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ABSTRACT: Contiguous sampling of ice spanning key intervals of the deglaciation from the Greenland ice cores
of NGRIP, GRIP and NEEM has revealed three new silicic cryptotephra deposits that are geochemically similar to
the well-known Borrobol Tephra (BT). The BT is complex and confounded by the younger closely timed and
compositionally similar Penifiler Tephra (PT). Two of the deposits found in the ice are in Greenland Interstadial 1e
(GI-1e) and an older deposit is found in Greenland Stadial 2.1 (GS-2.1). Until now, the BT was confined to GI-1-
equivalent lacustrine sequences in the British Isles, Sweden and Germany, and our discovery in Greenland ice
extends its distribution and geochemical composition. However, the two cryptotephras that fall within GI-1e ice
cannot be separated on the basis of geochemistry and are dated to 14358�177 a b2k and 14252� 173 a b2k, just
106� 3 years apart. The older deposit is consistent with BT age estimates derived from Scottish sites, while the
younger deposit overlaps with both BT and PT age estimates. We suggest that either the BT in Northern European
terrestrial sequences represents an amalgamation of tephra from both of the GI-1e events identified in the ice-cores
or that it relates to just one of the ice-core events. A firm correlation cannot be established at present due to their
strong geochemical similarities. The older tephra horizon, found within all three ice-cores and dated to
17326� 319 a b2k, can be correlated to a known layer within marine sediment cores from the North Iceland Shelf
(ca. 17179-16754 cal a BP). Despite showing similarities to the BT, this deposit can be distinguished on the basis
of lower CaO and TiO2 and is a valuable new tie-point that could eventually be used in high-resolution marine
records to compare the climate signals from the ocean and atmosphere.
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Introduction

Tephrochronology has long been established as a tool that
exploits ash deposits with unique geochemical fingerprints
to precisely correlate a diverse range of palaeoarchives
from widely separated localities (e.g. Lowe, 2011). Tephra
deposits are preserved in a wide range of depositional environ-
ments including marine, ice and terrestrial records and thus
have the potential to give rise to valuable time-synchronous
horizons (e.g. Lane et al., 2013). Over the last few decades,
the scope of this technique has changed considerably through
the investigation of cryptotephra deposits that are invisible
to the naked eye and can only be detected by employing
microscopy techniques (e.g. Davies, 2015). Cryptotephra
investigations in Greenland have highlighted the value of
polar ice cores as volcanic ash repositories and the potential
of bearing isochronous horizons for synchronizing the ice
to other palaeoarchives (e.g. Gr€onvold et al., 1995; Mortensen
et al., 2005; Davies et al., 2008, 2010; Abbott and Davies,
2012; Bourne et al., 2015, 2016).
Many Lateglacial tephra deposits identified in European

terrestrial records, however, have not yet been identified in
the ice. Here we target our searches to identify the Borrobol

(BT) and Penifiler (PT) cryptotephras in the Greenland ice
cores. Both are distinguishable from other Lateglacial crypto-
tephras by low FeO and TiO2 and high MnO content and are
found exclusively in terrestrial deposits in the North Atlantic
(NA) region. The BT and PT are close in age and composition
and, as a result, present problems for correlation purposes
(see Lind et al., 2016 for a summary of BT and PT findings in
NA records). The BT was first identified in three Scottish
palaeolakes, Borrobol Bog, Tynaspirit West and Whitrig Bog
by Turney et al. (1997) in early Lateglacial Interstadial
sediments [probably analogous to Greenland Interstadial 1e
(GI-1e) in Greenland or Bølling in Scandinavia] and was
subsequently thought to have been identified at H€asseldala
port and Skallahult in Sweden by Davies et al. (2003) (see
Fig. 1 for site locations). However, with a new pollen
stratigraphy and age estimates, Davies et al. (2004) showed
that the horizon identified in H€asseldala port is associated
with Older Dryas sediments (probably analogous to the short-
lived GI-1d cold event in Greenland). This discovery was
inconsistent with the Scottish occurrences that were associ-
ated with older Lateglacial interstadial sediments (analogous
to the warmer GI-1e) and prompted Davies et al. (2004) to
propose that two tephras with identical geochemistry were
deposited during GI-1. Further evidence to support this was
presented by Pyne-O’Donnell (2007) and Pyne-O’Donnell
et al. (2008) who revisited the Scottish palaeolakes investi-
gated by Turney et al. (1997) and identified two closely
spaced horizons with an identical composition to the BT. The
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deposits were positioned in what were described by the
authors as early- and mid-interstadial sediments (Fig. 2)
and they recommended that the older deposit should be
considered the BT, as defined by Turney et al. (1997), while
the younger deposit was named the PT. Subsequent work
by Matthews et al. (2011) outlined new radiocarbon age
estimates for the BT and PT horizons based on their
preservation within a well-resolved record from Abernethy
Forest, Scotland (Fig. 1). These Bayesian age-model estimates
were updated by Bronk Ramsey et al. (2015) and are
as follows: BT is 14 098� 47 (m� 1s) or 14190–14003 cal
a BP (95%; IntCal13), and PT is 13 939�66 (m�1s) or
14 063–13808 cal a BP (95%; IntCal13). Both tephra deposits
are close in age but a synthesis of age estimates, stratigraphic
positions and, more importantly, chironomid-inferred temper-
ature records led Brooks et al. (2016) to conclude that the BT
was deposited during the latter stages of GI-1e. The PT,
however, is thought to be associated with a colder interval,
probably analogous to GI-1d. The chironomid-inferred tem-
perature record from Whitrig Bog provides crucial evidence
here as this is the only site, as yet, that fully captures the
warming transition at the start of the Lateglacial interstadial
(GI-1) and, as such, constrains the BT to the latter stages of
GI-1e (Brooks and Birks, 2000; Brooks et al., 2016; Walker
and Lowe, in press). At other Scottish sites a lag in the start of

organic sedimentation has been proposed as an explanation
for finding the BT at the base of Lateglacial sedimentary
profiles and thus misinterpreted as equivalent to early GI-1e
in previous studies (Walker and Lowe, in press).
The occurrence of two separate eruptions with similar ages

and identical geochemical compositions means there is a
danger of miscorrelation, especially for sites that only preserve
a single tephra deposit (e.g. records such as H€asseldala port
and Skallahult; Davies et al., 2003, 2004). Current thinking
suggests a correlation between the Swedish deposits and the
PT based on pollen evidence and stratigraphic position, but
this cannot be proven given the overlap between BT and PT
age estimates (Bronk Ramsey et al., 2015). Furthermore, new
trace element comparisons of the BT, extracted from a new
core from the Borrobol site and (presumably) the PT from these
Swedish sites found that the deposits were indistinguishable
from each other (Lind et al., 2016).
To complicate matters, individual deposits in marine cores

