3 ] = 0.0419 + 9.02 ∗ 10−4 ∗ 𝐻𝑈     (6.1) 
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The empirical formula by Morgan et al (2003), 

 

𝐸 = 6850 ∗ 𝜌1.49        (6.2) 

was used to connect the Young’s modulus of each element of the mesh to their BMD, ρ. The 

boundary conditions on the model for principal strain computation were defined by 0.25mm 

displacements of internal surface nodes, simulating interference while ensuring the 

hypothesis of continuum media, avoiding local effects. Calculation of principal strain values 

was performed in Ansys using simulated stress values and computed Young’s moduli [415]. 

 
6.2.5    Soft Tissue Radiodensitometric Distribution Profiling 

The method utilized to computationally define each HU distribution was a modified 

methodology for nonlinear regression analysis. First, the general equation for each 

distribution was defined as a trimodal sum of three separate tissue types whose linear 

attenuation coefficients occupy distinct HU domains: fat [-200 to -10 HU], loose connective 

tissue and atrophic muscle [-9 to 40 HU], and normal muscle [41 to 200 HU]. The resultant 

expression is a quasi-probability density function defined as the sum of two skewed and one 

standard (α=0) Gaussian distribution [346]: 

Here, it was hypothesized that the Gaussian amplitude parameter, N, could be indicative of 

discrete changes in each respective tissue regime. Operating under these assumptions, a 

theoretical curve was generated by employing an iterative generalized reduced gradient 

algorithm via minimization of the sum of standard errors at each CT bin value. Amplitude 

values for each patient were exported for pre and post THA soft tissue assessment. 

 
6.2.6    Quantitative Gait Assessment 

Patients underwent gait analyses using KineView (Adaptive Optics Associates Inc., 

Cambridge MA, USA) and GAITrite (CIR Systems Inc., Sparta NJ, USA) at two time 

points: before THA and 52 weeks after surgery. Patients were instructed to walk three times 

along a pressure sensing carpet at a self-selected and comfortable speed. Detected footfalls 

of the patient were localized by the software, and 11 associated gait parameters for each 

walk were computed according to cited protocols [344]. Table 6.1 provides an assembly of 

these parameters and their definitions. 

Table 6.1: Gait Parameter definitions and measurement methods [344]. 

 

Gait Parameter Measurement Description 

Cycle Time 

[s] 
Both Legs 

 

Elapsed time between the first contacts of two 

consecutive footfalls of the same foot 

 

Stride Length 

[cm] 
“ 

Length between the heel center of two 

consecutive footprints on one foot 
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Base of Support 

[cm] 
“ 

Vertical distance from heel center of one foot to 

the line of progression of two footprints of the 

opposite foot 

 

Double Support 

[%GC] 
“ 

Sum of heel strike to support footfall toe-off 

periods of both feet (initial/terminal footfall) 

 

Velocity 

[cm/s] 
“ 

Obtained by dividing travel distance by 

ambulation time 

 

Single Support 

[%GC] 
Single Leg 

 

Time elapsed between the last contact of the 

current footfall to the first of the next footfall of 

the same foot 

 

Step Length 

[cm] 
“ 

Distance from the heel center of the current 

footprint to the heel center of the previous 

opposite footprint 

 

Step Time 

[s] 
“ 

Time elapsed from first contact of one foot to first 

contact of the opposite 

 

Stance 

[%GC] 
“ 

Percent of gait cycle between two consecutive 

heel contacts and toe off events on the same foot 

 

Swing 

[%GC] 
“ 

Percent of gait cycle between last contact of the 

current footfall to the first contact of the next 

footfall 

 

Toe 

[In/Out°] 
“ 

Angle between the line of progression and the 

midline of the footprint: zero if the geometric 

mid-line of the footprint is parallel to the line of 

progression, positive if outside, and negative if 

inside. 

 

 
6.2.7    Muscle Contraction Computation and Indexing via EMG 

EMG measurements were acquired in synchrony with measure gait parameters using the 

wireless EMG measurement unit, KinePro (KM KINEPRO PLUS s.r.o., Olomouc, Czech 

Republic). This unit utilizes wireless surface electrodes, a base unit, a video camera, and 

specialized analysis software. Three electrodes were placed on the following muscles on 

each patient’s leg: the Rectus femoris, Vastus lateralis, and the Vastus medialis. EMG was 

measured thrice for each leg and further processed using Matlab (MathWorks, Natick MA, 

USA). First, low frequency signal demodulation was performed to obtain the linear envelope 

of each EMG data trace. Next, activation intervals were defined by isolating depolarization 

events lasting longer than 40 milliseconds, and coefficients of variation (CV) and cross-
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correlation coefficients (R) were computed to describe the intra-subject variability of each 

EMG signal across different trials. Additionally, peak phase indices (PP) were computed by 

superimposing Gaussian curve pulses under each linear envelope and assigning a temporal 

marker to the superimposed Gaussian distribution with the largest total area. Finally, each 

linear envelope was averaged across all gait cycles to assemble a Grand Ensemble Average 

(GEA), which was utilized to identify the period within each gait cycle with the highest 

overall activation, splitting each gait cycle into the stance and swing phases, as defined in 

literature [338]. 

 

6.3 Results and Discussion 

As previously mentioned, the objective of the research presented herein was to describe 

novel assemblies of pre and postsurgical data from a 100-patient THA cohort as a first step 

towards creating patient-specific applications that rehabilitators and orthopedic surgeons 

can utilize for determining optimal THA prosthesis fixation methods and rehabilitation 

procedures. We divide the results into two separate sections: presurgical and postsurgical 

biometric assessment. Presurgical metrics were collected for three representative patients, 

Patients X, Y, and Z, whose justification for selection has been previously outlined in 

Section 2.1. Postsurgical biometrics were assembled for Patient X, who remained present 

for all postsurgical measurements one year after her THA procedure. 

 
6.3.1    Multimodal Biometrics for Presurgical THA Assessment 

 
6.3.1.1   3D Fracture Risk Analysis via Interference Fit Modeling 

The voxel-based meshing technique, even if fully automated and with lower computational 

times, is unfit to properly represent curved surfaces by brick elements; moreover, elements 

insufficiently anchored to the whole model and, thus, potentially involved in partial rigid 

body motion, can be generated – a crucial problem in obtaining consistent FE models, 

hindering mechanical analyses [337]. For these reasons, the 3D FEA model for the 

periprosthetic proximal femur was generated by means of a geometry-based meshing 

technique. Strain values for nodes constituting each element of these meshes were 

computed, and the results from these analyses are depicted in Figure 6.2. 
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Figure 6.2: 3D Fracture Risk Analysis via Interference Fit Modeling. 

The percent of elements whose strain values exceeded 1.02% in tensile strain has been 

suggested in literature as a minimal point at which the risk for fracturing elements may be 

significant [338, 339]. Nodes with strain values that exceed this threshold are clearly visible 

on the cortical surfaces of each patient, but to clearly different degrees. It is evident that 

Patient Y’s increased BMD values on her cortical surface directly led to lower numbers of 

critically strained cortical elements. Patients X and Z, however, clearly show distinct areas 

of low BMD values, which incurred large areas of critical strain on their cortical surfaces. 

Unfortunately, Patient Z suffered a periprosthetic fracture during her press-fitting procedure, 

and it is evident that such an event may have been easily predicted using our model. In 

general, these strain threshold values may be compared to other fracture risk indices in 

literature, which have otherwise involved calculating the percent of fractured elements by 

counting those whose Von Mises Stresses exceeded their threshold [333, 337]. Computed 

with this method, the threshold for critical fracture risk index was much higher – sometimes 

42.67% of cortical elements. However, based on the simplicity of direct primary failure 

strain calculation, the interference fit modeling presented here may have a higher sensitivity 

to this issue of criticality. To optimally test this, many more patients with known fracture 

events, like Patient Z, will have to be subjected to both types of fracture risk analyses. 

 
6.3.1.2   3D Segmentation and Volumetric Assessment 

Pre-surgical muscle densities (average HU values) and compositions were calculated for the 

Rectus femoris, Vastus lateralis, and the Vastus medialis in both legs for each patient, along 

with their standard errors within the cohort. These data are compiled in Figure 6.3 for 

Patients X, Y, and Z. Figure 6.3A clearly illustrates the differences in overall soft tissue 

volume between the representative patients, with Patient Z being significantly lower in both 

her healthy and operative legs. Figure 6.3B shows the same trend regarding comparative 

muscle compositions, and the trend is reversed when observing comparative fat 
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compositions. Indeed, following muscle segmentation and density analysis, Patient X had 

greatly higher average HU values in each muscle within her healthy and operative legs, 

compared to the other subjects, with the exception of her operative Vastus Medialis. 

 

 
Figure 6.3: 3D Muscle Segmentation and Soft Tissue Volumetric Assessment. A) Total soft 

tissue volumetric comparison. B) Soft tissue compositional analyses detailing fat, lean 

muscle, and connective tissue. C) Segmented muscle average HU values for the Rectus 

femoris, Vastus lateralis, and the Vastus medialis. All data are reported as a comparison 

between healthy and operative legs. 

Altogether, these data suggest the utility of muscle composition and volumetric analyses in 

reporting periprosthetic muscle condition prior to THA. Intriguingly, these data did not 

correlate with Patient Y’s previously-shown higher BMD and better fracture risk assessment 

results than the other patients. This suggests that more patients should be assessed and sorted 

according to other factors or comorbidities to understand any extant relationships between 

the two reported metrics. 

 
6.3.1.3   Presurgical Gait Parameter Assembly 

Gait parameters were measured for each patient before THA in accordance with literature 

[334]. Patients were asked to walk on a pressure sensor carpet at a self-selected, comfortable 

speed. Gait values were measured for each patient within the cohort, and a normative 

database was defined to assess each parameter’s average values and their standard 

deviations. The results from this assessment are depicted in Figure 6.4 as an example report 

for Patients X, Y, and Z. 
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Figure 6.4: Presurgical Gait Parameter Assembly. 

