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Social learning can be fundamental to cohesive group living, and schooling fishes 2 

have proven ideal test subjects for recent work in this field. For many species, both 3 

demographic factors, and interF (and intraF) generational information exchange are considered 4 

vital ingredients in how movement decisions are reached. Yet key information is often 5 

missing on the spatial outcomes of such decisions, and questions concerning how migratory 6 

traditions are influenced by collective memory, densityFdependent and densityFindependent 7 

processes remain open. To explore these issues, we focused on Atlantic herring (Clupea 8 

harengus), a longFlived, denseFschooling species of high commercial importance, noted for 9 

its unpredictable shifts in winter distribution, and developed a series of Bayesian spaceFtime 10 

occurrence models to investigate wintering dynamics over 23 years, using pointFreferenced 11 

fishery and survey records from Icelandic waters. We included covariates reflecting localF12 

scale environmental factors, temporallyFlagged prey biomass and recent fishing activity, and 13 

through an index capturing distributional persistence over time, derived two proxies for 14 

spatial memory of past wintering sites. The previous winter’s occurrence pattern was a strong 15 

predictor of the present pattern, its influence increasing with adult population size. Although 16 

the mechanistic underpinnings of this result remain uncertain, we suggest that a ‘wisdom of 17 

the crowd’ dynamic may be at play, by which navigational accuracy towards traditional 18 

wintering sites improves in larger and/or denser, better synchronized schools. Wintering 19 

herring also preferred warmer, fresher, moderately stratified waters of lower velocity, close to 20 

hotspots of summer zooplankton biomass, our results indicative of heightened environmental 21 

sensitivity in younger cohorts. Incorporating spatiotemporal correlation structure and timeF22 

varying regression coefficients improved model performance, and validation tests on 23 

independent observations oneFyear ahead illustrate the potential of uniting demographic 24 
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animal groups and its relevance for the spatial management of populations.  2 

 3 

��������� collective behaviour, environmental effects, fishery management, INLA, 4 

schooling fishes, spatial memory, temperature, traditions  5 

 6 

��	����	
���7 

Although notions of the ‘animal mind’ remain equivocal (Dawkins 2001) there is now 8 

widespread acceptance that sociality, learning and memory can play important roles in 9 

determining migration patterns and space use in groupFliving animals (Kao et al. 2014, 10 

Merkle et al. 2014). In animal groups, decisions about when to migrate, where to feed, or 11 

how best to escape from predators are often made collectively, as a result of some consensus 12 

being reached among individuals’ preferences (Conradt and Roper 2005). Such preferences 13 

are thought to arise through relatively simple interactions among close neighbours, with 14 

individuals tradingFoff aspects of their own experience and behavioural state with those of 15 

others (Berdahl et al. 2013).  16 

Fishes have proved useful models on which to explore these ideas (Brown 2015 and 17 

references therein), and much empirical and theoretical research effort has been devoted to 18 

understanding the seemingly complex individual behaviours required to maintain school 19 

cohesion and coordinate largeFscale migration (Parrish et al. 2002, Berdahl et al. 2016). 20 

Within fish schools, neighbouring individuals are usually not closely related, and hence selfF21 

interest may shape the nature of groupFlevel movement decisions in which the majority 22 

opinion is often adopted (Couzin et al. 2011). In now rather famous experiments on groups of 23 

threeFspined sticklebacks (Gasterosteus aculeatus), Ward et al. (2008) and Sumpter et al. 24 

(2008) showed that collective movement decisions can follow nonFlinear quorum rules, in 25 
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a threshold number of neighbours that have recently chosen that same route. Through 2 

simulations, and in later experimental work (Ward et al. 2011), these authors also 3 

demonstrated that quorum responses increase decision accuracy, and that larger fish shoals, in 4 

general, make better, faster decisions; sensu ‘the wisdom of crowds’ (Surowiecki 2004). 5 

These patterns appear to emerge across a wide range of taxa and ecological functions 6 

(Sumpter and Pratt 2009, but see Kao and Couzin 2014), and for fish, can manifest in 7 

improved navigation and capacity to sense dynamic environmental gradients, among other 8 

benefits (Berdahl et al. 2013, 2016).   9 

Quorum responses may also be initiated, and consensus achieved, through leadership 10 

by a minority of more ‘experienced’ individuals, or those with strongly held preferences 11 

(Reebs 2000, Huse et al. 2002). Often, only a knowledgeable few are needed to produce 12 

highly accurate movement decisions (Reebs 2000); however, a complete absence of such 13 

leaders may result in poor navigational accuracy or lack of directionality (Helfman and 14 

Schultz 1984). These observations, in conjunction with growing recognition of the cognitive 15 

abilities of groupFliving fishes (Hotta et al. 2015), give credence to theories purporting the 16 

existence of spatial learning and tradition formation in some species (see Brown 2015 for a 17 

review), in which information on previouslyFused migration routes is thought to be passed 18 

down from older, experienced fish to younger, naïve ones, communicated within cohorts and 19 

remembered (Corten 1993). Further support for such ideas derives from evidence for timeF20 

place learning in fishes (e.g. Brännäs 2014), and experimental demonstrations of highly 21 

accurate shortF and longFterm memory (Brown 2001, Hotta et al. 2015).  22 

These phenomena may be particularly relevant for longFlived, schooling species like 23 

Atlantic herring (Clupea harengus, hereafter ‘herring’) (WynneFEdwards 1962). Herring are 24 

widely distributed across the North Atlantic Ocean and support several important commercial 25 
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1982, Huse 2016) perhaps best described by a metapopulation model (McQuinn 1997), with 2 

individuals within local populations forming denselyFpacked, mixedFage schools for much of 3 

the year and undertaking largeFscale migrations between spawning, feeding and 4 

overwintering areas for which strong fidelity is exhibited in most, but not all years (Fernö et 5 

al. 1998, Langård et al. 2014). Several hypotheses have been advanced to explain this 6 

fluctuating ‘conservatism’ in migratory strategies (Jakobsson 1969, Corten 2002), with a 7 

particular focus in recent times on the striking shifts in winter distribution observed 8 

occasionally (Óskarsson et al. 2009, Huse et al. 2010). Current thinking favours aspects of 9 

McQuinn’s ‘adopted migrant hypothesis’ (McQuinn 1997) akin to Petitgas et al.’s 10 

‘entrainment hypothesis’ (Petitgas et al. 2006). When tuned to wintering herring, these 11 

hypotheses contend that naïve, firstFtime winterers (i.e. age 3) learn about traditional 12 

wintering areas by schooling with older, experienced winterers (i.e. age 4 and older, hereafter 13 

age 4+), typically returning to these same areas subsequently (Höglund 1955). However, 14 

when the learning process is disrupted during a stock collapse, when age classes are 15 

segregated, or when strong recruitment leads to numerical domination by naïve fish, dramatic 16 

shifts in winter distribution may occur, suggesting a break in tradition when teachers are few 17 

(Corten 1999, 2002, Huse et al. 2002, 2010). Understanding why and when distribution shifts 18 

might occur is clearly interesting for ecologists, fishers and fisheries managers alike. 19 

However, spatiallyFresolved information on the outcomes of such shifts (i.e. resultant spatial 20 

distribution patterns) is currently lacking – a situation that hinders development of spatial 21 

management strategies that maximize economic and conservation benefits. Specifically, two 22 

longstanding questions remain: 1) can we predict where herring decide to spend the winter, 23 

and 2) does tradition and/or spatial memory drive these decisions, or are other factors at play?  24 
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(SSI) to quantify the persistence or transience in spatial distribution between one year t, and 2 

the previous year tF1, and demonstrate its utility in describing the recent wintering patterns of 3 

Icelandic summer spawning (ISS) herring. In our example, the SSI operates at the scale of the 4 

entire wintering population, and we consider it a proxy for the level of geographic attachment 5 

to, or spatial memory for, areas occupied previously. Next, using the variables created 6 

through the SSI (and others), we develop a series of spaceFtime regression models for 7 

wintering ISS herring spanning a 23Fyear time series of fishery and acoustic survey data. We 8 

are particularly interested in the role of spatial memory in shaping distribution patterns, and 9 

present a Bayesian mixedFmodelling framework based on stochastic partial differential 10 

equations (SPDE) (Lindgren et al. 2011) to disentangle its influence from factors representing 11 

the dynamic and static environment, prey availability during the preFwintering feeding 12 

period, the magnitude of recent fishing effort and densityFdependence.  13 

Our specific hypotheses are as follows. 1) We predict that spatial memory for 14 

previous wintering areas would be a key driver of occurrence patterns in the present winter, 15 

and that its relative influence across the time series may have a demographic basis. That is, 16 

spatial memory would be strongest in years where more experienced individuals are present 17 

in the wintering population, or when overall adult population size is large. 2) As our study 18 

region is near a range edge for herring, we also expect that environmental gradients (e.g. 19 

temperature, salinity) would be influential. 3) Moreover, when population size is small, or 20 

naïve fish outnumber experienced adults, we hypothesize that environmental and/or other 21 

densityFindependent processes (e.g. prey availability, fishing pressure) may become 22 

unmasked, contributing more to shaping occurrence patterns. In addressing these hypotheses, 23 

we explore evidence for temporal nonFstationarity in model parameters, and test if these 24 
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time series, and to heldFout observations oneFyear ahead. 2 

�3 

 �	�
���������	������4 

Fishery and acoustic survey data 5 

We use two pointFreferenced datasets comprising T = 23 years of fishery and acoustic 6 

survey records for our analysis. Logbook data from the autumn/winter purse seine fishery for 7 

ISS herring were collated over the period 1991_1992 to 2013_2014. The fishery is highly 8 

selective for adult herring (i.e. age 3+), with effort centred on the wintering grounds between 9 

October and January each year. We refer to this period as a fishing ‘year’. At the outset of 10 

each fishing year, extensive searches for wintering schools are made by the fishing fleet of ~ 11 

15 vessels, covering the full (known) distribution of the stock (see Supplementary material 12 

Appendix 1 for a discussion of sampling coverage). Our logbook dataset provides 13 

information on each fishing event, defined here as an individual purse seine net shot, 14 

including the date, location, and biomass of herring captured c (tonnes) per shot. Due to the 15 

dependence of c on factors such as fisher behaviour and vessel capabilities (Thorlindsson 16 

1988), we simplified the biomass information to occurrence/nonFoccurrence records, and 17 

retained only confirmed occurrences (i.e. where c > 0 tonnes). Although several instances of 18 

zero catch were observed, we excluded these records as c = 0 is often a function of gear 19 

failure, and not the absence of herring per�se (authors’ personal observation).  20 

We augmented the logbook data with fisheryFindependent acoustic survey records 21 

from annual cruises conducted by the Marine Research Institute (MRI), Reykjavík, between 22 

1991_1992 and 2013_2014. Surveys were targeted towards wintering herring and ran 23 

between October and January each year, spanning the full wintering phase and matching the 24 

timing of fishing activities. Survey tracks were not consistent across years; however, spatial 25 
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biomass estimates s (tonnes), as calculated from echosounder backscatter strength 2 

measurements, were aggregated at 2 km resolution, forming a single survey event, referenced 3 

by date and location.  4 

Data on ageFclass structure per fishing/survey event were unavailable. Hence, our 5 

models focused on the entire adult component of the stock (i.e. age 3+) which form mixedF6 

age schools on the wintering grounds. This also meant that we could not determine which age 7 

classes contributed to s, estimates of which were likely influenced by a substantial, and 8 

unknown proportion of juveniles (i.e. age 0 to 2) in some regions. For this reason, we 9 

extracted only zero biomass records from the survey data (i.e. s = 0) and consider these true 10 

absences. Detection for both fishery and survey datasets is essentially perfect, 11 

notwithstanding potential recording errors (see Supplementary material Appendix 1). Our 12 

dataset, comprising n = 48,724 occurrence/absence records, is visualized in Fig. 1. Wintering 13 

patterns showed marked stability spatially across several consecutive years throughout the 14 

23Fyear time series, interspersed by occasional, dramatic distributional shifts (Fig. 1a–c). 15 

Occurrence records were characterized by strong spatial structuring within years (explored 16 

through correlograms), and dense clustering east, west and south of Iceland (Fig. 1d). 17 

 18 

Capturing shifting distributions: a spatial similarity index (SSI) 19 

To more formally quantify the spatial and temporal patterns of wintering we 20 

constructed the SSI, a metric that unlike those designed for standardized survey data (see 21 

Woillez et al. 2007) is most useful when fishing/survey locations are inconsistent in space 22 

and time, and/or when abundance data are not available (or uncertain), as was the case here. 23 

Calculation is based around two georeferenced variables that map 1) the area of occurrence, 24 

denoted distribt, and 2) the density of occurrences, denoted countst, in a given year t, with 25 
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countstF1). We refer readers to Fig. 2a–e and Supplementary material Appendix 2.1, 2.2 for 2 

calculation details, and Appendix 2.3 for R code).  3 

 4 

Modelling winter occurrence patterns 5 

Covariates for estimation and prediction 6 

We took a hypothesisFdriven approach to the inclusion of covariates that capture the 7 

strength of spatial memory for previous wintering areas (i.e. spatiallyFexplicit representations 8 

of the SSI), features of the dynamic and static environment, the magnitude of recent fishing 9 

activity and prey availability during the previous summer (see Table 1 for details, and  10 

Supplementary material Appendix 3 for derivation). Covariates were either constructed, 11 

computed from the CODE ocean model (Logemann et al. 2013) or extracted from other 12 

databases (GEBCO, <www.gebco.net>) at varying spatial and temporal scales (Table 1). 13 

Given the importance of scale in drawing conclusions about ecological systems (Levin 1992), 14 

we balanced ecological knowledge with model resolution in an attempt to select scales for 15 

each covariate that best match the processes acting on individual herring schools at the time 16 

of capture or survey (Mackinson et al. 1999, see also Table 1 and Supplementary material 17 

Appendix 3). Rasters of each covariate were created at the desired scales (see Supplementary 18 

material Appendix 3, Fig. A1–A5 for examples), and data for each occurrence or absence 19 

record extracted for use in model fitting. To facilitate interpretation of regression coefficients, 20 

all continuous inputs were centred and scaled to have mean = 0, sd = 0.5 prior to analysis, 21 

with binary inputs centred to have mean = 0 (Gelman 2008). To avoid issues related to 22 

collinearity (Dormann et al. 2013), we visualized covariate associations through scatterplots 23 

and calculated pairwise correlation coefficients (Pearson’s r). If |r| > 0.7, we prioritized 24 

ecological reasoning in deciding which covariate to retain. Only bottom_depth and 25 
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dist_to_shore were highly collinear (r = F0.78). As bathymetric features may act directly to 1 

structure herring school distribution (Maravelias et al. 2000a), we chose to remove 2 

dist_to_shore from all further analyses. Prior to model fitting, all covariates were screened 3 

graphically for potentially influential values, and data tabulated to test for any separation 4 

issues (Zorn 2005). The distributions of fish_magnitude and countstF1 were characterized by 5 

many zeros and some high values. Each of these values was checked and found to be 6 

measured accurately, and as no clear outliers were detected, all records were retained for 7 

modelling.  8 

 9 

Model specification 10 

As residual correlation patterns were of direct interest, we considered models that 11 

incorporate these patterns explicitly. Let ce,i,t be the total catch (tonnes), and se,i,t the estimated 12 

biomass (tonnes) of an individual fishing/survey event respectively, e, at location i, in year t. 13 

We define a new variable, ye,i,t representing observed herring occurrence for each event, 14 

location and year (Eq. 1). 15 

 16 

ye,i,t  = �1,
0,
				 if ce,i,t > 0 tonnes     

if se,i,t = 0
											(1) 17 

 18 

As detection probability equals one, ye,i,t also represents the true occurrence state for 19 

each observation. Our interest was in estimating the probability of herring occurrenceψ, for 20 

event e, at location i, in year t, so we treated each event as an independent trial and modelled 21 

ψe,i,t with a binomial generalized linear mixed model (GLMM) and logit link (Eq. 2, 3).   22 

 23 

ye,i,t ~ Bernoulli(ψe,i,t)  for e = 1, …, nt; i = 1, …, nt; t = 2, …, T          (2)  24 

logit(ψe.i,t) = α + spatial memory + dynamic environment + static environment  25 
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  + predators + prey + β12yeart + ωi,t          (3) 1 

spatial memory = β1distribi,tF1 + β2countsi,tF1  2 

dynamic environment = β3SSTe,i,t + β4SSSe,i,t + β5PEAe,i,t + β6changee,i,t + β7current_vele,i,t  3 

static environment = β8bottom_depthi + β9slopei  4 

predators = β10fish_magnitudee,i,t 5 

prey = β11CF_Augi,t 6 

 7 

Eq. 3 represents the full stationary model, where all regression coefficients are static in space 8 

and time, α is the intercept and the β’s quantify the linear effects of covariates reflecting 9 

spatial memory, the dynamic and static environment, predators and prey on ψ (see Table 1). 10 

For models with no spatiotemporal random field (i.e. ‘noFspace’ and ‘timeFindep’ forms of 11 