HM107-05 (382–379 cm), MD99-2275 (3679 cm) and MD99-
2271 (806–808 cm) from the North Iceland shelf have been
discovered by Eirı́ksson et al. (2000), Søndergaard (2005) and
Gudmundsd�ottir et al. (2011, 2012), respectively. All cores
have been correlated to each other by Gudmundsd�ottir et al.
(2012) using magnetic susceptibility and isotope profiles and
the tephra deposits found were originally correlated to the BT
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Figure 1. Location of the Greenland ice cores and the distribution of all terrestrial/marine core sites containing Borrobol-type tephra of GI-1 and
GS-2 age. Iceland/North Iceland Shelf: (1) MD99-2271 (Guðmundsd�ottir et al., 2011). (2) MD99-2272 (Jarvis, 2013). (3) HM107-05 (Eirı́ksson
et al., 2000). (4) MD99-2275 (Søndergaard, 2005). (5) Svı́navatn (Boygle, 1999). (6) Vatnaj€okull (Larsen and Eirı́ksson, 2008). Faroe Islands: (7)
Høvdarhagi (Lind and Wastegård, 2011). Orkney: (8) Quoyloo Meadow (Timms et al., 2017). Scotland: (9) Lochan An Druim (Ranner et al.,
2005). (10) Borrobol Bog (Turney et al., 1997; Pyne-O’Donnell, 2007; Pyne-O’Donnell et al., 2008). (11) Tanera Mor (Roberts et al., 1998). (12)
Druim Loch (Pyne-O’Donnell, 2007; Pyne-O’Donnell et al., 2008). (13) Loch Ashik (Pyne-O’Donnell, 2007; Pyne-O’Donnell et al., 2008). (14)
Loch an t’Suidhe (Pyne- O’Donnell, 2007; Pyne-O’Donnell et al., 2008). (15) Abernethy Forest (Matthews et al., 2011). (16) Loch Etteridge (Albert,
2007). (17) Muir Park (Brooks et al., 2016). (18) Tynaspirit West (Turney et al., 1997; Lowe et al., 1999; Pyne-O’Donnell, 2007; Pyne-O’Donnell
et al., 2008). (19) Whitrig Bog (Turney et al., 1997; Pyne-O’Donnell, 2007; Pyne-O’Donnell et al., 2008). Norway: (20) Borge (Pilcher et al.,
2005). (21) Fosen peninsula (Lind et al., 2013). (22) Dimnamyra Bog (Koren et al., 2008). (23) H€ogstorpsmossen (Bj€orck and Wastegård, 1999).
(24) Mulakulleg€ol (Lilja et al., 2013). Sweden: (25) H€asseldala port (Davies et al., 2003, 2004; Lind et al., 2016). (26) Skallahult (Davies et al.,
2003; Lind et al., 2016). Denmark: (27) Østerskov (Larsen, 2014 cited in Lind et al., 2016). Germany: (28) Lake H€amelsee (Jones et al., 2018).
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based on geochemical similarities (i.e. Haflidason et al.,
2000; Gudmundsd�ottir et al., 2011, 2012). However, all
tephra deposits are in fact associated with glacial sediments,
stratigraphically located below Bølling or GI-1-equivalent
material. Indeed, the Borrobol-type tephra (i.e. a similar
composition to BT) in HM107-05 has an age range of
16 490–16120 cal a BP (�1s), based on calibrated (CALIB
3.0) accelerated mass spectrometry (AMS) 14C dating of
benthic foraminifera. Similarly, a Borrobol-type tephra was
found in another core, MD99-2272 (1697 cm), by Jarvis
(2013) and the best available AMS 14C age estimate is
17179–16754 cal a BP (�1s), derived from mollusc shell
material located 4.5 cm above the tephra layer (calibrated
using OxCal 4.1 and the Marine04 curve). Stratigraphic and
chronological evidence therefore indicates that the marine
layers were deposited in GS-2.1-equivalent glacial sediments
and this discrepancy between terrestrial and marine-based
radiocarbon age estimates was first noted by Lowe (2001).
Both Jarvis (2013) and Eirı́ksson et al. (2004) applied a
standard reservoir correction of 400 years to their 14C dates,
yet Eirı́ksson et al. (2004) noted that the temporal variability in
reservoir ages around the North Iceland Shelf exceeds
the variability expected from marine model calculations, and
may explain offsets between their marine age estimates and
between the Icelandic shelf and NGRIP ice-core age estimates.
Since the first identification of the BT by Turney et al.

(1997), deposits with a similar composition to the BT have
been identified in 28 locations around the NA spanning the
early and late Holocene, GI-1d, GI-1e and GS-2.1 (Fig. 1).
Here we undertake a comprehensive search of the high-
resolution Greenland ice cores in an attempt to pinpoint the
stratigraphic position of the BT, PT and the GS-2.1 tephra.
We also refine the signature of the deposits by major and

trace element analysis, particularly to explore whether the
latter can aid in discriminating between the different tephras.

