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The road to wisdom? 

 

Well, it´s plain 

and simple to express. 

Err and err and err again, 

but less and less and less. 

 

- Piet Hein 
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Ágrip 

Inngangur og markmið: Prótónupumpuhemlar (PPI) eru sýrubindandi lyf 

sem eru almennt notuð við meðferð á ýmsum magasýrusjúkdómum. Notkun 

PPI lyfja er útbreidd á heimsvísu og sú umtalsverða aukning sem hefur orðið 

á notkun þeirra hefur verið gagnrýnd í ljósi mögulegrar ofnotkunar og óvissu 

sem ríkir um mögulegar skaðlegar aukaverkanir. Sýrubindandi virkni PPI 

hefur verið talin hafa möguleg krabbameinshindrandi áhrif vegna hæfni þeirra 

til að hindra virkni sérhæfðra sýruseytandi ensíma. Talið er að slík ensím taki 

þátt í myndun á súru utanfrumuumhverfi krabbameinsfruma.  

Markmið okkar var nota lýðgrundaða gagnagrunna á Íslandi til að I) 

kortleggja notkun PPI lyfja meðal fullorðinna einstaklinga á Íslandi, II) meta 

áhættu PPI notenda á því að greinast með brjóstakrabbamein, 

blöðruhálskirtilskrabbamein, eða sortuæxli í húð, og III) meta möguleg 

verndandi áhrif PPI lyfjanotkunar á lifun sjúklinga með blöðruhálskirtils–

krabbamein. 

Aðferðir: Rannsókn I var lyfjanotkunarrannsókn þar sem við lýstum notkun 

PPI lyfja á árunum milli 2003 og 2015. Við áætluðum árlegt nýgengi og 

algengi PPI notkunar, lengd PPI lyfjameðferðar og samhliða notkun lyfja sem 

geta haft í för með sér blæðingar í meltingarvegi. Rannsókn II var tilfella-

viðmiðsrannsókn þar sem tilfellin voru einstaklingar sem greindust með 

brjóstakrabbamein, blöðruhálskirtilskrabbamein og sortuæxli á milli 2005 og 

2014. Hvert og eitt krabbameinstilfelli pöruðum við saman við allt upp að 10 

viðmið eftir almanaksári, fæðingarári, og kyni. Við áætluðum PPI notkun 

þátttakenda, þ.e. hvort leyst hefði verið út að minnsta kosti eina PPI 

lyfjaávísun, hvort notkun væri ≥1000 skilgreindum dagskömmtum (DDDs) og 

heildarnotkun og reiknuðum út gagnlíkindahlutföll (ORs) og 95% öryggisbil 

(CIs) fyrir áhættuna á því greinast. Rannsókn III var hóprannsókn þar sem 

einstaklingar á aldursbilinu 40 til 85 ára sem greindust með krabbamein í 

blöðruhálskirtli á milli 2007 og 2012 mynduðu rannsóknarhópinn. Við 

áætluðum upphaf PPI notkunar (fyrir eða eftir greiningu), heildarnotkun og 

lagskiptum eftir klínískri stigun. PPI notkun var meðhöndluð sem tímaháð 

breyta og Cox aðhvarfsgreining var notuð til að reikna út hættuhlutfall (HRs) 

fyrir dauða af völdum blöðruhálskirtilskrabbameins annars vegar og dauða af 

öllum orsökum hins vegar með 95% öryggismörkum (CI). 
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Niðurstöður: Niðurstöður úr rannsókn I sýndu að heildarnotkun PPI lyfja á 

Íslandi fór ört vaxandi á rannsóknartímabilinu. Þótt nýgengi hafi haldist 

stöðugt jókst algengi PPI notkunar úr 8.5 á hverja 100 einstaklinga árið 2003 

yfir í 15.5 á hverja 100 einstaklinga árið 2015. Ennfremur, reyndist algengi 

hækka með hækkandi aldri og 22% sjúklinga var enn að nota PPI einu ári 

eftir að meðferð hófst.  

Niðurstöður úr rannsókn II bentu ekki til þess að PPI notkun hafi í áhrif á 

krabbameinsáhættu (ORs 1.03; 95% CI: 0.92-1.16 fyrir brjóstakrabbamein, 

1.12; 95% CI: 1.00-1.25 fyrir blöðruhálskirtilskrabbamein og 0.84; 95% CI: 

0.69-1.12 fyrir sortuæxli). Sömuleiðis virtist PPI notkun ≥1000 DDDs ekki 

hafa áhrif (OR 0.97; 95% CI: 0.78-1.19 fyrir brjóstakrabbamein, 1.20; 95% CI: 

0.99-1.47 fyrir blöðruhálskirtilskrabbamein, og 0.59; 95% CI: 0.40-1.13 fyrir 

sortuæxli). Niðurstöður okkar bentu ekki til þess að tengsl væru á milli 

heildarnotkunar á PPI og áhættunnar á því að greinast með 

brjóstakrabbamein, blöðruhálskirtilskrabbamein, eða sortuæxli.  

Niðurstöður úr rannsókn III bentu ekki til þess að PPI notkun eftir 

greiningu hefði áhrif á líkur á dauða af völdum blöðruhálskirtilskrabbameins 

(HR 0.88; 95% CI: 0.52-1.48) eða dauða af öllum orsökum (HR 1.02; 95% CI: 

0.73-1.43). Upphaf PPI notkunar virtist ekki hafa áhrif, en HRs fyrir dauða af 

völdum blöðruhálskirtilskrabbameins voru 0.45 (95% CI: 0.21-0.98) meðal 

sjúklinga sem notuðu PPI lyf samfellt bæði fyrir og eftir greiningu og 1.12 

(95% CI: 0.61-2.08) á meðal nýrra PPI notenda. HRs fyrir dauða af öllum 

orsökum voru 0.67 (95% CI: 0.43-1.04) á meðal sjúklinga sem notuðu PPI 

samfellt og 1.25 (95% CI: 0.82-1.92) á meðal nýrra PPI notanda. Lagskipting 

eftir heildarnotkun PPI lyfja og klínískri stigun leiddi ekki ljós tölfræðilega 

marktækt samband á milli PPI notkunar og lifunar. 

Ályktun: Niðurstöður verkefnisins benda til þess að PPI notkun hafi aukist 

umtalsvert á Íslandi yfir síðasta áratuginn; sér í lagi hjá eldri einstaklingum. 

Þar að auki er stór hluti sjúklinga meðhöndlaður lengur en mælt er með í 

klínískum leiðbeiningum fyrir lyfin. Niðurstöður okkar benda hvorki til þess að 

PPI notkun hafi áhrif á áhættu á brjóstakrabbameini, blöðruhálskirtils–

krabbameini, eða sortuæxlum, né að hún hafi áhrif á lifun meðal sjúklinga 

með krabbamein í blöðruhálskirtli.   

 
Lykilorð:  

Prótónupumpuhemlar, lyfjafaraldsfræði, krabbamein, sýruseyting, lýðgrunduð 

rannsókn 
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Abstract 

Background and aims: Proton pump inhibitors (PPIs) are commonly 

prescribed drugs that are used to treat acid-related disorders of the 

gastrointestinal tract. Over the last decade, PPI use has repeatedly been 

shown to be increasing worldwide, causing concerns due to reports of 

unsubstantiated long-term use and potential adverse effects. However, PPIs 

have also been suggested to promote antineoplastic effects in certain cancer 

settings via inhibition of specialized proton pumps. These proton pumps are 

involved in pH regulation in eukaryotic cells and believed to act as facilitators 

for the acidification of the tumor microenvironment (TME). 

Our aim was to use the population-based resources available to us in 

Iceland I) to assess the utilization of PPIs among the adult outpatient 

population residing in Iceland, II) to explore the potential of PPIs possessing 

an antineoplastic effect by estimating the risk among PPI users of being 

diagnosed with a first-time breast cancer, prostate cancer, or malignant 

melanoma, and III) to assess the potential influence of post-diagnosis PPI 

use on mortality among prostate cancer patients. 

Materials and methods: In study I, a drug utilization study, we investigated 

changes in overall PPI use between 2003 and 2015 among the adult 

outpatient population in Iceland. We estimated changes in annual incidence 

and prevalence, duration of PPI treatment, and the concurrent use of 

ulcerogenic drugs. In study II, a nested case-control study, we identified 

incident cases of breast cancer, prostate cancer, and malignant melanoma 

between 2005 and 2014. For each case, up to 10 controls were matched on 

birth-year, sex, and calendar year using risk-set sampling. Assessing ever 

use, high use, and cumulative use of PPIs, we calculated odds ratios (ORs) 

and 95% confidence intervals (CIs) using conditional logistic regression. In 

study III, a cohort study, we identified patients diagnosed with prostate 

cancer between 2007 and 2012 among adult residents of Iceland aged 

between 40 and 85 years.  PPI use was modelled in a time-dependent 

manner. Assessing post-diagnosis use, timing of use, cumulative use and 

stratifying by clinical stage we estimated the associations with prostate-

cancer specific and all-cause mortality using Cox proportional hazard 

regression models and 95% CIs.  
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Results: In study I, we observed a marked increase in outpatient PPI use 

over the last decade. Although the annual incidence remained fairly stable 

between 2003 and 2015, the annual prevalence estimates rose from 8.5 per 

100 persons in 2003 to 15.5 per 100 persons in 2015. Furthermore, we found 

that prevalence increased with age and that 22% of patients were still being 

treated with PPIs one year after treatment initiation. 

In study II, we observed the following adjusted odds ratios (ORs) 

associated with ever use and high use of PPIs, respectively: 1.03 (95% CI: 

0.92-1.16) and 0.97 (95% CI: 0.78-1.19) for breast cancer, 1.12 (95% CI: 

1.00-1.25) and 1.20 (95% CI: 0.99-1.47) for prostate cancer, 0.84 (95% CI: 

0.69-1.12) and 0.59 (95% CI: 0.40-1.13) for malignant melanoma.  In 

secondary analyses, we did not observe a pattern consistent with a dose-

response relationship for these three cancer types. 

In study III, we did not observe a statistically significant association 

between post-diagnosis PPI use and prostate cancer-specific mortality (HR 

0.88; 95% CI: 0.52-1.48) or all-cause mortality (HR 1.02; 95% CI: 0.73-1.43). 

In secondary analyses, stratification by timing of use yielded adjusted HRs of 

0.45 (95% CI: 0.21-0.98) among continuous PPI users and 1.12 (95% CI: 

0.61-2.08) among new PPI users for prostate cancer-specific mortality. For 

all-cause mortality, we observed adjusted HRs of 0.67 (95% CI: 0.43-1.04) 

and 1.25 (95% CI: 0.82-1.92) among continuous users and new users, 

respectively. Stratification by cumulative dose and clinical stage did not 

reveal a statistically significant association with post-diagnosis PPI use for 

the mortality outcomes of interest. 

Conclusions: In conclusion, our observations indicate that PPI use in 

Iceland has increased considerably over the last decade; especially among 

older adults. Additionally, a high proportion of patients were treated for longer 

periods than clinical guidelines recommend. Furthermore, our findings do not 

support a chemopreventive role of PPIs in attenuating the risk of being 

diagnosed with a first-time breast cancer, prostate cancer, or malignant 

melanoma. Finally, our results do not indicate that post-diagnosis PPI use 

influences mortality among prostate cancer patients.  

Keywords:  

Proton pump inhibitors, pharmacoepidemiology, population-based, cancer, V-

ATPase 
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1  Introduction 

A rapid increase in proton pump inhibitor (PPI) use has in recent years given 

rise to concerns about the appropriateness of their use and potential adverse 

effects that might stem from staying on PPI treatment for extended durations 

of time (Batuwitage et al., 2007). Given the high usage of these drugs it is 

important to determine all potentially associated safety considerations for 

their use; both adverse and beneficial. Due to their inherent function as acid 

inhibitors, PPIs have been proposed to be able to function as potential 

antineoplastic agents by promoting pH homeostasis in certain cancer settings 

(Luciani et al., 2004). 

In this PhD project, we explore the landscape of PPI use among the adult 

population in Iceland, evaluate the risk of incident diagnoses of breast 

cancer, prostate cancer, and malignant melanoma among PPI users, and 

finally aim to determine whether PPI use influences mortality among prostate 

cancer patients. 

1.1  Pharmacoepidemiology 

Pharmacoepidemiology is a rather young discipline that can be seen to 

bridge the research areas of clinical pharmacology and epidemiology. It is 

defined as the study of the use of drugs and their consequent effects, both 

beneficial and adverse, in large numbers of individuals (Strom et al., 2012). 

Pharmacoepidemiology emerged from the need to address increasing 

concerns of adverse effects by developing methods to assess the safety 

profiles of drugs. These concerns were compounded by events such as the 

“thalidomide disaster” which took place around 1960, where rare birth defects 

could be traced back to the fetus being exposed to thalidomide via maternal 

use of the drug during pregnancy (Strom et al., 2012).  

Pharmaceutical drugs are extensively evaluated in pre-clinical and clinical 

phases prior to marketing and randomized controlled trials (RCTs) are 

considered to be the gold standard when it comes to estimating the 

effectiveness of the drugs under study (Akobeng, 2005). However, RCTs are 

not always applicable when estimating the safety of a drug, such as when the 

adverse effects are rare or take a long time to develop. Furthermore, the 

small sample sizes often seen in RCTs tend to be relatively homogenous. 

Thus, they are not always comparable to the general population, making it 
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hard to predict the overall real-world benefits and risks of a particular drug 

(Strom et al., 2012; Vandenbroucke, 2004). Furthermore, in addition to pre-

marketing clinical trials being limited by duration, extent, and patient 

characteristics, there are valuable insights to be gained from observational 

studies that are conducted in the post-marketing phase. In fact, they can 

sometimes reveal previously undetected beneficial or adverse effects and 

they can also test the effectiveness of drugs under different conditions and 

within patient populations that were not adequately represented in pre-

marketing clinical trials (Guess, 2005). Pharmacoepidemiological studies are 

therefore able to provide further insight into the safety profiles and 

effectiveness of previously marketed drugs due to the possibility of greater 

follow-up and the tracking of real-world drug use and prescription patterns 

within large populations (Strom & Tugwell, 1990).  

A key aspect of pharmacoepidemiological research is the availability of 

relevant data on drug use. Since its advent, pharmacoepidemiology has 

developed hand in hand with technological advancements. The growth of 

medical databases has led to ever-increasing amounts of data that previously 

were collected and compiled in a time-consuming manner (Wettermark, 

2013). For instance, in the Nordic countries population-based registries have 

been established in each country that cover the majority of all dispensed 

drugs within their populations (Furu et al., 2010). However, although the 

amount of available data has increased considerably over the years, there 

are still several methodological challenges that arise and need to be 

considered when data on drug use is utilized in pharmacoepidemiological 

studies. 

1.1.1  Nationwide prescription registries in the Nordic countries  

High-quality data sources are essential for registry-based research in the field 

of pharmacoepidemiology. A crucial component of such data sources is the 

ablility to be able to compile and store data on an individual level, using a 

personal identification number that is unique to every individual for each 

record entry. Regional databases that collected individual-level data in 

specific regions of Sweden (Boethius & Wiman, 1977) and Denmark (Hallas 

et al., 2017), were important precursors of the national level prescription 

registries of today. With the ushering in of the computer age, it became 

possible to efficiently collect individual-level data on every filled prescription 

from pharmacies within entire countries. Today, all five Nordic countries have 

established centralized databases that cover each country‘s entire population 

that hold information on individual-level data on dispensed drugs dating back 
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to 1994 in Denmark (Pottegård et al., 2016b) and Finland (Klaukka, 2009), 

2003 in Iceland, 2004 in Norway, and 2005 in Sweden (Furu et al., 2010; 

Wettermark et al., 2007).  

There are a lot of similarites between the Nordic prescription registries. 

First, the data structure is the same and the variables are categorized based 

on their nature, i.e. whether the data is related to the patient, the prescriber, 

the drug, or the pharmacy (Furu et al., 2010). Second, the parliaments in the 

respective countries have given informed consent on behalf of their 

populations for everyone to be included in the national health registries 

(Rosén, 2002). Third, the prescription databases are all based on personal 

identification numbers that are unique to every resident of each country. 

Personal identification numbers are important because they allow the data to 

be linked to other national registries that hold data on other variables, 

potential outcomes and confounding factors, which then facilitates the study 

of potential effects of drug exposures (Wettermark et al., 2013). Due to the 

similarities between the Nordic countries, and their shared history and 

cultural ties, and their frequent collaborations in general, cross-national 

pooling of pharmacoepidemiological data for research purposes is an 

intriguing prospect. Such collaborative efforts have several potential benefits, 

such as allowing for assessment of possible variations between countries, 

strengthening research competencies, and increasing the sample size of 

studies. Taken together, the national prescription databases in the Nordic 

countries cover around 27 million individuals. Thus, the Nordic countries are 

well placed to collaborate on high-quality pharmacoepidemiological studies 

with large underlying populations (Wettermark et al., 2013).  

However, there are also some challenges that come along with combining 

cross-national data. While the healthcare systems and access to data on 

exposures and outcomes are similar between countries (Furu et al., 2010), 

there can be some administrative and logistic challenges that come with the 

combining the data in one place. Furthermore, even small differences in the 

record-linking process and access to clinical variables can cause some 

difficulties when performing studies where the focus is on the outcome of 

drug therapy, although descriptive cross-national drug utilization studies 

might be easier to carry out (Wettermark et al., 2013). 

Even though the Nordic prescription registries cover entire national 

populations, allow for linkage of data with other relevant registries such as 

cancer registries, cause-of-death registries, population registries, and 

inpatient registries and contain vast amounts of data on dispensed drugs, 
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they do not include information on the underlying indications behind each 

prescription nor the prescribed daily dose, which is a limiting factor for some 

pharmacoepidemiological studies. Furthermore, the prescription registries do 

not contain information on the majority of non-prescription over-the-counter 

(OTC) drugs, which is a potential cause of misclassification bias (Furu et al., 

2010). 

All in all, the nature of the Nordic prescription registries allows the Nordic 

countries to collaborate on high-quality population-based, cross-national 

pharmacoepidemiological studies. Such collaborations may enhance the field 

of public health by contributing to a deeper understanding of real-world drug 

use and raising awareness on previously unknown effects of drugs, thus 

promoting the development of safer and more effective treatment protocols. 

Today, studies that are based on the Nordic prescription registries have 

paved the way for new knowledge on drug utilization and effectiveness, and 

have increased the safety of prescription drug use in the society (Wettermark 

et al., 2013).  

1.1.2  ATC/DDD drug classifiation system  

The Anatomical Therapeutic Chemical Classification System (ATC) with 

Defined Daily Doses (DDD) was devoleped in Norway as a modified and 

extended version of a previous classification system, used by the European 

Pharmaceutical Market Research Association (EphMRA). This system is 

recommended by the World Health Organization (WHO) as the international 

standard for drug utilization studies. The DDD is a measuring unit based on 

the assumed average maintenance dose per day for a drug that is being 

used for its main indication in adults. It is a unit that is technical in nature and 

was originally developed for use in drug utilization studies where it is 

important to have a clear and stable classification system, as well as a 

standardized unit of measurement, when presenting and comparing statistics 

of drug consumption at an international level. The DDD unit should not be 

assumed to necessarily reflect actual prescribed dosages, since those can 

drastically vary based on individual characteristics of the patients and other 

considerations (WHO, 2018). The Nordic prescription registries utilize the 

Anatomical Therapeutic Chemical/Defined Daily Dose (ATC/DDD) 

classification to classify the prescription drugs that are recorded in the 

registries. 

The basis of the ATC/DDD system is its five level hierarchial classification 

of the active substances of the drugs that are being classified. The first level 

of classification is based on organ or system on which the drugs act, and has 
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14 distinct anatomical/pharmacological groups. The remaining levels (2nd – 

5th) break down the ATC main groups and categorizes them based on their 

chemical, pharmacological, and therapeutic proporties (WHO, 2018). 

1.1.3  Biases in pharmacoepidemiological studies 

Observational studies in the field of pharmacoepidemiology are subject to 

some of the same biases as epidemiological studies in general. These 

include systematic errors such as selection bias and information bias. 

Selection bias occurs when the selection of study participants is not 

representative of the total population. This bias makes it impossible to 

conclude anything meaningful in a larger context from a study suffering from 

this bias (Guess, 2005). In pharmacoepidemiological studies, selection bias 

can be avoided by utilizing information on drug exposure from large data 

sources, such as the Nordic prescription registries, that cover entire 

populations (Wettermark et al., 2013). Information bias is a result of the 

inaccurate collection of information relating to the study subjects. These 

inaccuracies tend to cause misclassification of some of the important variable 

under study relating to exposures, outcomes, or covariates (Guess, 2005). As 

an example, studies that require patients to recall previous exposure to 

specific drugs might be subject to misclassifation of the information provided. 

Also, misclassification in pharmacoepidemiological studies might stem from 

prescription registries not containing information on OTC drug use where a 

patient might be misclassified as unexposed due to an OTC purchase of a 

drug. 

Confounding is another common bias in epidemiological studies that is an 

important source of concern. It is a consequence of an imbalance in the 

distribution of important patient characteristics between exposed and 

unexposed subjects (Suissa, 2009). A confounding factor is not situated in 

the causal pathway between the exposure and outcome of interest but has a 

strong association with the exposure and is a risk factor for the outcome. If 

confounding is not adequately dealt with in study design or the analysis 

phase, then it will bias the effect of the exposure on the outcome under study. 

The ways in which to control for a confounder in the analysis phase might 

include stratification, standardization, multivariable regression, and the 

application of a propensity score, while restriction and matching might be 

used to control for confounding in study design (Klungel et al., 2004). A 

prerequisite for confounder adjustment is that the confounding factor is 

measured. However, it might also be the case that it is poorly measured, or 
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unmeasured, in which case we refer to such factors as unmeasured, 

unobserved, or residual confounders (Uddin et al., 2016).  

Confounding by indication is another form of confounding bias that is 

especially relevant when discussing potential biases in 

pharmacoepidemiological studies. A medical intervention such as drug use is 

usually supported by an underlying clinical indication based on specific 

symptoms displayed by a patient. This type of bias is of special concern 

when the indication itself increases the risk of the outcome that is being 

studied (Guess, 2005). Examples of studies where confounding by indication 

was an issue include a study examining the use of calcium channel blockers 

and the risk of myocardial infarction (Psaty et al., 1995), and studies on PPI 

use and the risk of gastric cancer (Poulsen et al., 2009); where the underlying 

indication for drug use is a risk factor for both the exposure and outcome. 

Another type of bias is protopathic bias, sometimes also referred to as 

reverse causality or reverse causation. As the name suggests, reverse 

causation occurs when the outcome precedes and leads to the exposure of 

interest, i.e. the exposure does not cause the outcome but rather the 

outcome causes the exposure (Guess, 2005). 

Cohort studies are an important observational study design and frequently 

used in pharmacoepidemiology. One bias that has been frequently seen to 

arise in pharmacoepidemiological cohort studies is a form of time-related bias 

called immortal time bias, where an exposure to a drug is determined based 

on filled prescriptions during follow-up (Suissa, 2007). The concept of 

immortal time indicates that there is a period during follow-up, often from the 

moment of cohort entry until an exposure definition has been met, during 

which a specific end point, i.e. death or another study outcome, is by 

definition unable to occur (Levesque et al., 2010). In other words, in order to 

be exposed to a drug, a patient would have been required to survive this time 

period in order to receive a prescription. Therefore, misclassification of the 

exposure during the immortal time period, or exclusion of this period 

altogether, can then give rise to immortal time bias. By failing to appropriately 

account for the immortal time as an unexposed period of time, the results of 

an analysis, comparing exposed subjects to those that are unexposed, will 

ultimately give rise to an effect estimate that will be biased downward. In the 

context of pharmacoepidemiology, this would provide an artificial association 

that would, if the bias goes undetected, result in a false conclusion of a drug 

providing a protective effect in relation to a given outcome. This happens, in 

essence, because the follow-up time of exposed subjects contains a period of 

time where they are artificially protected, i.e. they are unable to experience 
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the study outcome until they become exposed (Suissa, 2007). There are 

however several ways to circumvent the issue of immortal time bias. One 

option would be to avoid a time-fixed definition of exposure by conducting a 

time-dependent cohort analysis, where the immortal time is correctly 

classified as an unexposed period (Weberpals et al., 2016). Another time-

related bias can stem from the failure of accounting for the lengthy period of 

time that usually passess during carcinogenesis and the latency of potential 

drug effects (Suissa & Azoulay, 2012). One approach to address this 

potential bias in the study design by implementing a period of lag-time within 

which exposure should be disregarded (Pottegård et al., 2017). Another 

option is to exclude patients who experience the event of interest within the 

lag-period (Suissa & Azoulay, 2012). 