ωi,t – see Spatiotemporal random effects for details) we included a fixed factor for year. This 12 

categorical term captures the overall temporal pattern, common to all locations, and allows 13 

for yearFtoFyear fluctuation in occurrence probabilities without assuming a predictable trend 14 

among time points.  15 

To explore potential nonFlinearity in covariate effects, we fitted models that 1) assume 16 

linear trends for all covariates, 2) include quadratic terms for all environmental covariates, 17 

and 3) treat each environmental covariate as a smooth term, represented by a penalized 18 

regression spline with two knots (Crainiceanu et al. 2005, see Supplementary material 19 

Appendix 4 for R code). These specifications form a gradient of increasing flexibility in 20 

occurrenceFcovariate relationships, whilst maintaining ecologically realistic functional forms. 21 

To control against overfitting, yet maximize biological inference on our hypotheses, we offset 22 

this flexibility by specifying additive terms only, and not considering firstF or higherForder 23 

interactions in our models.     24 

 25 
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Spatiotemporal random effects 1 

In Eq. 3, ωi,t is the spatiotemporal random effect, which accounts for residual spatial 2 

(and temporal) patterns not explained by the covariates. This term is spatially explicit and 3 

estimated for each location i. Three forms of ωi,t were tested: 1) where ωi,t = 0 (i.e. the ‘noF4 

space’ case); 2) where ωi,t is a temporally independent realization of the spatial field for each 5 

year (i.e. the ‘timeFindep’ case); and 3) where ωi,t follows a 1st order autoregressive (ar1) 6 

process allowing correlation between years (i.e. the ‘timeFcorr’ case) (Eq. 4), 7 

 8 

ωi,t = aωi,t −1 + ξi,t  ξi,t  
iid~		N(0, Σ)    for t = 2, …, T  (4) 9 

 10 

where the a coefficient denotes the temporal dependence in ωi,t, with |a| < 1. When a = 0, ξi,t 11 

is the sole representation of the spatial field for year t (i.e. the ‘timeFindep’ case – see Ono et 12 

al. (2016) for a similar approach). If a ≠ 0, the spatiotemporal field in t depends on the 13 

intensity and pattern of the field in t�1 (i.e. the ‘timeFcorr’ case – see Ward et al. (2015) for an 14 

example). In this latter instance, the realization of the spatial process for t = 1, ωi,1, is derived 15 

from the stationary distribution N(0, Σ/(1Fa2)) (see Cameletti et al. 2013 for details). 16 

In both time_indep and time_corr cases, ξi,t is a zero mean Gaussian random field 17 

assumed to be independent in time and defined by a Matérn covariance function (Eq. 5). 18 

 19 

Cov �ξ
i,t

,ξ
i',t'
�= �0,

Σi,i'

      if t ≠ t'
,     if t = t'

                 (5) 

	
where i ≠ i' and, 20 

 21 

Page 13 of 113 Ecography



For Review
 O

nly

13 

 

∑i,i' =	 σω
	2

Γ(ν)2νF1 (κ‖i�i'‖)ν
Κν(κ‖i�i'‖)												(6) 

 

 This is a representation of a Gaussian Markov random field (GMRF). In Eq. 6, ∑i,i' is 1 

the covariance between locations i  and i'. Γ is the gamma function and v is a smoothing 2 

parameter equal to α – d/2, where α governs the smoothness of the random field, and d is the 3 

number of dimensions in the model. We set α = 2 and d = 2, hence v = 1. κ is a scaling 4 

parameter associated with the practical range ρ  = 
√8

� , which represents the distance at which 5 

spatial correlation reduces to ~ 0.13, and Kv is the modified Bessel function of the second 6 

order. With these parameter values set, the marginal variance of the GMRF, σω
	2 is given by:F 7 

 8 

σω
	2 = 

1

4πκ2τ2 							(7) 

 9 

where τ in Eq. 7 is the local variance parameter.  10 

 11 

General approach 12 

First, we considered a suite of stationary models that assume that the response of the 13 

herring population to each covariate is static across the time series (see Eq. 3). We began with 14 

full models including all covariates, specified as linear, quadratic or spline terms, a fixed year 15 

effect and all forms of the spatiotemporal random component ωi,t  (i.e. models s1–s15, Table 16 

2). This approach allowed us to evaluate different randomFeffect structures, whilst gaining an 17 

initial picture of the nature and magnitude of covariate effects (Zuur et al. 2009). After 18 

accounting for the overall spatial and temporal trends, the distribt�1 covariate was found to be 19 

strongly influential, exhibiting positive associations with ψ in all cases (see Fig. 3, 20 

Supplementary material Appendix 7, Table A1). As abrupt shifts in herring winter 21 
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distribution occurred periodically, interrupting phases of spatial continuity (Fig. 1, 2), we 1 

considered that the relative importance of distribt�1 may also vary in time and be a key 2 

indicator of the degree of temporal correlation in winter occurrence patterns. We explored 3 

this possibility by fitting a series of partly non�stationary models (i.e. models part_ns1–4 

part_ns9, Table 2), allowing regression coefficients for distribt�1 to be represented by a timeF5 

ordered vector with elements that vary by year according to 1st order random walk (rw1) 6 

dynamics. The rw1 models were defined by a Gaussian distribution N(0, prec!), where prec 7 

is the precision parameter assigned a Gamma(1, 5eF05) prior, and !�is a fixed structure 8 

matrix (see Supplementary material Appendix 5 for details on alternative model and prior 9 

specifications considered). Finally, we fitted a series of fully non�stationary models in which 10 

coefficients for all fixed effects could vary annually with the same rw1 specification (i.e. 11 

models full_ns1–full_ns9, Table 2). These non�stationary models enabled us to explore 12 

associations between covariate influence and changes in population demographics in the ISS 13 

herring stock over time, whilst naturally handling temporal dependence among adjacent years 14 

(see Supplementary material Appendix 4 for R code).  15 

 16 

Model fitting details 17 

Models were fitted in RFINLA (Rue et al. 2009) using the SPDE approach (Lindgren 18 

et al. 2011). We grouped models by stationarity level for ease of explanation, and summarize 19 

key details in Table 2 and Supplementary material Appendix 7, Table A2. Prior to fitting, we 20 

created a triangulated mesh upon which to build the GMRFs, covering a spatial domain that 21 

encompassed all of our observations (see Krainski et al. 2016 for details, and Supplementary 22 

material Appendix 4 for R code). We initially used a Gaussian approximation strategy to 23 

enable fast model comparison. We then refitted all models using simplified Laplace 24 

approximation – providing a compromise between correcting the Gaussian approximation for 25 
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errors in location and/or skewness (Rue et al. 2009) whilst retaining good computational 1 

properties. Vague normal priors were assigned to all fixed effects N(0, 1000), and the 2 

intercept N(0, ∞). To assess sensitivity to prior choice, we refitted all stationary ‘noFspace’ 3 

models using weakly informative Cauchy priors with mean = 0 and scale = 2.5 for the fixed 4 

effects, and 10 for the intercept using the ‘bayesglm’ function in the ‘arm’ package in R 5 

(Gelman et al. 2008). Both prior specifications produced stable, highly congruent posterior 6 

estimates, so we proceeded using normal priors only. Priors for the SPDE model hyperF7 

parameters (a, κ, τ), the latter two defining ρ and σω
	2, are provided in Supplementary material 8 

Appendix 5.  9 

 10 

Assessing fit and predictive performance�11 

We calculated the deviance information criterion (DIC) (Spiegelhalter et al. 2002) and 12 

a series of metrics based on the conditional predictive ordinate (CPO) (Pettit 1990) to check 13 

model fit and assess predictive performance. For each model, we used the CPOe,i,t  given by 14 

π(ye,i,t|y�(e,i,t)), which represents the crossFvalidated (cv) ‘leaveFoneFout’ predictive density at 15 

observation ye,i,t with the ye,i,tth observation removed, to derive the mean logarithmic (log) 16 

score (Gneiting and Rafferty 2007), a measure of predictive quality, and the cv Brier score 17 

(i.e. mean prediction error), a measure of model goodnessFofFfit reflecting both 18 

discriminatory ability and calibration that evaluates the degree of correspondence between 19 

fitted probabilities and observed binary outcomes (Schmid and Griffith 2005, Roos and Held 20 

2011). Lower values on both scores reflect a better model, with Brier scores interpreted in 21 

relation to reference values that are a function of sampling prevalence (see Held et al. 2012 22 

for an example). As an additional calibration check for outFofFsample predictions, we 23 

examined histograms of probability integral transform (PIT) values for departures from 24 

uniformity (Dawid 1984, Gneiting et al. 2007, Held et al. 2010). Despite its known 25 
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deficiencies (Lobo et al. 2008), given perfect detection in our data, the similarity in both 1 

geographic and environmental space in model fitting and prediction domains, and the explicit 2 

consideration of spatiotemporal error structure in our modelling approach, we also calculated 3 

the AUC for each model.  4 

 5 

Covariate importance and model selection 6 

After comparing full models using the aforementioned criteria and determining an 7 

optimal structure for ωi,t, we used the bestFperforming full stationary model (including the 8 

fixed year effect and ωi,t) to estimate covariate importance and find an appropriate fixedF9 

effect structure. We first examined parameter estimates and 95% credible intervals (CIs) for 10 

each covariate. Next, we dropped one covariate at a time from the full model (i.e. singleFterm 11 

deletion) and compared the DIC, mean log score and Brier score of the reduced models with 12 

the full model, and a baseline model comprising only an intercept, yeart and the optimal 13 

structure for ωi,t (see Illian et al. 2013 for a similar approach). 14 

 15 

Correlation among covariates and demographic parameters 16 

To examine associations between covariate importance and population demographics, 17 

we calculated Pearson’s r coefficients between time series of posterior means for the linear 18 

term for influential covariates (i.e. those with 95% CIs not overlapping 0 in at least one year) 19 

in the best non�stationary models, and nine demographic parameters for the ISS stock derived 20 

from annual stock assessments coordinated by The International Council for the Exploration 21 

of the Sea (ICES). Calculations were made on the first 18, 19, 20, 21, and 22 years of data. 22 

Demographic parameters considered include three ratios of the numbers (millions) of naïve, 23 

firstFtime winterers to older, experienced individuals (i.e. age3:age4to7, age3:age8to13, 24 

age3:age4+), spawning stock biomass (SSB – ’000 tonnes), spawning stock numbers (SSN – 25 
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millions), numbers (millions) of young experienced individuals (n age4to7), old experienced 1 

individuals (n age8to13), and all experienced individuals (n age4+), and mean age (years) of 2 

the spawning stock (mean age). 3 

 4 

Spatial prediction and validation 5 

An area of interest for spatial prediction was defined within the extent of the fishery 6 

and survey data, covering the entire distributional range of ISS herring. The area, spanning 7 

62.475 to 67.975°N and 9.008 to 28.008°W, was divided into 0.1° longitude × 0.05° latitude 8 

(~5 × 5 km) grid cells, matching the resolution of several covariates used in model building 9 

and providing a scale useful for fishery management (see Supplementary material Appendix 10 

3, 6). Our interest was in predicting herring occurrence probability on an annual timeFstep. 11 

Hence, maps were created for each covariate based on mean grid cell values calculated across 12 

each year. The range of covariate values in the prediction space was monitored, and closely 13 

matched the values used for model fitting (Table 1).  14 

The different classes of models we built have different utility regarding prediction. 15 

The stationary models are very general, making them well suited for predictions to randomly 16 

selected data within the time series or for longFterm forecasts. By contrast, the fully non�17 

stationary models, with their annuallyFvarying coefficients, are less flexible, but useful in 18 

mapping occurrence probabilities for specific years within the time series. The task of shortF19 

term forecasting (e.g. to t+1) befits the partly non�stationary models, which occupy a middle 20 

ground in terms of generality. For these reasons, we used the best performing fully non�21 

stationary model to generate annual prediction maps within the time series. Predictions were 22 

made for the last 22 years (i.e. 1992_93 to 2013_14), but we present results for four years 23 

(i.e. 1994_95, 2001_02, 2007_08, 2013_14) representative of the different wintering phases. 24 

Implementation is straightforward in RFINLA (see Supplementary material Appendix 4 for R 25 
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code). For predictions to t+1 we used the best partly non�stationary specification. We ran 1 

validation tests on heldFout observations by building models for the first 18, 19, 20 and 21 2 

years of data, and testing how well the predicted probabilities of occurrence match the 3 

observations in the 19th, 20th, 21st, and 22nd years, respectively. For this, we needed to 4 

estimate the distribt�1 regression coefficient for t+1. We reasoned that if strong correlations 5 

exist between the distribt�1 regression coefficients and one or more demographic parameters, 6 

and we can estimate these demographic parameter(s) for t+1, then prediction of the distribt�1 7 

regression coefficient in t+1 may be possible. We summarize the main findings in the Results 8 

section, but provide full annotated R code (see Supplementary material Appendix 4) and 9 

explanatory notes in Appendix 6. All analyses were run in R version 3.2.2 (R Development 10 

Core Team), and datasets and code are available from the Dryad Digital Repository 11 

<http://datadryad.org/>. 12 

 13 

!����	��14 

Spatial similarity across years 15 

The SSI accurately reproduced the temporal dynamics of wintering patterns across 16 

our time series. The spatial persistence of the distribution during the ‘East’ phase (Fig. 1a) 17 

was reflected in relatively high SSI values, with the northward shift witnessed between 18 

1994_95 and 1997_98 forcing a gradual reduction in the index (Fig. 2). SSI values were 19 

lower over the following decade. This is a result of a patchier distribution during these years 20 

(Fig. 1b), although yearFtoFyear consistency was sometimes observed (e.g. between 2001_02 21 

and 2002_03). From 2007_08 until 2012_13, the majority of the adult population wintered 22 

inshore, in fjords on Iceland’s west coast (Fig. 1c). Strong fidelity to these fjords was 23 

observed during this period, resulting in high SSI values. The SSI dropped in 2013_14, as 24 
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younger cohorts established a new wintering area off the southeast coast (Óskarsson and 1 

Reynisson 2014).  2 

 3 

Model performance 4 

Our models generally fitted the data well and showed low mean prediction error, with 5 

crossFvalidated Brier scores falling below the prevalenceFbased reference value of 0.138 for 6 

all models incorporating spatiotemporal random structure (Table 2). Discriminatory ability 7 

was high, with AUC values > 0.9 in all cases, and Gaussian and simplified Laplace 8 

approximation strategies were in full agreement regarding the bestFperforming models (Table 9 

2, Supplementary material Appendix 7, Table A2). The inclusion of spatial and temporal 10 

structure was beneficial, and results from the stationary models suggest that independent 11 

realizations of the spatial random field (i.e. timeFindep ωi,t) and a fixed year effect (i.e. yeart) 12 

more appropriately describe the data than a smooth yearFtoFyear transition in either of these 13 

processes (i.e. timeFcorr ωi,t) (Table 2). Allowing fixed effect parameters to vary in time 14 

through the non�stationary models improved goodnessFofFfit and predictive capacity over the 15 

stationary cases, and there was stronger support for models allowing some nonFlinearity in 16 

occurrenceFcovariate relationships (i.e. quadratic terms for environmental covariates) (Table 17 

2).  18 

 19 

Covariate importance and model selection 20 

The addition of covariates improved model performance. Although posterior 95% CIs 21 

overlapped 0 in some cases (Supplementary material Appendix 7, Table A1), backwards 22 

selection on the best stationary model (s9) indicated that most covariates added some 23 

information and none detrimentally affected predictive capacity (Supplementary material 24 

Page 20 of 113Ecography



For Review
 O

nly

�4 

 

2??����E�%����9���2�J��'�����������0��������A������������������)!���������!����)��)!��7���1 

inference. 2 

 3 

Nature of occurrence�covariate relationships 4 

Positive associations were found between distribtF1 and ψ in all models F this pattern 5 

persisting when spatially and temporally structured terms were included (Fig. 3, 6 

Supplementary material Appendix 7, Table A1). This result supports the existence of a strong 7 

connection with previouslyFused wintering sites in most years. The best partly non�stationary 8 

model (part_ns5) outperformed s9 (Table 2), suggesting that the predictive ability of the 9 

distribtF1 covariate may vary in time. Posterior mean estimates for distribtF1 in the part_ns5 10 

model were always positive however, and 95% CIs never overlapped 0 (Fig. 3f). This model 11 

also assumes that the response of the wintering population to all other covariates is static in 12 

time. We visualized the nature of these associations by plotting the marginal effect for 13 

covariates with posterior 95% CIs that did not overlap 0 (Fig. 3a–e, see Supplementary 14 

material Appendix 7, Fig. A7 for plots of all other covariates).  15 

Several localFscale environmental variables were found to be important. Occurrence 16 

probability increased in warmer, fresher and moderately stratified waters (Fig. 3a–c), in lower 17 

velocity zones (Fig. 3d), and in areas near high zooplankton (i.e. adult C. finmarchicus) 18 

biomass in the August preceding wintering (Fig. 3e). Notably, dependence on the density of 19 

occurrence records from the previous year, as captured by countstF1, was low. Similarly, the 20 

vertical temperature gradient, bathymetric features, and the magnitude of recent fishing 21 

activity all had little impact (Fig. A7, see Supplementary material Appendix 7, Table A1).  22 

