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Abstract

Melt inclusions formed during the early stages of magmatic evolution trap primitive melt compositions and enable the
volatile contents of primary melts and the mantle to be estimated. However, the syn- and post-entrapment behaviour of vola-
tiles in primitive high-anorthite plagioclase-hosted melt inclusions from oceanic basalts remains poorly constrained. To
address this deficit, we present volatile and light lithophile element analyses from a well-characterised suite of nine matrix
glasses and 102 melt inclusions from the 10 ka Grı́msvötn tephra series (i.e., Saksunarvatn ash) of Iceland’s Eastern Volcanic
Zone (EVZ). High matrix glass H2O and S contents indicate that eruption-related exsolution was arrested by quenching in a
phreatomagmatic setting; Li, B, F and Cl did not exsolve during eruption. The almost uniformly low CO2 content of
plagioclase-hosted melt inclusions cannot be explained by either shallow entrapment or the sequestration of CO2 into shrink-
age bubbles, suggesting that inclusion CO2 contents were controlled by decrepitation instead. High H2O/Ce values in prim-
itive plagioclase-hosted inclusions (182–823) generally exceed values expected for EVZ primary melts (�180), and can be
accounted for by diffusive H2O gain following the entrainment of primitive macrocrysts into evolved and H2O-rich melts a
few days before eruption. A strong positive correlation between H2O and Li in plagioclase-hosted inclusions suggests that
diffusive Li gain may also have occurred. Extreme F enrichments in primitive plagioclase-hosted inclusions (F/Nd = 51–
216 versus �15 in matrix glasses) possibly reflect the entrapment of inclusions from high-Al/(Al + Si) melt pools formed
by dissolution-crystallisation processes (as indicated by HFSE depletions in some inclusions), and into which F was concen-
trated by uphill diffusion since F is highly soluble in Al-rich melts. The high S/Dy of primitive inclusions (�300) indicates that
primary melts were S-rich in comparison with most oceanic basalts. Cl and B are unfractionated from similarly compatible
trace elements, and preserve records of primary melt heterogeneity. Although primitive plagioclase-hosted melt inclusions
from the 10 ka Grı́msvötn tephra series record few primary signals in their volatile contents, they nevertheless record infor-
mation about crustal magma processing that is not captured in olivine-hosted melt inclusions suites.
� 2017 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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1. INTRODUCTION

Mantle melts are modified by a range of mixing, frac-
tionation and assimilation processes as they rise towards
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the Earth’s surface (O’Hara, 1968; Duncan and Green,
1987; Langmuir et al., 1992; Rubin et al., 2009; Shorttle,
2015). Petrological records of mantle melting and magmatic
evolution are thus progressively degraded as magmas
ascend and differentiate. This degradation is particularly
severe in the case of the volatile species (H2O, CO2, F, S
and Cl) that exsolve and become decoupled from
non-volatile species when melts reach vapour saturation
(Stolper and Holloway, 1988; Dixon and Stolper, 1995).
Melt inclusions – pools of silicate liquid partially insulated
from changes in the external magmatic environment by
their host crystals – thus represent appealing targets for
investigating the behaviour of magmatic volatiles
(Anderson and Brown, 1993; Sobolev and Chaussidon,
1996; Métrich and Wallace, 2008). However, before inter-
preting melt inclusion compositions in terms of primary
magmatic processes, it is imperative to assess the degree
to which they have been modified by secondary processes.
That is, geochemical variability in melt inclusion suites
must be interpreted in terms of syn- and post-entrapment
processes as well as pre-entrapment processes.

Possible mechanisms for modifying inclusion composi-
tions during entrapment include the accumulation of slowly
diffusing elements such as Al, Cl and S against rapidly
growing crystals faces resulting in the entrapment of Al-,
Cl- and S-enriched boundary layers (Faure and Schiano,
2005; Baker, 2008). However, unambiguous examples of
such diffusive pile-up in natural samples are rare, and the
importance of this process in melt inclusion formation
remains uncertain (Kent, 2008). Geochemically anomalous
melt inclusions in plagioclase macrocrysts have nonetheless
been accounted for by the incomplete re-equilibration of
melt channels and boundary layers generated by
dissolution-crystallisation processes during inclusion for-
mation (Nakamura and Shimakita, 1998; Michael et al.,
2002).

Prior to final cooling, inclusions commonly experience
post-entrapment crystallisation (PEC) (Roedder, 1979;
Kress and Ghiorso, 2004). While PEC acts to simply con-
centrate most volatiles because of their largely incompatible
characters – though Newcombe et al. (2014) describe how
PEC can induce intra-inclusion heterogeneity – its effect
on CO2 is more complex: alongside contrasts in density
and thermal expansivity between host crystals and their
inclusions, PEC-driven changes in trapped melt composi-
tions lead to the nucleation of shrinkage bubbles
(Roedder, 1984; Lowenstern, 1995; Maclennan, 2017).
Although shrinkage bubbles probably do not contain
appreciable quantities of H2O (though see Esposito et al.,
2016), they can sometimes sequester significant amounts
of CO2, and must therefore be considered when estimating
the total CO2 content of melt inclusions (Steele-Macinnis
et al., 2011; Bucholz et al., 2013; Hartley et al., 2014;
Sides et al., 2014; Moore et al., 2015; Wallace et al.,
2015). Melt inclusion CO2 contents can also be affected
by decrepitation when pressure differences between inclu-
sions and the external environment exceed the strength of
host crystals, causing them to rupture and leak (Tait,
1992; Schiano, 2003; Maclennan, 2017).
Given sufficient time, melt inclusions can also respond to
changes in their magmatic environment by diffusive re-
equilibration (Qin et al., 1992). Although few melt inclu-
sions show evidence for the re-equilibration of slowly diffus-
ing incompatible trace elements (ITEs; Cottrell et al., 2002),
many olivine-hosted inclusions show evidence for the
exchange of rapidly diffusing H+ (Massare et al., 2002;
Koleszar et al., 2009; Chen et al., 2013; Lloyd et al.,
2013). Indeed, the re-equilibration of H+ through olivine
hosts typically occurs within hours to days in basaltic sys-
tems (Portnyagin et al., 2008; Gaetani et al., 2012), provid-
ing a useful chronometer for pre-eruptive magma mixing
processes (Bucholz et al., 2013; Le Voyer et al., 2014;
Hartley et al., 2015). Although OH� loss from plagioclase
macrocrysts has been reported in magmas undergoing pro-
gressive H2O degassing (Hamada et al., 2011), the suscepti-
bility of plagioclase-hosted melt inclusions to H species
re-equilibration remains to be clarified.