Finally, an alternative study design that could be used to avoid immortal 

time bias is to use a time matched nested case-control design (Suissa, 

2013). Case-control studies themselves can be subject to a form of time-

related bias, i.e. time-window bias, that arises if the exposure opportunity 

times among cases and controls are not comparable (Suissa et al., 2011). 

However, this bias can be circumvented by ensuring that both cases and 

controls have a similar exposure opportunity time. 

1.1.4  Studying drug-cancer associations in 
pharmacoepidemiology 

Cancer is sometimes referred to as a family of diseases, i.e. not one but 

many diseases, displaying several different faces, all characterized by an 

uncontrolled and abnormal growth of cells (Mukherjee, 2011). Cancers are 

complex and heterogenous and their development within the human body  

contains multiple different stages such as initiation, promotion, and 

progression of cancerous growth, the invasion of cancer cells from a site of 

origin into adjacent tissues, and the spread of malignant cells to regional 

lymph nodes and beyond; forming secondary tumors in other organs 

(Hanahan & Weinberg, 2011). Thus, carcinogenesis can be a very long 

process; in some types of cancer it can take up to 20-30 years before they 

become detectable and clinical symptoms appear (Umar et al., 2012).  

Several observational studies have established that exposure to certain 

pharmaceutical drugs has the potential to either increase or decrease the risk 

of a cancer related outcome (Drew et al., 2016; Dubach et al., 1991; Jensen 

et al., 1989). However, the long developmental period of cancer growth 

provides a challenge in elucidating the real effect of drug exposure on cancer 

development since it is highly unlikely that drug initiation would have an 
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immediate impact on the manifestation of cancer, encouraging the use of lag-

time in data analysis (Pottegård et al., 2017). 

Pharmacoepidemiological studies on drug-cancer associations are an 

important area of research that has the potential to have a significant public 

health importance, especially as time passes and more and more high-quality 

data on exposures and outcomes become available. It is vitally important to 

identify drugs, often widely used, that either exhibit a potential carcinogenic 

effect or are associated with a potential beneficial effect. This applies to 

establishing an association between drug exposure and cancer incidence, as 

well as on cancer mortality. Furthermore, pharmacoepidemiological studies 

are valuable when it comes to establishing that a drug does not exhibit a 

carcinogenic effect, which holds a significant value. 

1.1.4.1 Assessment of drug exposure 

For exposure assessment it is important to keep in mind that drug exposure 

does not usually occur in one single treatment episode. Rather, in many 

cases drug use is characterized by continuous starts and stops, often over a 

long period of time. This makes it important to obtain detailed individual-level 

drug history so that the exposure variable can be handled appropriately, i.e. 

in a time-dependent manner allowing researchers to account for the changes 

in exposure status over a long period of time (Pottegård et al., 2017). 

Therefore, data sources, such as the Nordic prescription registries which can 

contain information on the use of prescription drugs over a long time-period, 

provide an excellent source of exposure information for drug-related cancer 

studies. From these registries, one should be able to obtain information on 

the initiation of exposure and the duration of use. The prescribed dose for 

each prescription is an important piece of information to be able to estimate 

cumulative exposure, a crucial variable for dose-response analyses. Although 

the prescribed dose is not always available from prescription registries, a 

comparable variable like the number of dispensed DDDs could be obtained 

which allows for the approximation of the duration of each prescription. 

Drug exposure that affects cancer development, exerts its effect within a 

given period that can be defined as a ‘risk period’ for a particular drug. This 

could be the time from exposure until the manifestation of cancer, i.e. the 

induction period, or the time from manifestation of cancer until diagnosis, i.e. 

the latency period. In observational studies, it is customary to refer to the time 

that passes from the initiation of drug exposure until the ascertainment of 

outcome as latency, since actual induction and latency periods cannot be 

accurately identified (Pinheiro et al., 2016). A drug that contributes to 
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initiation of the first steps of cancerous growth, i.e. an initiator, would elicit its 

effect prior to carcinogenesis. Considering the long period of cancer growth 

mentioned previously, assessing the exposure to such a drug would require a 

significant period of recorded drug use. On the other hand, assessing the 

effect of a promoter, i.e. a drug whose cancer related function it is to promote 

the growth of a tumor that is already established within a given tissue, might 

require a shorter period of recorded drug use. Although it might also require a 

long period of recorded drug use depending on the nature of its effect. 

However, whether a drug is categorized as an initiator or a promoter; whether 

its latency period is thought to be long or short; whether its effect is 

chemopreventive or carcinogenic, it is extremely difficult, and almost 

impossible, to accurately determine the exact moment when a drug elicits its 

effect in this context. Which in turn makes it challenging to define a relevant 

exposure window for suspected drug related associations with cancer 

(Pottegård et al., 2017).  

Due to the long period of cancer growth and latency of drug effects, the 

use of lag-time in observational studies on drug-cancer associations has 

been recommended, as mentioned above. This is because drug exposure 

that is initiated shortly before a cancer diagnosis, should not realistically be 

expected to have had a carcinogenic or chemopreventive effect. Additionally, 

it should be considered that, although a patient may have discontinued drug 

treatment, there might be a period of time after that discontinuation might be 

influenced by the drug exposure. Furthermore, the implementation of a lag-

time might counteract the potential effect of reverse causation (Pottegård et 

al., 2017).  

1.1.4.2 Ascertainment of cancer outcome 

Individual-level information on cancer incidence for ascertainment of outcome 

is a requirement for studies on potential drug-cancer associations. 

Population-based nationwide registries, e.g. the Nordic cancer registries 

(Pukkala et al., 2018), are generally the preferred choice of data source and 

is considered the gold standard for obtaining the necessary information on 

each cancer diagnosis (Pinheiro et al., 2016).  

Bearing in mind the heterogenic nature of cancer (Hanahan & Weinberg, 

2011), even when tumors residing within the same organ are compared, the 

clustering of all cancers into one group in an analysis on drug-cancer 

associations should be avoided. Any associations observed for ‘cancer 

overall’ is likely driven by an effect on higher incidence cancers (Pottegård et 

al., 2017). Therefore, separating different cancer types by International 
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Classification of Diseases (ICD) codes, or tumor sites, is recommended. It 

might even be argued that a further separation might be desirable in some 

organs, e.g. by histological subtype, although that might not always be 

feasible (Pottegård et al., 2017).  

1.2  Proton pump inhibitors 

Proton pump inhibitors (PPIs) are a class of drugs that inhibit acid secretion 

by forming a covalent bond with their target; cysteine residues on the gastric 

hydrogen potassium ATPase (H
+
-K

+
-ATPase). The H

+
-K

+
-ATPase, also 

known as the gastric acid pump, is a proton pump that can be found in the 

canalicular membrane of parietal cells of the stomach (Sachs et al., 1995). 

Omeprazole, the first PPI substance, became commercially available in 1989 

and since then several other PPI substances have been introduced (Strand 

et al., 2017). Other PPI substances with a marketing licence in Iceland 

include pantoprazole, lansoprazole, rabeprazole, and esomeprazole.  

PPIs are effective in the treatment of gastroesophageal reflux disease 

(GERD), peptic ulcer disease (PUD) (Dent et al., 2005; Lundell et al., 2009; 

Mahon et al., 2005; Mehta et al., 2006) and have also been shown to be 

useful if included in the treatment of Helicobacter pylory infection, which is a 

risk factor for ulcer bleeding (Yuan et al., 2013). Furthermore, PPIs are 

considered effective in treating non-steroidal anti-inflammatory drug (NSAID) 

associated ulcers and can be used for prophylaxis treatment among patients 

taking NSAIDs and low-dose aspirin (Scheiman, 2013). Clinical guidelines 

generally recommend treatment durations of 4 to 12 weeks, although the 

duration of therapy can depend on the severity of symptoms (NICE, 2018; 

Scarpignato & Blandizzi, 2016). 

PPIs are prodrugs, i.e. they remain inactive after intake until they are 

absorbed in the small intestines and carried to acidic environments, e.g. the 

acidic secretory canaliculi of a parietal cell, where they undergo two 

protonations that render them active and able to react with the active form of 

the H
+
-K

+
-ATPase, situated in the canalicular membrane of a parietal cell 

(Sachs et al., 2006). The serum half-life of PPIs is one to two hours, which is 

relatively short. Therefore, to maximize their effectiveness, clinical 

instructions recommend pre-prandial intake since canaliculi expression of H
+
-

K
+
-ATPases is activated in response to a meal; a prerequisite for the covalent 

binding of PPIs and subsequent inhibition of the proton pump activity (Strand 

et al., 2017). 
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Their potency and clinical effectiveness as acid inhibitors, accompanied 

by their excellent safety profile, has led PPIs to becoming the mainstay in 

treatment of upper gastrointestinal related disorders (Strand et al., 2017). 

PPIs are therefore widely prescribed, and their use has been increasing over 

time in a number of populations and patient groups (Ksiądzyna et al., 2015; 

Moriarty et al., 2016; Pottegård et al., 2016a; Wallerstedt et al., 2017). 

Although they are considered to be safe, the increased use and elevated 

popularity has given rise to concerns related to reported adverse effects that 

might be associated with their use, i.e. increased risk of bone fractures (Zhou 

et al., 2016), kidney disease (Lazarus et al., 2016), microscopic colitis (Law 

et al., 2017), hypomagnesemia (Cheungpasitporn et al., 2015), Clostridium 

dificile infection (Naito et al., 2018), and chronic liver disease (Llorente et al., 

2017). Additionally, stepping down from PPI have been shown to be a cause 

of rebound acid hypersecretion following discontinued use (Lødrup et al., 

2013; Waldum et al., 1996).  Additionally, inappropriate PPI use and 

overprescribing, driven by vague indications and unsubstantiated long-term 

use have been reported as a cause of concern in relation to the use of PPIs 

(Batuwitage et al., 2007; Grant et al., 2006; Ladd et al., 2014; Naunton et al., 

2000), especially among the elderly (Cahir et al., 2010; Moriarty et al., 2016). 

Furthermore, there have also been reports on the potential drug-drug 

interactions associated with metabolic inhibition of drugs that are 

coadministered together with some PPI substances (Hagymási et al., 2011).  

There is an ongoing debate over the long-term use of PPIs and whether 

they might possess a carcinogenic potential and therefore increase cancer 

risk, especially in digestive organs. However, the question whether PPIs are 

associated with increased risk of gastrointestinal related cancer is complex 

due to the nature of symptoms and underlying indications for PPI use. 

Observational studies examining this issue have not provided a definitive 

conclusion and many of the studies reporting an association with increased 

risk might be prone to reverse causation (Kearns et al., 2017), confounding 

by indication (Poulsen et al., 2009; Rodriguez et al., 2006; Tamim et al., 

2008), or time-related biases (Cheung et al., 2017; Suissa & Suissa, 2018).  

Although H
+
-K

+
-ATPases are their main original target, PPIs are potent 

inhibitors of acid secretion in general and have been reported to also inhibit 

the activity of another type of proton pump that controls the intracellular and 

extracellular pH of cells and cellular compartments; the vacuolar H
+
-ATPase 

(V-ATPase) (Ikemura et al., 2017; Moriyama et al., 1993; Sabolic et al., 

1994).  



Óskar Örn Hálfdánarsson 

12 

1.3  Vacuolar H+-ATPase 

1.3.1  Structure and function 

The V-ATPase is a complex multisubunit ATP-dependent proton pump that 

operates through a rotary mechanism and is involved in the regulation of 

intracellular and extracellular pH (Forgac, 2007). It is a highly conserved 

membrane-bound enzyme in eukaryotic cells made up of several subunits 

that are arranged into two domains; the peripheral V1 domain, and the 

integral V0 membrane domain. The V1 domain is responsible for ATP 

hydrolysis while the V0 domain has a role to play in the translocation of 

protons across the membrane (Nishi & Forgac, 2002). Eight subunits, A-H, 

make up the V1 domain while the V0 domain is composed of the a, d, e, c, 

c´/Ac45 and c´´ subunits (Wilkens et al., 2005). It has been shown that the 

two domains do reversibly disassociate, resulting in the inhibition of the 

ATPase activity of the V1 domain, which is an important regulatory 

mechanism of the activity of the V-ATPase (Cotter et al., 2015b).  

The V-ATPase is found in a variety of cellular membranes and of 

importance to the diversity of their biological functions is the ATP-dependent 

proton transport from the cytoplasm and across cellular membranes; either 

into intracellular compartments or the extracellular space (Nishi & Forgac, 

2002). Within intracellular membranes, V-ATPases function in various cellular 

processes such as receptor endocytosis and vesicular trafficking of 

lysosomal enzymes (Pamarthy et al., 2018). Additionally, the V-ATPase 

serves a critical role in regulating pH within digestive organelles, such as 

lysosomes, and securing the acidic pH that is required for the activation of 

digestive enzymes within these organelles (Forgac, 2007). V-ATPases have 

also been shown to be expressed in the plasma membrane of various 

specialized cells where they function to acidify the external environments by 

facilititating the transport of protons from the cytosol and across the plasma 

membrane. This function of plasma membrane V-ATPases in specialized 

cells such as renal intercalated cells, osteoclasts, and clear cells of the 

epididymis, is critical for maintaining pH homeostasis via acid secretion into 

the renal tubule, bone resorption, and sperm maturation, respectively (Breton 

& Brown, 2013; Marshansky et al., 2014). Furthermore, overexpression of the 

V-ATPase has been observed in the plasma membrane of tumor cells and 

their presence there is believed to contribute to the acidification of the tumor 

microenvironment (TME) (Stransky et al., 2016; Webb et al., 2011).  
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1.3.2  Extracellular acidification 

Growth promoting metabolic alterations are emerging as one of the hallmarks 

of cancer (Hanahan & Weinberg, 2011). Driven by increased expression of 

the glucose transporter GLUT1, which facilitates the transport of glucose 

through the plasma membrane, there is a marked increase in the uptake of 

glucose in proliferating tumor cells, compared to non-proliferating normal 

tissue (Lunt & Vander Heiden, 2011; Pavlova & Thompson, 2016). In the 

presence of oxygen (O2), normal cells convert glucose to pyruvate, via 

glycolysis, and the pyruvate is then processed further to produce ATP via 

oxidative phosphorylation in the mitochondria, while surplus pyruvate is 

converted to lactate in the cytoplasm (DeBerardinis & Chandel, 2016). A 

characteristic of cancer cells is their ability to be able to shift away from 

oxidative phosphorylation, even in the presence of O2, by reprogramming 

their metabolism of glucose and increasing the rate of glycolysis; a metabolic 

switch that is generally termed “aerobic glycolysis” or “the Warburg effect” 

(Hanahan & Weinberg, 2011; Warburg, 1956). The metabolic switch along 

with the increased consumption of glucose results in a higher glycolytic rate 

which leads to the accumulation of lactate and protons within the cytoplasm 

(Chen et al., 2007; Gladden, 2004). To avoid intracellular acidification, the 

cells seem to adapt to this accumulation by increasing the activity of 

membrane-bound proteins that are involved in pH regulation, such as NA
+
/H

+
 

exchangers (NHE), carbonic anhydrases (CAs), bicarbonate transporters 

(HCO3-transporters), monocarboxylate transporters (MCTs), and V-ATPases 

(Granja et al., 2017). This creates a reversed pH gradient by facilitating the 

extrusion of protons across the plasma membrane, or into internal vacuoles, 

thus promoting alkalization of the cytoplasm and acidification of the 

extracellular environment (Webb et al., 2011). The increased acidity disrupts 

pH homeostasis in the TME and creates an environment within the tumor 

tissue that is believed to enhance invasiveness, metastatic behavior, and 

drug resistance (Martínez-Zaguilán et al., 1996; Rofstad et al., 2006; 

Spugnini et al., 2015; Wachsberger et al., 1997). Furthermore, it has recently 

been reported that exposure to low pH in the extracellular environment, in 

prostate cancer cells and a model of lung metastasis, resulted in prolonged 

mobility of cancer cells which eventually leads to establishment of distant 

metastases (Riemann et al., 2016). 

A potential role of V-ATPases in regulating pH in various human cancer 

cells was initially suggested in 1993 (Martinez-Zaguilan et al., 1993). Invasive 

breast cancer cells were later reported to exhibit enhanced V-ATPase activity 

at their plasma membrane, compared to poorly metastatic BC cells 
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(Sennoune et al., 2004).  As of today, several studies have reported that 

plasmalemmal V-ATPase activity is elevated in a number of cancer types, 

including breast cancer (Capecci & Forgac, 2013; Cotter et al., 2015a; Hinton 

et al., 2009), prostate cancer (Michel et al., 2013; Riemann et al., 2016), and 

melanoma (Nishisho et al., 2011).  

1.3.3  Inhibition of V-ATPase function in cancer 

Given the mounting evidence suggesting that enhanced V-ATPase activity 

correlates with cancer cell invasion and migration, metastasis, and drug 

resistance, all major attributes of a malignant phenotype, inhibitors of V-

ATPase activity have been increasingly studied as potential therapeutic 

candidates that could hinder progression to malignancy and multidrug 

resistance. A number of studies, both in vitro and in vivo, have shown that V-

ATPase inhibition reduces invasion and migration. Knockdown of subunit C 

of the V-ATPase V1 domain in a mouse xenograft model of breast cancer 

was shown to inhibit tumor growth and metastatic tendencies (Feng et al., 

2013). Also, knockdown of subunit a3 inhibited metastasis in a mouse model 

of melanoma (Nishisho et al., 2011). Treatment with V-ATPase specific 

inhibitors, such as archazolid and bafilomycin, have also been shown to 

reduce BC tumor growth in vivo (Schneider et al., 2015) and significantly 

inhibit the invasive behaviour of highly metastatic BC cells (Sennoune et al., 

2004). Furthermore, exposure to bafilomycin A and concanamycin A, another 

V-ATPase specific inhibitor, has been shown to significantly reduce invasion 

of prostate cancer cells in vitro (Michel et al., 2013). However, since V-

ATPase specific inhibition involves a high degree of toxicity for normal cells, 

due to the ubiquitous expression of V-ATPase, other avenues have 

increasingly been explored with regard to clinical applications (Iessi et al., 

2017). As previously mentioned, and depicted in Figure 1, PPIs have been 

shown to exhibit an affinity for V-ATPases (Moriyama et al., 1993; Sabolic et 

al., 1994) and one of the first studies to demonstrate their potential efficacy in 

anticancer therapy reported that pre-treatment with PPIs in vitro enhanced 

the effect of chemotherapeutic agents in cancer cells derived from human 

melanoma, adenocarcinoma, and lymphoma (Luciani et al., 2004). The same 

study also reported that oral pre-treatment with omeprazole enhanced 

cisplatin sensitivity in vivo, using a mouse xenograft melanoma model 

(Luciani et al., 2004) and pre-treatment with lansoprazole was recently 

reported to increase the efficacy of paclitaxel, a chemotherapeutic agent, in 

the treatment of human melanoma (Azzarito et al., 2015). Additionally, PPIs 

have been reported to inhibit proliferation and inducing tumor cell death of 

melanoma cells in vitro, while also reducing tumor growth in mice engrafted 

with human melanoma cells (De Milito et al., 2010).  
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The therapeutic benefit of PPIs in tandem with chemotherapy have also 

been evaluated in studies among human cancer patients. One of those 

studies reported that pre-treatment with PPIs, among patients with 

osteosarcomas, increased the effectiveness of neoadjuvant chemotherapy 

(Ferrari et al., 2013). Furthermore, a phase II clinical study performed among 

patients with metastatic breast cancer, showed that intermittent treatment 

with high-dose PPIs increased the efficacy of chemotherapy in breast cancer 

patients with a metastatic disease (Wang et al., 2015). However, a recent 

Danish observational study reported that PPI use was associated with 

increased mortality among patients diagnosed with any cancer, as well as 

certain site specific cancer types such as breast cancer and prostate cancer 

(Tvingsholm et al., 2018).  

1.4  Epidemiology of breast cancer, prostate cancer, and 
malignant melanoma 

1.4.1  Breast cancer 

On a global scale, it is estimated that in 2018 there will be approximately 2.1 

million diagnosed cases of incident female breast cancer, making it the most 

Figure 1. A schematic overview of the potential therapeutic benefits of PPI inhibition of 
V-ATPase, which has been reported to promote alkalization of the tumor 
microenvironment. PPI inhibition is thought to prevent tumor progression and drug 
resistance, which is otherwise induced by extracellular acidification. Figure adjusted 
from Ikemura et al., 2017. 
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commonly diagnosed cancer among women (Bray et al., 2018). There is 

however a considerable diversity in incidence rates when the underlying 

numbers are examined on a regional level, with the highest rates being 

observed in Australia/New Zealand, North America, and Europe (excluding 

Eastern Europe) and the lowest in South Central Asia, Middle Africa, and 

Eastern Africa (Bray et al., 2018). Generally, although breast cancer 

incidence rates in many low- and middle-income countries (LMICs) have 

been steadily increasing, high income countries (HICs) tend to have the 

highest incidence (Torre et al., 2016). In the case of female breast cancer, 

this in part reflects a varying degree of access to early detection programs, 

i.e. screening as well as differences in the prevalence of established risk 

factors; reproductive and hormonal factors that have been shown to increase 

breast cancer risk, such as long menstrual history, nulliparity, late age at first 

birth, recent use of oral contraceptives, and hormone replacement therapy, 

while breastfeeding has been shown to be a protective factor (Jemal et al., 

2011; Torre et al., 2016). Other risk factors include age, family history of the 

disease and inherited mutations (e.g. BRCA1, BRCA2), obesity in 

postmenopausal women, alcohol use, low socio-economic status, and 

physical inactivity (Barnard et al., 2015; Ginsburg et al., 2017; Torre et al., 

2016).  

As well as being the most commonly diagnosed cancer, breast cancer is 

also the leading cause of cancer related death among women worldwide 

(Bray et al., 2018; Torre et al., 2016). Overall, there is less variation in the 

age-standardized rates for mortality compared to incidence but unlike that 

pattern the breast cancer mortality rate has actually been decreasing in many 

HICs while simultaneously increasing in some LMICs, likely due to restricted 

access to early detection and treatment accompanied by increasing 

prevalence of risk factors (Bray et al., 2018; Torre et al., 2016). On a specific 

population level, in 2016 the age-standardized incidence rate of female 

breast cancer in the Icelandic population was 85.5 per 100.000 persons and 

the mortality rate was 15.8 per 100.000 persons (Laufey Tryggvadottir et al., 

2018).  

Given the fact that breast cancer is a highly heterogenous disease there 

have been endeavors to characterize individual tumors based on tumor size,  

lymph node and metastasis status (TNM), and histological grade 

(Provenzano et al., 2018). Additionally, tumors are also clinically categorized 

and grouped by their varying expression of the estrogen receptor (ER), 

progesterone receptor (PR), and the neu oncogene (HER2), thus creating 

three distinct tumor subgroups, i.e. the ER positive group, the HER2 
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amplified group, and the triple negative/basal-like group, which lacks 

expression of ER, PR, and HER2 (Koboldt et al., 2012; Slamon et al., 1987). 

Furthermore, at the turn of the last century, studies reporting on the outcome 

of hierarchical clustering analyses of gene expression profiling within breast 

tumors revealed expression patterns that would come to define the intrinsic 

molecular subtypes, categorized as the luminal A, luminal B, HER2 

overexpressing, and basal-like subtypes (Perou et al., 2000; Sørlie et al., 

2001, 2003). Clinical practice guidelines recommend that factors such as 

histological type, grade, TNM staging, ER and PR status, HER2 gene 

expression, and the molecular intrinsic subtypes should be considered when 

estimating prognosis and for the purposes of treatment decision making 

(Rakha et al., 2010; Senkus et al., 2015).  

