Hot mantle transition zone beneath Iceland and the adjacent Mid-Atlantic Ridge inferred from P-to-S conversions at the 410- and 660-km discontinuities

Yang Shen1, Sean C. Solomon2, Ingi Th. Bjarnason2,3, and G. M. Purdy1,4

Abstract P-to-S conversions from the two primary discontinuities near 410 and 660 km depth (P410s and P660s phases) are evident in particle motions and receiver functions of teleseismic body waves recorded by broadband seismic stations in Iceland. The average arrival times of P410s and P660s are later by 7.0 ± 0.5 s (standard error) and 4.7 ± 0.2 s, respectively, than predicted by the iasp91 Earth model. Differential P660s-P410s travel times indicate that the upper mantle transition zone between the 410- and 660-km discontinuities is 23 ± 9 km thinner than in the iasp91 model. From estimates for the Clapeyron slopes of the phase transitions associated with these discontinuities, this lesser transition zone thickness is consistent with temperatures 180 ± 70 K hotter than normal. We interpret this result as evidence for upwelling mantle flow at 400-700 km depth beneath Iceland and the adjacent Mid-Atlantic Ridge.

Introduction

The locations of the two primary upper mantle seismic discontinuities at about 410 km and 660 km depth provide important information on mantle temperature structure and its variations, and thus on the influence of mantle convection on the temperature field. The 410-km discontinuity is identified with the transformation of (Mg, Fe)2SiO4 from the olivine (β-phase) to the modified spinel (B phase) structure, and the 660-km discontinuity with the transformation of (Mg, Fe)2SiO4 in the spinel (γ-phase) structure to (Mg, Fe)SiO3 in the perovskite structure plus (Mg, Fe)O [e.g., Bina and Helffrich, 1994]. The depths to the 410-km and 660-km discontinuities respectively increase and decrease with increasing temperature. While significant progress has been made in mapping these discontinuities both globally and in higher-resolution studies of several subduction zone regions from observations of reflected or converted body waves [e.g., Shearer, 1991; Vidale and Benec, 1992, Wicks and Richards, 1993], comparatively little is known about the depths of these discontinuities beneath hotspots and mid-ocean ridges, the most likely sites of upwelling within the mantle transition zone. Nakamishi (1988) reported observations of P'P precursors inferred to be underside reflections from the two discontinuities about 200-400 km from the axis of the Mid-Atlantic Ridge, but the depths of the discontinuities were poorly constrained. In studies of these discontinuities in oceanic areas relying on observations of precursors to long-period SS waves [Shearer, 1991, Lee and Grand, 1996], sampling of mid-ocean ridges and hotspots is generally sparse, and the horizontal resolution (at best about 1000 km) is inadequate to resolve lateral variations in discontinuity depths beneath such regions, which likely occur on scales of a few hundred kilometers or less.

In this paper we report observations of P410s and P660s phases, shear waves converted from teleseismic P waves at 410 and 660 km depth, respectively, from a broadband seismic network in Iceland. The network consists of five portable Streckeisen STS-2 seismometers installed during the first phase of the ICEMELI experiment [Bjarnason et al., 1996] and the permanent Global Seismographic Network station BORG (Figure 1). Utilizing particle motion and receiver function analyses, we examined teleseismic body wave records from these stations for the period August 1993 through December 1994 for evidence of upper mantle P-to-S conversions. The arrival times of documented P660s and P410s phases provide new constraints on the mantle thermal structure and flow field beneath this prominent ridge-centered hotspot.

