
ABSTRACT 

 

Reactive transport of arsenic through basaltic porous media 
 

Bergur Sigfússon 

 

This thesis studied the volcanic and geothermal source of arsenic (As) and its fate in 

shallow ground waters and upon entering the ocean by means of experimental and field 

measurements combined with geochemical modeling.  

Arsenic enters the atmosphere and hydrosphere from degassing magmas and during 

volcanic eruptions.  The November 2004 eruption within the Vatnajökull Glacier, 

Iceland, provided an opportunity to study elemental fluxes from volcanic eruptions into 

the environment. According to geochemical modeling, lowering of pH due to magma 

gases during the eruption led to rapid tephra dissolution with corresponding change in 

flood water chemistry. Geochemical modeling of floodwater/seawater mixing indicated 

localised decrease in dissolved arsenic and sulphur due to adsorption on the suspended 

floodwater materials. As the floodwater was diluted the As desorbed and limited effect 

of the floodwater was predicted after thousand fold dilution. 

Laboratory experiments were carried out to generate and validate sorption 

coefficients for arsenite and arsenate in contact with basaltic glass at pH 3 to 10. The 

mobility of arsenite decreased with increasing pH. The opposite was true for arsenate, 

being nearly immobile at pH 3 to being highly mobile at pH 10.  

A 1D reactive transport model constrained by a long time series of field 

measurements of chemical composition of geothermal effluent fluids from a power 

plant was constructed.  Thioarsenic species were the dominant form of dissolved As in 

the waters exiting the power plant but converted to some extent to arsenite and arsenate 

before feeding into a basaltic lava field.  Chloride, moved through the basaltic lava field 

(4100 m) in less than 10 yrs but arsenate was retarded considerably due to surface 

reactions and has entered a groundwater well 850 m down the flow path in accordance 

to prediction by the 1D model, which further predicted a complete breakthrough of 

arsenate in the year 2100 while arsenite will be retained for about 1000 yrs.  
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SUMMARY 
The importance of geothermal energy as a source for electricity generation and district 

heating has increased over recent decades. Arsenic (As) can be a significant constituent 

of the geothermal fluids pumped to the surface during power generation. This thesis 

studied the volcanic and geothermal source of As and its fate in shallow ground waters, 

and upon entering the ocean, by means of experimental and field measurements 

combined with geochemical modeling. 

Dissolved As exists in different oxidation states, mainly as the reduced arsenite 

(As(III)) and oxidised arsenate (As(V)), and the charge of individual species varies with 

pH. In sulphidic waters As is primarily bound to sulphur on thioarsenic forms. Basaltic 

glass is one of the most important rock types in many high-temperature geothermal 

fields. Static batch and dynamic column experiments were combined to generate and 

validate sorption coefficients for As(III) and As(V) in contact with basaltic glass at pH 

3 to 10. Five surface reactions were chosen to represent As/basaltic glass interactions. 

These reactions produced one monodentate and one bidentate As(III) surface complexes 

and one monodentate and two bidentate As(V) surface complexes: 

 
Validation of experiments was carried out by two empirical kinetic models and a 

surface complexation model (SCM). The SCM provided a better fit to the experimental 

column data than kinetic models at high pH values. However, in certain circumstances 

an adequate estimation of As transport in the column could not be attained without 

incorporation of kinetic reactions. The varying mobility with pH was due to the 

combined effects of the variable charge of the basaltic glass and the individual As 

species as pH shifted, respectively. The mobility of arsenite decreased with increasing 

pH. The opposite was true for arsenate, being nearly immobile at pH 3 to being highly 

mobile at pH 10.  

The laboratory measured adsorption coefficients for aquatic As(III) and As(V) 

species on basaltic glass surfaces were applied to a shallow basaltic rock aquifer near 

the Nesjavellir geothermal power plant in Iceland. A one dimensional (1 D) reactive 

transport model constrained by a long time series of field measurements of chemical 

Reaction log K (25°C)
As(III)
2Glass-OH + H3AsO3 = (Glass-O)2AsOH +2H2O 4.7
Glass-OH + H3AsO3 = Glass-H4AsO4  2.8
As(V)
Glass-OH + H3AsO4 = Glass-OAsO3

-2 + 2H+ + H2O -2.4
2Glass-OH + H3AsO4 = (Glass-O)2AsO2

- + H+ + 2H2O 2.3
2Glass-OH + H3AsO4 = (Glass-O)2AsOOH + 2H2O 4.3
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composition of geothermal effluent fluids, pH, Eh and sometimes Fe- and As-dissolved 

species measurements was constructed for this purpose.  Di-, tri- and tetrathioarsenic 

species (As(OH)S2
2-,AsS3H2- ,AsS3

3- and As(SH)4) were the dominant form of dissolved 

As in geothermal waters exiting the power plant but converted to some extent to 

arsenite (H3AsO3) and arsenate (HAsO4
2-) oxyanions coinciding with rapid oxidation of 

sulphide (S2
-) to thiosulphide (S2O3

2-) and finally to sulphate (SO4
2-) during surface 

runoff before feeding into a basaltic lava field.  A continuous 25 year data set 

monitoring groundwater chemistry along a traverse of warm springs on the Lake 

Thingvallavatn shoreline allowed calibration of the 1D model.  The conservative ion, 

chloride (Cl-), moved through the basaltic lava field (4100 m) in less than 10 years but 

As was retarded considerably due to surface reactions and has entered a groundwater 

well 850 m down the flow path as arsenate in accordance to prediction by the 1D model. 

The 1D model predicted a complete breakthrough of arsenate in the year 2100 while 

arsenite will be retained for about 1000 years. Due to increased deep well injection of 

geothermal effluents, adsorption to the basalt surfaces and dilution from ground waters, 

As concentrations in springs discharging into Lake Thingvallavatn will not reach those 

of the inlet concentrations during the years 1990-2006. 

Arsenic enters the atmosphere and hydrosphere from degassing magmas and during 

volcanic eruptions.  The November 2004 eruption within the Vatnajökull Glacier, 

Iceland, provides an opportunity to study elemental fluxes from volcanic eruptions. On 

28th October, Lake Grímsvötn started draining sub glacially with the floodwater 

entering River Skeiðará 50 km south of the lake. Following four d draining of Lake 

Grímsvötn an eruption started at 21:50 GMT on 1st November 2004 forming an eruption 

column up to 12-14 km. Maximum discharge of the glacial flood rose from 50 to3,300 

m3 sec-1 on 2 November at 16:40.  A distinct change in the floodwater chemistry was 

observed between 8:20 and 12:15 on 2 November where dissolved S2O3
2- and Hg were 

first detected with corresponding peak flux of Na, Cl, B and V. Further change occurred 

between 12:15 and 19:15 where other elemental fluxes peaked with concurrent decrease 

in δ34S values from 7.5‰ to 3.5‰. According to geochemical modeling, lowering of 

pH due to magma gases during the eruption led to rapid tephra dissolution with 

corresponding change in flood water chemistry.  The modeling of floodwater/seawater 

mixing indicated localised decrease in dissolved arsenic and sulphur due to adsorption 

on suspended materials. As the floodwater was diluted the As desorbed and limited 

effect of the floodwater was predicted after thousand fold dilution. 
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1 Literature review 
The review gives a brief discussion on the Geology of Iceland followed by a more 

detailed description of the speciation and detection of arsenic. Prediction of arsenic 

speciation in terms of thermodynamics is discussed as well as comprehensive review is 

provided on analytical techniques on arsenic speciation. Empirical and mechanistic 

adsorption models are discussed in detail and finally, methods for geochemical 

modeling of arsenic transport are described. 

1.1  Introduction 

The current production of geothermal energy places it fourth in the world with respect 

to renewable energy sources, behind hydroelectricity, wind power and biomass 

(REN21, 2008).  The current usage pales in comparison to its potential. Although 

geothermal energy utilisation leads to some emission of gases and effluent water that 

require disposal, it is a relatively benign energy source compared to nuclear and fossil 

fuels.  The first environmental impact assessment (EIA) of geothermal utilization was 

compiled in the USA in 1970, and considerable research on the side effects and 

environmental impacts of geothermal utilisation have been carried out since then 

(Kristmannsdottir and Armannsson, 2003), partly due to increased public awareness of 

the impact of anthropogenic activities. 

The main environmental issues involved in geothermal development are 

(Kristmannsdottir and Armannsson, 2003): 

• Chemical pollution 

• Physical effects of fluid withdrawal 

• Noise 

• Thermal effects 

• Biological effects 

• Protection of natural features 

 

One important constituent of chemical pollution is the element arsenic (As).  

Arsenic is a third row, group V, metalloid element and thus has an excess of electrons 

and unfilled orbital’s that stabilise formal oxidation states from +5 to -3.  The 

assignment of formal oxidation states to As is not very meaningful from a chemical 
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standpoint because As bonding overall is essentially covalent (Cotton and Wilkinson, 

1988).  However from toxicological point of view, redox chemistry  plays an important 

role in As toxicology, and the most toxic form of As being the gas arsine (AsH3) 

followed by the aqueous forms arsenite (As(III)O3
3-) and arsenate (As(V)O4

3-).  The 

organic (methylated) forms of As are generally considered to be less toxic while there is 

still considerable uncertainty regarding the toxicity of some organic species (Vaughan, 

2006; Hopenhayn, 2006).  While As can combine with many other elements to form 

covalent compounds, it most commonly bonds to oxygen and sulphur in nature (O'Day, 

2006). 

Volcanic ash forms due to rapid cooling of magma in atmosphere or in contact with 

water.  The rapid cooling results in insufficient time for crystallisation and if the magma 

is mafic in origin, basaltic glass can form (Jakobsson and Gudmundsson, 2008).  The 

ratio of crystalline to non-crystalline rock depends on such factors as magma 

composition, temperature, the difference in vapour pressure between the magma and the 

ambient environment (Jakobsson and Gudmundsson, 2008). 

The concentration of As in a limited dataset of Icelandic rocks, which are primarily 

volcanic in origin, ranges from less than 5 μg kg-1 to 1.28 mg kg-1 (Arnorsson, 2003), 

while that of basaltic volcanic materials ranges from 0.02 mg kg-1 to 0.18 mg kg-1 with a 

mean of 0.08 mg kg-1 (Arnorsson, 2003).  Arnorsson (2003) reported a positive 

relationship between As and rubidium (Rb) (p=0.008) and K2O (p=0.06), respectively, 

in rocks ranging from basic to silicic volcanics from the active volcanic belt of NE-

Iceland and Krafla central volcanic complex.  Rubidium and K are incompatible during 

production and evolution of magmas in the mantle (Cox et al., 1979).  The strongly 

positive correlation between Rb, K2O and As indicates the same magma processes 

affect As, Rb and K2O concentrations of basaltic to silicic volcanic rocks.  Therefore, in 

spite of limited database, As concentrations in Icelandic volcanic rocks may be 

estimated with some degree of certainty from published Rb and K2O values (Arnorsson, 

2003). 

1.1.1 Geology of Iceland 

Iceland is mainly composed of basaltic rocks where active seafloor spreading coincides 

with the occurrence of upwelling mantle plume resulting in intense volcanism 

(Schilling, 1973).  The island lies in the centre of North Atlantic Igneous Province 

(NAIP) which is a result of Continental Flood Basalt (CFB) volcanism which is 
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commonly associated with spatially constrained melting anomalies located within the 

upper mantle (Ernst and Buchan, 2003).   Iceland may be considered as an analogue to 

other CFB provinces such as Central Atlantic Magma Province (CAMP) in America 

and Africa, The Columbia River Flood Basalts in N-America, Parana-Etendeka in S-

America and Africa, Deccan traps in India, Siberian traps in Russia and Emeishan in 

China.  The crest of the Mid-Atlantic Ridge marks the boundary between the North 

American and Eurasian tectonic plates.  The two plates move towards the west-

northwest and east-southeast respectively, with an average calculated spreading rate of 

~2 cm year-1 (Einarsson, 2008).   The main volcanic activity in Iceland occurs in active 

central volcanoes situated within fissure swarms usually nearly parallel to the plate 

boundaries (rift zones) (Figure 1).    

Figure 1 Geology map of Iceland.  The main volcanic activity occurs within the volcanic systems 

located in the main volcanic rift zones.  From Johannesson and Saemundsson (1998). 

The volcanics formed in the rift zone were continuously buried by younger lavas, then 

transported out of the rift zones by tectonic movement, and finally the largest lavas 

resurfaced due to erosion during the Pleistocene (Palmason, 1973; Eiriksson, 2008).  

Therefore, the youngest lavas of Iceland are located in the centre of the rift zones with 

increasingly older lavas to the east and west.  Iceland‘s rocks can be divided into four 

geological formations (Johannesson and Saemundsson, 1998): the Later Tertiary Basalt 
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formation (>3.2 Ma) primarily composed of basaltic lavas with intercalated sediments, 

The Late Pliocene and Early Pleistocene Basalt formation (0.7 – 3.2 Ma), The Late 

Pleistocene Móberg formation (<0.7 Ma), and the Holocene formation (<10 ka) (Figure 

1).  Móberg is consolidated, mafic to intermediate, hyaloclastite (Table 1) (Kjartansson, 

1959).  After the eruptions the materials are partially cemented together by alteration 

and the primary weathering product is palagonite formed as a result of basaltic glass 

interaction with water (Jakobsson and Gudmundsson, 2008).  Table 1 defines the most 

common geological formations associated with glacio-volcanism relevant to this study.   

Rocks formed during the Ice Age (<3.2 Ma) are either predominantly hyaloclastite 

ridges formed between the hyaloclastite ridges at interglacial periods (Figure 2).  The 

hyaloclastite ridges are, therefore, the subglacial equivalents of basaltic lavas erupted 

from fissures sub aerially. 

 

Figure 2 Bedrock sequence near the Hengill Central volcano complex in SW-Iceland.  Basaltic 

lavas, erupted at interglacial periods fill up the gaps between hyaloclastite ridges formed at glacial 

periods.  Superimposed are the zones for low- and high-temperature hydrothermal alteration.  

From Alfredsson et al. (2007). 

 

Lavas 

Móberg 

Upper  boundary  of  temperature
dependent alteration products 
Current rock temperature 
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Table 1 Definitions of common rock constituents associated with volcanism in Iceland. 

 

1.1.2 Geothermal activity in Iceland 

Geothermal areas in Iceland have been divided into two categories, high temperature 

and low temperature areas (Figure 3). High temperature geothermal activity of varying 

degree is always associated with the central volcano complexes in Iceland with the 

temperature of the system and permeability of the aquifers being the main determining 

factors on the system’s capacity for energy utilisation.  Nearly all the high temperature 

geothermal systems (where temperature is >200°C at 1 km depth) are located in the rift 

zone where lavas and hyaloclastite ridges build up the bedrock sequence (Figures 2 and 

4).  The main aquifers in these systems are composed of some form of volcanic 

materials, being un-weathered or partially altered to palagonite (Figure 2).  

Furthermore, the permeability is increased by large number of fractures cutting through 

the systems allowing preferential flow in the fracture orientation. 

Low temperature geothermal areas (where temperature is <150°C) occur where 

regional groundwater flow meets localized heat source and is as a consequence elevated 

to the surface.  The low temperature areas are primarily located outside the active 

volcanic zones (Figure 3). 

Constituent Defintion
Flow‐foot Breccia Sediments that are deposited on the advancing frontal slope of 

lava which flows into water.
Jones, 1969

Hyaloclastite A hydrated tuff‐like breccia rich in black volcanic glass. Fischer and Schmincke, 1984
Móberg Consolidated, mafic to intermediate, hyaloclastite. Kjartansson, 1959
Palagonite An alteration product from the interaction of water with basaltic 

volcanic glass.
Stroncik and Schmincke, 2002

Pillow lava A rock type formed when lava emerges from an underwater or 
subglacial volcanic vent into water.

Batiza and White, 2000

Sideromelane Basaltic volcanic glass that is translucent White and Houghton, 2000
Tachylite Basaltic volcanic glass (opaque) due to microlite christalisation 

and is inferred to result from slightly slower chilling than that of 
sideromelane.

White and Houghton, 2000

Tephra Air‐fall material produced by volcanic eruption regardless of 
composition or fragment size.

Thorarinsson, 1944

Tuya A flat‐topped steep‐sided volcano formed when lava erupts 
through a thick glacier or ice sheet.

Mathews, 1947

Tuff A rock consisting of consolidated volcanic ash. Encyclopædia Brittanica, 2009
Volcanic ash Volcanic tephra smaller than 2 mm. Heiken and Wohletz, 1985
Volcanic glass Any glassy rock formed from lava or magma that may have 

reached very low temperature without crystallisating, but its 

viscosity may have become very high.

Encyclopædia Brittanica, 2009
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Figure 3 Geothermal areas in Iceland.  All high temperature areas are located within the active 

volcanic zones but low temperature areas can be located elsewhere provided that the 

permeability of the bedrock is sufficient to allow for groundwater movement.  Figure from 

Reykjavik Energy. 

1.1.3 Hydrology of main Icelandic aquifers  

Permeability of Icelandic rocks is highest in the rift zones but decreases to the east and 

west and is overall highest at the surface.  The low permeability is primarily due to 

regional low temperature alteration of primary minerals into secondary minerals such as 

silica, smectites and zeolites (Walker, 1960; Neuhoff et al., 1999; Sigurdsson and 

Ingimarsson, 1990).  The molar volume of secondary minerals is greater than the molar 

volume of the primary minerals.  Therefore, alteration of primary to secondary minerals 

fills pore space by addition of water and sometimes CO2 to the mineral matrix.  High 

temperature alteration with associated loss in permeability mainly occurs during the 

active volcanism phase in and around extinct central volcanoes in the Tertiary 

formation.  Dike and fissure swarms are associated with these extinct central volcanoes 

leading preferential groundwater flow usually parallel to the nearest volcanic rift axis.  

The highest permeability is associated with rocks younger than 0.7 Ma in the rift zones.  

The relatively young rocks have not been subject of regional low temperature alteration 

Active volcanic zone 
 

High temperature areas 

Low temperature areas 
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and therefore have high permeability.  New fractures associated with plate movements 

and central volcanoes form regularly allowing easy flow of ground-waters.   

 

 
Figure 4 Conceptual model of the Hengill high temperature geothermal system.  (1) Cold water 

originating from the highlands flows underground towards Mount Hengill.  (2) The water comes 

into contact with hot bedrock, heats up and is forced out through cracks and faults.  (3) Boiling 

water and steam flows from Mount Hengill between tectonic and volcanic boundaries towards 

the surface.  (4) Between these boundaries, geothermal heat is much nearer the surface than 

outside therefore facilitating utilisation.  (5) Groundwater from local precipitation can also seep 

into the geothermal system.  Figure from Reykjavik Energy. 

1.2 Arsenic 

High concentrations of As in ground waters have been reported from different regions 

of the world (Smedley and Kinniburgh, 2002).  The most widespread As enrichment 

occurs in regions of large continental basins such as West Bengal, Bangladesh, 

Vietnam, Cambodia, Chile, Argentina, USA and China (Mandal and Suzuki, 2002; 

Kuan et al., 2000; Charlet and Polya, 2006) where suspended materials are carried with 

major rivers from mountainous areas to the river floodplains and are there subject to 

sedimentation and subsequent biogeochemical cycling at or below the Earth’s surface.  
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Naturally elevated As levels can be a result of diverse chemical reactions occurring 

under a variety of environmental conditions.  Occurrence of elevated As in ground 

waters has primarily been attributed to dissolution of Fe(III) oxyhydroxide mineral 

coatings caused by bacterial oxidation of organic carbon under reduced conditions 

(Smedley and Kinniburgh, 2002; Harvey et al., 2002; Nickson et al., 1998).  These 

oxyhydroxides had previously precipitated under oxidising conditions, co precipitating 

or adsorbing As from the aqueous solution onto their surfaces during precipitation and 

transport in the oxidised river environment (Smedley and Kinniburgh, 2002; Harvey et 

al., 2002; Nickson et al., 1998). 

Another source of As to ground waters is the oxidative dissolution of sulphides.  

High temperature (>100 °C) geothermal ground-waters often contain elevated As levels 

(Webster and Nordstrom, 2003), which can be lowered by precipitation of sulphides at 

high H2S levels (Cleverley et al., 2003).  Arsenic in reduced geothermal waters forms 

the minerals realgar (As2S2) and/or, orpiment (As2S3) that co-exist with pyrite (FeS2) 

(Cleverley et al., 2003).  These pyrites dissolve under oxidizing conditions, creating 

sulphuric acid and, therefore, mobilise any As present in the mineral structure or 

adsorbed on the surface (Cleverley et al., 2003).  The subsequent transport of As then 

depends on the chemical composition of the water, and as a result speciation of As and 

the nature of the mineral surfaces of the aquifer (Stauder et al., 2005). 

High temperature geothermal waters also serve as a carrier of As to surface waters.  

This process may be described studying Figure 4 using the same numbering system as 

in the figure text  

(1) Cold water originating from the highlands in SW Iceland flows underground 

towards Mount Hengill.   

(2) The water comes into contact with hot bedrock, which is primarily basaltic in 

origin and contains some As.  The water heats up, is forced through cracks and 

faults, reacts with the rocks and releases As into the water by dissolving the 

basaltic glass, primary silicates and oxides containing As as well as releasing As 

resting on crystal surfaces.  At deep levels the As is primarily on the As(III) 

form and is mainly associated with sulphur originating from the rocks and 

volcanic gases originating from cooling magmas and intrusions.   

(3) Boiling water and steam flows upwards carrying the As from Mount Hengill 

between tectonic and volcanic boundaries towards Nesjavellir.   
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(4) Between these boundaries, geothermal heat is much nearer the surface than 

outside, some water and steam enters the surface and the H2S gas in the water 

starts to oxidize to thiosulphate (S2O3
2-) and eventually to sulphate (SO4

2-) as 

well as degassing into the atmosphere.  Once the H2S has been eliminated from 

the water the As-S species start to disintegrate into As-oxyanions and finally 

As(III) is oxidised to As(V) (Chapter 4). 

1.2.1 Speciation of As 

Speciation of As is the most important factor controlling its bioavailability and mobility, 

depending on environmental parameters such as pH and redox potential, temperature 

and salinity of the solution.  Arsenic is mostly present in most aqueous environments as 

the +III and +V oxidation states as arsenite and arsenate oxyanions and their hydrolysis 

species, respectively (Ferguson and Gavis, 1972) with minor amount of methyl and 

dimethyl organoarsenic compounds being detected (Hung et al., 2004).  The pH of 

natural waters range from 2-12 whereas acid mine drainage can reach as low as -0.5, the 

Eh of surface waters in contact with atmosphere ranges from <800 mV at acidic to <400 

mV under alkaline conditions (Figure 5).  High temperature geothermal waters in 

Iceland range in pH from ~6 to ~9.5 (Stefansson and Arnorsson, 2002, Reykjavik 

Energy, unpublished data) and are reduced, although redox equilibrium is seldom 

attained (Stefansson and Arnorsson, 2002).  At these conditions the primary As 

oxyanion is H3AsO3
0

(aq).  Recently, the importance of thioarsenates in sulfidic 

geothermal waters has been reported accounting for up to 83% of dissolved As under 

alkaline conditions (Planer-Friedrich et al., 2007).   
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Figure 5. Approximate positions of some natural environments in terms of Eh and pH.  The 

crossed line represents the limits of measurements in natural environments (Baas-Becking et al., 

1960).  Waters in high temperature geothermal systems are frequently positioned near the lower 

limit of water stability at pH between 6-9.5 (Stefansson and Arnorsson, 2002), Reykjavik 

Energy, unpublished data). In addition snow melts in the vicinity of erupting volcanoes yield pH 

2.8 (Flaathen et al., 2009). 

The following discussion of As speciation thermodynamic systems only takes into 

account the formation and solubility of As bearing minerals in equilibrium with aqueous 

species in water, but not with surface species.  The effect of surface speciation will be 

discussed in preceding chapters. 

1.2.1.1 The As-O-H system 

Speciation of As can be conveniently described in a series of complex thermodynamic 

systems (Brookins, 1986; Vink, 1996) shown on Eh vs. pH diagrams.  The formation of 

H3AsO3
0

(aq) from the solid As2O3 polymorphs arsenolite and claudetite may be 

described by the reaction: 
0

)(332)(33 230 aqs AsOHOHAs →+   Eq. 1 

The reaction described by eq. 1 is independent of Eh and pH and, therefore, depends 

only on H3AsO3
0

(aq) activity and H2O activity as the activity of H3AsO3
0

(aq) reaches 0.15 

m.  This equilibrium is reached at 0.15 m H3AsO3
0

(aq)  at 25°C (Vink, 1996) and, 

therefore, arsenolite and claudetite will dissolve at lower H3AsO3
0

(aq) activities.  In the 

Volcanic  
snow melts 
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As-O-H system (Figure 6), the As is predominantly found as aqueous species unless the 

total dissolved As reaches the high arsenolite solubility and is therefore highly mobile.  

Native As(s) can only occur under very reducing conditions at both acidic and alkaline 

conditions (Figure 6).  Both arsenite and arsenate form protolytes, which may release 

protons stepwise similar to carbonic acid (Figure 6).  Arsenate forms negatively charged 

oxyanions (H2AsO4
- and HAsO4

-2) at natural pH values (Brookins, 1986; Vink, 1996) 

while As (III) forms the uncharged oxyanion (H3AsO3) (Loehr and Plane, 1968) at pH 

up to around 9 (pKa= 9.2) (Pokrovski et al., 1996).  Above pH 9.2 the predominant 

arsenite species is H2AsO3
-.   

 
Figure 6 Eh – pH diagram for the system As-O-H at 25°C.  Activities of ∑As = 10-6 m, contoured 

for 10-0.8 m.  Modified from Vink (1996) 

 

 

1.2.1.2 The As-S-O-H system 

When sulphur is added as a component the system becomes As-S-O-H (Figure 7).  The 

polymorphs of As2O3 are still insignificant due to their very high solubility (Vink, 1996) 

whereas realgar (As2S2) is stable at both acidic and alkaline strongly reducing 
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conditions.  Orpiment (As2S3) occurs at less reduced conditions, mainly acidic but also 

at slightly alkaline conditions (Vink, 1996).  Pokrovski et al. (1996) reported the 

hydrolysis of orpiment according to the reaction: 
0

)(2
0

)(332)(33 23 aqaqs SHAsOHOHSAs +→+  Eq. 2 

 

Figure 7 Eh-pH diagram for the system As-O-H-S at 25°C.  Activities of ∑As = 10-6 m, contoured 

for 10-0.8 m, and activities of ∑S = 10-3 m.  Red area represents conditions where As is mobile (the 

primary As phase is on aqueous form). Modified from Vink (1996). 

 

However, recent research has stated that the solubility of amorphous and crystalline 

orpiment under neutral to alkaline conditions is controlled by at least four thioarsenite 

species each with multiple protonation states (Stauder et al., 2005; Wilkin et al., 2003; 

Rochette et al., 2000; Beak et al., 2008) forming according to the reactions: 
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)()()(22)(33 3)(24 aqaqaqs HHSSOHAsOHSAs +−− ++→+  Eq. 3 

 +−− +→++ HSOHAsOHHSSAs aqaqs 3)(22 )(
2
22)()(33  Eq. 4  

+−− +→+ HHAsSHSSAs aqaqs )(
2

3)()(33 23    Eq. 5 

)(4)()(33 )(235 aqaqs SHAsHHSSAs −+− →++    Eq. 6 

These thioarsenite species dominate under experimental conditions where sulphide 

concentrations exceeded 0.1-1 mM (Figure 8).  The thioarsenite species can be 

considered to form when -SH groups progressively substitute –OH groups in the As 

species (Wilkin et al., 2003) according to: 

OHSHOHAsHHSOHAs aqaq 2
0

)(2
0

)(3 )()()( +→++ +−  Eq. 7 

OHSOHAsHSOHAs aq 22
0

)(3 )()( +→+ −−    Eq. 8 

OHSOHAsHSSOHAs 2
2

22 )()( +→+ −−−    Eq. 9 

OHHAsSHHSSOHAs 2
2

3
2

2)( +→++ −+−−   Eq. 10 

OHAsSHSSOHAs 2
3

3
2

2)( +→+ −−−    Eq. 11 

)(4
2

3 )(2 aqSHAsHHSHAsS →++ +−−    Eq. 12 

Sulphide concentrations in low temperature aquatic systems are generally controlled by 

the rate of bacterial sulphate reduction (Canfield et al., 2006) the form and abundance of 

iron in the solid matrix.  Dissolved sulphide is generally low when iron hydroxides are 

present since it is consumed during reduction of the hydroxides and formation of 

sulphides (Jensen et al., 2003) and does not accumulate in the water therefore 

precluding the formation of thioarsenite species.  High temperature geothermal water 

can contain high amounts of dissolved sulphides, due to its reduced state, influx of 

sulphur gases from the heat source and host rock, which can readily complex any 

dissolved As in the water (Planer-Friedrich et al., 2007).   
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Figure 8 Distribution of arsenite and thioarsenite as a function of bisulphide concentration at 

pH 7, 25°C. Data points correspond to the measured fractional abundance fo arsenite at pH 7.  

From Wilkin et al., (2003). 

1.2.1.3 The As-S-Fe-O-H system 

The abovementioned system can be further expanded by adding Fe as a component.  