1.4.2  Prostate cancer 

According to global cancer statistics, it is estimated that a total of 1.3 million 

incident cases of prostate cancer will be diagnosed in 2018 and it is the most 

frequently diagnosed cancer type in 105 out of 185 countries listed in the 

GLOBOCAN estimates for 2018, making it the second most commonly 

diagnosed cancer among men worldwide after lung cancer (Bray et al., 

2018). The prevalence of prostate cancer is especially high in HICs, where 

one in six among those that have reached the age of 79 years are expected 

to be diagnosed with the disease, compared to one in 47 in LMICs (Global 

Burden of Disease Cancer Collaboration et al., 2017).  

With regard to mortality on a global scale, prostate cancer is the fifth most 

common cause of cancer related death and counter to the incidence pattern 

the mortality rate reveals itself to be higher in LMICs compared to HICs (Bray 

et al., 2018; Pernar et al., 2018). Within the Icelandic population, the age-

standardized incidence and mortality rates were 79.5 and 15.0 per 100.000 

persons in 2016, respectively (Laufey Tryggvadottir et al., 2018). Prostate 

cancer risk is heavily influenced by age, with rising incidence estimates 

generally observed with increasing age (Laufey Tryggvadottir et al., 2018). 

There is a considerable degree of variation in the global pattern of 

prostate cancer incidence. This is in part due to varying levels of prostate-

specific antigen (PSA) screening between individual countries (Pernar et al., 

2018). PSA screenings were intensively used after they became 

commercially available in the late 20
th
 century accompanied by a rapid 

increase in incidence rates and a shift in diagnostic patterns, reflected in a 

higher proportion of patients being diagnosed with localized disease and at 

an earlier age (Etzioni et al., 2008; Hassanipour-Azgomi et al., 2016; 
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Seamonds et al., 1986). However, a variation in incidence predating the use 

of PSA tests hints that the observed differences in the number of new cases 

between countries cannot be entirely due to PSA screening variability, 

emphasizing the effect of potential lifestyle-related differences and other 

factors that might modulate prostate cancer risk, such as age, family history 

of the disease and ethnicity  (Brawley, 2012; Pernar et al., 2018).  

Prostate cancer is a biologically heterogenous disease and pathologically 

complex. The identification of specific prognostic determinants has therefore 

proven to be quite cumbersome. However, there are several clinical and 

pathological characteristics that have been investigated as potential 

prognostic factors. These factors, measured around the time of diagnosis, 

include Gleason score, TNM status, and PSA levels as measured at 

diagnosis (Martin et al., 2011).   

1.4.3  Malignant melanoma 

Malignant melanoma is one of the deadliest forms of skin cancer. Worldwide, 

it is estimated that around 287 thousand new cases will be diagnosed and 

about 60 thousand melanoma related deaths will occur in 2018 (Bray et al., 

2018). There is a considerable variation in both incidence and mortality rates 

when different countries and regions are compared. In 2012, the lowest 

incidence, in both men and women, of melanoma was observed to be under 

0.5 per 100.000 persons in South-Eastern and South-Central Asia while the 

highest incidence was seen to be 40.3 per 100.000 persons and 30.5 per 

100.000 persons in Australia and New Zealand, respectively. Meanwhile, in 

North-America and Northern- and Western-Europe incidence rates over 10 

per 100.000 persons were observed (Ferlay et al., 2015). The regions that 

are most affected by this cancer are those that inhabit predominantly fair-

skinned populations. In 2012, the age-standardized mortality rates ranged 

from 0.1 per 100.000 persons in South-East Asia to 4.7 per 100.000 persons 

in New Zealand (Schadendorf et al., 2018).  In the Icelandic population, the 

age-standardized incidence rates in 2012 were 9.1 and 13.3 per 100.000 

persons among men and women, respectively. The estimated age-

standardized mortality rates in Iceland were under 3 per 100.000 persons 

among both sexes (Laufey Tryggvadottir et al., 2018).  

Established risk factors that are known to enhance the risk of malignant 

melanoma include ultraviolet radiation and subsequent sunburns following 

sun exposure or use of indoor sunbeds (Boniol et al., 2012; Gandini et al., 

2011), a personal or family history of the disease as well as the presence of 

melanocytic birthmarks (Berwick et al., 2009), high socioeconomic status 
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(SES) (Jiang et al., 2015), and certain phenotypic characteristics such as 

having fair skin that has a tendency to freckle, light eye color, and light hair 

color (Berwick et al., 2009).  
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2 Aims 

The overarching aim of this study was to use the population-based resources 

available in Iceland to assess the use of proton pump inhibitors among the 

adult outpatient population in Iceland, explore whether PPIs possess a 

chemopreventive effect on malignant melanoma, breast or prostate cancer, 

and to assess a potential antineoplastic effect of PPI use on mortality among 

prostate cancer patients. 

2.1  Study I – Proton-pump inhibitors among adults  

The aim of our first study was to provide evidence of real-world use of PPIs in 

Iceland between 2003 and 2015. Specifically, we set out to determine overall 

use of PPIs by individual PPI substance and specialty of the prescribing 

physician. Furthermore, our objective was to determine the annual 

prevalence and incidence of PPI use, treatment duration and the proportion 

of PPI use that could be associated with gastroprotection. 

2.2  Study II – Proton pump inhibitor use and risk of breast 
cancer, prostate cancer, and malignant melanoma 

The aim of our second study was to examine a potential preventive role of 

PPI use by testing the association between exposure to PPIs and the risk of 

being diagnosed with a first-time malignant melanoma, breast or prostate 

cancer among the adult population in Iceland between 2005 and 2014. 

2.3  Study III – Use of proton pump inhibitors and mortality 
among Icelandic patients with prostate cancer 

The aim of our third study was to explore whether PPI use decreases 

prostate-cancer specific and all-cause mortality among patients that were 

diagnosed with a first-time prostate cancer between 2007 and 2012. 
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3 Materials and methods 

The following chapters give an overview of the data sources, study designs, 

and methods that we used in this PhD project. A more detailed description of 

the materials and methods that were used in each of the separate studies 

can be found within the original publications. 

3.1  Data sources 

3.1.1  The Icelandic Medicines Registry 

The Icelandic Medicines Registry is an important resource for Icelandic 

pharmacoepidemiological studies that is maintained by the Directorate of 

Health (“The Directorate of Health,” 2018). It was established in 2005 and 

contains individual-level information on all filled prescriptions to the outpatient 

population in Iceland from January 1, 2003 onwards with a completeness in 

the range between 91% to 98%. Since 2010 the Medicines Registry has also 

contained information on dispensed prescription drugs within Icelandic 

nursing homes (Furu et al., 2010). 

We used data from the Medicines Registry in all three studies. For each 

filled PPI prescription by the outpatient population we received information on 

the name of the drug, ATC code, date of dispensing, number of dispensed 

DDDs, specialty of the prescribing physician, location of the pharmacy where 

a prescription for a PPI drug was filled, number of tablets dispensed and 

tablet strength in milligrams. For study III we also retrieved information on the 

number of distinct medications, down to the fourth ATC level, that were 

dispensed to a patient in the 12 months prior to an incident diagnosis of 

prostate cancer to be used as medication-based comorbidity.   

3.1.2  The Icelandic Cancer Registry 

The Icelandic Cancer Registry (Laufey Tryggvadottir et al., 2018) was 

established in 1954 and is maintained by the Icelandic Cancer Society under 

the authority of the Directorate of Health. The Cancer Registry is a 

population-based registry that contains information on every cancer diagnosis 

in Iceland since 1955 with 99% completeness (Sigurdardottir et al., 2012). 

Each diagnosis is currently coded according to the 10th revision of the ICD 

(ICD-10). Previous diagnoses coded based on earlier ICD revisions have 

been converted to ICD-10 to facilitate reporting and communication of the 

data (Sigurdardottir et al., 2012). 
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We used data from the Cancer Registry for studies II and III. For each 

diagnosis of interest, we obtained information on the date of diagnosis, ICD-

10 code, morphological code, clinical stage, number of previous cancer 

diagnoses, and age at diagnosis. For study III, we additionally retrieved 

information on Gleason score for prostate cancer patients.  

Systematic collection of information regarding TNM pathological staging 

was initiated at the Cancer Registry in 2011 (Sigurdardottir et al., 2012). 

Therefore, for the period between 2003 and 2015 there was a considerable 

amount of missing information on TNM staging for breast cancer and 

malignant melanoma. For prostate cancer, information on TNM staging has 

been collected for diagnoses of prostate cancer dating back to 1998 in a 

collaboration between the Cancer Registry and urologists operating in 

Iceland. 

3.1.3  The Icelandic Cause of Death Registry 

The Icelandic Cause of Death Registry is a centralized national registry that 

is maintained by the Directorate of Health. It contains mortality data for the 

Icelandic population categorized according to the ICD-10 system (World 

Health Organization, 2016). This includes data on date of death and the main 

underlying cause of death for each deceased individual. For study III, we 

obtained information on the underlying causes of death, enabling us to 

identify prostate cancer-specific mortality within our cohort of prostate cancer 

patients. 

3.1.4  Landspitali – The National University Hospital of Iceland 

Landspitali – The National University Hospital of Iceland is supervised by the 

Directorate of Health and is the leading hospital in Iceland, providing health 

care to patients from all health districts in Iceland. For study III we obtained 

information on chemotherapy, radiotherapy, and relevant surgical operations 

categorized according to the NOMESCO Classification of Surgical 

Procedures (NCSP). For surgical operations, data were available from 2003 

onwards. For chemotherapy and radiotherapy, complete data were available 

from 2007 onwards. These variables were obtained from Electronic Health 

Records that were accessed through the Clinical Data Warehouse at the 

hospital. 

3.1.5  Other data sources 

For all of our studies (I-III) the Icelandic Population Register provided us with 

information on year of people´s birth, month of birth, sex, residency, migration 
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status and date of death (if appropriate). These variables were collected for 

every resident of Iceland during the relevant study periods, both Icelandic 

and foreign. 

PPIs were not available in Iceland as OTC drugs prior to February 1, 

2009. The Icelandic Medicines Agency (“Icelandic Medicines Agency,” 2018) 

provided us with data on wholesale statistics of PPI drugs which allowed us 

to determine the annual proportion of OTC PPI use from 2009 onwards. 

Table 1 lists basic information about each study that we conducted that is 

included in this thesis. 

3.2  Study design and population 

3.2.1  Study I – Proton-pump inhibitors among adults  

This was a nationwide population-based drug utilization study covering the 

entire adult population residing in Iceland from January 1, 2003 through 

December 31, 2015. Over the study period 313,296 individuals constituted 

our study population; a dynamic cohort where individuals could enter the 

cohort once they reached 19 years or immigrated to Iceland and left the 

cohort if they emigrated from Iceland.  We obtained data on outpatient PPI 

use from the Medicines Registry while the Population Registry provided 

demographic information on the study population. 

3.2.2  Study II – Proton pump inhibitor use and risk of breast 
cancer, prostate cancer, and malignant melanoma 

This was a population-based matched case-control study nested within the 

adult population of Iceland, which amounted to 220,512 individuals during the 

study period. Individuals were required to have resided in Iceland from 

January 1, 2003 to be eligible for inclusion in the study. Those with a 

previous history of cancer were excluded. Incident cases of breast cancer (N 

= 1739; ICD-10: C50), prostate cancer (N = 1897; ICD-10: C61), and 

malignant melanoma (N = 385; ICD-10: C43) that were diagnosed between 

January 1, 2005 and December 31, 2014 were identified using data from the 

Cancer Registry. For each case, we selected up to 10 controls from the 

underlying population that were matched on birth year and sex using risk-set-

sampling. The Medicines Registry provided us with data on outpatient PPI 

use while we obtained demographic information from the Population 

Register. 
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3.2.3  Study III – Use of proton pump inhibitors and mortality 
among Icelandic patients with prostate cancer 

Using nationwide data from Icelandic health registries we conducted a 

population-based cohort study. We identified eligible patients that received a 

first-time diagnosis of prostate cancer (N = 1058; ICD-10: C61) between 

January 1, 2007 and December 31, 2012 using data from the Cancer 

Registry. To be eligible for inclusion patients had to be 18 years or older, 

were required to have resided in Iceland at the start of follow-up and had to 

have survived the first 12 months following their diagnosis. Outpatient use of 

PPIs was assessed from January 1, 2003 through December 31, 2015 using 

data from the Medicines Registry. Data from the cancer registry and the 

medicines registry were then linked together with the Population Register, the 

Causes of Death Registry, and data from Landspitali – the National University 

Hospital of Iceland using unique personal identification numbers. The primary 

outcomes in study III were prostate cancer-specific mortality (ICD-10: C61) 

and all-cause mortality. Patients were followed from 12 months after their 

diagnosis until their date of death, date of emigration or the end of the study 

period. 

3.3  Assessment of exposure and ascertainment of outcome 

We obtained data on PPI drug exposure from the Medicines Registry. Every 

drug we assessed was defined according to the World Health Organization 

anatomical therapeutic chemical/defined daily doses (ATC/DDD) 

classification (WHO, 2018). In all studies (I-III), we considered PPI use as the 

primary exposure and we defined PPIs as those drugs belonging to the ATC-

group A02BC (Proton pump inhibitors). The four PPI substances that were 

prescribed to the outpatient population in Iceland during our study periods are 

listed in Table 2, as well as our classification of higher and lower doses 

based on tablet strength in milligrams (mg). 

3.3.1  Study I – Proton-pump inhibitors among adults 

When estimating prevalence and incidence (per 100 persons) in study I, we 

defined PPI use as at least one PPI dispensing within the relevant calendar 

year. We used the National Institute for Health and Care Excellence (NICE) 

clinical guidelines (NICE, 2018) to define PPI dose strengths (in mg) as either 

higher or lower dose by defining standard and double doses as higher-dose 

PPIs and low doses as lower-dose PPIs (Table 2). 
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3.3.2  Study II – Proton pump inhibitor use and risk of breast 
cancer, prostate cancer, and malignant melanoma 

In the main analysis of study II, we defined patients as PPI users if they 

received at least one PPI dispensing prior to index date. We implemented a 

lag-time where we disregarded filled prescriptions within the 24 months prior 

to index date. Furthermore, we performed secondary analyses stratified by 

high use, cumulative dose, and cumulative duration. Additionally, we adjusted 

observed risk estimates for NSAID use, defined as at least two filled 

prescriptions prior to index date. We required NSAID users to have received 

at least two filled prescriptions rather than one since our objective was to 

approximate longer-term use which has been linked with concurrent use of 

PPIs. The primary outcome of study II was a registered diagnosis in the 

Cancer Registry of breast cancer (ICD-10: C50), prostate cancer (ICD-10: 

C61) or malignant melanoma (ICD-10: C43). 

3.3.3  Study III – Use of proton pump inhibitors and mortality 
among Icelandic patients with prostate cancer 

In study III, we focused on the use of PPIs after prostate cancer diagnosis. 

Individuals that received at least two filled PPI prescription following their 

diagnosis were defined as post-diagnosis users.  PPI exposure was modelled 

in a time-dependent manner where patients were considered to be 

unexposed until they had received a second PPI prescription, after which 

they were considered to be exposed for the remainder of follow-up. Exposed 

person-time was lagged for 12 months after the exposure criteria was met.  

We then assessed post-diagnosis PPI use in varying ways in several 

secondary and sensitivity analyses as described in paper 3. The primary 

outcome of study III was prostate cancer-specific death (ICD-10: C61) but we 

also assessed death from all causes as a secondary outcome. 

 

Drug ATC DDD (mg)

Available 

package sizes 

in Iceland (mg)

Lower dose (mg) Higher dose (mg)

Omeprazole A02BC01 20 10, 20, 40 10 20, 40

Lansoprazole A02BC03 30 15, 30 15 30

Rabeprazole A02BC04 20 10, 20 10 20

Esomeprazole A02BC05 30 10, 20, 40 10 20, 40

Table 2. Proton pump inhibitor substances that were prescribed to the outpatient 
population in Iceland between 2003 and 2015. 
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3.4  Data analysis 

In studies II and III, we analyzed each cancer type separately. R version 

3.4.2 (“R: The R Project for Statistical Computing,” 2018) and RStudio 

(“RStudio – Open source and enterprise-ready professional software for R,” 

2018) were used in all analyses for studies I-III. 

3.4.1  Study I – Proton-pump inhibitors among adults 

We measured overall use of PPIs as the total amount of dispensed DDDs 

during the study period stratified by calendar year, PPI substance, and 

specialty of the prescribing physician. We defined annual prevalence of PPI 

use as the number of adult individuals who filled at least one PPI prescription 

within each calendar year per 100 persons in the adult population. Further, 

we performed a sensitivity analysis after redefining prevalence use as the 

total number of adults filling at least two PPI prescriptions within a relevant 

calendar year. We defined annual incidence of PPI use as the number of 

adults who were dispensed their first PPI drug, after a 24-month period of no 

PPI dispensing, per 100 persons in the adult population.  

We estimated the duration of each PPI prescription assuming a daily 

intake of one tablet and added a grace period of 108 days to account for 

irregular use. We then used the ‘Proportion of Patients Covered’ (PPC) 

method (Rasmussen et al., 2018) to estimate the duration of PPI treatment 

for each incident PPI user over a 5-year period from their first PPI 

prescription. The duration analysis was stratified by age, dose strength, and 

sex. Additionally, we examined the distribution of dispensed DDDs and 

tablets over a 5-year period following the start of an initial treatment episode. 

Lastly, we explored the proportion of PPI use that might be attributable to 

gastroprotection by measuring concurrent use of drugs that have been shown 

to increase the risk of gastrointestinal complications. 

3.4.2  Study II – Proton pump inhibitor use and risk of breast 
cancer, prostate cancer, and malignant melanoma 

To estimate the association between PPI use and an incident diagnosis of 

breast cancer, prostate cancer or malignant melanoma, we compared the risk 

among cases and controls, matched on birth-year and sex, using conditional 

logistic regression to calculate the relevant odds ratios (ORs) and 95% 

confidence intervals (CIs). Figure 2 gives an overview of the main analysis. In 

subgroup analyses, we stratified the data based on high-use, cumulative 

dose, cumulative duration of PPI use, and calendar period. All analyses were 

adjusted for NSAID use prior to index date.   
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Additionally, we performed several sensitivity analyses to assess the 

effect of different definitions of a lag-period prior to index date (24 months in 

the main analysis). Furthermore, we also repeated the main analyses 

employing a new-user design rather than a prevalent user design. Finally, we 

performed a post-hoc supplementary analysis considering clinical stage at 

diagnosis among prostate cancer patients. 

3.4.3  Study III – Use of proton pump inhibitors and mortality 
among Icelandic patients with prostate cancer 

We used Cox proportional hazard models to estimate hazard ratios (HRs) 

with 95% CIs of prostate cancer-specific mortality and all-cause mortality 

associated with PPI use. All models included adjustment for age at diagnosis, 

calendar year, clinical stage, Gleason score, radiotherapy, prostate cancer 

surgery, cancer drug treatment, and medication-based comorbidity. In the 

main analysis, PPI exposure was considered as a time-dependent covariate. 

Additionally, we performed secondary analyses by timing of use, clinical 

stage, and cumulative dose.  We performed three sensitivity analyses to 

assess our original definition of PPI exposure. A graphical overview of the 

main analysis is given in Figure 3. 
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3.5  Ethical considerations 

We received authorization for all three studies from the National Bioethics 

Committee and the Data Protection Authority in Iceland. In all instances, 

personal identification numbers were encrypted by the data manager at the 

Directorate of Health and we, the researchers, did not at any stage have 

access to identifiable personal information. Following are the licenses we 

were granted by the relevant Icelandic authorities. 

We obtained ethical approvals from the National Bioethics Committee and 

the Data Protection Authority October 27, 2015 for studies I and II (reference 

number VSNb2015080004/03.03). Reprint of the original documents can be 

found in Appendix A. 

For study III we obtained ethical approvals from the National Bioethics 

Committee and the Data Protection Authority on September 6, 2016 

(reference number VSNb2016080001/03.01). Reprint of the original 

document can be found in Appendix B. 

All of our three studies were observational and based on nationwide 

registry data. Thus, they did not require us to obtain informed consent from 

the study population. 
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4 Results 

4.1  Study I – Proton-pump inhibitors among adults  

In this study, we observed an increase in total PPI use from 3.5 million 

dispensed DDDs in 2003 to 10.7 million dispensed DDDs in 2015. We found 

that the majority of all DDDs that were dispensed in this period were 

prescribed by primary care physicians. Esomeprazole was the most 

commonly prescribed PPI substance early on in the study period but after 

2009 omeprazole became the most commonly prescribed substance. There 

was an overall increase in annual prevalence of PPI use over time. In 2003 

we observed a prevalence of 8.5 per 100 persons while by 2015 it had 

increased to 15.5 per 100 persons. We did not observe a similar increase 

when estimating the annual incidence, which we found to be 3.3 per 100 

persons in 2005 and 4.1 per 100 persons in 2015. We observed that the 

prevalence increased with age and was higher among females than among 

males. After redefining prevalent use for the purposes of a sensitivity analysis 

we observed that the prevalance estimates decreased somewhat compared 

with the estimates from the main analysis, i.e. rising from 5.4 per 100 persons 

in 2003 to 11.0 per 100 persons in 2014 (Figure 4).  

Using the PPC method to estimate the duration of PPI treatment among 

incident PPI users by age and initial dose strength, we found that the duration 

of treatment tended to be longer among older patients and among patients 

that started their initial PPI treatment on higher doses. When looking at the 

proportion of PPI use that might have been attributed to gastroprotection, we 

observed that the proportion of patients concurrently using PPIs and NSAIDs 

decreased over time while the opposite was true of concurrent use of PPIs 

and oral anticoagulants, PPIs and acetylsalicylic acid, and PPIs and platelet 

inhibitors. 
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4.2  Study II – Proton pump inhibitor use and risk of breast 
cancer, prostate cancer, and malignant melanoma 

4.2.1  Ever use and high use of PPIs 

In our analyses of ever use of PPIs, comparing it to non-use, we observed 

adjusted ORs of 1.03 (95% CI: 0.92-1.16), 1.12 (95% CI: 1.00-1.25), and 

0.84 (95% CI: 0.69-1.12) for breast cancer, prostate cancer, and malignant 

melanoma, respectively. For high use of PPIs, we observed an adjusted OR 

of 0.97 (95% CI: 0.78-1.19) for breast cancer, 1.20 (95% CI: 0.99-1.47) for 

prostate cancer, and 0.59 (95% CI: 0.40-1.13) for malignant melanoma. 

4.2.2  Cumulative use of PPIs 

We further explored cumulative use of PPIs by stratifying by cumulative dose 

in DDDs and cumulative duration in years for all three cancer types. We 

observed that individual ORs were elevated, with a marginally statistically 

Figure 4. Annual incidence and prevalence (per 100 persons) of proton pump inhibitor 
use among adults in Iceland. Displaying prevalence estimates from both main and 
sensitivity analyses. 
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significant association for prostate cancer, indicating a potential increase in 

risk for patients that used over 1096 DDDs (1.26 (95% CI: 1.02-1.55)) and 

those that were exposed for 1-5 years (1.22 (95% CI: 1.04-1.42)). 

Additionally, for malignant melanoma we observed ORs that indicated a 

marginally significant association with decreased risk among patients 

consuming between 365 and 730 DDDs (0.37 (95% CI: 0.15-0.93)) and those 

using PPIs for a duration of 1-5 years (0.57 (95% CI: 0.36-0.91)). However, 

the patterns we observed did not indicate a dose-response relationship for 

any of the cancer types (see Figure 5 and Figure 6). 