As is evident in Figure 6.4, Patient X had longer step lengths and step times that Patients Y 

and Z, altogether suggesting a more normalized, healthy ambulation. Indeed, this notion is 

further evidenced by Patient X’s higher stance and lower swing phase gait cycle values. In 

accordance with clear differences in BMD values between Patients Y and Z, their 

ambulation parameter values were similarly disparate across many metrics – most notable 

with regards to step lengths. Interestingly, almost all healthy and operative leg gait 

parameters in all three subjects were beyond one standard deviation above or below those 

of the 100-patient cohort, suggesting that their ambulation was significantly different from 

normative values. Altogether, the ability to quickly and easily quantify these differences 

supports the utility of gait parameter assembly for assessing patient mobility, which thereby 
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suggests the metric’s utility for both pre-THA prosthetic selection and post-THA 

rehabilitation assessment. 

 
6.3.2    Multimodal Biometrics for Postsurgical THA Assessment 

 
6.3.2.1   Changes in Soft Tissue Radiodensitometric Amplitudes 

As a potential postsurgical biometric, soft tissue magnitudes from radiodensitometric 

profiling were computed for an available subgroup of 32 cohort patients to illustrate changes 

in tissue composition before and one year after THA. Figure 6.5 depicts the results for this 

subgroup, along with the results for Patient X. 

 

 
Figure 6.5: Postsurgical Changes in Soft Tissue Radiodensitometric Profile Amplitudes. 

Figure 6.5B illustrates how general increases in all three soft tissue magnitudes occur when 

comparing presurgical values to those taken one-year post-surgery. Indeed, Figure 6.5C 

details the average percent changes in these tissues across all measured patients. Patient X 
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was one of the few patients whose muscle amplitude values actually decreased following 

her procedure, and it is unclear with such analyses why this may have occurred. However, 

one may consider some of her presurgical metrics as evidence that the degree to which her 

femoral quality and gait parameters yielded poor results compared to the rest of the cohort. 

Regardless of her particular situation, it remains suggested here that overall increases in 

cohort muscle amplitudes may infer an increase in lower limb utilization in this 

subpopulation following surgery. Utilizing additional patients and correlating any extant 

comorbidities could elicit further utility of this radiodensitometric profiling method. 

Additionally, it may be important to consider segmenting a future dataset according to 

precise rehabilitation methods for each patient, as these programs are often based upon many 

other considerations – including the type of implant procedure performed. 

 
6.3.2.2   Postsurgical Gait Parameter Assembly 

Gait parameters were likewise measured for each patient one year following THA. Gait 

values were measured for each patient analogously to presurgical assessment, and a 

normative database was defined to assess each parameter’s average values and their standard 

deviations. Likewise, average changes in these parameters were computed for the cohort to 

show improvements in ambulation following one year of rehabilitation. The results from 

these assessments are depicted in Figure 6.6 as an example report for Patient X. 

 

 
Figure 6.6: Postsurgical Changes in Patient Gait Parameters. 

As is shown here, many of Patient X’s postsurgical gait values normalized to within one 

standard deviation of that of the patient cohort, suggesting that normative ambulation was 

partially rescued after one year of rehabilitation. However, the degree to which her own gait 



92                                         Computational and Mathematical Modeling of Medical Images 
 

parameters changed tells a different story – that, respective to some metrics, her progress in 

restoring normative gait was significantly less than those of other patients. This notion is 

most evident by her step lengths and velocity. Other parameter changes were very similar 

to those of the cohort, such as her single/double support, swing, and stance gait cycle values. 

These results once again confirm the utility of assembling these metrics in assessing patient 

mobility. However, like other reported metrics, more patients will be requisite for 

optimizing our understanding of these parameters’ clinical relevance. 

 
6.3.2.3   Electromyographic Activity Analyses 

In addition to the previous metrics, EMG activation in the Rectus femoris, Vastus lateralis, 

and the Vastus medialis was measured for an available subpopulation of 39 individuals 

within our cohort, both before and one year after THA. Figure 6.7 depicts these results. 

 

 
Figure 6.7: Postsurgical Changes in Periprosthetic Segmented Muscle EMG Activities. 

As is illustrated here, almost every patient exhibited a post-rehabilitation shift in maximum 

activation intervals of all three muscles to the first 30% of the gait cycle. Prior to surgery, it 

is clear that these activation intervals were much more varied, sometimes encompassing 

over 50% of the gait cycle in some patients. Indeed, Patient X exhibited an overall change 

in activation intervals for each muscle type after THA, but the effects of a shortened overall 

gait cycle were not evident, as was the case for most other patients. Indeed, this could be 

due to Patient X’s presurgical gait percentage being already one of the smallest in the cohort. 

Understanding more about which types of implants, conditions, and rehabilitations 

strategies might correlate to shifts in maximum activation intervals could be another key 

metric in assessing THA outcome. 

 

6.4 Conclusions 

The objective of the research presented herein was to describe a novel assembly of data from 
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a 100-patient cohort as a first step towards creating patient-specific applications that 

rehabilitators and orthopedic surgeons can utilize for optimally determining presurgical 

fixation methods and postsurgical rehabilitation protocols. To our knowledge, this is the first 

time that such a multimodal analysis has been performed. From these data, we can generate 

normative databases to outline significant differences in assembled metrics and facilitate 

discussing patient-specific procedures in a clinical context. However, it should be noted that 

ideal databases for the development of these pre and postsurgical applications would involve 

more patients and further exploration into comorbidities and other factors that could 

obfuscate correlations between modalities. Moving forward, it will be critical to statistically 

assess the relationships between the reported metrics in order to ensure their respective 

clinical utilities. Likewise, the optimization of our reported assessment modalities will be 

key; most notably in the inclusion of segmented, hip-supporting muscle groups like the 

gluteal muscles and the inclusion of material anisotropy in femoral finite element models. 

In general, improving the outcome of THA surgery and rehabilitation would not only impact 

the quality of life in these patients, but would likewise have a substantial impact on reducing 

the propensity of revision surgery, lessening the growing impact that THA has on healthcare 

costs around the world. 
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Chapter 7 

Bone Mineral Density and Fracture Risk 

Assessment to Optimize Prosthesis 

Selection 

 
7.1 Introduction 

There is a distinct lack of pre-operative guidelines for prescribing the optimal type of 

prosthetic stem for total hip arthroplasty (THA): cemented or cementless. Orthopedic 

surgeons typically utilize patient age, gender, and bone quality via X-ray scans as 

generalized metrics for this decision, but the variability of post-operative complications and 

overall patient outcome still suggests that a more complete and quantitative approach to 

dictate THA prosthesis type needs to be developed. The objective of the research presented 

herein was to describe a novel preliminary methodology for patient evaluation before THA 

surgery as a first step towards creating a patient-specific, pre-surgical application for 

determining the optimal prosthesis procedure. The work flow for this study can be seen in 

Figure 7.1.  
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Figure 7.1: Bone Mineral Density and Fracture Risk Assessment to Optimize Prosthesis 

Selection: Study Workflow. 

Finite element analysis (FEA) and bone mineral density (BMD) calculations were 

performed with ten voluntary primary THA patients to estimate the status of their operative 

femurs before surgery. The aim of the study was to generate a preliminary assessment from 

these ten patients by creating a model to simulate the press fitting procedure and its effect 

on the structural integrity of the femur via computation of a fracture risk index (FRI). This 

value was then compared to the patient's age, sex, and average proximal BMD. Results from 

the CT-based fracture risk simulations and BMD measurements demonstrated a high degree 

of variability between patients grouped according to implant procedure, reinforcing the 

notion that age and gender alone are poor indicators for prescribing THA procedures. 

Additionally, FRI results show useful correlation with patient BMD measurements, 

indicating that at least two of the ten patients may have received a non-ideal prosthesis. The 

CT-based BMD measurements and FRI calculations indicate differences between patients 

beyond age and sex, and the fracture risk simulation could serve as a foundation for the 

development of pre-surgical software applications for assisting orthopedic surgeons with 

selecting THA prostheses. 
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7.2 Materials and Methods 
 
7.2.1    Patient Recruitment 

Ten patients were voluntarily enrolled in the study (eight females and two males). Of these 

patients, five patients received identical cementless implants, while five received cemented 

implants. The implant type was decided according to the evaluation of the surgeons; 

qualitatively based on age, sex, and general physical condition, as typically assessed before 

surgery. The average age at the time of operation was 61.4±10.1 years old for all patients. 

Ages averaged 63.5±17.7 years for males and 54.5±18.9 years for females, and when 

grouped according to implant procedure, average ages were 55.0±9.5 years for cementless 

and 67.8±5.8 years for cemented. Patients with total knee implants, previous hip implants, 

or those who received implants during this research period were excluded from the study. 

 
7.2.2    CT Data Acquisition 

All participants in the project were scanned with a 64 Philips Brilliance spiral-CT machine. 

Scanning occurred at three timepoints: immediately pre-surgery, and 24 hours and 52 weeks 

post-surgery. For the purpose of this study, only pre-operative and 24 hour post-operative 

data were used. The scanning region extended from the iliac crest to the middle of the femur 

(Figure 7.2). The image protocol included slice thicknesses of 1 mm, with slice increments 

of 0.5 mm and the tube intensity set to 120 keV. 

 

 
Figure 7.2: CT scanning protocol range on the femoral head. 

Prior to the study, the CT scanner was calibrated using a Quasar phantom to acquire the 

relationship between HU and BMD, resulting in the relationship given by eq.1. 