The most common occurrence of As in nature is in the mineral arsenopyrite (FeAsS) 

(Vink, 1996). Furthermore, as mentioned above; reactive Fe has detrimental effect on 

the possible formation of thioarsenite species. 

Once Fe has been introduced to the system (Figure 9), realgar is the stable As form 

at reduced acidic conditions whereas at reducing alkaline conditions it coexists with 

magnetite (Fe3O4), where arsenopyrite is only stable at extremely reducing alkaline 

conditions (Vink 1996).  The mineral scorodite (FeAsO4 or FeAsO4·2H2O), which can 

be expressed to form according to: 

OHFeAsOAsOHOFe saqS 2)(4)(43)(32 322 +→+   Eq. 13 

is stable under oxidising acidic conditions and, therefore, As should only exist in the 

soluble from under oxidising neutral to alkaline conditions and at weakly reducing 

conditions (Figure 9). 



Chapter 1 – Literature review 

15 

 

Figure 9 Eh-pH diagram for the system As-Fe-O-H-S at 25°C.  Activities of ∑As and ∑Fe and ∑S 

= 10-6 m.  Only partial contouring is shown for ∑S = 10-3 m.  Red area represents conditions 

where As is mobile (the primary As phase is on aqueous form). Modified from Vink (1996). 

 

1.2.2 Measurement of As 

1.2.2.1 Sample preservation 

Determination of speciation, including oxidation state, of As is important for 

interpreting its toxicity, mobility, geochemical and biogeochemical cycling in the 

environment.  Suitable filtration and preservation of water samples is essential for 

stabilizing the arsenite/arsenate ratio prior to analysis if the analysis cannot be carried 

out immediately on site. 

Although oxidation/reduction reactions for As are generally slow (Gmelins, 

1908; Cherry et al., 1979) a series of inorganic processes can occur in water such as: 

• Reduction of arsenate by H2S (Cherry et al., 1979). 

• Reduction of arsenate by S2O3 and consequent precipitation of As2S3 (Chapin, 

1914) 
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• Photocatalysed oxidation of arsenite by Fe(III) (Emett and Khoe, 2001). 

• Oxidation of arsenite by dissolved Fe(III) (Cherry et al., 1979). 

• Oxidation of arsenite by oxygen in air (Batley, 1989). 

• Oxidation of thioarsenites to arsenate (Planer-Friedrich et al., 2007).   

 

Microbes play a large role in determining As speciation in natural waters because they 

can oxidize and reduce dissolved As over a large range of temperature, pH and solution 

composition.  Dissolved As(V) is reduced rapidly only by strong reducing agents, 

catalysis or by microbial activity (Cherry et al., 1979).  A large number of bacteria and 

archaea have been identified that use arsenate as a terminal electron acceptor for 

anaerobic respiration (Mukhopadhyay et al., 2002; Newman et al., 1998) and arsenite 

oxidizing microbes are also common (Salmassi et al., 2002).  As a response to elevated 

As concentrations in certain environments, microbes have evolved mechanisms to 

oxidise arsenite to arsenate and reduce arsenate to arsenite.  The process of detoxifying 

As involves an arsenate reductase enzyme coupled with an arsenite efflux pump (the ars 

system) which appears to be common in both anoxic and oxic waters (Mukhopadhyay et 

al., 2002).  A range of microbes are capable of methylating inorganic As, and some can 

produce further organoarsenic metabolites.  Many forms of dissolved organic carbon 

(DOC) are microbial substrates, and if these substrates are present at high enough 

concentrations their microbial utilization consumes dissolved O2, causing anoxia and 

subsequent arsenate reduction during storage if not properly preserved.  Mixed 

microbial cultures were found to oxidise arsenite and reduce arsenate in geothermally 

influenced water (Freeman et al., 1986) and arsenite oxidised rapidly by microbes in hot 

springs (Wilkie and Hering, 1998).  Membrane filters with 0.2-0.4 micron pores remove 

microbes from samples, stabilizing As speciation (McCleskey et al., 2004). 

The following solutions may be applied to prevent some of the problems listed 

above. 

Reduction of arsenate can be avoided by purging the sample with N2 gas to 

expel all H2S from the sample (Arnorsson et al., 2006).  Nitrogen purging also removes 

oxygen from the sample and can prevent oxidation of arsenite (Batley, 1989). 

Photocatalysed oxidation of arsenite can be inhibited by the formation of Fe(III) 

sulphate complex that absorbs photons and prevents the production of reactive free 

radicals (Emett and Khoe, 2001). 
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Oxidation of arsenite can be slowed down by the addition of acid, by storing the 

sample at 0-6°C or a combination of acidification and cooling e.g. (Batley, 1989).  

Acidification breaks down all thioarsenates present in samples and is, therefore, not 

suitable treatment for preserving speciation in sulphidic waters (Planer-Friedrich et al., 

2007).  Furthermore, acidification of sulphidic samples has been reported to lead to 

precipitation of As sulphides (Smieja and Wilkin, 2003).  To eliminate the precipitation 

of As-sulphides prior to detection, Beak et al. (2008), raised the pH to >10 with NaOH, 

oxidised the H2S to SO4
2- with 0.5 ml of 30% H2O2 for 30 minutes before acidifying it 

again with HCl to pH <2. 

Oxidation of arsenite can be stopped by freezing (Andreae, 1979) and is the 

preferred way of storage for preservation of thioarsenate species (Planer-Friedrich et al., 

2007) which are to be analysed by HPLC methods. 

Microbial activity can be stopped by filtering (McCleskey et al., 2004) and/or 

freezing/chilling. 

Separation of arsenite (uncharged) and arsenate (negatively charged) species in 

the field in acidic solution with ion exchange resins therefore eliminating the need to 

preserve speciation (Wilkie and Hering, 1998; Ficklin, 1983).  Thioarsenites are 

negatively charged at neutral pH and can be mistakenly interpreted as As(V) in those 

waters (Jay et al., 2004). 

Addition of ethylenediaminetetraacetic acid (EDTA) to complex redox active 

cations, such as iron and manganese, inhibits oxidation of arsenite (e.g. Gallagher et al., 

2001) although Oliviera et al. (2005) reported on the inefficiency of EDTA addition for 

long term storage. 

1.2.2.2 Arsenic speciation analysis – Separation techniques 

The determination of the total As concentration in a sample is insufficient for 

environmental considerations since its toxicity depends on the speciation (Gong et al., 

2002).  Numerous methods have been suggested to separate and quantify As species. 

The most commonly used speciation techniques for As often involve a 

combination by chromatographic separation with spectrometric detection.  Of the 

separation techniques, High Pressure Liquid Chromatography (HPLC) is the most 

commonly used technique (B'Hymer and Caruso, 2004).   The majority of the work on 

As speciation in the literature utilizes ion-exchange (Wei and Liu, 2007) or ion pair 

(Sathrugnan and Hirata, 2004) chromatography and to lesser extent ion exclusion 
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chromatography (Taniguchi et al., 1999), micellar chromatography, capillary 

electrophoresis (CE) (Wu and Ho, 2004), stripping potentiometry (Munoz and Palmero, 

2005), stripping voltammetry (Rasul et al., 2002), selective formation of As species into 

As-hydrides (Masscheleyn et al., 1991) and photometry (Dasgupta et al., 2002). 

1.2.2.2.1 Ion exchange chromatography 

Ion exchange chromatography is used for the separation of ions and easily ionized 

substances.  It utilizes the mechanism of exchange equilibrium between a stationary 

phase, which contains surface ions, and opposite charged ions in the mobile phase.  Ion 

exchange HPLC may be used in either anion (more commonly used for As species) or 

cation exchange modes.  The ionic strength of the solute, the pH of the mobile phase, 

the ionic strength and concentration of the buffer, temperature of column, flow rate and 

organic modifiers can all influence the separation and retention times of analytes in ion-

exchange HPLC (B'Hymer and Caruso, 2004).  Common buffer systems for As ion-

exchange chromatography include phosphate (Wei and Liu, 2007), carbonate (Brisbin et 

al., 2002), phthalic acid (Sheppard et al., 1990), tetra methyl ammonium hydroxide 

(Lintschinger et al., 1998) and formate buffers (Shiobara et al., 2001).  Both isocratic 

and gradient ion-exchange chromatographic systems have been used to separate As 

compounds.  Gradient systems offer better resolution of rapidly eluting compounds and 

in addition have the ability to reduce retention times of slowly eluting compounds.  

Anion exchange chromatography is most widely carried out with the aid of Hamilton 

PRP-X100 column with any of the above mentioned buffers (Gong et al., 2002) while 

Dionex Ionpac columns are either used with the abovementioned buffers or more 

recently with automatically generated potassium- or sodium hydroxide eluent with or 

without eluent suppression (Planer-Friedrich et al., 2007).  The choice of eluent and 

column depends on the analytes under investigation and the detector for the As species.  

Arsenite, arsenate, monomethylarsonic acid (MMAV), dimethylarsinic acid (DMAIII) 

are commonly measured by anion exchange methods while arsenobetaine (AsB), 

arsenochline (AsC), trimethylarsine oxide (TMAO) and tetramethylarsonium ion 

(Me4As+) are measured by cation exchange chromatography (Gong et al., 2002).  

Arsenite is uncharged under neutral conditions (pKa =9.2) and co-elutes with AsB from 

PRP-X100 column.  Separation of arsenite and AsB can be achieved by forming anionic 

complex when tartaric acid was used as the complex phase.  Separation can also be 

achieved by increasing the pH of the eluent using ammonium carbonate as the eluent on 
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a PRP-X100 column.  Gradient runs with Ionpac columns have achieved separation of 

Asb, arsenite, arsenate, MMAV and DMAV (Lintschinger et al., 1998).  Finally 

thioarsenic species have been separated on Ionpac columns (Stauder et al., 2005; 

Planer-Friedrich et al., 2007; Wilkin et al., 2003) but the oxidation state of these 

thioarsenic species cannot be determined from chromatography and have to be 

confirmed by X-ray absorption spectroscopy (XAS) (Beak et al., 2008). 

1.2.2.2.2 Ion-pair chromatography 

Ion-pair chromatography (reversed phase HPLC) can both separate ionic species and 

uncharged molecular species.  The separation of analytes is performed using stationary 

phases that have a surface less polar than the mobile phase.  In reversed phase ion-pair 

chromatography, a counter ion is added to the mobile phase, and a secondary chemical 

equilibrium of the ion-pair formation is used to control retention and selectivity.  

Elution and separation are achieved using aqueous solutions with an organic modifier, 

usually methanol for As speciation analysis.  The separation of analytes in ion-pair 

chromatography is influenced by hydrophobicity of the counter ion, the concentration of 

the ion-pair reagent, buffer concentration, the pH and ionic strength of the mobile phase 

and properties of the stationary phase (B'Hymer and Caruso, 2004). 

1.2.2.2.3 Ion-exclusion chromatography  

Ion-exclusion chromatography involves the use of strong anion- or cation-exchange 

resins for the separation of weakly ionized or neutral compounds.  The charge of the 

resin is the same as that of the ionic species and the method has three types of 

interactions, ion-exclusion, ion exchange, and hydrophobic interaction which are 

suitable to separate various As species (Taniguchi et al., 1999).  This method separated 

arsenite, arsenate and MMA successfully but DMA was not eluted in highly saline 

biological materials (Nakazato et al., 2000) and seawater (Nakazato et al., 2002). 

1.2.2.2.4 Micellar chromatography 

Micellar chromatography is a variation of reversed-phase HPLC and has been used to 

separate arsenite, arsenate, MMAV and DMAV in urine samples (Ding et al., 1995).  In 

micellar chromatography, a relatively high concentration of surfactant is used as counter 

ions and the formation of “micelles” occurs. 

1.2.2.2.5 Capillary zone electrophoresis  
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Capillary zone electrophoresis (CZE) has been used to separate arsenite, arsenate, 

MMA and DMAV (Wu and Ho, 2004).  The method separates the species by electric 

current on a surface immersed in a background electrolyte of choice.  The method was 

used in conjunction with indirect ultra-violet (UV) light detection to determine As 

speciation in realgar and orpiment alkali extracts (Wu and Ho, 2004) and with mass 

spectrometry (MS) for organoarsenic complexes (Debusschere et al., 2000). 

1.2.2.2.6 Hydride generation techniques 

Analysis of As is frequently carried out by formation of arsine (AsH3) hydride followed 

by detection with either atomic absorption spectrometry (AAS), atomic fluorescence 

spectrometry (AFS), atomic emission spectrometry (AES) or ICP-MS.  Hydride 

generation (HG) is a chemical derivatization process that produces volatile hydrides 

upon chemical treatment of a sample with a reducing agent, typically sodium 

borohydride (NaBH4).  The target As species can be separated from almost all other 

accompanying materials in the sample through the HG process.  Only gaseous hydrides 

are introduced to the detector, and the sample matrix is left in the liquid waste.  The As 

hydride generation reaction can by described in two major steps, the formation of arsine 

from arsenite upon contact with tetrahydroborate ion (BH4
-) : 

OHBHAsHBHOHAs aqgaqaq
III

2)(3)(3)(4)(3 333)( ++→+ −   Eq. 14 

and production of H2 gas that carries the arsine towards and maintains the flame in the 

AFS detector: 

)(2)(332)(3 33 gaqaq HBOHOHBH +→+     Eq. 15 

A steady flow of H2(g) is frequently used to carry arsine to the detector.  The hydride 

generation procedure can be used for differential determination of arsenite and arsenate 

based on the fact that arsenite reacts with tetraborohydride at a higher pH than arsenate 

(Hung et al., 2004; Masscheleyn et al., 1991).  A successful determination of the 

inorganic species arsenate and arsenate can be achieved by maintaining a high pH in the 

HG system with a strong buffer.  Total As can then be determined followed by a pre-

reduction of arsenate to arsenite with any of the reductants mentioned in the 

electrochemical section below.  The difference between total As and arsenite then gives 

an estimate of arsenate in the sample.  Pre-reduction with an acid mixture of KI/ascorbic 

acid where the ascorbic acid prevents the oxidation of iodide to triiodide by air is the 
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most applied methodology for the total determination of As in aqueous samples (Chen 

et al., 1992).   

1.2.2.3 Arsenic speciation analysis - Detection techniques 

Speciation and detection of trace levels of As in environmental samples requires high-

sensitivity detection.  Atomic spectrometry provides the best sensitivity for As detection 

(Gong et al., 2002). 

1.2.2.3.1 Inductively coupled plasma (ICP) mass spectrometry (MS) 

Due to its extremely high sensitivity, multi element capability, large dynamic range, and 

isotope ratio measurement capability the ICP-MS coupled with HPLC is now the most 

effective tool in many As research laboratories (Gong et al., 2002).  In ICP-MS, the 

high efficiency of atomization and ion formation of the ICP is coupled with the specific 

and sensitive detection capability offered by MS (B'Hymer and Caruso, 2004).  

Essentially, an aerosol of the sample is introduced into the plasma source where 

vaporization, atomization and ionization of the analytes occur nearly simultaneously.  

Elemental ions are passed on into a mass spectrometer.  Arsenic does have a spectral 

interference under certain conditions.  Chloride from the sample matrix may combine 

with argon from the plasma gas to form 40Ar35Cl which has the same nominal mass-to-

charge ratio (m/z) as As of 75.  This problem can be overcome by few ways.  A 

mathematical correction can be used to eliminate this interference.  Chlorine has two 

isotopes, 35Cl and 37Cl so 40Ar37Cl should also form in the plasma at the isotopic ratio of 

chlorine 35 and 37.  By monitoring m/z 77, the proportion of the signal m/z 75 

generated from argon chloride may be subtracted allowing for the accurate 

determination of the As signal (B'Hymer and Caruso, 2004).  This mathematical 

correction though requires High-Resolution ICP-MS.  Other methods to eliminate 
40Ar35Cl interference include introducing octopole reaction system (ORS) where helium 

gas is introduced into the plasma where it collides with ArCl molecules and 

consequently dissociates the molecules or reduces their kinetic energy and as a 

consequence, the ArCl molecules can hardly enter the MS while the As ion 

predominantly passes through the reaction cell into the MS detector (Nakazato et al., 

2002; Tao et al., 1993).  A HG system has also been coupled to the ICP-MS where 

arsines are only introduced to the system and chlorine flows to waste with the rest of the 

sample matrix (Gong et al., 2002; Naykki et al., 2001). 
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Determination of total As in samples is determined routinely by ICP-MS.  For 

speciation, coupling of HPLC in any form with ICP-MS is very widespread procedure 

(B'Hymer and Caruso, 2004).  Addition of HG into the HPLC-ICP-MS system was 

reported by Nakazato et al. (2002) which also reported the use of ORS instead of HG 

system. 

1.2.2.3.2 Inductively coupled plasma atomic emission spectrometry (ICP-AES) 

The ICP-AES has poorer detection limit than the ICP-MS but has the advantage over 

many techniques being a multi-element technique, as is ICP-MS, and can, therefore, be 

useful for As detection when concentrations are high enough.  The ICP section of the 

technique works similarly as in ICP-MS whereas the respective analytes are detected by 

an optical spectrometer (AES).  The sample is pumped into a nebulizer where it is 

atomized and introduced directly inside the plasma flame.  The sample immediately 

collides with the electrons and other charged ions in the plasma and is broken down into 

charged ions.  The various molecules break up into their respective atoms which then 

lose electrons and recombine repeatedly in the plasma, giving off the characteristic 

wavelengths of the elements involved.  Sensitivity for As has been increased by 

coupling HG to the HPLC-ICP-AES system (Rubio et al., 1993). 

1.2.2.3.3 Atomic fluorescence spectrometry 

The most attractive feature of fluorescence methods is their inherent high sensitivity.  

Briefly, a sample is introduced into a light beam of a fixed wavelength.  A photon is 

absorbed by the molecule and electrons are excited from their ground electronic state to 

a higher energy state.  Within each of these electronic states are various vibrational 

states.  Collisions with other molecules cause the excited molecule to lose vibrational 

energy until it reaches the lowest vibrational state of the excited electronic state.  Then 

excited electrons jump to the ground electronic state and as a consequence emit photons 

in the form of fluorescent light.  The quality of conventional atomic fluorescence 

methods based on liquid sample injection suffers due to light scattering and background 

due to the sample matrix.  The, separation of arsines with HG-systems as described 

above has dramatically improved the detection limits of As (Gong et al., 2002). 

Transition metals might interfere with As determination when hydride generation is 

used although KI/ascorbic acid was found to be the most effective prereductant/masking 

agent for As interference when iron content was very high (Naykki et al., 2001).  The 
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predominant mechanism is probably due to the reaction of the interfering transition 

metal ions with NaBH4 reductant, with the formed precipitate being able to capture and 

catalytically decompose evolved hydrides (Howard and Salou, 1996).  Although not as 

common detector as the ICP-MS for HPLC, HG-AFS has been coupled with success to 

IC-HG (Wei, Liu 2007) and is regularly used to measure total As. 

1.2.2.3.4 Atomic absorption spectrometry 

Arsenic can be detected by atomic absorption spectrometry, AAS and is traditionally 

either introduced to the AAS as arsine produced by HG or as free As atoms produced 

from the sample deposited in a small graphite tube.  Most reported methods for As 

detection by graphite furnace atomic absorption spectrometry (GF-AAS) require pre-

concentration in addition to the treatment in the furnace in order to increase sensitivity.  

AAS is regularly combined to HG because it suffers from low sensitivity and high 

background noise for As determination (Howard and Hunt, 1993).  The usage of AAS 

as a detector for HPLC has declined since the 1980s and ICP-MS is now the preferred 

choice. 

1.2.2.3.5 Mass spectrometry 

Unlike ICP-MS, ICP-AES, AAS and AFS, where elemental As is detected, electrospray 

ionisation (ES) mass spectrometry (MS) can provide molecular information of As 

compounds for positive identification (Gong et al., 2002).  This method requires a set of 

highly sophisticated apparatus and will not be dealt with further in this thesis. 

1.2.2.3.6 Electrochemical methods 

Electrochemical methods can be used to separate and analyse inorganic As species.  

Briefly anodic stripping voltammetry involves the deposition of As on an electrode 

surface: 
03 3 AseAs →+ −+  Eq. 16 

Followed by anodic stripping: 
−+ +→ eAsAs 330  Eq. 17 

The process is usually carried out on a solid gold or gold coated electrodes (Feeney and 

Kounaves, 2002). 

Electrochemical methods provide high sensitivity and excellent selectivity of the 

As species but are only possible in simple solutions.  In a complex matrix, As 
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determination is only possible after separation from the interfering matrix (Munoz and 

Palmero, 2005).  Arsenic has been detected by both potentiometry (Munoz and Palmero, 

2005) and voltammetry (Rasul et al., 2002).  Potentiometry has been shown to possess 

advantages in sensitivity and selectivity over voltammetric methods.  In stripping 

potentiometry, no external current passes through the working electrode making the 

technique insensitive to interferences from electro-active substances in the sample.  In 

voltammetric stripping, such substances give rise to background currents that overlap 

the current stripping peaks.  The main advantage of these techniques is the low weight 

of apparatus, low cost per sample without using or producing any significant toxic 

substances such as arsine (Rasul et al., 2002; Feeney and Kounaves, 2002).  Arsenite 

and arsenite show different electrochemical behaviour.  Conventionally arsenite is 

electro active ion while arsenate is electrochemically inert under normal conditions 

(Feeney and Kounaves, 2002).  Some chemicals recommended to reduce arsenate to 

arsenite include, sodium sulphite (Na2SO3), hydrazine (N2H4)+HCl+HBr, NaBr + 

N2H4+H2SO4, gaseous SO4, potassium iodide (KI), KI + ascorbic acid (C6H8O6), 

cysteine (C3H7NO2S), and mannitol (C6H14O6) (Munoz and Palmero, 2005).  

Furthermore, solid samples and samples containing organic As compounds have to be 

mineralised with appropriate methods but digestion of As compounds is beyond the 

scope of this thesis.  Chemical reduction of arsenate to arsenite has been successfully 

carried out under field conditions with Na2SO3 (Rasul et al., 2002; Feeney and 

Kounaves, 2002) and the difference between arsenite measured prior to chemical 

reduction and arsenite measured after reduction assumed to represent arsenate in 

solution. 

1.2.2.3.7 Bacterial biosensors 

Bioluminescence-based biosensors offer a powerful tool for assessing pollutant 

bioavailability and toxicity (Paton et al., 1997).  Bacterial biosensors have been 

suggested as a potential complementary, and in some cases alternative, technique to 

chemical methods for giving environmentally relevant interpretation of samples (Flynn 

et al., 2002) A combination of metabolic biosensors (E. coli and P. fluorescens) and As 

specific biosensor (E. coli CM1166 pC200 (Corbisier et al., 1993)) was applied to As 

and Cu contaminated Chilean soils (Flynn et al., 2002).  The metabolic biosensors 

demonstrated overall toxicity of the soils by showing decreased activity as pollution 

increased while the As specific biosensor was constructed with luxAB genes from V. 
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fischeri which are induced by the ars operon that confers resistance to As, so that 

luminescence is induced by the availability of As in the form of arsenite (Flynn et al., 

2002). 

1.2.2.3.8 Photometric measurement 

Finally, As has been analysed by forming arsnenomolybdate, followed by reduction to 

heteropoly blue before detecting the complex by photometry (Dasgupta et al., 2002).  

This method suffers from interference with phosphorus (P) and silicon (Si) in solution 

as they produce molybdate complexes but P and Si are often encountered in at least one 

order of magnitude higher concentrations than As in water.  Interference by Si has been 

solved by addition of sodium fluoride (NaF) to the sample to complex the Si in solution 

(Dasgupta et al., 2002). 

1.2.2.3.9 X-ray adsorption spectroscopy 

Although chromatographic methods have been used to confirm the existence of 

thioarsenic species in environmental samples the oxidation state of As in these samples 

is not probed directly (Beak et al., 2008) and as a consequence these species have been 

referred to as thioarsenites (Wilkin et al., 2003) or thioarsenates (Stauder et al., 2005).  

Spectroscopic methods offer the possibility to determine the oxidation state and bonding 

of As with their nearest neighbour.  X-ray absorption near edge spectroscopy (XANES) 

can demonstrate distinguishable absorption edge positions of As-O bonds compared to 

As-S bonds as well as valence state of the As (Beak et al., 2008).  Extended X-ray 

absorption fine structure (EXAFS) spectroscopy can further be used to determine the 

distance of As-O and As-S bonds and coordination number of the central As atom 

which varies with different As-S ratio of the thioarsenic species (Beak et al., 2008).  

These methods rely on complex apparatus not widely available and environmental 

samples need to be preserved before determination can take place. 

 

1.2.3 Arsenic in Icelandic and geothermal waters 

The Provisional WHO guideline limit for As in drinking waters is 133.5 nmol l-1 (10 µg 

l-1) (World Health Organization, 2004).  Furthermore, criteria of five levels (Table 2) 

have been set up for As concentrations in the environment the protection of aquatic life 

(e.g. CCME, 1995; Government News, 1999).  These levels may be described in terms 
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of the impact of As on freshwater biota as: I) very low or no probability of effects, II) 

low probability of effects, III) Effects can be expected in case of sensitive ecosystems, 

IV) Effect expected on biota and V) Permanently unacceptable levels for biota.  

Although, from toxicological point of view, the determination of As speciation is more 

meaningful then the quantification of total As concentration (Gong et al., 2002), no data 

have been reported on measured concentrations of individual species of As in Icelandic 

natural waters to the authors knowledge. 

In precipitation As concentration is generally below 13.3 nmol l-1 (Bauer and 

Onishi, 1978).  In central Iceland, As concentration in precipitation is low; 0.16 to 0.67 

nmol l-1 (Gislason et al., 2000; Gislason et al., 2002).  Arsenic concentrations in 

Icelandic river waters are most often under the detection limits of the ICP-MS method 

(0.67 nmol/l) (Gislason et al., 2004).  Arsenic was detected in elevated concentrations, 

up to 31 nmol l-1 in Jökulhlaup waters, and river waters in vicinity of active volcanoes, 

3 nmol l-1, and rivers draining acid intrusive and extrusive rocks (0.9 nmol/l) (Gislason 

et al., 2000; Gislason et al., 2002; Gislason et al., 2004). 

Arnorsson (2003) reported increase in As concentrations of ground waters with 

increasing temperature; 1 to 133 nmol l-1 at the highest temperature (90°C).  Although 

Fe(III)hydroxides in surface and particularly peat waters were abundant, As/B ratio of the 

waters did not lower relative to ground waters indicating lack of co-precipitation of As 

with Fe(III)-hydroxides (Arnorsson, 2003).  Sigfusson (unpublished data) found that As 

concentrations in soil water increased from below detection limits at surface to 3 nmol l-

1 near bedrock at 2 m depth.  The increase in As concentrations were generally observed 

at deeper levels compared to other redox dependent elements (Fe, Mn, N) and As was 

most frequently detected in horizons with lowest concentrations of the oxyhydroxide 

ferrihydrite. 
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Table 2.  The range of measured dissolved As-concentration in Icelandic waters. 

Water type low high Reference

 nmol/l nmol/l

    

Precipitation 0.16 Gislason et al. (2000)

Rivers <0.67 3

Gislason et al. (2000, 2002 and 

2004)

Jökulhlaup rivers 1 31 Gislason et al. (2004)

Reduced soil water 1 3 Sigfusson (unpubl)

Groundwater and low temperature waters 1 133 Arnorsson (2003)

High-temperature geothermal waters 26 2840 

Olafsson and Riley (1978); 

Olafsson (1992); Arnorsson et 

al. (1999)

High-temperature geothermal vapours <0.67 23.5 Giroud (2008)

 

Volcanic pollution 640 Flaathen and Gislason (2007)

Runoff from streets in Reykjavik 15000 Gislason et al. (1999)

Wastewater at Nesjavellir 700

Wetang’ula and Snorrason 

(2005)

 

Level I water* <5.3 

Level II water 5.3 67

Level III water 67 200

Level IV water 200 1000

Level V water >1000

*Level I) very low or no probability of effects, II) low probability of effects, III) Effects can be expected 

in case of sensitive ecosystems, IV) Effect expected on biota and V) Permanently unacceptable levels for 

biota.  (CCME 1995, Government News 1999). 

 

Gislason et al. (1999) studied river waters and soil solution compositions at 50 cm 

depth around industrial area in Hvalfjörður, Iceland.  They reported that As 

concentrations were always below critical limits for drinking water.  Heavy metals in 

the soil water generally decreased with increased pH of the soil water. 

Arsenic concentrations in geothermal waters are frequently high, with measured 

concentrations up to 6.7*105 nmol/l while more typical concentrations range from 

1.3*104 nmol/l to 1.3*105 nmol/l (cited by Arnorsson, 2004).  Icelandic high 

temperature geothermal waters showed a variety of concentrations between 10.6 and 

2840 nmol l-1 while their co-discharging vapour phase constituted up to 25.3 nmol l-1 
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(Giroud, 2008).  A 250°C geothermal sea water at Reykjanes contained 1280-1960 

nmol l-1 (Olafsson and Riley, 1978).  Well waters from Námafjall and Krafla 

geothermal fields contained 26.7 –640 nmol l-1 (Arnorsson et al., 1999).  Nesjavellir 

well waters and water in the power station ranged from 1600 to 2140 nmol l-1 (Olafsson, 

1992). 