To date, most studies on melt inclusions from oceanic
basalts have focused on olivine for three main reasons:
firstly, early-forming olivine macrocrysts are abundant in
mafic rocks (e.g., Roeder and Emslie, 1970; Kent, 2008);
secondly, olivine-melt equilibria are comparatively simple,
making PEC corrections tractable (e.g., Ford et al., 1983;
Toplis, 2005; Danyushevsky and Plechov, 2011); and
thirdly, olivine is thought to be a more robust than highly
cleaved plagioclase and clinopyroxene. However, many
erupted magmas contain significantly more plagioclase than
olivine (Flower, 1980; Sinton et al., 1993; Nielsen et al.,
1995; Lange et al., 2013; Neave et al., 2014b), and
plagioclase-hosted melt inclusions may offer the only means
of sampling primitive melt compositions; olivine-hosted
inclusions may be too small to analyse or simply absent.
While high-anorthite plagioclase-hosted melt inclusions
may preserve comparable records to high-forsterite
olivine-hosted inclusions (Sours-Page et al., 2002; Font
et al., 2007), the processes that modify plagioclase-hosted
melt inclusion compositions are, with the exceptions of
PEC and dissolution-crystallisation (Nielsen et al., 1995,
1998; Nakamura and Shimakita, 1998; Michael et al.,
2002; Adams et al., 2011), poorly understood (Kent,
2008). Analyses of multiple volatiles in plagioclase-hosted
inclusions from MORB and OIB settings are particularly
rare (cf., Helo et al., 2011), and evaluations of the processes
controlling their abundances rarer still.

Here we aim to identify the primary and secondary con-
trols on the volatile and light lithophile element contents of
primitive plagioclase-hosted melt inclusions from an ocea-
nic setting. We report analyses of Li, B, F, S and Cl in
matrix glasses and mainly plagioclase-hosted melt inclu-
sions from the Icelandic 10 ka Grı́msvötn tephra series
whose H2O, CO2, major element and trace element system-
atics have been investigated by Neave et al. (2015).
Although we find that few primary magmatic signals are
preserved in the volatile content of primitive-plagioclase-
hosted melt inclusions, compositional variability related
to syn- and post-entrapment modification processes never-
theless offers insights into magma evolution that are
obscured from olivine-hosted records.
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2. THE 10 KA GRÍMSVÖTN TEPHRA SERIES (I.E.,

SAKSUNARVATN ASH)

2.1. Geological setting

The tephra horizon commonly referred to as the Sak-
sunarvatn ash occurs across the North Atlantic from
Greenland to Germany (Waagstein, 1968; Mangerud
et al., 1986; Grönvold et al., 1995; Bramham-Law et al.,
2013). The tephra, named after its type locality in the Faroe
Islands, forms an important tephrochronological marker in
sediment and ice cores across the region (e.g., Thornalley
et al., 2011). Tephra glasses are compositionally allied with
the Grı́msvötn volcanic system in southern Iceland (Fig. 1;
Grönvold et al., 1995; Jennings et al., 2014), and with mag-
matic tephra glasses from the voluminous and environmen-
tally impacting AD 1783–1784 Laki eruption in particular
(Neave et al., 2015). The Saksunarvatn ash horizon is com-
posed of tephra from at least six eruptions that took place
between 10.5 ka and 9.9 ka, and ranged in volume from >1
to 30 km3 (Jóhannsdóttir et al., 2005; Jennings et al., 2014;
Thordarson, 2014). We refer to these collected tephra layers
as the 10 ka Grı́msvötn tephra series in order to distinguish
them from the Saksunarvatn ash proper on the Faroe
Islands.

2.2. Petrological context

Proximal samples of the 10 ka Grı́msvötn tephra series
contain abundant high-anorthite plagioclase macrocrysts,
which in turn contain abundant glassy melt inclusions,
making them well suited for investigating plagioclase-
hosted inclusions (Fig. 2): complex re-homogenisation pro-
cedures can be avoided. Rare inclusion-bearing olivines are
also present.
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Fig. 1. Map showing the location of Hvı́tárvatn where samples of
the 10 ka Grı́smvötn tephra series were collected (black diamond).
The tephra series is compositionally associated with the Grı́msvötn
volcanic system (red triangle) and the Laki eruption in particular
(lava field outline shown in black). Grı́msvötn is located in the
volcanically productive Eastern Volcanic Zone (EVZ; shaded in
bright red), where the Mid-Atlantic Ridge makes is closest
approach to the centre of the Iceland plume (red circle; Shorttle
et al., 2010). Neovolcanic zones outside the EVZ are shaded in dark
red and central volcanoes are shaded in yellow. (For interpretation
of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
There are two discrete macrocryst assemblages in the
tephra (Neave et al., 2015): an evolved assemblage of small
macrocrysts and macrocryst rims (An60–An68,
Mg#cpx = 71–78, Fo70–Fo76) that are close to being in equi-
librium with the matrix glass, and a primitive assemblage of
high-anorthite plagioclase (An78–An92), high-Mg# clinopy-
roxene (Mg#cpx = 82–87) and high-forsterite olivine (Fo80–
Fo87) macrocryst cores that are not. This disequilibrium is
also reflected in the assemblages’ respective ITE contents:
evolved glasses are more enriched (mean La/Yb = 3.6) than
primitive melt inclusions (mean La/Yb = 2.1). This juxta-
position of disequilibrium assemblages reflects the entrain-
ment of primitive and, on average, ITE-poor mushes into
evolved and ITE-enriched melts shortly before eruption
(e.g., Halldórsson et al., 2008; Neave et al., 2014b).
Nonetheless, significant variability in primitive melt inclu-
sion ITE ratios indicates that the primitive assemblage
was assembled from compositionally diverse primary melts
(e.g., Maclennan, 2008; Neave et al., 2013). Barometric cal-
culations place magma assembly within the mid crust (2.6–
3.1 kbar; 7.4–8.9 km), though some further evolution may
have occurred during ascent (Neave et al., 2015; Neave
and Putirka, 2017).

2.3. Sample selection and preparation

We report analyses from the samples described previ-
ously by Neave et al. (2015): 150–800 lm glass and macro-
cryst fragments selected from the Saks-eq II HVT layer of
the 10 ka Grı́msvötn tephra series in the GLAD-HVT03-
1A-7H core collected from Lake Hvı́tárvatn in 2003
(Fig. 1). Saks-eq II HVT is compositionally representative
of the tephra series (Neave et al., 2015), and dates to
approximately 10.35 ka (Jóhannsdóttir, 2007). The tephra
consists primarily of variably vesicular holohyaline clasts
alongside abundant plagioclase fragments. Fragments of
olivine and clinopyroxene also occur, but are comparatively
rare.