 

BMD [
g

cm3⁄ ] = (0,00036)HU + 0,56736     (7.1) 

Linear regression analysis of this calibration resulted in a correlation coefficient R2 ~ 0.99. 
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7.2.3    Segmentation and Finite Element Modeling 

In order to assemble the 3D models of each patient’s femur for FEA analysis, each patient's 

CT scan was imported into MIMICS Software (Materialise, Belgium) where femoral 

contour segmentation was carried out. A solid 3D model was calculated based on these 

contours. Next, the femoral head was virtually cut, similarly to a typical THA surgical 

procedure, using Boolean operators on the 3D model. Additionally, a virtual distal cut was 

performed orthogonal to the femur’s long axis. The final model can be seen in Figure 7.2. 

Using the finite element module of MIMICS, known as 3-Matic, the model was divided into  

quad-node tetrahedral elements. Each model consisted of 130,000 to 170,000 of these 

elements, with overall element densities of around two elements per mm3. Young’s modulus 

and Poisson’s ratio were then assigned to each element. Fifty different values of Young’s 

modulus were assigned to the elements of each model, while the Poisson’s ratio was 

considered a constant value of 0.33. Furthermore, these elements were considered to be 

isotropic. The aforementioned calibration equation was used to convert HU to BMD and 

eq.2 was used to convert BMD to Young’s modulus [416]: 

 

𝐸 = 10500 ∙ 𝜌𝑎𝑠ℎ
2.29        (7.2) 

where ρash is the bone mineral density obtained from eq.1. This formula was used to 

represent both trabecular and cortical bone. In Figure 7.3, a FE model of a respective femur 

can be seen, following the addition of material properties. 

 

 
Figure 7.3. A finite element model of the femur consisting of more than 100,000 elements. 

The elements are given material properties: namely, Poisson’s ratio and Young’s modulus. 

Red colors indicate higher density bone. 
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7.2.4    Fracture Risk Index Computation 

In order to compute the FRI of each femur, each FEA model, complete with requisite 

material properties, was imported into Ansys Mechanical APDL v.14.0 (©ANSYS, Inc;). 

There, a static structural simulation and analysis was performed on the model. The objective 

of this simulation was to simulate the forces introduced on the femur during the press-fitting 

surgery in cementless THA. In this procedure, when the stem is pushed into the medullary 

canal, the highest tensile stresses can be expected to arise at the medial and lateral sides of 

the periprosthetic end of the femur. This is due to the fact that the flare of the stem is the 

steepest at the top. Therefore, as boundary conditions, two equal but opposite forces were 

applied in these areas. In a study by Sakai et al, the average measured hammering force for 

uncemented prosthesis was estimated to be 9.25 kN [417]. Since the forces in cemented 

prosthesis are considerably lower, our model utilized this force value as a worst-case-

scenario to discern whether any of the ten patients could have withstood the cementless 

method (Figure 7.4). 

 

 
Figure 7.4: The 9.25 kN cementless prosthesis forces applied on the model where the highest 

stress can be expected during the press-fitting of the tapered stem. 

To determine the FRI for each subject’s model, the stress value of every element was 

compared to its calculated ultimate tensile strength (UTS). The ultimate tensile strength was 

calculated with a relationship given by Bessho et al (eq. 3 and eq. 4) [418]. 

 

𝑈𝑇𝑆 = 137 ∙ 𝐵𝑀𝐷1.88   𝑓𝑜𝑟   𝐵𝑀𝐷 < 0.317     (7.3) 

𝑈𝑇𝑆 = 114 ∙ 𝐵𝑀𝐷1.72   𝑓𝑜𝑟 𝐵𝑀𝐷 ≥ 0.317     (7.4) 

The average stress experienced by each element was calculated by averaging the stress 

values at each node point. Then, the fracture risk index was calculated for each element 

using eq. 5 [419]. 

 

𝐹𝑅𝐼(%) =  
𝑠𝑡𝑟𝑒𝑠𝑠

𝑈𝑇𝑆
∙ 100%        (7.5) 
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7.2.5    Bone Mineral Density Computation 

A model of the BMD region of interest was created in MIMICS, and ranging from the 

periprosthetic femur, without the femoral head, to the greater trochanter, with a distal axial 

cut through the lesser trochanter (Figure 7.5). The study focused on the structural aspects of 

the cortical bone, since the structural integrity of the cancellous bone is compromised post 

operation. The horizontal line in Figure 7.5 demonstrates the cuts made above and below 

the area of interest. From this region, the HU values were extracted and converted to BMD 

using eq.1. 

 
Figure 7.5: A) Axial view of one slice of the CT-data from a patient, and B) the 3D view of 

the region of interest for BMD calculations. The arrow in the center of image A points to the 

area belonging to the mask.  

 

7.3 Results 

Firstly, the FRI was calculated for ten patients – five of whom were previously prescribed 

to receive a cemented implant, and five cementless ones. The highest stresses were usually 

experiences in the calcar femoral on the medial side of the femur and at a similar location 

on the lateral side. 

In Figure 7.6, the von Mises stress in every element of each model is plotted against BMD. 

The black-crossed line represents the ultimate stress as a function if BMD, as stated in eq.3. 

Should the calculated stress values exceed the UTS, then the element would be considered 

fractured, which can be seen as a dark color in the figure. 
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Figure 7.6: Examples of calculated FRI from A) a 71 year old female patient and B) a 46 

year old female. Note that every element of the model has been plotted with von Mises stress 

as a function of bone mineral density. The black crossed line indicates element strength 

given by eq.3, and elements are considered failed if they surpass this line in stress. Subject B 

actually experienced femoral fracture due to the periprosthetic implant some days after the 

surgery. 

Figure 7.6 depicts the position-independent von Mises stresses of all elements against their 

respective BMD values. To better visualize where the highest risk of fracture was 

experienced, these elements were also plotted in 3D. A typical result from the 3D plotted 

fracture risk index can be seen in Figure 7.7. The red-colored elements are those that 

exceeded their fracture threshold. 

 
Figure 7.7: Elements plotted in their three-dimensional coordinates. Note that red elements 

were those that exceeded the acceptable limit for von Mises stress, indicating regions of 

most probable periprosthetic fracture. 
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In Table 7.1, the average fracture risk is calculated for the ten patients (five with cemented 

THA, and five with cementless), as well as the ratio of those elements that exceeded 80% 

of their ultimate stress value. 

Table 7.1: FRI and BMD results from the ten cemented and cementless THR subjects. 

 

Cementless THA Procedure  Cemented THA Procedure 

 

Age 

 

Sex 

% of elements > 

fracture threshold 

BMD  

[g/cm2] 

  

Age 

 

Sex 

% of elements > 

fracture threshold 

BMD  

[g/cm2] 

51 M 0.7% 1.127  76 M 4.0% 1.054 

48 F 2.4% 1.114  70 F 3.0% 1.205 

46 F 16.2% 1.114  66 F 5.1% 1.143 

68 F 7.3% 1.078  60 F 8.2% 1.062 

62 F 9.2% 1.069  67 F 2.4% 1.146 

         

For the five cementless patients, the average age was 55±9.5 years, the average percent of 

fractured elements was 7.16±6.13%, and the average BMD was 1.10±0.03g/cm2. For the 

five cemented patients, the average age was 67.80±5.85 years, the average percent of 

fractured elements was 4.54±2.29%, and the average BMD was 1.122±0.06g/cm2. These 

values in relation to patient age and sex can be seen in Figure 7.8. 
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Figure 7.8: Results from FRI and BMD assessment for each patient grouped by sex and 

prosthesis type. A) BMD versus patient age, B) Percent fractured elements versus patient 

age, and C) BMD versus percent of fractured elements. Note that the female patients in 

green (*) and red (**) received non-optimal cemented and cementless prostheses, 

respectively, according to our computational assessment. Furthermore, it should be noted 

that the red patient suffered a periprosthetic fracture during surgery – an event that could 

possibly have been predicted by the above results. 

 

7.4 Discussion and Conclusions 

The most important criterion when choosing the type of implant for patients undergoing 

THA is bone quality. If the bone is of good quality, the cementless implantation method 

generally results in fewer patient complications and generally more delayed revision 

surgeries, compared to cemented THA. Since bone quality tends to decline with age and is 

usually lower in women than men, younger and/or male patients usually receive cementless 

implants, while older and/or female patients receive cemented ones. Although age and 

gender are somewhat reliable indicators of femoral bone quality, individual differences can 

be vast. The reported results highlight these differences and suggest the importance of 
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developing a novel, quantitative approach to assessing patients' femoral heads before THR 

surgery. 

 
7.4.1    Bone Mineral Density as a Potential Computational Tool in THA 

The notion that patient variation in bone quality as a function of age and sex is shown from 

the BMD measurements presented herein, where several patients received cemented 

prostheses despite having relatively higher BMD than patients who were given the 

cementless type. This decision was clearly based primarily on the patients' age, as the 

average age of cemented patients was much higher than those of cementless patients 

(67.8±5.8 compared to 55.0±9.5, respectively). Indeed, the patient with the highest BMD 

measurements was not only female, but also the second oldest within the assessed 

population. This most likely justified her receiving a cemented implant, although our model 

suggests that she certainly may have withstood a press fitting with a low risk of 

periprosthetic fracture. Additionally, our results indicate that BMD measurements may 

correlate inversely, to some degree, with the percent of fractured elements computed by our 

FEA simulation. This is evident, as higher BMD values indicate better bone quality and 

thereby a reduced chance of each element exceeding its fracture threshold. However, to 

determine if this relationship is indeed true, more patients would need to be assessed in a 

larger study. In general, the use of BMD as a metric in this investigation serves as an 

important first step in developing a quantitative method for computing bone quality at the 

moment of surgery, which may serve as a future tool for orthopedic surgeons to predict the 

ability for patient's femurs to handle the stresses in press-fitting a cementless THA 

prosthesis. 