Methodology

Ice-core sampling

Three Greenland ice-cores (NGRIP, GRIP and NEEM) were
used to search for the BT, PT and the older Borrobol-type
tephras between GS-2.1 and GI-1. The timing of Greenland
interstadials (GI) and stadials (GS) and ages presented in this
study have been defined by Greenland Ice Core Chronology
2005 (GICC05) (Andersen et al., 2006; Rasmussen et al.,
2006, 2014; Seierstad et al., 2014) and GICC05modelext-
NEEM-1 (Rasmussen et al., 2013). The GICC05 multi-core
(NGRIP, DYE-3, GRIP) timescale was constructed by counting
annual layers back from 2000 AD (b2k) using multiple
parameters (e.g. d18O, calcium ions) and uncertainty is based
on a maximum counting error (MCE) of ambiguous layers,
equivalent to 2s, where cumulative errors increase with
depth (Andersen et al., 2006; Rasmussen et al., 2006). NGRIP
and GRIP ice samples were selected to encompass mid-GI-1e
through to early GI-1c ice (Fig. 2) to maximize the chances of
isolating the BT and PT. The GI-1 sampling strategy for NEEM
was based on coarse-resolution screening of meltwater
samples (1.1m) derived directly from the continuous flow
analysis (CFA) system (Bigler et al., 2011) for the entire
interstadial and high-resolution sampling was informed by the
age estimates of Matthews et al. (2011) and GICC05mode-
lext-NEEM-1, which encompassed mid- to late GI-1e and the
complete GI-1d (Fig. 2). To trace the older GS-2.1-equivalent
Borrobol-type tephra, coarse-resolution CFA samples from
NEEM were screened and used to inform a higher-resolution
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Figure 2. The sampling strategy adopted to search for Borrobol-type tephra deposits in NEEM, NGRIP and GRIP ice cores, presented against
depth and d18O profiles for the interval between GI-1 and GS-2.1 (GRIP: Johnsen et al., 1997; NGRIP: NGRIP Members, 2004; NEEM: Buizert
et al., 2014). For each core, the depth intervals sampled are shaded in grey. Horizontal blue bars highlight tephra layers found in each core and
proposed tie-points between cores are shown. The stratigraphic position of three known Borrobol-type deposits (North Iceland Shelf, BT, PT)
found in terrestrial and marine sediments (e.g. Gudmundsdottir et al., 2011, 2012; Matthews et al., 2011; Brooks et al., 2016) is shown for
context. References for all sites containing these horizons are given in Fig. 1.
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sampling strategy for NEEM, NGRIP and GRIP (Fig. 2). All ice
sampling was contiguous to maximize cryptotephra extrac-
tion. Ice cores are cut into sections of 55-cm length in the
field, and a 2-cm3 section of ice was cut from the outer edge
of each 55-cm section and further subsampled at a resolution
of 15–20 cm. Individual samples were melted and centrifuged
in tubes for 5min at 2500 r.p.m. and at the end of this
process any particulate matter, including tephra, remained
concentrated at the bottom of the tubes. Supernatant water
was discarded, leaving 2–3mL of sample that was evaporated
onto a frosted glass microscope slide and covered in epoxy
resin for optical assessment, using high-magnification light
microscopy. Slides containing tephra were selected for
electron probe micro-analysis (EPMA).

Geochemical analysis

EPMA by wavelength dispersive spectrometry (WDS) is the
preferred method for major element characterization of indi-
vidual tephra grains and requires flat exposed sections through
grains for electron bombardment and X-ray generation (Hunt
and Hill, 1993; Hayward, 2012). To obtain these thin sections,
epoxy resin was ground down using electrocoated silicon
carbide paper and then polished using 6-, 3- and 1-mm
diamond suspension and 0.3-mm alumina micro polish. EPMA
was performed using a Cameca SX100 electron probe micro-
analyser at the Tephra Analysis Unit, University of Edinburgh.
This system has five wavelength dispersive spectrometers and
was calibrated daily using internal calibration standards as
described by Hayward (2012) and secondary standards were
analysed daily and monitored to identify instrumental drift.
Major element and secondary standard concentrations are
provided in Supporting Information, Table S1.
Trace element analyses were performed on the same glass

shards that had been analysed for major elements, using
laser ablation inductively-coupled plasma mass spectrometry
(LA-ICP-MS) at the Department of Geography and Earth
Sciences, Aberystwyth University. Here a Coherent GeoLas
ArF 193 nm Excimer LA system was operated with a fluence
of 10 J cm�2 at a repetition rate of 5Hz. The analyses
were performed using 10-mm ablation craters, with spectra
collected for a 24-s acquisition on a Thermo Finnegan
Element 2 sector field ICP-MS. The minor 29Si isotope was
used as the internal standard (using the anhydrous, normal-
ized SiO2 from EPMA) with the NIST 612 reference glass used
for calibration, taking concentrations from Pearce et al.
(1997). A fractionation factor was applied to the data to
account for analytical bias related to the different matrices of

the reference standard and the sample. Data were filtered for
inclusion of phenocryst phases to leave only glass analyses.
Full details of these methods as well as LA-ICP-MS operating
conditions are given in Pearce et al. (2011) and Pearce (2014)
and trace element concentrations are provided in Table S2.

Results

Tephra deposits were identified within GI-1e and GS-2.1 ice.
Despite sampling the entire GI-1d cold event in three ice
cores no colourless glass shards consistent with the BT/PT
were identified. Other stratigraphically significant cryptoteph-
ras were identified within these sampling windows (Fig. 2),
some of which were used by Seierstad et al. (2014) for the
timescale transfer of GICC05 to GRIP; however, this work
focuses only on the Borrobol-type horizons and the full
tephrostratigraphy will be reported elsewhere.