Glass and macrocryst fragments were cleaned in distilled
water before being mounted in Buehler EpoThinTM resin
and polished to expose melt inclusions (Neave et al.,
2015). The samples were subsequently re-polished after a
first round of analyses in order to expose new melt inclu-
sions and maximise the number of measurements possible
with the limited volume of sample material available.
Before carrying out any analyses, melt inclusions were fil-
tered optically for signs of extensive PEC (the presence of
daughter crystals), decrepitation (cracks or chains of fluid
inclusions extending from inclusion walls) and connection
to the external environment. Samples were not coated
with carbon prior to SIMS analyses to minimise
contamination.

3. ANALYTICAL METHODS

3.1. Secondary ion mass spectrometry (SIMS)

SIMS analyses were performed at the NERC Ion Micro-
probe Facility at the University of Edinburgh, UK, using a
Cameca ims-4f instrument. The CO2 analyses reported by
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Neave et al. (2015) were the first made on all samples. Li, B,
F and Cl were then measured alongside the H2O and trace
element analyses that are also reported by Neave et al.
(2015). Li was only measured in the second of two analyti-
cal sessions. Measurements were made using a primary O�

ion beam with an accelerating voltage of 15 kV, a beam cur-
rent of 6 nA, a 25 lm image field and a secondary acceler-
ating voltage of 4500 V minus a 75 V offset. Analyses were
performed with a spot size of �15 lm centred in the pit
formed during the preceding analyses of CO2. In addition
to elements listed by Neave et al. (2015), the following iso-
topes were measured for 8 cycles (counting times in seconds
in parentheses): 7Li(5), 11B(5), 19F(10) and 35Cl(10). Peak
positions were verified before each analysis, and the masses
0.7 and 130.5 were measured to determine backgrounds in
each cycle. Backgrounds were always sufficiently close to
zero to be ignored.
Li and B concentrations were calculated following the
principles discussed by Hinton (1990) using the in-house
JCION-6 software and NIST-610 as the primary calibra-
tion standard (Jochum et al., 2011). Matrix corrections
for Li and B were then applied using the synthetic basalt
standard GSD-1G (Jochum et al., 2006). Analyses of the
standards ML3B-G and KL2-G indicate that accuracy
was better than 10% for Li and better than 20% for B
(Jochum et al., 2006). Owing to halogen analyses being
strongly affected by matrix effects, calibrations for F and
Cl were derived from measurements of the standards
GSD-1G, BCR-2G, ML3B-G and KL2-G performed
across several sessions (Jochum et al., 2006; Guggino,
2012; Marks et al., 2016). Accuracy was estimated to be bet-
ter than 10% for F and Cl based on the standard errors of
regressions used for calibration. The following estimates of
analytical precision (1r) were determined from repeat
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analyses of standard and unknown glasses: Li, �2.0%; B,
�1.8%; F, �3.2%; and Cl, �14%.

3.2. Electron probe microanalysis (EPMA)

EPMA was performed at the Department of Earth
Sciences at the University of Cambridge, UK, using a
Cameca SX100 instrument. F and S were measured concur-
rently with the major element analyses reported by Neave
et al. (2015). Cl was below the detection limit of EPMA.
Analyses were made with either 5 lm or 10 lm spot sizes
depending on melt inclusion dimensions. In 5 lm spots, S
was measured using the same conditions as the major ele-
ments: an operating potential of 15 kV with a beam current
of 10 nA. F was not measured in 5 lm spots. In 10 lm
spots, both F and S were measured using a second condi-
tion beam current of 100 nA in order to improve count
rates. Fluorite and pyrite were used as calibration standards
for F and S respectively. Accuracy was estimated to be bet-
ter than 15% and 5% for F and S receptively based on mea-
surements of the basaltic glass standard NMNH 113498–1
(A-99) over several sessions (Jarosewich et al., 1980;
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A positive correlation between F determined by SIMS

and EPMA (FSIMS � 1:1� FEPMA; r
2 ¼ 0:67; p � 0:01)

indicates that the two methods are consistent to within
10% (Supplementary Fig. 1), and that the higher precision
SIMS data can be used in preference to the EPMA data.
T- and F-tests performed on S data collected using 5 lm
and 10 lm spot sizes reveal no significant differences in
composition distributions between the two analytical condi-
tions, which were thus merged.

4. RESULTS

4.1. Summary of major and trace element compositions

The major and trace element compositions of matrix
glasses and melt inclusions from the 10 ka Grı́msvötn
tephra series were described in detail by Neave et al.
(2015). Key features of their dataset, are summarised in
Fig. 3, and a full suite of major element variation diagrams
12

14

16

18

A
l 2O

3 
(w

t.%
)

40 45 50 55 60 65 70 75
Mg#

b

1

2

3

4

5

Zr
/Y

40 45 50 55 60 65 70 75
Mg#

d

sted MI uncorrected
FSE pl-hosted MI corrected (MgO–Al2O3)
sted MI corrected (Fo eqm.)
dic matrix glasses

atrix glasses and melt inclusions from the 10 ka Grı́msvötn tephra
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is provided in Supplementary Fig. 2. Melt inclusion compo-
sitions described in this section have been not corrected for
PEC; PEC is discussed explicitly in the following section on
the modification of melt inclusion compositions.

Matrix glass compositions (n ¼ 9) are homogeneous –
variations in Mg# and La/Yb do not exceed estimates of
analytical precision – and are very similar to previously
published compositions from the tephra series (e.g.,
Mangerud et al., 1986; Grönvold et al., 1995; Bramham-
Law et al., 2013). Note that an Fe2+/RFe of 0.85 was
assumed when calculating Mg# (Shorttle et al., 2015).
Two inclusions hosted in evolved macrocrysts have very
similar compositions to the matrix glasses.

High-anorthite plagioclase-hosted melt inclusions
(Fig. 2; An78–An92; n = 96) are much more compositionally
variable than the matrix glasses. Melt inclusion MgO con-
tents span the range 8.1–12.3 wt.% (Mg# = 56–72), though
most inclusions contain 10–11 wt.% MgO (Fig. 3a) and and
all bar two high-Mg# inclusions have Al2O3 contents in the
10.9–13.4 wt.% range (Fig. 3b). All major elements apart
from SiO2 exhibit significant variability at p < 0:05, i.e.,
signal-to-noise ratios (rt=rr, where rt is the true variation
and rr is an estimate of analytical precision) exceed the

threshold for significant variability calculated using the v2

distribution (Maclennan et al., 2003). Melt inclusion trace
element systematics are summarised in Fig. 3c and d. In
contrast with matrix glasses and evolved melt inclusions,
primitive melt inclusions exhibit a large range of La/Yb
(1.1–4.3) that is robustly variable at p < 0:01. Some inclu-
sions exhibit high field strength element (HFSE) depletions
(e.g., Zr/Y < 2 on Fig. 3d) that do not correlate with other
geochemical features.
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4.2. Volatiles and light lithophile elements

New volatile and light lithophile element analyses are
summarised alongside previously published CO2 and H2O
data from Neave et al. (2015) in Figs. 4 and 5. CO2 contents
are low in evolved melt inclusions (78–405 ppm) and below
the detection limit in matrix glasses (�25 ppm). In contrast,
the range of CO2 contents in primitive melt inclusion
glasses is large (270–2070 ppm), though CO2 in most inclu-
sions lies close to the median value of 535 ppm (Fig. 4a and
b).