These patterns were further investigated in the full_ns5 model – the best model 23 

overall – in which all fixed effects could vary by year. Again, distribtF1 was influential; 24 

however, the increased number of random effects in the full_ns5 model acted to dampen its 25 
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effect (Fig. 3g–i). The importance of SST, SSS and PEA shifted in time, with these 1 

covariates’ influence increasing during the early to midF2000s when the wintering population 2 

was patchily distributed around Iceland (Fig. 1, 3h). Estimates for fish_magnitude were 3 

generally small, with large variance (Fig. 3i). Covariates describing bathymetric features 4 

showed no strong trends over time, and CF_Aug exhibited a small positive association with ψ 5 

in some years (Fig. 3i). 6 

 7 

Correlations among covariates and demographic parameters 8 

The importance of the distribtF1 covariate was found to increase most strongly with 9 

adult population size (SSN) in both the part_ns5 and full_ns5 models, with positive 10 

associations also observed with n age4to7, n age 4+ and SSB (Table 3). Focussing on the 11 

full_ns5 model, a stronger positive effect of SST was detected when the ratio of naïve : older, 12 

experienced individuals (age3:age8to13) increased (Table 3). The posterior mean estimates 13 

for SSS decreased as SSN and SSB increased, and coefficients for PEA were negatively 14 

associated with n age8to13. All other correlations were nonFsignificant.  15 

 16 

Spatial prediction within the time series 17 

Spatial predictions of occurrence probabilities derived from the full_ns5 model 18 

showed high concordance with the observations (Fig. 4). The model accurately predicted the 19 

occurrence patterns in years when the wintering population was confined to small regions of 20 

the prediction space (e.g. 2007_08), when it was spread out (e.g. 1994_95), when it was 21 

patchily distributed (e.g. 2001_02), and during distributional shifts (e.g. 2007_08, 2013_14) 22 

(Fig. 4a). For the four representative years considered here, model predictions were well 23 

calibrated, with small mean squared differences between predicted probabilities and actual 24 

observations (Brier score: 1994_95 = 0.162, 2001_02 = 0.132, 2007_08 = 0.152, 2013_14 = 25 
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4�168, all below reference values), and showed nearFperfect discrimination between observed 1 

occurrences and absences (AUC: 1994_95 = 0.998, 2001_02 = 0.994, 2007_08 = 0.999, 2 

2013_14 = 0.999). 3 

Data were scarce in some years (e.g. 1994_95, 2013_14), with large areas of the 4 

prediction space containing few observations. The SPDE approach handles this by evaluating 5 

the continuous spatial or spatiotemporal random effects as discretely indexed GMRFs, 6 

allowing predictions to be made to unsampled locations whilst robustly estimating the 7 

uncertainty of these predictions. The sd of ψ was highest in areas where occurrence and 8 

absence records were close in geographic space (Fig. 4b), likely due to difficulties in 9 

resolving such a steep gradient of probabilities over such short spatial scales. Variance was 10 

low and uniform in unsampled regions.  11 

Inclusion of spatiotemporal random effects (ω) improved model fit and predictive 12 

performance (Table 2), indicating that the covariate components were not overfitted, but also 13 

that factors important in shaping ψ have been missed, and/or were occurring at scales that our 14 

models could not resolve. The patterns in ω (Fig. 4c) reveal the presence of spatial 15 

dependence at relatively large scales (i.e. 100’s of km), confirmed by the posterior estimates 16 

for the practical range ρ (Table 3), and likely reflect rapid changes in school shape, size and 17 

structure that our models did not capture (Pitcher et al. 1996, Nøttestad and Axelson 1999, 18 

Makris et al. 2009). The trends observed in the random field sd’s are a function of data 19 

coverage, with uncertainty increasing with distance from the observations (Fig. 4d). 20 

 21 

Predicting occurrence patterns in t+1 22 

We found strong positive correlations between time series of SSN and posterior mean 23 

estimates of the distribt�1 covariate in the partly non�stationary models (i.e. part_ns5 24 

specification) fitted to the first 18, 19, 20 and 21 years of data (Pearson’s r mean = 0.623, sd 25 
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Y�4�127) (Fig. 5). Given this degree of correlation, we then were able to predict the posterior 1 

mean estimate for distribt�1 in t+1 from the estimate of SSN in t+1 (obtained from MRI 2 

surveys – Óskarsson and Reynisson 2014). This allowed us to validate our models on 3 

withheld observations oneFyear ahead, and assess prediction accuracy for the last four years 4 

of the time series (see Supplementary material Appendix 6 for details). Predictive 5 

performance was high in three out of the four years (19th year: Brier score = 0.142, AUC = 6 

0.961; 20th year: Brier score = 0.137, AUC = 0.976; 21st year: Brier score = 0.128, AUC = 7 

0.976), but dropped sharply in the last year (22nd year: Brier score = 0.194, AUC = 0.588) 8 

concurrent with a reduction in correlation strength between time series of SSN and distribtF1 9 

coefficients (Fig. 5).   10 

 11 

"
�����
���12 

Our study on ISS herring heeds recent calls for a greater focus on the role of 13 

collective learning in shaping animal distributions (Keith and Bull 2017), whilst 14 

demonstrating that social cues may not necessarily act alone. Consistent with our 15 

expectations, we found that the distribtF1 covariate, describing the previous winter’s 16 

occurrence pattern, imparted strong influence on the present pattern, the magnitude of its 17 

effect increasing with adult population size. Moreover, we showed that localFscale 18 

environmental and temporallyFlagged preyFrelated factors were sometimes important; our 19 

results suggesting a heightened sensitivity of younger age classes to some environmental 20 

effects (e.g. SST). Importantly, the accuracy of our predictions to t+1 highlights the potential 21 

of combining demographic time series with nonFstationary models in exploring evidence for 22 

collective memory in fishes and other groupFliving animals, and in guiding spatial 23 

management decisions. 24 

 25 
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The multiple drivers of spatial distribution 1 

A variety of intrinsic and extrinsic controls, often working synergistically, are known 2 

to structure marine fish distributions (Planque et al. 2011). For example, the use of visual 3 

stimuli to locate landmarks is well documented (Silveira et al. 2015), whilst geomagnetic and 4 

olfactory cues provide important compasses for migrating salmon (Putman et al. 2013). 5 

Furthermore, environmental gradients, predators, competitors and prey, population 6 

demographics and spatial memory can all be influential (Perry et al. 2005, Rindorf and Lewy 7 

2006, Loots et al. 2010). Many of these factors appear relevant to herring, and work spanning 8 

many decades has demonstrated the importance of bottomFup (e.g. climate, localFscale 9 

environment, zooplankton biomass), topFdown (e.g. predation) and demographic processes in 10 

structuring the species’ population dynamics (e.g. Lindegren et al. 2011, see Huse 2016 for a 11 

review). Despite these efforts, the question of what governs where herring spend the winter, a 12 

nonFfeeding period during which schools are heavily targeted by commercial fisheries, has 13 

remained largely unresolved. We think that this may be a consequence of three factors. 1) 14 

High environmental flexibility in wintering populations (see Fig. 3a–d, Supplementary 15 

material Appendix 7, Fig. A6) – a trait potentially explaining the marked geographic 16 

plasticity in wintering locations observed previously (Óskarsson et al. 2009, Huse et al. 17 

2010). 2) The lack of proximate feeding and spawning cues, or competitive forces acting 18 

during the winter months – making underlying mechanisms difficult to pinpoint, and 3) 19 

mismatches between the true scale of processes acting on wintering populations and the 20 

scales captured by previous studies.  21 

In designing our study, we felt that progress could be made by viewing the realized 22 

winter distribution as the result of two behavioural states: (state 1) migrating to, and 23 

colonizing wintering areas; and (state 2) living within these areas following colonization; and 24 

that herring may be tuned to different stimuli in each. In state 1, decisions must be made on 25 
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probability of following previouslyFused routes increasing with the proportion of experienced 2 

individuals present in the stock, and contingent upon informationFsharing opportunities 3 

among cohorts during some period preceding wintering. These ideas, supported now by both 4 

theory and empirical work (McQuinn 1997, Corten 2002, Huse et al. 2010) have advanced 5 

our capacity for predicting when populations are likely to follow suit, returning to traditional 6 

grounds, or break tradition and disperse to new areas.  7 

 8 

Capturing spatial memory 9 

Through construction of the SSI and in our models, we extend these ideas in a 10 

spatiallyFexplicit manner by linking observations from the previous year’s distribution to the 11 

present year’s, and considering demographic parameters as potential mechanisms influencing 12 

spatial persistence from yearFtoFyear. In effect, our approach simultaneously tests for 13 

geographic attachment to certain wintering areas (sensu Loots et al. 2010) – a wellFknown 14 

herring trait (Höglund 1955), while inclusion of the demographic components allows for an 15 

exploration, albeit correlative, of evidence for spatial memory and/or traditionFformation in 16 

the species. The strong effect of distribtF1 on ψ in both the stationary (Supplementary material 17 

Appendix 7, Table A1) and non�stationary models (Fig. 3f–i), combined with the correlation 18 

observed between time series of the distribtF1 coefficients and SSN (Table 3) suggests that 19 

although the proportion of naïve : experienced individuals appears fundamental to how 20 

decisions on directionality of winter migration are reached (state 1 – Huse et al. (2010)), 21 

population size may determine if these decisions are honoured. The mechanisms 22 

underpinning these observations remain unclear, but may relate to some form of wisdom 23 

through numbers (Surowiecki 2004), or the ‘many wrongs principle’ (Simons 2004) by which 24 

navigational accuracy increases in larger and/or denser schools through pooling many 25 
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These authors demonstrated that a threshold density of individuals (i.e. 0.2 fish mF2) promoted 2 

extremely rapid schoolFformation and growth at dusk, initiated by joining of small leading 3 

groups, and resulting in coordinated spawning migrations towards Georges Bank in the Gulf 4 

of Maine. If such processes also operate during the winter migration period, our results 5 

suggest that recolonizing previouslyFused wintering areas is sometimes deemed a good 6 

decision by the majority, or at least by some threshold number of influential leaders, and that 7 

adherence to these decisions may be stronger when the population is large.  8 

 9 

Influence of prey resources and summer feeding distribution 10 

Whilst important, the distribtF1 covariate did not explain all the variation in our 11 

observations. We had also speculated that where herring feed during summer might influence 12 

winter migration trajectories (Fernö et al. 1998), and used August biomass estimates for the 13 

zooplankter C. finmarchicus to test this hypothesis. Wintering areas were often 14 

geographically quite close to summer prey patches (Table 3, Fig. 3e) – a situation that could 15 

advantage herring approaching wintering grounds, as energy conserved through minimizing 16 

dispersal away from profitable feeding areas would be highly valued during the subsequent 17 

nonFfeeding period. Georeferenced data on the summer feeding distribution in addition to 18 

empirical measures of C. finmarchicus biomass would permit a deeper examination of this 19 

idea; first, by providing a validation (in Icelandic waters) of the C finmarchicus IBM used to 20 

derive our biomass layers (Hjøllo et al. 2012); and second, by allowing the degree of herringF21 

zooplankton prey overlap to be estimated. Such information would provide useful insights 22 

into the importance of preFwintering actions in general, and where they occur, on subsequent 23 

wintering behaviour. We argue that this may be especially relevant to the summer feeding 24 
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decisionFmaking on the nature of the upcoming winter migration. 2 

 3 

Wintering and density�dependence 4 

Following settlement in wintering areas (i.e. state 2), herring hardly feed (Slotte 5 

1999), and minimizing metabolic costs is likely prioritized. The absence of competition for 6 

food at this time removes a key mechanism thought to promote positive relationships 7 

between population abundance and occupied area, now demonstrated for several fish species 8 

(e.g. Fisher and Frank 2004) and predicted under most models of marine fish spatial 9 

dynamics (e.g. the ‘basin model’ – MacCall (1990)) through ‘ideal free distribution’ theory 10 

(Fretwell and Lucas 1969). Such positive associations are commonly taken as evidence for 11 

densityFdependent habitat selection (DDHS), although they may also arise via densityF12 

independent means (Shepherd and Litvak 2004).  13 

We found no support for any abundanceFarea association in our data (see 14 

Supplementary material Appendix 8, Fig. A8), and no evidence for an effect of countstF1, a 15 

conservative surrogate for local herring density in tF1, on the occurrence pattern in t (Table 3, 16 

Fig. 3g, Supplementary material Appendix 7, Fig. A7a). In light of these results, we propose 17 

that DDHS is probably not a strong guiding force driving largeFscale wintering patterns. 18 

Indeed, as the dense schooling behaviour typical of this phase may impart some fitness 19 

benefits in terms of predator evasion (Nøttestad and Axelsen 1999), the lack of an 20 

abundanceFarea association, as we found here, might reflect a distribution that is near ideal 21 

and free. This idea requires further testing, as densityFdependent mechanisms are known to 22 

influence feeding and spawning migrations in the species (see Ciannelli et al. 2013), and to 23 

structure schooling dynamics at microF (i.e. cm to m) and mesoFscales (i.e. 10’s of m to 10’s 24 

of km) (Pitcher et al. 1996, Mackinson et al. 1999).  25 
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Environmental effects 2 

Given the nature of our dataset (i.e. 48,724 observations over 23 winters), we suggest 3 

that our models provide a broad, yet robust picture of environmental preferences of wintering 4 

ISS herring over the time period considered. We found that several localFscale dynamic 5 

variables influenced estimates of ψ (Fig. 3, Supplementary material Appendix 7, Tale A1). 6 

Whilst we cannot pinpoint the mechanistic basis of these relationships, we contend that this 7 

environmental sensitivity can be framed as a balance between maximizing individual fitness 8 

and fidelity to traditional wintering sites. Temperature (i.e. SST), the most influential 9 

environmental factor in our models, is a pervasive force shaping marine fish distributions 10 

(Perry et al. 2005), and although adult herring can tolerate a wide array of temperatures 11 

(Nøttestad et al. 2007), studies at the range margins suggest that physiological barriers may 12 

exist (e.g. < ~ 2°C) which are rarely crossed (Jakobsson 1969, Misund et al. 1997). We 13 

observed this here. Wintering ISS herring were never encountered in SST < 1.5°C, and were 14 

rarely captured north of 67°N, a region under the influence of cold East Icelandic Current 15 

water (Logemann et al. 2013) (Fig. 1, 3a, Supplementary material Appendix 7, Fig. A6a). 16 

This is indicative of a lower bound of thermal tolerance below which individual fitness may 17 

be compromised. If this is the case, then persistence of SST’s far colder than 1.5°C off much 18 

of Iceland’s north coast during winter, in conjunction with winter SST’s in the study region 19 

approaching 10°C (see Supplementary material Appendix 3, Fig. A2), may neatly explain the 20 

monotonic positive trend detected between SST and ψ (Fig. 3a). Even though residence in 21 

warmer waters likely involves higher energetic demands, given the species’ flexibility in 22 

temperature preferences within the ~ 4 to 9°C range as seen here (Fig. 3a, Supplementary 23 

material Appendix 7, Fig. A6a), and its capacity to tolerate far higher temperatures elsewhere 24 
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���0����������5����1997) we suggest that our upper temperature bound would not be 1 

physiologically constraining.   2 

  These findings, in conjunction with pronounced drops in both median SSS and PEA 3 

values observed in wintering areas in the latter part of the time series (Supplementary 4 

material Appendix 7, Fig. A6b, c), add weight to Huse et al.’s suggestion that winter habitat 5 

selection in herring may not be precisely optimized (Huse et al. 2010). However, the 6 

consistency in SSS and PEA values seen across several consecutive years; the uniformly low 7 

current velocity characteristic of all wintering areas (Supplementary material Appendix 7, 8 

Fig. A6d) and the significant relationships detected between ψ and SST, SSS, PEA and 9 

current_vel (Fig. 3) indicate a degree of environmental control in wintering site selection, at 10 

least in some years (see Supplementary material Appendix 7 for a further discussion).  11 

 12 

Temporal non�stationarity 13 

One of the most interesting results of this study came through considering that the 14 

response of herring populations to intrinsic and extrinsic factors may alter through time. We 15 

found evidence for temporal nonFstationarity in some cases (i.e. distribtF1, SST, SSS, PEA) 16 

(Fig. 3h); in addition to the distribtF1 – SSN relationship, we showed that the relative influence 17 

of SST increased with the proportion of firstFtime winterers compared with older, age 8 to 13 18 

individuals in the population (Table 3). This may reflect a heightened sensitivity of younger 19 

cohorts to environmental forcing, in combination with an increased tendency to follow 20 

traditions as fish get older, as suggested by Corten (2002) (explanation 1). At the population 21 

level, such a scenario would manifest in environmental factors, such as temperature, 22 

becoming unmasked as strong drivers of wintering area selection when there are fewer older 23 

fish to provide guidance.  24 
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environmental variables in different years, then our results could also stem from flexibility in 2 

populationFwide environmental preferences during winter, as suggested by Óskarsson et al. 3 

(2009) and Huse et al. (2010) (explanation 2), or from ageF or sizeFrelated variation in habitat 4 

preferences (e.g. Bailey et al. 1998, Bartolino et al. 2011) that would act to shape the 5 

population’s collective reaction dependent on ageFclass structure (see results for SSS and 6 

