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Abstract

We propose an experimentally friendly scheme for trapping quasi- relativistic elec-

trons in graphene by an electromagnetic beam with circular polarization and spatially

inhomogeneous profile with an intensity dip. The trapping is achieved due to the ef-

fect of bandgap opening outside the trapping region. The proposed mechanism allows

for non- invasive electron confinement in graphene without any need of the chemical

patterning of the sample or the application of metallic gates.
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Introduction

Since the experimental discovery of graphene, its unique electronic properties continue to

attract an increasing interest of the scientific community.1 The spectrum of the electronic

states around K and K′ points in the Brillouin zone consists of a pair of touching Dirac cones,

and thus mimics the dispersion of massless relativistic Fermions. This fact has dramatic
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consequences on the transport properties of graphene, one of which is Klein tunneling: the

perfect transmission of gapless Dirac electrons through arbitrary potential barriers at normal

incidence.2,3

Being extremely interesting from the point of view of fundamental physics, Klein tunnel-

ing nevertheless poses serious problems for a wide range of practical applications of graphene

where confinement of electrons is necessary. To circumvent this obstacle, a variety of meth-

ods has been proposed. They include chemical functionalization,4,5 mechanical cutting of

the graphene sheet into nanoribbons or nanodisks6 and application of local strain resulting

in the onset of an artificial gauge field.7,8 Most of those methods, however, need irreversible

modification of the graphene sheet and do not allow for a controllable tuning of the trapping

parameters such as the strength of confinement.

In the present paper we explore an alternative way to achieve the trapping of mass-

less Dirac electrons using fully optical means. Optical trapping is a standard way of the

preparation of cold atom lattices (see e.g. Refs.9,10 for the review) and the confinement of

nanoparticles by optical tweezers (see e.g. Ref.11 and references therein). In the domain of

condensed matter, the basis for the optical trapping is provided by the possibility to modify

the energy spectrum of a material system by strong coupling to the high- frequency laser

radiation resulting in the dynamic Stark effect. Dramatic modifications of the transport

properties in the regime of strong light- matter coupling were reported for semiconductor

quantum wells,12–16 carbon nanostructures,17–23 topological insulators24–27 and others.

In particular, it was shown that in graphene strongly coupled to circular polarized light

the bandgap ∆g opens.28–30 Its value depends on the intensity I and frequency ω of the driv-

ing field and can thus be reversibly changed in a controllable way. In realistic configurations

this light induced bandgap can reach several meV.

This effect can be exploited for the trapping of Dirac electrons in graphene. Indeed,

consider the case when the intensity of the driving field is not homogeneous and has a

minimum in real space at r = 0. In this situation the effective bandgap induced by light-
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matter coupling will be minimal in the center of the dip and increase if one deviates further

from it as is shown in the Fig. 1. This will confine the low energy electrons in the region

around r = 0. The mechanism of the confinement is similar to that obtained in semiconductor

heterostructures when a layer of narrow band semiconductor is sandwiched between wide gap

semiconductors with the only difference being that the band mismatch in our case is produced

all optically.

Figure 1: The profile of the bandgap in real space induced by an inhomogeneous high-
frequency electromagnetic field with the intensity having a Guassian dip. The value of the
optically induced gap is proportional to the intensity of the dressing field, so electrons become
trapped in the region where intensity is minimal.
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The model

Let us consider a monolayer of graphene, which lies in the plane r = (x, y) at z = 0 and

interacts with an electromagnetic wave propagating along the z-axis. The frequency of

the wave ω is assumed to be high enough to satisfy the condition ωτ � 1, where τ is a

characteristic relaxation time in the system. In this case, the electromagnetic wave can not

be absorbed around the Dirac points and should be considered as a pure dressing field.

Let us consider a monolayer of graphene, which lies in the plane r = (x, y) at z = 0

and interacts with an electromagnetic wave propagating along the z-axis. The frequency of

the wave ω is assumed to be high enough to satisfy the condition ωτ � 1, where τ is a

characteristic relaxation time in the system. In this case, the electromagnetic wave can not

be absorbed around the Dirac points and should be considered as a pure dressing field. The

low- energy Hamiltonian of the system reads:

Ĥ(t) = h̄vF

[
ξσx

(
kx +

eAx(t)

h̄

)
+ σy

(
ky +

eAy(t)

h̄

)]
(1)

where vF is the Fermi velocity, ξ the valley index and σi, i = x, y, are the Pauli matrices

and ξ = ±1 is a valley factor. The interaction with external electromagnetic radiation

was introduced via the minimal coupling substitution, kx,y → kx,y + (e/h̄)Ax,y where Ax,y

corresponds to the vector potential of the dressing field. To break time reversal symmetry and

open the band gap at the Dirac points we should consider the case of circular polarization,

choosing

Ax =
cE0

ω
G (r) sin (ωt) , (2)

Ay = −cE0

ω
G (r) cos (ωt) , (3)

where ω and E0 are frequency and amplitude of the dressing field, and functionG(r) describes

its profile in the real space. To be specific, we choose the latter to be represented by a
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Gaussian dip,

G (r) = 1− exp

(
− r2

2L2

)
(4)

where parameter L characterizes the lateral size of the intensity dip.

The Hamiltonian in Eq. 1 is time-dependent, but in the high frequency limit it can be

reduced to a stationary effective Hamiltonian. The mathematical basis for that is provided

by Floquet theory of periodically driven quantum systems.31–34 The main steps are as follows.