 
7.4.2    Fracture Risk as a Potential Computational Tool in THA 

The calculated FRI for the 10 subjects additionally showed high degrees of variation 

between patients according to both their sex and age. Most importantly, our model shows 

that two of the five cementless patients had higher fracture risks than all of the five cemented 

patients – despite their being younger than four of the cemented patients. It is additionally 

critical to note that the 46 year old female, cementless patient experienced a periprosthetic 

femoral fracture immediately after the surgery, which correlated with both the considerably 

higher fracture risk and lower BMD discerned from our computational model (Figure 7.6B 

and 7.6C, respectively). However, with a larger population size for the reported assessment, 

it may be reasonably expected that a majority of younger patients, who typically receive 

cementless implants, would have lower risks of fracture and higher BMD than those of older 

patients. However, the reported results show again that patient age is not necessarily an 

adequate indicator of either fracture risk or bone quality; thus, implementing the 

computational technique that this paper introduces might serve as a better pre-operative tool 

for orthopedic surgeons to dictate the optimal THA procedure. 

 
7.4.3    Limitations and Future Directions 

As previously mentioned, the purpose of this study was to investigate whether a novel FEA 

simulation of press fitting could generate a potentially useful tool for assessing patient 

fracture risk indices, in combination with CT-based BMD measurement. Our results do 
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indeed highlight the potential of this methodology and furthermore suggest the inadequacy 

of patient age and sex in dictating the risk of periprosthetic fracture. However, a larger 

patient population is requisite to rigorously show the statistical dependency of FRI on 

measured BMR and to define limits that correlate to additional, real cases of patient 

periprosthetic fracture. In addition, there are some limitations of the reported FEA and FRI 

computations. The greatest of these is that the simulations carried out were steady-state, and  

did not take into consideration applied loads that are time-dependent, or the prosthetic design 

and surface finish. The real forces induced by a surgical hammer during the surgery are 

high-impact and punctate forces, or forces acting on the bone over a short period of time. 

This can instigate the development of microfissures in the periprosthetic region of the femur, 

leading to fractures in more extreme cases. Furthermore, the use of unidirectional force is 

an over-simplification of the distribution incurred by press-fitting: a direct strain-based 

method for computing fracture risk would be optimal to avoid this discrepancy. In addition, 

the anisotropy of femoral bone was not consirered in this study and must be employed in 

future work to optimize periprosthetic fracture propagation prediction 

Overall, this study proposes a novel approach to the predictive simulation and computation 

of BMD and FRI during insertion of a cementless THA prosthesis. A large part of the 

novelty of this work lies in the fact that the bone quality was discerned at the time of surgery 

rather than long after surgery, incorporating both bone mineral density averages and fracture 

risk indices in the periprosthetic region of the femur. This real-time surgical evaluation could 

serve as the basis for the development of software applications that orthopedic surgeons may 

use to discern which prosthesis fitting procedure may be optimal for each patient on an 

individual basis. Such a tool could have a profound impact on THA surgical planning and 

serve as a model for future surgical planning software. However, the development of a 

patient database with which such tools may operate would require more patient data than 

what was acquired for the purpose of the reported work. Additionally, a more robust model 

would include variations in stem designs, such as material roughness, tapering degree, cross-

sectional area, and coating thickness. Incorporating materials data could provide additional 

details regarding sheer forces applied to the bone as a result of prosthetic friction, in addition 

to the radial forces presented herein. Nevertheless, our results highlight the feasibility of the 

methodology used and can be utilized as a foundation to develop a clinical database for 

correlating BMD and FRI to THA patient outcomes. As an eventual software application 

for orthopedic surgeons, our combinatory approach of CT-based BMD measurement and 

FEA-based assessment of femoral fracture risk could serve as a pivotal tool in the decision 

making process before total hip replacement. Optimizing the pre-operative planning can 

increase the overall success of THA surgeries and have a profoundly beneficial impact on 

both patient mobility and overall surgical outcome, which could significantly aid in 

lessening the economic burden from revision surgeries upon many healthcare systems 

worldwide. 
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Chapter 8 

Additional Applications of Computational 

Modeling of Medical Images 

 
 

8.1 Low-Amplitude Craniofacial EMG Power Spectral 

Density and 3D Muscular Reconstruction from MRI 
 
8.1.1    Introduction 

Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many 

current investigations, and the successful application of EEG signal processing methods 

requires a detailed knowledge of both the topography and frequency spectra of low-

amplitude, high-frequency craniofacial EMG. This information remains limited in clinical 

research, and as such, there is no known reliable technique for the removal of these artifacts 

from EEG data. The results presented herein outline a preliminary investigation of 

craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into 

the development of an anatomically-realistic model for characterizing these effects. The data 

presented highlights the potential for confounding signal contribution from around 60 to 200 

Hz, when observed in frequency space, from both low and high-amplitude EMG signals. 

This range directly overlaps that of both low γ (30-50 Hz) and high γ (50-80 Hz) waves, as 

defined traditionally in EEG measurement. Likewise, average EMG amplitude comparisons 

from each condition highlights the similarities in signal contribution of low-activity 

muscular movements and resting, control conditions. In addition to the FFT analysis 

performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG 

signals were measured was successful. This recapitulation of the relevant EMG morphology 

is a crucial first step in developing an anatomical model for the isolation and removal of 

confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may 

be eventually applied in a clinical setting to ultimately help to extend the use of EEG in 

various clinical roles. 
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8.1.2    Materials and Methods 

 
8.1.2.1   EMG Data Acquisition 

EMG measurements were performed on 12 healthy volunteer subjects: 6 female and 6 male, 

from ages 19 to 30. The equipment used for these measurements was the Kine Measurement 

System with four wireless triode surface electrode pads and a simultaneous video recording 

system. 

The subject was first asked to lay down on an inclining bench while his/her skin was cleaned 

with alcohol and conductive gel put on the electrodes. A video camera was placed in front 

of the subject, which captured the front of the subject’s face. The electrodes were placed on 

the left and right temporal and frontal muscles of the subjects. After this setup, each subject 

was asked to perform a series of several facial exercises. Firstly, each subject was asked to 

maximally clench his/her jaw for 10 seconds, corresponding to maximum contraction of the 

temporal muscles. Then, EMG of the frontal muscles was recorded by having each subject 

both raise and furrow their eyebrows as much as possible for 10 seconds. Next, each subject 

was given a piece of chewing gum and left to reach a stable mastication rhythm. EMG 

signals were then recorded while the subject masticated with the chewing gum on the left 

side for 30 seconds, which was then repeated on the right side. Lastly, for control conditions, 

EMG was measured while each subject laid completely still with their eyes open and fixed 

on a spot for 30 seconds, which was then repeated with their eyes closed. 

 
8.1.2.2   Frequency Analyses 

The Power Spectral Density (PSD) was computed by taking the Fast Fourier 

Transformations (FFT) of the EMG signal. All signal analyses were performed with Matlab 

software (http://www.mathworks.com). The mean PSD with its standard deviation for each 

condition was computed by averaging all trials per subject first, then normalising the 

amplitudes to their maximum value. The next step was to average the PSD between all 

subjects. The mean and standard deviation values within 10 Hz frequency bins from 0 to 

800 Hz were normalized in order to obtain inter-conditionally comparable results for these 

bandwidths. 

In case of the chewing condition, the active and inactive segments had to first be defined. 

To accomplish this, spectral analysis was performed on these two classes separately, and 

signal components representing the active chewing were automatically detected by 

clustering analysis. First, the original signal in the time domain was segmented into 0.2 s 

windows with a shift of 20 ms. A variance was then computed for each window. K-means 

algorithm was chosen to perform the clustering analysis on an array of the previously 

computed variances. The number of clusters was experimentally set to three while the largest 

one represented the inactive chewing. The two remaining clusters were merged to obtain the 

active chewing class. Results from this method are exemplified in Figure 8.1. 
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Figure 8.1: Sample raw EMG data depicting the results of the clustering methodology 

utilized to separate active and inactive chewing conditions (Red is active, and blue is 

inactive). 

 
8.1.2.3   Craniofacial Muscle Modeling from MRI 

The MRI segmentation and 3D reconstruction method utilized in this study can be found in 

[155]. The dataset used to model craniofacial muscles in the reported investigation was a 

T1-weighted MRI scan from a voluntary subject. The scanning protocol utilized was chosen 

to optimize the contrast between white and gray values with voxel sizes of 1 mm3. MIMICS 

image analysis software (Materialise, Leuven, Belgium) was first utilized to identify the 

temporalis (temporal) muscle via contrast thresholding, as its proximity to bone makes it 

readily visible. Next, the frontalis (frontal) muscle was identified using a combination of 

contrast and manual thresholding according to known anatomy and published 

methodologies [420]. An example image of this method is shown in Figure 8.2. 
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Figure 8.2: Example thresholding method using MIMICS software to identify and segment 

the frontal (A) and temporal (B) muscles. This technique presents its utility as a foundation 

for developing an anatomically-relevant model for assessing craniofacial muscle EMG 

artifacts and their potential to contribute to measured EEG. 

 
8.1.2.4   Statistical Analysis 

Statistical analysis was performed using appropriately sized ANOVA with posthoc testing 

carried out using a student’s T-test. Differences were considered statistically significant for 

p < 0.05. 

 
8.1.3    Results 

In order to assess the utility of comparing frequency spectra of EMG signals during each 

recorded facial movement, FFT analyses were completed to obtain mean PSDs and standard 

deviations at each 10 Hz frequency bin for each condition. Additionally, mean amplitudes 

for each of the subject conditions were computed by taking the absolute values of equal time 

frames within the recorded EMG signals. Results from these analyses are shown in Figures 

8.3 and 8.4, respectively. 
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Figure 8.3: Results from EMG signal FFT analysis and mean signal amplitude assessment. 

Note that the closed and open eyes conditions were both resting controls, frontal1 and 

frontal2 were maximum eyebrow raise and furrow conditions, respectively, temporal refers 

to the maximal temporal clench condition, and chewing active and inactive refer to the high-

amplitude and low-amplitude portions of the chewing condition, as segmented by clustering 

analysis. A) Frequency spectra from each of the measured conditions (note that only the left 

side chewing condition was included in this plot). B) Frequency spectra for the left and right 

side chewing conditions. Statistical significance (*) was determined as p<0.05 in all 

assessments. 

