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Topological metamaterials based on polariton rings
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The Chern insulator phase is shown to emerge in two-dimensional arrays of polariton rings where time-
reversal symmetry is broken due to the application of an out-of-plane magnetic field. The interplay of Zeeman
splitting with the photonic analog of spin-orbit coupling [the transverse-electric–transverse-magnetic (TE-TM)
splitting] inherently present in this system leads to the appearance of synthetic U(1) gauge field and the opening
of topologically nontrivial spectral gaps. This results in the onset of topologically protected chiral edge states
similar to those forming in quantum Hall effect. In one-dimensional zigzag arrays of polariton rings edge states
similar to those appearing in the Su-SchriefferHeeger (SSH) model are formed.
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I. INTRODUCTION

Since the discovery of the quantum Hall effect [1] and
its interpretation in terms of topological invariance [2],
there were several breakthroughs in the field of topological
condensed matter physics. The fractional quantum Hall ef-
fect [3,4] was interpreted in terms of composite fermion the-
ory by Jain [5] and non-abelian anyon statistics by Xiao-Gang
Wen [6]. Later on, ideas of the topological protection of the
quantum Hall phase edge states were generalized to the con-
cept of the bulk-boundary correspondence [7]. Finally, the in-
troduction of the hierarchy of topological invariants [8] drasti-
cally increased the range of available topologically nontrivial
electronic configurations and corresponding edge states [9].

The recent decade has seen the rise of topological pho-
tonics, following the prediction of topologically protected
optical crystal edge states similar to the conducting electronic
edge states [10]. Existing proposals for topological photonics
exploit symmetry breaking with synthetic magnetic fields in
arrays of coupled waveguides [11], spatial analog of Flo-
quet modulation [12], and magneto-optic metamaterials [13].
Recently, strong light-matter interaction in coupled micro-
cavities was predicted to yield topological polaritonic edge
states [14–16].

In contrast to topological photonics, the topological states
of polaritonic systems can be controlled with real magnetic
field or via strong particle-particle interactions [17]. These
last give an additional twist to polariton-based systems, which
can demonstrate nonlinear topological effects related to op-
tical bistability [18]. Moreover, the bosonic stimulation of
polariton-polariton scattering allows spontaneous coherent
emission from topologically nontrivial states [19]. Overall, the
nonlinearity stemming from polariton-polariton interactions,
responsible for the crossover from polariton lasing to polariton
Bose-Einstein condensation, provides a unique opportunity of
studying new interacting bosonic topological phases.
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Polaritons are neutral particles, so the application of an
external magnetic field affects only their spin but not orbital
motion. However, as it was shown in Ref. [20] in nonsimply
connected geometry such as the polariton ring [21], the inter-
play of Zeeman splitting with the photonic analog of spin-
orbit coupling [the transverse-electric-transverse-magnetic
(TE-TM) splitting] inherently present in this system leads to
the appearance of the synthetic U(1) gauge field affecting
orbital motion. The effect is due to the appearance of nonzero
geometric Berry phase during one round of the rotation along
the ring [22]. In this paper we extend the idea of synthetic
U(1) field for polariton system to the case of periodic arrays of
microcavity rings. We demonstrate that in a two-dimensional
(2D) array of polariton rings the presence of the synthetic U(1)
field leads to the nontrivial band topology, characterized by
nonzero Chern numbers, and induces topologically protected
unidirectional edge states, similar to those appearing in quan-
tum Hall effect (QHE). In the one-dimensional (1D) zigzag
array of the rings edge states similar to those appearing in
Su-Schrieffer-Heeger (SSH) model are formed.

The work is organized as follows. In Sec. II we construct
and diagonalize the Hamiltonian of a single polariton ring
accounting for both TE-TM and Zeeman splitting. The results
are then used for the topological analysis of two-dimensional
cavity ring arrays presented in Sec. III and zigzag chains of
annular cavities presented in Sec. IV. Conclusions summarize
the results of the work.