Particle Motions

The particle motion of a converted S wave is distinctly different from that of the P wave and thus provides a key to phase identification [Sacks and Snobe, 1977]. Teleseismic P waves are steeply incident and dominate the vertical component of ground motion, whereas the Pds phase (where d is the conversion depth) appears principally on the radial component. Observed particle motions (Figure 2) are compared with that predicted for the iasp91 model [Kennett and Engdahl, 1991], modified to include a 25-km-thick crust having the P wave velocity structure obtained for southern Iceland by Bjarnason et al. [1993] and a Vp/Vs ratio of 1.75. The synthetic seismogram has been calculated using the reflectivity method [Muller, 1985]. The Harvard centroid moment tensor solution was adopted as the focal mechanism, and the reflectivity response was convolved with the instrument response and a moment function as defined by Bristle and Muller [1983] with a source duration of 10 s.

The near horizontal motion of the P660s phase, which arrives about 67 s after P, is clearly discernible in the synthetic particle motion. A similar phase, with identical polarity but arriving 4-6 s later than in the synthetic, is also evident in the data (Figure 2). This arrival, which we identify as P660s, is absent in the transverse components of records from this event. At the low frequencies of these seismograms, filtered to clarify the P660s phase in the observed records, the P-to-S conversion from the 410-km discontinuity (P410s) is not evident, even in the synthetic.
Receptor Functions

On the basis of the identification of converted phases from particle motions, we employ receiver function analysis [e.g., Langston, 1979; Ammon, 1991] to estimate arrival times. Example receiver functions (obtained from the seismograms for which particle motions are plotted in Figure 2) are shown in Figure 3. P660s is a pronounced phase in the individual receiver functions and in a straight stack of the four receiver functions. The arrival times of P660s in the receiver functions are consistent with the times of arrival of near-horizontal particle motion in Figure 2. P410s can be identified in the receiver function for one station but not in the others.

The large amplitudes of the identified P660s and P410s phases (5-15% and 4-12%, respectively, of the amplitude of the vertical component P wave) are most likely the consequence of focusing and defocusing of the converted phases by relief on the discontinuities [e.g., van der Lee et al., 1994]. Supporting this inference are the frequently significant variations in the amplitude of a given converted phase seen in receiver functions for the same event (e.g., P660s in Figure 3) and instances where a converted phase is evident in one receiver function yet not in others from the same earthquake (e.g., P410s in Figure 3).

We utilized a total of 47 receiver functions from records of earthquakes at epicentral distances between 50° and 110°

Figure 1. Broadband seismic stations used (solid triangles) and conversion points of identified P660s (open squares) and P410s (crosses) arrivals. Shaded areas are above sea level. Bathymetric contours are in kilometers. See Bjarnason et al. [1996] for more information on the five ICEMELT stations.

Figure 2. Synthetic (SYN) and observed (BRE, NYD, and KLU) particle motions of the P-wave codas from the Kuril Islands earthquake of 9 October 1994 (mL 6.5, focal depth 22 km, epicentral distances 69.5-71.9°). Vertical motion is marked U and D (up and down); radial horizontal motion T and A (toward and away from the source). Both the synthetic (see text) and observed seismograms have been low-pass filtered at 0.05 Hz. The times of maximum amplitude of the P waves are marked by a zero; differential times between maximum amplitudes of P and P660s phases are given in parentheses.

Figure 3. Synthetic and observed radial receiver functions for the Kuril Islands earthquake of 9 October 1994. Converted phases are indicated by tick marks. The synthetic receiver function is calculated for the modified issp91 model as in Figure 2. In the deconvolution for receiver functions [Ammon, 1991], the minimum allowed spectral amplitude of the vertical component (0.01) and the Gaussian width factor (0.3, equivalent to low-pass filtering at 0.13 Hz) have been selected on the basis of presignal noise and separation of converted phases. Phase nomenclature is after Langston [1979].
having clear P or PP arrivals. Time windows were chosen so that the P coda does not contain PP, or the PP coda PPP. Care was taken to avoid seismograms with other visible arrivals having ray parameters significantly different from those of P and PP. In the following discussion, for simplicity, we make no further distinction between P and PP or between Ps and PPd. Phases in these receiver functions that arrive between 25 and 85 s after the reference phase and have amplitudes greater than presignal noise generally fall into one of two distinct time intervals: 45-55 s and 66-76 s. We identify such arrivals as P410s and P660s, respectively, if their signal-to-noise ratios are greater than 1.5. On the basis of the dominant periods and the signal-to-noise ratios of the converted phases, we estimate that arrival times of P660s phases can be picked to within 1-1.5 s, and those of P410s to within 1.5-2 s.