Shrinkage bubbles were investigated by Neave et al.
(2015) in order to determine their contributions towards
total melt inclusion CO2 contents (e.g., Steele-Macinnis
et al., 2011; Wallace et al., 2015). However, no CO2 was
detected within them, indicating that they contain
�0.04 g.cm�3 CO2 (Hartley et al., 2014); shrinkage bubbles
do not host significant CO2 in these samples. This restricted
partitioning of CO2 into shrinkage bubbles is further
reflected in the similarity of kernel density estimates
(KDEs) calculated for the CO2 contents of bubble-free
(n ¼ 64) and bubble-bearing (n ¼ 33) inclusion populations
(Fig. 4a). Furthermore, while some bubble-free inclusions
may have lost their bubbles during polishing, bubble-free
inclusions are nonetheless abundant beneath polished sam-
ple surfaces. We thus assume that melt inclusion glasses
contain the inclusions’ full CO2 complements when they
quenched. We note that discarding bubble-bearing inclu-
sions has no impact on our subsequent interpretations.

When compared with degassed basaltic tephras from
Iceland (e.g., Hartley et al., 2014), matrix glass H2O
contents are high and variable (0.11–0.47 wt.%; Fig. 4c).
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Primitive melt inclusion H2O contents are also high:
0.70 wt.% in the two olivine-hosted inclusions and 0.19–
0.68 wt.% in plagioclase-hosted inclusions. Most evolved
inclusions are also H2O-rich (0.56–0.62 wt.%). Matrix
glasses have a range of S contents (749–1196 ppm;
Fig. 4d), and while primitive melt inclusion S contents are
variable (740–1435 ppm), they are generally lower than
those of evolved melt inclusions (1295–1650 ppm).

In contrast with their H2O and S contents, the F, Cl, Li
and B contents of matrix glasses are comparatively homo-
geneous: 308–430 ppm, 146–244 ppm, 7.4–8.1 ppm and
1.06–1.21 ppm respectively (Fig. 5a–d). Evolved melt inclu-
sion compositions also lie within the ranges defined by
matrix glasses. However, primitive plagioclase-hosted melt
inclusion F, Cl, Li and B contents are highly variable and
span the following ranges: F, 460–1215 ppm; Cl, 36.2–
156.8 ppm; Li, 2.7–6.9 ppm; and B, 0.23–0.79 ppm. Primi-
tive olivine-hosted melt inclusion Cl, Li and B contents lie
within the ranges observed in plagioclase-hosted inclusions:
Cl, �40 ppm; Li, �3.5 ppm; and B, �0.33 ppm. Although
we cannot define the extent of variability in the small
olivine-hosted melt inclusion population, a difference
between olivine-hosted and plagioclase-hosted F contents
should nonetheless be noted (�113 ppm versus P460 ppm
respectively).

5. SYN-ERUPTIVE VOLATILE EXSOLUTION

Matrix glasses from the 10 ka Grı́msvötn tephra series
contain substantially more H2O and S (0.11–0.47 wt.%
and 749–1196 ppm respectively; Fig. 6a) than degassed
magmatic tephra glasses from the geochemically analogous
Laki eruption (0.08 � 0.01(1r) wt.% H2O and 490 � 85(1r)
ppm S; Hartley et al., 2014; Thordarson et al., 1996). Syn-
eruptive degassing paths calculated with the D-Compress
vapour-melt equilibrium model (Fig. 6a; Burgisser et al.,
2015) indicate that most matrix glasses record quenching
pressures higher than atmospheric pressure (up to
�10 MPa). Eruption-related degassing was thus arrested
prematurely, probably owing to quenching in a
phreatomagmatic setting (e.g., Thordarson et al., 1996;
Tuffen et al., 2010). Apparent quenching pressures of
>1 MPa for most matrix glasses also account for the non-
volatile behaviour of F and Cl that typically saturate below
�1 MPa in mafic melts (Carroll and Webster, 1994). Fur-
thermore, Li/Yb values of �1.7 and strong correlations
between B and ITEs in matrix glasses indicate that neither
Li nor B were volatile at the time of quenching (Ryan and
Langmuir, 1987; Ryan and Langmuir, 1993).

6. POST-ENTRAPMENT MODIFICATION OF MELT

INCLUSION COMPOSITIONS

6.1. Post-entrapment crystallisation (PEC) of olivine-hosted

melt inclusions

Primitive olivine-hosted melt inclusions experienced sub-
stantial PEC during cooling: Mg# = 60–63 inclusions are
far from being in equilibrium with their Fo86 hosts.
Olivine-hosted inclusion compositions were therefore cor-
rected by adding equilibrium olivine back into the melt
inclusion compositions until host-inclusion equilibrium
was achieved according to the model of Herzberg and

O’Hara (2002) combined with the Kd
ol�liq
Fe�Mg model of
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Toplis (2005). Corrections were performed using the reverse
crystallisation tool in Petrolog (Danyushevsky and Plechov,
2011); using the PEC correction tool resulted in unaccept-
ably Fe-poor compositions. Corrected melt inclusions have
similar Mg#–Al2O3 systematics to Icelandic glass composi-
tions (Fig. 3a and b; Shorttle and Maclennan, 2011). Vola-
tile and trace elements were assumed to be perfectly
incompatible during PEC correction (e.g., Hauri et al.,
2006; Bédard, 2005; Rosenthal et al., 2015). PEC–corrected
data are provided in the Supplementary Material.