Firstly, as is illustrated by comparing the frequency spectra for all of the subject conditions, 

frequencies from around 60 to 200 Hz comprise the majority of each curve. This frequency 

range corresponds to both low γ (30-50 Hz) and high γ (50-80 Hz) EEG waves. The control 

conditions, wherein subjects rested with eyes open or closed, contributed very similar 

frequency ranges to those of inactive chewing and both temporal muscle exercises (Figure 

8.3A). Contrastingly, the temporal activation and active chewing conditions both 

contributed significantly more to the frequency ranges of 100-280 Hz and 100-370 Hz, 
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respectively (Figure 8.3A, a-b and a-c), than any other condition (p < 0.05). Additionally, 

comparison of left and right chewing conditions showed minimal variation between 

conditions (Figure 8.3B), highlighting the utility of the methodology utilized in separating 

active and inactive signals. 

 
Figure 8.4: Comparison of mean signal amplitudes across all measured conditions. Note that 

all conditions except for both chewing inactive datasets were significantly greater in 

amplitude than both control conditions (*). Likewise, the maximum temporal clench 

condition was significantly greater in amplitude than all other conditions ($). Statistical 

significance was determined as p<0.05 in all assessments. 

Finally, in comparing the relative mean EMG signal amplitudes of all conditions, all 

conditions except for inactive chewing exhibited significantly higher signal amplitudes than 

either control condition (Figure 8.4, p < 0.05). Furthermore, the maximum temporal clench 

condition had significantly higher amplitudes than all other conditions (p < 0.05). 

These data are valuable because, as previously mentioned, traditional signal processing 

techniques perform FFT analyses to assess EEG frequency spectra, and understanding how 

high-frequency EMG may confound this signal is crucial to being able to optimally analyze 

scalp electrical activity. Our results demonstrate the presence of these confounding EMG 

frequencies as a normalized intensity distribution in frequency space, and understanding 

which frequencies optimally represent each condition's EMG signal and how they may 

overlap EEG frequency spectra are crucial first steps in developing a method for their 

removal from dense-array EEG data. However, because these frequencies are normalized, 

the exact contribution of each EMG in respect to its intensity at a specific frequency remains 
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unclear. Likewise, which frequencies are the most "important" (e.g. frequencies with the 

highest intensity) for each condition is additionally unclear. It is reasonable to conclude that 

each of the different conditions result in different intensity distributions in frequency space, 

which highlights the dependency of EMG frequency contribution to an EEG signal on the 

kind of muscle activity exhibited by the subject. This has to be taken into account during 

EEG data acquisition/analysis and EEG modeling and can be addressed by our analyses. 

Next, to assess whether MRI segmentation and 3D reconstruction could be used to 

anatomically define the temporal and frontal craniofacial muscles used in EMG acquisition, 

a representative patient's cranial MRI was utilized. The results from the abovementioned 

segmentation using MIMICS are presented in Figure 8.5. 

 
Figure 8.5: MRI segmentation and 3D reconstruction of temporal and frontal craniofacial 

muscles. A) Frontal, B) transverse, and C) sagittal plane cranial MRI slices. D) 3D 

reconstruction showing frontal (purple) and temporal (red) craniofacial muscles. 

As is evident by the results from the MRI segmentation, both the left and right temporal 

muscles along with the frontal muscle were readily reconstructed using a combination of 

contrast thresholding and anatomical referencing. These results highlight the utility of this 

methodology in characterizing the morphology of the craniofacial muscles utilized in the 

EMG measurement portion of this study. Using this methodology to couple anatomical 

information with measured EMG signal could serve as a fundamental basis for developing 

an anatomical model for EMG and EEG signal measurement and processing. 

 
8.1.4    Discussion and Conclusion 

The successful application of EEG signal processing methods requires a detailed knowledge 

of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial 

EMG. This information remains unavailable to clinical researchers, and as such, there is no 

known reliable technique for the removal of these artifacts from EEG data. The results 

presented herein outline a preliminary investigation of craniofacial EMG high-frequency 

spectra and 3D MRI segmentation that offers insight into the development of an 
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anatomically-realistic model for characterizing these effects. The data presented highlights 

the potential for confounding signal contribution in EEG acquisition. However, since these 

data were normalized for spectral analyses, the comparative degree to which each respective 

craniofacial muscular movement may contribute to this signal remains unclear. 

Nevertheless, average EMG amplitude comparisons from each condition highlights the 

similarities in signal contribution of low-activity muscular movements and resting, control 

conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction 

of the craniofacial muscles whose EMG signals were measured was successful. This 

recapitulation of the relevant EMG morphology is a crucial first step in developing an 

anatomical model for the isolation and removal of confounding low-amplitude craniofacial 

EMG signals from EEG data. Such a model may be eventually applied in a clinical setting 

to ultimately help to extend the use of EEG in various clinical roles. 

 

8.2 New Directions in 3D Medical Modeling: 3D Printing 

Anatomy and Functions in Neurosurgical Planning 
 
8.2.1    Introduction 

Three-dimensional (3D) modeling and rapid prototyping technologies have recently shown 

great utility in a wide variety of applications in medicine and surgery [375, 376]. In 

principle, the 3D recapitulation of patient-specific anatomical features provides surgeons 

with an immediate and intuitive understanding of even the most complex anatomical 

morphologies, enabling accurate planning and emulation of a host of surgical procedures 

[377, 421]. Indeed, the employment of these 3D anatomical models is additionally being 

considered for a host of implantation procedures, such as dental crowning, craniofacial 

reconstruction, and tissue regeneration via biological scaffolds [378-340]. 

Kodama et al. reported the birth of 3D rapid prototyping in 1982 [422], and the first use of 

the technology in support of surgical planning was reported by Anderl et al. in 1994 [423]. 

Since then, improvements in medical imaging modalities, such as CT and MRI, have driven 

both the clinical interest and academic development of 3D rapid prototyping in a medical 

context. Modern rapid prototyping enables the construction of anatomical models with layer 

thicknesses on the order of microns, and with concurrent advancements in medical image 

contrast segmentation, these models are able to recapitulate external and internal anatomical 

morphologies to high degrees of precision. The utilization of rapid prototyping models 

incurs a host of benefits to many surgical fields, which include improving surgical planning, 

enhancing diagnostic quality, decreasing patient exposure time to general anesthesia, 

decreasing patient blood loss, and shortening wound exposure time [424]. 
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Figure 8.6: Clinical areas associated to the 200 surgeries assisted with 3D-printed models. 

Block diagrams showing the different steps required to create a 3D-printed model based on 

CT, MRI, and DTI data. 

With the aims of improving surgical outcomes, reducing future costs, and developing 

thorough clinical guidelines for enhancing surgical planning and assessment, the National 

University Hospital of Iceland, Landspitali, established an in-house service for 3D rapid 

prototyping in 2007. Since its introduction, this service has allowed physicians and surgeons 

from different specialities to submit requests for a host of 3D models to be made available 

within 24 hours of submission. This process was simultaneously employed in research 

activities to study both the anthropometry of human muscles [47] and the use of rapid 

prototyping as preparation for complex brain surgeries in combination with neurosurgical 

navigation systems [425]. Since then, the National University Hospital of Iceland has 

fabricated over 200 surgical models for patient cases in the fields of cardiac, orthopedic, and 

neurosurgery (Figure 8.6(a)). The overwhelming success of this 3D rapid prototyping 

service has led to its solidification as an essential service within the hospital, and the rapid 

prototyping service continues to expand its impact on an increasing number of assisted 

surgical cases [421]. 

In neurosurgery, one technique that has likewise been increasingly used for preoperative 

planning is diffusion tensor imaging (DTI) tractography or fiber tracking. Tractography is a 
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noninvasive technique that allows for the in vivo localization of fiber tracts in the brain. 

Tractography uses DTI, which is based on magnetic resonance imaging (MRI), to map brain 

connectivity, which can provide neurosurgeons with the opportunity to visualize nerve fiber 

tracts before surgery [426]. More specifically, this technique may be applied to that of 

functional MRI (fMRI), which has shown great utility in the context of surgical planning. 

fMRI utilizes hemodynamic responses within the brain to implicate regional recruitment 

with a variety of cortical functions, such as motor control and language processing [427]. 

Unfortunately, the routine integration of surgical planning, DTI, and preoperative fMRI has 

been primarily limited by concerns regarding acquisition and registration reliability. 

Nonetheless, there is much promise in this regard—evidenced most relevantly in the 

reconstruction of cotricospinal tracts for preoperative tumor planning [428, 429].The 

purpose of this paper is to detail a novel approach to neurosurgical planning via the use of 

3D printing, which combines patient-specific anatomy from traditional computer 

tomography (CT) and MRI images, with brain function derived from the in vivo localization 

of fiber tracts in the brain using DTI. 

 
8.2.2    Materials and Methods 

The procedure of creating the 3D-printed models based on CT, MRI, and DTI data can be 

seen in Figure 8.6(b). 

 
8.2.2.1   CT and MRI Acquisition 

CT data were acquired from a Philips/Brilliance 64, the Head scan protocol was set to 119 

mA X-ray for the tube current and 120 KV for tube voltage, and the slice thickness is 

typically between 0, 6 and 1 mm. Once the image was reconstructed from the 3D data by 3 

converting into a matrix of picture elements (pixels) where each pixel was assigned the 

attenuation value of the corresponding voxel which is the smallest distinguishable 

boxshaped part of a three-dimensional space, linear attenuation coefficients were rescaled 

to an integer range that encompasses 4096 values, ranging between −1000 and 3095 named 

Hounsfield values. 

MRI data were acquired from a 1.5T Siemens Avanto and the head coil used was Head 

Matrix Coil from Siemens. Both anatomical images and DTI were acquired for this process. 