 

 

 

 

 

  

Figure 5. The observed pattern between cumulative PPI dose and risk of breast cancer (A), prostate 
cancer (B), and malignant melanoma (C). 
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4.3  Study III – Use of proton pump inhibitors and mortality 
among Icelandic patients with prostate cancer  

In the main analysis of study III, we observed adjusted HRs of 0.88 (95% CI: 

0.52-1.48) and 1.02 (95% CI: 0.73–1.43) for prostate cancer-specific and all-

cause mortality, respectively. Thus, our results did not indicate that post-

diagnosis PPI use was associated with increased, or decreased, prostate 

cancer-specific or all-cause mortality. When we stratified our analysis by 

timing of PPI use we observed adjusted HRs of 0.45 (95% CI: 0.21-0.98) for 

prostate-cancer specific mortality and 0.67 (95% CI: 0.43-1.04) for all-cause 

mortality among continuous PPI users, while we observed adjusted HRs of 

1.12 (95% CI: 0.61-2.08) for prostate-cancer specific mortality and 1.25 (95% 

CI: 0.82-1.92) for all-cause mortality among new PPI users. Stratification by 

clinical stage yielded an adjusted HR of 0.50 (95% CI: 0.22-1.16) among 

patients with localized disease and 1.00 (95% CI: 0.44-2.27) among patients 

with non-localized disease. For cumulative PPI use, analyses of prostate 

cancer-specific mortality yielded adjusted HRs of 0.91 (95% CI: 0.43-1.90) for 

cumulative use of 1-365 DDDs and 0.86 (95% CI: 0.45-1.61) for >365 DDDs. 

For all-cause mortality we observed adjusted HRs of 1.19 (95% CI: 0.76-

1.87) and 0.91 (95% CI: 0.61-1.37) for cumulative use of 1-365 DDDs and 

>365 DDDs, respectively. 

Figure 6. The observed pattern between cumulative duration of PPI use and risk of breast cancer 
(A), prostate cancer (B), and malignant melanoma (C). 
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Figure 7 gives a visual overview of the results from study III for analyses of 

prostate cancer-specific mortality. 

Figure 7. Adjusted hazard ratios and 95% confidence intervals for prostate cancer-
specific mortality among PPI user subgroups from the main analysis (post-diagnosis 
users) and secondary analyses (stratified by timing of use, clinical stage, and 
cumulative use). 
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5 Discussion 

5.1  Main findings 

Overall, we found that PPI use is widespread within the Icelandic population 

and that it has increased considerably over the past decade. Additionally, 

patients seem to be treated for longer durations than is generally 

recommended by clinical guidelines. The findings of our studies do not 

support a chemopreventive role of PPI use when it comes to the risk of being 

diagnosed with an incident breast cancer, prostate cancer, or malignant 

melanoma. Furthermore, our results do not indicate that post-diagnosis PPI 

use decreases mortality among prostate cancer patients. 

5.2  General discussion 

5.2.1  Study I – Proton-pump inhibitors among adults 

We made an effort to map the landscape of PPI use within the adult Icelandic 

population by conducting a nationwide population-based drug utilization 

study. In line with findings from comparable populations (Haastrup et al., 

2014; Pottegård et al., 2016a; Wallerstedt et al., 2017), our results indicate 

that overall use of PPIs increased considerably during the study period. In 

2015, the total use of PPIs within the population had reached 10.7 million 

dispensed DDDs; an increase of 7.2 million DDDs when compared to the 3.5 

million DDDs dispensed in 2003. We found that the rising use over time was 

driven in large part by a surge in prescriptions from primary care physicians, 

which accounted for 60% of the overall increase in sold DDDs. There are 

several possible explanations for this considerable rise in PPI use. First, it 

might be due to changes in the incidence of underlying clinical indications, 

e.g. increasing incidence of GERD. Unfortunately, the Medicines Registry 

does not contain information on the underlying indication for each 

prescription, which made this difficult to assess. Nonetheless, should this be 

the case we might expect that to be reflected to some degree in either the 

prescribing pattern among gastroenterologists or in our estimates of annual 

incidence, or in both. However, prescriptions issued by gastroenterologists 

only accounted for 6% of the overall increase in PPI use. Furthermore, we 

only observed a modest rise in annual incidence during the study period 

while we found that there was a marked increase in annual prevalence which 

seems to suggest that the elevated PPI use was driven by rising use among 
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current users, rather than a surge in the number of new users. Second, it 

could be that PPIs were increasingly used for prophylactic purposes. 

However, we found that there were actually fewer PPI users concurrently 

using ulcerogenic drugs in 2015 (36.2%) than in 2003 (37.6%). 

As is discussed in more detail in paper I, our analyses of duration of PPI 

treatment revealed that 22% of patients were still using PPIs one year after 

starting their initial treatment and that a higher proportion of older patients 

stayed on treatment for longer durations compared to younger patients. In 

general, the observed treatment duration among a considerable proportion of 

patients were longer than is generally recommended by clinical guidelines 

(NICE, 2018). However, we were unable to determine whether these 

prolonged durations of PPI treatment reflected more severe symptoms of 

appropriate underlying indications. The popularity of PPIs has led to some 

speculations that their general tolerability and good safety profile might be 

contributing factors to their potential overuse in some quarters, due to 

patients receiving prescriptions for PPIs without a clear diagnosis 

(Heidelbaugh et al., 2012). For example, one US study found that among 

patients receiving antisecretory treatment for more than 90 days, around 39% 

did not have a documented upper GI diagnosis (PUD, GERD, dyspepsia, or a 

combination of the three) (Jacobson et al., 2003).  Additionally, the 

appropriateness of long-term PPI use has been questioned in some cases 

amid concerns that patients might be receiving repeat PPI prescriptions with 

automatic renewals, without their symptoms being reevaluated, which is likely 

to encourage unsubstantiated long-term use (Batuwitage et al., 2007). It has 

been reported in other studies that many long-term PPI users do not meet 

with their general practitioner (GP) regularly to discuss their treatment (Krol, 

Muris, Schattenberg, Grol, & Wensing, 2004). Furthermore, when they do 

meet, the expected duration of PPI treatment is not necessarily discussed 

(Haastrup et al., 2014; Krol et al., 2004). As with any drug treatment, it is 

important that PPI therapy is based on reliable information and appropriate 

indications. 

5.2.2  Study II – Proton pump inhibitor use and risk of breast 
cancer, prostate cancer, and malignant melanoma 

The continuous rise of PPIs since they originally became available 

approximately 30 years ago has stimulated the conversation around the 

potential links between long-term PPI use and certain adverse effects, e.g. an 

increased risk of kidney disease (Lazarus et al., 2016), bone fractures (Zhou 

et al., 2016), hypomagnesemia (Cheungpasitporn et al., 2015), Clostridium 
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difficile infection (Naito et al., 2018), microscopic colitis (Law et al., 2017), 

chronic liver disease (Llorente et al., 2017), as well as changes in the 

composition of the intestinal microbiota (Marlicz et al., 2014). Furthermore, 

there have also been some reports that have focused on PPI use in 

association with cancer outcomes. Specifically, they have focused on 

cancers related to the digestive tract with conflicting results and some of 

them are likely to be influenced by confounding by indication (Poulsen et al., 

2009; Rodriguez et al., 2006; Tamim et al., 2008), reverse causation (Kearns 

et al., 2017), and time-related biases (Cheung et al., 2017; Suissa & Suissa, 

2018).  

The emphasis in most observational studies to date has been on 

gastrointestinal-related cancers and the potential of PPIs to enhance cancer 

risk. The focus of our cancer-related studies however, narrowed in on the 

potential beneficial effects of using PPIs in relation to cancer. Therefore, the 

underlying hypothesis of studies II and III was that PPI use had a potential 

preventive role in the context of cancer risk and mortality. We decided to 

exclude gastrointestinal-related cancers from our studies, due to the high 

probability of confounding by indication and reverse causation in this context. 

Rather, we decided to focus our attention on three cancers that were not as 

likely to be subject to these biases, i.e. breast cancer, prostate cancer, and 

malignant melanoma; cancer types that have been studied previously both in 

vitro and in vivo where PPIs were shown to exhibit antineoplastic effects (De 

Milito et al., 2010; Katara et al., 2016; Marino et al., 2010; Michel et al., 2013; 

Schneider et al., 2015). Furthermore, breast cancer, in women, and prostate 

cancer, in men, are commonly diagnosed cancer types; a meaningful 

consideration given the size of the Icelandic population and the importance of 

elucidating exposures that could influence disease risk.  

The biological plausibility of PPIs having a preventive role in a cancer 

setting, centers on their function as potent acid inhibitors. As has been 

discussed previously, although not specifically designed to do so, PPIs are 

able to bind to proton pumps of the V-ATPase type. The V-ATPase has been 

shown to play a part in promoting acidification of the tumor microenvironment 

by facilitating a flow of protons through the plasma membrane. Our 

underlying hypotheses therefore rest on the assumptions that, in the context 

of the human body, the PPIs are consumed and then absorbed into the 

circulation where they are then distributed to cancer sites where the 

extracellular acidity would have to be acidic enough to attract and activate the 

PPIs. There they would have to bind the V-ATPases and inhibit the extrusion 

of protons out into the extracellular environment. However, as presented in 
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paper II, our findings do not support the hypothesis that PPIs possess a 

chemopreventive effect in the context of breast cancer, prostate cancer, and 

malignant melanoma.  

As we discussed in paper II, if PPIs actually do possess a 

chemopreventive effect in these cancers, our results could be explained by a 

number of reasons. First, it could be that several other proteins participate in 

regulating pH-levels within the cancer cells. Thus, V-ATPase inhibition in 

itself might not be enough to cut off the flow of protons into the extracellular 

environment. Second, the pH-level where these tumors are growing might not 

be low enough for the PPIs to accumulate at the target sites. PPIs are weak 

bases that are inactive upon consumption but become active in acidic 

environments. It has been postulated that PPIs selective accumulate in the 

acidic space of the secretory canaliculus of parietal cells of the stomach (Shin 

& Kim, 2013). The reason for this selective accumulation is that weak bases 

like the PPIs require a pH < 4.0, which is not found in another region of the 

body (Shin et al., 2004). Therefore, for the PPIs to accumulate at tumor sites 

and be activated, the pH would have to be below 4.0. Although the TME 

around cancer cells has been shown to be acidic compared to the external 

environment of normal cells, the acidity is only thought to reach pH values 

around 6.0 (Gatenby & Gillies, 2004), which might not be enough to attract 

the PPIs to these sites.  

Whether the acidity in tumors that are progressing to a metastatic state 

might reach lower pH values than 6.0 is unclear. Interestingly, highly 

metastatic cancer cells have been shown to exhibit an increased expression 

of V-ATPase (Nishisho et al., 2011; Sennoune et al., 2004), which might 

indicate increased TME acidity in advanced tumors. Although our post-hoc 

analysis, where we stratified prostate cancer patients by clinical stage, did 

not return conclusive results, it would be interesting to examine this matter 

systematically with an increased sample size.     

5.2.3  Study III – Use of proton pump inhibitors and mortality 
among Icelandic patients with prostate cancer 

Results from a phase II clinical trial among patients with metastatic breast 

cancer reported that intermittent high-dose treatment with esomeprazole was 

associated with increased responsiveness in patients receiving 

chemotherapy (Wang et al., 2015). Initially, influenced in part by the findings 

of Wang et al., our aim was to include breast cancer patients in this study. 

However, the Cancer Registry unfortunately did not contain information on 

clinical stage among breast cancer patients before 2011. Since clinical stage 
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is a crucially important prognostic variable, we eventually decided to focus 

our attention solely on prostate cancer patients in this study. Furthermore, 

when we originally conceived of this study our aim was to focus on a longer 

study period, i.e. from 2004 through 2012. However, since the Clinical Data 

Warehouse at Landspitali hospital did not possess exhaustive information for 

all patients on chemotherapy and radiotherapy prior to 2007, we decided to 

adjust the study period accordingly. Furthermore, our initial efforts to conduct 

secondary analyses stratified by PPI substance as well as PPI pre-treatment 

among patients receiving chemotherapy were thwarted by the small sample 

size and eventual low numbers in some of the subgroups. 

The association between PPI use and mortality among prostate cancer 

patients has not been studied extensively in other observational studies. In 

fact, to our knowledge, the only other study to look into this matter is the 

study by Tvingsholm et al. (Tvingsholm et al., 2018). Although not solely 

focused on prognosis among prostate cancer patients, they observed 

significantly increased prostate cancer-specific mortality among post-

diagnosis users of PPIs compared with non-users, in their analyses of 

selected cancer sites. Motivated by these conflicting results, the previously 

reported antineoplastic activity of PPIs on prostate cancer cells, and the high 

incidence of prostate cancer overall, we sought to explore whether PPI use 

would be associated with mortality among prostate cancer patients. As in 

study II, our hypothesis was based on the biological plausibility that PPI use 

might have a beneficial effect; in this case by improving survival among 

exposed patients. However, our findings did not support this hypothesis.  

Our observations of null associations between PPI use and prostate 

cancer-specific and all-cause mortality is in contrast with the findings of 

Tvingsholm et al., i.e. that PPI use is associated with increased mortality risk 

among prostate cancer patients. In their study, Tvingsholm et al. found that 

the increased mortality they observed seemed to be exclusively associated 

with new users, while the increased risk was not observed among continuous 

users (Tvingsholm et al., 2018). Their results seem to suggest that there is 

some unmeasured confounding at play, since the increased mortality is only 

observed among patients that start their PPI use after they are diagnosed 

with prostate cancer. One would think, that if PPI use increased the risk of 

mortality among post-diagnosis users, that this would also be observed 

among continuous users, who had been using PPIs for longer durations and 

consumed a greater cumulative quantity of the drugs. In our study, although 

we observed lower adjusted HRs for prostate cancer-specific mortality among 

continuous users of PPIs, compared with new PPI users, our findings did not 
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indicate that initiating PPI use after diagnosis was associated with excess 

mortality.  

As in study II, the biological rationale for the potential antineoplastic role of 

PPIs in cancers, via their inhibitory function of acid secretion, depends on a 

number of factors that have to align for them to be able to have their 

proposed effect within the human body, i.e. accumulate at the cancer sites 

and promote the alkalization of the TME. As it stands, the evidence from 

these observational studies do not suggest that the PPIs are able to elicit 

these effects. In the context of mortality among cancer patients, the 

possibility of pre-treatment with PPIs being able to increase the effectiveness 

of chemotherapy might be best suited to be studied in the controlled 

surroundings of a RCT or in a well-controlled observational study that is able 

to account for possible confounding by other diseases likely to increase 

mortality.   

5.3  Studies II and III – Potential biases 

In studies II and III, there were several biases we had to take into account. A 

more detailed overview of these biases, and others, is given in chapter 1.1.1, 

which focuses on biases in pharmacoepidemiological studies. Here, we 

discuss the biases we encountered in our two outcome studies. 

5.3.1  Immortal time bias 

A simple definition of immortal time is that it refers to a period of follow-up in 

a cohort during which the outcome of interest is not able to occur (Levesque 

et al., 2010). Immortal time bias in pharmacoepidemiological research has 

been shown to be increasingly common, e.g. in a paper by Suissa this bias 

was identified in 20 observational studies that were studying drug-related 

effects of commonly used prescription drugs (Suissa, 2007). If unaccounted 

for, this bias will invariably skew the results of studies on drug effects so that 

they are likely to suggest a highly protective role of the drug under study 

relating to a given outcome, e.g. an incident cancer diagnosis. Another 

manifestation of this bias, in the context of mortality, was observed in a study 

whose results suggested that Academy Award winners are likely to live 

longer than their peers that never receive the prestigious award (Redelmeier 

& Singh, 2001; Sylvestre et al., 2006).  

Both in study II and study III, immortal time bias was an issue that we 

needed to deal with in our study designs. This was especially important, 

given the underlying hypothesis, because immortal time bias was likely to 
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skew the resulting estimates from our analyses downward, thereby likely 

creating a false sense of a protective drug effect. In fact, before we 

implemented the nested case-control design in study II, we set up a cohort 

study where the study population consisted of the entire adult population in 

Iceland. Using that design, we compared those that had ever used PPIs to 

those that had never used PPIs. Additionally, we performed a secondary 

analysis where we estimated the effect of cumulative duration of use in a Cox 

regression analysis (0-3 months, 3-6 months, 6-24 months, 24-60 months, 

>60 months). Our observations, heavily influenced by immortal time bias and 

presented in appendix C, highlight the importance of averting this bias. 

Otherwise, we might have falsely concluded that PPIs possess a 

chemopreventive effect in all three cancer types. 

5.3.2  Time-window bias 

Although observational cohort studies have been shown to be susceptible to 

certain time-related biases, the same cannot be said about studies using the 

case-control study design. In a paper by Suissa et al (Suissa et al., 2011), the 

authors investigated the results of a case-control study claiming that statin 

use drastically reduces lung cancer risk by 45% (Khurana et al., 2007). What 

Suissa and colleagues found was that the results from the lung cancer study 

could be explained by a bias referred to as “time-window bias” (Suissa et al., 

2011). This bias arises when there is an imbalance in the length of exposure 

opportunity time between cases and controls, because a patient with a 

shorter exposure opportunity time is, by definition, not as likely to be exposed 

to a specific drug, than a patient with a longer exposure opportunity time.  

In study II, we ensured that cases and controls would have similar 

opportunities to become exposed by restricting the underlying study 

population to those individuals that had resided in the Iceland from January 1, 

2003. As presented in Table 1 of paper II, this resulted in a comparable 

exposure opportunity time between cases and controls, allowing us to avoid 

time-window bias. 

5.3.3  Reverse causation (protopathic bias) 

Reverse causation in pharmacoepidemiology refers to a situation where drug 

use is initiated as a response to initial symptoms caused by a disease that is 

still undiagnosed when drug use is started. In the context of study II for 

example, this bias might lead to false conclusions on the association between 

PPIs and cancer risk, i.e. that PPI use increases cancer risk when in reality 

the cancer “causes” the PPI use. Reverse causation can be dealt with by 
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implementing a lag-period within which all drug exposure is disregarded, i.e. 

within a time period of a given length prior to the cancer diagnosis (Pottegård 

& Hallas, 2017). 

In study II, we implemented various lag-periods in several sensitivity 

analyses, ranging from 0-24 months using 6-month intervals. As results from 

these analyses show, reverse causation was not really a problem in study II. 

This might be due to these three cancers not causing physical symptoms that 

are likely to lead to the initiation of PPI treatment. To this point, we repeated 

our main analyses from study II and looked at the effect of implementing 

different lag-periods when assessing the association between PPI use and 

gastric cancer risk (ICD-10: C16.0-C16.9). As the results presented in Table 

3 show, removing the lag-period yielded a higher risk estimate, indicating that 

the results are likely influenced by reverse causation. Although we performed 

this analysis on the association between PPI use and gastric cancer, we do 

not want to conclude anything from the observed results since these 

analyses were mainly done to explore the effect of implementing different lag-

periods, where the underlying symptoms from an undiagnosed tumor were 

likely to influence initiation of PPI treatment. These observations should 

encourage the implementation of various lag-periods in 

pharmacoepidemiological studies exploring the association between drug use 

and cancer. 

 

 

Prescribing patterns among patients that are close to death likely reflect 

worsening physical conditions and PPIs are commonly prescribed to a patient 

with a life-limiting medical diagnosis (McNeil et al., 2016). In study III, we 

therefore lagged the exposure by 12 months, following the date that patients 

met the exposure criteria, to limit the influence of changing prescribing 

patterns nearing end of life. In a sensitivity analysis where we removed the 

0 154 (64.4) 855 (35.8) 3.61 (2.70 - 4.83)

6 93 (38.9) 809 (33.9) 1.26 (0.95 - 1.68)

12 84 (35.1) 766 (32.1) 1.16 (0.86 - 1.56)

18 80 (33.5) 724 (30.3) 1.17 (0.87 - 1.58)

24 72 (30.1) 676 (28.3) 1.10 (0.80 - 1.49)

Lag-time (months) No. of cases Adjusted OR‡No. of controls

Gastric cancer: Ever use vs. Never use

Table 3. Associations between proton pump inhibitor use and 
gastric cancer, with varying length of lag-time implemented. 



Discussion 

49 

PPI exposure No of deaths No of person years Age adjusted HR (95% CI)
b

Adjusted HR (95% CI)
c

Prostate cancer-specific mortality

Non-use 49 3854 1.00 (Reference) 1.00 (Reference)

Post-diagnosis PPI use 49 1059 3.69 (2.48 - 5.50) 3.95 (2.59 - 6.02)

All-cause mortality

Non-use 123 3854 1.00 (Reference) 1.00 (Reference)

Post-diagnosis PPI use 80 1059 2.34 (1.76 - 3.10) 2.29 (1.71 - 3.08)

lag-period, the observed increase in mortality indicates that without the 

exposure lag, our results would likely have been influenced by reverse 

causation (Table 4). 

5.4  Strengths and limitations 

The most important overall strength of our studies involved nationwide data 

sources of high quality allowing us, e.g. through the Icelandic Medicines 

Registry, to assess PPI use among the entire Icelandic adult population and, 

e.g. through the Icelandic Cancer Registry, to identify all of the cancer 

diagnoses in Iceland relevant for our studies. Furthermore, the nature of how 

the data were collected for each data source, independently from one 

another, allowed our analyses to be carried out without us having to worry 

about recall bias; a bias that can be problematic if e.g. survey data were used 

to assess prior drug use. Lastly, the time-varying nature of our analyses in 

studies II and III enabled us to avoid time-related biases which likely would 

have skewed our results, leading us to draw false conclusions. 

Our studies also had several overall limitations that we were unable to 

avoid. First, and perhaps most importantly, we lacked information about the 

underlying reason for PPI use which limited our ability to assess the 

appropriateness of PPI use in study I and further limited our ability to address 

potential confounding factors in studies II and III that might have influenced 

our results. To address the potential of confounding by indication influencing 

our results in studies II and III, we considered performing analyses using 

H2RA use as an active comparator, i.e. to compare the observed association 

for PPIs with the association for another drug used to treat the same clinical 

condition. However, this was not a feasible option due to the low-level of 

H2RA use in our underlying study population. In 2014 the total amount of 

sold H2RA, measured in DDDs, was 387,584 DDDs, out of which 245,375 

DDDs were sold OTC. That amounts to 63.3% of the total amount of sold 

Abbreviations: HR, hazard ratio; CI, confidence interval
bAdjusted for age at diagnosis
cAdjusted for age at diagnosis, calendar period, clinical stage, Gleason score, medication-based comorbidity, surgery, endocrine and/or chemotherapy, radiotherapy

Table 4. Cox proportional hazard regression models for the associations between 
post-diagnosis PPI use and prostate cancer-specific and all-cause mortality, without 
lagging the exposure. 
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H2RA drugs during that year. For comparison, there were 10,866,604 DDDs 

of PPIs sold in 2014, out of which 9.4% were sold OTC.  

Second, we were unable to obtain information on individual-level risk 

factors such as body-mass-index (BMI), SES, alcohol use, smoking, and 

disease-based comorbidities. The lack of adjustment for these variables 

might have contributed to some level of unmeasured confounding influencing 

our results in studies II and III.  

Third, information on PPI use before 2003 was unknown which might be a 

source of misclassification bias. Further, PPIs and NSAIDs are available OTC 

in pharmacies in Iceland which might have resulted in some misclassification 

of their use. However, as mentioned in study I the overall OTC use of PPIs, 

our primary exposure in all three studies, never exceeded 10% of the total 

use of PPIs after they became available OTC on February 1, 2009. 

Nevertheless, it cannot be completely ruled out that misclassification of PPI 

use might have biased the results from studies II and III towards the null.  

Fourth, another potential source of misclassification bias might stem from 

the fact that the Medicines Registry only contains information on outpatient 

PPI use, leaving us in the dark about their use within hospitals. PPIs have 

been shown to be used extensively among hospitalized patients, with reports 

of approximately 50% of inpatients being prescribed PPIs during their stay 

within the hospital setting. This might have influenced our results to some 

degree, especially in study III where a higher proportion of patients likely 

entered the inpatient setting at some point following their diagnosis. Fifth, we 

lacked information on exact dosing regimens for the PPI prescriptions which 

forced us to assume a daily intake of either one tablet or one DDD, although 

it is likely that patients with more severe symptoms might have had a higher 

daily intake. In study I, this would have further allowed us to evaluate the 

appropriateness of PPI use. If a high proportion of patients consumed a 

higher daily dose than one tablet/DDD that would potentially affect our 

estimates of treatment duration in studies I and II.  