The time-dependent Hamiltonian can be expressed as :

Ĥ (r, t) = Ĥ0 + V̂ exp (iωt) + V̂ † exp (−iωt) (5)

where

Ĥ0(t) = h̄vF [ξσxkx + σyky] , (6)

V̂ (r) =
h̄Ω

2
(ξσx − iσy)G (r) . (7)

and

h̄Ω =
vF eE0

ω
(8)

is a parameter describing the strength of electron- photon coupling which can be referred to

as a characteristic Rabi energy. Since the frequency ω is assumed to be high compared to

all characteristic frequencies of the system, the electron dynamics is not able to follow the

fast time oscillations of the vector potential, and the effective time-independent Hamiltonian

can be obtained by Floquet-Magnus expansion35–37 in powers of ω−1. Restricting ourselves
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to the first three terms in the infinite series we get:

Ĥeff ≈ Ĥ0 +

[
V̂ , V̂ †

]
h̄ω

+

[[
V̂ , Ĥ0

]
, V̂ †

]
+ H.c.

2(h̄ω)2
≈

≈ h̄ṽF (r)(ξσxkx + σyky)− ξ
∆g(r)

2
σz

+i
h̄vFΩ2

ω2L2
(ξσxx+ σyy) exp

(
− r

2

L2

)
, (9)

In this equation ∆g(r) = 2h̄Ω2G2(r)/ω is the position- dependent gap, which is a monotonously

increasing function of r with ∆(0) = 0 and

∆(∞) =
2h̄Ω2

ω
=

4v2
F e

2I

h̄ε0cω3
(10)

where I = ε0cE
2
0/2 is the intensity of the dressing field. The corresponding term the Eq. 9 is

responsible for the trapping of particles with energies E < ∆(∞). The position- dependent

renormalized Fermi velocity ṽF (r) = vF (1 − Ω2ω−2G2(r)). The last term in Eq. 9 appears

due to the energy- momentum non-commutativity. It is small with respect the other terms

but should be nevertheless retained in order to keep the effective Hamiltonian Hermitian.

To make the trapping most efficient, one would wish to produce deep traps with small

lateral size, minimizing L and maximizing ∆(∞). Unfortunately, these two parameters are

not completely independent. Indeed, according to Eq. 10, the value of the gap equal to

the depth of the trap is inversely proportional to the cube of the frequency of the dressing

field. Therefore, if one wants to keep the intensity I moderate one can not use very high

frequencies. On the other hand, for a given frequency the lateral size of the trap can not be

done arbitrary small because of the diffraction limit and its minimal size can be estimated

as

Lmin ≈ λ =
2πc

ω
(11)

In principle, this size can be further reduced by using the methods of subwavelength optics,

but this will need metallic patterning of the sample and consideration of this case goes
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beyond the scope of the present work. Our estimations show that there is an optimal range

of frequencies corresponding to THz and far infrared for which the traps with a depth of one

to several meV with lateral size of tens of microns can be achieved for realistic values of the

dressing intensities not exceeding several kW/cm2.

(a) t = 0 ps

(b) t = 5 ps (c) t = 10 ps (d) t = 30 ps

(e) t = 5 ps (f) t = 10 ps (g) t = 30 ps

Figure 2: Plots of the total electron density, ρ = |ψA|2 + |ψB|2, for several values of the
evolution time indicated in each subfigure. Panel (a) corresponds to the initial distribution
at t = 0. Panels (b)-(d) correspond to the dynamics in the presence of the optical trap.
Panels (e)-(g) correspond to the free electron propagation (note that panel (g) includes a
larger area of the system). One clearly sees that the presence of the optical trap effectively
confines the electronic wavepacket which stays localized around r = 0 at all times.

Results and discussion

To demonstrate the effectiveness of the proposed trapping scheme, we study numerically

the dynamics of the electronic wavepacket initially located around r = 0. We use the

following parameters of the dressing field; intensity I = 330 W/cm2, dressing field frequency

ω = 15 THz, and intensity dip radius L = 7 µm. The width of the initial wavepacket was

taken to be d = 5 µm so that it has energy distribution of h̄vF/d ≈ 0.13 meV around the

Fermi energy EF = 0 meV. The initial wavepacket is composed of equal contributions from
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the two equivalent valleys (K and K ′) in the band structure of graphene. The results are

shown in the Fig. 2. As it is clear from the panels (b)-(d), for the case of the electromagnetic

dressing the electrons stay around r = 0 where the gap is smaller and can not penetrate to

the region where the gap reaches its maximal value. Panels (f)-(g) correspond to the case

of the freely propagaing wavepacket and are demonstrated for the reasons of comparison.

Wavepacket dynamics in this case reproduces well known results studied elsewhere before.38

We also estimated the position of the energy levels in our trapping potential as it is shown

at the Table 1. Characteristic separation between the neighboring levels is of the order of

magnitude of 0.1 meV which should be possible to observe experimentally.

Table 1: The energies of the lowest confined states for the optical trap in graphene. See main
text for the values of the parameters. The energy levels are found by assuming a perfect
trap and imposing vanishing boundary conditions on the wavefunction at the radius of the
trap.

j kj(µm−1) Ej (meV) Ej − Ej−1 (meV)
1 0.347 0.188
2 0.547 0.299 0.111
3 0.734 0.401 0.102
4 0.789 0.430 0.030
5 1.002 0.547 0.117
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