The DTI protocol included a spin echoecho planar imaging- (SE-EPI-) based DTI sequence 

with 20 diffusion directions, two repetitions to boost the SNR and b value (b is the diffusion 

sensitivity) equal to 1000 s/mm2 . The anatomical image protocol included a T1-weighted 

3D magnetization-prepared rapid acquisition gradient echo sequence (MP-RAGE). 

 
8.2.2.2   DTI: Fiber Tract Extrapolation 

Two different software (StealthViz [430] and nordicBrainEx [431]) programs were used to 

extrapolate the optimal fiber tracts for planning and rapid prototyping. The fiber tracts of 

major interest for this process are the so called eloquent fiber tracts; these tracks are easily 

clinically assessed and are most important for the patient outcome. In total, five fiber tracts 

were extrapolated from both software platforms: 
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(i) Corpus callosum: the corpus callosum is located in the center of the brain and 

forms the largest white matter bundle. Its role is to transfer information 

between the left and right cerebral hemispheres [432].  

(ii) Motor tracts: it originates in the motor cortex area and descends down to the 

brain stem and spinal cord to control α-motor neurons. It can control posture, 

reflexes, and muscle tone as well as conscious voluntary movements [433].  

(iii) Sensory tracts: it is responsible for the sense of touch. It receives incoming 

messages for touch and limb movements from the body [434].  

(iv) Optic tracts: they transfer the information from the retina to the visual cortex 

of the brain [435, 436].  

(v) Broca’s area to Wernicke’s area: arcuate Fasciculus is the prominent fiber 

tracts that connect these two areas that play a role in our language and speech 

[437]. 

StealthViz is a surgical planning software application. It allows import of Digital Imaging 

and Communications in Medicine (DICOM) datasets that can be reviewed in 2D and with 

3D volume rendering, multimodality image fusion, and segmentation of structures with 

manual and semiautomatic tools. The software performs white matter tractography. It 

enables realignment of diffusion-weighted gradient, co-registration with other anatomical 

and functional datasets, and tensor calculations. The fiber tracking uses deterministic FACT 

algorithm [438]. The workflow is the following: 

(i) Import data: the MRI data are imported in DICOM format. Anatomical and 

diffusion tensor images are merged and the diffusion tensor positioned in the 

correct anatomical position. 

(ii) Segmentation: StealthViz allows segmentation with five different tools; pick 

region tool, brush tool, lasso tool, magic wand, and blow. A brain tumor can 

be segmented by using a blow tool which marks the region of interest on one 

cross section. The process can be iterated on several slices and those marked 

regions can be interpolated creating a 3D object of the tumor.  

(iii) Fiber tracking: to trace tracts in StealthViz a start box (and eventually a middle 

and end box) can placed on specific regions of interest in the brain, called 

seeding point, for example, in our application, we start in the region of corpus 

callosum. Then, the software computed all the fibers that go through the 

designed box. Different combinations of the boxes can be used to find the 

tracts of interest. Tracks that are not of interest can be removed. Calculated 

fiber tracts are visualized within the structural images both in 2D and in 3D.  

(iv) Calculate as 3D object: when the tractography planning is completed and 

approved by neurosurgeon, the tracts are converted in 3D objects and saved in 

a DICOM format. In this phase, an error margin of 1 mm is added to each fiber 

tract. 
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(v) Export planning: results can be exported as a one file or separated files (each 

for every track) to the surgical navigation system or to a USB flash memory. 

NordicBrainEx is DICOM compatible and can analyze DTI data acquired with all major 

MRI scanners. DTI datasets acquired with two different b values (one b = 0 and six or more 

DWI where b ≠ 0) can be analyzed in nordicBrainEx. The DTI analysis in nordicBrainEx 

generates parametric maps of various attributes of the diffusion tensor, including 

eigenvector color map (cDTI), fractional anisotropy index (FA), mean diffusivity (ADC), 

tensor eigenvalues (λ1, λ2, and λ3), and trace weighted (TraceW). The fiber tracking is 

performed by using FACT [26]. The workflow is the following: 

(i) Import data: an automatic registration allows to place DTI data correctly according 

with the structural images. 

(ii) Fiber tracking: to perform tractography planning 5 different geometrical shapes can 

be selected for fiber tracking; ellipsoid, cube, polygon, free hand, or scatter. These 

geometrical shapes are used to define volume of interest (VOI) and find the tracts of 

interest. On a defined VOI, three logical operators are available: (1) AND which 

only visualize fibers passing through that VOI, (2) OR which will only visualize 

fibers passing through this and any other VOIs defined, or (3) NOT that will 

disregard all fibers passing through that VOI. When finished tracking, one fiber, for 

example, corpus callosum, can be saved individually.  

(iii) Export planning: results can be exported as separated files (each for every track) to 

the surgical navigation system or to a USB flash memory. 

 
8.2.2.3   Quality Assessment: Anatomical Accuracy and Incorrectly Displayed Fibers 

It is known that the different surgical planning software for fiber tracks may provide 

different results even though they are based on the same reconstruction algorithm [439]. For 

this reason, we performed a comparison between the software available in our institution to 

find the optimal one for rapid prototyping application. The assessment is based on anatomic 

accuracy and incorrectly displayed fibers for each fiber tract. These comparisons are done 

by grading the fiber-tracking results. Table 8.1 shows the grading for incorrectly displayed 

fibers and Table 8.2 shows the grading for anatomic accuracy. The grades vary from 1 (best) 

up to 4 (worst). A white matter atlas was used as a reference for the evaluation [440, 441]. 

Table 8.1: Grades for incorrectly displayed fibers. 
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Table 8.2: Grades for anatomical accuracy. 

 
 
8.2.2.4   Segmentation and Registration 

The next step is to combine the anatomical data such as the skull and other regions of interest 

with the tracks from the DTI software. We use for this propose the software MIMICS [442] 

that is a platform for medical image processing. The process can be divided in three steps:  

(i) CT data are imported in MIMICS and the skull bone is segmented. This 

operation is threshold based; where a range of HU (typically, from 600 to 

2000) values are selected that allow to display the bone tissue. Next we apply 

region growing to assemble the entire connected pixel within the defined 

threshold in a so called mask. Now a 3D object can be created directly from 

the mask and further modification (such as opening the skull model to see 

inside) can be applied on the 3D object using CAD tools. Finally the 3D model 

can be saved as standard tessellation language (STL) file which is a format 

compatible with 3D Printing technologies.  

(ii) The next step is to import the tractography DICOM files to MIMICS. The 5 

tracks of interest are superimposed on the anatomy (MRI data) but appearing 

brighter compared to those of the surrounding tissue (Figure 8.7(a)); therefore, 

the threshold-based segmentation of each tracts is easy. The five 3D objects 

associated to each tracks were created in the same way as described in step 1. 

In order to improve the quality of the 3D objects for 3D printing, we applied 

some morphological operations on the mask in order to smoothen details equal 

or below to 0.25 mm and closing distance equal to 2.5 mm (holes or gaps of 

0.25 mm or less are filled). Finally, the 3D model can be saved as STL file.  

(iii) The final step is to combine Tracts, MRI, and CT data within the same 3D 

object. First, we imported the MRI T1-weighted images to MIMICS. Soft 

tissues like tumor are better visualized with MRI, and therefore, the 

segmentation and creation of the 3D object for this region of interest is done 

in this phase using the same threshold-based procedure described above. Next, 

we import the STL files of the skull and fiber tracts. Fiber tracts were 

positioned in a semiautomatic way on the 2D structural images by projecting 

the contours from the 3D object of the tracts. Next, we imported the STL file 

of the skull. Since the CT and MRI data have different coordinate system, the 

skull 3D object is registered manually using a 3D-positioning panel. When the 

skull is in the right position, then the necessary connections (bridges drawn 

manually) between tumor, fiber tracts, and skull are built in order to create a 

3D model that can be printed. Finally, the skull, tumor, fiber tracts, and the 

bridges are combined in one 3D object using Boolean operations, and the 
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results are saved as STL (Figure 8.7(b)). 

 

 
Figure 8.7: TRACTS superimposed on MRI structural data. (a) 3D model including skull 

from CT, tumor from MRI, fiber tracts, and connecting bridges (b). 

 
8.2.2.5   Navigation System and Rapid Prototyping 

The 3D model of Figure 8.7 is finally printed using a ProJet® (3D systems, Rock Hill, USA) 

printer using a material called VisiJet®M3- X which is an organic colorless mixture that 

allow rendering of small details (mm scale). After print, the model is hardened with an 

infrared light. The computer model can be exported to the surgical navigation system as 

DICOM set, StealthStation® [443], which works as a GPS system determining the position 

of surgical instruments in relation to patient images by automatically fusing CT and MRI 

scans. Then, a registration is done with patient anatomy; so, there is a linkage between the 

patient and the system. In this application, we use the 3D-printed model instead of the real 

patient; in this way advanced preparation of the surgery can start before the patient enters 

the operation theatre. 

 
8.2.3    Results 

We validate this process collaborating to a neurosurgical planning of a 29-year-old female 

having a low-grade glioma located on the frontal lobe. The five fiber tracts that we focused 

on in this study can be seen in Figure 8.8, it shows the side views tractography planning 

from the two surgical planning software platforms; Figure 8.8(a) and 8.8(b) for StealthViz 

and Figure 8.8(c) and 8.8(d) for nordicBrainEx.  
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Figure 8.8: Tractography planning from StealthViz (a-b) and nordicBrainEx (c-d). Red color 

represents fiber tracts from corpus callosum, green color the tracts from motor and sensory 

area on the left side, and yellow showing the same tracts on the right side. Dark blue 

represents the arcuate fasciculus and purple shows the optic nerves. 