Sixth, as in all registry-based studies on drug use we had to assume that 

patients receiving a dispensing for a drug do actually take them. It remains 

likely that some patients that receive PPIs only take them occasionally and 

on-demand. In fact, our observation in study I of lowered prevalence 

estimates, when prevalent use was redefined by requiring two filled 

prescriptions rather than one, supports the idea that a number of PPI users 

can probably be referred to as ‘occasional users’. Seventh, the Icelandic 

Medicines Registry did not contain information on PPI use within nursing 
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homes until 2010, which might have resulted in PPI use being somewhat 

underestimated before that time, since the prevalence of PPI use was shown 

to increase with age.  

Eighth, the length of our study periods in studies II and III were limited in 

part by the information that was available to use. In study II, we were limited 

by the fact that the Medicines Registry only started in 2003 and to be able to 

implement a 24-month lag-period we had to limit the start of the study period 

to the year 2005. In study III, we were limited by the lack of comprehensive 

information from Landspitali hospital on chemo- and radiotherapy prior to 

2007, forcing us to limit the study period to 2007-2012. Additionally, because 

we only had information on clinical stage prior to 2011 for prostate cancer 

diagnoses, we were unable to include breast cancer patients in study III, as 

we initially intended.  

Finally, one of our original aims was to assess the mortality among 

patients that received PPIs prior to chemotherapy but this turned out to be 

infeasible due to the small sample size of patients receiving chemotherapy. 

Therefore, it is clear that studies II and III would benefit greatly from an 

increased period of follow-up time. Finally, despite our best efforts, we cannot 

entirely exclude the possibility that the aforementioned biases in chapter 5.3 

might have influenced our results to some degree, although our precautions 

should have substantially limited their effect on our study results. 
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6 Conclusions and future studies 

Our findings suggest that overall PPI use has increased considerably since 

2003, driven by a substantial increase of prescriptions in primary care. Our 

results indicate that the observed increase was mainly due to increased use 

among current users, especially among the elderly. Furthermore, our 

observations of extended treatment durations, often on higher doses and well 

beyond the recommended duration of PPI treatment according to clinical 

guidelines, should encourage future studies to explore the appropriateness of 

the extensive PPI use observed in Iceland in this study. 

Overall our findings do not support our hypothesis that PPIs possess 

antineoplastic properties. Specifically, our results do not suggest a 

chemopreventive role of PPIs in breast cancer, prostate cancer, or malignant 

melanoma. Future studies on PPI use and cancer risk should focus on 

clinical stage and whether PPIs influence the risk of being diagnosed with a 

metastatic disease, given the evidence of increased plasmalemmal V-

ATPase expression in metastatic cancer cells. Furthermore, our results do 

not indicate that post-diagnosis PPI use is associated with decreased 

mortality among prostate cancer patients. Future observational studies on 

PPI use and mortality among cancer patients should focus on whether pre-

treatment with PPIs among patients receiving chemotherapy influences 

mortality, possibly by enhancing the chemotherapeutic effect. However, due 

to the high level of PPI use among cancer patients, likely with various 

indications, confounding by indication likely needs to be addressed; perhaps 

by stratifying by underlying clinical indications. 
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Introduction
Proton-pump inhibitors (PPIs) are commonly 
prescribed for several acid-related disorders,1 
such as gastroesophageal reflux disease (GORD) 
and peptic ulcer disease.2–5 These drugs are also 
effective in treating ulcers associated with the use 
of nonsteroidal anti-inflammatory drugs 
(NSAIDs) and as prophylactic treatment for 
patients on NSAIDs and low-dose aspirin.6–10 
Recommended doses and duration of PPI treat-
ment vary by indications. Clinical guidelines 
rarely recommend PPI treatment for more than 

8–12 weeks.11,12 High-dose treatment is recom-
mended when initiating therapy for GORD and 
peptic ulcer disease, while low-dose treatment is 
generally regarded as a maintenance therapy for 
recovering patients.12

PPIs are generally considered safe.13 However, 
their use has been associated with increased risks 
of adverse events, such as bone fractures,14 kidney 
disease,15 microscopic colitis,16 and hypomagne-
semia.17 Use of PPIs has also been suggested to 
cause changes in the composition of the intestinal 
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microbiota, increasing the risk of Clostridium dif-
ficile infection18 and chronic liver disease.19 
Although PPIs have been shown to minimize 
NSAID-related adverse effects in the stomach, 
recent evidence suggests that PPIs might cause 
changes in the composition of the small intestinal 
microbiota, augmenting unwanted adverse effects 
of NSAIDs in the small intestines.20 Furthermore, 
discontinuation of PPI treatment has been linked 
to acid hypersecretion21 and the development of 
dyspeptic symptoms in healthy volunteers.22

PPIs have had undisputed effects on the treatment 
of symptoms related to excessive acid secretion, 
but concerns are growing about inappropriate 
indications and potential overuse, both within hos-
pitals and in the primary-care setting.23–26 These 
concerns are compounded by observations of 
increased long-term use especially in elderly popu-
lations,27–29 where overprescribing has been associ-
ated with increased morbidity and mortality.30

In light of these concerns, we aimed to provide 
data on real-world use of PPIs, and changes 
thereof, across the past decade in an entire 
national population. Specifically, we aimed to 
determine patterns of use by patient and pre-
scriber characteristics, including treatment dura-
tion contrasting between higher- and lower-dose 
PPIs. Furthermore, we described the proportion 
of PPI use attributable to gastroprotection.

Methods
This was an observational drug-utilization study 
describing the use of PPIs among the adult 
Icelandic population (19 years or older) during 
the period 1 January 2003 through to 31 
December 2015.

Data sources
The Icelandic Medicines Registry (IMR) contains 
individual information on all dispensed prescrip-
tion drugs in outpatient care in Iceland since 1 
January 2003. We received information from the 
IMR on PPI dispensing during the study period. 
As of 2010, the IMR also contained information 
on dispensed prescription drugs within nursing 
homes in Iceland.31,32 Completeness of the IMR 
ranged from 91% to 98% of all dispensed pre-
scription drugs for the study years. Information on 
wholesale statistics of PPIs was provided by the 
Icelandic Medicines Agency.33

The Icelandic Population Register provided 
information about all citizens, Icelandic and for-
eign, residing in Iceland during the study period, 
including data on month and year of birth, sex, 
residency at 1 January 2003, migration status, 
and date of death (if appropriate).

Using personal identification numbers, unique to 
every individual residing in Iceland, we linked 
together the variables from these two registries.

Study drugs
The drugs of interest were classified according to 
the World Health Organization anatomical thera-
peutic chemical/defined daily doses (ATC/DDD) 
classification.34 During the study period, four PPI 
substances were prescribed in Iceland: omeprazole 
(A02BC01), lansoprazole (A02BC03), rabepra-
zole (A02BC04), and esomeprazole (A02BC05). 
We further categorized each PPI type by available 
tablet strengths in milligrams as higher or lower 
dose. In the National Institute for Health and Care 
Excellence (NICE) clinical guidelines, PPI doses 
(in mg) are defined as standard/full dose, double 
dose, or low dose.12 In the current study, standard 
and double doses were defined as higher-dose PPIs 
and low doses as lower-dose PPIs (Table 1).

On 1 February 2009, PPIs became available as 
over-the-counter (OTC) products in Iceland. 
However, the majority of PPIs during the study 
period were obtained by prescription rather than 
OTC, with OTC sales ranging from 1% in 2009 
to 10% in 2015 of the total dispensed DDDs in 
these years (Supplementary Table S1).

Information on the indication for the prescription 
of PPIs was not available in the IMR. We explored 
potential reasons for PPI use by assessing the pro-
portion of use attributable to gastroprotection, 
that is, concurrent use of PPIs with acetylsalicylic 
acid (ATC codes: B01AC06, N02BA01, 
B01AC30), NSAIDs (ATC codes: M01, exclud-
ing M01AX), oral anticoagulants (ATC codes: 
B01AA, B01AE, B01AF, B01AX06), and plate-
let inhibitors (B01AC04, B01AC07, B01AC22, 
B01AC24, B01AC30).

Analysis
We presented overall use of PPIs in Iceland as the 
total number of dispensed DDDs to the adult pop-
ulation stratified by calendar year, PPI substance, 
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and specialty of the prescribing physician (primary 
care, gastroenterology, and other specialties).

Annual prevalence (per 100 persons) of PPI use 
was defined as the number of adult individuals 
who filled at least one prescription in the relevant 
calendar year (2003–2015) divided by the total 
adult population residing in Iceland on 1 July of 
that year. Further we reported the sex- and age-
specific prevalence of PPI use in 2015, the last 
year of the study period (by 1-year age intervals 
between ages 19–39 years and 80+ years). As a 
sensitivity analysis, we repeated the analysis of 
annual prevalence requiring at least two filled PPI 
prescriptions in the relevant calendar year to be 
classified as a prevalent user.

Annual incidence (per 100 persons per year) of 
PPI use was defined as the number of adult indi-
viduals who, during the relevant calendar year 
(2005–2015), filled their first PPI prescription 
after a period of 24 months during which no PPI 
prescriptions were filled, divided by the total 
adult population residing in Iceland on 1 July of 
that year.

To describe the duration of PPI use we used the 
‘proportion of patients covered’ method, which 
estimates the proportion of subjects that are alive 
and covered by treatment on a given day after the 
initiation of an incidence treatment episode. For 
each patient, we estimated duration of each filled 
prescription based on days’ supply, assuming one 
tablet as a daily dose. We allowed for a grace 
period of 108 days (2 × the median number of 
days between dispensing, that is, the number of 
days by which 50% of the population had received 
a subsequent dispensing), to account for irregular 
prescription fills and added to the duration of 
each prescription. If a patient did not fill a new 

prescription within this time we considered them 
to have discontinued their PPI treatment. They 
could then later re-enter the user population upon 
initiating a new treatment episode. We followed 
incident PPI users for 5 years, from the date of 
their first PPI prescription (day 0), and calculated 
the proportion of patients covered by dividing the 
number of users that were using the drug at day X 
(defined by 30-day intervals) by the number of 
people who were still alive and had not migrated 
at day X. Furthermore, to assess differences in 
treatment duration by patient age or by their pre-
scribed PPI dose, we stratified the duration analy-
sis by age (19–39, 40–49, 50–59, 60–69, 70–79, 
80+ years), dose strength (higher versus lower), 
and sex. In addition, we explored the distribution 
in number of dispensed DDDs and tablets in the 
first 5 years after start of initial treatment episode 
(0–99, 100–199, 200–299, 300–399, 400–499, 
500–599, 600–699, 700–799, 800–899, 900–999, 
⩾ 1000).

To assess concurrent use of selected drugs (ATC 
codes: M01 [excluding M01AX], B01AC06, 
N02BA01, B01AC30, B01AA, B01AE, B01AF, 
B01AX06, B01AC04, B01AC07, B01AC22, 
B01AC24, and B01AC30), we calculated the 
proportion (%) of prevalent PPI users in each 
study year who also filled prescriptions for these 
drugs within 90 days leading up to a PPI prescrip-
tion fill. To assess the pattern of concurrent use 
among different age groups we performed a strati-
fied analysis by age (19–39, 40–64, 65+ years).

All analyses were performed using R version 3.4.235 
and RStudio.36 The study was approved by the 
National Bioethics Committee in Iceland (study 
reference number: VSNb2015080004/03.03). As 
the study was based on national registry data, we 
did not obtain informed consent from individuals 

Table 1. Proton-pump inhibitors and tablet strengths dispensed to adults in Iceland in 2003–2015.

PPI ATC DDD (mg) Lower dose (mg)* Higher dose (mg)*

Omeprazole A02BC01 20 10 20, 40

Lansoprazole A02BC03 30 15 30

Rabeprazole A02BC04 20 10 20

Esomeprazole A02BC05 30 10 20, 40

* National Institute for Health and Care Excellence clinical guidelines define PPI doses as standard/full dose, double dose 
or low dose.12 Here we categorize low PPI doses as lower-dose PPIs while standard and double doses are categorized as 
higher-dose PPIs. ATC, anatomical therapeutic chemical; DDD, defined daily dose, PPI, proton-pump inhibitor.
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in the study population. All personal information 
was encrypted and de-identified prior to analysis.

Results
We observed 1,372,790 prescription fills for PPIs 
over the entire study period. The vast majority 
(95%) were higher-dose prescriptions. Among 
313,296 individuals constituting our source pop-
ulation, a total of 101,909 (33%) filled at least 
one PPI prescription, including 56,252 women 
(55%) and 45,657 men (45%). The mean age at 
first prescription fill was 46 years (interquartile 
range 30–60). We observed a median of three PPI 
prescription fills per patient (interquartile range 
1–15). The median number of days between pre-
scription fills was 54.

During the study period, there was an increase in 
total PPI use, measured as the number of dis-
pensed DDDs, from 3.5 million DDDs dispensed 
in 2003 to 10.7 million DDDs dispensed in 2015 
(Figure 1a). Primary-care physicians prescribed 
the majority (60%) of all dispensed DDDs during 
the study period, whereas gastroenterologists pre-
scribed 11% and physicians of other specialties 
prescribed 29%. Prior to 2009, esomeprazole was 
the most commonly prescribed drug among all 
specialties. Although esomeprazole remained the 
PPI of choice among gastroenterologists, ome-
prazole became the most commonly prescribed 
PPI thereafter among nongastroenterologists 
(Figure 1b–d).

Figure 2 shows an increase in annual prevalence 
of PPI use with calendar time, from 8.5 per 100 
persons in 2003 to 15.5 per 100 persons in 2015. 
Meanwhile, the incidence of PPI use ranged from 
3.3 per 100 persons in 2005 to 4.1 per 100 per-
sons in 2015. A more stringent measure of annual 
prevalence, requiring at least two prescription fills 
within a relevant year, yielded a prevalence of 5.4 
per 100 persons in 2003 to 11.0 per 100 persons 
in 2015 (Supplementary Figure S1). Prevalence 
of PPI use was higher among women than men 
and increased with patient age (Figure 3).

We identified 74,973 incident PPI users in our 
study population, which we then followed for 5 
years to estimate the proportion of users still on 
treatment over time. Figure 4(a) shows the esti-
mated treatment duration stratified by patient 
age. The proportion of patients still on PPI treat-
ment after 1 year was highest among those over 

80 years of age, (36%) and lowest in those aged 
19–39 years (13%). After 5 years, the proportion 
was highest in those aged 70–79 years (20%) and 
lowest among the youngest, 19–39 years (7%). 
The majority of patients filled fewer than 200 
DDDs/tablets during the first 5 years after start-
ing PPI treatment (Supplementary Figure S2).

Figure 4(b) shows PPI treatment duration among 
incident PPI users stratified by strength of PPI 
dose at treatment initiation. Of the 74,973 inci-
dent users, 70,720 (94%) initiated on higher-dose 
PPIs and 4240 (6%) on lower-dose PPIs. The 
proportion of patients still treated with the same 
dose after 1 year was greater among those pre-
scribed higher- (21%) than lower-dose PPIs 
(9%). The proportion of patients still on the same 
dose was 13% versus 2% after 5 years, respectively 
on higher- versus lower-dose PPIs. Duration of 
treatment by PPI dose strength was nearly identi-
cal for both sexes (Supplementary Figure S3).

We observed a slight decrease in the proportion of 
PPI users concurrently using drugs that have 
been shown to be ulcerogenic or increase the risk 
of bleeding, from 38% in 2003 to 36% in 2015 
(Figure 5). The proportion of PPI users concur-
rently using NSAIDs decreased from 33% in 
2003 to 24% in 2015. We observed an increase in 
concurrent use of oral anticoagulants (3–6%), 
acetylsalicylic acid (5–8%), and other platelet 
inhibitors (2–3%). The proportion of PPI users 
concurrently treated with any of these four drugs 
was highest among those aged over 65 years (47% 
in 2003, 47% in 2015) and lowest among the 
youngest aged 19–39 years (21% in 2003, 17% in 
2015) (Supplementary Figure S4).

Discussion
In this study, which covered all PPI dispensing in 
an entire national population over 13 years, we 
observed widespread and increasing use of PPIs, 
especially among the elderly. Primary-care physi-
cians prescribed the vast majority of dispensed 
PPIs in our study data. While the number of new 
users remained relatively stable over time, the 
results suggested that patients were increasingly 
treated for longer durations than recommended 
by clinical guidelines and mainly with higher-dose 
PPIs.

The rising prevalence of PPI use across time 
observed in our study is in line with recently 
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Figure 2. Annual prevalence and incidence (per 100 persons) of proton-pump inhibitor use among adults in 
Iceland.

Figure 3. Age- and sex-specific prevalence of proton-pump inhibitor use among adults in Iceland in 2015.

published reports in comparable populations.27,29,37 
However, the prevalence in Iceland in 2015 was 
more than twice that observed among adults in 
Denmark in 2014 (15.5% versus 7.4%). GORD is 
the most common indication for PPIs with an esti-
mated prevalence of 9–26% in European popula-
tions.38 Although our use estimates were within 
this range, we were unable to draw definitive 

conclusions on the appropriateness of PPI use in 
Iceland as we did not have information on the indi-
cations for which PPIs were prescribed nor data on 
the prevalence of GORD or other underlying con-
ditions in the population.

Inappropriate use of PPIs in the outpatient set-
ting, for example, in the form of inappropriate 
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Figure 4. Duration of PPI treatment among incident users: (a) by age; (b) by initial dose strength of the proton-
pump inhibitors (PPIs), measured as the proportion of patients covered.

indications and automatic renewal of prescrip-
tions without re-evaluation of patients’ symptoms, 
is a looming concern.25,39 Such concerns were 
reinforced by Reimer and Bytzer’s findings, which 
showed that only 27% of people receiving long-
term treatment had a verified diagnosis justifying 
the need for long-term treatment.40 The NICE 
clinical guidelines recommend long-term PPI 
therapy for rare conditions like Zollinger–Ellison 
syndrome or Barrett’s esophagus as well as for 
patients with severe esophagitis, who have not 
responded to an initial high-dose 8-week treat-
ment, and for patients who have experienced a 
dilation of an esophageal stricture.12 In general, 
the recommended duration of PPI treatment in 
clinical guidelines rarely exceeds 12 weeks. We 

found that 22% remained on treatment 1 year 
after treatment initiation. The proportion was 
highest among the oldest age group (36%) and 
lowest among the youngest (13%). Extended 
treatment durations among older adults are con-
cerning in light of widespread polypharmacy and 
increased risk of adverse events with PPI use.41 In 
fact, we observed that nearly half of older adults in 
our data used PPIs concurrently with NSAIDs, 
acetylsalicylic acid, oral anticoagulants, or platelet 
inhibitors, reflecting the level of polypharmacy 
among older adults using PPIs. Given the recent 
evidence of PPIs potentially facilitating injurious 
effects of NSAIDs in the small intestines, espe-
cially in older people and other high-risk patients,20 
this pattern of high concurrent drug use might be 
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concerning. However, as we were unable to link 
prescription data with clinical information, we 
cannot rule out that these patients were appropri-
ately prescribed PPIs as bleeding prophylaxis.

The vast majority of PPI users in our population 
initiated treatment with higher-dose PPIs and 
after 1 year 21% remained on that treatment, for 
example, had not switched to lower-dose PPIs or 
discontinued treatment. This might indicate that 
their underlying symptoms are more severe than 
among those initiating treatment on lower doses 
and reflect the level of difficulty some users expe-
rience when discontinuing treatment due to 
resurfacing symptoms.42

Recently, Helgadottir and colleagues demon-
strated that among confirmed GORD patients on 
long-term PPI treatment, women were more 
likely than men to be able to lower their dose by 
half, while still achieving symptom relief.43 In our 
study we found no observable difference in treat-
ment durations by patient sex, nor did women 

seem more likely to initiate or maintain treatment 
on lower-dose PPIs. Thus, it is conceivable that 
women might be able to tolerate lower PPI doses 
than is mostly used nowadays.

The present study has several limitations. First, as 
with all register-based drug studies, it is not cer-
tain that individuals who filled the PPI prescrip-
tions actually consumed the drugs. To address 
this, we performed a sensitivity analysis 
(Supplementary Figure S1) requiring at least two 
PPI prescription fills within a year to count as a 
prevalent PPI user, which resulted in lowered 
prevalence estimates. Actual consumption might 
thus in reality lie between these two measures of 
prevalence. Second, the study data did not con-
tain information on clinical characteristics such as 
indications underlying the PPI prescriptions and/
or the severity of symptoms, which prevented us 
from drawing sound conclusions on the appropri-
ateness of PPI prescribing in our population. 
Third, information on PPI use within nursing 
homes was not included in the IMR until 2010, 

Figure 5. Concurrent use of proton-pump inhibitors with drugs that are ulcerogenic or increase the risk of 
upper gastrointestinal bleeding. NSAIDs, nonsteroidal anti-inflammatory drugs.
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which presumably resulted in an underestimation 
of the prevalence of PPI use among the elderly in 
the first half of the study period. Fourth, informa-
tion on exact dosing for each prescription was not 
available in our data preventing us from accu-
rately assessing prescribed doses. Our assess-
ments of PPI doses were based on dispensed 
tablet strengths and therefore only an approxima-
tion of actual doses. Finally, PPIs became availa-
ble OTC on 1 February 2009. However, the 
proportion of PPIs sold OTC was relatively low, 
ranging from 1% to 10% of the total number of 
DDDs sold annually from 2009 to 2015, and may 
therefore only have led to a slight underestima-
tion of overall PPI use.

In conclusion, over a 13-year follow-up period we 
observed a considerable increase of real-world PPI 
use in a nationwide population setting, particu-
larly among older adults. We found that a number 
of patients stayed on PPI treatment for longer 
periods than is recommended by clinical guide-
lines, mainly on higher doses. In view of these 
results, further initiatives towards appropriate pre-
scribing of PPIs, especially in terms of the adop-
tion of de-prescribing strategies, are warranted.

Acknowledgements
We thank Guðrún Kristín Guðfinnsdóttir and 
Kristinn Jónsson at the Directorate of Health in 
Iceland for extracting the data for this study. HZ 
is the guarantor of the article. ÓÖH and HZ 
designed the study. ÓÖH, HZ, AP, and SHL 
contributed to the data analysis and all authors 
contributed to the interpretation of the data. 
ÓÖH drafted the manuscript and all authors par-
ticipated in the interpretation of the data and revi-
sion of the content of the manuscript. The final 
version of the manuscript was revised and 
approved by all authors.

Funding
This study was funded by the University of 
Iceland Research Fund, grant number 
HI16090004, and by the Icelandic Research 
Fund, grant number 152715-053.

Conflict of interest statement
The authors declare no conflicts of interest in 
preparing this article.

ORCID iD
Óskar Örn Hálfdánarson  https://orcid.org/0000- 
0002-4564-6126

References
 1. Raghunath AS, Hungin AP, Mason J, et al. 

Symptoms in patients on long-term proton pump 
inhibitors: prevalence and predictors. Aliment 
Pharmacol Ther 2009; 29: 431–439.

 2. Dent J, El-Serag HB, Wallander MA, et al. 
Epidemiology of gastro-oesophageal reflux 
disease: a systematic review. Gut 2005; 54: 
710–717.

 3. Lundell L, Miettinen P, Myrvold HE, et al. 
Comparison of outcomes twelve years after 
antireflux surgery or omeprazole maintenance 
therapy for reflux esophagitis. Clin Gastroenterol 
Hepatol 2009; 7: 1292–1298.

 4. Mahon D, Rhodes M, Decadt B, et al. 
Randomized clinical trial of laparoscopic Nissen 
fundoplication compared with proton-pump 
inhibitors for treatment of chronic gastro-
oesophageal reflux. Br J Surg 2005; 92: 695–699.

 5. Mehta S, Bennett J, Mahon D, et al. Prospective 
trial of laparoscopic nissen fundoplication 
versus proton pump inhibitor therapy for 
gastroesophageal reflux disease: seven-year 
follow-up. J Gastrointest Surg 2006; 10: 1312–
1316.