Tephra in GI-1e ice: stratigraphic position and
geochemical composition

Two individual cryptotephra deposits composed of colourless/
pinkish shards with distinctive fluted/cuspate morphology
were identified in GI-1e in GRIP and one deposit in NGRIP
(Fig. 2, Table 1). The older of the two GRIP deposits was found
at 1734m depth (14 358� 177 a b2k or 14308� 177 a BP)
and the younger was found at 1727.75m depth (14 252� 173
a b2k or 14202�173 a BP). The single GI-1e deposit in
NGRIP was found at a depth of 1582.75m (14252� 173 a
b2k or 14202� 173 a BP). No rhyolitic material was identified
in NEEM in the targeted GI-1e-d sampling window. Major
element analyses (Table 2) show a near identical composition
between all these layers which all have a homogeneous
population that spans the boundary between low- and high-
alkali rhyolites (Fig. 3A,B). The total alkali (TA) content
(Na2OþK2O) ranges between 7.69 and 8.55wt%, the SiO2

values range between 75.90 and 77.40wt% and the FeO and
TiO2 contents are between 1.20 and 1.83wt% and 0.08 and
0.19wt%, respectively (Table 2; Supporting Table S1; Fig. 3A–
C). Statistical analysis of GI-1e sample pairs found in NGRIP
(1582.75m) and GRIP (1727.75 and 1734m) supports a
common origin from a single volcano, based on high similarity
coefficients (SC between 0.979 and 0.981) and low D2 values
between 0.280 and 1.088, far below the D2

critical value of
18.48 at the 99% confidence level.
The Icelandic system producing Borrobol-type material

remains unknown (Lind et al., 2016) and our major element
comparisons indicate that this tephra has no consistent

Table 1. Summary information for Borrobol-type tephra deposits from GI-1e and GS-2.1 including the ice-core depth interval (metres) within
which each deposit was found and a Greenland Ice Core Chronology 2005 (GICC05) age (using the lower ice depth age). Age uncertainty is based
on ‘uncertain annual layers’ and for N uncertain layers the error¼N�0.5 years, and the accumulated error is obtained by summing these layers
and is called the maximum counting error (MCE), equivalent to 2s (Andersen et al., 2006; Rasmussen et al., 2006). For NEEM, a GICC05 age has
been assigned to the GS-2.1 deposit 1524.80m as it can be correlated to the NGRIP deposit at 1665.60m. Geochemical composition, shard
concentrations and average shard size are provided. The rock type classification is based on Le Maitre (2002). EPMA conditions were optimized for
analysis of small cryptotephra grains (<20mm diameter) and samples in this study were analysed with either a 5- or 3-mm beam diameter using the
operating conditions outlined in Hayward (2012).

Core Depth (top) (m) Depth (bottom) (m) Max. age (a b2k)
and MCE

Composition Grain count Grain size:
long axis (mm)

EPMA beam
size (mm)

Event

NGRIP 1582.55 1582.75 14 252�173 Rhyolite 86 30.5 3 GI-1e
GRIP 1727.55 1727.75 14 252�173 Rhyolite 102 33.1 5 GI-1e
GRIP 1733.80 1734.00 14 358�177 Rhyolite 93 34.3 3 GI-1e
NGRIP 1665.40 1665.60 17 326�319 Rhyolite >2000 47.4 5 GS-2.1
GRIP 1818.15 1818.30 17 326�319 Rhyolite 431 49.4 5 GS-2.1
NEEM 1524.60 1524.80 17 326�319 Rhyolite 124 36.8 5 GS-2.1
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overlap with rhyolitic products of Icelandic origin (Fig. 3B).
The exception, however, is the eastern rift zone central
volcano Þ�orÐarhyrna that has a similar composition (although
the reference data are based on just three analyses of whole
rock samples). Little is known about this volcano, located
beneath the Vatnaj€okull ice cap, but three nunataks were
analysed by X-ray fluorescence (XRF) by J�onasson (2007) and
the limited data are used for comparison in Fig. 3B.
Both GRIP GI-1e deposits geochemically match the NGRIP

deposit, and their chronological positions were assessed by
Seierstad et al. (2014) as part of a wider study to identify tie-
points between cores for transfer of the GICC05 chronology
to the GRIP record. The two youngest deposits, NGRIP

1582.75m and GRIP 1727.75m, were matched and thus
share the common age of 14 252�173 a b2k and also
occupy a stratigraphic position approximately 200 years
before the start of GI-1d. GRIP 1734m is 106� 3 years older
(14 358� 177 a b2k) and is found in the middle of the GI-1e
warm event, immediately before a gradual downturn trend in
surface air temperature according to the d18O record (Fig. 2)
(NGRIP Members, 2004).
Single-shards were analysed by LA-ICP-MS (Table 2)

and when average rare earth element (REE) profiles are
displayed together with the individual grain analyses, there is
general similarity between all layers from GI-1e (Fig. 3D).
The REE profiles appear typical of Icelandic rhyolitic products

Table 2. Mean major and trace element values for each tephra deposit with associated standard deviations (1 or 2s). Major elements were
obtained by EPMA of individual grains and mean anhydrous (norm) values are expressed as weight% of sample, together with average values of
raw (hydrous) totals. The ice-core sample depth and the number of analyses (n) are given for each deposit. All analyses were performed at the
Tephra Analysis Unit (TAU), University of Edinburgh, using a Cameca SX100 electron microprobe. Trace element data are expressed in parts per
million. All samples were analysed by LA-ICP-MS at the University of Aberystwyth with a 10- mm beam spot size using a Coherent Geolas ArF
193-nm Eximer laser ablation unit coupled to a Thermo Finnigan Element 2 high-resolution sector mass spectrometer. The USGS reference glass
BCR2-G was analysed as an unknown under the same operating conditions at the same time. Analytical precision is typically between �5 and
10% and accuracy is typically around �5%, when compared with the published concentrations for BCR2-G.