It can be noticed that the pathways for the tracts are similar but not the identical; indeed, 

there are remarkable differences in thickness and ending morphology between the software 

platforms that may be important in relation to the pathological area of interest. In order to 

assess the results from the two fiber tracts planning, we use image comparison software 

called XERO viewer [444]; here, the fiber tracts, superimposed on the MRI data, were 

viewed simultaneously and visually assessed. Figure 8.9 shows the comparison of corpus 

callosum.  
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Figure 8.9: Comparison between the corpus callosum tracts obtained with different software: 

nordicBrainEx (a) and StealthViz (b). Both a and b show the same slice. 

To be noticed, the surface of corpus callosum is shown in Figure 8.9(b) that displays a false 

positive. Moreover, the fiber tract from StealthViz goes out of white matter in the brain and 

it is difficult to assess the exact position. Based on comparison, slice by slice and tract by 

tract, we assess the two tractography planning based on anatomic accuracy and incorrectly 

displayed fibers [440, 441]. The quantitative results are displayed in Table 8.3 where for 

this study case, the tractography plane made with nordicBrainEx has a better score and was 

chosen for the next step.  

Table 8.3: The grading results for anatomic accuracy and for incorrectly displayed fibers 

both for StealthViz (SV) and nordicBrainEx (BE). 

 

Figure 8.10 shows the computer model (a) and 3D-printed model (b) resulting from the 

nordicBrainEx surgical planning. DTI planning and 3D-printed models were used with the 
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neurosurgical navigation system [425] to prepare the surgical operation where the tumor 

was removed from the frontal lobe. The operation was successful, and advanced planning 

provided with DTI planning and 3D models allowed the neurosurgeons to be better prepared 

during surgery. 

 

 
Figure 8.10: 3D computer model made in mimics with fiber tracts result from nordicBrainEx 

(a) and when it has been 3D printed and painted (b). 

 
8.2.4    Conclusion 

Three-dimensional models and navigation systems for neurosurgery can be combined to 

improve surgical planning and surgeon training [425, 444]. The work reported herein 

demonstrates that preoperative planning using diffusion tensor imaging (DTI) tractography 

and 3D models is feasible and can be employed in the preparation of complex operations. 

Additionally, it is likely that this process can shorten operation times, contribute to better 

patient safety, and be used for training surgeons. Even though DTI tractography is not a 

fully reliable method, it can still provide the neurosurgeons with an overview of fiber tract 

position, and it has been shown that the use of DTI improves tumor resection results and 

decreases postoperative deficits [426, 445]. Altogether, this work demonstrates that the 

reported 3D-printing process may be integrated with DTI planning and add valuable 

information for neurosurgical planning—especially in association with surgical navigation 

systems. 
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Chapter 9 

Conclusions and Future Directions 

 
 

In the clinical context, medical imaging remains a vital tool for diagnostic and clinical 

investigations. For the purposes of mobility assessment, though both the lenses of 

translational myology and surgical planning, the optimization and standardization of soft 

tissue assessment methodology has beet of particular importance. Indeed, visually simplistic 

medical imaging methods that can enable the noninvasive, high-resolution assessment of 

diseased or damaged tissues have implicated a wide variety of extant computational and 

mathematical modeling methods as preferential for investigation in this regard. However, 

the optimal employment of such methods remains debated, and reported techniques may not 

be sufficient for various avenues of research in translational myology or surgical planning. 

This thesis focuses on the development, application, and assessment of novel methods in 

computational and mathematical modeling of medical images to quantify muscle 

degeneration and optimize our understanding of two mobility-restorative procedures: 

Functional Electrical Stimulation and Total Hip Arthroplasty. Additional impacts of these 

methods are further explored in defining multimodal metrics for mobility analysis, 

characterizing the utility of 3D printing for surgical planning, modeling craniofacial 

electromyography, and computing pre-surgical periprosthetic fracture risk. Results from 

these investigations altogether present the efficacies and limitations of available image 

processing modalities, and introduce novel methodologies, such as nonlinear trimodal 

regression analysis of radiodensitometric distributions and computational interference 

fitting for periprosthetic femoral fracture analysis. Such analyses and perspectives are 

herein presented in both a theoretical and practical context. Standardizing computational 

modeling methodologies for medical image assessment in these contexts would allow for 

the generalizability of such research to the indication of respective compensatory targets 

for clinical intervention. 

 Chapter 3: The focus of this chapter is on the introduction of the impacts of modern 

methods for X-Ray Computed Tomography image analyses in the contexts of 

investigating muscle degeneration, functional electrical stimulation, and total hip 
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arthroplasty. The intent of the collection of these works is to inspire a discussion of 

extant assessment methods and therapeutic interventions currently investigated by 

the fields of translational myology and surgical planning. 

 Chapter 4: The focus of this chapter is on the definition and utility of our novel 

method for quantifying muscle quality by radiodensitometric attenuation distribution 

analysis using a combinatorial methodology involving nonlinear trimodal regression 

analysis and histogram iteration via a generalized reduced gradient algorithm. This 

method was tested first with three subjects with varying degrees of muscle quality 

defined by their respective conditions as a proof-of-concept. Following this, the 

utility of the method was demonstrated with a cohort of total hip arthroplasty patients 

to investigate changes in periprosthetic muscle quality according to implant 

procedure and post-surgical normalization of ambulation. 

 Chapter 5: This chapter continues the investigation on the utility of the 

abovementioned nonlinear trimodal regression analysis method by assembling 

computed tomography radiodensitometric distributions, cross-sectional areas, 

average Hounsfield unit values, lower extremity function biometrics, and sarcopenic 

comorbidities in the AGES-II database of 3,162 aging subjects. This investigation 

highlights the specificities of each muscle quality metric as quantitative indicators 

for sarcopenia. 

 Chapter 6: This chapter describes the novel assembly of biometric assessment and 

computational modeling modalities from a 100-patient total hip arthroplasty cohort 

as a first step towards creating patient-specific applications that rehabilitators and 

orthopedic surgeons can utilize for prescribing their respective surgical procedures. 

Along with outlining further utility of the previously-described nonlinear trimodal 

regression analysis method for muscle quality assessment, this investigation reports 

notable aspects of each patient’s dataset and compares these results across available 

subgroups of the cohort, highlighting the combinatorial utilities of each reported 

modality. 

 Chapter 7: The objective of the research presented in this chapter was to continue 

computational modeling discussion in the context of surgical support by describing 

a novel finite elements analysis methodology for patient fracture risk evaluation 

before total hip arthroplasty surgery. The presented results highlight the feasibility 

of the methodology as a foundation to develop a clinical database for correlating 

bone mineral density obtained from computed tomography images with 

computational methods for assuming fracture risk and predicting patient outcomes. 

 Chapter 8: This chapter contains two additional computation and mathematical 

modeling applications across the aforementioned fields of translational myology and 

surgical planning. The first of these studies describes the recapitulation of 

craniofacial morphology as a crucial first step in developing an anatomical model 

for the isolation and removal of confounding low-amplitude craniofacial 

electromyographic signals from electroencephalography datasets. The second study 

reports the integration of 3D-printing process with diffusion tensor imaging for 

neurosurgical planning, in association with surgical navigation systems. 
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The increasing prevalence of Sarcopenic muscle degeneration necessitates the establishment 

of a robust quantitative myological assessment methodology. While there is much extant 

literature reporting the use of average HU values to investigate muscle quality as a 

Sarcopenic index, no studies have yet to utilize entire radiodensitometric distributions and 

define a generalized analytical tool for their assessment. Herein, we have shown that 

rigorous quantification of entire HU distributions using our nonlinear trimodal regression 

analysis (NTRA) method can elicit many unique assessment parameters and therein provide 

additional information regarding muscle quality alongside extant gold standard methods. 

This is perhaps the most impactive work presented in this thesis, with a host of potential 

impacts across many fields of soft tissue investigation. Indeed, the contribution of fibrosis 

to traditional metrics of muscle quality remains an essential target for further investigation, 

and the inclusion of the loose connective/water equivalent tissue regime in NTRA analysis 

may serve as a direct metric for fibrosis with further investigation. As is true in any such 

study, however, the use of more subjects and aging comorbidities will be essential to 

reinforcing any of the physiological interpretations reported here, and further discussion 

regarding potential applications and adjustments to the reported model will be requisite. 

Perhaps the most ambitious of our reported investigations is presented in Chapter 6, on the 

multimodal quantitative assessment of THA patients. It must be stressed that many of the 

results presented herein are quite preliminary in nature; especially with regards to subject 

involvement. As is the case with any multimetric study (especialy those with longitudinal 

datasets), patient involvement across all metrics must be stressed to optimize the validity of 

reported results. In this regard, a larger patient population will be requisite to rigorously 

show the statistical significance of each parameter and to define limits that correlate to 

additional, real cases of patient periprosthetic fracture.  

As our most investigated THA metric, the limitations of the reported FEA and FRI 

computations must likewise be made clear. The greatest of these is that the simulations 

carried out were steady-state, and  did not take into consideration applied loads that are time-

dependent, or the prosthetic design and surface finish. The real forces induced by a surgical 

hammer during the surgery are high-impact and punctate forces, or forces acting on the bone 

over a short period of time. This can instigate the development of microfissures in the 

periprosthetic region of the femur, leading to fractures in more extreme cases. Furthermore, 

the use of unidirectional force is an over-simplification of the distribution incurred by press-

fitting. For this reason, using a direct strain-based method such as interference fitting 

(preliminarily reported in Chapter 6) for computing fracture risk will be optimal in future 

studies to avoid this discrepancy. In addition, the anisotropy of femoral bone was not 

consirered in present studies and must be employed in future work to optimize periprosthetic 

fracture propagation prediction. 