Wetang'ula and Snorrason (2005) reported As concentrations of 671 nmol l-1 in 

separator water from Nesjavellir geothermal co-generation power-plant wastewater at 

pH of 9.39.  The concentration at Lækjarhvarf where the wastewaters disappear in the 

lava near the power-plant was 699 nmol l-1 at pH 9.12.  The highest concentration of As 

seeping from this same lava was reported at 81.9 nmol/l at Grámelur classifying the 

water as Level III water as mentioned above.   

Volcanic degassing represents an important natural source of As to shallow 

aqueous systems.  Arsenic is a minor but recurrent constituent of volcanic gases 

(Symonds et al., 1987).  Aiuppa et al. (2005) studied As concentrations in ground 

waters around active volcanoes in Italy and reported that As concentrations were 

highest where active hydrothermal circulation takes place at shallow levels.  They 

concluded that dissolution of As-bearing sulphites was the main source of As.  Highest 

concentrations were 92600 nmol/l but lower concentrations were observed where 

shallow ground waters were heated by steam.   

Melted snow in contact with volcanic ash from the volcanic eruption of Hekla 2000 

had total dissolved concentration as high as 640 nmol/l (Flaathen and Gislason, 2007). 

Runoff from the streets in Reykjavík has been measured to be as high as 15 000 

nmol/l (Gislason et al., 1998).  This high pulse was associated with the first thawing 

event after a period of days where temperatures were below freezing point with snow on 

the streets.  Gislason et al. (1998) suggested this was due to the fact that the As was 

primarily situated on ice grain boundaries which melt before the bulk ice during 

thawing events. 

Arnorsson (2003) reported that As in basaltic rocks was primarily bound in 

titanomagnetite which is a stable mineral in most surface and ground waters.  The 

available source for As to natural waters was therefore As in soluble salts on mineral 

grain boundaries and to lesser extent silicate minerals.  Arnorsson did not consider As-

sulphite precipitation to be significant in reducing As levels nor coprecipitation with 

Fe(III)-hydroxides.   
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1.2.4 Sorption of As  

The rate and extent of chemical sorption onto surfaces is described by a combination of 

kinetic and equilibrium expressions such as the Freundlich and Langmuir isotherms 

(Langmuir, 1918; Ho and McKay, 1999; Limousin et al., 2007).  Empirical data can be 

modelled to acceptable degree without interpreting the exact mechanism of surface 

reactions, although not specifically providing any information regarding the reactions 

involved in the sorption phenomenon.  Surface complexation models use mechanistic 

approach to interpret and develop sorption isotherms (Sahai and Sverjensky, 1997a).  

These models are validated by spectroscopic methods on the molecular scale and, 

therefore, give insight into the actual mechanism taking place. 

When studying adsorption and subsequent modeling, a comparison of reaction and 

the mean residence times of the mobile phase should be conducted (Limousin et al., 

2007).  If reaction times are much shorter than the residence time thermodynamic 

equilibrium may be reached and the reactions can be considered instantaneously 

reversible.  Otherwise they are irreversible phenomenon and kinetic experiments must 

be carried out to further interpret and model the natural systems. 

Experiments on the kinetics and extension of As sorption onto various surfaces has 

been carried out for decades and a brief outline is tabulated in table 3. 
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Table 3 Compilation of selected experiments involving sorption processes for As species.  

Mineral/surface Relevant findings of experiments Reference 

Arsenate (H3AsVO4)   

   

Alpha-Al2O3 Arsenate was strongly adsorbed at low pH and was 

progressively released to the fluid with increasing pH 

above 7.  At any pH, increasing temperature favoured 

aqueous species of As over surface species.  Increasing 

temperature favoured less negatively charged species 

below a pH of 9 and more negatively charged species 

above a pH of 10.  Comparison with the stability of As 

surface complexes with Fe suggested that surface 

complexes with Al are more stable. 

(Halter and 

Pfeifer, 

2001) 

Zero valent iron (Fe0) Borate and organic matter decreased the sorption of 

arsenate 

(Biterna et 

al., 2007) 

Cu(II), Ni(II)- and 

Co(II)-doped goethite 

Arsenate adsorption decreased in the order of Cu(II)-doped 

goethite >= Ni(II)-doped goethite > Co(II) doped goethite 

> pure goethite at all pH values. 

(Davis et al., 

2006) 

Sandy, clayey and 

loamy soils 

Adsorption of arsenate was initially fast followed by 

slower uptake.  Desorption was hysteretic in nature 

indicating lack of equilibrium retention and/or irreversible 

processes. 

(Zhang and 

Selim, 2005) 

Hematite (Fe2O3) Carbonate competed with arsenate for sorption sites and 

quantification of adsorbed carbonate may be important 

when predicting arsenate transport in groundwater where 

iron oxide-coated aquifer materials are exposed to 

seasonally fluctuating partial pressures of CO2(g). 

(Arai et al., 

2004) 

Aluminium oxide 

(Al2O3) 

Desorption of arsenate decreased with longer residence 

times.  Surface transformations such as (i) a rearrangement 

of surface complexes and/or (ii) a conversion of surface 

complexes into aluminium arsenate-like precipitates might 

be important chemical factors responsible for the decrease 

in arsenate reversibility with aging. 

(Arai and 

Sparks, 

2002) 

Goethite (α-FeO(OH)) Arsenate adsorption was fast initially followed by slower 

adsorption.  Desorption was quite rapid initially and after 

24 hours only small amount desorbed.  Phosphate had 

much more influence than sulphate on arsenate desorption.  

High phosphate concentrations could not desorb all 

arsenate. 

(Arai and 

Sparks, 

2002) 

Hematite, feldspar  Arsenate was removed by first order reaction and (Singh et al., 
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maximum amount was adsorbed at pH 4 on hematite and 

pH 6.2 on feldspar.  Below these pH adsorption decreased 

perhaps due to dissolution of the minerals. 

1996) 

Iron oxide (Fe2O3) and 

Aluminium oxide 

(Al2O3) 

The maximum arsenate uptake values were observed at pH 

6.  Iron oxide removed more arsenate per mass than 

aluminium oxide.  The adsorption was mainly controlled 

by the specific surface area of adsorbents.  

(Jeong et al., 

2007) 

Ferrihydrite 

(Fe5HO8•4H2O) 

Arsenate formed a surface precipitate on ferrihydrite at 

low pH (3-5) but no surface precipitation was observed at 

pH 8.  Surface precipitation probably involved initial 

uptake of arsenate by surface complexation followed by 

transition to ferric arsenate formation. 

(Jia et al., 

2006) 

   

Arsenite (H3AsIIIO4)   

Kaolinite, illite, 

montmorillonite and 

amorphous aluminium 

hydroxide (am-

Al(OH)3) 

Arsenite oxidised homogenously to arsenate alkaline 

conditions (pH > 9) in solutions without mineral solids In 

addition, recovery of adsorbed As from arsenite-treated 

clay mineral solids showed that oxidation of arsenite to 

arsenate was enhanced by heterogeneous oxidation on 

kaolinite and illite surfaces.  This leads to As being more 

strongly adsorbed as arsenate on these surfaces therefore 

decreasing As mobility in the environment. 

(Manning 

and 

Goldberg, 

1997) 

Zero valent iron Arsenite was removed by a two step process, fast initial 

disappearance followed by slow subsequent removal 

process.  Arsenite uptake by green rust may be a major 

mechanism in arsenite removal by zero valent iron. 

(Lien and 

Wilkin, 

2005) 

Goethite (α-FeO(OH)) The lack of competition observed between arsenite and Fe 

(II) for sorption sites indicated that the concurrent release 

of Fe(II) and arsenite during reductive dissolution of iron 

oxides, inferred as the mechanism of As mobilization in 

many reducing ground waters, may have relatively minor 

effects on the subsequent resorption of arsenite to residual 

iron oxides remaining in the sediment. 

(Dixit and 

Hering, 

2006) 

Goethite (α-FeO(OH)) Arsenite formed inner sphere bidentate surface complex. 

Arsenite-alpha-FeOOH surface complex was stable toward 

heterogeneous oxidation to arsenate 

(Manning et 

al., 1998) 
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Arsenate/Arsenite   

   

Gamma-Al2O3 Arsenite adsorption increased with increasing pH and was 

insensitive to ionic strength (I) changes (0.01 and 0.8 M 

NaNO3) at pH 3-4.5, while adsorption decreased with 

increasing I between pH 4.5 and 9.0, and Arsenate 

adsorption decreased with increasing pH and was 

insensitive to I changes at pH 3.5-10.  For arsenite both 

inner- and outer-sphere adsorption coexisted whereas for 

arsenate inner-sphere complexes were predominant at 

studied experimental conditions. 

(Arai et al., 

2001) 

Activated alumina pH was a strong factor in the uptake of both arsenite and 

arsenate by activated alumina.  Uptake of arsenite was 

much less than for arsenate at most pH conditions. 

(Lin and 

Wu, 2001) 

Zero valent iron At oxic conditions arsenate and arsenite removal where 

much higher than at anoxic conditions and arsenate 

removal was faster than arsenite.  This was caused by 

adsorption on ferric hydroxides formed readily through 

oxidation of Fe(0) by dissolved oxygen. 

(Bang et al., 

2005) 

Various clays Halloysite and chlorite had much greater arsenate sorption 

than two kaolinites, illite and illite/montmorillonite.  The 

clay had lower arsenite adsorption than arsenate adsorption 

and the adsorption was affected by pH.  The quantities of 

extractable arsenite and arsenate decreased with increasing 

aging time. 

(Lin and 

Puls, 2000) 

Ferrihydrite 

(Fe5HO8•4H2O) 

A distinct adsorption maximum was observed for arsenite 

adsorption at approximately pH 9.0, which corresponds 

closely to the first pKa(a) (9.2) of H3AsO3
0, whereas there 

was a continuous drop in arsenate adsorption with 

increasing pH from 3 to 11. 

(Raven et al., 

1998) 

Muscovite/Biotite 

mica 

The amount of As adsorbed increased with increasing pH, 

exhibiting a maximum value, before decreasing at higher 

pH values.  Biotite provided greater reactivity than 

muscovite toward As adsorption. 

(Chakraborty 

et al., 2007) 

Siderite (FeCO3) High As retention capacity of a siderite filter arose from 

coprecipitation of Fe oxides with As and subsequently 

adsorption of As on the fresh Fe oxides/hydroxides.  

Arsenic adsorption in the filter from As-spiked tap water 

was relatively lower than that from artificial As solution 

because high HCO3
− concentration restrained siderite 

(Guo et al., 

2007) 
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dissolution and thus suppressed production of the fresh Fe 

oxides on the siderite grains. 

Coprecipated 

Aluminium:iron 

hydroxides 

In soils where iron hydroxides often have appreciable Al 

substitution, arsenite might not be retained to the same 

extent as that observed with pure iron hydroxides.  On the 

contrary, Al substitution in iron hydroxides might not be a 

limiting factor for arsenate adsorption although arsenate 

might be retained less strongly on Al sites than Fe sites. 

(Masue et 

al., 2007) 

Humic acids At all pH values, arsenate was more strongly bound than 

arsenite.  Maximum binding was observed around pH 7, 

which is consistent with H+ competition for binding sites at 

low pH values and OH- competition for the As at high pH.  

Arsenic had higher affinity to terrestrial humic acid than 

aquatic humic acid. 

(Buschmann 

et al., 2006) 

Zero valent iron Arsenic removal was dramatically affected by the 

dissolved oxygen (DO) content and the pH of the solution.  

Under oxic conditions, arsenate removal by Fe(0) filings 

was faster than arsenite.  The removal of As by Fe(0) was 

attributed to adsorption by iron hydroxides generated from 

the oxic corrosion of Fe(0). 

(Bang et al., 

2005) 

Muscovite / 

Montmorillonite 

Arsenate was completely reduced to arsenite on the 

muscovite surface.  For montmorillonite, arsenate was 

reduced to arsenite on the surface in the presence of 

ferrous iron in solution. 

(Charlet et 

al., 2005) 

Goethite, 

lepidocrocite, 

machinawite and 

pyrite 

Arsenic species retained original oxidation states and 

occupied similar environments on the oxyhydroxide 

substrates.  Inner sphere complexes formed, apparently 

involving bidentate (bridging) arsenate or arsenite. 

 

(Farquhar et 

al., 2002) 

 

1.2.4.1 Kinetics of sorption 

Kinetic models may describe reaction pathways toward equilibrium and reaction 

position and times along those pathways (Langmuir, 1997).  Observation has shown that 

the sorption rate of arsenite and arsenate on minerals was initially rapid and was 

followed by a slow phase (Arai et al., 2004; Arai and Sparks, 2002; Arai et al., 2005; 

O'Reilly et al., 2001).  The rate limiting adsorption steps are generally described as 

being controlled by slow diffusion to the adsorption sites on the surface.  Studies with 

the aid of EXAFS measurements have provided microscopic evidence of rearrangement 
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of As surface complexes and surface precipitation during extended exposure time of 

surfaces to dissolved As.  Decreased desorption was observed as initial adsorption time 

was increased (Arai and Sparks, 2002).  Lin and Puls (2000) reported that desorption 

rate of arsenite and arsenate clay minerals decreased with increasing aging time.  They 

explained this phenomenon with the diffusion of As into internal adsorption sites 

(absorption) not accessible to the bulk solution.  Zhang and Selim (2005) used kinetic 

batch adsorption/desorption experiments and subsequent sequential extraction to study 

arsenate in contact with soils and reported desorption was hysteretic in nature indicating 

lack of equilibrium retention and or irreversible or slowly reversible processes. 

Widely used kinetic models for the description of contaminants such as As species 

include:  

1) The dynamic Langmuir kinetic model (Langmuir, 1918) which can be represented as: 

Φ−Φ−Φ−= dma kqCk
dt
dq )1)(( 0   Eq. 18 

Where q is adsorbate concentration (mol kg-1), t is time (sec) ka is the first order 

constant for adsorption, C0 is the initial solute concentration (mol l-1), qm is the 

maximum amount of adsorbate (mol kg-1) (derived from experimental data described in 

next section), Φ is the fraction of covered surface and kd is the first order rate constant 

for desorption.    

2).  The pseudo-second order model for sorption of metals in soils (Ho and McKay, 

1999) which is represented as: 

2)( te
t qqk

dt
dq

−
Θ

=
ρ

    Eq. 19 

Where qt is the amount of adsorbate (mol kg-1) at time t (sec), k is the rate constant of 

sorption (kg sec mol-1), θ is the water content (l l-1), ρ is the soil bulk density (kg l-1), qe 

is the amount of soluted As adsorbed at equilibrium (mol kg-1). 

 3) The multi-reaction model (MRM) (Zhang and Selim, 2005) considers soil 

heterogeneity and kinetics of adsorption.  The model assumes that a fraction of the 

surface sites are kinetic in nature whereas the remaining fractions react rapidly or 

instantaneously with solutes in the soil solution.  The model accounts for reversible and 

irreversible sorption (Figure 10) and can be presented in the following formulations: 
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n
ee cKq
ρ
Θ

=      Eq. 20 

k
nk qkck

dt
dq

21 −
Θ

=
ρ

    Eq. 21 

k
i sk

dt
dq

3=      Eq. 22 

Where qe, qk and qi are the amount adsorbed at equilibrium, kinetic and irreversible sites 

respectively (mol kg-1), Ke is a dimensionless equilibrium constant, k1 and k2 (s-1) are 

forward and backward reaction rates associated with kinetic sites respectively, k3 (s-1) is 

the irreversible rate coefficient.  The continuum between chemisorption and 

precipitation is controlled by several factors including (i) the ratio of number of sites to 

the number of ions in solution, (ii) the strength of the metal-oxide bond, and (iii) the 

degree to which the bulk solution is under-saturated with respect to the metal hydroxide 

precipitate (Selim and Zhang, 2007).  Chemisorption and precipitation are consistent 

with one or more irreversible reactions in the MRM models. 

 

 
Figure 10 Schematic diagram of the multi reaction model (MRM).  Here, C is concentration in 

solution, qe, qk, and qi are the amounts sorbed on equilibrium, kinetic, and irreversible sites, 

respectively, where Ke is equilibrium constant and k1, k2, and k3 are the respective rate 

constants. Modified from  Zhang and Selim (2005). 

Figure 10 indicates that the irreversible sorption sites are filled consecutively to the 

kinetic sites, however more recent version of the MRM model (Selim and Zhang, 2007) 

accounts for more types of reactions where two types of kinetic sites are active and the 

irreversible retention can either occur consecutively as in the model above where 

formation of qs phase is controlled by the concentration of one kinetic site or 

concurrently where solute is removed directly from solution by e.g. chemisorption, 

precipitation or immobilisation rather than sorption and is referred to as sink term, qirr 

qe 

qk qi c 
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(Figure 11).   The extended MRM model (Selim and Zhang, 2007) can be presented by 

the following formulations: 
n

ee cKq =     Eq. 23   reversible equilibrium 

121
1 qkck

dt
dq n −

Θ
=

ρ
   Eq. 24   reversible kinetic 1 

2243
2 qkqkck

dt
dq

s
n −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

Θ
=

ρ
 Eq. 25   reversible kinetic 2 

ck
dt

dq
Q irr

irr Θ== ρ    Eq. 26   irreversible concurrent 

2qk
dt

dq
s

s =     Eq. 27   irreversible consecutive 

Where c is the solution concentration, qe, q1, q2, are the amounts sorbed at equilibrium, 

kinetic 1 and 2 sites respectively and qirr and qs are the amounts sorbed (or precipitated, 

immobilised) at the concurrent and consecutive irreversible sites respectively, k1 and k2 

(s-1) are adsorption and desorption coefficients for kinetic site 1, k3 and k4 (s-1) are 

adsorption and desorption coefficients for kinetic site 2, and kirr and ks (s-1) are rate 

coefficients for irreversible concurrent and consecutive reactions respectively. 

Multi Reaction Model II 

 
Figure 11 The extended multi reaction model (Selim and Zhang, 2007).  Here c is concentration 

in solution, qe, q1, q2, are the amounts sorbed at equilibrium, kinetic 1 and 2 sites respectively and 

qirr and qs are the amounts sorbed (or precipitated, immobilised) at the concurrent and 

consecutive irreversible sites respectively, k3 and k4 (s-1) are adsorption and desorption 

coefficients for kinetic site 2, and kirr and ks (s-1) are rate coefficients for irreversible concurrent 

and consecutive reactions respectively. 

 

4) A Second-order model (SOM) (Selim and Zhang, 2007) considers two types of 

sorption sites, an equilibrium type and a kinetically controlled type.  In addition, 

qe 

qirr 

q1 

q2 qs 
Ke 

k1 k2 

k3 

k4 ks 

kirr 

C 
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maximum adsorption (qmax) derived from a Langmuir isotherm is included in the model.  

qmax is assumed to be intrinsic soil property that is time invariant represented as: 

maxmaxmax ke qqq +=     Eq. 28 

Where qemax and qkmax are the adsorption maxima for equilibrium and kinetic type sites 

respectively.   If f represents fraction of equilibrium type sites to the total sites we have: 

maxmax )1(
maxmax

qfqandfqq ke −==   Eq. 29 

Assuming Φe and Φk as the vacant available sites for adsorption at equilibrium and 

kinetic sites (qe and qk) we have: 

kkk

eee

qqfqqe

andqfqqqe

−−=−=Φ

−=−=Φ

max

max

)1(
max

max   Eq. 30 

As the vacant sites become filled or occupied by the retained solute, the amount of 

vacant sites approaches zero, and the amount of retained by the soil matrix approaches 

the sorption maxima.  Selim and Amacher (1988) assumed qmax was not partitioned 

between qe and qk, instead they assumed vacant sites were available both for qe and qk.  

Therefore, the amount of solute adsorbed on each type of sites is only determined by the 

associated rate coefficients and the total vacant sites.  In the second order model 

following the same overall a structure as the extended MRM model (Figure 11) the 

governing retention reactions can be expressed as (Selim and Ma, 2001): 

ΦΘ= cKq ee    Eq. 31 reversible equilibrium 

121
1 qkck

dt
dq

−ΦΘ=   Eq. 32  reversible kinetic 1 

( ) 2243
2 qkqkck

dt
dq

s−−ΦΘ=  Eq. 33  reversible kinetic 2 

ck
dt

dq
irr

irr Θ=    Eq. 34  irreversible concurrent 

2ck
dt

dq
s

s =    Eq. 35  irreversible consecutive 

 

All the models described above can be applied to empirical data but do not necessarily 

provide mechanistic information on the reactions involved without being verified by 

spectroscopic methods. 
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1.2.4.2 Empirical equilibrium sorption isotherms 

On the contrary to kinetic models, sorption isotherms describe equilibrium state 

between solute and sorption concentrations of a compound but do not explain the 

reaction steps involved to acquire this equilibrium. 

Giles et al. (1974) proposed a general modeling of sorption isotherms of which 4 

particular cases are now used as the 4 main shapes of isotherms commonly observed 

(Figure 12).  These isotherms were reviewed by Limousin et al. (2007). 

 
Figure 12 The four main types of adsorption isotherms (Giles et al., 1974). q is the sorbed 

concentration and C is the solute concentration. 

The “C” isotherm is a line of zero-origin (Figure 12).  This means the relation 

between solute, C and sorbed concentration, q independent of concentration.  This ratio 

is usually called partition coefficient of Kd (l kg-1).  The “C” isotherm serves as an 

approximation rather than accurate description of solute/sorbate relationships and is 

usually only observed at very narrow range or at very low concentrations. 

The “L” isotherm (Figure 12) suggests a progressive saturation of the solid.  The 

ratio between the concentration of solute remaining in solution and adsorbed on the 

surface decreases providing a concave curve.  The curve can either reach a strict plateau 

when the solid has limited sorption capacity or the curve does not reach any plateau.  It 

is often difficult to distinguish between the two types. 

The “H” isotherm is a particular case of “L” isotherm where the initial slope is very 

steep.  This case was distinguished from the others because a compound sometimes 

qq 

qq 
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exhibits such a high affinity for the solid that the initial slope cannot be distinguished 

from infinity, even if it does not make sense from thermodynamic point of view (Tóth, 

1994). 

The “S” isotherm is sigmoidal and thus is always a result of two opposite 

mechanisms.  The presence of soluble ligand can provide sigmoidal isotherm for 

metallic species.  At low metal concentrations adsorption is limited by the presence of 

the ligand.  As the ligand is saturated the adsorption proceeds naturally (Sposito, 1984). 

Isotherm models by definition, assume chemical equilibrium between solute and 

sorbed concentrations.   

Two sorption isotherms are the most widely used to describe the relationship 

between concentration of soluted and sorbed chemicals at equilibrium, the Freundlich 

and Langmuir isotherm (Langmuir, 1918).  Both describe the “L” type isotherms.  A 

sorption isotherm is a common approach, describes common sorption phenomena and 

predicts mobility of sorbing substances in the environment.  However, it does not 

provide any mechanistic information on the reactions involved in the overall sorption 

process.  Verification of thermodynamic equilibrium is important for accurate 

prediction with sorption isotherms, otherwise kinetic aspects have to be taken into 

account. 

The Freundlich isotherm has the form of : 
n

F cKq =   Eq. 36 

where q and c are the sorbed and solute concentrations of chemical at equilibrium 

respectively, KF and n are adjustable coefficients.  If n is 1 the Freundlich is simply a 

“C” isotherm and the KF can be considered a Kd.  With the Freundlich equation, sorption 

extends indefinitely as concentration increases which is unrealistic since the surface is 

bound to become saturated at some point as solute concentration is increased. 

The Langmuir Isotherm can be derived from the law of mass action for a sorption 

reaction: 

IqIq ↔+    Eq. 37 

with [ ]
[ ][ ]Iq

q
K I

sI
=   Eq. 38 

With the mass balance for sorption sites: 
totalI qqq ↔+   Eq. 39 

the law of mass action gives: 
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IL

IL
I cK

cKq
q

+
=

1
max   Eq. 40 

Where qmax is maximum sorbed concentration corresponding to a monolayer at the 

surface, KL is the Langmuir constant related to energy of sorption.  It can be derived 

from the Langmuir eq. that qI increases linearly with cI if cI <<KL.  However, as cI 

becomes very high and cI>>KL the surface becomes saturated and qI = qtotal. 

The Langmuir can be modified for multisite or competitive sorption.  The qmax 

remains available for all species which are on the one hand either competing for the 

sorption sites and on the other hand show different affinities for the sorption sites and 

have therefore varying affinity coefficients (KL).  The competitive Langmuir model can 

be presented as (Murali and Aylmore, 1983): 

∑ =
+

= q

j jL

iL
I

cK

cKq
q

j

i

1

max

1
  Eq. 41 

When the competitive phenomenon between species is ion exchange, Limousin et al. 

(2007) recommended construction of isotherms on the basis of ion exchange approach 

rather than on Langmuir isotherm.  A Langmuir isotherm where multiple sorption sites 

are active can be considered as the sum of intrinsic Langmuir isotherms each 

representing the isotherm for the respective sorption site (Limousin et al., 2007).   

1.2.4.3 Ion exchange isotherms 

When concentration of a studied ion is studied at low concentration compared to other 

competing ions the bulk can be considered as a constant and a single species Langmuir 

isotherm applied.  However once the ion in question reaches the same order of 

magnitude as the bulk solution, the bulk solution cannot longer be considered a constant 

and a multispecies isotherm is needed.  An ion exchange isotherm does not describe the 

relationship between q and c but rather the molar fraction of charges of ion adsorbed on 

the solid versus molar fraction of charges of the ion remaining in solution.  It is assumed 

that the number of adsorption sites is constant and is called the “intrinsic charge” of the 

solid.  The exchange isotherm essentially describes cation (anion) exchange capacity of 

a soil.  The exchange capacity is strongly dependent on the measuring conditions such 

as pH and ionic strength. 
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1.2.4.4 Mechanistic isotherms by surface complexation models 

A variety of models have been proposed to describe surface complex formation such as; 

The diffuse double layer model (DDLM) (Dzombak and Morel, 1990), the constant 

capacitance model (CCM), basic Stern model (BSM) and the triple layer model (TLM) 

(Langmuir, 1997).  A review of the physical bases of surface complexation models is 

provided by Goldberg (1992). 

Hydrous oxide surfaces with variable charge can be considered as >SOH (where >S 

signifies any –OH binding atom at the surface) (Sahai and Sverjensky, 1997b) which 

can either accept proton represented by the reaction:  
++ >↔+> 2)( SOHHSOH aq   Eq. 42 

associated with the intrinsic equilibrium constant KS,1 or donate proton to the solution 

represented by the reaction: 
+− +>↔> )(aqHSOSOH   Eq. 43 

associated with the intrinsic equilibrium constant KS,2.  The equilibrium constants KS,1 

and KS,2 differ between the respective surfaces and consequently their zero point of 

charge lie at varying pH.  The main mechanism of ligand adsorption (like the arsenite 

and arsenate primarily form in solution) is ligand exchange when the surface hydroxyl 

is exchanged by another ligand (Stumm and Morgan 1996).  The overall adsorption 

constant on hydrous oxide can be represented as: 
)/(

int
RTFZ

ads eKK ΨΔ−×=   Eq. 44 

Where Kint is the intrinsic adsorption constant representing a chemical component of 

adsorption and the expression in brackets called the electrostatic (Boltzman) term, 

accounts for the electrostatic component of adsorption with ΔZ is the change in surface 

charge due to adsorption, Ψ is the surface potential, F is the Faraday constant, R is the 

universal gas constant and T is temperature in Kelvin.  The extent of surface complex 

formation is strongly pH dependent (due to pH dependence of the surface potential, Ψ) 

and since the adsorption is coupled with a release of OH- ions, adsorption is favoured at 

low pH. 

A sorption isotherm based on mechanistic approach involves reaction of the 

chemical with a surface and measuring the surface complex formed by spectroscopic 

methods.  This has the advantage over methods when the adsorbed amount is either 

estimated by measuring the difference of initial and final concentration of chemical in 

solution.  Surface complexation modeling further allows quantitative description and 
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modeling of competing ions.  However, spectroscopic approaches rely on sophisticated 

and expensive experimental apparatus which are not as widely accessible as instruments 

for solution chemistry. 

The surface complexation modeling is complicated by complex mineral 

assemblages on surface of adsorbents.  Two principal modeling approaches can be used 

in that case (Davis et al., 1998).  In the general composite (GC) approach, it is assumed 

the surface mineral assemblage is too complex to be characterised properly.  The 

surface is treated as “generic” surface groups in equilibrium with water and formation 

constants derived from experimental data at different pH values.  In the component 

additivity approach (CA), it is assumed that a surface is composed by a mixture of 

mineral assemblages of which properties are known from studies of the individual 

components.  The adsorption is then predicted by the sum of contribution from each 

component on adsorption. 

 

1.2.4.5 Experimental methods to derive kinetic and isotherm 

coefficients 

The information contained in a sorption isotherm depends on the experimental 

conditions of which it was obtained.  Therefore, a brief description of the experimental 

conditions should always be provided with the data (Schweich and Sardin, 1981). 