6.2. PEC of plagioclase-hosted melt inclusions

In their previous investigation, Neave et al. (2015)
argued that a combination of high MgO contents and high
Mg# values indicate that high-anorthite plagioclase-hosted
inclusions from the tephra are genuinely primitive and
minimally compromised by PEC. However, further
investigation has revealed that plagioclase-hosted inclu-
sions did experience substantial PEC prior to quenching.
For example, most inclusions are surrounded by haloes of
low-anorthite plagioclase (Fig. 2). By assuming nested,
ellipsoidal and symmetrical geometries, typical halo and
inclusion dimensions suggest that inclusions experienced
�15 vol.% PEC (Fig. 2c). Furthermore, at any given
Mg#, plagioclase-hosted inclusion MgO and Al2O3 con-
tents are respectively 1–2 wt.% higher and 2–4 wt.% lower
than the trends defined by Icelandic glasses (Fig. 3a and
b; Shorttle and Maclennan, 2011). While the high Mg# of
melt inclusions confirms that they are genuinely primitive,
their elevated MgO and depressed Al2O3 contents are
nonetheless characteristic of PEC (Nielsen, 2011).

Plagioclase-hosted inclusion compositions were thus
corrected for PEC by incrementally adding equilibrium pla-
gioclase back into melt inclusion compositions until their
MgO–Al2O3 systematics were consistent with those of Ice-
landic glasses (i.e., until Al2O3 reached the value predicted
from MgO values based on a regression through Icelandic

glass data; r2 ¼ 0:56; p � 0:01). Equilibrium plagioclase
compositions were calculated using the anhydrous
plagioclase-melt equilibrium model of Namur et al.
(2012); H2O has only a minor effect on equilibrium anor-
thite content the concentrations relevant here (<0.7 wt.%;
Sisson and Grove, 1993; Panjasawatwong et al., 1995).
Trace elements were corrected using the partition coeffi-
cients collated by O’Neill and Jenner (2012), and volatiles
were assumed to be perfectly incompatible (Johnson,
2005; Dalou et al., 2012).

Correspondence between melt inclusion and Icelandic
glass compositions was achieved by adding 10–25 vol.%
(median = 16 vol.%) plagioclase to primitive melt inclusion
compositions (shown in red on Figs. 3–5), values consistent
with observations from BSE images (Fig. 2c). However,
melt inclusions are still out of equilibrium with high-
anorthite plagioclase after being corrected for �16 vol.%
of PEC: melt inclusions only reach equilibrium with their
hosts after a much more substantial �26 vol.% PEC
correction (shown in blue on Figs. 3–5).These seemingly
discordant estimates of PEC can nonetheless be reconciled
via a dissolution-crystallisation mechanism of inclusion
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formation that is discussed in detail below. Inclusion com-
positions corrected to be in equilibrium with Icelandic
glasses, which are used in the subsequent discussions, and
with their host crystals, which are not, are both provided
in the Supplementary Material. However, it is important
to note that most elemental ratios used for investigating
the behaviour of volatiles in basaltic magmas are unaffected
by PEC because both nominator and denominator elements
are highly incompatible in plagioclase; our interpretations
are robust to uncertainties in PEC corrections.

6.3. Post-entrapment CO2 loss by decrepitation

To avoid using potentially compromised CO2–Nb sys-
tematics for investigating CO2 behaviour (some inclusions
have HFSE depletions; Neave et al., 2015), we consider
CO2–Ba systematics instead (Fig. 7a; Michael and
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H2O and Li contents aside (see later), show no evidence of
having maintained contact with the external environment
during ascent (cf., Blundy and Cashman, 2005).

Although sequestration of CO2 into shrinkage bubbles
can account for low CO2 contents in some systems (e.g.,
Hartley et al., 2014; Moore et al., 2015), it cannot in this
case because bubble-free and bubble-bearing inclusions
have comparable CO2 contents (Fig. 4a). The distribution
of CO2 contents in plagioclase-hosted melt inclusions does
however share many similarities with that in olivine-
hosted melt inclusions from Laki the eruption. Namely,
most inclusions record entrapment pressures 2–3 kbar
lower than pressures estimated using independent barome-
ters (Hartley et al., 2014; Neave and Putirka, 2017). In the
case of Laki, this disparity can be accounted for by the
decrepitation of melt inclusions reaching overpressures of
�2.5 kbar (Maclennan, 2017). We therefore suggest that
post-entrapment rupture may also be responsible for the
low entrapment pressures we observe in plagioclase-
hosted inclusions: strongly cleaved plagioclase has a lower
hardness and tensile strength than weakly cleaved olivine,
which could result in decrepitation at overpressures of less
than �2.5 kbar (Tugarinov and Naumov, 1970; van den
Kerkhof and Hein, 2001; Bodnar, 2003).

6.4. Post-entrapment H2O gain by diffusion

H2O-undegassed melts from the EVZ of Iceland are
thought to have primary H2O/Ce values of 180 � 20
(Hartley et al., 2015), which are slightly lower than typical
Atlantic MORB values of 240–350 (Michael, 1995; Le
Voyer et al., 2015), but nonetheless within the range of glo-
bal values for oceanic basalts (Michael, 1995). While some
plagioclase-hosted inclusions have H2O/Ce values within
the primary range (180 � 20), none have lower values,
which is consistent with efficient quenching in a
phreatomagmatic setting. Conversely, most plagioclase-
hosted inclusions have high H2O/Ce values of up to 823
that are indicative of open-system H2O gain by a process
that did not affect most other elements; H2O does not cor-
relate with any element except Li (r ¼ 0:90; p � 0:01).

Macrocryst zoning patterns and thermobarometric cal-
culations reveal that primitive macrocrysts were entrained
by evolved melts shortly before eruption (Neave et al.,
2015). At the conditions of entrainment (�1140 �C and
�3 kbar; Neave et al., 2015; Neave and Putirka, 2017),
the average matrix glass would have had an H2O activity
(aH2O) of �0.044 assuming that H2O/Ce = 180
(Burnham, 1979). Making the same assumptions, PEC–
corrected primitive plagioclase-hosted inclusions would
have had a much lower average aH2O of �0.002 (or
�0.003 for PEC-uncorrected inclusions). This aH2O gradient
would have provided a drive for inclusions to gain H2O
from the external magmatic environment by diffusion
through their host crystals (Hartley et al., 2015).

In order to estimate timescales of olivine-hosted melt
inclusion dehydration and overhydration, Hartley et al.
(2015) used a modified version of the model presented by
Bucholz et al. (2013) for calculating the analytical solution
for symmetrical H+ diffusion through a spherical olivine
hosting a spherical melt inclusion at its centre (Qin et al.,
1992). Performing equivalent calculations on samples from
the 10 ka Grı́msvötn tephra series is complicated by the
fragmented nature of the ash-borne macrocrysts. Neverthe-
less, we estimate that the two primitive olivine-hosted melt
inclusions would have experienced complete H2O
re-equilibration within 0.5–4.0 days assuming a tempera-

ture of 1140 �C, a partition coefficient (Kol�melt
H2O

) of 0.0007

(Le Voyer et al., 2014), a diffusivity (Dol
Hþ½001	) calculated

from Demouchy and Mackwell (2006) and a realistic range
of macrocryst radii (100–500 lm). This represents the min-
imum timescale for primitive macrocryst residence in the
evolved melt because re-equilibration has run to
completion.