Aside from their aforementioned limitations, the investigations presented in this thesis 

altogether present the efficacies and novel employment of available image processing 

modalities, and results and perspectives are herein presented in both a theoretical and 

practical context. Standardizing computational modeling methodologies for medical image 

assessment in these contexts would allow for the generalizability of such research to the 

indication of respective compensatory targets for clinical intervention. 
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Appendix A 

Code: NTRA 

The following codes are extracted from the following matlab scripts for the nonlinear trimodal 

regression analysis (NTRA) method: hjarta_spline.m, createFit.m, and gauss_fitting.m, respectively. 

hjarta_spline.m 
close all 

clear all 

clc 

 

%Load the data 

load heart.mat 

%Create the CT bin vector 

index=1:128; 

%Define the high indexes 

index_high=[1 4 8 12 16 19 23 27 31 34 38 42 46 49 53 57 61 65 68 72 76 80 83 87 91 95 98 102 

106 110 113 117 121 125]; 

ct_high=index_high; 

%convert to Hounsfield units 

index_high=index_high*2.265625-190; 

%Define the low indexes 

index_low=setdiff(index,ct_high); 

ct_low=index_low; 

%convert to Hounsfield units 

index_low=index_low*2.265625-190; 

 

%HU=CT*2.265625-190; 

%Average curve from all subjects 

 

%N=3167; 

N=10; 

C_upper=zeros(N,11); 

C_lower=zeros(N,11); 

S=zeros(N,12); 

R=zeros(N,1); 

j=0; 

x=-190:0.01:100; 

N_high=length(x); 

N_low=length(x); 
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YY_high=zeros(N_high); 

YY_low=zeros(N_low); 

 

% figure 

for i=19008:19008+N; 

    tic 

    j=j+1; 

    V=A(i,7:end); 

    V_high=V(ct_high); 

    V_low=V(ct_low); 

    %High 

    y_high=spline(index_high,V_high,x); 

    [S_temp,R_temp,Cl,Cu, y_fit]=gauss_fitting(x,y_high); 

    S_high(j,:)=S_temp; 

    R(j,1)=R_temp; 

     

    YY_high(:,j)=y_fit; 

     

    %Low 

    y_low=spline(index_low,V_low,x); 

    [S_temp,R_temp,Cl,Cu, y_fit]=gauss_fitting(x,y_low); 

    S_low(j,:)=S_temp; 

    R(j,2)=R_temp; 

    YY_low(:,j)=y_fit; 

    plot(x,YY_high(:,j),'r-',index_high,V_high,'k+',x,YY_low(:,j),'b-',index_low,V_low,'ko') 

    axis([-190 100 0 20]) 

    disp(['Subject number: ' num2str(j) ' out of ' num2str(N)]) 

    toc 

    pause 

end 

 

break 

 

save('muscles_spline_fit.mat','A', 'index_high','index_low','R', 'S_low', 'S_high') 

 

 

figure 

plot(S_low(:,1),'b-') 

hold 

plot(S_low(:,2),'r-') 

plot(S_low(:,3),'g-') 

plot(S_low(:,4),'k-') 

legend('Amplitude', 'Stdev', 'Mean', 'ERF') 

%axis([0 10 0 150]) 

title('Fat tissue') 

 

figure 

plot(S_low(:,5),'b-') 

hold 

plot(S_low(:,6),'r-') 

plot(S_low(:,7),'g-') 

plot(S_low(:,8),'k-') 

legend('Amplitude', 'Stdev', 'Mean', 'ERF') 

title('Muscle tissue') 

%axis([0 10 0 150]) 
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figure 

plot(S_low(:,9),'b-') 

hold 

plot(S_low(:,10),'r-') 

plot(S_low(:,11),'g-') 

legend('Amplitude', 'Stdev', 'Mean') 

%axis([0 10 0 150]) 

 

figure 

plot(C_lower(:,1),'b-') 

hold 

plot(C_lower(:,2),'r-') 

plot(C_lower(:,3),'g-') 

plot(C_lower(:,4),'k-') 

legend('Amplitude', 'Stdev', 'Mean', 'ERF') 

%axis([0 10 0 150]) 

 

%[fitresult, gof] = gauss_fit(index_high, v_high) 

createFit.m 
function [fitresult, gof] = createFit(index_high, V_high) 

%CREATEFIT(INDEX_HIGH,V_HIGH) 

%  Create a fit. 

% 

%  Data for 'untitled fit 1' fit: 

%      X Input : index_high 

%      Y Output: V_high 

%  Output: 

%      fitresult : a fit object representing the fit. 

%      gof : structure with goodness-of fit info. 

% 

%  See also FIT, CFIT, SFIT. 

 

%  Auto-generated by MATLAB on 30-Jan-2015 14:06:29 

 

 

%% Fit: 'untitled fit 1'. 

[xData, yData] = prepareCurveData( index_high, V_high ); 

 

% Set up fittype and options. 

ft = fittype( 'a*1/(b*sqrt(2*pi))*(exp(-((x-c).^2/(sqrt(2)*b)^2))).*(erfc(d*(x-

c)./(b*sqrt(2))))+e*1/(f*sqrt(2*pi))*(exp(-((x-g).^2/(sqrt(2)*f)^2))).*(erfc(h*(x-

g)./(f*sqrt(2))))+k*1/(m*sqrt(2*pi))*(exp(-((x-n).^2/(sqrt(2)*m)^2)))', 'independent', 'x', 'dependent', 

'y' ); 

opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 

opts.Display = 'Off'; 

opts.Robust = 'Bisquare'; 

opts.StartPoint = [200 10 30 1 200 10 110 1 10 1 50]; 

opts.Lower=[1 0 20 0 1 0 90 0 1 0 30]; 

opts.Upper=[1e3 50 50 4 1e3 50 130 4 1e3 50 80]; 

% Fit model to data. 

[fitresult, gof] = fit( xData, yData, ft, opts ); 

 



162                                         Computational and Mathematical Modeling of Medical Images 
 

% Plot fit with data. 

% figure( 'Name', 'untitled fit 1' ); 

% h = plot( fitresult, xData, yData, 'predobs', 0.99 ); 

% legend( h, 'V_high vs. index_high', 'untitled fit 1', 'Lower bounds (untitled fit 1)', 'Upper bounds 

(untitled fit 1)', 'Location', 'NorthEast' ); 

% % Label axes 

% xlabel( 'index_high' ); 

% ylabel( 'V_high' ); 

% grid on 

 

 

    R(j,2)=R_temp; 

    YY_low(:,j)=y_fit; 

    plot(x,YY_high(:,j),'r-',index_high,V_high,'k+',x,YY_low(:,j),'b-',index_low,V_low,'ko') 

    axis([-190 100 0 20]) 

    disp(['Subject number: ' num2str(j) ' out of ' num2str(N)]) 

    toc 

    pause 

end 

 

break 

gauss_fitting.m 
function [S,R,C_lower,C_upper, y_fit]=gauss_fitting(x,y) 

 

[xData, yData] = prepareCurveData( x, y ); 

% Set up fittype and options. 

ft = fittype( 'a*1/(b*sqrt(2*pi))*(exp(-((x-

c).^2/(sqrt(2)*b)^2))).*d*normcdf(x,c,b)+e*1/(f*sqrt(2*pi))*(exp(-((x-

g).^2/(sqrt(2)*f)^2))).*h*normcdf(-x,-g,f)+k*1/(m*sqrt(2*pi))*(exp(-((x-n).^2/(sqrt(2)*m)^2)));', 

'independent', 'x', 'dependent', 'y' ); 

opts = fitoptions( 'Method', 'NonlinearLeastSquares' ); 

opts.Display = 'Off'; 

opts.Robust = 'Bisquare'; 

%opts.StartPoint = [200 10 30 1 200 10 110 1 10 1 50]; 

opts.StartPoint = [200 10 -110 1 200 10 50 1 10 1 -50]; 

opts.Lower=[1 0 -150 0 1 0 20 -4 1 0 -80]; 

opts.Upper=[1e3 50 -50 4 1e3 50 100 1 1e3 50 10]; 

 

% Fit model to data. 

[fitresult, gof] = fit( xData, yData, ft, opts ); 

%     plot( fitresult, xData, yData) 

%     axis([0 140 0 20]) 

%     text(20,18, strcat('measurement number: ', num2str(j))); 

%Read in coefficients 

S(1)=fitresult.a; 

S(2)=fitresult.b; 

S(3)=fitresult.c; 

S(4)=fitresult.d; 

S(5)=fitresult.e; 

S(6)=fitresult.f; 

S(7)=fitresult.g; 

S(8)=fitresult.h; 

S(9)=fitresult.k; 
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S(10)=fitresult.m; 

S(11)=fitresult.n; 

R(1)=gof.rsquare; 

cc=confint(fitresult); 

C_lower=cc(1,:); 

C_upper=cc(2,:); 

 

y_fit=feval(fitresult,x); 

 

save('muscles_spline_fit.mat','A', 'index_high','index_low','R', 'S_low', 'S_high') 

 

 

figure 

plot(S_low(:,1),'b-') 

hold 

plot(S_low(:,2),'r-') 

plot(S_low(:,3),'g-') 

plot(S_low(:,4),'k-') 

legend('Amplitude', 'Stdev', 'Mean', 'ERF') 

%axis([0 10 0 150]) 

title('Fat tissue') 

 

figure 

plot(S_low(:,5),'b-') 

hold 

plot(S_low(:,6),'r-') 

plot(S_low(:,7),'g-') 

plot(S_low(:,8),'k-') 

legend('Amplitude', 'Stdev', 'Mean', 'ERF') 

title('Muscle tissue') 

%axis([0 10 0 150]) 

 

figure 

plot(S_low(:,9),'b-') 

hold 

plot(S_low(:,10),'r-') 

plot(S_low(:,11),'g-') 

legend('Amplitude', 'Stdev', 'Mean') 

%axis([0 10 0 150]) 

 

figure 

plot(C_lower(:,1),'b-') 

hold 

plot(C_lower(:,2),'r-') 

plot(C_lower(:,3),'g-') 

plot(C_lower(:,4),'k-') 

legend('Amplitude', 'Stdev', 'Mean', 'ERF') 

%axis([0 10 0 150]) 

 

%[fitresult, gof] = gauss_fit(index_high, v_high) 
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