The shape of an isotherm usually does not change if the solid/solution ratio is 

within the same order of magnitude.  However adsorption has been shown to be 

nonlinearly dependent on solid/solution ratio (e.g. Bajracharya et al., 1996).  Adsorption 

is often observed to decrease with the solid concentration and has been attributed to: ( i) 

the occupied volume of the solid particles (Celorie et al., 1989); and (ii) their 

aggregation (Voice et al., 1983) that would prevent the optimal adsorption of the 

solutes.  The optimal experimental solid/solution ratio should represent natural 

conditions.  The choice of an adequate solid/solution ratio consists of finding a good 

intermediate between experimental constraints and representative conditions.  Batch 

experiments should be carried out when solid/solution ratio is sufficiently low (lower 

than 1:2) for solids to be suspended in the water.  Soils frequently have the 

solid/solution ratio of 1:1 and aquifers solid/solution ratio 3:1 and column experiments 

may be the most suitable procedure to for deriving sorption isotherms 
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Closed batch experiments are the easiest to conduct.  A solid is shaken in solution 

until sorption equilibrium is reached, then the remaining solute concentration is 

measured.  In batch experiments, the solid/solution ratio is frequently either too high to 

represent rivers, lakes and oceans, or to low compared to natural porous media such as 

soils and aquifers.  The closed batch method is therefore considered as a very useful 

preliminary experiment but extrapolation to porous media requires further investigations 

(Limousin et al., 2007). 

Open batch experiments involve injecting a blank solution into the inlet of a 

reactor, then the reactive solute is injected into the reactor.  The outlet of the experiment 

can then be either discarded (provided new injection solution is continuously injected) 

or re-injected into the column.  The flow rate can be adjusted so the mean residence 

time of water in the reactor is either lower, similar or higher than the mean reaction 

time.  This method therefore allows easier kinetic investigations than for closed batch 

where a series of experiments occurring over varying timescales have to be carried out 

to provide similar kinetic data. 

Repacked column experiments involve packing the solid material into a column and 

pumping a solution containing the reactive chemical through the column.  The method 

is an open flow method and allows study of the chemical kinetics of adsorption and 

desorption can be studied with more ease than with the batch method (Sparks and 

Rechcigl, 1982). 

The solid/solution ratio of repacked columns is representative of natural porous 

media.  The main disadvantage of the column method is that the system is not perfectly 

mixed and the reactive compound is dispersed by the medium.  Therefore, a comparison 

with an inert tracer is unavoidable to distinguish chemical reactions from hydrological 

factors. 

1.3 Geochemical modeling of As transport 

The transport of a As (or any other contaminant) can be described with the Advection-

Reaction-Dispersion (ARD) eq. and, if necessary, with the addition of a diffusion term.  

This eq. can be incorporated into geochemical models provided enough information is 

available for describing the transport sufficiently and is represented as: 
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Where the left hand term describes the difference in chemical concentration with time 

and is dependent on three terms, the first describing Advective flow, the second 

representing all chemical Reactions and the third indicating Dispersion.  These terms 

will now be discussed further. 

1.3.1 Advection 

Advection of a solute takes place as a result of groundwater flow, being either 

unsaturated or saturated.  Water in the unsaturated zone percolates vertically 

downwards along the maximal gradient of the soil moisture potential (Appelo and 

Postma, 2005).  The process is driven by infiltrating water that pushes the old water 

ahead.  The rate of percolation can be derived from mass balance dividing the 

precipitation surplus by the water filled porosity of the soil (Allison et al., 1994).  Once 

the water enters the groundwater table the pore space is saturated and the flow is 

dependent of the hydraulic gradient and hydraulic conductivity of the aquifer or soil 

according to Darcy’s law: 

dxkdhvD /−=  Eq. 46 

Where vD is the Darcy velocity, k is the hydraulic conductivity, dh/dx is the hydraulic 

gradient (can also be expressed as difference in water potential between two connected 

sites in the aquifer). 

1.3.2 Reaction 

Geochemical modeling can be divided into two principal categories: (i) forward 

modeling and (ii) inverse modeling.  Forward modeling is used to predict water 

chemistry after completion of predetermined reactions.  Inverse modeling is used to 

suggest which processes might take place along a flow path.  Inverse modeling is not 

the subject of this thesis and will not be dealt with further here.  Coupled transport and 

geochemical models are needed to carry out modeling of transport of reactive species in 

the groundwater environments.  Chemical reactions of soluble As with the solid phase 

can be modelled as series of adsorption/desorption reactions which obey predetermined 

kinetic expressions and isotherms based on empirical data where As is either measured 

in remaining solution (non mechanistic) or surface complexes are measured by 

spectroscopy (mechanistic models).  The surface reactions can, furthermore, be a 
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combination of dissolution and precipitation reactions.  In any case, a firm knowledge 

of the possible reactions should be preferably established for reliable prediction of As 

transport in the environment.  Forward modeling of As should be able to incorporate the 

effect of different solid/solution ratios, adsorption site densities, pH changes and 

competition with other species for sorption sites.  Surface complexation models can 

often accommodate such variation in conditions whereas adsorption isotherms are 

applicable under narrow range of pH water chemistry conditions (Sracek et al., 2004).  

A partial solution to this constraint of adsorption isotherms might be to carry out 

adsorption experiments for a wide variety of conditions and interpolate any coefficients 

applicable between each two sets of conditions.  Geochemical modeling can either 

assume equilibrium, that is, geochemical reactions are very fast compared to 

groundwater residence time or that reactions proceed according to kinetic laws (Sracek 

et al., 2004). 

Equilibrium models have to take the speciation of solutions into account.  The 

stability of the phases in solution depends on the speciation of solution.  The model 

however does not take into account how or if they will occur.  Furthermore uncertainties 

in thermodynamic data for the speciation and formation of phases from solution is well 

documented (e.g. Cleverley et al., 2003).   The model may be described in its simplest 

form by the reaction: 

phasesproductwaterpredictedphasesreactingwaterinital +↔+  Eq. 47 

During each small step the program transfers a small amount of mass from reactants to 

products.  Then the program calculates mass distribution between the products and 

calculates their saturation indices.  Pre-determined phases, to which the water is 

supersaturated, are allowed to precipitate.  The reaction steps are then repeated until 

equilibrium is attained. 

Kinetic models are carried out by programming the kinetic expression into the 

model reactions allowed to proceed for a predetermined amount of time before a 

transport step is carried out.  An example of such procedure may be found in the 

methods chapter 2.2.5.2. 

1.3.3 Diffusion 

Molecular diffusion occurs as a result in concentration difference between two points 

where molecules will flow from high to low concentration zones by random Brownian 
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movement of molecules according to Fick’s laws.  Fick’s first law relates the flux of a 

chemical to the concentration gradient: 

x
cDF
∂
∂

−=   Eq. 48 

Where F is the flux (mol s-1 m-2), D is the diffusion coefficient (m2 s-1), c is the 

concentration (mol m-3) and x is the distance (m) between two zones.  Fick’s second law 

of diffusion may be represented as: 
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∂   Eq. 49 

and describes difference in concentration at a given point with time and can therefore be 

incorporated directly into the ARD equation (eq. 45) (Appelo and Postma, 2005). 

Differences in mobility of ions are a function of the friction they experience 

travelling through water and are related to the ion-size and viscosity.  Overall 

differences in diffusion coefficients for ions in simple electrolytes are small and can be 

estimated as D≈10-9 m2 s-1 at 25°C (Appelo and Postma, 2005).  Therefore, when 

advective flow is significant, the diffusion can be omitted from modeling calculations 

leading to lower processor demand.  In clay dominated soils and peat when advective 

flow is sufficiently slow, diffusion can be the primary mechanism of groundwater flow. 

1.3.4 Dispersion 

Groundwater flowing through an aquifer is forced to move around sediment grains.  The 

resulting spreading of a concentration front is called dispersion.  Dispersion can either 

be longitudinal due to differences in travel times along flow lines and increases with 

increasing flow velocity or transverse when a chemical is carried to adjacent flow line 

by diffusion.  Dispersion is described mathematically according to Fick’s law like 

diffusion. 

1.4 Thesis aims 

Chemical pollution, and particularly the interaction of one particular constituent of this 

pollution, arsenic (As), with basaltic glass, a common aquifer constituent in geothermal 

areas, is the main research theme of this thesis.  The interaction of As and basaltic glass 

will be measured and modelled by a series of laboratory experiments followed by 

sampling and measurements of geothermal wastewaters from the Nesjavellir geothermal 
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power plant, Iceland.  Furthermore, the fate of As originating from a volcanic eruption 

will be studied. 

Continental flood basalts cover an important fraction of the terrestrial surface 

(Jerram and Widdowson, 2005). Arsenic concentration in terrestrial basaltic rocks 

ranges from 0.18 to 113 mg kg-1, with an average concentration of 2.3 mg kg-1 

(Smedley and Kinniburgh, 2002). Examples include the Columbian river basalts in the 

US, the Deccan traps in India and the Siberian traps in Russia. Furthermore, the ocean 

floor is primarily composed of basalt (Ronov and Yaroshevsky, 1976). Geothermal 

activity is frequently associated with basalt that can either be glassy or crystalline in 

volcanic terrains (Mottl and Holland, 1978). Knowledge of As movement in basaltic 

environments, therefore, plays a key role in quantifying the global As cycle. Since 

Iceland is mainly composed of basaltic rocks where active seafloor spreading coincides 

with the occurrence of upwelling mantle plume resulting in intense volcanism (Schilling 

1973), it constitutes a prime study area for understanding the role and movement of As 

in the environment. This geological situation leads to the widespread occurrence of 

high-temperature geothermal systems, some of which are currently utilized for power 

generation (Armannsson et al., 2005). Hydrothermal fluids, often As enriched 

(Wetang’ula and Snorrason, 2005), are pumped to the surface, where heat is extracted 

and electricity generated before these fluids are either pumped back into the crust 

through boreholes or released to adjacent surroundings. The subsequent fate of As in 

geothermal waters raised to the surface is not fully known and there is concern that As 

may be mobile in groundwater systems where basalt and basaltic glass are the main 

rock constituents (Arnorsson, 2003). 

 

Aqueous and gaseous As in volcanic terrain can reach very elevated levels although the 

amount and partition of the As is highly dependent on the host magma and rocks.  

Although As levels in geothermal systems are generally low in basaltic environments, 

these basalts cover extensive proportion of the earth’s crust and can as a consequence 

play an important role as source of As to the surface environment.  The aims of this 

thesis are: 

• To provide an overview of the mobility of arsenite, As(III) and arsenate, As(V) 

oxyanions in contact with basaltic glass surfaces by carrying out laboratory 

experiments under controlled pH, Eh and ionic strength conditions. 
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• To use the coefficients generated to predict As transport where high temperature 

geothermal water is released into the natural environment. 

• Quantify the percentage of thioarsenates in high temperature geothermal water 

and estimate the effect of thioarsenate complexation on the mobility. 

• To combine experimental and field results to describe As cycling in a glacial 

outburst flood (jökulhlaup) following a sub glacial basaltic eruption. 
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2 Analytical techniques and experimental design 
 

2.1 Materials 

2.1.1 Basaltic glass 

The solid material used throughout the experimental study was basaltic glass.  It was 

obtained from the volcanic ash of Stapafell mountain, South-Western Iceland (Oelkers 

and Gislason, 2001).  Preparation of the glass was carried out according to (Oelkers and 

Gislason, 2001).  The glass was dried at ambient temperature and then further dried 

overnight in an oven at 50°C.  Next the glass was mildly ground in a low density 

polyethylene (LDPE) bag with a plastic hammer in an attempt to induce minimum strain 

to the fresh surfaces.  Subsequent dry sieving yielded primarily 125-250 μm size 

fraction.  This fraction was ultrasonically cleaned, first in deionised water, then in 

acetone, by separating and discarding the ultra fine suspension at the end of each 

cleaning cycle which lasted for 10 min.  Altogether five water and acetone cycles were 

carried out to remove fine particles.  Finally the powders were dried overnight at 110°C. 

The rather complex preparation procedure ensured a large batch of rather homogenous 

material that was used throughout all experiments. The mild grounding in LDPE bags 

ensured minimum contamination during preparation and produced surfaces that were a 

result of gentle cracking of the material rather than being formed by a powerful grinder 

with resulting strain marks (and therefore ununiform surface). The repeated rinse cycles 

ensured a near complete removal of fine particles from the surfaces to be worked with. 

The specific surface area (1.533 m2 g-1) of the glass before the experiments was 

measured by the three-point BET method using Kr gas at University Paul Sabatier 

Toulouse.  A Leo Supra 25 Field Emission Scanning Electron Microscope (FESEM) 

equipped with a Oxford Instruments Energy Dispersive Spectrometer (EDS) was used 

to characterise the glass surface.  The chemical composition of the surface (Table 1) 

was measured with the FESEM-EDS and FESEM figures allowed visual estimation of 

the roughness of the surface (Figures 1a,b). 
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Figure 1 Field Emission Scanning Electron Microscope (FESEM) figures of basaltic glass used in 

the experiments. Figure a is a grain prior to the column experiments and figure b is a magnified 

section of figure a. 

a 
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Table 1Atomic percentage of selected elements measured by FESEM-EDS on the surface of the 

basaltic glass prior (Stapafell) and after all column experiments (pH 3 to pH 10). 

 

2.1.2 Laboratory reagents 

The reagents sodium arsenite (NaAsO2), sodium arsenate hydrated (Na2HAsO4.7H2O), 

Sodium hydroxide (NaOH), trisodium citrate (Na3C6H5O7), hydrochloric acid (Analar) 

(HCl) and aqueous ammonia (Analar) (NH4OH) were obtained from BDH Chemicals.  

Ascorbic acid (C6H8O6), and potassium iodide (KI) were obtained from Acros organics 

and were both reagent grade.   Sodium borohydride (NaBH4) (puriss, p.a.) , Acid blue 9 

(C37H34Na2N2O9S3) (grade: Standard Fluka) and phosphoric acid (H3PO4) (puriss, p.a.) 

were obtained from Sigma Aldrich Chemical Co.  Nitric acid (Suprapure) (HNO3) was 

obtained from Merck. 

2.1.3 Field reagents 

The reagents sodium arsenite (NaAsO2), sodium arsenate hydrated (Na2HAsO4·7H2O) 

were obtained from BDH Chemicals.  Ascorbic acid (reagent grade), potassium iodide 

(reagent grade) and sodium borohydride (puriss, p.a.) were obtained from Sigma 

Aldrich Chemical Co. Hydrochloric acid (suprapure) was obtained from Merck. 

2.2 Methods 

2.2.1 Static batch kinetic and isotherm studies 

Stock solutions (60 mg l-1) were prepared by weighing sodium arsenite and sodium 

arsenate daily into a 0.5 l volumetric flask and dissolve in DDI water for arsenite and 

arsenate solutions respectively.  The column and batch experiments were carried out at 

with initial pH values (pH 3, 6.3, 8, 9 and 10) at ionic strength of 10 mM by varying 

concentrations of HCl, NH4Cl and NH4OH (Table 2).  These solutions were purged for 

two hours with grade 5.0 N2 gas (BOC gases, Aberdeen) before any As was added to 

them or before they came in contact with the basaltic glass. 

Sample Si Al Fe Ca Mg Na Ti O
Stapafell 16.8 5.92 3.28 4.18 3.59 1.17 0.37 64.7
pH 3 16.1 5.87 2.82 3.88 3.62 1.38 0.39 69.9
pH 6.3 16.1 5.68 3.11 3.97 3.75 1.39 0.43 68.6
pH 8 18.1 5.95 4.02 5.05 3.29 1.03 0.57 49.3
pH 9 15.4 6.43 2.79 3.22 3.36 1.21 0.40 74.7
pH 10 17.5 6.31 3.61 3.83 3.00 0.88 0.47 63.5
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Table 2 Composition of solutions used in the experiments performed in the present study. 

 
For kinetic experiments, 5 ml of stock solutions were pipetted into a 1 l volumetric 

flask and made up to volume with the desired pH solution.  Solutions were then 

transferred to Duran bottles and inserted into a glove box as well as 50 ml centrifuge 

bottles containing 2 g of basaltic glass.  The glove box was then closed and N2 gas 

allowed purging through As solutions for 2 h to remove oxygen from solutions and the 

glove box itself.  As solution (20 ml) was then dispensed with Eppendorff dispensers 

into a centrifuge bottle and closed.  The samples were then shaken at 170 rpm at 30°C 

(±0.1°C) for 24, 8, 4, 1.5, 0.67, 0.2 and 0.1 hours on an incubated shaker (MaxQ mini, 

Barnstead International). 

For Isotherm experiments, stock As solutions, desired pH solution and 50 ml 

centrifuge bottles containing 2 g of basaltic glass were inserted into a glove box and N2 

allowed purging through pH buffer solutions for 2h.  Then stock solutions were pipetted 

into 20 ml volumetric flasks which were filled to mark with the pH solution to acquire 

desired concentrations.  The samples were shaken at 170 rpm at 30°C (±0.1°C) during 

the 24 h incubation time.  Following shaking period for both kinetic and isotherm 

experiments samples were centrifuged at 2100g for 5 m.  Then 1 ml was pipetted from 

supernatant for total As analysis and 1 ml for arsenite analysis.  Total As was 

determined in a Perkin Elmer FIAS 100 flow injection-hydride generation –interfaced 

with a Perkin Elmer AAnalyst 300 atomic absorption spectrophotometer (FIA-HG-

AAS), after pre-reduction of an one ml aliquot of the sample with a 9 ml solution of 

10% potassium iodide, 10% hydrochloric acid and 5% ascorbic acid.  For analysis of 

arsenite, a HG-AAS method (Masscheleyn et al., 1991) was optimized for the FIA-HG-

AAS system.  An aliquot, 1 ml, was pipetted into a bottle containing 4 ml of DDI water 

and 5 ml of 0.4 M sodium citrate which had previously been adjusted to pH 5.0 with 4.0 

M HCl.  The sample was then analyzed within an hour.  A series of test solutions were 

prepared from mixture of arsenite and arsenate standards to determine if any reduction 

of arsenate occurred during measurement (Figure 2).  

pH HCl NH4Cl NH4OH
(25°C) (mol L-1) (mol L-1) (mol L-1)
3.00 0.00100 0.0090
6.30 0.00010 0.0099
8.02 0.00001 0.0095 0.0005
9.03 0.0065 0.0035
10.05 0.0015 0.0085
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Figure 2 Addition of arsenate, As(V) to 0.2 M Na-citrate (pH 5.0) solutions containing As(III) did 

not increase the absorbance values measured in the HG-AAS therefore allowing estimation of 

arsenate by subtracting measured arsenite from measured As-total concentrations. 

 

No reduction of arsenate was observed in the range of 0 to 0.67 μmol l-1 As which 

was the linear range of the HG-AAS.  Cross validation of the method was determined 

on randomly selected samples by Arsenic species were separated by high performance 

liquid chromatography (HPLC), using a PRP X-100 anion exchange column (150 · 4.1 

mm).  The mobile phase was a 30 mM H3PO4 solution adjusted to pH 5.1 with aqueous 

NH3.  The HPLC was coupled to Agilent 7500 inductively coupled plasma mass 

spectrophotometer (ICP-MS) (Riekie et al., 2006) and the arsenite/arsenate speciation 

results concurred between the two techniques (Table 2).  All batch experiments were 

carried out in triplicate. 

2.2.2 Column experiments: 

2.2.2.1 Column construction 

Overview of the column experimental setup may be viewed in Figure 3a.  The column 

was constructed from polytetrafluoroethylene (PTFE) with inner diameter of 1 cm, wall 

thickness of 1 cm, length 16 cm (Figure 3b).   The column was closed in both ends with 

screw caps made from PTFE and a tight seal was provided by a silicone o-rings.  Nylon 

meshes were placed at each end the column to contain the basaltic glass (Figure 3b). 
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Table 3 Speciation procedure in HG-AAS validated by HPLC-ICP-MS, all concentrations are in 

µmol l-1. 

 

2.2.2.2 Tubing 

All three way valves were lined with PTFE (Hamilton, Switzerland).  Majority of tubing 

for the column experiments was composed of PTFE (Hamilton, Switzerland) with the 

following exceptions: 

1. The tubing between 3-way valves number 2 and 3 was composed from Norprene 

(Cole Parmer Masterflex L/S 14) which was compatible to the peristaltic pump 

head (Cole Parmer Masterflex). 

2. The tubing from valve #4 to pH/Eh meters, from valve # 5 to valve #6 and from 

valve #5 to valve #7 was made from Tygon, which was compatible with the 

peristaltic pump head (Gilson). 

The valves in the plumbing system had the following purposes: 

1. Valve to switch between As solution and background eluting solution. 

2. Valve to connect PTFE and Norprene tubing. 

3. Valve to connect Norprene to PTFE tubing.  The second purpose was to direct 

inlet solutions to waste.  The solution was directed to waste when filling the tube 

from As bottle to valve #1.  Once the tube had been filled with As solution, 

valve # 1 was switched to direct background solution into the system.  Valve #3 

Spiked solutions from method development:

As(III) As(V) As(III) S.E. As(V)* S.E. As‐Total S.E. As(III) S.E. As(V) S.E. As‐total** S.E.
Spike 0.133 0.000 0.137 0.002 0.000 ‐ 0.136 0.002 0.141 0.009 <LOD ‐ 0.150 0.009
Spike 0.133 0.027 0.137 0.003 0.023 ‐ 0.160 0.002 0.142 0.010 0.020 ‐ 0.162 0.010
Spike 0.133 0.133 0.147 0.006 0.120 ‐ 0.267 0.004 0.155 0.008 0.129 ‐ 0.284 0.008
Spike 0.133 0.267 0.136 0.002 0.264 ‐ 0.400 0.002 0.139 0.012 0.261 ‐ 0.400 0.012
Spike 0.133 0.667 0.135 0.002 0.665 ‐ 0.800 0.003 0.133 0.012 0.681 ‐ 0.814 0.012

Samples from Langmuir isotherm experiments:

pH As(III) As(V) As(III) S.E. As(V)* S.E. As‐Total S.E. As(III) S.E. As(V) S.E. As‐total S.E.
6.3 0.667 0 0.287 0.012 0.101 ‐ 0.388 0.010 0.280 ‐ 0.102 ‐ 0.382 ‐
8 0.667 ‐ 0.307 0.015 0.038 ‐ 0.345 0.013 0.306 ‐ 0.040 ‐ 0.346 ‐
9 ‐ 0.667 0.006 0.094 0.576 ‐ 0.581 0.089 <LOD ‐ 0.576 ‐ 0.576 ‐

10 ‐ 0.667 0.233 0.011 0.414 ‐ 0.647 0.012 0.228 ‐ 0.410 ‐ 0.644 ‐

* As(V) calculated by subtraction of As(III) from As‐total in HG‐AAS measurements
** As‐total calculated as sum of As(III) and As(V)

Initial 
concentration 

Spike conc. HG‐AAS measurement HPLC‐ICP‐MS measurement
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2.2.3 Characterisation of column conditions. 

2.2.3.1 Methodology 

A simplified experimental setup, which omitted the As solution, Spectrophotometer and 

HG-AAS systems was used to characterise the geochemical conditions in the column.  

Basaltic glass (16 g) was packed into a 16 cm long, 1 cm inner diameter PTFE column 

yielding porosity of 0.45.  Background solution was pumped at 1 ml min-1 directly onto 

the column and the outlet solution was divided into two flow lines at valve #4, one for 

pH/Eh flow cells and the other directly to the fraction collector.  The pH and Eh values 

were recorded every 3 minutes.   Solutions were sampled at 0.5 ml min-1 in the fraction 

collector from time 0 until the end.  Each sampling sequence consisted of the following: 

1. Solution was sampled for 10 minutes yielding 5 ml into a 6 ml high density 

polyethylene (HDPE) vial for the analysis of fluoride and sulphate by Dionex 

ICS-2000 ion chromatograph (separation on a Ionpac AS-11 column and 23 mM 

KOH eluent). 

2. Solution was sampled for 10 minutes yielding 5 ml into a 15 ml HDPE vial for 

analysis of Si, Na, K, Ca, Mg, Fe, Al, Sr, Mn, Ti, S, P, Li, Mo, Cl, Br and B by a 

Spectro Ciros Vision  ICP -AES.  The solution was filtered through 0.2 μm 

cellulose acetate (CA) membrane (Advantec) and acidified to pH<1 with 

concentrated HNO3 (Merck, suprapure) prior to analysis. 

3. Solution was sampled for 5 m yielding 2.5 ml into 15 ml HDPE auto sampler 

vial containing 0.25 ml of 5 M HCl for the analysis of ferrous and ferric iron 

(Fe(II) and Fe(III)) by Dionex ICS-3000 ion chromatograph (separation on a 

Ionpac CS5A column with Metpac PDCA eluent and Metpac post column 

reagent). 

Three consecutive sampling cycles were carried out initially but thereafter a delay up to 

8 hours towards the end of the experiment was placed between sampling cycles.  A total 

of 1000 pore volumes (PV) were pumped through the columns prior to injection of As 

bearing solutions.  After each experiment, the material from the column was dried in N2 

gas flow for 24 hours at ambient temperature prior to storage in air-tight container.  The 

surface of the basaltic glass was then coated with gold and analysed by FESEM-EDS. 
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2.2.3.2 Chemical composition the basaltic glass surface and solution 

during As transport through columns 

The chemical composition of the basaltic glass surface as determined by FESEM-EDS 

and is displayed in table 1.  The surface of the basaltic glass prior to and after column 

experiments is displayed in figure 4.  The chemical composition of the outlet solutions 

from the columns is tabulated in table 3. 

Figure 4 Basaltic glass after column experiments carried out at inlet pH 3, 6.3, 8.0, 9.0 and 10.0, respectively. 

pH 3.0 pH 3.0 

pH 6.3 pH 6.3 

pH 8.0 pH 8.0 
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Figure 4.  continued 

 

pH 9.0 pH 9.0 

pH 10.0 pH 10.0 



 Chapter 2 – Analytical techniques & Experimental design 

69 

 

 
Table 4 Column experiment (pH 3.0) solution outlet compositions prior to As injection. 