 6. Scheiman JM. The use of proton pump inhibitors 
in treating and preventing NSAID-induced 
mucosal damage. Arthritis Res Ther 2013; 15: S5.

 7. Bhatt DL, Scheiman J, Abraham NS, et al. 
ACCF/ACG/AHA 2008 expert consensus 
document on reducing the gastrointestinal risks of 
antiplatelet therapy and NSAID use: a report of 
the American College of Cardiology Foundation 
Task Force on clinical expert consensus 
documents. J Am Coll Cardiol 2008; 52: 1502–
1517.

 8. Gómez-Outes A, Terleira-Fernández AI, 
Calvo-Rojas G, et al. Dabigatran, rivaroxaban, 
or apixaban versus warfarin in patients with 
nonvalvular atrial fibrillation: a systematic review 
and meta-analysis of subgroups. Thrombosis 2013; 
2013: 640723.

 9. Hreinsson JP, Kalaitzakis E, Gudmundsson S, 
et al. Upper gastrointestinal bleeding: incidence, 
etiology and outcomes in a population-based 
setting. Scand J Gastroenterol 2013; 48: 439–447.

 10. Hreinsson JP, Palsdóttir S and Bjornsson ES. 
The association of drugs with severity and specific 
causes of acute lower gastrointestinal bleeding: a 
prospective study. J Clin Gastroenterol 2016; 50: 
408–413.

 11. Katz PO, Gerson LB and Vela MF. 
Guidelines for the diagnosis and management 



Therapeutic Advances in Gastroenterology 11

10 journals.sagepub.com/home/tag

of gastroesophageal reflux disease. Am J 
Gastroenterol 2013; 108: 308–328.

 12. NICE. Gastro-oesophageal reflux disease 
and dyspepsia in adults: investigation and 
management, guidance and guidelines, https://
www.nice.org.uk/guidance/cg184 (accessed 22 
November 2017).

 13. McCarthy DM. Adverse effects of proton pump 
inhibitor drugs: clues and conclusions. Curr Opin 
Gastroenterol 2010; 26: 624–631.

 14. Zhou B, Huang Y, Li H, et al. Proton-pump 
inhibitors and risk of fractures: an update meta-
analysis. Osteoporos Int 2016; 27: 339–347.

 15. Lazarus B, Chen Y, Wilson FP, et al. Proton 
pump inhibitor use and the risk of chronic kidney 
disease. JAMA Intern Med 2016; 176:  
238–246.

 16. Law EH, Badowski M, Hung YT, et al. 
Association between proton pump inhibitors and 
microscopic colitis. Ann Pharmacother 2017; 51: 
253–263.

 17. Cheungpasitporn W, Thongprayoon C, 
Kittanamongkolchai W, et al. Proton pump 
inhibitors linked to hypomagnesemia: a systematic 
review and meta-analysis of observational studies. 
Ren Fail 2015; 37: 1237–1241.

 18. Naito Y, Kashiwagi K, Takagi T, et al. Intestinal 
dysbiosis secondary to proton-pump inhibitor 
use. Digestion 2018; 97: 195–204.

 19. Llorente C, Jepsen P, Inamine T, et al. Gastric 
acid suppression promotes alcoholic liver 
disease by inducing overgrowth of intestinal 
Enterococcus. Nat Commun 2017; 8: 837.

 20. Marlicz W, Łoniewski I, Grimes DS, et al. 
Nonsteroidal anti-inflammatory drugs, proton 
pump inhibitors, and gastrointestinal injury: 
contrasting interactions in the stomach and small 
intestine. Mayo Clin Proc 2014; 89: 1699–1709.

 21. Waldum HL, Qvigstad G, Fossmark R, 
et al. Rebound acid hypersecretion from a 
physiological, pathophysiological and clinical 
viewpoint. Scand J Gastroenterol 2010; 45: 
389–394.

 22. Niklasson A, Lindström L, Simrén M, et al. 
Dyspeptic symptom development after 
discontinuation of a proton pump inhibitor: 
a double-blind placebo-controlled trial. Am J 
Gastroenterol 2010; 105: 1531–1537.

 23. Naunton M, Peterson GM and Bleasel MD. 
Overuse of proton pump inhibitors. J Clin Pharm 
Ther 2000; 25: 333–340.

 24. Grant K, Al-Adhami N, Tordoff J, et al. 
Continuation of proton pump inhibitors from 
hospital to community. Pharm World Sci 2006; 
28: 189–193.

 25. Batuwitage BT, Kingham JG, Morgan NE, 
et al. Inappropriate prescribing of proton pump 
inhibitors in primary care. Postgrad Med J 2007; 
83: 66–68.

 26. Ladd AM, Panagopoulos G, Cohen J, et al. 
Potential costs of inappropriate use of proton 
pump inhibitors. Am J Med Sci 2014; 347: 
446–451.

 27. Wallerstedt SM, Fastbom J, Linke J, et al. 
Long-term use of proton pump inhibitors 
and prevalence of disease- and drug-related 
reasons for gastroprotection – a cross-sectional 
population-based study. Pharmacoepidemiol Drug 
Saf 2017; 26: 9–16.

 28. Moriarty F, Bennett K, Cahir C, et al. 
Characterizing potentially inappropriate 
prescribing of proton pump inhibitors  
in older people in primary care in Ireland from 
1997 to 2012. J Am Geriatr Soc 2016; 64: 
e291–e296.

 29. Pottegård A, Broe A, Hallas J, et al. Use of 
proton-pump inhibitors among adults: a Danish 
nationwide drug utilization study. Ther Adv 
Gastroenterol 2016; 9: 671–678.

 30. Cahir C, Fahey T, Teeling M, et al. Potentially 
inappropriate prescribing and cost outcomes  
for older people: a national population study.  
Br J Clin Pharmacol 2010; 69:  
543–552.

 31. Furu K, Wettermark B, Andersen M, 
et al. The Nordic countries as a cohort for 
pharmacoepidemiological research. Basic Clin 
Pharmacol Toxicol 2010; 106: 86–94.

 32. Embætti Landlæknis. Lyfjagagnagrunnur 
landlaeknis Hlutverk-og-rekstur, https://www.
landlaeknir.is/servlet/file/store93/item27765/
Lyfjagagnagrunnur_landlaeknis_Hlutverk-
og-rekstur_loka_14.10.15.pdf (accessed 22 
November 2017).

 33. Lyfjastofnun. Icelandic Medicines Agency, 
https://www.ima.is (accessed 13 April 2018).

 34. WHOCC. ATC/DDD Index, https://www.
whocc.no/atc_ddd_index/ (accessed 6 November 
2017).

 35. The R Foundation. The R project for statistical 
computing, https://www.r-project.org/ (accessed 6 
November 2017).



ÓÖ Hálfdánarson, A Pottegård et al.

journals.sagepub.com/home/tag 11

 36. RStudio. Open source and enterprise-ready 
professional software for R, https://www.rstudio.
com/ (accessed 6 November 2017).

 37. Ksiądzyna D, Szeląg A and Paradowski L. 
Overuse of proton pump inhibitors. Pol Arch 
Intern Med 2015; 125: 289–298.

 38. El-Serag HB, Sweet S, Winchester CC, 
et al. Update on the epidemiology of gastro-
oesophageal reflux disease: a systematic review. 
Gut 2014; 63: 871–880.

 39. Heidelbaugh JJ, Kim AH, Chang R, et al. 
Overutilization of proton-pump inhibitors: 
what the clinician needs to know. Ther Adv 
Gastroenterol 2012; 5: 219–232.

 40. Reimer C and Bytzer P. Clinical trial: long-
term use of proton pump inhibitors in primary 

care patients – a cross sectional analysis of 901 
patients. Aliment Pharmacol Ther 2009; 30: 
725–732.

 41. Maes ML, Fixen DR and Linnebur SA. Adverse 
effects of proton-pump inhibitor use in older 
adults: a review of the evidence. Ther Adv Drug 
Saf 2017; 8: 273–297.

 42. Björnsson E, Abrahamsson H, Simrén M, et al. 
Discontinuation of proton pump inhibitors in 
patients on long-term therapy: a double-blind, 
placebo-controlled trial. Aliment Pharmacol Ther 
2006; 24: 945–954.

 43. Helgadóttir H, Metz DC, Lund SH, et al. Study 
of gender differences in proton pump inhibitor 
dose requirements for GERD: a double-blind 
randomized trial. J Clin Gastroenterol 2017; 51: 
486–493.

Visit SAGE journals online 
journals.sagepub.com/
home/tag

SAGE journals



 



 

89 

Paper II 

 

Paper II 





OR I G I N A L R E POR T

Proton pump inhibitor use and risk of breast cancer, prostate
cancer, and malignant melanoma: An Icelandic population‐
based case‐control study

Óskar Ö. Hálfdánarson1 | Katja Fall2,3 | Margret H. Ogmundsdottir4 | Sigrún H. Lund1 |

Eiríkur Steingrímsson4 | Helga M. Ogmundsdottir5 | Helga Zoega1,6

1Centre of Public Health Sciences, Faculty of

Medicine, University of Iceland, Reykjavík,

Iceland

2Clinical Epidemiology and Biostatistics,

School of Medical Sciences, Örebro

University, Örebro, Sweden

3Department of Medical Epidemiology and

Biostatistics, Karolinska Institutet, Stockholm,

Sweden

4Department of Biochemistry and Molecular

Biology, BioMedical Center, Faculty of

Medicine, University of Iceland, Reykjavik,

Iceland

5Cancer Research Laboratory, BioMedical

Center, Faculty of Medicine, University of

Iceland, Reykjavik, Iceland

6Medicines Policy Research Unit, Centre for

Big Data Research in Health, University of

New South Wales, Sydney, Australia

Correspondence

Ó. Ö. Hálfdánarson, Centre of Public Health

Sciences, Faculty of Medicine, University of

Iceland, Sturlugata 8, 101 Reykjavík, Iceland.

Email: ooh@hi.is

Funding information

Icelandic Research Fund, Grant/Award Num-

ber: 152715‐053

Abstract

Purpose: Increased expression of Vacuolar‐type H+ ATPases (V‐ATPases), in the

plasma membrane of cancer cells has been suggested to contribute to the develop-

ment of aggressive cancer phenotypes by promoting acidic tumor microenvironments.

Accumulating data suggest that proton pump inhibitors (PPIs) may elicit a chemopre-

ventive effect via V‐ATPase inhibition in some cancers, but evidence is still limited.

Therefore, we aimed to explore a potential preventive role of PPIs in this study.

Methods: In this population‐based case‐control study, we identified incident cases

of breast cancer (n = 1739), prostate cancer (n = 1897), and malignant melanoma

(n = 385) in Iceland between 2005 and 2014 from the Icelandic Cancer Registry.

We assessed varying levels of PPI use through record linkages to the Icelandic

Medicines Registry. For each case, we selected up to 10 age‐matched, sex‐matched,

and calendar‐matched population controls using risk‐set sampling. Using conditional

logistic regression, we calculated odds ratios (ORs) and 95% confidence intervals

(CIs) controlling for NSAID use.

Results: Adjusted ORs associated with ever use of PPIs were 1.03 (95% CI: 0.92‐

1.16) for breast cancer, 1.12 (95% CI: 1.00‐1.25) for prostate cancer, and 0.84 (95%

CI: 0.69‐1.12) for malignant melanoma. Analyses of high use of PPIs (≥1000 DDDs)

yielded ORs of 0.97 (95% CI: 0.78‐1.19), 1.20 (0.99‐1.47), and 0.59 (0.40‐1.13) for

breast cancer, prostate cancer, and malignant melanoma, respectively. Analyses of

cumulative exposure to PPIs did not support a dose‐response relationship for any

of the three cancer types.

Conclusions: Our findings do not support a chemopreventive effect of PPI use on

breast cancer, prostate cancer, or malignant melanoma.

KEYWORDS

breast cancer, melanoma, pharmacoepidemiology, prostate cancer, proton pump inhibitors, V‐

ATPase

1 | INTRODUCTION

Altered energy metabolism of cancer cells, characterized by high‐

glycolytic rate, has been proposed as one of the hallmarks of cancers.1

This high rate of glycolysis generates an excess amount of protons

within the intracellular environment of cancer cells.2 A slightly alkaline

intracellular pH is preserved by facilitating the transport of metabolic

products out of cancer cells and into the extracellular environment,
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via membrane‐bound transporters and channels, thus promoting an

acidic extracellular environment.3 Among these, membrane‐bound

proteins are the vacuolar type H+ ATPases (V‐ATPases), which are

complex multisubunit proteins that can be found in a variety of cellular

membranes where they facilitate the transport of protons and regulate

intracellular and extracellular pH.4-6 Plasmalemmal expression of

V‐ATPases has been associated with increased cancer cell survival,

enhanced metastatic potential and the development of multidrug

resistance through the acidification of the tumor microenviron-

ment.7-13 Furthermore, inhibition of V‐ATPase function, via either

V‐ATPase specific inhibitors or proton pump inhibitors (PPIs), has been

shown to have anticarcinogenic effects in a variety of cell‐based and

animal‐based models, including breast cancer,14,15 prostate cancer,16

and melanoma.17,18

PPIs are commonly used drugs that are generally well tolerated

and routinely prescribed for acid‐related disorders of the gastrointes-

tinal tract.19 They are prodrugs that accumulate and become active

in acidic environments where they inhibit acid secretion.20 Originally

developed to inhibit the extrusion of protons through H+/K+ ATPases

in the parietal cells of the stomach,21 PPIs have also been shown to

reduce V‐ATPase activity.22,23 Previous observational studies on PPI

use and cancer risk have primarily focused on cancers of the digestive

organs (ICD‐10: C15‐C26) and have reported conflicting results.

Several studies found that PPI use is not associated with colorectal

cancer risk.24-27 Three studies concluded that PPI use was not associ-

ated with increased risk of pancreatic cancer,28-30 while others have

reported the opposite.31,32 Furthermore, some studies have reported

an increased risk of oesophageal and/or gastric cancer associated with

PPI use,33-37 although some of them are likely subject to reverse

causality,31 confounding by indication,34-36 or time‐related biases such

as immortal time bias and latency bias.37,38

In Iceland, the most commonly diagnosed cancers are prostate

cancer among men and breast cancer among women.39 Both have

been studied in relation with the effect of V‐ATPase inhibition, yield-

ing promising anticancer effects in vitro and in vivo.14-16 Melanoma is

less common, but acidic pH has been shown to enhance the invasive

potential of melanoma cells,40,41 suggesting that inhibiting V‐ATPase

function may have antineoplastic effects.17,18 Therefore, we aimed

to explore a potential preventive role of PPIs by conducting a

population‐based case‐control study using risk‐set sampling. Cancer

development typically occurs over long periods of time,42 and it is

not inconceivable that an imminent disease may affect intake of

medications. Thus, we implemented a lag‐time period in our analyses

to minimize the risk of reverse causation. To our knowledge, this is

the first population‐based study to test if PPI use is associated with

the risk of breast cancer, prostate cancer, or malignant melanoma.

2 | METHODS

2.1 | Setting

We conducted a population‐based–nested case‐control study in

Iceland, to assess the association between proton pump inhibitor use

and the risk of a first‐time diagnosis of breast cancer, prostate cancer,

or malignant melanoma among adults (18 years and older). Our study

base consisted of all adult residents of Iceland on January 1, 2003,

including both prevalent and incident users of PPIs. Using personal

identification numbers, unique to every individual residing in Iceland,

we linked nationwide data from the Cancer Registry, Medicines Regis-

try, and Population Register.

The Icelandic Cancer Registry contains nationwide information on

every cancer diagnosis in Iceland since 1955, categorized according to

the 10th revision of the International Statistical Classification of Dis-

eases (ICD‐10).43 The Icelandic Medicines Registry contains individual

information on all dispensed prescription drugs in outpatient care in

Iceland since January 1, 2003. The drugs of interest were classified

according to the World Health Organization (WHO) Anatomical

Therapeutic Chemical/defined daily doses (ATC/DDD) classification.44

As of 2010, the Icelandic Medicines Registry also holds information on

dispensed prescription drugs within nursing homes in Iceland.45,46 The

completeness of the Icelandic Medicines Registry is high, ranging from

91% to 98% of all dispensed prescription drugs for the study years.

From the Icelandic Population Register, we obtained information

about all citizens, Icelandic, and foreign, residing in Iceland during

the study period, including data on: month and year of birth, sex,

residency on January 1, 2003, migration status, and date of death

(if appropriate).

2.2 | Cases

From the Icelandic Cancer Registry, we identified 1739 individuals

with a first‐time diagnosis of breast cancer (ICD10: C50), 1897 indi-

viduals with a first‐time diagnosis of prostate cancer (ICD‐10: C61),

and 385 individuals with a first‐time diagnosis of malignant melanoma

(ICD‐10: C43) between January 1, 2005 and December 31, 2014. The

date of diagnosis for each cancer was defined as the index date. We

excluded individuals who had previously been diagnosed with any

cancer prior to the start of the study period.

KEY POINTS

• Previous studies in vivo/in vitro have reported that

proton pump inhibitors (PPIs) may have antineoplastic

effects

• This is the first epidemiological study to test if PPI use

affects the risk of malignant melanoma, breast or

prostate cancer

• Our results do not support a clear association between

PPI use and malignant melanoma, breast or prostate

cancer

• Future well‐controlled epidemiological studies should

take clinical staging into account, given the available

evidence that Vacuolar‐type H+ ATPase (V‐ATPase) is

highly expressed in the plasma membrane of

metastatic cancer cells.
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2.3 | Population controls

We selected controls from the total underlying adult population in

Iceland (N = 220 512). Using risk‐set sampling, we matched up to 10

controls to each case on birth year, sex, and calendar time. The con-

trols had to be alive and cancer free at the index date. Each case

was eligible for sampling as a control before the time of disease onset,

and each sampled control was eligible to later become a case. The

resulting odds ratios (ORs) should therefore provide estimates of the

incidence rates comparable with those expected from a cohort study

in the source population.47 To ensure comparable exposure opportu-

nity time within each risk set between cases and controls (ie, the

amount of time prior the index date available for exposure ascertain-

ment), all individuals had to have resided in Iceland from January 1,

2003 to the index date.

2.4 | Drug exposure

From the Icelandic Medicine Registry, we obtained information on all

dispensed PPIs from 2003 to 2014. Four PPIs were prescribed to

patients within the study population during this period: omeprazole

(A02BC01), lansoprazole (A02BC03), rabeprazole (A02BC04), and

esomeprazole (A02BC05). We defined the exposure as PPI use before

the index date for both cases and controls. Individuals with one or

more PPI dispensing prior to the assigned index date were considered

as “ever‐users” of PPIs, while those without any PPI dispensing were

classified as “never‐users.”

Cumulative dose, measured as the total amount of dispensed

“defined daily doses” (DDDs) prior to index date, was also estimated

for each patient (<365 DDDs, 365‐730 DDDs, 731‐1096 DDDs,

>1096 DDDs). We defined high‐level PPI use as dispensed prescrip-

tions for greater than or equal to 1000 DDDs prior to index date.

Furthermore, based on a daily intake of one tablet, we estimated the

duration of each PPI prescription among ever users, and subsequent

dispensings were then added together to estimate the cumulative

duration of PPI use prior to the index date (0‐1 years, 1‐5 years,

>5 years).

To minimize the risk of reverse causality biasing our effect esti-

mates, we introduced a lag period where the exposed person time

within 24 months leading up to the index date was disregarded.

Since use of nonsteroidal anti‐inflammatory drugs (NSAIDs)

has been associated with both PPI use48,49 and cancer,50-52 we further

obtained prescription data for the use of prescription NSAIDs, both

aspirin and nonaspirin (ATC codes: M01A [excluding M01AX],

B01AC06, N02BA01). To approximate longer‐term use of NSAIDs,

individuals with at least two NSAID dispensings prior to the index date

were considered as NSAID users in our analysis.

2.5 | Statistical analysis

We used conditional logistic regression to calculate ORs and 95%

confidence intervals (CIs) for the association between PPI use and a

first‐time diagnosis of the cancers of interest, based on a prevalent

user design, analyzing each cancer separately. Analyses were adjusted

for NSAID use prior to index date. We did not add patient sex or birth

to the multivariate regression models, as the matching of cases and

controls on these variables was successful; only one prostate case

could not be matched to any controls and was therefore excluded.

We performed subgroup analyses, assessing the effect of high‐PPI

use, cumulative dose, cumulative duration of PPI use, and calendar

period (2005‐2008, 2009‐2011, and 2012‐2014) on the hypothesized

associations. Additionally, we performed several sensitivity analyses

by implementing various lag times between 0 and 2 years with

6‐month intervals. Furthermore, we repeated the main analysis

employing a new‐user study design, where we excluded all patients

who dispensed a prescription for a PPI drug during 2003 or 2004,

the first 2 years of the Icelandic Medicine Registry. Finally, we per-

formed a post hoc supplementary analysis by clinical stage, ie, whether

the disease was localized or nonlocalized, among patients diagnosed

with prostate cancer between 2005 and 2012. Unfortunately, we did

not have information on clinical staging for the years 2013 and 2014

and were thus unable to include them in the analysis. Also, we were

unable to perform a similar analysis for breast cancer and malignant

melanoma because of large amounts of missing information on clinical

stage for these cancers in the years prior to 2012.

All analyses were performed using R53 and R Studio.54 The study

was approved by the National Bioethics Committee in Iceland (study

reference number: VSNb2015080004/03.03). As the study was based

on national registry data, we did not obtain informed consent from

individuals in the study population. All personal information was

encrypted and de‐identified prior to analysis.

3 | RESULTS

3.1 | Baseline characteristics

We identified 1739 cases of breast cancer, 1897 cases of prostate

cancer, and 385 cases of malignant melanoma and matched these,

respectively, with 17 390, 18 968, and 3850 population controls.

The median age at index date was 62 years (Interquartile range

[IQR]: 52‐72 years) among breast cancer cases, 70 years (IQR:

63‐77 years) among prostate cancer cases, and 55 years (IQR:

42‐68 years) among melanoma cases (Table 1). Exposure opportunity

time was comparable between cases and control for all three cancer

types (Table 1).

3.2 | Association between PPI use and breast cancer,
prostate cancer, or malignant melanoma

We first estimated the ORs for breast cancer, prostate cancer, and

malignant melanoma associated with ever use and high use of PPIs,

accounting for patient age, sex, calendar time, and NSAID use. These

analyses yielded neutral adjusted ORs (Table 2).

We then conducted stratified analyses by cumulative duration of

PPI use (0‐1, 1‐5, >5 years), cumulative dose (<365 DDDs, 365‐730

DDDs, 731‐1096 DDDs, >1096 DDDs). For breast and prostate can-

cer, these analyses mainly yielded ORs that were close to unity and

similar to those observed for high use (Table 2). For prostate cancer,
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we observed a slightly elevated adjusted OR of 1.26 (95% CI: 1.02‐

1.55) for cumulative dose of over 1096 DDDs and 1.22 (95% CI:

1.04‐1.42) for cumulative use for 1 to 5 years. For malignant mela-

noma, the effect estimates decreased with increased PPI use but did

not indicate a dose‐response relationship.

Removing or changing the lag period did not significantly affect

the observed associations between PPI use and first‐time diagnosis

for any of the three cancers of interest (Table S1), suggesting that

reverse causality did not have a major impact on the main results. Also,

employing a new‐user design, rather than a prevalent‐user design, did

not change the results from the main analysis in any significant way

(Table S2). In a supplementary analysis based on clinical stage, we

observed similar risk estimates between subgroups (Table S3).

4 | DISCUSSION

In this population‐based–nested case‐control study, we found no clear

evidence of a link between PPI use and reduced risks of breast cancer,

prostate cancer, or malignant melanoma.