PEA – Table 3) (explanation 3).  7 

A fourth alternative involves the presence of interactions between densityFdependent 8 

and environmental factors (explanation 4) (see Ciannelli et al. 2012 for an example). No clear 9 

densityFdependent environmental responses were observed in our study, a finding in 10 

agreement with Maravelias et al. (2000a, b), who reported marked stability in relationships 11 

between occurrence, abundance and ambient environmental conditions across a fourFyear 12 

period of population decline in North Sea herring. Our inference is limited to fishery records, 13 

but the addition of spatiallyFconsistent survey information would allow a more rigorous 14 

exploration of how biomass and environmental factors might interact to influence range size 15 

during wintering. Finally, the trends we observed may in part reflect the nature of our 16 

datasets (explanation 5). Fishing and survey coverage varied across years; a function of fisher 17 

behaviour, catch efficiency, funding and/or time availability and possibly other unknown, 18 

annuallyFvarying factors our models did not capture directly (see Supplementary material 19 

Appendix 1). The yeart term in the stationary models accounts for yearFtoFyear variation in 20 

the outcome of such processes, yet with regard to the non�stationary models, tests including 21 

or omitting this term, or a temporal component in ωi,t, left parameter estimates essentially 22 

unchanged, suggesting that the timeFvarying patterns we see are not strongly dependent on 23 

data availability in a given year, and likely have some other basis.  24 
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This list of explanations is not exhaustive; all are plausible, and not necessarily 1 

mutually exclusive. However, we propose explanation 1 and/or 3 as most likely on empirical 2 

and theoretical grounds (Corten 1993, 2002). Opportunities for fineFtuning the dynamics of 3 

connections through time based on ecological or physiological knowledge are emerging 4 

through continued advancements in processFbased models (see Teal et al. in press), and 5 

ongoing work on penalized complexity (PC) priors (Simpson et al. 2015). By combining such 6 

approaches, and using outputs from models like those presented here to guide 7 

parameterization, we see great potential for identifying the mechanistic fundaments of nonF8 

stationarity in ecological time series like ours (see also Supplementary material Appendix 9).  9 

 10 

Fishing and predation 11 

The direct impact of fishing on commercially harvested species, including herring, 12 

can be immense (Jackson et al. 2001, DickeyFCollas et al. 2010). It is increasingly 13 

recognized, however, that intense exploitation can reduce resilience to environmental change, 14 

and that fishing and climate can interact to influence longFterm distribution patterns 15 

(Engelhard et al. 2011) and spatial structure (Ciannelli et al. 2013). In our models, we 16 

attempted to capture the impact of recent purseFseine fishing activity whilst considering localF17 

scale environmental variables as additive factors only. This decision reflects an attempt to 18 

balance model complexity with meaningful ecological inference (Merow et al. 2014), and 19 

although this reduced our power to detect fishingFenvironment interactions directly, our 20 

expectation that increased fish_magnitude would act to reduce ψ at nearby locations in the 21 

following week was not met (Supplementary material Appendix 7, Fig. A7e, Table A1). This 22 

was surprising, given the known disruptive effects of fishing and vessel activity on the 23 

behaviour of pelagic species like herring (Vabø et al. 2002). As herring schools can show 24 

incredibly fast predatorFevasion responses (Pitcher et al. 1996), we proffer that the weekly 25 
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large to capture the complexity in fleet dynamics (Branch et al. 2006), or the patchiness and 2 

speed of fishingFherring interactions and their cumulative effects over time. Investigating the 3 

scaleFdependence of harvesting impacts, induced both by fishers and other predators (Similä 4 

1997, Overholtz and Link 2007, Samarra and Foote 2015, Supplementary material Appendix 5 

10) might provide insight into the tradeFoffs herring and other fishes face in adhering to 6 

migratory traditions, whilst avoiding predation in a previously risky arena. 7 

 8 

Spatial prediction: implications for fishery management and fisheries 9 

Our spaceFtime models generated predictions that closely matched the observed 10 

occurrence patterns of wintering ISS herring. Whilst noting the limitations inherent in fishery 11 

and nonFstandardized survey datasets (Supplementary material Appendix 1, 9), by 12 

incorporating timeFvarying effects, and simultaneously considering spatiallyF and temporallyF13 

structured processes in our analysis, we were able to robustly estimate ψ and its uncertainty 14 

across our spatial domain, both within the time series (see Fig. 4) and to heldFout 15 

observations oneFyear ahead (Supplementary material Appendix 6, 9). 16 

The capacity to predict distribution patterns in t+1 has important implications for the 17 

spatial management of herring stocks throughout the North Atlantic, and for other species 18 

exhibiting some homing tendency, for which our models could be easily adapted. In our 19 

example, predictive accuracy depended upon the strength of association between SSN and 20 

posterior mean estimates for distribtF1, estimated by the part_ns5 model (Table 3, 21 

Supplementary material Appendix 6). In three out of four years tested, correlation was strong, 22 

models were well calibrated and AUC values exceeded 0.95. Accuracy for the final year – 23 

2013_14, fell dramatically however, due most likely to two unusual massFmortality events in 24 
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SSN down, despite marked overlap in the area fished in 2011_12 and 2012_13 (Fig. 2, 5). 2 

 Although preliminary in nature, these results do highlight the potential of temporally 3 

nonFstationary models in predicting states at one time point based on states at nearby time 4 

points. With rapid improvements in uncertainty estimation in stock assessment models for 5 

dataFpoor fish stocks (e.g. Kokkalis et al. 2017) coupled with the abundance of informationF6 

rich, pointFreferenced fishery datasets available, the time is ripe for further investigation into 7 

the demographic influences on migratory behaviour in other lessFstudied, commerciallyF8 

important species. We believe the modelling framework outlined here is a solid starting point 9 

for such work. 10 

�11 

Conclusions 12 

Despite growing recognition of social learning as a key element in shaping collective 13 

movement behaviour, the evolutionary consequences of, and the mechanisms giving rise to, 14 

this phenomenon remain unclear for many taxa. Using wintering ISS herring for illustration, 15 

we searched for pattern in these behaviours by building spaceFtime models for multiFyear, 16 

pointFreferenced fishery and survey datasets and linking model output with time series of 17 

demographic parameters. Though we cannot pry too deeply into the ‘fish mind’, at least at 18 

present, our findings lend correlative support to the existence of collective memory in this 19 

longFlived, schooling species (Fernö et al 1998, Corten 2002), and suggest that wintering site 20 

selection may be tuned to population size and ageFclass structure, in concert with localFscale 21 

environmental factors and temporallyFlagged prey distribution. The accuracy of our model 22 

predictions implies that considering such processes explicitly in spatiotemporal models could 23 

benefit spatial management strategies for fishes and other groupFliving animals that display a 24 

degree of conservatism in migratory behaviour.  25 
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��9���1. Covariates considered in spaceFtime regression models for wintering ISS herring (see Supplementary material Appendix 3 for details on 

their calculation, hypotheses behind their selection, the spatial and temporal scales considered, and examples of raster layers for each covariate 

used for spatial predictions). F and P represent the range of values used in model fitting and spatial prediction respectively. Scales for estimation 

vary by covariate; however spatial predictions are made to a common 0.1° longitude × 0.05° latitude (i.e. ~5 × 5 km) grid at an annual timeFstep. 

↑, ↓ denote hypothesized directions of the occurrenceFcovariate relationships, and ↓↑ indicates that the direction of the occurrenceFcovariate 

relationship is uncertain. References relate either to the data source, the expected relationship with ψ, or papers contributing to the selection of 

this covariate for modelling (see Supplementary material Appendix 3 for the full reference list). 
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����0�����

5������

I�������EJ�

 ?�������������

)��)�������

���?�����������

)��)�������

�E?��������������7�?�

A��7�ψ�

 !���� 5�)��������

Spatial memory � � � � � � � � �

D��!����������

?��0�!��/����

������9tF1 Using the distribt layers created for the spatial 
similarity index (SSI), we selected the layer 
for tF1 to capture the occurrence pattern oneF
year earlier. 

1 = occurrence in 
same cell in tF1 
 
0 = absence in 
same cell in tF1 

F (0, 1) 
P (0, 1) 

0.1° longitude × 
0.05° latitude  
(i.e. ~5 × 5 km) 

Annual ↑, with stronger ↑ 
influence in years 
when more 
‘experienced’ 
individuals are 
present and/or stock 
size is large.  

Fishery logbooks  Jakobsson 1969, Corten 1993, 2000, 2002, 
McQuinn 1997, Fernö et al. 1998, Huse et al. 
2002, 2010 

Density of 
occurrences in 
previous year 

countstF1 Similar to distribtF1, we used the countst layers 
(created during SSI derivation) and selected 
the layer for tF1 to capture the density of 
occurrences oneFyear earlier. 

% (see Eq. A1 in 
for derivation) 

F (0, 43.67) 
P (0, 45.19) 

0.1° × 0.05°  Annual As above As above As above 

Dynamic environment         Logemann et al. 2013 (for all dynamic variables) 

Sea surface 
temperature  

SST Temperature at 1.25 m depth. °C  F (F1.76, 9.68) 
P (F1.36, 9.38) 

1 × 1  
4 × 4  
8 × 8 km 

Day of record, 
mean of 7 days 
previous 

↑, but influence of 
SST and all other 
covariates may 
change with stock 
demographics. 

CODE Blaxter 1985,  Maravelias 1997, Misund et al. 
1997, 1998, Maravelias et al. 2000a, Toresen and 
Østvedt 2000, Corten 2001, Nøttestad et al. 2007, 
Bartolino et al. 2014 
 

Sea surface salinity SSS Salinity at 1.25 m depth. practical salinity 
unit (psu) 

F (31.51, 35.38) 
P (33.00, 35.24) 

1 × 1  
4 × 4  
8 × 8 km 

Day of record, 
mean of 7 d 
previous 

↓ CODE Blaxter 1985, Maravelias and Reid 1995, 1997, 
Lindegren et al. 2011 
 

Potential energy 
anomaly 

PEA Energy needed to instantaneously 
homogenize the water column with a given 
density stratification. Calculated here as a 
function of temperature and salinity.  

1

H
	 
ρ�Fρ�gz	dz

η

�h

 

kg mF1 sF2 

 

 

F (0, 55.19) 
P (0, 54.99) 

1 × 1  
4 × 4  
8 × 8 km 

Day of record, 
mean of 7 d 
previous 

↓↑ CODE Simpson 1981, Huse and Korneliussen 2000, 
Maravelias and Reid 1997, Maravelias et al. 
2000b, Planque et al. 2006, de Boer et al. 2008, 
Burchard and Hofmeister 2008, Huret et al. 2013 

Difference between 
SST and bottom 
temperature 

change SST F temperature at 1.25 m above the sea 
floor. 

°C F (F8.16, 5.05) 
P (F4.77, 4.16) 

1 × 1  
4 × 4  
8 × 8 km 

Day of record, 
mean of 7 d 
previous 

↓ CODE Maravelias and Reid 1997, Maravelias et al. 
2000b 
 

Current velocity current_vel Mean of the absolute values of the U and V 
flow vectors at 1.25 m depth. 

m sF1 F (0, 0.64) 
P (3.25eF04, 2.20) 

1 × 1  
4 × 4  
8 × 8 km 

Day of record, 
mean of 7 d 
previous 

↓ CODE Corten and van de Kamp 1992, Corten 1999a,b 

Static environment          

Water depth bottom_depth Depth of the water column.  m F (F2290, F11) 
P (F2560, 0) 

30 arcsec F ↓↑ GEBCO  
<www.gebco.net> 

Maravelias et al. 2000a, Nøttestad et al. 2007, 
echosounder data (this study) 

Bottom slope slope Slope of the sea floor. ° F (0, 25.37) 
P (1.44eF02, 0.12) 

30 arcsec F ↓ GEBCO  Maravelias et al. 2000a,  echosounder data (this 
study)  

Distance to shore dist_to_shore Distance from each occurrence/absence 
record to the nearest landmass. 

km F (0.01, 334.31) 
P (0, 344.71) 

Exact F ↓↑ Fishery logbooks, 
‘geo’ R package 

R package ‘geo’, MRI, Reykjavík, Iceland 
<https://rFforge.rFproject.org/R/?group_id=945> 

Predators          

Fishing magnitude fish_magnitude Product of no. of successful fishing events 
and total landings in tonnes in the week 
preceding each occurrence/absence record. 

tonnes F (0, 6.15e05) 
P (0, 7.06e06) 

0.1° × 0.05° Weekly ↓ Fishery logbooks Olsen 1971, Vabø et al. 2002, Ona et al. 2007, 
Doksæter et al. 2009, Lindegren et al. 2011 

Prey          

Zooplankton biomass CF_Aug Biomass estimates for adult Calanus 

finmarchicus (i.e. C4, C5, C6 stages) 
averaged for the August preceding wintering 
each year. 

µg C mF2 F (0, 1.32e07) 
P (0, 9.62e06) 

20 × 20 km Annual, but 
simulation covers  
1995F2007 only 

↑ Hjøllo et al. 2012. 
IBM for C. 
finmarchicus 

Bainbridge and Forsyth 1972, Holst et al. 1997, 
Maravelias and Reid 1997, Corten 1999b, 
Maravelias et al. 2000b, Gislason and Astthorsson 
2002, Prokopchuk and Sentyabov 2006, Nøttestad 
et al. 2007, Hjøllo et al. 2012, Utne et al. 2012 
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��9������ ��!��!�������?��)�������)������������?���F�������!�������������)��A���������

2��������7�����������7�������������������0�������� I)!��J���������!���������7A��)�� )�������

!��������?��)������?������??�E�������I���� !??��������/����������2??����E�%����9���2��

)�����!����9���������&�!�������??�E��������������/J���1Fs15, stationary models; part_ns1F

part_ns9, partly non�stationary models; full_ns1Ffull_ns9, fully non�stationary models. 

Covariate form refers to models that include linear terms only (linear), and quadratic terms 

(quadratic) or penalized regression spline terms for environmental covariates (spline). 

Space/time structure describes the form of the spatiotemporal random effect ωi,t, and if a 

fixed factor for year (yeart) was included; noFspace/noFtime, no spatially or temporally 

structured effects; time_indep, independent realization of the spatial random field at each t; 

time_corr, temporal correlation (ar1) is considered in the realization of the spatial random 

field at each t. The bestFperforming model within each stationarity class is shown in bold. 

Model  Covariate 
form 

Structure DIC mean log 
score 

Brier score AUC 

Stationary       

s1 linear full (noFspace/noFtime) 49104.2 0.504 0.157 0.934 
s2 linear full + yeart 48353.6 0.496 0.154 0.974 
s3 linear full + time_indep ωi,t 41872.1 0.429 0.123 0.993 
s4 linear full +�yeart + time_indep ωi,t 41811.9 0.429 0.122 0.993 
s5 linear full + time_corr ωi,t 41877.0 0.429 0.123 0.992 
s6 quadratic full (noFspace/noFtime) 48917.2 0.502 0.156 0.943 
s7 quadratic full + yeart 48059.1 0.493 0.152 0.981 
s8 quadratic full + time_indep ωi,t 41732.1 0.428 0.122 0.994 
�#� $����	
�� �����%������%�	
��&
�����ωωωω���� '()*#+,� ,+'*-� ,+(**� ,+##.�
s10 quadratic full + time_corr ωi,t 41733.0 0.428 0.122 0.993 
s11 spline full (noFspace/noFtime) 49232.2 0.505 0.158 0.917 
s12 spline full + yeart 48365.1 0.496 0.154 0.973 
s13 spline full + time_indep ωi,t 41907.0 0.430 0.123 0.993 
s14 spline full + yeart + time_indep ωi,t 41833.3 0.429 0.123 0.993 
s15 spline full + time_corr ωi,t 41908.3 0.430 0.123 0.992 
Partly non�stationary       
part_ns1 linear full (noFspace/noFtime) 48953.2 0.502 0.157 0.952 
part_ns2 linear full + time_indep ωi,t 41733.4 0.428 0.122 0.993 
part_ns3 linear full + time_corr ωi,t 41742.0 0.428 0.122 0.992 
part_ns4 quadratic full (noFspace/noFtime) 48725.5 0.500 0.155 0.960 
��	&��.� $����	
�� �����%�	
��&
�����ωωωω���� '()*(+.� ,+'*-� ,+(**� ,+##'�
part_ns6 quadratic full + time_corr ωi,t 41625.5 0.427 0.122 0.994 
part_ns7 spline full (noFspace/noFtime) 49080.7 0.504 0.157 0.943 
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?���Z��(� �?����� )!���V�����Z����?�ωi,t� �1780.0 0.428 0.122 0.993 
part_ns9 spline full + time_corr ωi,t 41785.5 0.428 0.122 0.992 
Fully non�stationary       
full_ns1 linear full (noFspace/noFtime) 47330.3 0.486 0.148 0.989 
full_ns2 linear full + time_indep ωi,t 41334.7 0.424 0.120 0.996 
full_ns3 linear full + time_corr ωi,t 41342.3 0.424 0.120 0.995 
full_ns4 quadratic full (noFspace/noFtime) 46756.0 0.480 0.146 0.995 
����&��.� $����	
�� �����%�	
��&
�����ωωωω���� '(,'-+(� ,+'*(� ,+((#� ,+##-�
full_ns6 quadratic full + time_corr ωi,t 41055.3 0.421 0.119 0.997 
full_ns7 spline full (noFspace/noFtime) 46972.0 0.482 0.147 0.993 
full_ns8 spline full + time_indep ωi,t 41219.1 0.422 0.119 0.996 
full_ns9 spline full + time_corr ωi,t 41226.4 0.423 0.119 0.996 
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����I1 sd) Pearson’s r coefficients calculated between time series of demographic 

parameters (Demo.) for the ISS herring stock and posterior mean estimates for influential 

covariates (Cov.) in the best non�stationary models. Mean and sd were calculated from 

correlations made for five time series incorporating the first 18, 19, 20, 21 and 22 years of 

data. Demographic parameters are age3:age4to7, age3:age8to13, age3:age4+, three ratios of 

numbers of naïve, firstFtime winterers to young experienced, old experienced, and all 

experienced individuals respectively; SSB, spawning stock biomass; SSN, spawning stock 

numbers; n age4to7, number of young experienced individuals; n age8to13, number of old 

experienced individuals; n age4+, number of all experienced individuals; mean age, average 

age of the spawning stock. 