 
  

Sample Pore pH Eh pe F Cl SO4
2‐ Si Na K Ca Mg Al Sr Mn Ti Fetot Fe(II) Fe(III) Fe(III)/FeT

name volumes mV mM mM mM mM mM mM mM mM mM mM mM mM mM mM mM %

20‐02 2.62 5.09 234 3.96 3.42E‐04 1.00E+01 3.91E‐03 1.21E‐01 3.58E‐01 2.51E‐01 1.62E+00 1.70E+00 1.29E‐03 4.91E‐03 5.45E‐04 <LOD 6.39E‐04 nd no sample nd

20‐05 6.19 7.34 179 3.03 6.51E‐04 1.00E+01 6.17E‐04 1.89E‐01 4.69E‐02 1.20E‐01 5.28E‐01 3.80E‐01 3.17E‐03 1.83E‐03 1.29E‐04 8.30E‐05 1.23E‐03 1.16E‐03 7.27E‐05 6

20‐08 9.76 7.27 184 3.12 3.70E‐04 1.00E+01 1.56E‐04 1.70E‐01 1.89E‐02 2.98E‐02 3.54E‐01 2.21E‐01 2.19E‐03 1.25E‐03 1.15E‐04 6.59E‐05 1.07E‐03 1.02E‐03 5.24E‐05 5

20‐11 16.9 7.07 186 3.15 3.44E‐04 1.00E+01 9.60E‐05 1.74E‐01 1.39E‐02 1.47E‐02 3.00E‐01 1.85E‐01 9.50E‐03 1.06E‐03 1.79E‐04 4.08E‐04 4.63E‐03 4.58E‐03 5.01E‐05 1

20‐14 24.0 6.85 191 3.24 5.20E‐04 1.00E+01 2.35E‐04 1.58E‐01 1.08E‐02 8.37E‐03 2.63E‐01 1.67E‐01 3.81E‐03 9.73E‐04 1.24E‐04 1.43E‐04 2.08E‐03 2.08E‐03 nd

20‐17 34.8 6.33 52 0.88 5.82E‐04 1.00E+01 0.00E+00 1.57E‐01 9.86E‐03 5.98E‐03 2.25E‐01 1.45E‐01 3.51E‐03 1.32E‐03 9.38E‐03 1.06E‐04 2.41E‐02 1.90E‐02 5.08E‐03 21

20‐20 52.6 4.18 323 5.48 <LOD 1.00E+01 4.09E‐04 1.53E‐01 1.23E‐02 5.32E‐03 1.07E‐01 9.52E‐02 1.62E‐01 8.29E‐04 3.30E‐03 4.29E‐05 5.01E‐02 nd no sample nd

20‐23 84.8 4.15 314 5.32 <LOD 1.00E+01 8.15E‐04 1.58E‐01 6.89E‐03 5.28E‐03 8.53E‐02 8.86E‐02 2.05E‐01 3.30E‐04 2.06E‐03 8.01E‐05 4.83E‐02 4.13E‐02 6.93E‐03 14

20‐26 145 4.19 315 5.34 <LOD 1.00E+01 9.04E‐04 1.63E‐01 8.19E‐03 4.95E‐03 8.16E‐02 8.80E‐02 2.14E‐01 1.95E‐04 1.76E‐03 <LOD 4.79E‐02 4.01E‐02 7.73E‐03 16

20‐29 220 3.96 338 5.72 <LOD 1.00E+01 7.08E‐04 1.78E‐01 6.24E‐03 4.31E‐03 8.22E‐02 8.97E‐02 1.93E‐01 1.51E‐04 1.63E‐03 <LOD 5.02E‐02 4.34E‐02 6.80E‐03 14

20‐32 295 3.79 365 6.19 <LOD 1.00E+01 2.54E‐03 1.79E‐01 1.40E‐02 4.32E‐03 8.52E‐02 9.26E‐02 1.67E‐01 1.35E‐04 1.59E‐03 <LOD 5.17E‐02 4.58E‐02 5.91E‐03 11

20‐35 370 3.67 382 6.47 <LOD 1.00E+01 9.52E‐04 1.91E‐01 1.38E‐02 3.77E‐03 8.71E‐02 1.04E‐01 1.61E‐01 1.52E‐04 1.75E‐03 <LOD 6.04E‐02 5.79E‐02 2.50E‐03 4

20‐38 445 3.70 391 6.63 <LOD 1.00E+01 9.31E‐04 1.76E‐01 7.44E‐03 4.19E‐03 8.44E‐02 9.19E‐02 1.39E‐01 1.11E‐04 1.49E‐03 <LOD 5.34E‐02 4.46E‐02 8.84E‐03 17

20‐41 520 3.64 405 6.86 <LOD 1.00E+01 1.39E‐03 1.78E‐01 8.89E‐03 4.57E‐03 8.40E‐02 9.25E‐02 1.31E‐01 1.05E‐04 1.44E‐03 <LOD 5.43E‐02 4.52E‐02 9.05E‐03 17

no icp sample 595 3.56 415 7.03 <LOD nd 1.00E‐03 nd nd nd nd nd nd nd nd nd nd nd nd nd

20‐47 670 3.64 420 7.12 <LOD 1.00E+01 1.39E‐03 1.96E‐01 1.11E‐02 4.41E‐03 8.76E‐02 1.04E‐01 1.33E‐01 1.24E‐04 1.63E‐03 <LOD 6.36E‐02 5.45E‐02 9.10E‐03 14

20‐50 745 3.54 408 6.92 <LOD 1.00E+01 4.61E‐04 1.78E‐01 <LOD 3.74E‐03 8.29E‐02 9.00E‐02 1.20E‐01 9.22E‐05 1.35E‐03 8.06E‐05 5.49E‐02 nd no sample nd

20‐53 820 3.52 431 7.30 <LOD 1.00E+01 1.03E‐03 1.63E‐01 <LOD <LOD 7.75E‐02 8.36E‐02 1.11E‐01 8.35E‐05 1.22E‐03 7.05E‐05 5.22E‐02 5.02E‐02 2.00E‐03 4

20‐56 895 3.55 431 7.31 <LOD 1.00E+01 8.88E‐04 1.66E‐01 <LOD <LOD 7.80E‐02 8.38E‐02 1.09E‐01 8.24E‐05 1.18E‐03 5.19E‐05 5.28E‐02 5.12E‐02 1.60E‐03 3

20‐59 970 3.52 429 7.27 <LOD 1.00E+01 6.61E‐04 1.91E‐01 <LOD 3.17E‐03 8.18E‐02 8.85E‐02 1.02E‐01 8.78E‐05 1.25E‐03 8.84E‐05 5.63E‐02 5.48E‐02 1.51E‐03 3

20‐62 1170 nd nd nd <LOD 1.00E+01 <LOD 1.99E‐01 <LOD 3.08E‐03 7.40E‐02 8.11E‐02 9.78E‐02 7.66E‐05 1.05E‐03 4.79E‐05 5.14E‐02 nd no sample nd

20‐65 1245 nd nd nd <LOD 1.00E+01 <LOD 1.95E‐01 <LOD <LOD 7.73E‐02 8.52E‐02 1.01E‐01 7.77E‐05 1.12E‐03 8.65E‐05 5.35E‐02 nd no sample nd
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Table 5 Column experiment (pH 6.3) solution outlet compositions prior to As injection. 

 
  

Sample Pore pH Eh pe F Cl SO4
2‐ Si Na K Ca Mg Al Sr Mn Ti Fetot Fe(II) Fe(III) Fe(III)/FeT

name volumes mV mM mM mM mM mM mM mM mM mM mM mM mM mM mM mM %

22‐02 3 7.20 221 3.74 5.38E‐02 9.99E+00 7.49E‐03 5.95E‐02 2.40E‐01 #VALUE! 1.39E+00 1.28E+00 2.40E‐03 4.23E‐03 4.42E‐04 1.16E‐04 1.38E‐03 0.00E+00 1.38E‐03 100

22‐05 6 7.44 214 3.62 5.38E‐02 9.99E+00 7.49E‐03 4.15E‐02 4.62E‐02 9.43E‐02 4.04E‐01 2.32E‐01 2.97E‐03 1.40E‐03 1.30E‐04 1.76E‐04 1.48E‐03 0.00E+00 1.48E‐03 100

22‐08 10 7.55 218 3.69 4.12E‐04 9.99E+00 3.38E‐04 3.56E‐02 4.51E‐02 2.06E‐02 2.63E‐01 1.41E‐01 2.39E‐03 9.29E‐04 9.46E‐05 1.20E‐04 9.43E‐04 8.66E‐05 8.56E‐04 91

22‐11 17 7.31 236 4.00 4.34E‐04 9.99E+00 3.01E‐04 2.82E‐02 4.19E‐02 6.24E‐03 1.54E‐01 7.80E‐02 2.08E‐03 5.94E‐04 7.67E‐05 1.13E‐04 8.11E‐04 1.14E‐04 6.97E‐04 86

22‐14 24 7.31 230 3.90 4.84E‐04 9.99E+00 3.00E‐04 2.48E‐02 3.98E‐02 2.85E‐03 1.09E‐01 5.50E‐02 1.84E‐03 4.51E‐04 6.33E‐05 1.02E‐04 8.23E‐04 0.00E+00 8.23E‐04 100

22‐17 35 7.13 243 4.12 3.86E‐04 9.99E+00 2.61E‐04 2.29E‐02 4.33E‐02 2.12E‐03 7.44E‐02 3.71E‐02 3.40E‐03 3.34E‐04 6.56E‐05 1.30E‐04 1.81E‐03 0.00E+00 1.81E‐03 100

22‐20 53 7.05 238 4.04 4.16E‐04 9.99E+00 2.38E‐04 2.40E‐02 3.18E‐02 1.30E‐03 4.95E‐02 2.53E‐02 2.15E‐03 2.50E‐04 4.81E‐05 1.38E‐04 9.58E‐04 0.00E+00 9.58E‐04 100

22‐23 85 6.92 254 4.31 4.09E‐04 9.99E+00 2.22E‐04 1.83E‐02 2.85E‐02 7.48E‐04 3.04E‐02 1.59E‐02 2.68E‐03 1.79E‐04 5.48E‐05 1.70E‐04 1.28E‐03 1.27E‐04 1.15E‐03 90

22‐26 146 6.91 262 4.45 4.27E‐04 9.99E+00 2.42E‐04 1.54E‐02 2.68E‐02 9.72E‐04 1.57E‐02 8.55E‐03 1.53E‐03 1.15E‐04 3.91E‐05 9.76E‐05 8.16E‐04 0.00E+00 8.16E‐04 100

22‐29 221 6.69 259 4.39 4.00E‐04 9.99E+00 1.78E‐04 1.17E‐02 2.02E‐02 1.11E‐03 8.18E‐03 4.77E‐03 3.69E‐04 8.33E‐05 4.41E‐05 2.56E‐05 9.49E‐04 0.00E+00 9.49E‐04 100

22‐32 296 6.72 255 4.32 3.95E‐04 9.99E+00 1.97E‐04 9.46E‐03 2.80E‐02 <LOD 5.37E‐03 3.48E‐03 4.32E‐04 6.50E‐05 2.50E‐05 1.75E‐05 1.43E‐04 6.00E‐05 8.28E‐05 58

22‐35 371 6.61 256 4.34 4.09E‐04 9.99E+00 2.02E‐04 8.94E‐03 1.71E‐02 <LOD 3.78E‐03 2.30E‐03 2.76E‐04 5.21E‐05 2.95E‐05 1.69E‐05 1.20E‐04 0.00E+00 1.20E‐04 100

22‐38 446 6.65 255 4.32 3.97E‐04 9.99E+00 2.46E‐04 9.17E‐03 3.47E‐02 <LOD 2.62E‐03 1.80E‐03 2.42E‐04 4.42E‐05 2.56E‐05 <LOD 1.22E‐04 0.00E+00 1.22E‐04 100

22‐41 521 6.72 258 4.38 1.65E‐04 9.99E+00 3.23E‐04 9.18E‐03 5.48E‐02 6.99E‐04 2.26E‐03 1.62E‐03 2.57E‐04 3.91E‐05 3.33E‐05 1.42E‐05 1.48E‐04 nd no sample nd

22‐44 596 6.53 263 4.45 1.79E‐04 9.99E+00 1.40E‐04 4.48E‐02 6.06E‐02 1.06E‐03 1.09E‐02 1.12E‐02 1.26E‐02 4.38E‐05 1.88E‐04 8.56E‐04 6.56E‐03 nd no sample nd

22‐47 671 6.68 250 4.23 1.55E‐04 9.99E+00 9.40E‐05 1.50E‐02 4.65E‐02 1.01E‐02 1.68E‐03 2.15E‐03 3.21E‐04 3.06E‐05 6.91E‐05 1.63E‐05 1.39E‐04 nd no sample nd

22‐50 746 6.52 258 4.38 3.87E‐04 9.99E+00 1.81E‐04 7.77E‐03 2.88E‐02 4.76E‐04 1.87E‐03 1.39E‐03 5.87E‐04 2.79E‐05 3.41E‐05 2.02E‐05 1.66E‐04 nd no sample nd

no icp sample 821 6.47 257 4.35 <LOD nd <LOD nd nd nd nd nd nd nd nd nd nd nd nd nd

no icp sample 896 6.51 259 4.39 <LOD nd <LOD nd nd nd nd nd nd nd nd nd nd nd nd nd

22‐59 971 6.41 255 4.32 4.27E‐04 9.99E+00 1.73E‐04 7.75E‐03 2.88E‐02 8.70E‐04 1.04E‐03 7.66E‐04 2.03E‐04 2.18E‐05 2.90E‐05 2.64E‐05 7.04E‐04 7.04E‐04 5



 Chapter 2 – Analytical techniques & Experimental design 

71 

Table 6 Column experiment (pH 8.0) solution outlet compositions prior to As injection. 

 
  

Sample Pore pH Eh pe F Cl SO4
2‐ Si Na K Ca Mg Al Sr Mn Ti Fetot Fe(II) Fe(III) Fe(III)/FeT

name volumes mV mM mM mM mM mM mM mM mM mM mM mM mM mM mM mM %

23‐02 3 7.47 205 3.47 0.00E+00 9.50E+00 5.86E‐03 7.74E‐02 1.32E‐01 <LOD 1.04E+00 6.87E‐01 3.82E‐03 3.11E‐03 2.38E‐04 1.99E‐04 1.51E‐03 0.00E+00 1.51E‐03 100

23‐05 6 8.23 168 2.85 5.53E‐04 9.50E+00 1.99E‐03 5.16E‐02 5.40E‐03 6.14E‐02 3.57E‐01 1.99E‐01 4.57E‐03 1.15E‐03 1.00E‐04 1.76E‐04 1.34E‐03 2.33E‐04 1.11E‐03 83

23‐08 10 8.24 166 2.81 5.08E‐04 9.50E+00 1.64E‐03 4.28E‐02 <LOD 1.39E‐02 2.08E‐01 1.12E‐01 3.87E‐03 7.36E‐04 5.91E‐05 1.56E‐04 1.35E‐03 0.00E+00 1.35E‐03 100

23‐11 17 8.21 179 3.03 5.13E‐04 9.50E+00 1.07E‐03 3.03E‐02 <LOD 4.68E‐03 1.18E‐01 6.05E‐02 3.90E‐03 4.49E‐04 4.05E‐05 1.45E‐04 1.04E‐03 0.00E+00 1.04E‐03 100

23‐14 24 8.28 172 2.91 4.99E‐04 9.50E+00 9.68E‐04 2.65E‐02 <LOD 2.20E‐03 8.20E‐02 4.09E‐02 4.26E‐03 3.34E‐04 4.06E‐05 1.45E‐04 1.41E‐03 0.00E+00 1.41E‐03 100

23‐17 35 8.21 178 3.02 5.21E‐04 9.50E+00 9.38E‐04 2.16E‐02 4.25E‐03 3.50E‐03 5.75E‐02 2.68E‐02 4.48E‐03 2.44E‐04 6.31E‐05 1.37E‐04 1.21E‐03 1.77E‐04 1.03E‐03 85

23‐20 53 8.28 179 3.03 4.90E‐04 9.50E+00 8.14E‐04 1.91E‐02 4.60E‐03 <LOD 3.73E‐02 1.76E‐02 4.82E‐03 1.71E‐04 3.43E‐05 1.41E‐04 1.06E‐03 5.64E‐05 1.01E‐03 95

23‐23 85 8.27 188 3.19 4.97E‐04 9.50E+00 6.75E‐04 1.50E‐02 7.13E‐04 <LOD 2.02E‐02 1.07E‐02 4.68E‐03 1.12E‐04 2.27E‐05 1.03E‐04 7.86E‐04 2.49E‐05 7.61E‐04 97

23‐26 145 8.24 184 3.11 5.59E‐04 9.50E+00 1.13E‐03 1.31E‐02 4.24E‐03 <LOD 1.13E‐02 5.83E‐03 3.70E‐03 7.01E‐05 1.41E‐05 3.38E‐05 2.64E‐04 nd nd ‐

23‐29 220 8.13 185 3.13 5.85E‐04 9.50E+00 6.28E‐04 1.28E‐02 6.34E‐04 <LOD 7.34E‐03 4.17E‐03 3.76E‐03 5.07E‐05 1.26E‐05 3.55E‐05 3.15E‐04 nd nd ‐

23‐32 295 8.27 191 3.24 5.35E‐04 9.50E+00 5.95E‐04 1.31E‐02 <LOD <LOD 4.64E‐03 3.65E‐03 3.61E‐03 3.88E‐05 <LOD 4.13E‐05 3.34E‐04 nd nd ‐

23‐35 370 8.17 189 3.20 6.16E‐04 9.50E+00 1.12E‐03 1.09E‐02 4.36E‐03 <LOD 1.14E‐02 2.53E‐03 3.07E‐03 3.51E‐05 <LOD <LOD 1.25E‐04 0.00E+00 1.25E‐04 100

23‐38 445 8.21 190 3.22 7.80E‐05 9.50E+00 2.17E‐04 1.08E‐02 4.84E‐04 <LOD 3.43E‐03 1.86E‐03 3.02E‐03 2.72E‐05 <LOD <LOD 7.75E‐05 0.00E+00 7.75E‐05 100

23‐41 520 8.27 189 3.20 5.21E‐04 9.50E+00 5.65E‐04 9.17E‐03 <LOD <LOD 2.14E‐03 1.53E‐03 2.70E‐03 2.30E‐05 <LOD <LOD 1.35E‐04 0.00E+00 1.35E‐04 100

23‐44 595 8.17 183 3.09 6.13E‐04 9.50E+00 6.79E‐04 1.02E‐02 <LOD <LOD 1.72E‐03 1.30E‐03 3.08E‐03 2.04E‐05 <LOD <LOD 3.36E‐04 0.00E+00 3.36E‐04 100

23‐47 670 8.15 180 3.05 5.81E‐04 9.50E+00 6.71E‐04 9.59E‐03 5.04E‐04 <LOD 1.52E‐03 1.22E‐03 2.89E‐03 2.03E‐05 2.19E‐05 <LOD 6.55E‐05 0.00E+00 6.55E‐05 100

23‐50 745 8.19 185 3.13 <LOD 9.50E+00 6.71E‐04 1.10E‐02 <LOD 1.06E‐02 1.32E‐03 2.45E‐03 2.70E‐03 1.71E‐05 3.63E‐05 <LOD 9.19E‐04 0.00E+00 9.19E‐04 100

23‐53 820 8.26 185 3.13 <LOD 9.50E+00 6.63E‐04 9.34E‐03 <LOD <LOD 1.14E‐03 9.72E‐04 2.75E‐03 1.56E‐05 <LOD <LOD 4.50E‐05 0.00E+00 4.50E‐05 100

23‐56 895 8.15 185 3.14 <LOD 9.50E+00 6.54E‐04 8.88E‐03 <LOD <LOD 9.61E‐04 8.75E‐04 2.55E‐03 1.47E‐05 <LOD <LOD 3.48E‐05 0.00E+00 3.48E‐05 100

23‐59 970 8.11 183 3.11 7.68E‐04 9.50E+00 5.88E‐04 9.55E‐03 <LOD <LOD 7.88E‐04 7.43E‐04 2.60E‐03 1.35E‐05 <LOD <LOD 1.16E‐04 0.00E+00 1.16E‐04 100
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Table 7 Column experiment (pH 9.0) solution outlet compositions prior to As injection. 

 
  

Sample Pore pH Eh pe F Cl SO4
2‐ Si Na K Ca Mg Al Sr Mn Ti Fetot Fe(II) Fe(III) Fe(III)/FeT

name volumes mV mM mM mM mM mM mM mM mM mM mM mM mM mM mM mM %

24‐2 3 9.45 113 1.91 2.25E‐03 6.50E+00 1.26E‐02 2.70E‐01 1.19E‐01 1.82E‐01 7.63E‐01 7.76E‐01 6.28E‐03 1.98E‐03 2.13E‐05 4.61E‐05 5.48E‐04 0.00E+00 5.48E‐04 100

24‐5 6 9.36 116 1.96 5.33E‐04 6.50E+00 4.18E‐03 1.07E‐01 1.19E‐02 1.15E‐01 3.73E‐01 3.17E‐01 9.42E‐03 1.06E‐03 2.10E‐05 1.05E‐04 7.21E‐04 4.52E‐04 2.68E‐04 37

24‐8 10 9.32 124 2.09 5.32E‐04 6.50E+00 2.77E‐03 6.93E‐02 4.72E‐03 3.51E‐02 2.29E‐01 1.77E‐01 9.23E‐03 6.78E‐04 1.96E‐05 1.07E‐04 8.07E‐04 0.00E+00 8.07E‐04 100

no icp sample 17 9.34 129 2.19 5.77E‐04 nd 1.63E‐03 nd nd nd nd nd nd nd nd nd nd nd nd 100

24‐14 24 9.27 137 2.32 5.23E‐04 6.50E+00 1.32E‐03 4.11E‐02 1.04E‐03 2.95E‐03 8.95E‐02 5.85E‐02 1.06E‐02 2.97E‐04 3.22E‐05 8.85E‐05 7.63E‐04 0.00E+00 7.63E‐04 100

24‐17 35 9.34 132 2.24 5.26E‐04 6.50E+00 1.06E‐03 3.60E‐02 1.04E‐03 <LOD 6.29E‐02 3.91E‐02 1.14E‐02 2.21E‐04 3.39E‐05 8.89E‐05 6.62E‐04 0.00E+00 6.62E‐04 100

24‐20 53 9.18 129 2.19 4.51E‐04 6.50E+00 5.74E‐04 3.17E‐02 7.76E‐04 <LOD 4.32E‐02 2.43E‐02 1.02E‐02 1.56E‐04 1.92E‐05 8.66E‐05 6.80E‐04 nd no sample nd

24‐23 85 9.20 141 2.39 5.43E‐04 6.50E+00 5.04E‐04 2.80E‐02 4.37E‐03 <LOD 3.27E‐02 1.51E‐02 9.67E‐03 1.11E‐04 1.64E‐05 8.40E‐05 6.17E‐04 3.77E‐05 5.79E‐04 94

24‐26 145 9.31 132 2.23 5.11E‐04 6.50E+00 5.00E‐04 2.56E‐02 <LOD <LOD 1.61E‐02 8.80E‐03 8.93E‐03 7.15E‐05 <LOD 5.01E‐05 5.71E‐04 0.00E+00 5.71E‐04 100

24‐29 220 9.01 152 2.58 7.38E‐04 6.50E+00 5.17E‐04 2.34E‐02 <LOD <LOD 9.45E‐03 5.63E‐03 8.37E‐03 4.97E‐05 <LOD 5.15E‐05 4.23E‐04 0.00E+00 4.23E‐04 100

24‐32 295 9.10 157 2.67 5.80E‐04 6.50E+00 5.26E‐04 2.09E‐02 <LOD <LOD 6.68E‐03 4.05E‐03 7.53E‐03 3.81E‐05 <LOD 3.19E‐05 3.16E‐04 0.00E+00 3.16E‐04 100

24‐35 370 9.10 155 2.63 5.63E‐04 6.50E+00 6.10E‐04 2.18E‐02 <LOD <LOD 6.94E‐03 3.27E‐03 8.09E‐03 3.30E‐05 <LOD <LOD 1.71E‐04 4.16E‐06 1.67E‐04 98

24‐38 445 9.20 155 2.63 4.81E‐04 6.50E+00 4.67E‐04 2.08E‐02 <LOD <LOD 6.02E‐03 2.75E‐03 6.98E‐03 2.86E‐05 <LOD <LOD 2.09E‐04 0.00E+00 2.09E‐04 100

24‐41 520 9.28 151 2.56 7.04E‐04 6.50E+00 5.23E‐04 1.96E‐02 <LOD <LOD 3.79E‐03 2.46E‐03 7.50E‐03 2.50E‐05 <LOD 3.61E‐05 3.01E‐04 0.00E+00 3.01E‐04 100

24‐44 595 9.18 154 2.61 6.05E‐04 6.50E+00 4.35E‐04 2.03E‐02 <LOD <LOD 8.73E‐03 2.25E‐03 7.42E‐03 2.50E‐05 <LOD 3.19E‐05 4.86E‐04 9.38E‐05 3.93E‐04 81

24‐47 670 9.32 161 2.73 6.30E‐04 6.50E+00 2.23E‐04 1.93E‐02 <LOD <LOD 2.92E‐03 1.96E‐03 6.22E‐03 2.17E‐05 2.36E‐05 2.83E‐05 2.90E‐04 0.00E+00 2.90E‐04 100

24‐50 745 9.09 150 2.55 6.00E‐04 6.50E+00 3.78E‐04 2.03E‐02 <LOD <LOD 2.46E‐03 1.75E‐03 6.88E‐03 1.93E‐05 8.16E‐06 <LOD 1.85E‐04 5.61E‐05 1.29E‐04 70

24‐53 820 9.10 151 2.55 7.51E‐04 6.50E+00 4.33E‐04 1.96E‐02 <LOD <LOD 2.53E‐03 1.62E‐03 6.83E‐03 1.78E‐05 8.04E‐06 3.22E‐05 2.23E‐03 0.00E+00 2.23E‐03 100

24‐56 895 9.14 156 2.64 6.04E‐04 6.50E+00 4.37E‐04 1.74E‐02 4.50E‐04 <LOD 2.11E‐03 1.62E‐03 6.58E‐03 1.69E‐05 <LOD <LOD 2.28E‐04 0.00E+00 2.28E‐04 100

24‐59 970 9.14 157 2.65 6.81E‐04 6.50E+00 6.43E‐04 1.80E‐02 <LOD <LOD 1.90E‐03 1.27E‐03 7.24E‐03 1.50E‐05 <LOD <LOD 1.50E‐04 2.93E‐05 1.20E‐04 80
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Table 8 Column experiment (pH 10.0) solution outlet compositions prior to As injection. 

Sample Pore pH Eh pe F Cl SO4
2‐ Si Na K Ca Mg Al Sr Mn Ti Fetot Fe(II) Fe(III) Fe(III)/FeT

name volumes mV mM mM mM mM mM mM mM mM mM mM mM mM mM mM mM %

21‐02 3 9.77 86 1.46 4.80E‐03 1.50E+00 5.96E‐03 4.06E‐01 6.85E‐01 2.84E‐02 2.36E‐01 6.70E‐02 1.45E‐02 1.51E‐04 9.36E‐05 5.85E‐04 4.90E‐03 4.68E‐03 2.13E‐04 4

21‐05 6 9.91 86 1.46 1.00E‐04 1.50E+00 1.04E‐03 2.22E‐01 4.56E‐02 4.78E‐02 1.69E‐01 1.28E‐01 8.30E‐03 2.77E‐04 <LOD 1.99E‐04 9.03E‐04 8.56E‐04 4.73E‐05 5

21‐08 10 9.88 80 1.35 1.13E‐02 1.50E+00 7.55E‐04 1.75E‐01 1.59E‐02 4.82E‐02 1.60E‐01 1.21E‐01 8.41E‐03 2.82E‐04 <LOD 2.64E‐04 1.47E‐03 1.42E‐03 4.87E‐05 3

21‐11 17 9.91 72 1.22 1.00E‐04 1.50E+00 1.46E‐04 1.41E‐01 2.86E‐02 5.20E‐02 1.05E‐01 8.22E‐02 8.67E‐03 2.09E‐04 <LOD 2.34E‐04 6.50E‐04 5.89E‐04 6.14E‐05 9

21‐14 24 9.87 82 1.39 2.50E‐03 1.50E+00 4.57E‐04 1.58E‐01 <LOD 3.64E‐02 7.55E‐02 6.10E‐02 1.14E‐02 1.55E‐04 <LOD 2.20E‐04 6.85E‐04 4.20E‐04 2.65E‐04 39

21‐17 35 9.86 89 1.51 1.97E‐02 1.50E+00 7.09E‐04 1.13E‐01 <LOD 1.26E‐02 5.50E‐02 4.44E‐02 1.73E‐02 1.12E‐04 <LOD 3.07E‐04 9.32E‐04 9.08E‐04 2.40E‐05 3

21‐20 53 9.78 82 1.38 3.80E‐03 1.50E+00 <LOD 1.01E‐01 <LOD <LOD 3.91E‐02 3.11E‐02 1.59E‐02 7.97E‐05 <LOD 3.02E‐04 8.08E‐04 7.33E‐04 7.49E‐05 9

21‐23 85 9.77 99 1.68 3.70E‐03 1.50E+00 <LOD 9.48E‐02 <LOD <LOD 2.72E‐02 2.09E‐02 1.73E‐02 5.29E‐05 <LOD 2.86E‐04 6.42E‐04 5.12E‐04 1.29E‐04 20

21‐26 145 9.77 99 1.68 2.20E‐03 1.50E+00 <LOD 9.72E‐02 <LOD <LOD 1.74E‐02 1.50E‐02 2.16E‐02 2.94E‐05 <LOD 3.52E‐04 6.26E‐04 5.77E‐04 4.87E‐05 8

21‐29 220 9.76 91 1.54 1.00E‐03 1.50E+00 <LOD 9.06E‐02 <LOD 2.22E‐03 1.37E‐02 9.20E‐03 1.74E‐02 2.36E‐05 <LOD 3.56E‐04 7.08E‐04 6.65E‐04 4.29E‐05 6

21‐32 295 9.60 123 2.08 5.24E‐02 1.50E+00 2.12E‐03 8.38E‐02 <LOD <LOD 1.16E‐02 8.30E‐03 1.69E‐02 1.38E‐05 <LOD 4.28E‐04 1.54E‐03 1.43E‐03 1.12E‐04 7

21‐35 370 9.53 102 1.74 4.70E‐03 1.50E+00 0.00E+00 7.87E‐02 <LOD <LOD 8.98E‐03 5.96E‐03 1.46E‐02 <LOD <LOD 3.40E‐04 8.05E‐04 7.62E‐04 4.25E‐05 5

21‐38 445 9.47 113 1.91 1.59E‐02 1.50E+00 3.45E‐04 7.49E‐02 <LOD 1.80E‐03 4.32E‐02 6.82E‐03 1.79E‐02 1.48E‐05 <LOD 4.83E‐04 2.00E‐03 1.95E‐03 5.77E‐05 3

no icp sample 520 9.44 109 1.85 1.20E‐03 nd 6.00E‐06 nd nd nd nd nd nd nd nd nd nd nd nd nd

21‐43 595 9.40 111 1.88 0.00E+00 1.50E+00 0.00E+00 6.75E‐02 <LOD <LOD 7.33E‐03 3.64E‐03 1.41E‐02 <LOD #VALUE! 4.01E‐04 9.13E‐04 8.89E‐04 2.41E‐05 3

21‐46 670 9.53 108 1.82 2.00E‐03 1.50E+00 3.60E‐05 6.25E‐02 <LOD 5.70E‐03 9.56E‐03 4.02E‐03 1.43E‐02 <LOD 7.94E‐04 2.70E‐04 1.32E‐03 1.29E‐03 3.08E‐05 2

21‐49 745 9.49 103 1.75 <LOD 1.50E+00 <LOD 6.51E‐02 <LOD 4.03E‐03 1.07E‐02 3.58E‐03 1.31E‐02 <LOD 6.87E‐05 5.05E‐04 1.30E‐03 1.27E‐03 2.79E‐05 2

no icp sample 820 9.44 111 1.88 <LOD nd <LOD nd nd nd nd nd nd nd nd nd nd nd nd nd

21‐55 895 9.47 114 1.93 7.00E‐04 1.50E+00 2.50E‐05 6.33E‐02 <LOD <LOD 6.24E‐03 2.79E‐03 1.20E‐02 <LOD <LOD 5.14E‐04 1.29E‐03 1.05E‐03 2.40E‐04 19

21‐58 970 9.35 120 2.03 5.00E‐04 1.50E+00 1.19E‐04 5.78E‐02 <LOD 5.92E‐03 8.39E‐03 2.82E‐03 1.14E‐02 <LOD <LOD 5.71E‐04 1.44E‐03 1.42E‐03 1.85E‐05 1
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2.2.4 Column experiments for arsenic transport 

Basaltic glass (16 g) was packed into a 16 cm long, 1 cm inner diameter PTFE column 

yielding porosity of 0.45 which was measured by saturating the column with DI water 

and measure the weight (Figure 2a).  Arsenic containing solution was prepared by 

pipetting 5 ml of 60 mg l-1 stock solution into volumetric flask, adding 20 mg of Acid 

blue 9 which acted as a conservative tracer (Mon et al., 2006) into a 0.5 l volumetric 

flask and fill to mark with an ammonium chloride solution.  Nitrogen gas was purged 

through the buffers for two hours prior to pumping them onto the column.   A peristaltic 

pump (Cole-Parmer Masterflex) pumped buffer solution at 1 ml min-1 to base of 

column.  At stable pH and Eh conditions 4 pore volumes of As containing solution were 

injected into the column.  Finally the column was eluted with 25 pore volumes of As 

free solution.  Outflow of the column was divided to three flow lines were following 

steps were taken: 

1. Continuous pH and Eh measurement by electrodes (Cole Parmer) in flow 

through cells.  The pH/Eh signal was read by Eutech pH 200 series and 

subsequently recorded by a Campbell CR10X data logger.   