Plagioclase-hosted melt inclusions have variable H2O
contents and H2O/Ce values, which indicate that re-
equilibration was often incomplete. There are two main rea-
sons for this: firstly, high-anorthite plagioclase macrocrysts
from Iceland are often much larger than olivine macro-
crysts, which increases the diffusion distance (Hansen and
Grönvold, 2000; Neave et al., 2014b); and secondly, the dif-
fusion of H+ though plagioclase is approximately one order
of magnitude slower than it is through olivine (Johnson and
Rossman, 2013). Following Cassidy et al. (2016), approxi-
mate re-equilibration timescales were calculated by assum-
ing a temperature of 1140 �C, a partition coefficient

(Kpl�melt
H2O

) of 0.01 (Hamada et al., 2013), a diffusivity (Dpl
Hþ )
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calculated by extrapolating the model of Johnson and
Rossman (2013) to 1140 �C and a range of plausible macro-
cryst radii (250–4000 lm). Runs were terminated when the
modelled H2O content of each melt inclusion matched its
measured H2O content.

Dominant re-equilibration timescales were determined
for each host radius by transforming timescale populations
into KDEs (Fig. 8). For a radius of 250 lm, the dominant
timescale is �0.4 days, which increases to �6.1 days for a
radius of 4000 lm. Despite the uncertainties in model
parameters, and macrocryst sizes in particular, these plagio-
clase residence time are nonetheless comparable with esti-
mates from olivine-hosted inclusions. They are also
consistent with entrainment timescale estimates from the
nearby Laki eruption (Hartley et al., 2015; Hartley et al.,
2016). In samples with well-constrained macrocryst dimen-
sions, the diffusive exchange of H2O through plagioclase
has considerable potential as a chronometric tool sensitive
to pre-eruptive processes on the timescale of days to tens
of days.

6.5. Li in melt inclusions: A role for re-equilibration?

Given that Li/Yb values of 1.7–1.9 in the primitive two
olivine-hosted melt inclusions are probably primary (Ryan
and Langmuir, 1987), it is possible to estimate a maximum
timescale for their pre-eruptive residence in evolved liquids
by estimating the delay before high Li contents in the exter-
nal environment would have been transmitted into melt
inclusions. Li diffusion though olivine hosts was thus mod-

elled using a partition coefficient (Kol�melt
Li ) of 0.15 (Brenan

et al., 1998) and a diffusivity (Dol
LiMe==c

) calculated from Eq.

(20) of Dohmen et al. (2010). Using olivine radii of 100–
500 lm, we calculate a maximum residence timescale of
2.4–128 days.

The strong correlation between H2O and Li in primitive
plagioclase-hosted melt inclusions (r ¼ 0:90; p � 0:01) sug-
100 μm
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Fig. 9. Plot summarising melt inclusion re-equilibration timescales calcula
H2O through plagioclase hosts. Coloured lines show kernel density estima
melt inclusions calculated for a range of macrocryst radii (250–4000 lm).
H2O re-equilibration in melt inclusions hosted in olivine macrocrysts of re
timescales. The pale red bar shows the range of timescales calculated fo
inclusion with the same host properties; these represent maximum re-equil
inclusions re-equilibrated with a melt composition identical to the matr
interpretation of the references to colour in this figure legend, the reader
gests that Li may have also diffused into these melt inclu-
sions. However, modifying the model used for H2O re-
equilibration calculations results in implausibly short time-
scales (minutes to hours) because of Li’s relative compati-
bility in and fast diffusion through plagioclase (Giletti and
Shanahan, 1997; Johnson and Rossman, 2013; Dohmen
and Blundy, 2014). However, given the absence of H2O-
and Li-rich but otherwise ITE-depleted primitive melts
from the Icelandic geological record, the strong correlation
between H2O and Li seems unlikely to be primary. We
therefore speculate that Li diffusion may have been medi-
ated by the re-equilibration of H2O; that the activity of Li
(aLi) in melt inclusions was controlled by their H2O con-
tents such that aLi gradients formed at rates controlled by
the slower re-equilibration of H2O. However, further work
is required to validate this hypothesis, as well as to investi-
gate the behaviour of Li in plagioclase-hosted inclusions
more generally.

7. SYN-ENTRAPMENT MODIFICATION OF MELT

INCLUSION COMPOSITIONS

7.1. F enrichment in plagioclase-hosted melt inclusions

Most oceanic glasses have F/Nd values close to
20.1 � 5.8(1r) (Workman et al., 2006; Shaw et al., 2010;
Le Voyer et al., 2015), though values of up to 45.4 have
been reported from Macquarie Island (Shimizu et al.,
2016). Matrix glasses and olivine-hosted melt inclusions
from the 10 ka Grı́msvötn tephra series thus define a mean
F/Nd value towards the lower end of the oceanic basalts
range (15.0 � 2.1(1r); Fig. 7c). However, primitive
plagioclase-hosted melt inclusions from the tephra have
F/Nd values that are well above any previously reported
values from primitive basalts (mean = 111.4 � 30.1(1r)).
Moreover, F does not correlate with any element in the
inclusion suite apart from Al (Supplementary Fig. 3;
500 μm at 128 days →
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r ¼ 0:39; p < 0:01), which suggests that its enrichment was
neither primary nor related to the post-entrapment pro-
cesses discussed above.

Although open system behaviour of F has been pro-
posed to explain features in some olivine-hosted melt inclu-
sion datasets (Portnyagin et al., 2008; Koleszar et al., 2009),
we consider post-entrapment re-equilibration to be an unli-
kely cause of high F/Nd. This is because the F content of
almost all plagioclase-hosted inclusions (PEC-corrected
mean = 705 � 138(1r) ppm) exceeds that of their carrier
liquid (362 � 40(1r) ppm). Assuming that F concentration
recapitulates F activity, primitive melt inclusions would
thus have to have re-equilibrated with melts that were either
more enriched or more evolved than the matrix glasses in
order to have acquired their elevated F contents (e.g. tran-
sitional basalts or basaltic andesites; Moune et al., 2007;
Moune et al., 2012). However, no such interactions are
recorded in the tephra’s petrology.