II. SINGLE POLARITON RING

In this section we derive formally the effective 1D Hamil-
tonian describing a single polariton ring (see Fig. 1) with the
TE-TM splitting in the presence of a magnetic field. We start
with from the Hamiltonian of 2D polariton inside a planar
microcavity [23]

Ĥ2D =
(

Ĥ0(k̂) + �z/2 ĤTE-TM(k̂)

Ĥ
†
TE-TM(k̂) Ĥ0(k̂) − �z/2

)
, (1)
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FIG. 1. Schematic of the considered geometry. The cavity (po-
lariton ring) is constituted by two distributed Bragg reflectors sand-
wiching a cavity with embedded quantum well. The polariton ring is
placed into external magnetic-field Bz perpendicular to its interface.
The total effective magnetic field acting on the polaritons spin is
a combination of the real magnetic field and the field provided by
TE-TM splitting. The direction of the total effective magnetic field
changes along the ring as is shown by the red solid arrows. If one
moves along the ring it twice covers a cone characterized by angle
θ . The dashed arrow shows the direction of the Stokes vector �S. In
adiabatic approximation the direction of the Stokes vector coincides
with the direction of the total effective magnetic field, while they
become different for the exact solution of the Schrödinger equation.

where the diagonal terms Ĥ0 describe the kinetic energy of
lower cavity polaritons, and the off-diagonal terms ĤTE-TM

correspond to the longitudinal-transverse splitting. We further
employ the effective mass approximation

Ĥ0(k̂) = h̄2k̂2

2meff
. (2)

The TE-TM part is given by

ĤTE-TM(k̂) = β

(
∂

∂y
+ i

∂

∂x

)2

, (3)

where β is a constant characterizing the strength of the TE-
TM splitting which can be expressed via the longitudinal
and transverse polariton effective masses ml and mt as β =
(h̄2/4)(m−1

l − m−1
t ). To proceed with the derivation of the

correct 1D Hamiltonian let us pass to the cylindrical coor-
dinates and add the confining potential V (r ), which forces
the polariton wave functions to be localized on the ring in the
radial direction to Ĥ2D . The terms associated with the TE-TM
splitting rewritten in polar coordinates read(

∂

∂y
± i

∂

∂x

)2

= e∓2iϕ

(
− ∂2

∂r2
± 2i

r

∂2

∂r∂ϕ
∓ 2i

r2

∂

∂ϕ

+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϕ2

)
. (4)

We decompose the Hamiltonian Eq. (1) into two parts Ĥ2D =
Ĥ0(r ) + Ĥ1(r, ϕ) where

Ĥ0(r ) = − h̄2

2meff

(
∂2

∂r2
+ 1

r

∂

∂r

)
+ V (r ). (5)

Following the conventional procedure [24], the Hamiltonian
of the 1D ring is given by

Ĥ = 〈R0(r )|Ĥ1(r, ϕ)|R0(r )〉, (6)

where R0(r ) is a the lowest radial mode of the Hamiltonian
(5). After averaging all the terms in Eq. (4) (see details in
Appendix A) we arrive at

Ĥ = h̄2

2meffR2

( ˆ̃k2 + �2/2 �1e
−2iϕ

�1e
2iϕ ˆ̃k2 − �2/2

)
, (7)

where ˆ̃k = −i(d/dϕ), R is the radius of the ring. For the
sake of simplicity we introduced dimensionless parameters
�1,2 corresponding to the longitudinal-transversal (LT) and
Zeeman splittings as �LT(z) = �1(2)h̄

2/(2meffR
2) and �LT ≈

β/2a2 with a being lateral width of the ring (see Appendix A
for the derivation). The Hamiltonian (7) was proposed earlier
based on symmetry considerations [22]. The approach devel-
oped here allows to establish correspondence between the pa-
rameters of the Hamiltonian and the geometrical dimensions
of the structure.