2. A conservative tracer was measured online in a flow through cell by Sterilin 

Instruments Colorimeter.  The solution was then pumped onwards to a 

Thermo Jarrell Ash fraction collector which sampled solutions for total As 

analysis. 

3. Arsenite was measured continuously by Perkin Elmer AAnalyst 300 HG-

AAS.  For the arsenite measurement, the outlet of experiment (flow rate 0.33 

ml min-1) was mixed with 0.2 M Na-citrate (adjusted to pH 5.0 with 4 M 

HCl) carrier solution (flow rate 0.9 ml min-1) and the mixture subsequently 

mixed with 1% Na-borohydride and pumped into the HG-AAS allowing for 

continuous measurement of arsenite and the absorbance value recorded 

every 1 to 3 minutes.  The method was validated by pumping 4 μmol l-1 

arsenite and arsenate solution directly into the measurement system and  the 

absorbance observed.  No increase in absorbance was observed when 

arsenate was used indicating that reduction was sufficiently limited to 

conclude that all absorbance in the measurement was due to AsH3 generated 
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from arsenite.  The total As was analyzed after each experiment in the same 

way as described in isotherm experiment section above. 

2.2.5 Modeling 

All geochemical modeling was carried out the computer program PHREEQC-2 

(Parkhurst and Appelo, 1999) versions 2.11 to 2.15 with the database wateq4f.dat (23rd 

August 2005) and a graphical interface by V.E.A.  Post.  The program is based on 

equilibrium chemistry of aqueous solutions interacting with minerals, gases, solid 

solutions, exchangers and sorption surfaces, but also includes the capability to model 

kinetic reactions with rate equations that are completely user-specified in the form of 

Basic statements.  A 1D transport algorithm comprises dispersion, diffusion and various 

options for dual porosity media.  An extensible chemical data base allows application of 

the reaction, transport and inverse modeling capabilities to almost any chemical reaction 

that is recognized to influence rain-, soil-, ground-, and surface water quality (Parkhurst 

and Appelo, 1999). 

As mentioned in the introduction As sorption is kinetically controlled (Arai et al., 

2004, Arai et al., 2005, O'Reilly et al., 2001).  The ability of PHREEQC-2 to implement 

user defined kinetically controlled reactions made it the preferred choice for this 

research.  The user’s guide to PHREEQC-2 gives a general indication of the programs 

capabilities: 

In batch-reaction calculations, PHREEQC-2 is oriented toward system equilibrium 

rather than just aqueous equilibrium.  For a purely equilibrium calculation, all of the 

moles of each element in the system are distributed among the aqueous phase, pure 

phases, solid solutions, gas phase, exchange sites, and surface sites to attain system 

equilibrium.  Non-equilibrium reactions can also be modelled, including aqueous-phase 

mixing, user-specified changes in the elemental totals of the system, kinetically 

controlled solid-liquid heterogeneous reactions, and to a limited extent kinetically 

controlled aqueous homogeneous reactions.  Kinetically controlled reactions can be 

defined in a general way by using an embedded Basic interpreter.  Rate expressions 

written in the Basic language are included in the input file, and the program uses the 

Basic interpreter to calculate rates.  Batch reactions allow any combination of solution 

(or mixture of solutions), gas phase, and assemblages to be brought together, any 

irreversible reactions are added, and the resulting system is brought to equilibrium.  If 

kinetic reactions are defined, then the kinetic reactions are integrated with an automatic 
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time-stepping algorithm and system equilibrium is calculated after each time step.  The 

capability to define multiple solutions and multiple assemblages combined with the 

capability to determine the stable phase assemblage provides a framework for 1D 

transport modeling.  PHREEQC-2 provides a numerically efficient method for 

simulating the movement of solutions through a column or 1D flow path with or 

without the effects of dispersion.  The initial composition of the aqueous, gas, and solid 

phases within the column are specified and the changes in composition due to advection 

and dispersion (Appelo and Postma, 1993) coupled with reversible and irreversible 

chemical reactions within the column can be modelled. 

Any modeling calculations in PHREEQC-2 are carried out by composing a so 

called input file.  This file holds for this research’s purposes data blocks that are 

described in chapters 3 to 5 of this thesis.  A full description of the program is provided 

by Parkhurst and Appelo (1999).  Examples are provided for each data block if 

necessary.  All text that follows a # sign is for explanation only and is not read by the 

computer program. 

2.2.5.1 Kinetics 

A kinetic data block defines the amount and stoichiometry of a kinetic reactant.  The 

duration of reaction steps is furthermore defined here. 
Table 9 Definition of basaltic glass in a batch reactor 

KINETICS 1  
BG_Stapafell  #name of kinetic reactant 
-formula  Si 1.000 Ti 0.024 Al 0.358 Fe0.188 Mg 0.281 Ca 0.264 Na 0.079 K0.008 P0.004 O3.380  

1 # during one kinetic step the elements are released in these ratios 
-m 0.03 #moles of reactant in each kinetic cell.  Each time step, this changes as reactions proceed 
 -m0       0.03 # inital moles of kinetic reactant in each cell 
-step 86400 in 1440 steps  #Duration of reaction, 86400 seconds in 1440 steps.  This would describe 

a closed batch reaction that occurs over 24 hours and each reaction step is allowed to proceed for 
60 seconds. 

 

Table 10 Definition of a surface that is created when As is sorbed 

KINETICS 1 
   Sorb_pseudo2ndorder_arsenic # name of kinetic reactant 
   -formula  As   1 # During kinetic steps the  elements change according to the numbers 
   -m0    0 #initial moles of Sorb_arsenic (no arsenic is sorbed and therefore the reactant sorb_arsenic 

is not available initially 
   -tol 1e-8 # tolerance for calculations 
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2.2.5.2 Rates 

A rate expression describes either the process of basaltic glass dissolution or the 

sorption process of As on the basaltic glass surface.   

 

Table 11 Description of bulk basaltic glass dissolution (Gislason, Oelkers 2003). 

RATES 
 
BG_Stapafell# name of rate expression that describes the change for kinetics data block with same 

name 
-start  
10 A0 = 12000    #cm2 g-1 Specific surface area of basaltic glass in each kinetic cell (1 gram of glass) 
20 area = (M/M0)^(2/3)*A0    #describes the change in surface area as reaction proceeds  
30 EA = 25500  # Activation energy or reaction J mole-1 
40 AA = 2.512e-006 # rate constant mole Si cm-2 sec-1 (Gislason and Oelkers, 2003) 
50 sr_BG = SR("Stapafell")# Saturation ratio of basaltic glass is dependent of the saturation ratio of the 

phase “Stapafell”  which is the leached layer of basaltic glass. 
60 if (M<=0) then goto 200 #if all BG Stapafell has dissolved then go directly to end of calculation 
70 R = 8.3144          #Universal gas constant )J mole-1 K-1= 
80 T = 298.15       #Temperature (K) 
90 rate_const = AA*EXP(-EA/(R*T)) # rate constant for the reaction 
100 DF = ((ACT("H+")^3)/(ACT("Al+3")))^(1/3) # driving force for the reaction 
110 BF = (1-sr_BG) # braking force of the reaction 
120  rate = area*rate_const*DF*BF #overall rate of reaction 
130 moles = rate*TIME # change in moles during each reaction step 
200 SAVE moles 
-end 

 

Table 12 Description of two models describing As sorption onto basaltic glass 

#Model 1.  Pseudo second order model (Ho, Mckay 1999) 
RATES 
Sorb_pseudo2ndorder_arsenic # name of rate expression that describes the change for kinetics data 

block with same name 
 
-start 
10 k = 240 #kg mol-1 sek-1, Empirical constant derived from kinetic batch experiment.  This coefficient 

needs to be scaled according to the difference in fluid rock ratio between the experiment where it 
was derived from and the system that is to be modelled. 

20 ct = tot("As")#mol kgw #definition of the concentration of As at each reaction step 
30 qmax = 5.05e-6 #moles kg-1.  Maximum adsorption according Langmuir isotherm fitted to batch 

experiment.  This coefficient also needs to be scaled according to fluid rock ratio. 
40 KL = 8.7e4 # mole l-1.  Langmuir constant derived from batch isotherm experiment. 
50 qe = (qmax *KL* ct) /(1+(KL * ct))# Langmuir eq. to describe the equilibrium concentration at each 

reaction step 
60 dif = qe – m # this line is only to define the difference between equilibrium concentration and the 

amount of As sorbed (m) at the surface of the glass. 
70 rate_forward = -k * (dif)^2 #Pseudo second order model (Ho and McKay, 1999) describing 

adsorption. 
80 if dif < 0 then rate_forward = -rate_forward # this section is inserted to describe desorption.  This 

means that As desorbs from the surface if the concentration on the surface exceeds the equilibrium 
sorption concentration.  This occurs when As-free solution is introduced into a system that had 
previously reacted with As-solutions. 

90 moles = rate_forward   *time 
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100 SAVE moles 
-end 
 
#Model 2.  Dynamic Langmuir kinetic model (Langmuir, 1908) 
Sorb_dynamic_langmuir_arsenic 
-start 
10 k_forward = 1.15   #l mol-1 s-1 
20 ct =tot("As") #mol kgw-1 
30 if ct <1e-9 then goto 70 
40 KL = 54100#69400 # l mol-1   Derived from Langmuir isotherm experiment and used to calculate kd 

after ka has been found, that is KL =ka/kd 
50 qmax = 2.21e-5#*20# mol l-1  Derived from Langmuir isotherm experiment 
60 k_backward = 0.0000213 # s-1 
70 theta =m/qmax   #unit less ratio 
#Langmuir kinetic model 
80 rate = (-k_forward *tot("As")*(1- theta) +(k_backward * theta))*qmax 
90 moles = rate * time 
100 SAVE moles 
-end 

 

 

2.2.5.3 Surface 

Used for surface complexation modeling.  Surface complex reactions can be inserted 
into the database.  The surface is then described by the keyword Surface. 
 
Table 13 Surface data block for a HFO surface 

SURFACE 1 
 
-sites DENSITY # Site density is used to describe the surface 
Hfo_wOH 3.8    600    0.217# A HFO surface with weak sites.  3.8 sites nm-2, specific surface area is 

600 m2 g-1 and mass of the surfaces reactant is 0.217 g. 
 
end 

 

2.2.5.4 Transport.   

A description of the transport process in a column experiment, this section describes the 

size and boundary conditions of the column, the flow conditions and the time duration 

of each kinetic step.  The time step described under transport overrides the time 

definition in kinetics data block. 

Table 14 Transport data block for 16 cm column that has been divided into four parts. 

TRANSPORT  
-cells 4 # number of cells that column is composed of 
-length 0.04 m #length of cells in meters 
-shifts 4000 #one thousand pore volumes displaced since one pore volume is 4 shifts 
-disp 0.014 # dispersivity of material calculated from a breakthrough curve of a conservative tracer 
-diffc 0 #assume no diffusion 
-time 120 seconds # each reaction is allowed to proceed for 120 seconds 
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-punch_c  4 # record the results from the final cell of column (outlet) after each reaction step.  These 
results will be shown on graph or punched into a data file. 

 

 

2.2.5.5 User_graph.   

A data block to construct a graph of the data as modeling is carried out. 

Table 15 USER_GRAPH  data block to show concentration in a column along a horizontal distance 

USER_GRAPH   
 -heading pv/ 1_m_cell 
 -axis_scale x_axis 0 4 
 -axis_scale y_axis 0 1 
 -axis_titles PV c/c0 
 -chart_title 
 -initial_solutions false  01 
 -plot_concentration_vs x  
-start 
10 graph_x dist 
 20 graph_y tot("As")  
-end 

 

Table 16 USER_GRAPH data block to show outlet concentration of a column as reactions proceed 

USER_GRAPH   
-heading pv/ Arsenite 
 -axis_scale x_axis 0 30 5 1 #The graph will show 30 pore volumes (PV) and place a label every  5 PV 

and place a tick every PV  
 -axis_scale y_axis 0 1 
 -axis_titles PV c/c0 
-initial_solutions false  01 #Do not plot before transport initiates 
 -plot_csv_file C:\As3pH3.csv # The program plots experimental data for fast comparison with 

modelled results 
 -plot_concentration_vs time 
 -start 
 10 graph_x (step_no +0.5)/ cell_no  
 20 graph_y  tot("As") / 4e-6 # this gives C/Co since the concentration of inlet solution was 4 μmole l-1 
-end 

 

2.2.6 Field measurements 

2.2.6.1 Field sampling 

Samples were pumped directly from respective source (well, spring or stream) by a 

peristaltic pump (Cole Parmer Masterflex E/S portable sampler) through a High Density 

Polyethylene (HDPE) cooling loop followed by a 0.2 μm cellulose acetate (CA) filter 

(Advantec MFS) enclosed in a HDPE housing.  Samples from wells were extracted 2 m 

below the water table.  All bottles were pre-rinsed with filtered water prior to sample 
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collection.  Sample for As and anion speciation was directed into a 10 ml gas tight 

syringe and injected into a Dionex ICS-2000 anion exchange chromatograph (AEC) 

coupled to a PSAnalytical hydride-generation atomic fluorescence spectrophotometer 

(HG-AFS) immediately on sampling as the analytical equipment was field deployed.  

Then sample was directed through the cooling loop into a pH/Eh flow cell and pH and 

Eh recorded respectively (Cole Parmer combination gel filled electrode for pH and Pt-

electrode for Eh with Eutech pH200 displays).  Temperature of the pH/Eh flow-cell was 

set as close to 25°C by adjusting the sample flow rate through the cooling loop.  Then 

60 ml for total carbonate carbon (TCC) was pumped into an amber glass bottle and 

filled completely before being sealed with an air tight cap.  Sample was then pumped 

into a 50 ml HDPE bottle and 0.5-7.5 ml of sample pipetted to a 15 ml HDPE bottle for 

determination of H2S.  The remainder in the 50 ml bottle was preserved to 1% 6 N HCl 

for the determination of ferric and ferrous iron.  Another 50 ml HDPE bottle was filled 

for total As measurement and sample pH increased to >10 by the addition of 1.0 N 

NaOH followed by the addition of 0.5 mL of 30% H2O2.  After 30 min, HCl was used to 

acidify sample to pH<2 (Beak et al., 2008).  After that, 50 ml HDPE bottle was filled 

and acidified to 0.5% by concentrated HNO3for the analysis of major constituents and 

selected minor constituents.  Finally, sample for further As-speciation analysis was 

pumped into two 15 ml HDPE bottles which were immediately frozen in dry-ice.   

2.2.6.2 Analytical methods from field measurements 

Major and some minor constituents were measured on by Spectro Ciros Vision 

Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES).   

Arsenic species (arsenite, arsenate, mono-, di-, tri- and tetrathioarsenate) and the 

anions F-, Cl-, SO4
2-, S2O3

2- were separated according to Planer-Friedrich et al. (2007).   

Briefly a Dionex ICS-2000 with self generated eluent cartridge separated and detected, 

anionic species and the HG-AFS detected species that contained As (Table 17).   The 

As concentration for each individual species was quantified with HG-AFS as opposed 

to ICP-MS, as the instrumentation was field deployed.  Total As was measured by HG-

AFS according to (PSAnalytical, 1997).  Total carbonic carbon was measured by AEC 

according to (Stefansson et al.,2007).  Iron speciation was carried out with MetpacTM 

PCDA eluent on a Dionex ICS-3000 according to Dionex technical note 10 (Dionex).  

Alterations to the method were: a 1 ml injection loop was used to increase sensitivity 

and 4-(2-pyridylazo) resorcinol (PAR) was halved to 60 µg l-1.  Total As was analysed 
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in HNO3 acidified samples from Reykjavik Energy archives, covering the time 

period1991-2008 and few samples sampled prior to 1990.  The method was according 

to (PSAnalytical, 1997). 
Table 17 Instrumental setup for the detection of arsenic oxy- and thioanions by AEC-HG-AFS. The 

speciation procedure was adopted from Planer-Friedrich et al. (2007). 

 

Anion Exchange Chromatography (AEC) separation

Instrument DIONEX ICS‐2000

Column IonPac AS‐16/AG‐16 4‐mm (10‐32) (Dionex, Sunnyvale, CA)

Eluent KOH, Automated eluent generation at 1 ml/min
Gradient 0 → 7 min 20 mmol/l

7 → 17 min 20 → 100 mmol/l
17 → 25 min 100 mmol/l
25 → 28 min 100 → 20 mmol/l

Sample volume 100 µl

Typical retention times arsenite 271 s
arsenate 693 s
monothioarsenite 777 s
dithioarsenite 861 s
trithioarsenite 948 s
tetrathioarsenite 1039 s

Supression ASRS‐Ultra 4‐mm (Dionex, Sunnyvale, CA)
300 mA current, 5 ml min‐1 water, (external mode)

Hydride Generation Atomic Fluoresence Spectroscopy (HG‐AFS) detection

Instrument PSAnalytical Millenium Excalibur

Reductant 12,5% HCl, red‐red tubing, pump 50%
0.7% NaBH4 in 0.1 M NaOH, grey‐grey tubing, pump 100%

Carrier gas Ar (5.0 grade), flow rate 300 ml/min

Gas / liquid separator Type ME Gas/liquid separator

Air dryer Permapure dryer system
Dryer gas, Ar, flow rate 2.5 l/min

Lamp Boosted discharge hollow cathode lamp (BDHCL)
Primary current 27.5 mA
Boost current 35.0 mA
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Abstract 

The importance of geothermal energy as a source for electricity generation and district 

heating has increased over recent decades. Arsenic can be a significant constituent of 

the geothermal fluids pumped to the surface during power generation.  Dissolved As 

exists in different oxidation states, mainly as As(III) and As(V), and the charge of 

individual species varies with pH. Basaltic glass is one of the most important rock types 

in many high-temperature geothermal fields. Static batch and dynamic column 

experiments were combined to generate and validate sorption coefficients for As(III) 

and As(V) in contact with basaltic glass at pH 3 to 10. Validation was carried out by 

two empirical kinetic models and a surface complexation model (SCM). The SCM 

provided a better fit to the experimental column data than kinetic models at high pH 

values. However in certain circumstances an adequate estimation of As transport in the 

column could not be attained without incorporation of kinetic reactions. The varying 

mobility with pH was due to the combined effects of the variable charge of the basaltic 

glass with the pH point of zero charge at 6.8 and the individual As species as pH 

shifted, respectively. The mobility of As(III) decreased with increasing pH. The 

opposite was true for As(V), being nearly immobile at pH 3 to being highly mobile at 

pH 10. Incorporation of appropriate sorption constants, based on the measured pH and 

Eh of geothermal fluids, into regional groundwater-flow models should allow prediction 

of the As(III) and As(V) transport from geothermal systems to adjacent drinking water 

sources and ecosystems. 
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3.1 Introduction 

Arsenic is released from soil and geothermal environments into ground waters through 

natural processes and anthropogenic activities (1,2,3). There are many pathways for As 

to threaten human health via polluted ground- or surface waters (2,4). Speciation of As 

is the most important factor controlling its toxicity, bioavailability and mobility, 

depending mainly on the environmental parameters such as pH and redox potential (2). 

Arsenic is mostly present in aqueous environments in +III and +V oxidation states as 

arsenite and arsenate oxyanions and their hydrolysis species, respectively (Fig. 1) (2,5) 

with minor amount of methyl and dimethyl As compounds being detected in some 

systems (6). As(V) forms the negatively charged oxyanions H2AsO4
- and HAsO4

-2 at pH 

values above 2 and 7, respectively, while As (III) forms the uncharged oxyanion 

H3AsO3 at a pH up to around 9 (pKa= 9.2) (7). Recently the importance of thioarsenates 

in sulfidic geothermal waters has been reported as it has been found to be as high as 

83% dissolved As under alkaline conditions (8). 

The aqueous redox reactions of As are slow without some form of catalyst (9). 

Oxidation of As(III) is frequently facilitated by reduction of Fe(III), and the reduction 

of As(V) by oxidation of sulfides (10) with redox processes accelerated by up to 5 

orders of magnitude in geothermal waters by microbial activity (11). Knowledge of the 

kinetics of redox reactions between the individual As species can therefore play an 

important role when quantifying sorption processes and As transfer. The variable 

charges of the As species and the interacting surfaces lead to variable adsorption and 

retention of the respective species relative to groundwater flow. Accurate determination 

of the speciation of As in natural water is therefore fundamental to predict its transport 

in the environment. 
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Figure 1 Thermodynamic system of As oxyanion species in water (7). Superimposed are Fe species 

with Fe(OH)3(s) under saturated. The As species have anticipated increased mobility in basaltic 

glass media in the following order: H2AsO4
-<H3AsO4≈H3AsO3<H2AsO3-<HAsO4

2-.  Open symbols 

represent conditions in column experiments, closed symbols represent batch experiments. Squares 

represent measured pe, circles are pe calculated from Fe(II)/Fe(III) redox couple, and triangles are 

pe calculated from As(III)/As(V) redox couple. 

Continental flood basalts cover an important fraction of the terrestrial surface (12). 

Arsenic concentration in terrestrial basaltic rocks ranges from 0.18 to 113 mg kg-1, with 

an average concentration of 2.3 mg kg-1 (2). Examples include the Columbian river 

basalts in the US, the Deccan traps in India and the Siberian traps in Russia. 

Furthermore, the ocean floor is primarily composed of basalt (13). Geothermal activity 

is frequently associated with basalt that can either be glassy or crystalline in volcanic 

terrains (14). Knowledge of As movement in basaltic environments, therefore, plays a 

key role in quantifying the global As cycle. Since Iceland is mainly composed of 

basaltic rocks where active seafloor spreading coincides with the occurrence of 

upwelling mantle plume resulting in intense volcanism (15), it constitutes a prime study 

area for understanding the role and movement of As in the environment. This geological 

situation leads to the widespread occurrence of high-temperature geothermal systems, 

some of which are currently utilized for power generation (16). Hydrothermal fluids, 

often As enriched (17), are pumped to the surface, where heat is extracted and 

electricity generated before these fluids are either pumped back into the crust through 

boreholes or released to adjacent surroundings. The subsequent fate of arsenic in 
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geothermal waters raised to the surface is not fully known and there is concern that 

arsenic may be mobile in groundwater systems where basalt and basaltic glass are the 

main rock constituents (18). 

The surface sites of basaltic glass can be considered as >SOH (where >S signifies 

any –OH binding atom at the surface site) that can either accept proton represented by 

the reaction:  
++ >↔+> 2)( SOHHSOH aq   Eq. 1 

associated with the intrinsic equilibrium constant KS,1 or donate proton to the solution 

represented by the reaction: 
+− +>↔> )(aqHSOSOH   Eq. 2 

associated with the equilibrium constant KS,2. The equilibrium constants KS,1 and KS,2 

differ between the respective surface sites and consequently the point of zero charge of 

the surface site mixture. The chemical composition of the basaltic glass is primarily Si 

with lesser amounts of Al and Fe on a molar basis with Si and Al, and to a lesser extent 

Fe(III), as the network forming elements, and with Fe(II) occupying the space within 

the network (19). Therefore, the surface may be assumed to consist primarily of silanol 

sites followed by aluminol sites and to a lesser extent amorphous Fe(III) hydroxide 

sites. 

Mobility of key As species in thermodynamic equilibrium in groundwater 

conditions in contact with basaltic glass with a point of zero charge at pH 6.8 (20) can 

be predicted by studying Fig. 1(7). Under reduced conditions the main As(III) species 

has -1 charge above 9.2 and is, therefore, repelled from the surface. Below pH 9.2 the 

species is uncharged and should, therefore, have some degree of mobility. At oxidized 

conditions at pH levels below 2, the dominant As(V) species is uncharged and should 

have high mobility. Between pH 2 and 6.8 the charges of the main species and surface 

sites are opposite and As(V) should be immobile at pH 3, but increasingly mobile as the 

pH rises and the positive charge on the surface is decreased. Above pH 6.8 the dominant 

As(V) species is -2 charged and is, therefore, repelled from the surface sites.  

Adsorption of As(III) was predicted to be small on am-SiO2 (21). Increased 

adsorption of As(III) on surface sites of illite, ferrihydrite, goethite and am-Al(OH)3, 

respectively, was observed from pH 4 to 9; however, adsorption declined on 

ferrihydrite, goethite, am-Al(OH)3 above pH 9 (22, 23, 24, 25) a finding that 

corresponds closely to the first pKa (9.2) of H3AsO3. Adsorption of As(V) was 
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predicted to be small on am-SiO2 (21). Arsenic(V) was decreasingly sorbed on 

ferrihydrite (23) and am-Al(OH)3 (25) as pH increased from 3 to 10. 

The goal of this study was to predict the transfer of As oxyanions through basaltic 

glass media, a significant constituent of aquifers in geothermal areas and continental 

flood basalt areas. The main objectives were to (i) determine the rate and extent of 

As(III) and As(V) adsorption on the basaltic glass surface at pH 3 to 10, and (ii) predict 

whether and how As(III) and As(V) will move from high-temperature geothermal 

waters into shallow groundwater environments. 

3.2 Experimental section 

3.2.1 Materials and Chemicals 

The chemical reagents used in this study were of reagent grade. The reagents NaAsO2, 

Na2HAsO4.7H20, NaOH and Na3C6H5O7 (Trisodium citrate) were obtained from BDH 

Chemicals. Ascorbic acid, and KI were obtained from Acros organics.  NaBH4 and 

C37H34Na2N2O9S3 (Acid Blue 9) were obtained from Sigma Aldrich Chemical Co.   

The basaltic glass used in experiments was obtained from the volcanic ash of 

Stapafell mountain, southwestern Iceland (19). Preparation of the glass was carried out 

according to (25) except that the 125-250 μm size fraction was used in the current 

contribution. The specific surface area (1.533 m2 g-1) of the glass was measured by the 

three-point BET method using Kr gas. 

3.2.2 Test solutions 

Initial column and batch experiments solutions were adjusted to pH values of 3, 6.3, 8, 9 

and 10 and ionic strength of 10 mM by varying concentrations of HCl, NH4Cl and 

NH4OH (19) (Table S1). These solutions were purged for two hours with grade 5.0 N2 

gas (BOC gases, Aberdeen) and all batch experiments were prepared and carried out in 

a N2 filled glove box. Detailed description of the experimental procedures can be found 

in the SI. 

3.2.3 Batch kinetic/equilibrium experiments. 

Stock As solutions (60 mg L-1) were prepared by weighing NaAsO2 and 

Na2HAsO4.7H2O daily into a 0.5 L volumetric flask and dissolved in DDI water for 

As(III) and As(V)  solutions, respectively.  
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For kinetic experiments, 20 ml of 4 µM As(III) and As(V) solutions of desired pH 

were dispensed into 50 mL centrifuge bottles containing 2g of basaltic glass. The 

samples were then shaken at 170 rpm at 30°C (±0.1°C) for 24, 8, 4, 1.5, 0.67, 0.2 and 

0.1 hours on an incubated shaker (MaxQ mini, Barnstead International). 

For isotherm experiments, solutions of desired pH with As concentrations of 0.667, 

1.33, 4.00, 8.01 and 16.0 μmol L-1, respectively, were dispensed into 50 mL centrifuge 

bottles containing 2 g of basaltic glass. The samples were shaken at 170 rpm at 30°C 

(±0.1°C) for 24h. All solutions were analyzed for As(III) by an optimized HG-AAS 

method (26) for FIA-HG-AAS and total As with FIA-HG-AAS. The As(III) method 

was cross validated on randomly selected samples with HPLC-ICP-MS (27) and the 

As(III)/As(V) speciation results concurred between the two techniques (Table S2). All 

As analyses were compared against the SLRS-4 Certified Reference Material. All 

experiments were carried out in triplicate. 