 

 

  

        Demo. 
Cov. 

age3: 
age4to7 

age3: 
age8to13 

age3: 
age4+ 

SSB SSN n 

age4to7 
n 

age8to13 
n 

age4+ 
mean 
age 

Partly non�stationary model (part_ns5) 

distribtF1 0.101 
(0.047) 

0.418 
(0.128) 

0.178 
(0.066) 

0.471 
(0.061) 

0.575 
(0.125) 

0.520 
(0.107) 

0.044 
(0.021) 

0.479 
(0.089) 

F0.328 
(0.126) 

Fully non�stationary model (full_ns5) 

distribtF1 0.120  
(0.036) 

0.106 
(0.107) 

0.113 
(0.040) 

0.455 
(0.055) 

0.489 
(0.125) 

0.372 
(0.129) 

0.320 
(0.047) 

0.446 
(0.104) 

F0.040 
(0.118) 

SST 0.113 
(0.014) 

0.481 
(0.020) 

0.213 
(0.016) 

0.404 
(0.006) 

0.415 
(0.014) 

0.404 
(0.011) 

F0.220 
(0.022) 

0.324 
(0.008) 

F0.354 
(0.026) 

SSS F0.118 
(0.007) 

F0.375 
(0.008) 

F0.187 
(0.007) 

F0.454 
(0.003) 

F0.501 
(0.007) 

F0.435 
(0.005) 

0.028 
(0.015) 

F0.405 
(0.005) 

0.257 
(0.016) 

PEA F0.008 
(0.030) 

0.156 
(0.049) 

0.030 
(0.024) 

F0.386 
(0.027) 

F0.362 
(0.071) 

F0.265 
(0.076) 

F0.481 
(0.023) 

F0.362 
(0.060) 

F0.164 
(0.062) 

current_vel F0.134 
(0.019) 

F0.009 
(0.034) 

F0.104 
(0.026) 

0.056 
(0.004) 

0.101 
(0.017) 

0.154 
(0.012) 

F0.011 
(0.021) 

0.124 
(0.010) 

F0.131 
(0.032) 

CF_Aug F0.256 
(0.007) 

F0.444 
(0.027) 

F0.324 
(0.010) 

F0.317 
(0.002) 

F0.405 
(0.017) 

F0.294 
(0.016) 

0.088 
(0.013) 

F0.256 
(0.010) 

0.385 
(0.029) 
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.��!���1.  Winter distribution of ISS herring during the period 1991_92 to 2013_14. Panels 

(a–c) illustrate the spatial shifts in landings by the autumn/winter purse seine fishery through 

time. We identified three major wintering phases over the 23 years of our time series, and 

aggregated the landings data within each phase: (a) ‘East’ F 1991_92 to 1997_98; (b) 

‘Eastwest’ F 1998_99 to 2006_07; and (c) ‘West’ – 2007_08 to 2013_14 (see Óskarsson et al. 

2009). Note the differences in color bar scales. (d) TwentyFthree years of fishery occurrence 

and survey absence records. Grey lines denote 200 m and 500 m isobaths.  

 

Figure 2. Calculation of the spatial similarity index (SSI). We defined an area of interest 

inclusive of all occurrence records in our dataset, divided this into 0.1° longitude × 0.05° 

latitude grid cells, and, for each year t = 1, 2, …, T, coded each cell as 1 if herring were 

captured within it during year t, or 0 if they were not. This resulted in a distribt layer for each 

year. For each t = 2, 3, …, T, we then calculated the percentage of cells occupied in both tF1 

and t, out of the number of cells occupied in tF1 or t (a–c). Next, we weighted this value by 

the change (km) in the center of gravity (
COG) of the stock between tF1 and t. Using the 

countst layers that were constructed based on Eq. A1 (see Supplementary material Appendix 

2 for details), we then calculated Pearson’s r between countstF1 and countst and added this 

value (d, e). Data are presented for 1994_95 (tF1) and 1995_96 (t), with the SSI value for 

1995_96 circled.  

 

Figure 3. (a–e) Marginal effect plots for influential covariates in the part_ns5 model (see 

Table 1 for covariate codes), and (f) time series of posterior mean estimates (red line) and 

95% credible intervals (CIs) (redFshaded region) for the distribtF1 covariate. In (a–e), black 

lines are median estimates of 1000 draws from the posterior distribution for a sequence of 
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100 values across the full range of each covariate, and greyFshaded regions are 95% CIs. Tick 

marks denote the percentile distribution of raw data for each covariate for occurrence records 

(top of plots) and absence records (bottom of plots). Plots (a–c) represent quadratic effects, 

and (d, e) the linear effect of the covariate. (g–h) Time series of posterior mean estimates for 

the linear term (circles) and 95% CIs (vertical lines) for all covariates from the full_ns5 

model. Symbols are offset slightly, and results for the distribtF1 covariate plotted as a red line 

(posterior mean) and redFshaded region (95% CIs) in panel (g). 

   

Figure 4. Spatial predictions of occurrence probability for four representative winters of the 

time series as derived from the full_ns5 model. For each year, (a) is the mean occurrence 

probability (ψ) and (b) the sd of ψ (expressed as logFodds) for each grid cell. (c) is the mean 

intensity of the temporallyFindependent realization of the spatial random field (ω), and (d) is 

the sd of ω. Observed occurrences (black circles) and absences (grey crosses) for each year 

are overlaid in (a).     

 

Figure 5. Time series of posterior mean estimates for distribtF1 derived from partly non�

stationary models (i.e. part_ns5 specification) fitted to the first 18, 19, 20 and 21 years of 

data (solid lines), and estimates of adult population size for the ISS herring stock, represented 

by spawning stock numbers (SSN – in millions) (dashed line). Pearson’s r values reflect the 

degree of correlation between each model time series and SSN in the years included in that 

model (see Supplementary material Appendix 6 for further details). 
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Appendix 1: Detection and sampling coverage 

Detection 

Detection probability for our datasets is essentially = 1, notwithstanding potential recording 

errors. Occurrence records were included only if c > 0 tonnes, and the acoustic output enables 

accurate identification of herring schools based on area backscatter strength (Jakobsson et al. 

1993, Guðmundsdóttir et al. 2007), making false absences highly unlikely. The 

spatiotemporal distribution of fishing effort in the Icelandic winter purse seine herring fishery 

is not random however, and has varied markedly over the time series considered here (ICES 

2015). Early in the season, fishing locations are often selected based upon knowledge of 

previous overwintering areas. As the season progresses, information on recent landings, 

reports from other fishing vessels and input from the MRI acoustic surveys (which typically 

coincide with the beginning of the fishing season), drive fishing behaviour. Similarly, the 

location of the acoustic survey tracks is not consistent among years (Guðmundsdóttir et al. 

2007, ICES 2015), with the level of survey effort reflecting funding, time availability, 

weather conditions as well as information exchange between MRI and active fishing vessels 

(Óskarsson and Pálsson 2015). This situation likely resulted in some level of sampling bias, 

although given the searching capacity of the purse seine fleet (Guðmundsdóttir and 

Sigurðsson 2004, Óskarsson et al. 2009), and the wide spatial coverage of the acoustic 

surveys, we consider this bias to be minimal (see below). Additionally, such bias is generally 

of lower concern for binomial occurrence models with near perfect detection, as it only acts 

to reduce precision of the estimation in less-sampled regions, rather than biasing the 

estimation process itself (Phillips et al. 2009, Guillera-Arroita et al. 2015). 

2
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Sampling coverage 

It could be argued that the fishery and survey data used here may be biased and may not 

reflect the true extent of the herring distribution in a given season. We contend that such bias 

would be minimal for three reasons. First, the fishing fleet for Icelandic herring, which 

currently consists of 15 large vessels, conducts extensive searches for wintering herring 

schools each season, covering a substantial portion of the stock’s distributional range which 

is fully captured within the Icelandic exclusive economic zone (EEZ) (Óskarsson et al. 2009, 

author’s personal observation). Second, the annual acoustic surveys, although varying in 

sampling intensity each year, have covered a large region of the Icelandic EEZ in all years 

from the mid-1990s onwards. Thirdly, the close working relationship between MRI and the 

fishing companies results in constant information exchange regarding the distribution of the 

herring schools during the autumn/winter fishing period. Hence, we contend that although the 

full extent of the realized distribution may not be captured by the fishery and survey data, it 

does reflect the major trends in overwintering distribution over the 1991_92 to 2013_14 

period. Furthermore, given the near perfect detection in our dataset, there is no need to make 

assumptions about capturing the full realized niche during the overwintering period. Rather, 

we use the data we have to build the models.  
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Appendix 2: Details and R code for constructing the distribt and countst variables and 

calculating the spatial similarity index (SSI)  

 

Appendix 2.1: Construction of distribt and countst layers  

To construct the distribt layers, we defined an area of interest that encompassed all records in 

our dataset, then divided this region into 0.1° longitude × 0.05° latitude (i.e. ~ 5 × 5 km) grid 

cells. Next, for each of the 23 years t = 1, 2, …, T, we summed the number of occurrence 

records in each cell k, denoted rk,t. If rk,t > 0, then distribk,t was coded as 1, otherwise 0. We 

used these results to produce annual gridded maps of occurrence (distribt) across our study 

region (Fig. 2a–c).  

 

Using the same spatial grid, we then computed the countst variable which reflects the number 

of occurrence records (i.e. successful fishing events) in each cell in each year, whilst also 

accounting for potential joining/splitting interactions among herring schools occupying 

nearby cells (Mackinson et al. 1999, Nøttestad and Axelsen 1999). For each grid cell k, in 

year t, countsk,t is the sum of rk,t and the mean number of occurrence records in all 1st order 

neighbouring cells nk,t,j (j = 1, 2, …, 8), excluding the central cell (Eq. A1) (see Appendix 2.3 

for R code). To allow for comparisons among years, we converted countsk,t to a percentage of 

the total number of occurrences recorded across the whole study region in each year, denoted 

occt. 

 

countsk,t = 
100
occt

峭rk,t + 
デ nk,t,j

8
j=1

8 嶌                (A1) 

  

Like distribt, we created annual gridded maps of countst for each year of the time series (Fig. 

2d,e). The countst variable can be considered a proxy for herring abundance that is less prone 

5
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to error than using landings data directly, as catch rates by vessels using purse seine gears are 

inherently variable (Hilborn and Ledbetter 1985, Ruttan and Tyedmers 2007, Vázquez-Rowe 

and Tyedmers 2013). 

 

Appendix 2.2: Calculation of the SSI 

For year t = 2, 3, …, T, we sum the grid cell values from the gridded occurrence map from 

the previous year (distribt-1) and those from the current year (distribt). Where grid cell counts 

= 2, this cell has been occupied in year t-1 and year t. We then divide this number by the total 

number of occupied cells in t-1 or t, and convert to a percentage. This last step captures the 

degree of expansion and contraction in the area occupied from year to year. Next, we 

calculate the distance change (km) in the centre of gravity (COG) of the stock between t-1 

and t. The COG for fishing year t can be defined as the mean location of the population for 

that year (Wolliez et al. 2007), and was estimated here by weighting each fishing location by 

the catch recorded from that location in that year, giving all fishing evenets equal weight (see 

Eq. A2). For each year t,   

 

COG =
デ xici

M
i=1デ ci
M
i=1

                   (A2) 

 

where M  is the total number of catch locations, xi is the geographic position (i.e., longitude 

and latitude) of location i and ci is the catch (tonnes) at location i. 

 

Dividing by COG down weights the SSI when the distributional centroid has changed 

dramatically between one year and the next. This calculation generates an ‘SSI_overlap’ 

value (see R code in Appendix 2.3). Next, we calculate Pearson’s r between the countst-1 and 
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countst layers across all grid cells. This captures the change in density of occurrence records 

from year to year, and generates the ‘SSI_pearson’ value. Finally, we sum the ‘SSI_overlap’ 

and ‘SSI_pearson’ value to create an ‘SSI_estimate’ for each year (see R code in Appendix 

2.3). 

 

Why use 1st order neighbours? 

The decision to use only 1st order neighbouring cells in the calculation for countst, rather than 

an autoregressive model, can justified for two reasons. First, this way we have direct control 

over the distance considered, which can then be tuned to relevant ecological processes. The 

maximum distance from the outer edge of one of our grid cells to the outer edge of a 

neighbouring cell is ~ 10 km – a distance representative of the scale at which school joining 

and splitting behaviour often operates (Mackinson et al. 1999). Second, allowing more 

flexibility in the numbers of neighbouring cells included in the calculations makes more 

assumptions outside the spatial range of the occurrence records. In effect, our approach can 

be viewed as quite conservative, as it only estimates values one-cell removed from where the 

data actually are. We stress however, that the distance considered in the calculation of countst 

can be easily adjusted if there are reasons to believe that ecological processes are acting at 

finer or coarser scales.  

 

Excluding catch biomass in the calculation of countst 

Catch biomass (c) for each fishing event can vary based on vessel-, skipper-, gear- and 

weather-related factors in addition to the actual amount of herring present at a particular 

location (Branch et al. 2006, Vázquez-Rowe and Tyedmers 2013). Given that we did not 

explicitly measure the first four of these sources of variability in this study, in addition to the 

inherent difficulties in accurately capturing these effects in any case (see Squires and Kirkley 
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1999), we chose to take a conservative approach in computing countst – i.e. based on the 

number of occurrences per grid cell, per year. We also gave equal weight to occurrence 

records with 0 < c < 1 tonne and all c ≥ 1 tonne, as differences in c may arise through 

interactions among the aforementioned factors that are unrelated to the point abundance of 

herring per-se. Through this approach we hoped to minimize bias associated with these 

unquantified sources of variability.     

 

Appendix 2.3: The folder ‘Macdonald et al._R code and data.zip’ (deposited in the Dryad 

Digital Repository <http://datadryad.org/>) contains R code and data for constructing the 

countst variable and for calculating the spatial similarity index (SSI) using the Icelandic 

summer spawning herring dataset for illustration. 