NGRIP
1582.75 m

GRIP
1727.75 m

GRIP
1734 m

NGRIP
1665.60 m

GRIP
1818.30 m

NEEM
1524.80 m

MD99-2271
808 cm

Major
elements

Mean
(n¼6)

2s Mean
(n¼7)

2s Mean
(n¼8)

2s Mean
(n¼25)

2s Mean
(n¼12)

2s Mean
(n¼8)

2s Mean
(n¼8)

2s

SiO2 76.37 0.94 76.48 0.80 76.42 1.18 75.94 0.55 75.83 0.77 75.91 0.29 75.85 2.17
TiO2 0.12 0.02 0.11 0.04 0.12 0.02 0.15 0.01 0.15 0.03 0.16 0.02 0.15 0.03
Al2O3 12.89 0.75 12.61 0.50 12.64 1.14 12.91 0.43 12.89 0.33 12.96 0.42 13.12 1.47
FeO 1.52 0.26 1.46 0.76 1.47 0.31 1.59 0.21 1.60 0.34 1.58 0.18 1.52 0.34
MnO 0.04 0.02 0.04 0.02 0.04 0.03 0.04 0.01 0.04 0.01 0.04 0.01 0.04 0.01
MgO 0.07 0.05 0.09 0.07 0.07 0.04 0.11 0.03 0.11 0.05 0.12 0.05 0.11 0.06
CaO 0.80 0.13 0.82 0.13 0.84 0.08 0.95 0.10 0.95 0.13 1.00 0.06 1.04 0.64
Na2O 4.08 0.23 4.16 0.32 4.16 0.39 4.27 0.20 4.28 0.40 4.22 0.30 4.36 0.65
K2O 3.90 0.19 3.95 0.22 3.99 0.15 3.91 0.17 3.92 0.22 4.01 0.15 3.79 0.47
P2O5 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01
Cl 0.19 0.17 0.26 0.21 0.24 0.52 0.17 0.15 0.22 0.27 – – – –
Total 98.53 2.75 98.57 2.88 98.40 1.69 98.66 2.16 98.20 2.32 97.84 2.93 96.02 1.66

Trace
elements

Mean
(n¼6)

1s Mean
(n¼5)

1s Mean
(n¼7)

1s Mean
(n¼13)

1s Mean
(n¼7)

1s Mean
(n¼0)

1s Mean
(n¼0)

1s

Rb 80.63 16.07 68.39 14.40 74.17 21.91 124.25 25.94 109.89 24.04 – – – –
Sr 59.25 5.94 51.96 4.15 59.52 8.32 66.41 7.70 76.75 17.46 – – – –
Y 68.00 25.05 56.85 21.63 76.53 47.84 71.25 18.78 66.96 17.19 – – – –
Zr 293.91 28.91 267.02 25.09 300.65 56.88 267.42 30.87 289.24 44.65 – – – –
Nb 32.54 12.68 25.75 10.54 34.91 19.55 34.48 3.85 30.15 8.88 – – – –
Cs 0.85 0.45 0.87 0.35 0.90 0.41 1.59 1.38 1.34 0.48 – – – –
Ba 675.39 116.72 602.12 102.06 688.67 209.58 479.85 61.21 507.73 90.86 – – – –
La 60.83 21.78 47.79 17.72 60.00 31.14 57.65 11.53 60.45 15.64 – – – –
Ce 98.57 35.30 80.41 29.53 105.55 64.50 90.57 16.22 87.16 25.52 – – – –
Pr 11.68 4.19 10.12 3.64 12.19 6.86 12.53 2.48 12.76 3.49 – – – –
Nd 47.62 18.69 38.72 13.37 49.51 26.47 51.38 10.57 55.01 13.69 – – – –
Sm 11.50 5.76 8.49 2.34 11.67 6.57 12.02 2.94 13.16 4.32 – – – –
Eu 1.16 0.45 1.29 0.56 1.16 0.53 1.39 0.49 1.39 0.44 – – – –
Gd 11.79 6.09 10.95 3.77 11.90 7.46 13.81 2.33 13.71 5.55 – – – –
Tb 1.94 0.53 1.29 0.60 1.73 0.90 1.85 0.31 1.77 0.40 – – – –
Dy 11.85 3.70 9.83 4.81 12.37 6.55 14.05 3.66 12.40 3.24 – – – –
Ho 2.31 0.95 1.97 1.03 2.38 1.21 2.54 0.67 2.67 0.92 – – – –
Er 7.33 2.59 5.67 2.12 7.45 4.05 6.98 1.71 7.79 1.17 – – – –
Tm 1.11 0.63 0.82 0.36 0.96 0.52 1.03 0.21 1.03 0.32 – – – –
Yb 6.16 2.14 4.86 2.48 6.49 3.60 6.89 1.70 7.95 1.93 – – – –
Lu 1.06 0.50 0.83 0.31 1.17 0.82 1.09 0.28 1.11 0.28 – – – –
Hf 10.16 1.46 9.47 1.75 10.05 3.08 9.52 1.64 9.87 1.87 – – – –
Ta 2.81 1.32 2.44 0.94 2.90 1.67 2.94 0.74 2.91 1.30 – – – –
Th 2.73 0.98 2.56 1.07 2.79 1.50 13.83 2.82 16.41 7.18 – – – –
U 57.74 21.18 57.92 2.35 25.11 3.30 3.40 0.68 3.10 1.00 – – – –
Pb 12.09 4.19 10.23 3.36 13.26 7.57 27.14 14.86 27.35 18.91 – – – –
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Figure 3. (A) Normalized glass analyses from three GI-1e and three GS-2.1 ice core deposits, plotted against rock type, which is assigned on the
total alkali vs. silica content (TAS) (Le Bas et al., 1986). Data are normalized to an anhydrous basis (i.e. 100% total oxides) following the
recommendation of Pearce et al. (2014). (B) Compositional envelopes for identifying tephra provenance of Icelandic silicic tephra layers using major
elements. The diagram is adapted from Meara (2012) with data for Eyjafjallajokull and Snafellsjokull volcanic systems sourced from Larsen et al.
(1999) and Jonasson (2007). The low and high alkali boundary is based on Jonasson (2007). (C) Comparison of the GI-1e and GS-2.1 ice core
deposits relative to the compositional envelope for the BT and PT are constructed using data from Turney et al. (1997), Pyne-O’Donnell (2007),
Pyne-O’Donnell et al. (2008), Matthews et al. (2011) and Lind et al. (2016). This comparison highlights the difference in CaO and TiO2 in the
GS-2.1 ice-core tephras. Error bars represent two standard deviations (2s) of replicate analyses of the Lipari obsidian secondary standard; grey bars
correspond to GI-1e samples and blue to GS-2.1 samples. (D and E) Chondrite-normalized REE profiles for individual grains from GI-1e and GS-2.1
deposits respectively. The chondrite composition is from McDonough and Sun (1995) and thick blue bars represent end member characterizations of
Icelandic rhyolites, reported in �Oskarsson et al. (1982).
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based on a comparison with end-member characterizations
of Icelandic rhyolites from �Oskarsson et al. (1982) (Fig. 3D).
This includes high absolute concentrations of Sr, Zr and
Ba, light REE (LREE) enrichment (La to Nd >100 times the
chondritic value) with a profile that slopes steeply down to
the pronounced negative anomaly of Eu, indicating feldspar
fractionation. The steep profile of these incompatible LREEs
gives way to a flat profile that characterizes the abundance of
middle REEs (MREEs) and heavy REEs (HREEs) between Gd
and Lu. The range of concentrations and element ratios, e.g.
Ce/Yb (Fig. 4) are the same for sample pairs GRIP 1727.75m
and NGRIP 1582.75m, and also GRIP 1734m, although not
identical in terms of REE, with the NGRIP sample looking to
be more evolved than GRIP 1727.75m, based on higher REE
abundance. It must be emphasized that only a small number
of analyses were possible on the Greenland ice-core samples
(Table 2) and these may only represent part of the eruption’s