In general, solutions of the stationary Schrödinger equation
with Hamiltonian (7) can be represented in the following
form:

ψ̃ (ϕ) = χ̃ (ϕ, k̃)eik̃ϕ, (8)

where χ̃ (ϕ, k̃) is a corresponding spinor

χ̃ (ϕ, k̃) = 1√
ξ (k̃)2 + 1

(
e−iϕ

ξ (k̃)eiϕ

)
, (9)

and ξ (k̃) = �1/[(E + �2/2) − (1 + k̃)
2
]. The energy of the

state Eq. (8) (measured in units of h̄2/2meffR
2) is given by

E = (k̃2 + 1) ±
√

�2
1 + (�2/2 − 2k̃)2. (10)

For a given energy Eq. (10) has four solutions for k̃i, i =
1, . . . , 4 two positive and two negative, corresponding to
clockwise and anticlockwise propagation and two opposite
spin orientations. Analytical expressions for them are listed in
the Appendix B. It should be noted that if the Zeeman splitting
is present, E(k̃) �= E(−k̃) which corresponds to the break-
ing of the time-reversal symmetry in the system leading to
nonequivalence of clockwise and anticlockwise propagation
directions. In the arrays of interconnected rings this will lead
to the appearance of the topologically protected edge states as
we will demonstrate later on.

The general solution corresponding to a given energy thus
reads:

�̃(ϕ) =
∑

i

C̃ (i)ψ̃i(ϕ), (11)

where the summation is performed over all real roots of
Eq. (10) and ψ̃i(ϕ) is an eigenfunction [Eq. (8)] at k̃ = k̃i. The
Stokes vector given by

�S = ψ̃† �σψ̃ =

⎛⎜⎝sin θ cos 2ϕ

sin θ sin 2ϕ

cos θ

⎞⎟⎠ (12)

characterizes the distribution of the spin projection along the
ring and defines the profile of the polarization of the emission
along the ring, and tan θ/2 = ξ (k̃). Note, that the direction
of the Stokes vector is not exactly the same as direction of
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the total effective magnetic field as in the case of adiabatic
approximation [22].

As we consider only bright excitons with spin ±1 as a
two-level system, the z projection of the operator of total
angular momentum is Ĵz = h̄ ˆ̃k + h̄σz. One can check that
Ĵzψ̃ (ϕ) = h̄k̃ψ̃ (ϕ) which clarifies the physical meaning of
k̃. If there is only a single isolated ring, one should impose
periodic boundary condition ψ̃ (ϕ) = ψ̃ (ϕ + 2π ), so that k̃ is
an integer and corresponds to the orbital quantized angular
momentum and according to Eq. (10) energy becomes quan-
tized as well.

III. TWO-DIMENSIONAL ARRAY OF RINGS

We consider a two-dimensional array of polariton rings, as
shown in Figs. 2(a) and 2(b). Each ring can be considered as
a plaquette in a square lattice where the wave propagates via
leads connecting neighboring cavity rings. Every ring has four
leads attached to it. There is an applied magnetic field Bz in
addition to the effective magnetic field ��LT that stems from
the TE-TM splitting and lies in the plane of the array. The
splitting values �z = gμBBz, �LT = gμB| ��LT|, where g is
the effective Lande g factor for the 2D exciton and μB is the
Bohr magneton. In the unit cell presented in Fig. 2(b) the wave
function is piecewise-defined.

For the lead (polariton wire), the wave function can be
obtained similarly to the case for a ring by noticing that the
polariton wire Hamiltonian is the ring Hamiltonian [Eq. (7)]
at the limit R → ∞. For example, two branches (upper and
lower, due to the TE-TM and Zeeman splittings) of the
dispersion are given by

E = (kR)2 ±
√

�2
1 + (�2/2)2, (13)

where again E is measured in h̄2/(2meffR
2) units. When E �√

�2
1 + (�2/2)2 we have four eigenfunctions of a lead

ψ1,2(x) = 1√
ξ 2

0 + 1

(−ξ0

1

)
e±iklx , (14)

ψ3,4(x) = 1√
ξ 2

0 + 1

(
1

ξ0

)
e±ikux, (15)

where ku,l = R−1

√
E ∓

√
�2

1 + (�2/2)2 and

ξ0 = �1

�2/2 +
√

�2
1 + (�2/2)2

. (16)

In the case E <
√

�2
1 + (�2/2)2 only ψ1,2(x) are relevant.