 

Folder name:   ‘Macdonald et al._R code and data.zip’ 

Relevant files:  i) ‘Create counts(t) rasters.R’ (R code) 

ii) ‘Spatial similarity index calculation.R’ (R code) 

iii) ‘SSI_calc_stats.csv’ (.csv data file) 
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Appendix 3. Additional information on covariates for the space-time models 

Spatial memory 

Our aim was to capture the main features represented in the SSI (Fig. 2, Appendix 2) in 

covariates that could be used for input into spatially-explicit models to predict seasonally- 

varying occurrence patterns. We employed the distribt and countst variables described in the 

Methods under 'Capturing shifting distributions: a spatial similarity index' for this purpose (see 

also Appendix 2 for calculation details). By using the layers created for the previous year (i.e. 

t-1), we defined two covariates that represent the occurrence pattern (i.e. distribt-1) and density

of occurrence records (i.e. countst-1) one-year earlier (see Fig. A1 for examples of rasters for 

2001_02). These two covariates are able to test the following two hypotheses. 1) Does the 

occurrence of herring at a particular location in year t-1 (represented by the distribt-1 covariate) 

influence the probability of occurrence in year t? 2) Does the relative density of occurrences at 

a particular location in year t-1 (represented by the countst-1 covariate) influence the probability 

of occurrence in t? That is, are herring here in t because they were here in numbers in t-1 � 

akin, to a density-dependent effect with one-year lag? 
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vjg"gcuv/yguv"*W/eqorqpgpv+"cpf"pqtvj/uqwvj"*X/eqorqpgpv+"hnqy"xgevqtu"*o u-1+"ygtg"""" 

gzvtcevgf"htqo"vjg"EQFG"oqfgn"*Nqigocpp"gv"cn0"4235+"cv"vjtgg"urcvkcn"uecngu"*k0g0"3"'"3"mo."  
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uecngu"*k0g0"fc{"qh"tgeqtf."ogcp"qh"vjg"rtgegfkpi"9"fc{u+ (Fig. A2)0"Htqo"vjgug"fcvc."vjtgg"pgy " 

xctkcdngu"ygtg"etgcvgf"*cv"vjg"ucog"uecngu+"vq"ecrvwtg"okzkpi"rtqeguugu"vjtqwij"vjg"ycvgt"  

eqnwop"vjcv"oc{"kphnwgpeg"vjg"dgjcxkqwt"qh"ykpvgtkpi"jgttkpi<"vjg pqvgpvkcn"gpgti{"cpqocn{ 

Î"RGC"*mi"o/3"u/4+"c"rtqz{"hqt"uvtcvkhkecvkqp, and defined as the energy required to vertically mix 

the water column so that the density is uniform from surface to bottom"*Planque et al. 2006, 

Huret et al. 2013+."vjg"vgorgtcvwtg"itcfkgpv"dgvyggp"uwthceg"cpf"dqvvqo"ycvgtu"Î"ejcpig"*̇E+." 

cpf vjg"mgcp"cduqnwvg vcnwgu"qh"vjg"W"cpf"X"hnqy"xgevqtu"kp"uwthceg"ycvgtu Î"ewttgpvaxgn 

*o"u/3) (Fig. A2)0"Tjg"jkijguv"tguqnwvkqp"fcvc"qdvckpcdng"htqo"vjg"CODE (i.e. 1 × 1 km grid, day 

of  record) most closely matched both the area sampled by, and the timing of each fishing or 

survey record,  providing the most realistic representation possible of the ambient environment 

distribv/1 counvsv/1 '
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experienced d{"vjg"uejqqn"cv"vjcv"vkog cpf rnceg0"In light of this, in conjunction with the hkij 

eqnnkpgctkv{ found coqpi"the"spatial and temporal uecngu considered hqt"gcej"eqxctkcvg  

(Pearson's r   in all cases), we decided to extract data at 1 ' 1 km on the day of the record.  
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Fig. "A2. "Rasters "of "dynamic "environmental "covariates "for "2001_2002. "See " Table 1 in 
"main "text "for "derivation. "For "model "fitting, "these covariates were  extracted " from the 
"CODE "ocean "model "(Logemann "et "al. "2013) "at "1 "× "1 "km""resolution qp"vjg"" 
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(see Spatial prediction in the Material and methods for"further details)0
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The CODE model assimilates observational data from CTD (conductivity, temperature, 

depth) profiles and river discharge data from 46 Icelandic watersheds into its simulation, and 

excellent concordance was found between modelled and observed temperature, salinity and 

flow fields across our study region (see Table 1 in Logemann et al. 2013).  

Static environmental variables 

As both previous work and visual examination of our dataset suggest that herring may 

favour specific bottom topography during pre-spawning (Maravelias et al. 2000b) and 

wintering phases (MRI, unpublished data), we extracted information on depth - 

bottom_depth (m) and slope - slope (degrees) of the sea-floor from the GEBCO website. 

These data were available at 30 arcsecond resolution around each fishing/survey record. As 

wintering ISS herring have been often been found close to the coast over the past three 

decades (Óskarsson et al. 2009), we calculated distance to shore - dist_to_shore (km) from 

each record using the 'gDistance'  function in the 'rgeos' package in R (Fig.  A3). 
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Zooplankton biomass in August

Although herring hardly feed during the winter (Slotte 1999), adult stages of the zooplankter 

Calanus finmarchicus are a major prey item for herring in the North Atlantic during summer 

*Jqnuv"gv"cn0"3;;9."Dalpadado et al. 2000, Ikuncuqp"cpf"Cuvvjqtuuqp"4224."Rtqmqrejwm"cpf" 

Ugpv{cdqx"4228+0"Jgpeg. yg"uwiiguv"vjcv"regions of"high summer E0"hkpoctejkewu"dkqocuu"ku 

nkmgn{"dg"c"hggfkpi"jqvurqv"hqt"rtg/ykpvgtkpi"KUU0"Hwtvjgt."yg rtqrqug"vjcv"ugngevkqp"qh 

ykpvgtkpi"ctgcu"oc{"dg"igqitcrjkecnn{"enqug"vq"yjgtg"vjgug jqvurqvu"ctg"nqecvgf0"Vq"vguv" 

vjku."yg"gzvtcevgf"georeferenced mean August dkqocuu"guvkocvgu hqt"cfwnv"E0"hkpoctejkewu" 

*k0g0"E6."E7."E8"uvcigu+,"integrated in the upper 400 m of the water column cv"42"'"42"mo" 
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Imputation of CF_Aug using the 'mi' package

The 'mi' R package uses a chained equation approach to multiple imputation for datasets with 

missing values (Su et al. 2011). In our case, we had missing values only for CF_Aug in the 

years 1992-1994 and 2008-2013. The 'mi' function approximates a Bayesian approach and 

draws imputed values from the eqpfkvkqpcn"fkuvtkdwvkqp"hqt"EHaCwi"ikxgp"vjg"qdugtxgf"xcnwgu 

qh"vjg"qvjgt"eqxctkcvgu0"With Student-t priors (mean = 0, df = 1, scale = 2.5) placed on the 

regression coefficients, wg"tcp hqwt"independent chains initialized with different starting 

values cpf"cuuguugf"eqpxgtigpeg chvgt"52"*vjg"fghcwnv+."72"cpf":2"kvgtcvkqpu"xkc"繰"uvcvkuvkeu0 

Yg"hqwpf"ceegrvcdng"eqpxgtigpeg after 80 iterations *EHaCwi<" ogcp"? 3023."uf"?"3024+ and 

diagnostic plots (produced by the 'plot' function in 'mi') revealed good congruence between 

observed and imputed data. Our procedure generated four multiply imputed datasets (one per 

chain), and wg"vqqm"vjg ogcp"imputed xcnwgs"for each cetquu vjgse datasets cu"qwt"pgy"xcnwgu 

hqt EHaCwi0""

Hkujkpi"magnitude"

Ikxgp"vjg"mpqyp"fkutwrvkxg"ghhgevu"qh"hkujkpi"cpf"xguugn"cevkxkv{"qp"vjg"dgjcxkqwt"qh"rgncike" 

uejqqnkpi"urgekgu"nkmg"jgttkpi"*g0i0"Qnugp"3;93."Htfiqp"gv"cn0"3;;4."Xcd¼"gv"cn0"4224, Qpc"gv" 

cn0"4229."Lindegren et al. 2011+"yg"ciitgicvgf"fcvc"qp"pwodgtu"qh"uweeguuhwn"hkujkpi"gxgpvu 

*succk+"cpf"vqvcn"ncpfkpiu"kp"vqppgu"*ck+ in each 203fl"nqpikvwfg"'"2027̇"ncvkvwfg"itkf"egnn"k 

hqt"gcej"yggm"qh"winter0"Yg"vjgp eqpuvtwevgf"c"ogcuwtg"qh"nqecn"hkujkpi magnitude"– 

fish_magnitude (tonnes) ?"uucck"'"ck."hqt"gcej"itkf"egnn"kp"gcej"yggm,"oqpvj and 

year"cetquu"vjg tiog ugtkgu (Fig. A5)0"Hkpcnn{."hqt"gcej"hkujkpi1uwtxg{"gxgpv."yg"ecnewncvgf"c 

hkujamagnitude xcnwg kp vjg"yggm"rtkqt"vq"vjcv"rctvkewnct"qdugtxcvkqp0"Qwt"j{rqvjguku"ycu"vjcv" 

a jkij"hkujkpi magnitude yqwnf"fkurgtug"vjg"jgttkpi"uejqqnu"kp"vjcv"ctgc."ocmkpi"vjg 

"rtqdcdknkv{"qh"ecrvwtg"cv"vjcv"nqecvkqp"kp"vjg"hqnnqykpi"yggm"nguu"nkmgn{0""
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Appendix 4: R code and data for SPDE models 

 

The folder ‘Macdonald et al._R code and data.zip’ (deposited in the Dryad Digital Repository 

<http://datadryad.org/>), contains R code and data to run all models described in the paper. 

Due to confidentially issues, the ‘herring_data.csv’ dataset is a modified version of that used 

in the paper, so results of the analyses will differ. However, to encourage further exploration 

of our specific results, we include the ‘quadres2_sLap.Rdata’, a list containing model output 

that allows readers to reproduce the figures and tables presented in the manuscript.  

 

Key components of the R code include:- 

 

(1) Preparing the data for modelling, allowing for different degrees of linearity and non-

stationarity in the covariates and different specifications of the spatiotemporal random 

effects.  

(2) Creating a triangulated mesh upon which the GMRFs can be calculated. 

(3) Fitting the models, assessing model fit and predictive performance. 

(4) Extracting results from the posterior distribution and plotting summaries. 

(5) Making spatial predictions to an area of interest within the time series. 

(6) Assessing predictive performance to seasons outside the time series. 

  

Folder name:  ‘Macdonald et al._R code and data.zip’ 

Relevant files:  i) ‘Herring models_23yrs.R’ (R code and functions for SPDE models) 

ii) ‘mesh creation.R’ (R code for different mesh resolutions)  

iii) ‘herring_data.csv’ (.csv file containing point-referenced 

occurrence/absence records and covariates) 
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iv) ‘bisland.csv’ (coordinates of Icelandic coast) 

v) ‘Adult-recruit ratios_SSB_numbers.csv’ (time series of 

demographic parameters for Icelandic summer spawning herring) 

vi) ‘space_grid.csv’ (coordinates for spatial prediction grid) 

vii ) ‘quadres2_sLap.Rdata’ (a four-element list containing model 

output for plotting Figs. 3-5, A7, reproducing Tables 2, 3, A1-A3, and 

summarizing key results). This list is accessed directly through the 

‘Herring models_23yrs.R’ R script. 

viii ) ‘Final prediction rasters’ (folder containing covariate layers for 

making spatial predictions for a subset of seasons) 

   

 

23

Page 79 of 113 Ecography



For Review
 O

nly

Appendix 5: Prior specification for the space-time models 

 

We assigned vague Gaussian priors for all fixed effects N(0, 1000) and the intercept N(0, ) 

in the stationary and partly non-stationary models. Although information on the influence of 

some environmental variables on herring occurrence is available from previous work that 

could be used to inform prior specification, this information relates to other herring stocks at 

other times of year. These stocks are exposed to markedly different oceanographic conditions 

compared with those experienced by the ISS herring during the autumn and winter months. 

To this end, we chose to assign vague normal priors to all of our fixed effects, but tested the 

sensitivity of our results to prior choice by refitting the stationary ‘no space’ models using 

Cauchy priors with mean 0 and scale = 2.5 for fixed effect covariates and scale = 10 for the 

intercept in the ‘arm’ R package (Gelman et al. 2008).  

 

For the non-stationary models, the rw1 models specified for the time-varying coefficients 

were defined by a Gaussian distribution N(0, precR), where prec is the precision parameter 

assigned a Gamma(1, 5e-05) prior, and R is a fixed structure matrix reflecting the model’s 

neighbourhood structure. We also tried various ar1 models for these time-varying terms, 

using a range of ‘Penalized Complexity’ priors that control the degree of correlation among 

seasons (see Simpson et al. 2015 for further details). We found that the rw1 models gave 

essentially the same results, yet with vast computational benefits, so we used these 

throughout. The SPDE model is defined by hyperparameters log(k) and log(せ), (related to the 

spatial range , and marginal variance j 2) which were given normal independent priors N(0, 

1), and the coefficient ‘a’ that controls the degree of correlation in the spatial field between 

seasons, to which we assigned N(0, 0.15). 
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Appendix 6: Spatial prediction  

 

Scaling covariates to match prediction grain size 

Where the spatial resolution of covariates used in model fitting was smaller (i.e. all dynamic 

environmental covariates at ~1 × 1 km), we aggregated the smaller cells to match the 0.1 

longitude × 0.05 resolution of the prediction grid, and used the mean value of the aggregated 

cells. In the case of the C. finmarchicus biomass layers (CF_Aug) (extracted at 20 × 20 km 

resolution for model fitting), we used bilinear interpolation with the ‘resample’ function in 

the ‘raster’ package in R to create layers with the same extent and resolution as the prediction 

grid. For the fishing magnitude variable (fish_magnitude), we summed the grid cell values 

for each week in each fishing year (i.e. October to January inclusive), resulting in one layer 

reflecting total fishing magnitude for each of year.      

 

Prediction to t+1 (see Appendix 4 for R code for running all analyses) 

We used the best partly non-stationary model (i.e. part_ns5) specification to fit models to the 

first 18, 19, 20 and 21 years of data. We wanted to see how well we could predict the 

observed occurrences and absences in the 19th, 20th, 21st and 22nd years respectively. For 

this, we need to be able to estimate the distribt-1 regression coefficient for t+1. We tested if 

we could do this by examining relationships between the time series of distribt-1 in the fitted 

models and nine demographic parameters for the ISS herring stock (see Step 2 below). If a 

strong correlation existed with one or several demographic factors, we then fitted a GLM to 

predict the distribt-1 coefficient from the demographic factor. Assuming that we have data for 

(or can estimate) the demographic parameter in t+1, we can then feed this value into the 

GLM and estimate the distribt-1 coefficient in t+1. The steps we used are summarised as 

follows. 
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Step 1: Use the more general partly non-stationary model. In this model, all covariates are 

kept stationary in time, except for spatial memory covariate (i.e. distribt-1) which is allowed to 

vary by year according to rw1 dynamics. Note that the distribt-1 covariate represents the 

spatial occurrence pattern in the previous year, t-1. 

 

Step 2: Examine correlations between the 22-year time series of distribt-1 coefficients from 

the above model and time series of the nine demographic parameters for the ISS herring stock 

described in main text under ‘Correlation among covariates and demographic parameters’. 

They are as follows:- 

 

i) Number of age3:age4+  

ii)  Number of age3:age4to7 

iii)  Number of age3:age8to13  

iv) Spawning stock biomass (SSB)  

v) Spawning stock numbers (SSN) 

vi) Number of experienced individuals (n age4+) 

vii)  Number of young experienced individuals (n age4to7)  

viii)  Number of old experienced individuals (n age8to13)  

ix) Mean age of the spawning stock (mean age). 

 

Step 3: If a strong correlation with one or more of these parameters is found, run a GLM to 

model distribt-1 as a function of the demographic parameter.  
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This analysis revealed a strong positive correlation between SSN on the regression 

coefficients for distribt-1 across the time series. We then fitted a linear model and found a 

significant effect of SSN on the distribt-1 regression coefficients. This means that we may be 

able to predict the distribt-1 coefficient in t+1, given SSN in t+1 is known or can be estimated. 

 

Step 4: Subset full dataset to get first 18, 19, 20 and 21 years of observations and prepare data 

for model fitting. 

 

Step 5: Fit models to the first 18, 19, 20 and 21 years of the dataset. These models use the 

same formulation as the best partly non-stationary model with linear and quadratic terms for 

environmental covariates, a rw1 model for distribt-1 and independent realizations of the 

spatiotemporal random field (の) each year. 

 

Step 6: For each of the four models in turn, extract the coefficients for the distribt-1 time 

series. 

 

Step 7: Correlate this time series with the equivalent time series of SSN. 

 

Step 8: If strong correlation with SSN is found, fit a GLM to model the distribt-1 coefficients 

as function of SSN.  

 

Step 9: Get (or predict) an estimate of SSN for t+1 (i.e. from stock assessment in year t). In 

our case, we already have the SSN estimates for the 19th, 20th, 21st and 22nd years. 

 

Step 10: Feed this value into the GLM to predict the distribt-1 coefficient in t+1. 

28

Page 84 of 113Ecography



For Review
 O

nly

 

Step 11: Calculate a new multiplier for the distribt-1 covariate for the year we want to     

predict to. For example, for predicting 2010_11, we divide the predicted coefficient from Step 

10 by the estimated coefficient from the fitted 18-year model. This value is the new 

coefficient we use multiply the distribt-1 covariate values for 2010_11 by in the 'effects' list of 

the prediction stack. 

   

Step 12: Validate these models on held-out observations in t+1, and assess predictive 

capacity for the next year (i.e. t+1). Do this by creating a validation stack with covariates 

referenced for t+1 and refitting the 18, 19, 20 and 21 year models with response = NA, using 

the spatiotemporal random effect estimated for year t. Examine model calibration and 

predicted outcomes versus observations (using cross-validated mean Brier scores and AUC).  