compositional range, with the possibility that further analyses
could extend the fields of data. When coupled with the
analytical noise for analyses performed at 10mm, close to
the limit of the LA-ICP-MS method, it should be noted that the
data will be influenced by larger uncertainties that do not
typically hamper analyses of larger particles. Statistical analysis
of 15 trace elements from deposits NGRIP 1582.75m and
GRIP 1727.75m (that form the younger GI-1e horizon)
produces a D2

critical value of 3.506, which is below the critical
value of 30.58 at the 99% confidence level and demonstrates
that the geochemical composition is not significantly different.

Geochemical and chronological comparison to
other North Atlantic Borrobol-type deposits in GI-1e

The two ice-core tephra horizons fall within the BT/PT
compositional envelope (Fig. 3C) and the best geochemical
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matches are with the new data-sets (BT: BO521 and PT:
BO486) from the original Borrobol site published in Lind
et al. (2016) (Fig. 4A–C). Older data have a consistently lower
Na2O content, typically �0.65wt% less than the ice-core
results. The offset is probably due to sodium loss in older
analyses and the similarities between our data and the Lind
et al. (2016) analyses could be because they were both
analysed with improved conditions and EPMA modification,
described by Hayward (2012). There is consistent major
element overlap between the ice-core data and BO521 and
BO486 and all exhibit the trend of evolution by fractionation
of feldspar (Fig. 4B), which is typical for Icelandic rhyolites
(SiO2 increases as CaO and Al2O3 decrease). Lind et al.
(2016) have assumed BT and PT ages from Bronk Ramsey
et al. (2015), so with respect to the ice-core age estimates,
the older ice deposit GRIP 1734m (14 308� 177 a BP) is
consistent only with the BT (14 190–14 003 cal a BP).
Statistical investigation of the dataset shows compositional
similarity between these two layers, with SC and D2 values of
0.974 and 1.614, respectively (Table 3). The younger
Greenland deposit (NGRIP 1582.75m/GRIP 1727.75m;
14 202� 173 a BP) overlaps on age with both the BT and the
PT (14 063–13 939 cal a BP) with SC and D2 values of 0.966
and 3.036 and 0.974 and 4.527, respectively (Table 3).
All ice-core samples have lower REEs when compared to

BO521 (Fig. 4D) although the range of REE patterns (Fig. 4D),
trace element concentrations (Fig. 4E–H) and ratios are similar
(e.g Ce/Yb in Fig. 4I), which strongly suggests a cogenetic
relationship between the layers. Trace elements could not be
derived from BO486 (Lind et al., 2016). BO521 is slightly
more compositionally evolved than the ice-core samples

which have higher CaO and Sr (e.g. Fig. 4F) and a regression
line through these analyses (r� 0.35) shows Sr decreasing with
CaO, consistent with a possible genetic link between them by
feldspar extraction. Additionally, almost all the other incom-
patible elements (e.g. U, Nb, Ta, the REE, and Rb and Ba
which behave incompatibly or neutrally in rhyolites) increase
from the ice-core layers to BO521. This suggests the relation-
ship between these samples is related to an eruption from a
compositionally zoned or stratified magma chamber, with the
more evolved upper part of the magma body producing the
BO521 deposit, and later erupted (less evolved) magma from
deeper in the magma body travelling to Greenland to be
deposited as GRIP 1727.75m/NGRIP 1582.75m or GRIP
1734m. Deposits from the younger ice-core layer GRIP
1727.75m/NGRIP 1582.75m overlap with BO521 in terms of
their Sr and Y concentrations (albeit at the less evolved end of
the BO521 composition) (Fig. 4G). In contrast, Y is visibly
higher in some of the shards from the older ice-core deposit
GRIP 1734m and this difference may tentatively indicate that
GRIP 1734m and BO521 are not the same, and were
produced by different eruptions (Fig. 4G). However, these
observations are based on a small number of analyses, and
additional analyses are required to explore this further.