3.2.4 Column experiments 

Basaltic glass (16 g) was packed into a 16 cm long, 1 cm inner diameter PTFE column 

providing a porosity of 0.45 (Fig. S2). An As containing solution was prepared by 

pipetting 5 ml of 60 mg/L stock solution into a volumetric flask, adding 20 mg of Acid 

blue 9 that acted as a conservative tracer (28) into a 0.5 L volumetric flask and filling to 

the mark with solution of desired pH. Nitrogen gas was purged through the inlet 

solutions for two hours before pumping them onto the column.  A peristaltic pump 

(Cole-Parmer Masterflex) pumped 1000 PV of inlet solution at 1 mL min-1 into the base 

of the column. During this period, chemical composition, pH and Eh were monitored At 

stable outlet pH conditions of 3.0, 6.4, 8.1, 9.1 and 9.5(±0.1) for initial the pH 3, 6.3, 8, 

9 and 10 values, respectively, 4 pore volumes of As containing the inlet solution were 

injected into the column. Finally, the column was eluted with 25 pore volumes of As-

free inlet solution. A detailed description of the measurement procedure of the outlet 

solutions may be found in the SI. The low amount of sulfate (<0.6 μg L-1) and absence 

of sulfide in the outlet solutions due to the low concentration of sulfur (S) in the basaltic 

glass ensured a minimum effect of As-S species during the experimental procedure. 
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3.3 Results and discussion 

3.3.1 Redox state of experiments 

The discrepancy between the measured pe with a platinum electrode and the calculated 

pe from measured redox couples As(III)/As(V) and Fe(II)/Fe(III) indicated a lack of 

system redox equilibrium, which has been attributed to the slow conversion between the 

two oxidation states (9). Arsenic(V) as the initial species in the experiments, was never 

reduced to As(III). In the batch experiments As(III) was partially oxidized to As(V) and 

nearly reached equilibrium at pH 10 (Fig. 1, Table S4). In the column experiments, 

As(III) was not oxidized (Fig. 1) and the Fe redox couple indicated the dominance of 

Fe(II) oxidation to FeIII(OH)2
+(aq), FeIII(OH)3 (aq), FeIII(OH)4

- except at pH 3 and 10 

where Fe+2 was the dominant species.   

3.3.2 Batch adsorption experiments 

In the batch experiments, the pH increased within hours from pH 3 to pH 5.5. Batch 

experiments carried out at an initial pH 3 value will therefore be referred to as pH 5.5 

from this point on and cannot be used to predict As transport in columns at pH 3. The 

pH shift could have been the result of initial fast basaltic glass dissolution at pH 3 (29) 

leading to increased pH and subsequent formation of am-Al and am-Fe(III) hydroxides 

that would adsorb the As(III) in solution at pH 5.5 and generate the discrepancy 

between experimental and modelled results at pH 3 (5.5). The column experiments, 

however were carried out at pH 3.0 due to the pre-experimental extended flushing 

period  that was characterized by an initial fast rise to pH 6, which was then followed by 

a stepwise drop in pH values to pH 3.0 with the surface Si:Al:Fe chemical composition 

not differing from the fresh basaltic glass (Table S3, Fig. S3).  

The kinetics of adsorption was analyzed according to the second order kinetic 

model (30) and a dynamic Langmuir kinetic model (31). The pseudo second order 

model was represented as: 

2)( te
t qqk

dt
dq

−=
   

Eq. 3 

where t is time, k is the rate constant of sorption (kg sec mol-1), qe is the amount of 

soluted As adsorbed at equilibrium (mol kg-1) and qt is the amount of As sorbed on the 

surface at any given time (mol kg-1). Derivation of the second order kinetic constants 

may be found in the SI. 
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The dynamic Langmuir kinetic model was represented as: 

Θ−Θ−Θ−= dma kqCk
dt
dq )1)(( 0

 
Eq. 4 

where k a  is the first order constant for adsorption, C0 is the initial solute concentration 

(mol L-1), qm is the maximum amount of adsorbate (mol kg-1) (derived from 

experimental data described in the next section), θ is the fraction of covered surface and 

kd is the first order rate constant for desorption.  The kinetic Langmuir constants were 

derived by a method described in the supplementary information section SI. The 

constants from kinetic experiments are tabulated in Table S5. The pseudo-second-order 

model showed better fit to the data than the dynamic Langmuir model (Figs. 2a,b). The 

Langmuir model could not simulate the fast initial sorption rate; hence the deviation 

from the initial data points in Figs. 2a and 2b. This deviation was also evident for the 

pseudo second order model when the rate constant for the overall sorption (k) was used 

(Figs. 2a,b). 

The equilibrium adsorption isotherm data at varying pH were analyzed using the 

Langmuir adsorption expression: 

tL

Lm
e CK

CeKq
q

+
=

1    
Eq. 5 

where qe (mol kg-1) is the amount of adsorbed As at equilibrium, qm (mol kg-1) is the 

maximum adsorption capacity corresponding to complete monolayer coverage, Ce (mol 

L-1) is the equilibrium solute (As) concentration, KL is the Langmuir constant related to 

the energy of sorption (L mol-1) and Ct is As concentration As in solution at time t. The 

Langmuir parameters were obtained by nonlinear least-squares regression analysis on 

experimental data using the computer program Excel (Microsoft) (Figs. 2c,d) and are 

summarized in Table S5.  
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Figure 2 Kinetic adsorption experiments of 4 µmol L-1 As(III) and As(V) (b) and adsorption 

isotherm experiments for As(III) (c) and As(V) (d) onto basaltic glass. A complete sorption was 40 

µmol kg-1.  Fit to the pseudo-second- order model (dotted lines) and dynamic Langmuir model 

(solid lines) respectively on Figs. a and b. Fit to Langmuir isotherm model is represented as 

incremented lines on Figs. c and d. Adsorbent dose 2g 20 mL-1, ionic strength 0.01 M, temperature 

30°C. 

 

The equilibrium adsorption data were further analyzed with the generalized two 

layer model (32) incorporated into PHREEQC-2 (33). The surface in the surface 

complexation model (SCM) was considered to be a mechanical mixture of silanol, 

aluminol and amorphous Fe sites (34) in ratios equivalent to the Si, Al and Fe(III) ratios 

of the basaltic glass and surface site density as 1 μmol g-1 (Table S6). With this 

methodology, logks,1, logks,2 (5.56, -7.89, respectively) from eq.s 1 and 2 were calculated 

based on a consistent database for a triple layer model (21,34). The intrinsic equilibrium 

constants for H3AsO3 and H3AsO4 adsorption reactions were estimated from isotherm 

experiments by iteratively optimizing experimental curves to the SCM by minimizing 
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the differences between calculated and experimental adsorption data. Two surface 

reactions were assigned for As(III), formation of the bidentate inner sphere complex and 

the monodentate outer sphere complex (35) and two bidentate inner sphere complexes 

and one monodentate inner sphere complex for As(V) (36), respectively. By using the 

SCM, the effect of varying Cl- concentrations in the solution could be estimated and 

incorporated into the model (Table S6) and competitive sorption was diminishing 

except at pH 3 where Cl-surface complexes formed. 

3.3.2.1 As(III) 

For all pH treatments (except pH 6.3 treatment), sorption sites were saturated with 

As(III) within 8 h with less than 40% As(III) sorption (Fig 2a). The initial sorption rate 

for As(III) was fastest at pH 5.5 (28 nmol sec-1 kg-1) and slowest at pH 6.3 and 8 (5 and 

6 nmol sec-1 kg-1 respectively), but then increased again toward pH 10 (15 nmol sec-1 

kg-1) (Table S5, Fig. 2a). The minimum and maximum equilibrium adsorption of As(III) 

was calculated as 49.3 and 145  µmol kg-1 at pH 5.5 and pH 8 respectively by the 

Langmuir isotherm  (Table S5). The small difference detected in the maximum 

adsorption capacity of As(III) between pH treatments was due to the charge of the 

As(III) species. The As(III) occurred mainly as H3AsO3 up to pH 8 , but as H2AsO3
- 

with a percentage of 37% and 85% of the As(III) at pH 9 and 10, respectively (Table 

S4). Furthermore, a stronger negative surface charge of the glass at pH 10 explained the 

lower adsorption than at pH 9 (Figs. 1 and 2, Tables S4 and S5). The SCM predicted 

batch adsorption well over the whole pH range (Fig. 2c,d). Chloride competed with 

As(III) below pH 6.3 and as a consequence As(III) had limited sorption on the basaltic 

glass surface. The predicted increased deviation from the batch experimental data at low 

pH resulted in an enhanced fit to the experimental column data as will be discussed 

below. 

3.3.2.2 As(V) 

Sorption sites were saturated with As(V) within 8 h at pH 5.5, 9 and 10, whereas, 

adsorption was not completed at the end of experiment at pH 6.3 and 8 (Fig. 2b).  The 

initial sorption rate was highest (99 nmol sec-1 kg-1) for As(V) at pH 5.5 but lowered 

toward 1.3 nmol sec-1 kg-1 at pH 10 (Fig. 2b, Table S5).  The minimum and maximum 

equilibrium adsorption of As(V) was calculated as 442 and 2.33  µmol kg-1 at pH 5.5 

and pH 10 respectively by the Langmuir isotherm (Table S5).The predominant As(V) 
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species at pH 5.5 was H2AsO4
- which was strongly attracted to the high positive surface 

charge of the glass (Fig. 1,Table S4). As the pH increased the surface charge decreased 

and was close to zero at pH 6.3 and pH 8, resulting in a small difference in the 

maximum calculated adsorbance of As(V). The surface charge of the glass was 

increasingly negative at pH 9, resulting in a low adsorbance potential of negatively 

charged HAsO4
2- species (Table S4). Very limited adsorption was measured (Fig. 2d) 

and calculated (Table S5) at pH 10 due to the strong repulsion of the HAsO4
2- from the 

negatively charged surface (Fig. 2, Table S4). 

3.3.3 Arsenic transfer through columns 

Movement of As through experimental columns was modelled by the geochemical 

program PHREEQC-2 (33) by i) combining the pseudo-second order kinetic model 

(eq.3) with the Langmuir isotherm eq. (eq. 8).  The combination of eq. 3 and eq. 8 was 

necessary since the sorption rate depends on the equilibrium sorption concentration (qe 

in eq. 3), which in turn depends on the As solution concentration (Ct in eq. 8). 

Substituting eq. 8 for qe in eq. 3 therefore gives: 

2))
1

(( t
tL

tLmt q
CK
CKq

k
dt

dq
−

+
=

  
Eq. 6 

Modeling was further carried out by using ii) the dynamic Langmuir kinetic model (eq. 

7), and finally iii) by surface complexation modeling (SCM). The models generated 

were then validated by a series of column experiments where the inlet solution 

contained the respective As species at 4 μmol L-1 along with a conservative tracer (Figs. 

3 and S4). Recovery of As at the outlet of columns was estimated by integrating the area 

under the elution curves in Figs. 3 and S4. In the column experiments, As species were 

always retarded compared to the conservative tracer except for As(V) at pH 10 (Fig. 2). 

The experimental data were successfully modeled by kinetic approaches in 7 out of 10 

systems with either kinetic models, but there was considerable discrepancy for As(III) at 

pH 3 (due to the pH shift to 5.5)  and 6.3 and for As(V) at pH 8 (Fig. S4). The SCM 

modeled high pH experimental conditions successfully (Figs. 3 and S4), indicating that 

the dominant reactions reached equilibrium sufficiently quickly as the SCM used was 

an equilibrium based model. For As(III) inadequate fit by the SCM at pH 6.3-8 and for 

as As(V) at pH 8 was due to slow surface reactions that did not reach equilibrium in the 

column which is in agreement with As(V) adsorption rates onto aluminum oxide (37). 
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Figure 3 Transport of As(III) and As(V) through basaltic glass columns at pH 9. Four pore volumes 

of solution containing 4 µmol L-1 As and 40 mg L-1 Acid blue 9, a conservative tracer, were injected 

onto column and then eluted with 25 pore volumes of As free solution of the same pH and ionic 

strength. Filled circles are experimental data points, open circles are conservative tracer, hatched 

lines give results from pseudo-second-order and solid lines dynamic Langmuir kinetic models, 

respectively, dotted lines indicate the SCM model. Results from other pH values may be found in 

the SI. 

3.3.3.1 As(III) 

The maximum adsorption of As(III), as with many oxyanions, occurs around its first 

pKa (pH 9.2) on surfaces such as ferrihydrite (pH 8-10, (23)), am-Al(OH)3 (pH 7-

9,(25)) and coprecipated Al:Fe hydroxides (pH 8-9, (38)). At pH 9 and 10, 90% of 

As(III) was recovered from the outlet of the column and less than 2% of the available 

surface sites (qm) in the column were occupied with As after elution (Table S7). Both 

kinetic models provided excellent fit for As(III) at pH 10 but a slightly weaker fit at pH 

9 (Figs. 3 and S4). At pH 8, the dynamic Langmuir model simulated data well but a less 

strong fit was generated by the pseudo-second-order model. At pH 8, 68% of the 

injected As(III) was recovered from the column´s surface sites, which were 2% 

occupied (Table S7.) All As(III) was recovered from the pH 3 experiment, though least 

from the pH 8 (68%) experiment where the available surface sites for sorption (qm = 

145 µmol kg-1) of As(III) were most abundant. However, As(III) showed the highest 

retardation at pH 9 followed by 10, then 8≈6.3, and at pH 3 the retardation was limited, 

results which are in agreement with the fastest initial adsorption rates measured at pH 9 

and 10 (Figs. 3 and S4, Table S5).   At pH 10 the solubility of am-Al(OH)3 and Fe(III)-

hydroxides are higher than at pH 6-9 (39), allowing more fluctuations in pH and solute 

concentrations before the hydroxides start precipitating. The shift from pH 3 to 5.5 in 

batch experiments may have led to a formation of am-Al and am-Fe(III) hydroxides that 

As(V) 
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would adsorb the As(III) in solution at pH 5.5 and generate the discrepancy between the 

experimental and modeled results at pH 3 (5.5). The SCM did not allow for surface 

precipitation and assumed constant ratio of different sorption sites at different pH levels 

(Fig. S3 and Table S3) and modeled the As(III) sorption at pH 3 sufficiently when the 

chloride sorption reaction was taken into account (Fig. S4).  

3.3.3.2 As(V) 

All measured and modeled data for As(V) showed consistently similar trends from slow 

and incomplete sorption at pH 10 to fast and extensive sorption at pH 3 (Figs. 1, 2 and 

3,Table S5). At pH 9 and 10, 95% of As(V) was recovered from the outlet of the 

column and 11.8 and 38.6% of available surface sites (qm) were occupied by As after 

elution, respectively (Table S7). The adsorption rates (h, k and k a ) and capacity (qm) 

were smallest at these pH levels (Table S5). Both kinetic models successfully described 

column experimental data at pH 9 and 10 (Figs. 3 and S4). At pH 8 neither kinetic 

models described the column data successfully (Fig. S4) where 55% of As(V) was 

recovered while occupying less than 2% of the columns adsorption capacity (qm = 145 

µmol kg-1) (Tables S5,S7). Both kinetic models described experimental data for As(V) 

well at pH 3 and 6.3. The difference in pH at 5.5 in the batch experiments and pH 3 in 

the column experiments was not sufficient to show discrepancy between the data and 

the kinetic models as the basaltic glass surface sites were very far from being saturated 

(0.0 and 0.6 %) and nearly no As(V) (1% and 1%) was recovered from the column 

outlets at pH 3 or 6.3, respectively (Table S7). On the contrary, 95 % of As(V) was 

recovered at both pH 9 and 10 with 11.8 and 38.6% of sorption sites being occupied, 

respectively, indicating a large shift in sorption capacity as pH is shifted within the 

system. 

3.4 Implication for regional groundwater flow models 

During recent years, injection of spent geothermal wastewaters has received increased 

attention, although many geothermal power plants still release wastewater from 

discharging boreholes and production water at the surface or in shallow boreholes. The 

injection reduces declining pressures and extends the sustainability of the geothermal 

system (40). Injection furthermore prevents release of unwanted chemicals in elevated 

concentrations into the surface environment. 
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An important part in successful and sustainable utilization of geothermal energy 

lies in constructing models to predict thermal energy- and groundwater flow in the 

respective area. These models allow the prediction of movement of wastewater from the 

geothermal power plants. The current study highlights the importance of accurate 

definition of geochemical characteristics of the aquifers and the pollutant carrying 

water. An accurate prediction of As movement from geothermal power plant effluents 

to the surrounding environments relies on the knowledge of: i) the surface 

characteristics and hydraulic conductivity of the aquifer, ii) the speciation of As in the 

geothermal effluent and iii) the ability of the aquifer and geothermal water to maintain 

or alter the speciation of As when it moves through the aquifer. Arsenic in high-

temperature geothermal water is primarily As(III) (41) or on thioarsenate forms that can 

transform to As(III) and As(V) under atmospheric conditions (8).  Results generated in 

the current contribution can be applied to wastewater from discharging boreholes and to 

those released into shallow groundwater and suggest that alkaline geothermal waters in 

basaltic environment should be maintained in a reduced condition before shallow 

injection to prevent oxidation of As(III) to As(V), which is very mobile under alkaline 

conditions (Figs. 1, 2 and 3). In contrast, acid geothermal waters should be oxidized 

before injection into the ground due to the high sorption capacity of basaltic glass for 

As(V) at low pH provided that the adsorption rate of As(V) is faster than the reduction 

rate of As(V) to As(III) and all As(V) can be removed from the solution before the pH 

of the system is elevated due to weathering of the aquifer rocks. For decisions regarding 

injection into deep aquifers at higher temperatures further research needs to be carried 

out as the thermodynamic properties of arsenic species alter significantly as temperature 

increases (42). Finally, further study is needed to take into account the importance of 

thioarsenic species in sulfidic geothermal water (8). 
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3.6 Supporting information available 

Supporting information with validation of the speciation analyses, figure of the 

experimental column setup and coefficients generated in the current contribution are 

available. In addition, the chemical composition of all solutions and the basaltic glass 

surface is also provided as well as the reactions used in the SCM and their equilibrium 

constants. 

This information is available free of charge via the Internet at http://pubs.acs.org 
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12 pages, Text S1-S4, 7 tables, 4 figures 

S1 Introduction. The supporting information includes four figures and seven tables and 

a description of method to generate values of ka and kd in the dynamic Langmuir 

kinetic model. The first figure displays results from development of As(III) 

measurements (Fig. S1). The second figure displays the experimental column setup 

(Fig. S2).  The third figure is SEM pictures of the basaltic glass (Fig. S3). The fourth 

figure shows results from column experiments at pH values from 3 to 10. The first table 

lists the composition of the starting and inlet solutions in batch and dynamic 

experiments respectively (Table S1). The second table displays results from cross 

validation between two measuring procedures, HG-AAS and HPLC-ICP-MS (Table 

S2). The third table tabulates the ratio of Si, Al and Fe on the basaltic glass surface 

according to SEM/EDS measurements (Table S3). The fourth table tabulates the 

speciation of As species at the end of batch experiments (Table S4). The fifth table 

displays all kinetic and equilibrium coefficients derived from current experimental data 

(Table S5). The sixth table displays all surface reactions used in the SCM (Table S6). 

Finally the seventh table, lists recovery results of As from column experiment outlets 

(Table S7). 

S2 Solutions. The column and batch experiments were carried out at with initial pH 

values (pH 3, 6.3, 8, 9 and 10) at ionic strength of 10 mM  by varying concentrations of 

HCl, NH4Cl and NH4OH (Table S1). These solutions were purged for two hours with 
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grade 5.0 N2 gas (BOC gases, Aberdeen) before any As was added to them or before 

they came in contact with the basaltic glass. 

S3 Validation of analytical method. Cross validation of the HG-AAS method was 

determined with solutions spiked with known amounts of As(III) and As(V) stock 

solutions respectively. An aliquot of these solutions was then mixed (50:50 V/V) with 

0.4 M Na-citrate buffer (pH 5.5) and measured within an hour in HG-AAS (Fig. S1, 

Table S2). Another aliquot of the same spike was measured within one day in HPLC-

ICP-MS (27).  Furthermore randomly selected samples from batch experiments were 

analyzed by HPLC-ICP-MS (27) and the As(III)/As(V) speciation results concurred 

between the two techniques (Table S2). Briefly the HPCL speciation was carried out on 

an Hamilton columns consisting of a pre column (11.2 mm, 12-20μm) and a PRP-X100 

10-μm anion-exchange column (150 x 4.1 mm). Injection volume of 100 μL were 

injected manually into a HP1100 HPLC system (Agilent Technologies) with a mobile 

phase consisting of 6.66 mM ammonium hydrophosphate (NH4H2PO4) and 6.66 mM 

ammonium nitrate (NH4NO3), adjusted to pH 6.2 with ammonia.  

S4 Surface reactions. Table S6 tabulates surface reactions included to simulate column 

experiments in Phreeqc-2. The surface area and available surface sites in on the basaltic 

glass in the SCM were adjusted to 7e-7 moles g-1 and 0.15 m2 g-1 by comparing 

experimental and modeled results for As(III) at pH 9. 

 

Adsorption constants for the dynamic Langmuir kinetic model were derived in the 

following way. 

The dynamic Langmuir kinetic equation is: 

Θ−Θ−Θ−=
Θ

da kqck
dt
d )1)(( max0     Eq. S1 

Where ka is adsorption constant (mol kg-1), C0 is the initial solution composition (mol L-

1), qmax is the maximum sorption (mol kg-1) derived from Langmuir Isotherm model and 

kd is the desorption constant (s-1). First we multiply out the parenthesis: 

Θ−Θ−Θ−Θ−=
Θ

daaaa kqkqkckck
dt
d 2

maxmax00   Eq. S2 

and rearrange: 

00max
2

max )( ckkckqkqk
dt
d

adaaa +++Θ−Θ=
Θ   Eq. S3 

The eq. is a “variables separable” and is solved by: 
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Call the zero-roots of the quadratic in the denominator r1 and r2. The discriminator of 

the quadratic is given by: 
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Wish to determine whether D > 0 or D z 0. 
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Which becomes: 

2
max

2

maxmax

0 4
1

qk
ck

qk
k

q
c

D
a

od

a

d +⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=     Eq. S9 

D is clearly >0. Thus the quadratic has two real roots and can be factored, thus: 

( )( )21 rr −Θ−Θ  where: 
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Now we can decompose eq. 4 into partial fractions: 

 ( )( )∫∫ −Θ−Θ
Θ

=
21

max rr
ddtqka     Eq. S12 

or: 
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Now r1 – r2 equals D  and integration at boundary conditions t = 0 to t =t with the 

eq.: 

( ) ( ) ∫∫
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ta   Eq. S14 

And then integrate at boundary conditions θ = 0 to θ = θ: 
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Eq. 17 can thus be fitted to experimental data by iteration by varying ka only. The kd 

constant is later calculated by dividing ka by KL derived from sorption isotherm data 

since: 

d

a
L k

k
K =        Eq. S18 

 

 
Table S1 Composition of solutions used in the experiments performed in the present study 

 

pH HCl NH4Cl NH4OH
(25°C) (mol L-1) (mol L-1) (mol L-1)
3.00 0.00100 0.0090
6.30 0.00010 0.0099
8.02 0.00001 0.0095 0.0005
9.03 0.0065 0.0035
10.05 0.0015 0.0085
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Table S2 Speciation procedure in HG-AAS validated by HPLC-ICP-MS, all concentrations are in 

µmol l-1. 

 
 
Table S3 Ratio of Al,Si and Fe on basaltic glass surface prior and after column experiments. 

 
Table S4 Measured oxidation states of As at end of batch isotherm experiments and calculation of 

species assuming thermodynamic equilibrium. 

 

Spiked solutions from method development:

As(III) As(V) As(III) S.E. As(V)* S.E. As‐Total S.E. As(III) S.E. As(V) S.E. As‐total** S.E.
Spike 0.133 0.000 0.137 0.002 0.000 ‐ 0.136 0.002 0.141 0.009 <LOD ‐ 0.150 0.009
Spike 0.133 0.027 0.137 0.003 0.023 ‐ 0.160 0.002 0.142 0.010 0.020 ‐ 0.162 0.010
Spike 0.133 0.133 0.147 0.006 0.120 ‐ 0.267 0.004 0.155 0.008 0.129 ‐ 0.284 0.008
Spike 0.133 0.267 0.136 0.002 0.264 ‐ 0.400 0.002 0.139 0.012 0.261 ‐ 0.400 0.012
Spike 0.133 0.667 0.135 0.002 0.665 ‐ 0.800 0.003 0.133 0.012 0.681 ‐ 0.814 0.012

Samples from Langmuir isotherm experiments:

pH As(III) As(V) As(III) S.E. As(V)* S.E. As‐Total S.E. As(III) S.E. As(V) S.E. As‐total S.E.
6.3 0.667 0 0.287 0.012 0.101 ‐ 0.388 0.010 0.280 ‐ 0.102 ‐ 0.382 ‐
8 0.667 ‐ 0.307 0.015 0.038 ‐ 0.345 0.013 0.306 ‐ 0.040 ‐ 0.346 ‐
9 ‐ 0.667 0.006 0.094 0.576 ‐ 0.581 0.089 <LOD ‐ 0.576 ‐ 0.576 ‐

10 ‐ 0.667 0.233 0.011 0.414 ‐ 0.647 0.012 0.228 ‐ 0.410 ‐ 0.644 ‐

* As(V) calculated by subtraction of As(III) from As‐total in HG‐AAS measurements
** As‐total calculated as sum of As(III) and As(V)

Initial 
concentration 

Spike conc. HG‐AAS measurement HPLC‐ICP‐MS measurement

Sample Al Si Fe
Fresh material 0.23 0.65 0.13
column experiments:
3 0.24 0.65 0.11
6.3 0.23 0.65 0.13
8 0.21 0.65 0.14
9 0.26 0.63 0.11
10 0.23 0.64 0.13

mean of leached 0.23 0.64 0.13
SE 0.01 0.00 0.01

pH*
Surface 
charge
C m-2

As(III) As(V) H3AsO3 H2AsO3
- As(III) As(V) H3AsO4 H2AsO4

- HAsO4
2- AsO4

-3

5.5 +0.3 91 9 100 0 0 100 0 100 0 0
6.3 0 86 14 100 0 0 100 0 72 28 0
8.0 0 98 2 94 6 0 100 0 5 95 0
9.0 -0.5 100 0 63 37 0 100 0 0.5 99 0.5
10.0 -5 60 40 15 85 0 100 0 0 97 3

* pH in all experiments were within 0.1 pH value from reported value

measured 
oxidation state (%)

measured 
oxidation state (%)

Partition of As(III) 
species

Partition of As(V) species
As(V) experiments:As (III) experiments:
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Table S5 Pseudo second order kinetic, Langmuir kinetic  and isotherm coefficients for As(III) and 

As(V) derived from static batch experiments at pH 5.5-10. Ionic strength, 0.01 M; Adsorbent dose 

100 g L-1; Temperature, 30°C; Initial As concentration in kinetic experiments was 4 μM and 0.67-

16 μM in isotherm experiments respectively. 

 
Table S6 Reactions used in the SCM model. Log K values were calculated based on the 

approximation that the basaltic glass surface was a mixture of Si (65%), Al (22.5%) and Fe (12.5%) 

surfaces and as a consequence having silanol, aluminol and goethite sites in identical fractions. 

 

pH h* k qe ka kd KL qmax

mol sec kg‐1 kg sec mol‐1 mol kg‐1 L mol‐1 s‐1 s‐1 L mol‐1 mol kg‐1

As(III)
5.5 2.80±0.12E‐08 40.7±1.2 2.62±0.13e‐5 69.8±8.8 2.0±0.2e‐4 3.48±1.33e5 4.93±0.69e‐5
6.3 5.06±0.08E‐09 22.7±0.3 1.49±0.04e‐5 4.86±0.80 3.6±0.4e‐5 1.36±0.15e5 5.81±0.31e‐5
8 6.22±0.80E‐09 30.9±2.1 1.42±0.07e‐5 2.82±0.18 5.5±0.4e‐5 5.12±2.20e4 1.45±0.44e‐4
9 1.36±0.02E‐08 69.0±2.7 1.41±0.06e‐5 10.0±0.11 1.4±0.2e‐4 6.94±0.77e4 6.49±0.44e‐5
10 1.51±0.04E‐08 187±9.1 0.90±0.09e‐5 36.0±4.2 4.1±0.5e‐4 8.70±5.14e4 5.05±1.67e‐5

As(V)
5.5 9.86±0.09E‐08 65.8±0.4 3.87±0.40e‐5 16.6±0.15 1.9±0.1e‐5 8.61±5.19e5 4.42±1.87e‐4
6.3 6.61±0.09E‐09 7.89±0.3 2.89±0.11e‐5 2.10±0.09 5.6±0.2e‐6 3.78±0.16e5 1.29±0.02e‐4
8 5.18±0.04E‐09 16.6±0.2 1.77±0.14e‐5 1.15±0.14 2.1±0.2e‐5 5.41±0.45e5 2.21±1.33e‐4
9 2.98±0.01E‐09 36.4±0.1 9.04±0.77e‐6 103±9.6 3.5±0.4e‐4 2.93±0.94e5 7.61±0.85e‐6
10 1.31±0.02E‐09 363±7.0 1.90±0.08e‐6 42.0±0.33 5.4±0.5e‐4 7.73±5.86e5 2.33±0.46e‐6

* All values are mean+/‐ one sigma of the curve fitting

Langmuir IsothermPseudo second order model Langmuir kinetic

Reaction log K Ref.
Silanol-OH  + H+ = Silanol-OH2

+ -0.7 (34)
Silanol-OH = Silanol-O- + H+ -7.7 (34)
Aluminol-OH  + H+ = Aluminol-OH2

+ 5.5 (34)
Aluminol-OH = Aluminol-O- + H+ -11.5 (34)
Goethite-OH  + H+ = Goethite-OH2

+ 6.3 (34)
Goethite-OH = Goethite-O- + H+ -11.9 (34)

Glass-OH  + H+ = Glass-OH2
+ 5.52 *

Glass-OH = Glass-O- + H+ -7.88 *

2Glass-OH + H3AsO3 = (Glass-O)2AsOH +2H2O 4.7 *
Glass-OH + H3AsO3 = Glass-H4AsO4  2.78 *

Glass-OH + H3AsO4 = Glass-OAsO3
-2 + 2H+ + H2O -2.4 *

2Glass-OH + H3AsO4 = (Glass-O)2AsO2
- + H+ + 2H2O 2.3 *

2Glass-OH + H3AsO4 = (Glass-O)2AsOOH + 2H2O 4.3 *

Glass-OH + Cl- + H+ = Glass-OH2Cl 1.56 *
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Table S7 Recovery of As from outlet of column experiments. 