Diffusive pile-up of slow-diffusing species against inclu-
sion walls or rapidly growing crystal faces could also gener-
ate apparent halogen enrichments in melt inclusions (Baker
et al., 2005; Newcombe et al., 2014), but can be discounted
in this case because the enrichment in F is not matched by
enrichments in more slowly diffusing elements such as Cl, S
and Zr (Alletti et al., 2007; Zhang et al., 2010; Behrens and
Stelling, 2011). Furthermore, while hydrothermal fluids
represent a potential source of halogen contamination, they
generally mobilise Cl and alkalis more easily than F, and
thus cannot account for the selective enrichment of F
(Floyd and Fuge, 1982): neither Cl nor the alkalis are
anomalously abundant in primitive inclusions.

7.2. Plagioclase-hosted melt inclusion formation and F

enrichment

HFSE depletions in plagioclase-hosted melt inclusions
from MORBs are thought to reflect the formation of inclu-
sions by dissolution-crystallisation processes, whereby melt
channels formed by resorption partially re-equilibrate with
their surrounding melts before being sealed as inclusions
(Michael et al., 2002). Although the channelised dissolution
of high-anorthite plagioclase remains to be observed in
experiments on natural basalts (Kohut and Nielsen, 2003;
Kohut and Nielsen, 2004), it has been reported in experi-
ments on the Di–Ab–An–H2O system (Nakamura and
Shimakita, 1998). Moreover, high-anorthite plagioclase-
hosted melt inclusions have been formed experimentally
within a matter of hours by isothermally annealing hopper
and dendritic growths formed during preceding periods of
high undercooling, demonstrating that inclusions can seal
rapidly (Kohut and Nielsen, 2004).

With these observations in mind, we propose that
plagioclase-hosted melt inclusions from the 10 ka Grı́ms-
vötn tephra serieswere formed by dissolution-
crystallization processes in the following manner. Firstly,
we suggest that high-anorthite plagioclase macrocrysts
crystallised from high-Ca/Na primitive melts similar to
those erupted at Borgarhraun in north Iceland
(Maclennan et al., 2003; Neave et al., 2013): matrix glasses
from Borgarhraun are in equilibrium with An86 according
to the model of Namur et al. (2012). Resorption and chan-
nelised dissolution of these macrocrysts may have then
taken place after they interacted with lower Ca/Na or hot-
ter melts in which high-anothite plagioclase was unstable
(Fig. 9; Neave et al., 2015); there is abundant evidence for
the supply of suitably diverse melts to the base of the Ice-
landic plumbing systems (e.g., Gurenko and Chaussidon,
1995; Maclennan, 2008; Shorttle and Maclennan, 2011).
Assuming minimal stirring, perhaps as a result of resorp-
tion taking place within a crystal mush (Ridley et al.,
2006), the composition of melt pools and channels around
and inside resorbing grains would have approached that
of dissolved plagioclase, i.e., would have been Al-rich but
HFSE-poor (e.g., Yu et al., 2016). Because of the HFSE
depletions present in a number of plagioclase-hosted inclu-
sions (Fig. 3; Michael et al., 2002; Neave et al., 2015), we
thus propose that at least some inclusions were then
trapped from these initially Al-rich and Zr-poor melt pools
before they had fully dissipated: HFSEs diffuse �2.5 times
more slowly than REEs and most major elements at the
conditions relevant for inclusion formation (�1200 �C;
Zhang et al., 2010). It is at this stage of inclusion entrap-
ment from Al-rich melts we suggest that F enrichment took
place.

Although the solubility of F in basaltic melts has not
been studied extensively, experiments in aluminosilicate
model systems indicate that F solubility, i.e., when F activ-
ity (aF) = 1, depends strongly on melt Al/(Al + Si). That is,
F is much more soluble in high-Al/(Al + Si) melts as a con-
sequence of F dissolving into aluminosilicate melts by com-
plexing with Al (Mysen et al., 2004; Dalou and Mysen,
2015; Dalou et al., 2015). F solubility is thus likely to have
been much higher in any Al-rich melts bathing resorbing
plagioclase grains than in the surrounding basalts: An90
plagioclase has an Al/(Al + Si) value of �0.48, whereas
primitive Icelandic basalts and the two primitive olivine-
hosted melt inclusions from the tephra have Al/(Al + Si)
values of �0.26. This higher solubility would have plausibly
resulted in a correspondingly lower aF at any given F con-
centration, resulting in the accumulation of F around dis-
solving grains by uphill diffusion, a process by which a
species diffuses up a concentration gradient whilst diffusing
down an activity gradient. Crucially, the diffusion of F in
basaltic melts at 1200 �C is around six times faster than
the diffusion of Al, meaning that F could have diffused into
Al-rich regions before they dissipated (Alletti et al., 2007;
Zhang et al., 2010), with the degree of F enrichment medi-
ated by the concentration of Al. Furthermore, the location
of inclusions within entirely high-anorthite plagioclase
cores suggests that the melts immediately surrounding pre-
viously resorped grains were still Al-rich at the time of
entrapment: if the Al had dispersed, then the inclusions
would have been trapped within lower anorthite plagio-
clase. Thus, the discrepancy between the �26 vol.% of
PEC required to achieve inclusion-host equilibrium and
the �16 vol.% of PEC required to bring melt inclusions into
equilibrium with Icelandic glasses could potentially be
accounted for by the syn-entrapment crystallisation of
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high-anorthite plagioclase acting to reverse much of the
preceding dissolution.

Our proposed mechanism of inclusion formation thus
predicts that F and Al would correlate negatively with the
degree of HFSE depletion, that is, with Zr or Zr/Nd.
Unfortunately, no such correlations are observed, though
we note that F and Al do correlate with each other
(r ¼ 0:39; p < 0:01). However, such elemental decoupling
is perhaps unsurprising given that Al, F and the HFSEs dif-
fuse at different rates (DAl < DHFSEs < DF; Alletti et al.,
2007; Zhang et al., 2010). Furthermore, variability in ITE
ratios robust to diffusive fractionation (e.g., La/Yb;
Fig. 3c) and poor correlations between measures of HFSE
depletion and ITE enrichment (e.g., Zr/Nd versus La/Yb;
r ¼ �0:34; p > 0:1) indicate that dissolution was driven by
compositionally heterogeneous melts and that signals of
primary melt variability are dissociated from those of diffu-
sive re-equilibration. Additional support for a dissolution-
crystallisation inclusion formation mechanism concerns its
ability to simultaneously account for the inclusions’ most
anomalous features. If HFSE depletion and F enrichment
were primary, then myriad exotic melts, for which there
are no geological precedents, would need to be invoked.
8. PRE-ENTRAPMENT SIGNALS IN MELT

INCLUSION COMPOSITIONS

8.1. S-rich primitive melts

Sulphide-undersaturated MORB glasses are thought to
have S/Dy values of 225 � 49 (Saal et al., 2002), though
primary S/Dy may vary as a function of incompatible trace
element enrichment (Shimizu et al., 2016). Primitive
plagioclase-hosted melt inclusions from the 10 ka
Grı́msvötn tephra series have a mean S/Dy value of
303 � 72(1r) that is similar to values from some OIBs
and plume-influenced MORBs (Fig. 3e; Workman et al.,
2006; Koleszar et al., 2009; Le Voyer et al., 2015). Despite
the large uncertainty in S/Dy values inherited from
imprecise Dy analyses, S and Dy correlate somewhat
(r ¼ 0:32; p < 0:01), suggesting that primitive plagioclase-
hosted melt inclusions could have been sulphide undersatu-
rated and the time of entrapment.