 

Step 13: Finally, make spatial predictions across the entire domain for the four t+1 prediction 

years (i.e. 2010_2011, 2011_2012, 2012_2013, 2013_2014).  
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Appendix 7: Additional details on wintering area characteristics, modelling output, 

occurrence-environment relationships in wintering ISS herring and environmental 

sensitivity in other herring stocks   

Environmental characteristics of wintering areas 

By charting the hydrographic variability in wintering areas across seasons, we gain some 

insight into the level of environmental plasticity exhibited by wintering ISS herring. Sea 

surface temperatures (i.e. SST) in the wintering areas differed somewhat among seasons; 

however, most estimates were in the range of ~ 4 to 9°C, and rarely below 3°C (Fig. A6a). In 

19 out of the 22 seasons, median SST’s were higher in wintering areas than in areas where 

herring were absent. Marked among-year consistency was observed in both sea surface 

salinity (i.e. SSS) and the degree of stratification (i.e. PEA) during the early to middle part of 

the time series, yet conditions inshore, inside the fjords occupied during the ‘West’ phase 

were substantially more mixed and less saline (Fig. A6b, c). Wintering areas were also 

typified by relatively small vertical temperature gradients (Fig. A6d), low and uniform 

current velocities (Fig. A6e), depths ranging from ~500 m off the east coast up to ~ 20 m 

inshore on the west coast (Fig. A6f), and low bathymetric relief across all seasons (Fig. A6g). 
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Hki0" A8." Ugcuqpcn" xctkcvkqp" kp" gpxktqpogpvcn" ejctcevgtkuvkeu" qh" ykpvgtkpi" ctgcu" 
qeewrkgf" d{" KUU" jgttkpi" dgvyggp" 3;;3a3;;4" cpf" 4235a42360"Dqzrnqvu" ujqy" vjg" cppwcn" 
fkuvtkdwvkqpu" qh" gpxktqpogpvcn" fcvc" cuuqekcvgf" ykvj" gcej" qeewttgpeg" tgeqtf" *itg{" dqzgu+" 
cpf" cdugpeg" tgeqtf" *yjkvg" dqzgu+" kp" qwt" fcvcugv0" Data for all dynamic variables (i.e., A–
E) were extracted on the day of capture at 1 × 1 km resolution around each catch
location from the CODE ocean model (Logemann et al. 2013). Data for both static
variables (i.e., F,G) were extracted at 30 arcsec resolution around each catch location
from the GEBCO database (www.gebco.net). The median (thick horizontal line), and lower
(Q1) and upper (Q3) quartiles (box limits) are shown for each year. Upper whiskers represent
the smaller of the maximum value for each variable and Q3 + 1.5 × interquartile range, and
lower whiskers are the larger of the minimum value and Q1 – 1.5 × interquartile range.
Circles are data points outside these ranges. Pqvg" vjcv" pq" cdugpeg" fcvc" ycu" cxckncdng"hqt
422;a42320"
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Hki0" A7." Octikpcn" ghhgev" rnqvu" hqt" pqp/ukipkhkecpv" eqxctkcvgu" kp" vjg" dguv" rctvn{" 
pqp/uvcvkqpct{" oqfgn" *rctvapu5+<" *a+" fgpukv{" qh" qeewttgpeg" tgeqtfu" kp" v/3" *eqwpvuv/3+." *b+" 
xgtvkecn" vgorgtcvwtg"itcfkgpv"*ejcpig+." *c+"dqvvqo"fgrvj."(d+"dqvvqo"unqrg"cpf"*e+" hkujkpi" 
kpvgpukv{" kp" vjg" rtgxkqwu" yggm" *ugg" Vcdng" 3" hqt" fgvckngf" fguetkrvkqpu" cpf" fgtkxcvkqp+0" 
Dncem"nkpgu"tgrtgugpv"vjg"ogfkcp"guvkocvg"qh"3222"ftcyu"htqo"vjg"rquvgtkqt"fkuvtkdwvkqp"hqt"c" 
ugswgpeg"qh"322" xcnwgu" cetquu" vjg" hwnn" tcpig" qh" gcej" eqxctkcvg." cpf" itg{/ujcfgf" tgikqpu" 
ctg" ;7'" EKu0" Vkem" octmu" fgpqvg" vjg" rgtegpvkng" fkuvtkdwvkqp" qh" tcy" fcvc" hqt" gcej" eqxctkcvg" 
hqt" qeewttgpeg" tgeqtfu" *vqr" qh" rnqvu+" cpf" cdugpeg" tgeqtfu" *dqvvqo" qh" rnqvu+0" Rnqvu" *a and 
e+" tgrtgugpv" vjg" nkpgct" ghhgev." cpf" *b, c and d+" vjg" swcftcvke" ghhgev" qh" vjg covariate.""
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Table A1. Posterior mean estimates and 95% credible intervals for fixed effects, the spatial 
range () and marginal variance (j 2) for the best-performing stationary, partly non-stationary 
and fully non-stationary models. Estimates for random effect covariates with time-varying 
coefficients in the non-stationary models are presented graphically in Fig. 3. All models were 
fitted using simplified Laplace approximation. 

 

Parameter Stationary model             
(s9) 

Partly non-stationary model    
(part_ns5) 

Fully non-stationary model   
(full_ns5) 

 mean Q2.5% Q97.5% mean Q2.5% Q97.5% mean Q2.5% Q97.5% 

g -0.140 -0.206 -0.075 -0.183 -0.204 -0.161 -0.137 -0.170 -0.104 
distribt-1 0.487 0.440 0.534       
countst-1 0.004 -0.021 0.029 -0.010 -0.041 0.020    
SST 0.247 0.205 0.290 0.170 0.132 0.209    
SST2 0.146 0.100 0.192 0.090 0.046 0.134    
SSS -0.168 -0.224 -0.113 -0.109 -0.162 -0.056    
SSS2 -0.051 -0.070 -0.032 -0.037 -0.056 -0.018    
PEA 0.116 0.087 0.145 0.127 0.098 0.156    
PEA2 0.083 0.052 0.113 0.076 0.046 0.107    
change -0.001 -0.026 0.024 -0.005 -0.029 0.020    
change2 -0.005 -0.014 0.004 -0.005 -0.014 0.003    
current_vel -0.052 -0.078 -0.026 -0.039 -0.065 -0.014    
current_vel2 0.017 -0.007 0.041 0.014 -0.010 0.038    
bottom_depth 0.010 -0.044 0.063 -0.003 -0.055 0.049    
bottom_depth2 0.009 -0.027 0.044 0.000 -0.035 0.034    
slope -0.009 -0.039 0.020 -0.011 -0.041 0.018    
slope2 0.000 -0.007 0.006 0.000 -0.006 0.007    
fish_magnitude -0.003 -0.023 0.018 -0.003 -0.024 0.019    
CF_Aug 0.022 -0.004 0.048 0.036 0.012 0.060    
year9394 -0.147 -0.272 -0.021       
year9495 -0.201 -0.329 -0.074       
year9596 -0.034 -0.164 0.095       
year9697 0.061 -0.075 0.197       
year9798 -0.137 -0.294 0.020       
year9899 -0.055 -0.191 0.081       
year9900 -0.022 -0.102 0.057       
year0001 -0.038 -0.124 0.048       
year0102 -0.068 -0.157 0.020       
year0203 -0.105 -0.186 -0.023       
year0304 -0.016 -0.092 0.060       
year0405 -0.051 -0.139 0.035       
year0506 -0.060 -0.148 0.029       
year0607 -0.050 -0.138 0.037       
year0708 -0.093 -0.202 0.016       
year0809 -0.077 -0.149 -0.004       
year0910 -0.106 -0.427 0.214       
year1011 -0.009 -0.105 0.087       
year1112 -0.093 -0.184 -0.003       
year1213 -0.248 -0.333 -0.162       
year1314 0.003 -0.185 0.189       
 9.945 8.190 11.768 10.395 8.547 12.314 11.247 9.212 13.364 
j 2 0.107 0.081 0.135 0.109 0.081 0.137 0.086 0.063 0.110 
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Table A2. Structure and performance of candidate space-time occurrence models for 
wintering Atlantic herring. Each model contains all covariates (full), and results are shown 
for fitting using Gaussian approximation (see Table 2 in main text for results based on a 
simplified Laplace approximation strategy). s1-s15, stationary models; part_ns1-part_ns9, 
partly non-stationary models; full_ns1-full_ns9, fully non-stationary models. Covariate form 
refers to models that include linear terms only (linear), and quadratic terms (quadratic) or 
penalized regression spline terms for environmental covariates (spline). Structure details the 
form of the spatiotemporal random effect ωi,t, and if a fixed factor for year (yeart) was
included; no-space/no-time, no spatially or temporally structured effects; time_indep, 
independent realization of the spatial random field at each t; time_corr, temporal 
correlation (ar1) is considered in the realization of the spatial random field at each t. The 
best-performing model within each stationarity class is shown in bold. 

Model Covariate 
form 

Structure DIC mean log 
score 

Brier score AUC 

Stationary 
s1 linear full (no-space/no-time) 49104.4 0.504 0.157 0.934 
s2 linear full + yeart 48354.0 0.496 0.154 0.974 
s3 linear full + time_indep i,t 41877.0 0.429 0.123 0.993 
s4 linear full + yeart + time_indep i,t 41816.8 0.429 0.123 0.993 
s5 linear full + time_corr i,t 41881.7 0.429 0.123 0.992 
s6 quadratic full (no-space/no-time) 48917.4 0.502 0.156 0.943 
s7 quadratic full + yeart 48060.0 0.493 0.152 0.981 
s8 quadratic full + time_indep i,t 41737.1 0.428 0.122 0.994 
s9 quadratic 41634.0 0.427 0.122 0.995 
s10 quadratic 41738.2 0.428 0.122 0.994 
s11 spline 49232.4 0.505 0.158 0.917 
s12 spline 48366.0 0.496 0.154 0.973 
s13 spline 41912.0 0.430 0.123 0.993 
s14 spline 41838.2 0.429 0.123 0.993 
s15 spline 

full + yeart + time_indep ωi,t 
full + time_corr ωi,t 
full (no-space/no-time) 
full + yeart 
full + time_indep ωi,t 
full + yeart + time_indep ωi,t 
full + time_corr ωi,t 41913.5 0.430 0.123 0.992 

Partly non-stationary 
part_ns1 linear full (no-space/no-time) 48953.5 0.502 0.157 0.952 
part_ns2 linear full + time_indep i,t 41738.2 0.428 0.122 0.993 
part_ns3 linear full + time_corr i,t 41746.6 0.428 0.122 0.992 
part_ns4 quadratic full (no-space/no-time) 48726.0 0.500 0.155 0.960 
part_ns5 quadratic full + time_indep i,t 41626.5 0.427 0.122 0.994 
part_ns6 quadratic full + time_corr i,t 41630.6 0.427 0.122 0.994 
part_ns7 spline full (no-space/no-time) 49081.0 0.504 0.157 0.943 
part_ns8 spline full + time_indep i,t 41784.9 0.428 0.122 0.993 
part_ns9 spline full + time_corr i,t 41790.5 0.429 0.122 0.992 
Fully non-stationary 
full_ns1 linear full (no-space/no-time) 47333.0 0.486 0.148 0.989 
full_ns2 linear full + time_indep i,t 41342.6 0.424 0.120 0.996 
full_ns3 linear full + time_corr i,t 41351.8 0.424 0.120 0.995 
full_ns4 quadratic full (no-space/no-time) 46760.2 0.480 0.146 0.995 
full_ns5 quadratic full + time_indep i,t 41057.3 0.421 0.119 0.997 
full_ns6 quadratic full + time_corr i,t 41065.8 0.421 0.119 0.997 
full_ns7 spline full (no-space/no-time) 46975.4 0.482 0.147 0.993 
full_ns8 spline full + time_indep i,t 41228.6 0.423 0.119 0.996 
full_ns9 spline full + time_corr i,t 41236.4 0.423 0.120 0.996 
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Table A3. Results for single-term deletions from the best stationary model (s9). Note that for 
environmental covariates, this equates to deletion of both linear and quadratic terms.  

Model  Covariate 
form 

Structure DIC mean log 
score 

mean Brier 
score 

s9 quadratic full + yeart + time-indep のi,t 41629.0 0.427 0.122 

Deletions from s9      
- distribt-1  

 
 
 
 

As above 

42168.6 0.432 0.124 
- countst-1 41629.0 0.427 0.122 
- SST 41858.6 0.429 0.123 
- SSS 41680.3 0.427 0.122 
- PEA 41725.6 0.428 0.122 
- change 41631.0 0.427 0.122 
- current_vel 41653.8 0.427 0.122 
- bottom_depth 41629.0 0.427 0.122 
- slope 41630.0 0.427 0.122 
- fish_magnitude 41630.4 0.427 0.122 
- CF_Aug 41637.9 0.427 0.122 
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Further details on modelled occurrence-environment relationships  

Whilst extreme low temperature conditions can impact directly on physiology (see main text 

for details), and logic dictates that preferences for lower velocity zones may promote energy 

savings and compensate somewhat for any metabolic costs incurred through residing in 

warmer waters (see Liao et al. 2003), the search for causality in the relationships we observed 

between , SSS and PEA (see Fig. 3b, c) is more challenging. Given herring’s euryhaline 

nature, and ability to inhabit brackish and fresh waters down to 1 psu in the Baltic Sea 

(Teacher et al. 2013, Miethe et al. 2014), it is clear that the lowest salinities encountered in 

Icelandic surface waters (i.e. ~ 31.5 psu) would not impose high physiological demands. 

Likewise, the highest SSS in the region throughout the study period approached 35.4 psu – a 

value close to surface measurements made in Ofotfjorden, Norway, during the late 1980s and 

early 1990s when it harbored the majority of the wintering NSS stock (Dommasnes et al. 

1994). As these bounding values are well within the known tolerance range of the species, 

and that the vertical salinity gradient in the upper water column (between 1 and 100 m) across 

our dataset never exceeded 2 psu, we argue that wintering ISS herring undertaking diurnal 

vertical migrations would not have been exposed to strong physiological forcing by salinity, 

and that any effects we see are likely indirect. With regard to our results for PEA, although it 

could be argued that selection of less stratified, shallower, fresher waters, as seen during the 

recent years of our time series (Fig. A6c) could provide energetic benefits to vertically 

migrating herring (Huse and Ona 1996), we see no direct fitness advantage to wintering fish 

of inhabiting more stratified waters. 

 

In the absence of any clear mechanistic basis for these findings, we propose two alternatives. 

First, active avoidance of cold water masses could indirectly influence the population’s 

response to salinity and stratification. The warmer waters encountered at the time and 
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location of the bulk of successful fishing events were also often characterized by higher PEA 

values (particularly during the ‘East’ and ‘Eastwest’ phases), weaker currents and lower SSS 

(particularly close to the coast during the inshore ‘West’ phase) compared with conditions 

associated with survey-derived absence records (Fig. A6). Such hydrographic conditions are 

common in coastal Icelandic waters (Appendix 3, Fig. A2, authors’ unpublished data), and 

other regions at certain times of year (e.g. North Sea: Maravelias and Reid (1995); Bay of 

Biscay: Planque et al. (2006), Huret et al. (2013); Lindåspollene, Norway: Langård et al. 

(2014)), and residence in them during winter would shape the response to each of these 

covariates in the way we observe (see Fig. 3)1. Second, preference for moderately-stratified 

zones, particularly during the early and middle years of the time series (Fig. A6c) could also 

reflect adaptations for predator-avoidance. During this period, the locations of our occurrence 

records were typically quite distant from major fronts off the northwest and north coast (i.e. 

boundaries between strong vertical temperature gradients – see ‘change’ plot in Appendix 3, 

Fig. A2, and Pálsson and Thorsteinsson (2003)) or strongly-mixed zones offshore (i.e. those 

associated with lower PEA values) often rich in herring predators like adult cod (Pálsson and 

Thorsteinsson 2003, Pálsson and Björnsson 2011). Our results may reflect high predator 

densities in these years, with occupation of more stratified areas affording some release from 

predation pressure. Although we included recent fishing activity in our analysis as a potential 

top-down control, spatially-resolved data on the distribution of other non-human predators in 

the study region during winter are needed to allow a more explicit examination of predator 

1
 We note that our PEA estimates may underestimate the true degree of stratification in very 
shallow zones (i.e. < 15 m deep), due to limits on the minimum vertical bin-depth of the 
CODE model (= 2.5 m). However, given that only 68 (0.1%) of our records were located in 
such shallow waters – in all cases near shore in fjords, and that these locations are generally 
influenced strongly by river run-off and tidal processes which enforce water-column mixing, 
we contend that slight inaccuracies in our estimates would have negligible effects on model 
estimation and prediction.  
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effects and their environmental interactions on herring spatial distribution patterns (see the 

‘Fishing and predation’ in the main text for a further discussion). 

 

Issues of scale 

That environmental factors contributed to the wintering patterns we observed (at least in 

some years) contrasts with recent work on wintering ISS herring (Óskarsson et al. 2009) and 

NSS herring (Huse et al. 2010). Both studies found no clear evidence for environmental 

signals as determinants of wintering dynamics. Huse et al. (2010) showed that the six 

different wintering locations used by the NSS stock over the past 50+ years, were 

characterized by vastly different environmental conditions. In Iceland, Óskarsson et al. 