To our knowledge, this is the first epidemiological study to

explore the possibility of a chemopreventive effect of PPI use on

breast cancer, prostate cancer, and malignant melanoma risk. PPIs

are prodrugs that selectively accumulate in acidic spaces where pH

is below 4 and become functionally active through protonation.55

Previous studies indicating an antitumor effect of PPIs have mainly

been conducted using cell‐based and animal‐based models. Those

studies suggest that PPI treatment may inhibit proliferation of cancer

cells, induce cytotoxicity, and reduce tumor growth.17,56,57 The pro-

posed underlying mechanism is that PPIs inhibit V‐ATPases residing

in the plasma membrane, inducing intracellular acidification and

alkalization of the tumor microenvironment, which should hypotheti-

cally, have a chemopreventive effect. Although we observed a pattern

of reduced risk of malignant melanoma with increased PPI use, the

observed ORs did not indicate a dose‐response relationship. For pros-

tate cancer, we observed a marginally elevated ORs, but these results

are likely a result of unmeasured confounding.

If PPIs do indeed possess a chemopreventive effect for these can-

cer types, our null findings could be explained by a number of factors.

For PPIs to have a chemopreventive effect, they would first of all have

to be distributed to tumor sites with low pH. Once there, the tumor

microenvironment would have to be acidic enough for the PPIs to

become functionally active and inhibit the flow of protons through

the V‐ATPase, from the intracellular environment and into the extra-

cellular environment. And even if this occurs, it might still not be

enough to alkalize the tumor microenvironment. Although V‐ATPase

expression in the plasma membrane of cancer cells has been associ-

ated with the acidification of the tumor microenvironment, there are

also other pH‐regulating proteins, such as Na+/H+ exhangers (NHE),

carbonic anhydrases, HCO3‐transporters, and monocarboxylate

TABLE 1 Baseline characteristics of breast cancer, prostate cancer, and malignant melanoma cases and matched controls

Breast Cancer Prostate Cancer* Melanoma

Cases (%) Controls (%) Cases (%) Controls (%) Cases (%) Controls (%)
(n = 1739) (n = 17 390) (n = 1897) (n = 18 968) (n = 385) (n = 3850)

Sex

Female 1739 (100.0) 17 390 (100.0) ‐ ‐ 231 (60.0) 2310 (60.0)

Male ‐ ‐ 1897 (100.0) 18 968 (100.0) 154 (40.0) 1540 (40.0)

Age at index date

18‐29 years 7 (0.4) 70 (0.4) 0 (0.0) 0 (0.0) 34 (8.8) 340 (8.8)

30‐39 years 57 (3.3) 570 (3.3) 0 (0.0) 0 (0.0) 46 (12.0) 460 (12.0)

40‐49 years 286 (16.5) 2860 (16.5) 28 (1.5) 280 (1.5) 74 (19.2) 740 (19.2)

50‐59 years 421 (24.2) 4210 (24.2) 232 (12.2) 2320 (12.2) 79 (20.5) 790 (20.5)

60‐69 years 468 (26.9) 4680 (26.9) 655 (34.5) 6550 (34.5) 61 (15.8) 610 (15.8)

70‐79 years 292 (16.8) 4680 (16.8) 669 (35.3) 6690 (35.3) 54 (14.1) 540 (14.1)

80+ years 208 (12.0) 2080 (12.0) 313 (16.5) 3128 (16.5) 37 (9.6) 370 (9.6)

Calendar period (year of index date)

2005‐2008 661 (38.0) 6610 (38.0) 807 (42.5) 8068 (42.5) 158 (41.1) 1580 (41.1)

2009‐2011 558 (32.1) 5580 (32.1) 523 (27.6) 5230 (27.6) 126 (32.7) 1260 (32.7)

2012‐2014 520 (29.9) 5200 (29.9) 567 (29.9) 5670 (29.9) 101 (26.2) 1010 (26.2)

Ever use of NSAIDs before index date

No 796 (45.8) 8008 (46.0) 836 (44.1) 8943 (47.1) 196 (50.9) 2105 (54.7)

Yes 943 (54.2) 9382 (54.0) 1061 (55.9) 10 025 (52.9) 189 (49.1) 1745 (45.3)

Exposure opportunity time (days)

Overall—mean 1848 1797 1763

By case‐control status—mean 1848 1848 1797 1797 1763 1763

†One prostate case could only be matched to nine controls but was included in all analyses.
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transporters (MCTs)3,58 that participate in the extrusion of protons out

into the extracellular environment. Therefore, these membrane‐bound

transporters might maintain an acidic extracellular pH, lessening the

impact of PPI‐inhibited V‐ATPase function.

V‐ATPase expression has been shown to be increased in highly

metastatic cancer cells compared with poorly metastatic cells,59,60

implicating a potentially more important role of V‐ATPase in tumor

progression and invasiveness rather than cancer initiation. These

reports make it plausible that the acidity of the tumor microenviron-

ment during initial tumourigenesis might not be sufficient for the PPIs

to accumulate at the primary tumor site. As an attempt to explore this

issue, we performed a post hoc analysis among patients diagnosed

with prostate cancer, which did not yield conclusive results. Therefore,

a systematic analysis taking clinical stage into account for all three

cancer types would provide further insight into this matter.

The main strength of our study was that it is nested within a

clearly defined population‐based cohort and is based on high quality,

nationwide data sources. Furthermore, underlying data on exposure

and outcome were collected prospectively and independently from

each other for the entire Icelandic population, therefore eliminating

any potential recall bias. The sampling method, where controls were

randomly selected from the underlying population, minimized the risk

of selection bias. Additionally, the inherent time varying nature of our

study design allowed us to avoid common time related biases, such as

immortal time bias and latency bias that have been shown to be an

issue in studies of drug‐cancer associations.38,42 Furthermore, the

study design ensured the same exposure opportunity time among

cases and controls.

Our study has several limitations. First, it lacked important individ-

ual level information on common risk factors for PPI use and cancer,

such as BMI, smoking, socioeconomic status (SES), and comorbidities.

Therefore, residual confounding might explain the slightly elevated

risk estimates observed for prostate cancer, eg, among ever users of

PPIs and those with 1 to 5 years of cumulative duration of PPI use.

Second, individuals already in contact with the healthcare system

through prescription use of PPIs may be more likely than those with-

out such prescriptions to receive a cancer diagnosis, yielding elevated

risk estimates (detection bias). However, our sensitivity analyses

allowing different lag periods to be tested suggest that such mecha-

nisms had limited influence on our findings. Third, in 2009 low‐dose

PPIs became available over‐the‐counter (OTC) in Iceland, and OTC

use is not recorded in the Medicine Registry. This may have led to

some misclassification of PPI use in our study but is unlikely to have

impacted the results much as the amount of OTC use was relatively

low during the study period, ranging from 1% to 10% of total PPI

volume sold annually in 2009 to 2014.61 Another misclassification of

PPI exposure might has modestly biased the study results since we

did not have information on PPI use prior to 2003, causing some

potential PPI users before 2003 to be considered as never users.

Furthermore, we attempted to control for longer‐term NSAID therapy

prior to index date, but since these drugs are commonly used OTC,

misclassification of NSAID exposure is likely to have occurred.

In conclusion, our findings did not support a chemopreventive

effect of PPI use against breast cancer, prostate cancer, or malignant

melanoma. Future well‐controlled epidemiological studies need to

take clinical staging into account, given the available evidence that

V‐ATPase is highly expressed in the plasma membrane of metastatic

cancer cells.

ETHICS STATEMENT

The study was approved by the National Bioethics Committee in Ice-

land (study reference number: VSNb2015080004/03.03).

ACKNOWLEDGEMENTS

We thank Guðrún Kristín Guðfinnsdóttir and Kristinn Jónsson at the

Directorate of Health in Iceland and Laufey Tryggvadóttir, Helgi

Birgisson, and Guðríður Helga Ólafsdóttir at the Icelandic Cancer

Registry, for extracting the data for this study. All authors approved

the final version of the article, including the authorship list.

This study was funded by the Icelandic Research Fund, grant

number 152715‐053. Dr Zoega was also supported by a Scientia

Fellowship from the University of New South Wales. The funding

sources had no influence on the design or conduct of this study.

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest.

AUTHORSHIP CONTRIBUTION

Helga Zoega is the guarantor of the article. Helga Ogmundsdóttir,

Margret H. Ogmundsdottir, Eiríkur Steingrímsson, and Helga Zoega

conceived the study, and Óskar Ö. Hálfdánarson and Helga Zoega

designed it. Óskar Ö. Hálfdánarson, Helga Zoega, Katja Fall, and Sigrún

Helga Lund contributed to the data analysis, and all authors contrib-

uted to the interpretation of the data. Óskar Ö. Hálfdánarson drafted

the manuscript, and all authors participated in the interpretation of the

data and revising the content of the manuscript. The final version of

the manuscript was revised and approved by all authors.

ORCID

Óskar Ö. Hálfdánarson https://orcid.org/0000-0002-4564-6126

REFERENCES

1. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation.
Cell. 2011;144(5):646‐674.

2. Pavlova NN, Thompson CB. The emerging hallmarks of cancer metab-
olism. Cell Metab. 2016;23(1):27‐47.

3. Parks SK, Chiche J, Pouysségur J. Disrupting proton dynamics and energy
metabolism for cancer therapy. Nat Rev Cancer. 2013;13(9):611‐623.

4. Forgac M. Vacuolar ATPases: rotary proton pumps in physiology and
pathophysiology. Nat Rev Mol Cell Biol. 2007;8(11):917‐929.

5. Beyenbach KW. The V‐type H+ ATPase: molecular structure and
function, physiological roles and regulation. J Exp Biol. 2006;
209(4):577‐589.

6. Wagner CA, Finberg KE, Breton S, Marshansky V, Brown D, Geibel JP.
Renal Vacuolar H + ‐ATPase. Physiol Rev. 2004;84(4):1263‐1314.

7. Capecci J, Forgac M. The function of vacuolar ATPase (V‐ATPase) a
subunit isoforms in invasiveness of MCF10a and MCF10CA1a human
breast Cancer cells. J Biol Chem. 2013;288(45):32731‐32741.

8. Feng S, Cai M, Liu P, et al. Atp6v1c1 may regulate filament actin
arrangement in breast cancer cells. Rameshwar P, ed. PLoS ONE.
2014;9(1):e84833.

6 HÁLFDÁNARSON ET AL.



9. Martínez‐Zaguilán R, Raghunand N, Lynch RM, et al. pH and drug resis-
tance. I. Functional expression of plasmalemmal V‐type H+‐ATPase in
drug‐resistant human breast carcinoma cell lines. Biochem Pharmacol.
1999;57(9):1037‐1046.

10. Xu X, You J, Pei F. Silencing of a novel tumor metastasis suppressor
gene LASS2/TMSG1 promotes invasion of prostate cancer cell
in vitro through increase of vacuolar ATPase activity. J Cell Biochem.
2012;113(7):2356‐2363.

11. Licon‐Munoz Y, Michel V, Fordyce CA, Parra KJ. F‐actin reorganization
by V‐ATPase inhibition in prostate cancer. Biol Open. 2017;
6(11):1734‐1744.

12. Nishisho T, Hata K, Nakanishi M, et al. The a3 isoform vacuolar type H
+‐ATPase promotes distant metastasis in the mouse B16 melanoma
cells. Mol Cancer Res. 2011;9(7):845‐855.

13. Fais S. Evidence‐based support for the use of proton pump inhibitors
in cancer therapy. J Transl Med. 2015;13(1). Retrieved April 18, 2018,
from http://www.translational‐medicine.com/content/13/1/368

14. Katara GK, Kulshrestha A, Jaiswal MK, Pamarthy S, Gilman‐Sachs A,
Beaman KD. Inhibition of vacuolar ATPase subunit in tumor
cells delays tumor growth by decreasing the essential macrophage
population in the tumor microenvironment. Oncogene. 2016;35(8):
1058‐1065.

15. Schneider LS, von Schwarzenberg K, Lehr T, et al. Vacuolar‐ATPase
inhibition blocks iron metabolism to mediate therapeutic effects in
breast cancer. Cancer Res. 2015;75(14):2863‐2874.

16. Michel V, Licon‐Munoz Y, Trujillo K, Bisoffi M, Parra KJ. Inhibitors of
vacuolar ATPase proton pumps inhibit human prostate cancer cell
invasion and prostate‐specific antigen expression and secretion. Int J
Cancer. 2013;132(2):E1‐E10.

17. Marino ML, Fais S, Djavaheri‐Mergny M, et al. Proton pump inhibition
induces autophagy as a survival mechanism following oxidative stress
in human melanoma cells. Cell Death Dis. 2010;1(10):e87‐e87.

18. De Milito A, Canese R, Marino ML, et al. pH‐dependent antitumor
activity of proton pump inhibitors against human melanoma is medi-
ated by inhibition of tumor acidity. Int J Cancer. 2010;127(1):207‐219.

19. Raghunath AS, Hungin APS, Mason J, Jackson W. Symptoms in
patients on long‐term proton pump inhibitors: prevalence and predic-
tors. Aliment Pharmacol Ther. 2009;29(4):431‐439.

20. Sachs G, Shin JM, Howden CW. Review article: the clinical pharmacol-
ogy of proton pump inhibitors. Aliment Pharmacol Ther. 2006;
23(s2):2‐8.

21. Strand DS, Kim D, Peura DA. 25 years of proton pump inhibitors: a
comprehensive review. Gut Liver. 2017;11(1):27‐37.

22. Moriyama Y, Patel V, Ueda I, Futai M. Evidence for a common binding‐
site for omeprazole and N‐Ethylmaleimide in subunit a of chromaffin
granule vacuolar‐type H+‐ATPase. Biochem Biophys Res Commun.
1993;196(2):699‐706.

23. Sabolic I, Brown D, Verbavatz JM, Kleinman J. H(+)‐ATPases of renal
cortical and medullary endosomes are differentially sensitive to Sch‐
28080 and omeprazole. Am J Physiol‐Ren Physiol. 1994;266(6):
F868‐F877.

24. Chubak J, Boudreau DM, Rulyak SJ, Mandelson MT. Colorectal
cancer risk in relation to use of acid suppressive medications.
Pharmacoepidemiol Drug Saf. 2009;18(7):540‐544.

25. van Soest EM, van Rossum LGM, Dieleman JP, et al. Proton pump
inhibitors and the risk of colorectal cancer. Am J Gastroenterol.
2008;103(4):966‐973.

26. Robertson DJ, Larsson H, Friis S, Pedersen L, Baron JA, Sørensen HT.
Proton pump inhibitor use and risk of colorectal cancer: a population‐
based, Case–Control Study. Gastroenterology. 2007;133(3):755‐760.

27. Yang Y, Hennessy S, Propert K, Hwang W, Sedarat A, Lewis JD.
Chronic proton pump inhibitor therapy and the risk of colorectal
cancer. Gastroenterology. 2007;133(3):748‐754.

28. Hicks B, Friis S, Pottegård A. Use of proton pump inhibitors and risk of
pancreatic cancer. Pharmacoepidemiol Drug Saf. 2018;27(8):926‐930.

29. Chien L‐N, Huang Y‐J, ShaoY‐HJ, et al. Proton pump inhibitors and risk
of periampullary cancers‐a nested case‐control study: PPI and the risk
of periampullary cancers. Int J Cancer. 2016;138(6):1401‐1409.

30. Bradley MC, Murray LJ, Cantwell MM, Hughes CM. Proton pump
inhibitors and histamine‐2‐receptor antagonists and pancreatic cancer
risk: a nested case–control study. Br J Cancer. 2012;106(1):233‐239.

31. Kearns MD, Boursi B, Yang Y‐X. Proton pump inhibitors on pancreatic
cancer risk and survival. Cancer Epidemiol. 2017;46:80‐84.

32. Peng Y‐C, Lin C‐L, Hsu W‐Y, et al. Proton pump inhibitor use is asso-
ciated with risk of pancreatic cancer: a nested case–control study.
Dose‐Response. 2018;16(4). 155932581880328

33. Brusselaers N, Wahlin K, Engstrand L, Lagergren J. Maintenance ther-
apy with proton pump inhibitors and risk of gastric cancer: a
nationwide population‐based cohort study in Sweden. BMJ Open.
2017;7(10):e017739.

34. Rodriguez LAG, Lagergren J, Lindblad M. Gastric acid suppression and
risk of oesophageal and gastric adenocarcinoma: a nested case control
study in the UK. Gut. 2006;55(11):1538‐1544.

35. Tamim H, Duranceau A, Chen L‐Q, Lelorier J. Association between use
of acid‐suppressive drugs and risk of gastric cancer. A nested case‐
control study. Drug Saf. 2008;31(8):675‐684.

36. Poulsen AH, Christensen S, McLaughlin JK, et al. Proton pump inhibi-
tors and risk of gastric cancer: a population‐based cohort study. Br J
Cancer. 2009;100(9):1503‐1507.

37. Cheung KS, Chan EW, Wong AYS, Chen L, Wong ICK, Leung WK.
Long‐term proton pump inhibitors and risk of gastric cancer develop-
ment after treatment for helicobacter pylori: a population‐based
study. Gut. 2017;67(1):28‐35.

38. Suissa S, Suissa A. Proton‐pump inhibitors and increased gastric cancer
risk: time‐related biases. Gut. 2018. gutjnl‐2017‐315729

39. Cancer summary < Icelandic Cancer Registry. Retrieved March 9, 2018,
from http://www.krabbameinsskra.is/indexen.jsp.

40. Rofstad EK, Mathiesen B, Kindem K, Galappathi K. Acidic extracellular
pH promotes experimental metastasis of human melanoma cells in
Athymic nude mice. Cancer Res. 2006;66(13):6699‐6707.

41. Martínez‐Zaguilán R, Seftor EA, Seftor RE, Chu YW, Gillies RJ, Hendrix
MJ. Acidic pH enhances the invasive behavior of human melanoma
cells. Clin Exp Metastasis. 1996;14(2):176‐186.

42. Pottegård A, Friis S, Stürmer T, Hallas J, Bahmanyar S. Considerations
for Pharmacoepidemiological studies of drug‐cancer associations.
Basic Clin Pharmacol Toxicol. 2017. Retrieved January 5, 2018.
https://doi.org/10.1111/bcpt.12946

43. Sigurdardottir LG, Jonasson JG, Stefansdottir S, et al. Data quality at
the Icelandic cancer registry: comparability, validity, timeliness and
completeness. Acta Oncol Stockh Swed. 2012;51(7):880‐889.

44. WHOCC ‐ ATC/DDD Index. Retrieved May 21, 2018, from https://
www.whocc.no/atc_ddd_index/.

45. Furu K, Wettermark B, Andersen M, Martikainen JE, Almarsdottir AB.
SÃ¸rensen HT. The Nordic countries as a cohort for
Pharmacoepidemiological research. Basic Clin Pharmacol Toxicol.
2010;106(2):86‐94.

46. Lyfjagagnagrunnur_landlaeknis_Hlutverk‐og‐rekstur_loka_14.10.15.
pdf. Retrieved November 22, 2017, from https://www.landlaeknir.is/
servlet/file/store93/item27765/Lyfjagagnagrunnur_landlaeknis_
Hlutverk‐og‐rekstur_loka_14.10.15.pdf.

47. Rothman KJ. Epidemiology: An Introduction. 2nd ed. New York, NY:
Oxford University Press; 2012.

48. Marlicz W, Łoniewski I, Grimes DS, Quigley EM. Nonsteroidal anti‐
inflammatory drugs, proton pump inhibitors, and gastrointestinal
injury: contrasting interactions in the stomach and small intestine.
Mayo Clin Proc. 2014;89(12):1699‐1709.

49. Scheiman JM. The use of proton pump inhibitors in treating and
preventing NSAID‐induced mucosal damage. Arthritis Res Ther. 2013;
15(Suppl 3):S5.

HÁLFDÁNARSON ET AL. 7



50. Doat S, Cénée S, Trétarre B, et al. Nonsteroidal anti‐inflammatory
drugs (NSAIDs) and prostate cancer risk: results from the EPICAP
study. Cancer Med. 2017;6(10):2461‐2470.

51. de Pedro M, Baeza S, Escudero M‐T, et al. Effect of COX‐2
inhibitors and other non‐steroidal inflammatory drugs on breast
cancer risk: a meta‐analysis. Breast Cancer Res Treat. 2015;149(2):
525‐536.

52. Ulrich CM, Bigler J, Potter JD. Non‐steroidal anti‐inflammatory drugs
for cancer prevention: promise, perils and pharmacogenetics. Nat Rev
Cancer. 2006;6(2):130‐140.

53. R: The R Project for Statistical Computing. Retrieved November 6,
2017, from https://www.r‐project.org/.

54. RStudio—open source and enterprise‐ready professional software for
R. Retrieved November 6, 2017, from https://www.rstudio.com/.

55. Shin JM, Kim N. Pharmacokinetics and pharmacodynamics of the pro-
ton pump inhibitors. J Neurogastroenterol Motil. 2013;19(1):25‐35.

56. De Milito A, Canese R, Marino ML, et al. pH‐dependent antitumor
activity of proton pump inhibitors against human melanoma is medi-
ated by inhibition of tumor acidity. Int J Cancer J Int Cancer. 2010;
127(1):207‐219.

57. Zhang S, Wang Y, Li SJ. Lansoprazole induces apoptosis of breast
cancer cells through inhibition of intracellular proton extrusion.
Biochem Biophys Res Commun. 2014;448(4):424‐429.

58. Iessi E, Logozzi M, Mizzoni D, Di Raimo R, Supuran C, Fais S. Rethink-
ing the combination of proton exchanger inhibitors in cancer therapy.
Metabolites. 2017;8(1):2.

59. Sennoune SR, Bakunts K, Martínez GM, et al. Vacuolar H+‐ATPase in
human breast cancer cells with distinct metastatic potential: distribu-
tion and functional activity. Am J Physiol Cell Physiol. 2004;286(6):
C1443‐C1452.

60. NishishoT, Hata K, Nakanishi M, et al. The a3 isoform vacuolar type H+

‐ATPase promotes distant metastasis in the mouse B16 melanoma
cells. Mol Cancer Res MCR. 2011;9(7):845‐855.

61. Hálfdánarson ÓÖ, Pottegård A, Björnsson ES, et al. Proton‐pump
inhibitors among adults: a nationwide drug‐utilization study. Ther Adv
Gastroenterol. 2018;11. 175628481877794

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of the article.

How to cite this article: Hálfdánarson ÓÖ, Fall K,

Ogmundsdottir MH, et al. Proton pump inhibitor use and risk

of breast cancer, prostate cancer, and malignant melanoma:

An Icelandic population‐based case‐control study.