Tephra in GS-2.1 ice: stratigraphic position and
geochemical composition

Three deposits were identified within GS-2.1 ice in the
following samples: NEEM 1524.80m, NGRIP 1665.60m and
GRIP 1818.30m (Table 1) and contain high concentrations of
colourless glass shards. The ages of the deposits are consistent
between cores and the NGRIP 1665.60m/GRIP 1818.30m
match-point is included within an NGRIP/GRIP timescale
synchronization performed by Seierstad et al. (2014). While
the GICC05 age for this GS-2.1 deposit is 17 326�319 a b2k
(17 276� 319 a BP), the age according to the first NEEM
timescale is 17 386� 173 a b2k (GICC05modelext-NEEM-1).
However, this new deposit sits along a trend line (Fig. 5)
when plotted together with the depths of NEEM/NGRIP

Table 3. Graphical comparisons between major and trace element
datasets were supported by two statistical tests; the similarity coefficient
(SC) of Borchardt et al. (1972) and statistical distance (D2) method of
Perkins et al. (1995, 1998). This table presents SC and D2 values for
major elements (normalized to 100%), and D2 values for trace elements
(T). Five major elements (with >1wt%) were used for SC calculations,
based on the method from Hunt et al. (1995), where values >0.95
suggest products are from the same volcanic source. D2 is from Perkins
et al. (1995, 1998) and seven major elements were used in the
comparisons (with >0.01wt%). The value for testing the statistical
distance values at the 99% confidence interval is 18.48 (seven degrees
of freedom). For calculating D2, 15 trace elements were used, following
recommendations by Pearce et al. (2008). The value for testing D2 at
the 99% confidence interval is 30.58 (15 degrees of freedom).

Major and trace element similarity: GI-1e Borrobol-type

Deposit BT: BO521 PT: BO486

GRIP 1727.75 and NGRIP 1582.75 m SC 0.966 SC 0.974
D2 3.036 D2 4.527

D2 10.078 (T)
GRIP 1734.00 m SC 0.974 SC 0.987

D2 1.614
D2 5.137 (T)

D2 1.131

Major element similarity: GS-2.1 Borrobol-type

Deposit MD99-2271 MD99-2272

NGRIP 1665.60 m SC 0.990 SC 0.951
D2 0.836 D2 4.225

GRIP 1818.30 m SC 0.990 SC 0.952
D2 0.725 D2 3.865

NEEM 1524.80 m SC 0.986 SC 0.957
D2 2.022 D2 3.479
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Figure 5. Individual ECM match points between NEEM and NGRIP
over the interval of GS-1 to GS-3, highlighting a wide gap in GS-2.1
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2.1 Borrobol-type match-point NEEM 1524.80m/NGRIP 1665.60m is
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ECM match-points (from Rasmussen et al., 2013), supporting
the correlation, and providing a new match-point to
amend GICC05modelext-NEEM-1 in a future version of this
timescale.
All deposits have an identical rhyolite major element

composition (Table 2, Fig. 3A,B) and are almost identical in
composition to the GI-1e ice-core deposits. It is apparent,
however, that there are consistent differences in the CaO
and TiO2 values that discriminate between the GS-2.1 and
GI-1e deposits (Fig. 3C). Statistical analyses of major
elements support a correlation between the NGRIP, GRIP
and NEEM deposits with SC values ranging between
0.988 and 0.995 and D2 values ranging between 0.240 and
1.100, strongly suggesting a compositional/genetic link
between the deposits.
The average REE profiles of the GS-2.1 deposits fall within

boundaries of typical Icelandic rhyolitic products and
are very similar with a particularly good agreement between
the incompatible LREE and MREE profiles, including a
pronounced negative Eu anomaly (Fig. 3E). There is more
variability between individual analyses of HREEs because of
the low concentrations of these elements, which are close to
detection limits at the analysis crater diameter used here, but
this is smoothed out in the averages. Statistical comparison of
the GS-2.1 trace element data of NGRIP 1665.60m and GRIP
1818.30m produces a low D2 value of 1.401, and this further
supports the correlation. It was not possible to obtain reliable
trace element data from the NEEM sample because of the
small sample size and low signal.

Geochemical and chronological comparison to
other North Atlantic Borrobol-type deposits in
GS-2.1

The GS-2.1 ice-core horizon has potential counterparts in the
marine realm, with four similar Borrobol-type deposits
found in glacial (GS-2.1 equivalent) sediments. The best
(reservoir-corrected) age estimate for this marine isochron is
17 179–16754 cal a BP (Jarvis, 2013) and is comparable to
the ice-core age of 17 276� 319 a BP. Furthermore, major
element comparisons between the ice-core deposits and
MD99-2271 (newly acquired data for this study, Table 2),
MD99-2272 and MD99-2275 (Table S1) shows good agree-
ment between the datasets (Fig. 6). This relationship is
supported by statistical analyses, particularly with MD99-
2271, which has an SC of 0.99 and a D2 of 2.07 and can be
interpreted as a volcanic event match as well as a provenance

match. SC and D2 values of 0.95 and 4.32, respectively, also
support a common volcanic source between the ice-core
deposits and MD99-2272 (Table 3), although there is an
observed Na2O offset that probably reflects sodium loss
during EPMA (Fig. 6A). A similar offset is observed in data
from MD99-2275 grains, which otherwise compares well to
the ice-core data (Fig. 6B,C). However, with just three
analyses from this deposit and low oxide totals, statistical
comparison could not be performed with confidence.