Hence, the general solution for the mth lead [m = 1, . . . , 4,
see Fig. 2(a)] read

�m(x) =
∑

i

C (i)
m ψi(x), (17)

where the summation is performed over all real roots of
Eq. (13) for a given energy. Similarly, for the m̃th arc (m̃ =

FIG. 2. (a) Geometry of the structure: two-dimensional square
lattice of the exciton-polariton ring resonators connected via leads.
(b) A unit cell of the structure: a polariton ring of radius R with four
attached leads of length d/2. The period of the structure is T = d +
2R, and the corresponding variables are defined as x1,2 ∈ [0, d/2],
x3,4 ∈ [−d/2, 0], and ϕ1,...,4 ∈ [0, π/2]. The ring-lead junctions are
labeled as (1)–(4).

1, . . . , 4), in obedience to Eq. (11), we have

�̃m̃(ϕ) =
∑

i

C̃
(i)
m̃ ψ̃i(ϕ), (18)

where the summation is performed over all real roots of
Eq. (10).

To define the behavior of the polariton waves at the junc-
tions connecting the rings and the leads we use Griffith’s
boundary conditions [25] stating that the wave functions have
to be continuous and the input probability currents must be
exactly compensated by the output. Together with the Bloch
periodic boundary condition this gives the closed set of linear
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FIG. 3. Topologically protected edge states for �1 = 5, �2 = 2, and h = d/R = 1.2. The corresponding Chern number C = 2 is a sum
of all Cn below the energy level (denoted by the dashed black line). (a) The geometry of the structure: a two-dimensional square lattice of
the exciton-polariton ring resonators that is infinite in the x direction and finite in the y direction. Blue and red arrows indicate the directions
of the propagation along left and right edges. (b) Band structure of the stripe consisting of 16 periods in the y direction. The rectangle marks
the band gap of the bulk system. For a given energy marked by the dashed line there are two edge states labeled as A and C corresponding
to the right boundary, and two states B and D corresponding to the left boundary. Note, that the sign of the group velocity is the same for
the states propagating along the same edge. This means that these states are chiral and topologically protected with respect to backscattering.
(c) Probability distribution profiles of the edge states marked at the band diagram. Direction of their propagation is set by the sign of the
product Bzg.

algebraic equations allowing to define the band structure of
the system (see Appendix D for the details). It should be noted
that one may use the S-matrix approach instead of imposing
Griffith’s conditions (see Appendix F, where we present the
further development of the S-matrix theory).

Once the spectrum of the bulk system is obtained from
the secular equation, the Chern numbers can be calculated.
The Chern number corresponding to the nth band of the
considered periodic array is defined as

Cn = 1

2πi

∫
1BZ

d2KFxy (K), (19)

where Fxy (K) = ∂Ay/∂Kx − ∂Ax/∂Ky is the field
strength associated with the Berry connection, Aj (K) =
〈n(K)| ∂

∂Kj
|n(K)〉 is the vector potential of the field, and

|n(K)〉 is the normalized Bloch wave function of the nth
band [26]. The integration is performed over the first Brillouin
zone (1BZ).