Converted Phase Arrival Times

The arrival times of 22 and 40 identified P410s and P660s phases, respectively, are shown in Figure 4a as functions of ray parameter (a greater ray parameter corresponds to a longer converted wave path above the discontinuity). Two aspects of the observations are noteworthy. First, the arrival times are significantly later than those predicted for the iasp91 model, as modified above. Second, the times show significant scatter, up to 6 s, for a given ray parameter (but different P to S conversion locations). Measurements of arrival times of direct S and SKS waves across the ICEMHL1 network [Bjarnason et al., 1996] suggest that lateral variations in upper mantle structure may contribute as much as 3-4 s to the scatter in the arrival times of the converted phases. Relief on the discontinuities may also add to the variations in arrival times.

Using the moveout of the iasp91 model, we correct the arrival times in Figure 4a to a single reference ray parameter of 0.0573 s/km (corresponding to an epicentral distance of 67° for a focal depth of 33 km). The correction is only weakly dependent on upper mantle velocity; a 10% lower velocity in the upper 410 km would result in only 0.2 s less moveout for the P660s phase between ray parameters of 0.0573 and 0.075 s/km, and 0.15 s less moveout for P410s. The average delay for the P660s phase is 4.7 s, with a standard deviation of 1.4 s and a standard error of the mean (estimated by bootstrap resampling of the 40 P660s arrival times) of 0.2 s. The average delay for the P410s phase with respect to the iasp91 model is 7.0 s, with a standard deviation of 3.3 s and a standard error of the mean of 0.5 s. The standard errors of the mean are likely to underestimate the true uncertainties, because our data set may be biased to situations favoring high-amplitude arrivals and there is only limited and uneven spatial coverage of conversion points (Figure 1).

From discontinuity-converted phases observed at a number of primarily continental sites, Stammerl et al. [1992] found that the arrival times of P660s and P410s are positively correlated and co-vary with a slope near unity. Stammerl et al. [1992] inferred that most of the variation in both the P660s and P410s phases (Figure 4b) is contributed by mantle structure above 410 km depth (where the two phases have similar paths). The average arrival times for P660s and P410s for Iceland (Figure 4b) greatly extend the spread of known arrival times for these phases. These average times, however, do not lie on the line of unit slope through the point for iasp91 and the data of Stammerl et al. [1992].

Figure 4. (a) Observed (diamonds) and predicted (dashes) arrival times of P660s and P410s versus ray parameter. The predicted times have been calculated by ray tracing through the modified iasp91 model. Error bars denote estimated picking errors. (b) A comparison of average P660s and P410s arrival times for Iceland (solid square) with those from other geological regions (diamonds) reported by Stammerl et al. [1992]. The error bars for Iceland data are standard errors of the means; those for the other regions are 1-sigma errors in the arrival times of the converted phases obtained from receiver function stacks. The line shown has a slope of 1 and satisfies the predicted times for the (unmodified) iasp91 model (dotted).

Thinner and Hotter Mantle Transition Zone

Because lateral variations in mantle temperature are expected to produce anticorrelated variations in the depths to the 410- and 660-km discontinuities [Bina and Helffrich, 1994], the most likely interpretation of the greater delay in P410s than in P660s is that the depth interval between the two discontinuities is less than the global mean value. To test this suggestion, as well as the alternative possibility that the difference arises from different sets of wave paths for our observations of the two phases, we examined differential times between P660s and P410s on individual receiver functions on which both phases are seen (e.g., NYD in Figure 3). Since the
paths for such paired converted phases above 410 km depth are nearly identical, the differential times reflect the thickness and velocity of the upper mantle transition zone. Referenced to a ray parameter of 0.0573 s/km, the average differential time of 14 pairs is 22.1 s, with a standard deviation of 2.8 s and a standard error of the mean of 0.9 s. This value is consistent with the difference between the average arrival times (21.7 ± 0.7 s; see Figure 4b). The average differential time is 2.3 ± 0.9 s smaller than the value predicted for the *iasp91* model.