Discussion

Three cryptotephra deposits with a Borrobol-type composi-
tion have been identified for the first time in Greenland ice
spanning GS-2.1 (one horizon) and GI-1e (two horizons),
but Borrobol-type deposits were absent from GI-1d ice. For
the two compositionally identical events, ca. 106 years
apart in GI-1e ice, the correlation issues that plague the BT
remain. Without any diagnostic geochemical features,
pinpointing a correlation to either the BT or the PT in
terrestrial sequences is limited. Our new trace element data
show some tentative and subtle differences but require
further exploration to robustly assess their use for discrimi-
nation purposes. Furthermore, while the older ice-core
deposit (GRIP 1734m; 14 308� 177 a BP) is consistent only
with the calibrated age range of the BT, the younger deposit
(GRIP 1727.75m/NGRIP 1582.75m; 14 202� 173 a BP)
overlaps with the age ranges of both the BT and the PT
layers. Although a firm correlation is precluded, we discuss
various possibilities below that will require testing in future
work.
One possibility is that the GI-1e deposits in the ice

represent two closely spaced eruptions that have become
‘fused’ into one BT deposit in some terrestrial records.
Indeed, Pyne-O’Donnell et al. (2008) previously alluded to
this after observing diffuse BT shard distributions over
10 cm within the cores from Borrobol Bog (green bars,
Fig. 7), Loch an t’Suidhe and Tanera Mor (Roberts et al.,
1998). A dispersed shard concentration profile is not
observed at all sites, however, and a distinct single peak
spanning just a few centimetres is observed at Abernethy
Forest (Fig. 7) (Matthews et al., 2011). The best age estimate
of 14 190–14 003 cal a BP for the BT is derived from
the latter site by Bronk Ramsey et al. (2015) and this age
range agrees well with the youngest deposit found in the
Greenland ice, but also shows some overlap with the upper
age range of the older deposit. This is consistent with our
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tentative observation that fractional crystallization of feld-
spar and zircon links BO521 (i.e. BT) more favourably with
GRIP 1727.75m/NGRIP 1582.75m than GRIP 1734m,
based on higher concentrations of elements such as Y and
Al in the latter.
It is therefore possible that some terrestrial sites preserve

the GI-1e tephra couplet as a diffuse unit (e.g. Borrobol
Bog), whereas other sites (e.g. Abernethy Forest) may only
preserve one of these ice-core deposits (Fig. 7). The ability to
temporally resolve closely spaced volcanic events is a
strength afforded to high-resolution ice cores and, in this
context, creates a need to reinvestigate terrestrial samples in
ultra-fine resolution, to explore the finer anatomy of the BT
in terrestrial records. This, however, may not be possible
due to the relatively lower resolution of terrestrial records.
Nevertheless, based on our current data sets, we can suggest
that any BT deposit found in Lateglacial terrestrial records
should be synchronized to both ice-core deposits spanning a
106-year interval. This proposed correlation is consistent
with the Scottish chironomid-inferred temperature record
from Whitrig Bog that indicates the BT deposition occurred
during an interval that equates with the late GI-1e in
Greenland (Brooks and Birks, 2000; Walker and Lowe, in
press) (Fig. 7). However, what we cannot rule out is that
climatic changes between Greenland and Scotland during
GI-1 were time-transgressive, meaning that we cannot rely
on climatostratigraphic constraints to support our tephra
correlations. We assume that the PT is absent in Greenland
as we did not identify any tephras of similar composition
within GI-1d ice. An alternative scenario, however, is that
ash from both the BT and the PT were instead deposited in
Greenland during GI-1e, as the older GRIP 1734m and
younger GRIP 1727.75m/NGRIP 1582.75m deposit, respec-
tively. We believe that this scenario is unlikely given the
implied prolonged delay in climatic response between
Greenland and Scotland (Fig. 7). However, we stress the
ultimate goal here of employing the BT and PT as indepen-
dent marker horizons without having to rely on stratigraphic
positions to aid and support a correlation. This is a signifi-
cant challenge given the complexity associated with the BT
and PT but some promising signs are presented in relation to
the trace element signatures. We urgently need to strive for
better geochemical fingerprints to discriminate between the
BT and PT so that potential correlations to the ice can be
tested.
The tephra identified in GS-2.1 is simpler in terms of its

wider application as an ice-marine tie-point. This is the oldest
known deposit with a Borrobol-type composition, but we
demonstrate that it can be separated from the BT and PT on
the basis of CaO vs. TiO2 content (Fig. 3C). This composi-
tional difference will be valuable in poorly resolved marine
or terrestrial sediments and should circumvent any potential
miscorrelations with BT or PT deposits. Found in all three ice
cores with high shard concentrations and dated to
17 326� 319 a b2k (Table 1; Fig. 2), this tephra has huge
potential as a time-synchronous marker horizon for an
interval that often poses dating challenges. For the ice,
GS-2.1 has few match points between ice cores, and this new
tephra horizon adds a reliable tie-point to synchronize cores
and to facilitate GICC05 timescale transfer from NGRIP to
NEEM (Fig. 5) (e.g. Rasmussen et al., 2013). For marine
records, this common tephra deposit provides a new fix-point
in age models and also has the potential to improve assess-
ments of variable marine reservoir offsets during the deglacia-
tion period. This GS-2.1 tephra is a valuable addition to the
few available and well-constrained marine-ice tie-points for
the deglaciation period. For future use, we propose a new
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name for this deposit � GS-2.1-RHY � based on its position
in the Greenland stratigraphic framework and its geochemical
composition.

Conclusions

Adopting a contiguous ice-core sampling approach has
provided further insight into the complexity of the Borrobol
Tephra. Two cryptotephra deposits detected in GI-1e ice
probably equate to the BT found in terrestrial records but a
firm correlation is precluded given the indistinguishable
composition and closely timed deposition of the BT and PT.
In this study trace element compositions show possible but
tentative signs that may prove fruitful for future discrimination
purposes. If these deposits are to be used as valuable marker
deposits, further work is urgently required in this area. As yet
there are no trace element analyses from terrestrial records
that contain both the PT and the BT, and this is essential
if differences are to be observed between these deposits.
Re-analysis of BT and PT major element signatures with
improved microprobe operating conditions may also prove
beneficial to tease out any subtle differences that may
be obscured by analytical noise. Furthermore, ultra-high-
resolution sampling of Scottish Lateglacial sequences together
with high-precision chronologies may prove beneficial to
unpick the diffuse tephra profiles associated with the BT.
Lastly, the GS-2.1-RHY horizon identified in three ice
cores illustrates the value of marine-ice tie-points in an
interval plagued by dating uncertainties and highlights its
potential to assess marine reservoir offsets for the North
Iceland Shelf.
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