Topologically nontrivial gaps open in the case of nonzero
both TE-TM and Zeeman splittings (for a certain range of
these parameters). The Chern numbers are calculated for the
gapped system (see the caption of Fig. 3). Since there are gaps
with nonzero Chern invariant, the bulk-boundary correspon-
dence suggests the existence of topologically protected edge
states for a finite lattice. To explore the properties of the edge
states, one should add the boundaries to the system. Let us
consider the system depicted in Fig. 3(a): a strip composed
of 16 rings in the y direction and infinite in the x direction.
The spectrum of the strip can be obtained by writing down
Eqs. (D1) to (D4) for the rings 2, . . . , 15 supplemented by a
slightly modified version of these equations for the outer rings
[numbers 1 and 16 in Fig. 3(a)] as they are deprived of the first
and fourth leads, respectively. Also, one should add the Bloch
condition only for the x direction as the periodicity is broken
in the y direction. Finally, we obtain a linear system for the
variables {C (i)

ℵ,m} ∪ {C̃ (i)
ℵ,m̃} [where ℵ = 1, . . . , 16 numbers the

unit cells along an arbitrarily chosen row in Fig. 3(a)], with the
secular equation yielding the spectrum, presented in Fig. 3(b).

As can be seen from Fig. 3(b), there exist topological edge
states at the bulk gap. For a given energy level, plotted with
the dashed black line in Fig. 3(b), there exist two edge states
per boundary. The wave-function density at the unit cell scale,
corresponding to the edge states, is shown in Fig. 3(c). Similar
to the case of QHE, edge states are chiral and topologically
protected: the direction of the propagation is linked to the
edge, so backscattering is possible only if it is accompanied
with hopping from one edge to another.

IV. ZIGZAG CHAIN OF POLARITON RINGS

We now proceed to the analysis of zigzag arrays of polari-
ton rings. Let us consider a system of rings connected into a
zigzag chain as shown in the Fig. 4. It is reminiscent of the
Su-Schrieffer-Heeger model [9], where each carbon atom of
polyacetylene is replaced with a polariton ring and the role
of the “relative-bond-strength” (for polyacetylene) is played
by the “bond-angle” α [see Fig. 4(a)]. In this section we
focus on the effects that arise in the absence of an external
magnetic field (Bz = 0 ⇒ �2 = 0). The application of the
external magnetic field in the case of 1D chain of the rings
does not change significantly the results.

As shown in Fig. 4(a), there are two rings per unit cell
and within each unit cell there are different effective magnetic
fields in the leads that are not parallel to each other. The
directions of these effective magnetic fields depend on the
angle α.

In a similar manner as in the previous section we im-
mediately derive the scattering equations given by Grif-
fith’s and Bloch boundary conditions (see the derivation in
Appendix E).

For α = π/2 and zero effective magnetic field, the corre-
sponding band diagram [see Fig. 4(b)], exhibits flat bands are
reminiscent of Landau levels related to the states localized
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FIG. 4. (a) Sketch of a zigzag array of polariton rings and a
unit cell of the structure. Each ring is of radius R and each lead is
of length d . The period of the structure is T = 2(d + 2R) sin α/2.
The corresponding variables are defined as ϕ1,4 ∈ [0, 2π − α], ϕ2,3 ∈
[0, α], and x1 ∈ [0, d/2], x2 ∈ [−d/2, d/2], x3 ∈ [−d/2, 0]. The
band diagram for an infinite zigzag chain (with α = π/2) in the
absence of LT splitting (b) (�1 = 0) and at (c) �1 = 2.

within the ring. As we introduce a nonzero LT-splitting,
new gaps open [see Fig. 4(c)]. Having discussed the case of
an infinite chain, now we turn to the investigation of finite
systems. As one introduces boundaries to the system the edge
states appear [see Figs. 5(a) and 5(b)]. In both cases in Fig. 5
(the even and the odd number of the rings), the edge states are
twice degenerate. Thus, by taking their linear combination one
can prepare a state localized either at both sides of the chain or
at one side. We note that in the case of the chain, no external
magnetic field is required for the emergence of the edge-states
since the angle α not equal to π breaks the equivalence of
the clockwise and counterclockwise propagating modes in the
separate rings. As the angle α gets closer to π , the localization
length of the edge states increases.