Conversely, a stronger correlation between S and FeOT

(r ¼ 0:61; p < 0:01) would suggest that sulphides could play
a role in buffering melt inclusion S contents (Fig. 6b): under
the reducing conditions that prevail during oceanic basalt
petrogenesis, melt FeOT exerts a dominant control on the
S content of melts at sulphide saturation (SCSS; Li and
Naldrett, 1993; O’Neill and Mavrogenes, 2002). However,
current SCSS models are equivocal on the state of sulphide
saturation in our primitive melt inclusions: assuming a con-
servative 5% uncertainty in ln(SCSS) values from the model
of Fortin et al. (2015) to PEC-corrected primitive melt
inclusions at 1200 �C and 3 kbar returns a possible
SCSS range of 879–1973 ppm. A mean S/Dy value of
303 � 72(1r) nonetheless places a minimum bound on
primary S/Dy values that is comparable with the highest
values reported from oceanic basalts to date.
8.2. Cl and B signals from the mantle

Cl/K values in pristine MORB glasses lie mainly within
the 0.01–0.08 range (Michael and Cornell, 1998), though
values from the Mid-Atlantic Ridge are often higher
(0.05–0.13; Michael and Cornell, 1998; Le Voyer et al.,
2015). Matrix glasses and PEC–corrected primitive melt
inclusions from the 10 ka Grı́msvötn tephra series have
mean Cl/K values within the range of typical MORB
glasses, but lower than most glasses from the Mid-
Atlantic Ridge (0.050 � 0.005(1r) and 0.065 � 0.014(1r)
ppm respectively; Fig. 7d). Cl correlates with K in both
matrix glasses and primitive inclusions (r ¼ 0:77 and 0:55
respectively; p < 0:01 in both cases), suggesting that Cl
behaved incompatibly during the course of magmatic evo-
lution and that a Cl/K value of 0.050–0.065 is probably pri-
mary; Cl was not fractionated by syn- or post-entrapment
processes, which is consistent with Cl having a different
solution mechanism from F (Dalou et al., 2015).

B correlates most strongly with highly incompatible Ce
in primitive melt inclusions (r ¼ 0:67; p < 0:01) but with
slightly less incompatible elements such as Zr
(r ¼ 0:60; p � 0:07) in matrix glasses. This change in beha-
viour is consistent with a change in B’s bulk solid–liquid
partition coefficient from �0.006 during mantle melting
(recorded by primitive melt inclusions) to �0.07 during
low pressure fractional crystallisation (recorded by matrix
glasses; Ryan and Langmuir, 1993). B thus appears to have
been unaffected by syn- and post-entrapment processes.

9. THE FIDELITY OF PLAGIOCLASE-HOSTED

MELT INCLUSION VOLATILE RECORDS

Volatiles in primitive plagioclase-hosted melt inclusions
from the 10 ka Grı́msvötn tephra series preserve a range
of pre-, syn- and post-entrapment signals (Fig. 10). For
example, the correlated variability in Cl, B and ITEs is con-
sistent with the entrapment of initially heterogeneous pri-
mary melts that have experienced various degrees of
mixing; variability in Cl and B is primary in origin. Further-
more, while it is unclear whether inclusions were sulphide-
saturated at the time of formation, high S/Dy values in
primitive melt inclusions indicate that Icelandic primary
melts may be S-rich in comparison with most oceanic
basalts.

In contrast, F was probably fractionated by dissolution-
crystallisation processes implicated in primitive plagioclase-
hosted melt inclusion formation by the presence HFSE
depletions in some inclusions. Namely, we propose that
plagioclase-hosted inclusions formed by the entrapment of
initially Al-rich melts generated by the variable re-
equilibration of dissolved plagioclase with recharging melts
and whose Al-rich nature facilitated F enrichment by uphill
diffusion. While there are few published analyses of F in
plagioclase-hosted melt inclusions from oceanic basalts
for comparison, we suggest that F enrichment could occur
in any system where plagioclase dissolution played a role in
inclusion formation.

Apart from PEC, which would have initially acted to
concentrate all volatile and incompatible elements, melt



Fig. 10. Figure summarising the magmatic processes recorded by volatile and light lithophile elements in matrix glasses and melt inclusions
from the 10 ka Grı́msvötn tephra series.
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inclusion decrepitation was probably the first post-
entrapment process to modify inclusion compositions. We
suggest that the almost uniformly low CO2 content of prim-
itive melt inclusions reflects decrepitation as a result of PEC
and decompression during ascent; a single inclusion with
CO2/Ba � 97 may be primary.

High H2O/Ce values in primitive plagioclase-hosted
melt inclusions suggest they became overhydrated by par-
tially re-equilibrating with their more evolved and hydrous
carrier liquids en route to the surface. Diffusion calculations
suggest that primitive macrocrysts resided in evolved carrier
liquids for a few days before eruption, a value comparable
with macrocryst entrainment timescales reported from
petrologically similar systems. The H2O content of
plagioclase-hosted melt inclusions in basaltic systems may
thus be modified within hours of host macrocrysts being
transferred between melts of variable aH2O. A strong corre-
lation between H2O and Li in plagioclase-hosted inclusions
suggests that H2O-mediated diffusive exchange of Li
through plagioclase may have occurred as well.

Despite the paucity of primary signals in our
plagioclase-hosted inclusion dataset, the diverse behaviour
of volatiles nevertheless presents numerous opportunities
for investigating magma evolution. For example, F enrich-
ments lend further credence to previously suggested models
of primitive plagioclase-hosted inclusion formation by
dissolution-crystallisation processes. Furthermore, the
slower diffusion of H+ though plagioclase than through oli-
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vine represents a potential chronometric tool for investigat-
ing mixing and transport processes over the days-to-weeks
timescale crucial for understanding pre-eruptive processes.
Thus, while primary melt volatile contents can remain elu-
sive in both olivine- and plagioclase-hosted melt inclusion
archives, primitive plagioclase-hosted inclusions contain
distinct records that complement and enrich those from
matrix glasses and olivine-hosted melt inclusions.
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