(2009) found no support for a temperature effect on the ISS wintering patterns of the late 

1970s up until the mid-2000s, but suggested that temperature may still play a role at finer 

scales. We agree with this, and posit that the inability to detect a signal in these studies may 

have arisen from a mismatch between the scale of the temperature data used (i.e. single CTD 

stations measured annually), and the scale of the process giving rise to the occurrence of 

herring in that area. In developing our study, we acknowledged the variable spatial and 

temporal scales at which stimuli may act (Levin 1992, Witman et al. 2015); shoaling species’ 

responses to them emerging as a result of exposure to, and/or retention of specific cues 

experienced during early age (e.g. olfactory imprinting), the social transmission of long-

standing traditions among generations (e.g. Fernö et al. 2011), or the spontaneous spread of 

information among individuals, that can manifest in rapid expansion in school size (Makris et 

al. 2009), and elicit fast, school-wide responses to environmental gradients, prey resources or 

predation threats (Doksæter et al. 2009, Makris et al. 2009). We deemed it crucial to capture 

this variability in our models. Therefore, we extracted environmental data from the CODE 

model (Logemann et al. 2013) at several grain sizes and temporal windows (Table 1, 
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Appendix 3), and, through prioritizing ecological reasoning in the trade-off between data 

quality and availability, selected scales for the other variables (Table 1, Appendix 3). Our 

goal here was to match as closely as possible the scale of processes acting on herring schools 

in both the pre-wintering period and during residence in the wintering areas (i.e. behavioral 

states 1 and 2), given the scale of the fishery purse-seine shots that comprise our occurrence 

data. Although the scales of our covariates likely miss several processes relevant to wintering 

herring, particularly the complexities of intra-school shoaling dynamics and diurnal vertical 

migration (Mackinson et al. 1999), the potential impact of larger-scale, non-spatial climatic 

indices (e.g. North Atlantic Oscillation (NAO) winter index, Atlantic Multidecadal 

Oscillation (AMO) – see Engelhard et al. 2011) and possibly, interactions between past 

environmental conditions and spatial persistence in distribution (see Corten 2002, Rindorf 

and Lewy 2006), we feel that the spatial and temporal resolution we chose provided a 

plausible linkage between processes and observations. With continuing improvements in the 

quality of measured and modelled data available for marine systems and the species within 

them, opportunities are emerging to incorporate more mechanistic information into spatial 

models (e.g. Teal et al. in press). Such process-based approaches allow the ‘best’ scale to 

emerge naturally from the physiological process of interest, and by their general nature, 

rooted in data or theory on metabolic rates, hold great promise for predicting species’ 

distributions when observational data are limited. We anticipate rapid progress in this field in 

the coming years (see also Appendix 9 ‘Notes on the modelling approach’). 

 

Environmental sensitivity in herring  

Sensitivity to environmental forcing has also been seen in other herring stocks during winter 

(e.g. Corten 1999a), and at different times of the year. For example, in a series of papers 

focused on North Sea herring, Maravelias and colleagues demonstrated strong effects of 
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temperature gradients, salinity, stratification, zooplankton biomass and bottom topography in 

shaping pre-spawning summer distribution (e.g. Maravelias and Haralabous 1995, Maravelias 

and Reid 1997, Maravelias et al. 2000a, b). The direction and magnitude of these effects 

differed substantially from our study, a finding that was anticipated given that the ISS stock is 

located near the northerly range-edge for the species, and is therefore exposed to vastly 

different environmental conditions to those typically encountered in the North Sea. 

Moreover, these North Sea papers and similar studies in Nordic seas (e.g. Misund et al. 1998, 

Jakobsson and Østvedt 1999, Kvamme et al. 2003, Nøttestad et al. 2007, Broms et al. 2012) 

have often focused on distribution patterns during spring and summer, periods of high 

feeding activity in which adult herring can be tightly linked to prey resources either directly 

(e.g. Holst et al. 1997, Maravelias and Reid 1997, Olsen et al. 2007) or indirectly through 

hydrographic proxies. Some examples of the latter include the northwards displacement of 

the feeding distribution of North Sea herring in the 1980s, posited as a response to 

intensification of the shelf edge current leading to increased productivity off the Norwegian 

coast, concurrent with elevated water temperatures causing a range contraction of C. 

finmarchicus to northern waters (Corten and Van de Kamp 1992, Corten 2001). And, the 

reappearance of the Aberdeen Bank spawning population in 1983, suggested as a corollary of 

increased Atlantic inflow into the North Sea that caused a redistribution of key planktonic 

prey and their predators (e.g. pre-spawning herring) southwards (Corten 1999b). It has also 

been suggested that the quality of future spawning habitat (e.g. water depth, seabed roughness 

– Maravelias et al. (2000b), Langård et al. (2014a)), and distance to spawning grounds (Jech

and Stroman 2012) can affect pre-spawning distribution to some extent. These examples 

illustrate how environmental and biotic factors can interact in complex ways to shape herring 

feeding and pre-spawning distributions, yet such processes are largely irrelevant during 

residence on wintering grounds (i.e. during behavioral state 2 – see main text for definition). 
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Appendix 8: Exploring the relationship between adult population size and occupied 

area.

Although the spatial inconsistency of our fishery and survey dataset limits precise 

quantification of expansion or contraction in Icelandic summer spawning (ISS) herring 

winter distribution over time, we can consider our occurrence records, and their gridded 

representations in the spatial similarity index (SSI), as a minimum, yet fairly accurate 

estimate of the realized winter distribution, reflecting the major spatial trends over the 

1991_92 to 2013_14 period (Guðmundsdóttir and Sigurðsson 2004, Óskarsson et al. 2009, 

and see Appendix 1 for further details). Hence, by summing the number of occupied grid 

cells within each year t = 1, 2, …, T, and plotting these values against fishery-independent 

estimates of adult population size, represented by spawning stock numbers (SSN), we 

were able to examine the association between abundance and occupied area for wintering 

ISS herring. We found no evidence of a positive relationship for our data (Fig. A8).
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spawning herring. – ICES J. Mar. Sci. 66: 1762–1767.

Pearson's r = 0.03, p = 0.88

● ●
●

●

●

●
●

●

● 2000_2001●

●

●

●

●

●
●

●
●

●

●

●

●

0 50 100 200 250

15
00

20
00

25
00

30
00

35
00

150

No. of occupied cells

SS
N

1991_1992 1992_1993
1993_1994

1994_1995

1995_1996

1996_1997
1997_1998

1998_1999

1999_2000

2001_2002

2002_2003

2003_2004

2004_2005

2005_2006

2006_2007

2007_2008
2008_2009

2009_2010

2010_2011

2011_201●2

2012_2013

2013_2014

Fig. A8. Plot of adult population size in the ISS herring stock, represented by estimated spawning 
stock numbers (SSN), against the number of occupied 0.1 longitude × 0.05 latitude grid cells 
during winter (i.e. October to January) for the 23 years from 1991_92 to 2013_14. Data for 
the latter are drawn from the distribt layers used in the creation of the spatial similarity index 
(SSI), and are considered as a minimal estimate of occupied area for each year. Estimates for SSN 
are derived from annual stock assessments for ISS herring conducted by the MRI, Iceland. 
No evidence of an abundance-occupied area relationship was found for overwintering ISS 
herring. The black line is the fitted curve from the non-significant linear regression of SSN 
against the number of occupied cells (R2 = 0.001, p = 0.885).

References

Guðmundsdóttir, A. and Sigurðsson, Þ. 2004. The autumn and winter fishery and distribution

of the Icelandic summer-spawning herring during 1978–2003. – Hafrannsóknastofnunin

Fjölrit 104: 1–42. 

Óskarsson, G. J. 2009. Variation in spatial distribution and migration of Icelandic summer-

46

Page 102 of 113Ecography



For Review
 O

nly

Appendix 9: Notes on the modelling approach 

 

The mixed effects models we fit in this paper fall broadly within the class of ‘empirical’ 

statistical models as defined by Levins (1966). These types of models are in essence 

correlative, although they may have mechanistic underpinnings related to the fundaments of 

Grinnellian and Eltonian niches (Hutchinson 1957, Soberón 2007, Beale et al. 2014). In lieu 

of the oft-lacking, detailed physiological knowledge needed for parameterization of an 

exciting new family of process-based models (e.g. Freitas et al. 2010, Jørgensen et al. 2012, 

Teal et al. 2012, see Peck et al. in press for a review), correlative models, which tend to 

compromise generality for realism and precision (Levins 1966, Dickey-Collas et al. 2014), 

remain widely used in ecology to explore the nature of relationships between species’ 

distributions and biotic and abiotic factors, to build hypotheses and to guide management 

decisions (Guisan and Thuiller 2005, Elith and Leathwick 2009, Robinson et al. 2011). 

 

Increasing recognition of the role of demographic structure, dispersal and density-dependence 

in shaping fish distribution patterns has motivated recent attempts to incorporate these 

processes explicitly (Cheung et al. 2009, Loots et al. 2010, Planque et al. 2011, Ciannelli et 

al. 2012). Moreover, regression models including time-lagged covariates, which provide 

insights into how the past may impact the present (e.g. Rindorf and Lewy 2006), and those in 

which covariate coefficients can vary in space and/or time, have proved valuable in 

understanding the interplay between density-dependent and density-independent controls on 

observed distributions (Bartolino et al. 2011, Ciannelli et al. 2012). Whilst still not allowing 

causation to be inferred directly, this class of models implicitly integrate mechanistic 

processes in their formulation, and hence occupy a space between environmental envelope 

and process-based models (Beale and Lennon 2012, Peck et al. in press). 
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We built our models in line with these ideas. By linking measures of distribution history, 

output from a spatially-explicit, individual-based model of zooplankton biomass, fine scale 

environmental fields and estimates of local fishing intensity, we fitted stationary and time-

varying coefficient GLMMs for ISS herring occurrence across a 23-year time series. 

Correlations between the relative influence of these factors across years and time series of 

demographic parameters were then examined post-hoc, providing a basis for model validation 

to held-out observations one-year ahead. Our models were fitted in a Bayesian framework in 

R-INLA, using the SPDE approach to capture spatial and temporal dependence in the data 

(Rue et al. 2009, Lindgren et al. 2011). The merits of the Bayesian approach for this type of 

hierarchical model are many (Gelfand et al. 2006, Gelman and Hill 2007, Royle et al. 2007). 

Without reviewing these exhaustively here (see Elderd and Miller 2016 for a comprehensive 

appraisal), we highlight the inherent way in which random effects are handled as parameters 

of interest, resulting in fully specified probability distributions from which information on the 

intensity and uncertainty of the effects can be drawn; the option to incorporate prior 

knowledge based on empirical data or theory; and the ability to robustly quantify and 

propagate uncertainty through all modelling stages. Model fitting using INLA is 

computationally efficient, and provides accurate approximations of the posterior marginal 

distributions of model parameters that show high concordance with Markov chain Monte 

Carlo (MCMC) simulations (Rue and Martino 2007, Rue et al. 2009, Held et al. 2010). Since 

Lindgren and colleagues proved that a continuously indexed Gaussian field described by a 

Matérn covariance function can be represented as a discretely indexed GMRF (Rue and Held 

2005, Lindgren et al. 2011), rapid development of the SPDE approach within R-INLA has 

facilitated fitting of an expanding suite of hierarchical spatial and spatiotemporal models to 

spatial point patterns (Krainski et al. 2016). This approach has recently proven useful in 
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analyses of georeferenced fisheries datasets, which are often data-rich and where inference at 

the scale of point locations, rather than grids, is required (e.g. Cosandey-Godin et al. 2015, 

Ward et al. 2015, Ono et al. 2016).  

 

One of the well-noted criticisms of correlative species distribution models (Elith and 

Leathwick (2009) for a review of different methods) has been their inability to adequately 

account for residual autocorrelation in space and/or time. This situation that can violate 

independence assumptions in regression models, leading to inference errors and/or 

misrepresentation of covariate importance (Legendre 1993, Dormann 2007, Beale et al. 

2010). The SPDE approach considers these correlation structures directly, and allows great 

flexibility in their specification (e.g. Cosandey-Godin et al. 2015). In our space-time models 

for example, we specified temporally-independent (time-indep), or temporally-evolving 

(time-corr) annual realizations of spatially-structured error terms. As wintering herring 

displayed varying persistence in their spatial distribution from year to year (Fig. 2), our aim 

was to gain insight into if, and how のi,t-1 might influence のi,t. Although model performance 

did not alter greatly (Table 2), the time-indep structure was preferred for all models. This is 

most likely due to inclusion of time-lagged covariates (i.e. distribt-1, countst-1), the former of 

which was highly significant in all cases, and captured well the occurrence pattern of the 

previous year.  

 

We specified covariates as additive effects only in these models, but did allow for varying 

degrees of non-linearity and temporal non-stationarity in occurrence-covariate relationships. 

Whilst acknowledging that important interactions among predictors (e.g. environment and  

fishing intensity – Planque et al. (2010)) may have been overlooked, our decision reflects an 

attempt to balance model complexity with meaningful ecological inference (Merow et al. 

49

Page 105 of 113 Ecography



For Review
 O

nly

2014). Hence, we placed priority on deriving biologically-realistic functional forms that 

could also vary in time. We found that including quadratic terms for the environmental 

covariates improved model fit compared with linear specifications alone, or where covariates 

were represented by penalized regression splines (Table 2), although most relationships 

approached linearity (Fig. 3). As the wintering stock was often clustered tightly in space, we 

also did not consider models with spatially-varying coefficients (e.g. Bacheler et al. 2009, 

Bartolino et al. 2011, Ciannelli et al. 2012). At the spatial scales of our observations, we 

assumed that any effect of a particular covariate would be imparted roughly equally across 

the space encompassing all herring schools encountered. This assumption is unlikely to hold 

if the occupied range expands, for example, during the spring feeding period, or if various 

ontogenetic stages, inhabiting geographically or environmentally disparate areas, are included 

in the models (see Bartolino et al. 2011 for an example). In these cases, inclusion of spatially 

non-stationary terms would likely provide important new insights.       

 

A key limitation of our analysis relates to the lack of age-disaggregated or spatially-

standardized catch or survey data available during our temporal window. Because of this, we 

were forced to consider demographic factors in a non-spatial, correlative context (i.e., 

estimates across the entire stock for each year), and were unable to incorporate the singular or 

interactive effects of density-dependence and age-structure directly within the model 

formulation. Although our results suggest that density-dependence is unlikely to play a major 

role in governing winter occurrence in herring (see Appendix 8, Fig. A8), and that population 

size may influence spatial persistence in wintering area use, georeferenced data on age-

structure of each fishing event or survey record would have allowed direct tests of hypotheses 

around age-related differences in environmental preference, susceptibility to fishing pressure 

and the tendency to follow traditions and return to previously-used wintering sites. This type 
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of data is available for many other herring stocks, and ongoing work is focused on exploring 

these ideas. 

 

Our models were specific to wintering ISS herring, limiting their generality. However, the 

approach used, and the covariates created, are easily adaptable to other herring stocks and 

species for which questions on the drivers and scales of conservatism or homing remain open. 

Bolstered by the strong congruence between modelled and observed temperature, salinity and 

flow fields in Icelandic waters (Logemann et al. 2013), the 23-year dataset we analyzed 

represents a substantial compilation of georeferenced records on the environmental 

conditions experienced by wintering ISS herring. The model outputs therefore provide a basis 

for identifying physiological thresholds that can be used to develop more informative priors 

and guide variable selection in future regression models (Simpson et al. 2015, Authier et al. 

2017), or to aid parameterization of mechanistic models (Teal et al. in press). We agree with 

Rochette et al. (2013) who advocate a hierarchical Bayesian framework as an appealing 

platform upon which to meld different types of data and models together, making it possible 

to assimilate the processes acting on different life-history phases within the one ‘full life 

cycle’ model. Such a model in under development for NSS herring in the Norwegian and 

Barents Seas (Utne and Huse 2012, Huse 2016) and we see potential for the types of models 

developed here to contribute to it. 
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Appendix 10: Fish and mammal predation on herring  

 

Humans are but one of herring’s many predators. Across their distributional range, herring 

aggregations are targeted by demersal and pelagic fishes, in addition to several species of 

seals, whales and seabirds (Read and Brownstein 2003, Pitcher et al. 1996, Similä et al. 1996, 

Nøttestad and Axelsen 1999, Overholtz and Link 2007, Guse et al. 2009, Víkingsson et al. 

2014). Herring have developed complex behavioral strategies to combat this; classic 

examples including diurnal vertical migration (Dommasnes et al. 1994) and extended 

residence in deep waters, that whilst potentially energetically expensive (Huse and Ona 1996) 

are suggested as an adaptive response to visual predators like Atlantic cod (Gadus morhua) 

(Langård et al. 2014), surface-feeding fin whales (Balaenoptera physalus) (Nøttestad et al. 

2002) and killer whales (Orcinus orca) (Similä 1997). In-situ observations of killer whale-

herring interactions on wintering grounds in Norway have shed further light on the diversity 

of predator-evasion responses employed by herring schools (Nøttestad 1998, Nøttestad and 

Axelsen 1999), and the cooperative tactics used by killer whales to overcome such responses 

(Similä 1997, Domenici et al. 2000).  

 

In Icelandic waters, killer whales specialize on wintering ISS herring, and large numbers of 

these whales are often present on the wintering grounds between December and March 

(Samarra and Foote 2015). The ability of killer whales to influence herring schooling 

behaviour is very real (Nøttestad and Axelsen 1999). However, as herring are typically 

established on wintering grounds by early October (pre-dating killer whale arrival – Samarra 

and Foote 2015), and wintering areas are not vacated once colonized (ICES 2014, authors’ 

personal observation), we propose that any displacement by killer whale foraging would 

occur mainly at localized scales. For these reasons, and due to data scarcity, we did not 
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include killer whale occurrence or density in our analysis. We stress however, that 

information on arrival times may help expose the evolutionary and contemporary risks 

herring face in following traditions and returning to the same, predator-rich, wintering 

grounds.  
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