FIG. 5. Probability distribution of the edge states in polariton
ring zigzag chains with α = π/2 and h = d/R = 1.2 for (a) even and
(b) odd number of rings. (b) In the odd number case there also exists
a symmetric edge state that is localized on the left side of the chain.
The profiles are shown for �1 = 2, E = 8.985 [in h̄2/(2meffR

2)
units]. The energy value is chosen to lay within the bulk band gap.

V. CONCLUSION AND OUTLOOK

To conclude, we show that a two-dimensional array of
the polariton rings is characterized by the nontrivial Chern
invariants and supports topologically protected chiral edge
states analogously to the case of quantum Hall insulator. Also,
the edge states are shown to emerge in a zigzag chain of
polariton rings. The existence of topologically protected states
can find its applications in spinoptronics.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN (7)

For the confining potential V (r ) = A(r − R)2/2 from
Ref. [24] we have

R0(r ) =
(

γ

R
√

π

)1/2

e−γ 2(r−R)2/2, (A1)

where γ 4 = meffA/h̄2 and the 1D limit is putting γ to infin-
ity. The desirable Hamiltonian Ĥ = 〈R0(r )|Ĥ1(r, ϕ)|R0(r )〉
contains three types of terms. Namely, the first type is
〈R0(r )|r−2|R0(r )〉, arising from the kinetic and TE-TM parts
of Ĥ1(r, ϕ). The other two terms 〈R0(r )|∂2/∂r2|R0(r )〉 and
〈R0(r )|r−1∂/∂r|R0(r )〉, in turn, stem only from the TE-
TM part. Due to the fact that R2

0 (r ) = γ /(R
√

π )e−γ 2(r−R)2

converges to δ(r − R)/R as γ → ∞, the first term yields
limγ→∞〈R0(r )|r−2|R0(r )〉 = R−2. The second term can
be calculated straightforwardly 〈R0(r )|r−1∂/∂r|R0(r )〉 =
1/2R2

0 (r )|∞0 = 0.
The direct calculation of the third term yields

〈R0(r )|∂2/∂r2|R0(r )〉 ∼ −γ 2/2 when γ → ∞, so this

term dominates over the others in 〈R0(r )|ĤTE-TM(r, ϕ)|R0(r )〉
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and we can neglect them. Thus, we arrive at the correct
Hamiltonian (7) of a polariton ring with �LT = γ 2β/2 which,
in turn, is inversely proportional to the characteristic width of
the microcavity.

APPENDIX B: DISPERSION FOR AN ISOLATED RING

In this section we provide the exact analytical solutions of
Eq. (10) for a given energy E. For this purpose we introduce
the auxiliary variables a1,2 and b given by

a1 = (−72�2
1 + 36�2

2 + 64E3 − 96E2 − 72�2
1E − 18�2

2E − 96E + 64

+
√

4
{
4(E + 1)

[−9�2
1 + 4E(2E − 5) + 8

] − 9�2
2(E − 2)

}2 − {
4
[−3�2

1 + 4(E − 1)E + 4
] − 3�2

2

}3)1/3
, (B1)

a2 = 16 − 16E + 16E2 − 12�2
1 − 3�2

2, (B2)

b = [4(E + 1) + a2/a1 + a1]/12. (B3)

As a result, the equations on the dispersion relations for a
single polariton ring [Eq. (10)] can be conveniently expressed
in these variables:

k̃1,2 =
√

b ∓
√

E + 1 − b − �2/(2
√

b), (B4)

k̃3,4 = −
√

b ∓
√

E + 1 − b + �2/(2
√

b). (B5)

APPENDIX C: DERIVATION OF SPIN CURRENT

The Schrödinger equation for a polariton in a ring, as it
follows from the Hamiltonian (7), reads

i
2meffR

2

h̄

∂�

∂t
= −∂2�

∂ϕ2
+ �1σr (2ϕ)� + �2

2
σz�, (C1)

where σr (ϕ) = σx cos ϕ + σy sin ϕ is the Pauli matrix in the
cylindrical coordinates. The probability current in the ring can
be derived from the continuity equation