The implied transition zone thickness is less than in *iasp91* by 23 ± 9 km (standard error), and points to a deeper than normal 410 km discontinuity, a shallower than average 660 km discontinuity, or both. For comparison, the transition zone thickness we derive beneath Iceland is less by 16 ± 9 km than that obtained by Shearer [1996] from long-period SS precursors in oceanic regions. If the S wave velocity between 410 and 660 km depth beneath Iceland is lower than in the reference models, an even thinner transition zone is implied (a 2% lower velocity in the mantle transition zone would increase the differential travel time by 0.4 s). Recent estimates of the Clapeyron slopes for the phase transitions associated with the 410- and 660-km discontinuities [Bina and Helffrich, 1994] permit us to convert the difference in transition zone thickness to an estimate of the excess temperature of the transition zone beneath Iceland. For Clapeyron slopes of 2.9 MPa/K for the 410-km discontinuity and -2.1 MPa/K for the 660-km discontinuity [Bina and Helffrich, 1994], the lesser mantle transition zone thickness beneath the Iceland region than in the *iasp91* model is consistent with an excess temperature of 180 ± 70 K. Our results thus support the inference that high temperatures associated with mantle upwelling beneath Iceland extend to depths as great as 400-700 km.

The converted phases sample a broad area (Figure 1), so the transition zone thickness obtained here represents an average over a region that may be larger than the Iceland hotspot or the Mid-Atlantic Ridge axial zone. P- and S-wave tomography of the upper mantle beneath Iceland, for instance, indicates that the Iceland plume at depths of 100-400 km has a diameter of no more than about 300 km [Wolfe et al., 1996]. On the basis of numerical models for the penetration of a plume through a mantle phase boundary, however, the zone of anomalous temperatures near the transition zone may be much broader than the diameter of the plume well above or below the transition zone [Davies, 1995].

The excess temperature derived above from the average transition zone thickness beneath the Iceland region is in general agreement with other estimates of the thermal anomaly of the plume at shallower depths. Analyses of basalt chemistry and crustal thickness [e.g., White et al., 1993] suggest that the temperature anomaly beneath Iceland is about 150-200 K at the depth of melt generation (shallower than 200 km). P- and S-wave velocities at 100-400 km depth within the core of the Iceland mantle plume [Wolfe et al., 1996] are consistent with excess temperatures of 200-300 K, although these figures depend strongly on the uncertain conversion between velocities and temperature.

Acknowledgments. We are grateful to R. Kuehnelt for assistance with field operations. C. J. Wolfe for help with data processing, and S. van der Lee for providing software. We also thank J. A. Collins, R. S. Patrick, D. W. Forsyth, G. M. Kent, G. Nolet, J. S. Sacks, P. G. Silver, P. D. Slack, J. C. VanDecar, and C. J. Wolfe for helpful discussions, and A. F. Sheehan, J. E. Vidale, and an anonymous reviewer for constructive reviews. This work was supported by a WH01 Postdoctoral Fellowship and the National Science Foundation under grants EAR-9316117 and OCE-9407697. WH01 contribution 958.

References

(Received April 4, 1996; revised September 5, 1996; accepted September 25, 1996.)

1. I. Th. Bjarnason, Science Institute, Dunhaga 5, University of Iceland, 107 Reykjavik, Iceland
2. G. M. Purdy, Division of Ocean Sciences, National Science Foundation, 4201 Wilson Boulevard, Arlington, VA 22230
3. S. C. Solomon, Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, N.W., Washington, DC 20015
4. Y. Shen, Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543