Pharmacoepidemiol Drug Saf. 2018;1–8. https://doi.org/

10.1002/pds.4702

8 HÁLFDÁNARSON ET AL.



 

99 

Paper III 

Paper III 





Use of proton pump inhibitors and mortality 1 

among Icelandic patients with prostate cancer 2 

Running title: PPIs and mortality in prostate cancer patients   3 
Óskar Ö. Hálfdánarson1, Anton Pottegård2, Sigrún H. Lund3, Margret H. Ogmundsdottir4, 4 
Helga M. Ogmundsdottir5, Helga Zoëga1,6 5 
 6 
1 Centre of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland 7 
2 Clinical Pharmacology and Pharmacy, University of Southern Denmark, Odense, Denmark.  8 
3 deCODE genetics, Reykjavik, Iceland. 9 
4 Department of Biochemistry and Molecular Biology, BioMedical Center, Faculty of Medicine, University of 10 
Iceland, Reykjavik, Iceland. 11 
5 Cancer Research Laboratory, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, 12 
Iceland. 13 
6 Medicines Policy Research Unit, Centre for Big Data Research in Health, University of New South Wales, 14 
Sydney, New South Wales, Australia 15 
 16 

Keywords: Proton pump inhibitors, prostate cancer, mortality, pharmacoepidemiology 17 

 18 

Total word count: 2610 (excluding abstract, references, legends to tables, and legends to figures) 19 

Number of figures: 1 20 

Number of tables: 3 21 

 22 
 23 

Corresponding author: 24 
Óskar Örn Hálfdánarson 25 
Centre of Public Health Sciences 26 
Faculty of Medicine 27 
University of Iceland 28 
Sturlugata 8, 101 Reykjavík, ICELAND 29 
ooh@hi.is 30 
  31 



AUTHORSHIP STATEMENT 32 

Helga Zoëga is the guarantor of the article. Helga M. Ogmundsdottir, Margret H 33 

Ogmundsdottir and Helga Zoëga conceived the study; and Óskar Ö. Hálfdánarson and 34 

Helga Zoëga designed it. Óskar Ö. Hálfdánarson, Helga Zoëga, Anton Pottegard and Sigrún 35 

Helga Lund contributed to the data analysis and all authors contributed to the interpretation 36 

of the data. Óskar Ö. Hálfdánarson drafted the manuscript and all authors participated in the 37 

interpretation of the data and revising the content of the manuscript. The final version of the 38 

manuscript was revised and approved by all authors. 39 

 40 

There are no competing interests to declare. 41 

  42 



 43 
ABSTRACT 44 

Aims: Proton pump inhibitors (PPIs) have both been reported to enhance chemosensitivity 45 

and contribute to increased mortality among cancer patients. Due to conflicting reports, we 46 

aimed to determine whether PPI use is associated with mortality among prostate cancer 47 

patients. 48 

 49 

Methods: In this population-based cohort study, we identified all eligible patients with an 50 

incident diagnosis of prostate cancer in Iceland between 2007-2012 (n = 1058). We used 51 

time-dependent Cox proportional hazard regression models to compute hazard ratios (HRs) 52 

and 95% confidence intervals (CIs) for prostate cancer-specific and all-cause mortality 53 

associated with post-diagnosis use of PPIs, defined as at least ≥2 filled prescriptions after 54 

diagnosis and lagged by 12 months.  55 

 56 

Results: Among the study cohort, we identified 347 (32.8%) post-diagnosis PPI users and 57 

711 (67.2%) non-users. Out of the 347 patients using PPIs after diagnosis, 59 patients (17.0%) 58 

died due to any cause and 22 patients (6.3%) due to prostate cancer, compared with 144 59 

(20.3%) and 76 (10.7%) among non-users, respectively. Post-diagnosis PPI use was not 60 

statistically significantly associated with prostate cancer-specific mortality (HR 0.88; 95% CI: 61 

0.52-1.48) or all-cause mortality (HR 1.02; 95% CI: 0.73-1.43). Stratification by timing of use 62 

and clinical stage did not reveal any statistically significant associations to the mortality 63 

outcomes of interest. Furthermore, we did not find any evidence of a significant dose-response 64 

relationship. 65 

 66 

Conclusions: Our findings did not indicate an association between post-diagnosis PPI use 67 

and mortality among prostate cancer patients.  68 

 69 
  70 



STATEMENT 1 71 

What is already known about this subject? 72 

• An acidic tumor microenvironment has been associated with a malignant cancer 73 

phenotype. 74 

• Although in vitro and in vivo studies have suggested that proton pump inhibitors have 75 

antineoplastic properties and increase chemosensitivity a recent observational study 76 

reported that PPI use was associated with increased prostate cancer-specific and 77 

overall cancer mortality. 78 

 79 
 80 

 81 

STATEMENT 2 82 

What this study adds: 83 

• Contrary to a previous report, post-diagnosis PPI use was not associated with 84 

increased mortality among prostate cancer patients. 85 

• We found no evidence of decreased mortality risk among post-diagnosis PPI users. 86 

• Timing of use was not statistically significantly associated with the outcome and we 87 

did not observe a dose-response association. 88 

 89 

 90 

  91 



INTRODUCTION 92 

Proton pump inhibitors (PPIs) are commonly used drugs and their use has been increasing 93 

quite rapidly over the last decade.[1] As potent inhibitors of acid secretion, PPIs were 94 

originally developed to inhibit the activity of the H+/K+ ATPase, a type of proton pump 95 

that secretes gastric acid from parietal cells of the stomach.[2] However, they have also been 96 

shown to have an affinity for another proton pump, i.e. the vacuolar H+-ATPase (V-97 

ATPase).[3, 4] The V-ATPase is frequently seen overexpressed in the plasma membrane of 98 

cancer cells where they are believed to promote alkalization of the cytoplasm and 99 

acidification of the tumor microenvironment.[5–10] Increased tumor acidity has been 100 

associated with a malignant cancer phenotype characterized by increased invasiveness, 101 

metastatic potential, and drug resistance.[11–13] Thus, due to the ability of PPIs to inhibit V-102 

ATPase function their repositioning as potential antineoplastic agents has been suggested.[14] 103 

Studies, in vitro and in vivo, have reported a potential anticancer activity of PPIs[15–17] and a 104 

phase II trial among breast cancer patients with a metastatic disease reported increased 105 

efficacy of chemotherapy in patients pre-treated with PPIs.[18] Furthermore, a clinical study 106 

among osteosarcoma patients found that pre-treatment with PPIs improved the effectiveness 107 

of chemotherapy.[19] These results highlight a potential avenue for studying whether PPI use 108 

increases the effectiveness of cancer therapy in various cancer types. 109 

 110 

The potential association between PPI use and cancer mortality has not been evaluated 111 

conclusively in epidemiological studies. A study among pancreatic cancer patients found no 112 

association between PPI use and survival.[20] Another study found that PPI use, and use of 113 

histamine receptor-2 antagonist (H2RA), was associated with improved overall survival 114 

among patients with head and neck squamous cell cancer.[21] A recent Danish study 115 



reported that PPI use was associated with increased cancer-specific mortality for a number of 116 

cancer types, including prostate cancer.[22]  117 

 118 

Prostate cancer is the second most commonly diagnosed cancer among men and the fifth 119 

most frequent cause of cancer-specific death.[23] Given the conflicting results of the few 120 

epidemiological studies conducted so far, the increasing overall use of PPIs, and the high 121 

incidence of prostate cancer, we aimed to utilize the high-quality nationwide registry data 122 

available in Iceland to examine the association between post-diagnosis PPI use and mortality 123 

among prostate cancer patients. 124 

  125 



METHODS 126 

Data sources 127 

This was a population-based cohort study where we used unique personal identification 128 

numbers to link together data from the Icelandic Cancer Registry,[24] the Icelandic 129 

Medicines Registry, the Icelandic Population Register, the Cause of Death Register, and 130 

from electronic health records of Landspitali – The National University Hospital of Iceland.  131 

 132 

Study population 133 

Eligible patients, identified using the Icelandic Cancer Registry, were all adult Icelandic 134 

residents between 40 – 85 years of age with a verified first-time diagnosis of prostate cancer 135 

(ICD-10: C61) between January 1, 2007 and December 31, 2012.  136 

 137 

Follow-up and mortality outcomes 138 

The primary outcome in all analyses was prostate cancer-specific mortality. The secondary 139 

outcome was all-cause mortality. Prostate cancer-specific mortality was defined by the 140 

relevant ICD-10 code (C61) as the underlying cause of death. Eligible patients were followed 141 

from 12 months after prostate cancer diagnosis until their death, emigration, or end of the 142 

study period (December 31, 2015). We excluded those patients who died or emigrated from 143 

Iceland within 12 months after diagnosis. 144 

 145 

Exposure assessment  146 

We obtained information on PPI use from the Icelandic Medicine Registry; a nationwide 147 

prescription registry with a completeness ranging from 91% to 99%. Although PPIs became 148 

available over-the-counter (OTC) in 2009 the majority (>90%) of PPIs between 2009 and 149 

2015 were obtained by prescription.[1] We considered the Anatomical Therapeutic 150 



Chemical (ATC)[25] code group A02BC as a PPI dispensing. Four PPI substances were 151 

prescribed within our cohort during the period under study: omeprazole (A02BC01), 152 

lansoprazole (A02BC03), rabeprazole (A02BC04), and esomeprazole (A02BC05). The 153 

information we received for every PPI prescription between 1 January 2003 and 31 154 

December 2015, including date of dispensing, ATC code, and number of dispensed ‘defined 155 

daily doses’ (DDDs). 156 

 157 

The primary exposure was post-diagnosis PPI use, defined as at least two or more filled PPI 158 

prescriptions after prostate cancer diagnosis. In all analyses, we considered the exposed 159 

person-time of post-diagnosis PPI users in a time-dependent manner to avoid time-related 160 

biases such as immortal time bias.[26] In the main analysis, patients were thus initially 161 

considered unexposed until they received a second PPI prescription, after which they were 162 

considered exposed for the remainder of follow-up. Furthermore, the exposed person-time 163 

was lagged by 12 months to account for the possibility of reverse causation and to allow for a 164 

biologically meaningful latency period, since it is unlikely that a short duration of drug use 165 

would influence mortality outcomes in a significant way. Patients that did not receive at least 166 

two PPI dispensing after diagnosis were thus considered as non-users.  167 

 168 

For the purposes of secondary analyses, we explored the timing of PPI use by assessing pre-169 

diagnosis PPI use. Patients were considered pre-diagnosis users if they received at least two 170 

PPI prescriptions in the 3 years prior to diagnosis. Pre-diagnosis use was modelled as a time-171 

fixed covariate, i.e. a dichotomous yes/no variable. Thus, patients exposed to PPIs were 172 

either considered to be ‘new PPI users’ or ‘continued PPI users’ based on their exposure 173 

status before and after diagnosis. We defined new users as those patients that only used PPIs 174 

after diagnosis while those who used PPIs prior to and after diagnosis were considered as 175 



continuing PPI users. Additionally, we estimated the cumulative dose for each patient based 176 

on the total number of dispensed DDDs during exposed person-time (0 DDDs, 1-365 DDDs, 177 

>365 DDDs).  178 

 179 

Covariates 180 

We considered a range of demographic and clinical factors for multivariable adjustments. 181 

Patient age at diagnosis and year of diagnosis were modelled as continuous variables. A 182 

medication-based comorbidity score was derived by identifying the number of different 183 

prescription drug groups that were dispensed in the 12 months prior to a cancer 184 

diagnosis[27]. To be categorized in the same group the drugs had to share the same initial 185 

four characters of the ATC classification system. The medication-based comorbidity score 186 

was then modelled as a continuous variable. Clinical stage according to the tumor-node-187 

metastasis (TNM) system was classified into three categories if information on M was 188 

available: localized (M0), non-localized (M1), and unknown (Mx or information missing). We 189 

adjusted for the following clinical variables: Gleason score was grouped into five distinct 190 

categories (2-5, 6, 7, ³8, unknown). Cancer treatment in the 12 months following diagnosis 191 

was accounted for in the following way: cancer surgery was categorized into three categories 192 

(total excision of prostate, partial excision of prostate, no surgery), cancer drug treatment was 193 

grouped into four categories (chemotherapy, endocrine therapy, combination of 194 

chemotherapy and endocrine therapy, no therapy), and radiotherapy was modelled as a 195 

dichotomous variable (radiotherapy, no radiotherapy). 196 

 197 

Data analysis 198 

We used a time-dependent Cox proportional hazard regression models, with time since 199 

diagnosis as the underlying time-scale, to estimate crude and multivariable adjusted hazard 200 



ratios (HRs) and 95% confidence intervals (CIs) for prostate cancer-specific mortality and all-201 

cause mortality associated with post-diagnosis PPI use modelled as a time-dependent 202 

covariate where patients were considered unexposed until they had met the exposure criteria, 203 

and then remained exposed throughout follow-up. In multivariable adjusted analyses we 204 

adjusted for the aforementioned covariates, also listed in Table 1.  205 

 206 

In the main analysis, we assessed PPI use following prostate cancer diagnosis; modelled as a 207 

time-dependent covariate as described above. Exposed person-time was then lagged by 12 208 

months following a second dispensing of a post-diagnosis PPI prescription. Furthermore, we 209 

performed three secondary analyses. First, PPI use was stratified by continuing users versus 210 

new users. Second, we stratified by clinical stage (localized versus non-localized). Third, we 211 

stratified PPI use by cumulative dose (0 DDDs, 1-365 DDDs, >365 DDDs).  212 

 213 

We performed three sensitivity analyses to assess the definition of PPI use. In the first one, 214 

post-diagnosis PPI use was defined as at least one filled PPI prescriptions following diagnosis 215 

and the exposure was modelled as a time-dependent covariate as in the main analysis. In the 216 

second sensitivity analysis, we defined post-diagnosis PPI use as at least two filled prescriptions 217 

within 12 months following the diagnosis of prostate cancer. In a third sensitivity analysis, we 218 

defined post-diagnosis PPI use as at least two filled prescriptions and assessed the exposure 219 

continuously throughout follow-up as a time-dependent covariate. Thus, by assuming a daily 220 

intake of one DDD and estimating the duration of each prescription as the number of 221 

dispensed DDDs we allowed patients to move back and forth between periods of non-use and 222 

periods of use.  223 

 224 



All analyses were performed using the survival package[28] in R.[29] This study was 225 

approved by the National Bioethics Committee in Iceland (study reference number: 226 

VSNb2015080004/03.03). 227 

  228 



RESULTS 229 

We initially identified 1138 prostate cancer patients, but after implementing the exclusion 230 

criteria 1058 were eligible for inclusion in the study (Figure 1). During 4810 person-years of 231 

follow-up, we identified a total of 203 patients (19.2%) that died, thereof 98 patients (9.3%) 232 

that died due to prostate cancer. The median follow-up time was 4.6 years. Among eligible 233 

patients, 347 (32.8%) were identified as post-diagnosis PPI users; thereof 182 (52.4%) were 234 

continuous users and 165 (47.6%) new users. Among the 347 post-diagnosis PPI users we 235 

identified 59 patients (17.0%) that died from any cause and 22 patients (6.3%) that died from 236 

prostate cancer, compared with 144 patients (20.3%) and 76 patients (10.7%) among non-237 

users, respectively. The median age among post-diagnosis PPI users was 69 years 238 

(interquartile range: 63 – 76) while it was 69 years (interquartile range: 62 – 75) among non-239 

users. The majority of all patients were diagnosed with a localized disease; 81.6% among 240 

post-diagnosis PPI users and 77.2% among non-users. Compared with non-users, post-241 

diagnosis PPI users had a higher median of medication-based comorbidity score (Table 1). 242 

 243 

In the main analysis, we observed adjusted HRs of 0.88 (95% CI: 0.52 – 1.48) for prostate 244 

cancer-specific mortality and 1.02 (95% CI: 0.73 – 1.43) for all-cause mortality among post-245 

diagnosis PPI users as compared with non-users (Tables 2 and 3). In secondary analyses for 246 

prostate cancer-specific mortality (Table 2), we observed adjusted HRs of 0.45 (95% CI: 0.21 247 

– 0.98) among continuous PPI users and 1.12 (95% CI: 0.61 – 2.08) among new PPI users, 248 

when we stratified by timing of PPI use. Stratifying by clinical stage yielded adjusted HRs of 249 

0.50 (95% CI: 0.22 – 1.16) and 1.00 (95% CI: 0.44 – 2.27) among patients with localized and 250 

non-localized disease, respectively. For cumulative dose, we observed an adjusted HR for 251 

cumulative use of 1-365 DDDs of 0.91 (95% CI: 0.43 – 1.90) and 0.86 (95% CI: 0.45 – 1.61) 252 

for >365 DDDs.  For all-cause mortality (Table 3), the adjusted HRs were 0.67 (95% CI: 253 



0.43 – 1.04) and 1.25 (0.82 – 1.92) among continuous and new PPI users, respectively. 254 

Analyses stratified by clinical stage yielded an adjusted HR of 0.74 (95% CI: 0.47 – 1.15) 255 

among patients with localized disease and 1.18 (95% CI: 0.58 – 2.34) among patients with 256 

non-localized disease. For cumulative PPI use, we observed adjusted HRs of 1.19 (95% CI: 257 

0.76 – 1.87) and 0.91 (95% CI: 0.61 – 1.37) for patients using 1-365 DDDs and >365 DDDs, 258 

respectively. 259 

 260 

Redefining post-diagnosis use as at least one filled prescription for a PPI drug yielded similar 261 

result as in the main analysis (Table S1). When we redefined the exposure opportunity 262 

window by assessing PPI use only in the 12 months following prostate cancer diagnosis, we 263 

observed HRs that were slightly lower, but mostly in line with those observed in the main 264 

analysis (Table S2). When post-diagnosis PPI use was assessed continuously throughout 265 

follow-up, we observed higher HRs than in the main analysis, but the estimates were not 266 

statistically significant (Table S3).  267 

  268 



DISCUSSION 269 

In this population-based cohort study among Icelandic prostate cancer patients, we did not 270 

observe a clear association between post-diagnosis PPI use and mortality among prostate 271 

cancer patients. 272 

 273 

To our knowledge, this is only the second observational study to explore the association 274 

between PPI use and mortality among prostate cancer patients. Recently, post-diagnosis use 275 

of PPIs was reported to have led to increased mortality among cancer patients; both among 276 

cancer patients overall and among patients with certain site-specific cancers, including 277 

prostate cancer.[22] PPIs are commonly used among cancer patients,[30] often as a 278 

preventive measure against the risk of gastric damage following chemotherapy, radiotherapy, 279 

and steroid use.[31] Furthermore, PPI use has been shown to be associated with indicators of 280 

worse overall health[32] and among prostate cancer patients PPIs have been suggested to be 281 

related to decreased overall health.[33] However, our results were not consistent with the 282 

findings of Tvingsholm et al., in that we did not observe an increase in mortality among post-283 

diagnosis PPI users.  284 

 285 

Although the study by Tvingsholm et al., suggests that PPI use is associated with excess 286 

mortality among cancer patients, and that the association might be substance specific, 287 

previous clinical studies have reported that PPIs might enhance the effectiveness of 288 

chemotherapy.[18, 19] However, there have also been reports of unwanted drug interactions 289 

between PPIs and oral anticancer agents suggesting a negative impact of PPIs on 290 

chemotherapeutic efficacy.[31, 34] Unfortunately, we were unable to perform stratified 291 

analyses by chemotherapy or PPI substance in our study due to the small sample size leading 292 

to low numbers in stratified subgroups. 293 



The study has several limitations that might have influenced our observations. First, clinical 294 

data on the underlying indications for PPI use was not available, leaving us unable to adjust 295 

for the potential of confounding by indication. Second, we did not have information on 296 

concomitant use of other drugs that might influence our estimates, e.g. statins which have 297 

been reported to be associated with decreased mortality among prostate cancer patients.[35, 298 

36] Third, we lacked information on clinical diagnoses to be able to adjust for disease-based 299 

comorbidities, although we made an attempt to counteract this limitation by using a 300 

medication-based comorbidity score as a proxy for the Charlson comorbidity index. Fourth, 301 

misclassification of PPI use might have resulted from OTC use and from use within the 302 

hospital setting, since we only had information on dispensed PPI drugs to the outpatient 303 

population. Fifth, we were unable to obtain information on the measured level of prostate 304 

specific antigen (PSA) at diagnosis; a variable that is used in clinical staging and could 305 

influence prognosis. Finally, as in all studies of this nature, our assessment of PPI use is based 306 

on dispensed drugs, which we cannot be sure are necessarily consumed. However, we tried to 307 

minimize the influence of this potential bias by the requirement of PPI users having received 308 

at least two filled prescriptions, in the main analysis. The primary strength of our study was 309 

the clearly defined population-based cohort and our utilization of high-quality nationwide 310 

registry data. Furthermore, utilization of registry data removed the risk of recall-bias. 311 

 312 

In summary, our findings do not indicate that post-diagnosis PPI use influences mortality risk 313 

among prostate cancer patients. However, due to the small size of our cohort and short 314 

follow-up time, the resulting estimates had quite wide CIs, which limits our ability to draw 315 

any definitive conclusions. Future studies should use a larger cohort, longer follow-up time, 316 

and aim to minimize the potential impact of confounding by indication to further elucidate 317 

whether PPI use influences mortality among prostate cancer patients.  318 
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TABLES 444 
 445 
Table 1. Descriptive characteristics of a cohort of Icelandic prostate cancer patients diagnosed 446 
between 1 January 2007 and 31 December 2012 by post-diagnosis PPI user status. 447 
 448 
  Prostate Cancer 

    Proton pump inhibitor use 

  
Non-
users 

Post-diagnosis 
users 

    N = 711 N = 347 

Pre-diagnosis use (%) Yes 59 (8.3) 182 (52.4) 
  No 652 (91.7) 165 (47.6) 

Age at diagnosis - years Median (IQR) 
69 (62 - 

75) 69 (63 - 76) 

Age groups (%) 40-54 47 (6.6) 14 (4.0) 

 55-69 338 (47.5) 169 (48.7) 
  70-85 326 (45.9) 164 (47.3) 

Year of diagnosis (%) 2007-2009 349 (49.1) 208 (59.9) 
  2010-2012 362 (50.9) 139 (40.1) 

Clinical stage Localized 549 (77.2) 283 (81.6) 

 Non-localized 59 (8.3) 22 (6.3) 
  Unknown 103 (14.5) 42 (12.1) 

Gleason score <7 371 (52.2) 177 (51.0) 

 7 195 (27.4) 103 (29.7) 

 ≥8 134 (18.8) 60 (17.3) 
  Unknown 11 (1.6) 7 (2.0) 

Radiotherapy (%)a Yes 196 (27.6) 92 (26.5) 
  No 515 (72.4) 255 (73.5) 
Cancer surgery (%)a Total excision of prostate 173 (24.3) 86 (24.8) 

 Partial excision of prostate 63 (8.9) 44 (12.7) 
  No surgery 475 (66.8) 217 (62.5) 
Cancer drug treatment (%)a Yes 62 (8.7) 31 (8.9) 

    
Chemotherapy (%)a Yes 8 (1.1) 1 (0.3) 
Endocrine therapy (%)a Yes 43 (6.0) 24 (6.9) 
Chemotherapy & endocrine therapya Yes 11 (1.5) 6 (1.7) 

Medication-based comorbidity Median (IQR) 5 (3 - 8) 8 (5 - 10) 

    
aTreatment in first year after diagnosis    

 449 
 450 
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Figure 1. Study flow chart of cohort identification 479 
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1138 patients aged 40-85 years diagnosed 
with prostate cancer between January 1 

2007 and December 31 2012 
 

Exclusions: 
72 patients died within 12 
months after diagnosis 
 
2 patients migrated from 
Iceland before start of 
follow-up 

203 all-cause 
deaths  
  

98 prostate 
cancer-specific 
deaths 

Study cohort: 
1058 patients with prostate cancer 
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Appendix 

A. 
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B. 
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C. 

Using a cohort study design, we conducted analyses on proton pump 

inhibitor use among patients diagnosed with breast cancer, prostate cancer, 

and malignant melanoma between 2003 and 2014. We assessed various 

levels of PPI exposure, i.e. ever use (defined as one filled PPI prescription 

during follow-up) and cumulative use (in months, assuming the intake of one 

DDD per day). The exposure was not assessed in a time-dependent manner. 

We used Cox proportional hazard regression models, with age as the 

underlying time-scale, to estimate HRs and 95% CIs. The results displayed in 

the table and the figure are influenced by immortal time bias.  

 

A, breast cancer; B, prostate cancer; C, malignant melanoma 

 

 

 

 

 

Subgroups Events Adjusted HR
† 95% CI Events Adjusted HR

† 95% CI Events Adjusted HR
† 95% CI

Never use of PPI 832 1.00 (ref) 1.00 (ref) 984 1.00 (ref) 1.00 (ref) 272 1.00 (ref) 1.00 (ref)

Ever use of PPI 720 0.83 0.75 - 0.92 779 0.85 0.77 - 0.93 127 0.65 0.52 - 0.80

Cumulative dose (DDDs)

0 - 3 months 219 1.05 0.90 - 1.22 252 1.11 0.96 - 1.27 52 0.88 0.65 - 1.18

3 - 6 months 91 0.92 0.74 - 1.14 96 0.89 0.73 - 1.10 14 0.55 0.32 - 0.95

6 - 24 months 184 1.00 0.86 - 1.18 180 0.94 0.80 - 1.10 36 0.87 0.61 - 1.24

24 - 60 months 128 0.80 0.67 - 0.97 144 0.86 0.73 - 1.03 17 0.53 0.32 - 0.87

>60 months 98 0.44 0.35 - 0.54 107 0.47 0.39 - 0.58 8 0.20 0.10 - 0.40

†Adjusted for age, sex, and prior NSAID use

Breast Cancer Prostate Cancer Malignant melanoma
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