∂ρ

∂t
+ 1

R

∂J

∂ϕ
= 0, (C2)

where the probability density is ρ = �
ᵀ
� and � denotes the

complex conjugate of �. From the Schrödinger equation (C1)
we have

∂ρ

∂t
= 1

ih̄
(�

ᵀ
Ĥ� − (Ĥ� )ᵀ�), (C3)

where

Ĥ = h̄2

2meffR2

(
− ∂2

∂φ2
+ �1σr (2φ) + �2

2
σz

)
. (C4)

Using the following equalities

[σr (2φ)�]ᵀ� = �
ᵀ
σr (2φ)� (C5)

and

(σz� )ᵀ� = �
ᵀ
σz�, (C6)

we arrive at

J = h̄

2meffR
Re

{
−i�

ᵀ ∂�

∂ϕ

}
. (C7)

APPENDIX D: 2D ARRAY

The scattering equations for the junctions (1) through (4)
in Fig. 2(b) are given by Griffith’s conditions [25] and read as
follows:

�1(d/2) = �̃4(π/2) = �̃1(0),

R� ′
1(d/2) + �̃ ′

4(π/2) = �̃ ′
1(0),

(D1)

�2(d/2) = �̃1(π/2) = �̃2(0),

R� ′
2(d/2) + �̃ ′

1(π/2) = �̃ ′
2(0),

(D2)

�3(−d/2) = �̃2(π/2) = �̃3(0),

R� ′
3(−d/2) + �̃ ′

3(0) = �̃ ′
2(π/2),

(D3)

�4(−d/2) = �̃3(π/2) = �̃4(0),

R� ′
4(−d/2) + �̃ ′

4(0) = �̃ ′
3(π/2).

(D4)

Due to the lattice periodicity, the Bloch boundary condition
reads

C
(i)
3 = eiKxT C

(i)
1 , C

(i)
4 = eiKyT C

(i)
2 , (D5)

where K = (Kx,Ky ) is the polariton envelope wave vector
originating from the periodicity of the array and T = d + 2R

is the period of the array. Equations (D1) to (D5) form a set of
linear equations for the variables {C (i)

m } ∪ {C̃ (i)
m̃ }. The secular

equation is obtained by equating the determinant to zero.

APPENDIX E: ZIGZAG CHAIN

For the junctions from Eqs. (1) to (4) in Fig. 4(a) they read
as follows:

�1(d/2) = �̃2(α) = �̃1(0),

R� ′
1(d/2) + �̃ ′

2(α) = �̃ ′
1(0),

(E1)

�2(−d/2) = �̃1(2π − α) = �̃2(0),

R� ′
2(−d/2) + �̃ ′

2(0) = �̃ ′
1(2π − α),

(E2)

�2(d/2) = �̃4(2π − α) = �̃3(0),

R� ′
2(d/2) + �̃ ′

4(2π − α) = �̃ ′
3(0),

(E3)

�3(−d/2) = �̃3(α) = �̃4(0),

R� ′
3(−d/2) + �̃ ′

4(0) = �̃ ′
3(α).

(E4)
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Due to the chain periodicity, the Bloch boundary condition
read

C
(i)
3 = eiKT C

(i)
1 . (E5)

The secular equation is found by setting the determinant to
zero.

APPENDIX F: S-MATRIX APPROACH

In this section, we develop the theory of scattering matrices
in the context of quantum rings. Buttiker et al. [27] considered
the quantum ring connected to the current lead and assumed
the scattering matrix S to be symmetric with respect to the
two arms of the ring and have shown that the S matrix can be
parameterized by only one real variable 0 � ε′ � 1/

√
2 and

has the following form:

S(ε′) =

⎛⎜⎝−[a(ε′) + b(ε′)] ε′ ε′

ε′ a(ε′) b(ε′)

ε′ b(ε′) a(ε′)

⎞⎟⎠. (F1)

Probability current conservation requires S† = S or, in other
words,

[a(ε′) + b(ε′)]2 + 2ε′2 = 1,

a2(ε′) + b2(ε′) + ε′2 = 1. (F2)

There are two types of solutions to Eqs. (F2) for the functions
a(ε′) and b(ε′):

a1,±(ε′) = ± 1
2 (

√
1 − 2ε′2 − 1), (F3)

b1,±(ε′) = ± 1
2 (

√
1 − 2ε′2 + 1), (F4)

and

a2,±(ε′) = ± 1
2 (

√
1 − 2ε′2 + 1), (F5)

b2,±(ε′) = ± 1
2 (

√
1 − 2ε′2 − 1). (F6)

Thus, there exists four different types of the scattering ma-
trices, namely, S1,±(ε′) and S2,±(ε′). Here we show that
the four types of the scattering matrices can be combined
into two by the following procedure. We introduce analytical
single-valued functions S±(ε) of a complex argument ε ∈
C\[−1/

√
2, 1/

√
2]. They are defined as to satisfy

lim
ε′′→+0

S±(ε′ + iε′′) = S1,±(ε′) (F7)

for ε′ ∈ [0, 1/
√

2], which, in turn, supplemented by the ana-
lyticity condition, specifies S±(ε) unambiguously. An explicit
form of S±(ε) reads

S±(ε) =

⎛⎜⎝−[a±(ε) + b±(ε)] ε ε

ε a±(ε) b±(ε)

ε b±(ε) a±(ε)

⎞⎟⎠, (F8)

FIG. 6. A branch cut in the complex plane for the analytic
functions S±(ε) of ε ∈ C\[−1/

√
2, 1/

√
2] and the contour C around

the cut. The contour is divided into two parts C = CL

⋃
CR , where

CR is marked by enclosing it in a rectangular box.

where

a±(ε) = ± 1
2 (

√
1 − 2ε2 − 1), (F9)

b±(ε) = ± 1
2 (

√
1 − 2ε2 + 1) (F10)

are single-valued analytic functions of a complex argument
ε ∈ C\[−1/

√
2, 1/

√
2] and we chose the branch of

√
1 − 2ε2

to satisfy

lim
ε′′→+0

√
1 − 2(ε′ ± iε′′)2 = ±

√
1 − 2ε′2, (F11)

where in the right-hand side of the square root denotes a real-
valued function of the real variable ε′ ∈ [0, 1/

√
2]. From the

definition of S±(ε) we have

S2,±(ε′) = lim
ε′′→+0

S∓(ε′ − iε′′). (F12)

Thus, we express S1,±(ε) and S2,±(ε) via the analytic
functions S±(ε)|ε∈CR

on the contour CR , depicted in Fig. 6.
We focus on S+(ε)|ε∈CR

as it corresponds to the case when the
transmitted waves have the same phase as the incident ones.

Let us discuss the obtained result by tracing S−(ε) as we
move along CR . At the initial point of the contour CR the S

matrix is

lim
ε′′→+0

S+(0 + iε′′) = S1,+(0), (F13)

and a wave coming from the lead is totally reflected, while
the waves in the ring do not see the junction. Following the
directions, indicated by arrows in Fig. 6, we arrive at the
vicinity of ε = 1/

√
2 point where the S matrix is

lim
ε′′→0

S+(1/
√

2 + iε′′) = S1,+(1/
√

2) (F14)

= S2,−(1/
√

2). (F15)

We finish the route along the contour CR on the lower bank of
the branch cut, where we have

lim
ε′′→+0

S+(0 − iε′′) = S2,−(0), (F16)

which corresponds to an absolutely opaque lead-ring junction.
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Alternatively, one could impose the continuity condition at
the junction in addition to the current conservation (together
they are usually referred to as Griffith’s conditions). This
would lead to some scattering matrix that we denote as SGriffith.

It turns out that

SGriffith = lim
ε′′→+0

S+(2/3 + iε′′) = S1,+(2/3), (F17)

which can be verified by a direct calculation.
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