 
 

  

 
Figure S1 Addition of As(V) to 0.2 M Na-citrate (pH 5.0) solutions containing As(III) did not 

increase the absorbance values measure in HG-AAS therefore allowing estimation of As(V) by 

subtracting measured As(III) from measured As-total concentrations. 

pH AsIII AsV AsIII AsV
3 100 1 0.0 0.0
6.3 92 1 1.2 0.6
8 68 55 2.0 1.3
9 90 95 1.4 11.8
10 90 95 1.8 38.6

% of inlet recovered % of qm occupied
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Figure S2 Experimental setup. One thousand pore volumes (PV) of solution from the background 

reservoir were pumped through the column before 4 PV of As solution was injected followed by 25 

PV of background solution. The outflow was divided to 3 lines where pH, Eh, a conservative tracer 

and As(III) were measured continuously and samples for total As analysis were collected by a 

fraction collector.  
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Figure S3 Fresh basaltic glass (a,b) and basaltic glass after column experiments carried out 

at inlet pH 3(c,d), 6.3(e,f), 8(g,h), 9(i,j) and 10(k,l), respectively. 

a b 

c d 

e f 
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Figure S3 continued. 

  

g h 

i j 

k l 
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Figure S4 Transport of As(III) and As(V) through basaltic glass columns at pH 3-10. Four pore 

volumes of solution containing 4 µmol L-1 As and 40 mg L-1 Acid blue 9, a conservative tracer, were 

injected onto column and then eluted with 25 pore volumes of As free solution of the same pH and 

ionic strength. Filled circles are experimental data points, open circles are conservative tracer, 

hatched lines give results from pseudo-second-order and solid lines dynamic Langmuir kinetic 

models, respectively, dotted lines indicate the SCM model. 
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Abstract 

The use of geothermal energy as a source for electricity and district heating has 

increased over recent decades. Dissolved arsenic (As) can be an important constituent of 

the geothermal fluids brought to the Earth’s surface.  Here we present the field 

application of laboratory measured adsorption coefficients of aquatic As species on 

basaltic glass surfaces (Sigfusson et al., 2008).  The mobility of As species in the 

basaltic aquifer in the Nesjavellir geothermal system was modelled by the one 

dimensional (1 D) reactive transport model PHREEQC-2 (Appelo and Postma, 1999), 

constrained by a long time series of field measurements of chemical composition of 

geothermal effluent fluids, pH, Eh and  sometimes Fe- and As-dissolved species 

measurements.  Di-, tri- and tetrathioarsenic species (As(OH)S2
2-,AsS3H2- ,AsS3

3- and 

As(SH)4) were the dominant form of dissolved As in geothermal waters exiting the 

power plant but converted to some extent to arsenite (H3AsO3) and arsenate (HAsO4
2-) 

oxyanions coinciding with rapid oxidation of sulphide (S2
-) to thiosulphide (S2O3

2-) and 

finally to sulphate (SO4
2-) during surface runoff before feeding into a basaltic lava field.  

A continuous 25 year data set monitoring groundwater chemistry along a traverse 

of warm springs on the Lake Thingvallavatn shoreline allowed calibration of the 1D 

model. Furthermore, a series of ground water wells located in the basaltic lava field, 

provided access along the line of flow of the geothermal effluent waters towards the 

lake. The conservative ion, chloride (Cl-), moved through the basaltic lava field (4100 

m) in less than10 years but As was retarded considerably due to surface reactions and 

has entered a groundwater well 850 m down the flow path as arsenate in accordance to 

prediction by the 1D model. The 1D model predicted a complete breakthrough of 

arsenate in the year 2100 while arsenite will be retained for about 1000 years. Due to 

increased deep well injection of geothermal effluents, adsorption to the basalt surfaces 

and dilution from ground waters, As concentrations in springs discharging into Lake 

Thingvallavatn will not reach those of the inlet concentrations during the years 1990-

2006. 
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4.1 Introduction 

Geothermal areas frequently produce spring and stream waters with elevated arsenic 

(As) concentrations (Webster and Nordstrom, 2003). Utilisation of geothermal areas can 

increase the discharge of geothermal waters towards the surface with associated heavy 

metal contamination (Olafsson, 1992; Baba and Armannsson, 2006; Gallup, 2007; 

Aksoy et al., 2009).  Re-injection of spent geothermal fluids to deep aquifers is rapidly 

increasing around the world and is recommended as the standard procedure to avoid 

adverse impacts of geothermal utilisation (Baba and Armannsson, 2006). 

Arsenic is believed to primarily enter crustal fluids during crystallising of deep 

plutons as hot volatile-rich magmatic fluids escape from the plutons and segregate into 

vapour and brine resulting in formation of porphyry-style and epithermal ore deposits 

and fumaroles activity in volcanic areas (Goldschmidt, 1954; Ballantyne and Moore 

1988). Arsenic concentrations in volcanic gases sampled between 400 and 900°C often 

range between 1-10 ppm of the vapour condensates (Mambo, Yoshida & Matsuo 1991) 

corresponding to As enrichment in the gas phase between 100 and 1000 with respect to 

the magma body suggesting an important transfer of As into the hydrosphere and 

atmosphere during magma degassing and volcanic eruptions (Pokrovski et al., 2002). 

Arsenic preferentially concentrates into the liquid aqueous phase in water dominated 

active hydrothermal systems below 350°C (Ballantyne and Moore, 1988). Arsenic 

mainly occurs as As(III) hydroxide, primarily as As(OH)3 aqueous species and to lesser 

extent, the sulphide H0-3As1-3S3-6, species in natural hydrothermal solutions depending 

on temperature, pH and H2S content (Akinfiev et al., 1992; Helz et al., 1995; Pokrovski 

et al., 1996).  According to dissolution experiments, As occurs to a large extent on a 

soluble form in intermediate and silicic volcanics in New Zealand, probably as salts on 

mineral grain surfaces (Ellis and Mahon, 1964). The ratio of As to Cl in solution in deep 

aquifers in Iceland is similar to that of tholeiitic basalts indicating the As may be 

leached congruently from the rock surfaces as meteoric water reacts with those rocks in 

high-temperature geothermal systems (Giroud, 2008) or at lower depths in colder 

environments (Arnorsson, 2003). 

Although arsenate is relatively mobile in surface waters and as a mixture of arsenite 

and arsenate in shallow ground waters in basaltic terrain (Arnorsson, 2003), it may not 

be considered as conservative as Cl- and boron (B) in hydrothermal solutions in Iceland 

(Giroud, 2008). It may be incorporated into secondary sulphide minerals such as pyrite 
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(FeS2), realgar (As2S2) and orpiment (As2S3) (Cleverley et al., 2003) depending on 

H2S(aq) concentrations. As the hydrothermal solutions rise towards the surface and mix 

with cold ground waters at shallow levels the As may be effectively removed from the 

solution by coprecipitation with or adsorption onto ferric hydroxides (Giroud, 2008; 

Arnorsson, 2003) or sorbed on basaltic glass surfaces (Sigfusson et al., 2008). 

Hydrothermal fluids may rise towards the surface with limited interaction with cold 

ground waters, either naturally in the form of springs and fumaroles or through 

discharging boreholes utilised for geothermal power production.  Recent advances in 

analytical techniques have made possible direct determination of thioarsenic species in 

geothermal waters either in the field (this study) or in the laboratory after preservation 

(Wallschlager and Roehl, 2001, Stauder et al., 2005, Planer-Friedrich et al., 2007).  As 

the discharged waters from a sulphidic hot spring flowed on the surface, thioarsenates 

preferably transformed into arsenite with less thioarsenates transforming stepwise by 

ligand exchange to arsenate and finally the arsenite oxidised to arsenate as all 

thioarsenates and H2S had disappeared (Planer-Friedrich et al., 2007).  

The As contained in alkaline sulphidic solutions can occur either mainly as 

thioarsenate or thioarsenite according to a chromatographic method (Wilkin et al., 2003; 

Stauder et al., 2005; Planer-Friedrich et al., 2007) whereas Beak et al. (2008) have 

pointed out that the chromatographic methods cannot independently determine the 

oxidation state of As and peaks generated by thioarsenates may also be explained by 

thioarsenite species. In any case, the thioarsenic species, incorporating the As on either 

oxidation state, brake down under oxidised conditions at the surface in a series of 

kinetically controlled reactions (Planer-Friedrich et al., 2007).  Therefore, the chemical 

composition of the water and the reaction time at the Earth’s surface determine the As 

speciation in the geothermal water once it runs on the surface or seeps back into the 

bedrock. An accurate quantification of the individual species may as a consequence, be 

detrimental on As transport prediction with geochemical modeling. 

The transport of As in shallow groundwater aquifers has been studied extensively 

due to its toxicity e.g. Charlet et al. (2007).  The reduced form of arsenic, arsenite 

(As(III)) is generally considered more toxic than the oxidised form, arsenate (As(V)) 

(Ferguson and Gavis, 1972).  The harmfulness of arsenite is based on its reaction with 

SH-groups of proteins (Squibb and Fowler, 1983) and, therefore, Stauder et al. (2005) 

suggested the toxicity of As could be decreased by formation of thioarsenates (addition 

of SH-groups to As) from arsenite in sulphidic environments.  The mobility of these As 
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species depends on the chemical characteristics of the species themselves as well as the 

surface properties of the aquifer matrix.  The surface of the aquifer in this contribution 

is primarily composed of basaltic glass. Sigfusson et al. (2008) measured sorption 

processes of arsenite and arsenate on basaltic glass and reported decreasing mobility of 

arsenite as pH increased from pH 3 to 10 whereas arsenate was immobile at pH 3 and 

highly mobile at pH 10.  Stauder et al. (2005) predicted that thioarsenates should be less 

mobile than arsenite and arsenate on soil materials such as pyrite and goethite due to the 

shift from neutral to weak anionic form to a strong anionic As complex as a result of 

thioarsenates.  This would be the case under acidic conditions whereas the thioarsenates 

should be more mobile at alkaline conditions as encountered in the high-temperature 

geothermal fluids in the current contribution. 

The aim of this study was to predict the transport of As in a basaltic aquifer within 

the Nesjavellir geothermal system in SW Iceland.  To this end, laboratory measured 

adsorption coefficients of aquatic As species on basaltic glass surfaces were 

incorporated into the one dimensional (1 D) reactive transport model PHREEQC-2 

(Parkhurst and Appelo 1999) constrained by 25 year long time series of field 

measurements of chemical composition of geothermal effluent fluids and ground 

waters, pH, Eh and  sometimes Fe- and As-dissolved species measurements. 

4.2 Geological setting and power production 

4.2.1 Geological setting 

The Nesjavellir geothermal power plant is a so called co-generation power plant, 

producing both 88°C hot water by heat exchange and electricity.  It lies in the eastern 

rim of the Hengill central volcano complex in south western Iceland (Fig. 1). The 

Hengill central volcano complex is the northernmost complex of the Western volcanic 

rift zone of Iceland that extends from the tip of Reykjanes peninsula which then 

submerges to form the Mid Atlantic ridge (MAR). To the north of the Hengill central 

volcano, Lake Thingvallavatn fills a tectonic graben associated with west north-

westward tectonic movement of the North American plate and the Hreppar micro plate 

which separates the North American and Eurasian plates in the area (Einarsson, 2008). 

The lake is primarily spring fed by shallow aquifers to the north and supports a 

relatively high productivity ecosystem for its latitude (Jonasson, 1992). The Nesjavellir 
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Figure 1 Location of sampling sites, the geological cross section and the 1D model path. Green line 

near the shore depicts the transverse in figure 3. Modified from Hafstað et al. (2007). 

power plant lies in the Nesjavellir graben extending from Hengill central volcano to 

Lake Thingvallavatn (Fig. 1). The bedrock topography is characterised by 
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hyaloclastite ridges which are mostly basaltic glass, formed sub glacially during glacial 

intervals (Tomasson and Saemundsson, 1967). The area is one of the most active 

volcanic areas in Iceland. On the surface, Holocene lavas of variable age have flowed 

from eruption sites in the vicinity and extended far into the lake. Of the surface lavas, 

Stangarhólshraun is the oldest and erupted in early Holocene (8 ka) from a crater row 

extending from westerly parts of Stangarháls toward the lake in NE-SV (Figs.1 and 2a). 

The lava flows in this area are of AA type with thick glassy scoria at the base and top of 

the lava flows facilitating fast groundwater flow at the base of the lavas. The lava is 

partially covered by the younger Hagavíkurhraun (5.5 ka) erupted from a crater row to 

the east of the Nesjavellir graben and flowed over the graben (Figs. 1 and 2a,)). The 

lava is composed of oxidized scoria at the top and base of the flow while the centre of 

the flow is more dense and crystalline. The youngest lava, Nesjahraun (2 ka), erupted 

near the Hagavíkurhraun and covers a large portion of the older lavas as shown in Figs. 

Figure 2a. Geological cross section of the modelled area (modified from Hafstað et. al, 2007). 

Geographical location of the cross section is displayed as yellow line in Fig. 1.  Fig. 2b. The 1D 

model for water flow from Lækjarhvarf (Site 7) to Grámelur (site 13) corresponding to the cross-

section in Fig. 2a. 
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1 and 2a (Saemundsson, 1995).  The lava primarily covers the eastern parts of the 

Nesjavellir graben between the power plant and Lake Thingvallavatn and extends 1 km 

into the lake to 40 m depth. A series of tectonic events occurred between the eruptions 

of the two youngest lavas leaving series of faults in the Nesjavellir graben (Fig. 2a). The 

subsided area formed in these tectonic events was later filled with the Nesjahraun lava 

(Saemundsson, 1995). The Holocene lavas overlie the hyaloclastite  rock formation 

consisting of basalt of variable crystallinity such as tuff, breccias, pillow lavas, and 

pillow fragments and glacial till can also be found in the bedrock (Hafstað et al., 2007) 

(Fig. 2a).  Figure. 2a represents lateral transect extending along the main groundwater 

flow path.  Figure 2b depicts the proposed mass balance scheme for the As transport as 

described later. 

4.2.2 Power production at the Nesjavellir site. 

The power plant was commissioned in September 1990.  Initially, 4 wells were 

connected to the production line.  Prior to the electrical power production in 1998, the 

198°C geothermal fluid was separated by gravity into its water and gas phase.  The hot 

steam was used to heat the 4°C ground water from the Grámelur (site 13 in Figure 1) to 

88°C. This low dissolved solid 88°C heated water was then used for municipal district 

heating. 

The brine was boiled down to atmospheric pressure and disposed of in the nearby 

Nesjavallalækur brook as shown in Fig. 1. Further downstream, this brook forms the 

pond Lækjarhvarf, which entirely drains into the subsurface. The separated steam phase 

was conducted to the power house where it was used for the heat exchange. The 

condensed steam produced during the heat exchange was disposed of into shallow wells 

adjacent to the power plant. 

The geothermal power plant was redesigned to a co-generation plant for both hot 

water and electricity production in the summer of 1998. From then on, heat exchangers 

harnessed the energy of the high dissolved solid geothermal waters, while the steam was 

conducted to two turbine units for electricity production. Following 1998, increasing 

amounts of cold ground water were needed for municipal heating, which lead to 

dramatic increase in discharge from the Grámelur pumping station. The separated water 

phase was disposed of into the brook Nesjavallalækur, but since 2004 an increasing 

amount (initially 40 l s-1) of separator water has been disposed of into 800 m deep wells 

near the power plant.  In the beginning of 2009, 190 l s-1 were disposed of into the wells 
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along with large proportion of the condensate while the remaining 50 l s-1 are disposed 

of into the Nesjavallalækur brook.  

4.3 Fluid geochemistry 

4.3.1 Sampling sites 

Samples for detailed chemical analysis were collected at 13 sites near the Nesjavellir 

power plant in March 2008 (Figure 1 and Table 1). Furthermore, the research 

Department of Reykjavík Energy has sampled the water at Nesjavallalækur and 

Lækjarhvarf (Sites 1 and 7, respectively), at Grámelur (Site 15) and the shoreline of 

Thingvallavatn biannually since 1983 (Figs. 1 and 3a,b,c and d). 

4.3.2 Sampling methodology 

Samples were pumped directly from respective source (borehole, spring or stream) by a 

peristaltic pump (Cole Parmer Masterflex E/S portable sampler) through a High Density 

Polyethylene (HDPE) cooling loop followed by a 0.2 μm cellulose acetate (CA) filter 

(Advantec MFS) enclosed in a HDPE housing. Samples from boreholes were extracted 

2 m below the water table. All bottles were pre-rinsed with filtered water prior to 

sample collection. Sample for As and anion speciation was directed into a 10 ml gas 

tight syringe and injected into a Dionex ICS-2000 ion chromatograph (IC) coupled to a 

PSAnalytical hydride-generation atomic fluorescence spectrophotometer (HG-AFS) 

immediately on sampling as the analytical equipment was field deployed.  An example 

chromatogram may be found in Fig. 4. Then sample was directed through the cooling 

loop into a pH/Eh flow cell and pH and Eh recorded respectively (Cole Parmer 

combination gel filled electrode for pH and Pt-electrode for Eh with Eutech pH200 

displays). Temperature of the pH/Eh flow-cell was set as close to 25°C by adjusting the 

sample flow rate through the cooling loop. Then 60 ml for total carbonate carbon (TCC) 
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were pumped into an amber glass bottle and filled completely before being sealed  
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Table 1 Chemical composition of geothermal effluent, river and groundwaters 
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with an air tight cap. Sample was then pumped into a 50 ml HDPE bottle and 0.5-7.5 ml 

of sample pipetted to a 15 ml HDPE bottle for determination of H2S. The remainder in 

the 50 ml bottle was preserved to 1% 6 N HCl for the determination of ferric and 

ferrous iron. Another 50 ml HDPE bottle was filled and sample pH raised to >10 by the 

addition of 1.0 N NaOH followed by the addition of 0.5 mL of 30% H2O2. After 30 min, 

HCl was used to acidify sample to pH<2 (Beak et al., 2008).  After that, 50 ml HDPE 

bottle was filled and acidified to 0.5% by concentrated HNO3for the analysis of major 

constituents and selected minor constituents. Finally, sample for further As-speciation 

analysis was pumped into two 15 ml HDPE bottles which were immediately frozen in 

dry-ice. 

4.3.3 Analytical methods 

Major and some minor constituents were measured on by Spectro Ciros Vision 

Inductively Coupled Plasma Atomic Emission Spectrometer (ICP-AES). Arsenic 

species, arsenite (H3AsO3) , arsenate (HAsO3
2-), mono-, di-, tri- and tetrathioarsenate, 

(As(OH)2(SH), As(OH)2S-, As(OH)S2
2-,AsS3H2- ,AsS3

3- and As(SH)4) and the anions F-, 

Cl-, SO4
2-, S2O3

2- were separated according to Planer-Friedrich et al. (2007).  Briefly A 

Dionex ICS-2000 with self generated AEC separated and detected, anionic species and 

the HG-AFS detected species that contained As (Table 2).  The As concentration for 

each individual species was quantified with HG-AFS as opposed to ICP-MS, as the 

instrumentation was field deployed. Total As was measured by HG-AFS according to 

(PSAnalytical 1997). Total carbonic carbon was measured by AEC according to 

(Stefansson et al., 2007). DOC was measured by persulphate UV-oxidation followed by 

infrared detection of generated CO2 (LABTOC-Pollution and Process Monitoring). Iron 

speciation was carried out with MetpacTM PCDA eluent on a Dionex ICS-3000 

according to Dionex technical note 10 (Dionex). Alterations to the method were: a 1 ml 

injection loop was used to increase sensitivity and 4-(2-pyridylazo) resorcinol (PAR) 

was halved to 60 µg l-1. Total As was analysed in HNO3 acidified samples from 

Reykjavik Energy archives, covering the time period1991-2008 and few samples 

sampled prior to 1990. The method was according to (PSAnalytical, 1997). 
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Table 2 Instrumental setup for the detection of arsenic oxy- and thioanions by AEC-HG-AFS. 

Speciation procedure was adapted from Planer-Friedrich et al. (2007). 

 

Anion Exchange Chromatography (AEC) separation

Instrument DIONEX ICS‐2000

Column IonPac AS‐16/AG‐16 4‐mm (10‐32) (Dionex, Sunnyvale, CA)

Eluent KOH, Automated eluent generation at 1 ml/min
Gradient 0 → 7 min 20 mmol/l

7 → 17 min 20 → 100 mmol/l
17 → 25 min 100 mmol/l
25 → 28 min 100 → 20 mmol/l

Sample volume 100 µl

Typical retention times arsenite 271 s
arsenate 693 s
monothioarsenite 777 s
dithioarsenite 861 s
trithioarsenite 948 s
tetrathioarsenite 1039 s

Supression ASRS‐Ultra 4‐mm (Dionex, Sunnyvale, CA)
300 mA current, 5 ml min‐1 water, (external mode)

Hydride Generation Atomic Fluoresence Spectroscopy (HG‐AFS) detection

Instrument PSAnalytical Millenium Excalibur

Reductant 12,5% HCl, red‐red tubing, pump 50%
0.7% NaBH4 in 0.1 M NaOH, grey‐grey tubing, pump 100%

Carrier gas Ar (5.0 grade), flow rate 300 ml/min

Gas / liquid separator Type ME Gas/liquid separator

Air dryer Permapure dryer system
Dryer gas, Ar, flow rate 2.5 l/min

Lamp Boosted discharge hollow cathode lamp (BDHCL)
Primary current 27.5 mA
Boost current 35.0 mA
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Figure 4 Sample chromatogram for arsenic and anion speciation from water measured at site 6 less 

than one minute after sampling 

4.3.4 Thermodynamic data 

Results from chemical analysis were inserted into the computer code PHREEQC-2 

(Appelo and Postma, 1999) where speciation calculations were carried out. The 

wateq4f.dat (with PHREEQC-2 version 2.15) was amended with equilibrium constants 

for thioarsenite from Wilkin et al. (2003). 

4.3.5 Fluid composition 

Results from aqueous chemical analysis are given in Table 1. The temperature and pH 

of the geothermal outlet brine at Site 4 was 65.5°C and  9.00 (measured at 25 °C) 

respectively and had lowered to  22°C  and pH 8.64 at Site 7 were surface water 

disappeared under the lava. Similarly the Eh shifted from -234 to +22. Ferric iron was 

the dominant iron species in the groundwater wells whereas more ferrous iron was 

detected in some surface waters. 

The pH drop in the brook is a consequence of H2S oxidation to SO4
2- (Table 1), 

silica polymerization (Gunnarsson and Arnorsson, 2008) and dilution with surface 

runoff as indicated by the Cl-/B ratio of these waters (Fig. 5). The mixed 

Nesjavallalækur (Site 5) was a 2:1 mixture of the outlet water (Site 4) and 

Nesjavallalækur (Site 1) based on Cl- concentrations. The high carbon concentration at 

Site 6 was due to surface runoff from Site 2 (heated groundwater rich in carbonate (1.45 

mM)) which mixed with the Nesjavallalækur brook to achieve a carbonate 

concentration of (1.16 mM). 
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Figure 5. The relationship of B and total As with the conservative ion Cl-. Measured Cl, B and As 

concentrations represented at dots. Dashed line represents the reaction path for basalt leaching by 

the local precipitation.  

 

Arnorsson and Andresdottir (1995) showed that chlorine/boron (Cl/B) ratio of 

geothermal waters could be explained by leaching of basaltic rocks and that both 

components were highly conservative in solution. Giroud (2008) used the same ratio 

and furthermore the Cl-/As ratio of Icelandic geothermal waters to show less mobility of 

As. Figure 5 displays the Cl-/B and Cl-/As ratios of all samples in the current 

contribution and it may be inferred that those waters are products of leaching of basaltic 

rock with local precipitation. The outlet of the power plant has the highest Cl- and B 

concentrations while the NL-11 water from the flank of the rift valley (Fig. 1) has the 

lowest concentrations and most samples lie on a line between those two end members.  

The Cl-/As ratio on the other hand shows depletion of As compared to simple leaching 

of basalt indicating retention of As compared to Cl- and B in the groundwater flow but 

Cl- concentration increased in Varmagjá (site 14), Eldvík and Sigguvík (Fig. 1) shortly 

after the commission of the power plant whereas the total As peak was slightly retained 

(Figs. 3 and 7a,d).  The sharp increase of As in Eldvík and Sigguvík in 1998 after the 

expansion of the power plant was presumably due to limited preferential flow through 

crevasses which was maintained to some extent throughout the study period.  The same 

As increase was not observed in Varmagjá or Grámelur (Figs. 6c,d), which lie in the 

course of the main streams of the ground water flow in the lava field (Kjaran and Myer 

2005). 
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4.3.6 Arsenic speciation of surface and ground waters 

Heated ground water (Site 2) is mainly directed directly into shallow wells at the power 

plant but some fraction enters the Nesjavellir Brook as is evident from the high carbon 

concentration in site 6. The water at Site 2 had small amount of arsenate (mainly as 

HAsVO4
2-). Site 3 is a condensed steam which is also mainly directed into wells but at 

the time of sampling a small proportion of this water entered the Nesjavellir Brook. The 

main As-species was arsenite (H3AsIIIO3) with less arsenate (H2AsVO4
- and HAsVO4

2-) 

and no thioarsenites were detected. Current instrumental setup could not distinguish 

between thioarsenites and thioarsenates, but the thioarsenite species As(OH)2(SH), 

As(OH)2S-, As(OH)S2
2-,AsS3H2- ,AsS3

3- and As(SH)4
- proposed by Wilkin et al. (2003) 

were used in all calculations (Fig. 5). At the power plant outlet (Site 4) the abundance of 

As-species in the separator water decreased from the thioarsenite species As:S 

1:2>1:3>1:4 followed by the arsenite species (Table 1). The power plant effluent was 

immediately mixed at Site 5 with surface runoff of the Nesjavallalækur (Site 1) were the 

HS- concentration decreased from 1 mM in the outlet to 0.3 mM in the mixture 

associated with a ~25% dilution of the conservative components Cl-, B, F- and Na. At 

Site 5, the thioarsenite species were still the most important As-species (Table 1). The 

brook flowed approximately 500 meters before the next sampling Site 6 (Figure 1). At 

Site 6, HS- had decreased from 0.3 mM to 0.01 mM without significant increase in 

S2O3
2- and SO4

2- (Table 1) whereas the total As concentration had lowered. The tetra-

thioarsenite was no longer detected and monothioarsenite had formed as well as 

arsenate (Fig. 7, Table 1). At Site 7 (the surface inlet solution for the groundwater 

model) the HS- had decreased to 0.002 mM with associated increase in S2O3
2- and SO4

2- 

and a small decrease in total As concentration, of which dithio- and trithioarsenite were 

the only detected species (Table 1). The concentration of As dropped markedly from the 

surface waters to the ground waters and no thioarsenite species were detected in 

groundwater wells (Sites 8-13), the spring (Site 14) in Thingvallavatn and Grámelur 

(Site 15) and arsenate was the only species detected at these sites (Fig. 7). 

The occurrence of thioarsenite species down the brook flow-path was clearly 

kinetically controlled. According to thermodynamic calculations the thioarsenites 

should be the dominant species in the outlet and the mixture at Site 5, however, down 

the flow path at Sites 6 and 7 the dominant species should be arsenite due to the low 

concentration of HS- (Wilkin et al., 2003) (Fig. 5). Speciation calculations in 
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PHREEQC-2 highlighted the sluggishness of the thioarsenites breakdown although no 

thioarsenites were detected in the shallow groundwater wells down-flow from site 7 

representing the termination of the Brook. The residence time of the groundwater was 

counted in days to months (Table 3) compared to hours in the brook.  

 
Figure 6 Calibration of the groundwater model assuming Cl acted as conservative (a). Lækjarhvarf 

water was mixed to pristine ground water from Grámelur. This mixture flowed through the model 

and the duration of each time shift in the transport model was iterated until the modelled curve 

corresponded to the data prior to 2000. After 2000, the Cl data from Grámelur displayed increased 

scatter due to extensive pumping from the groundwater system leading increased influx of surface 

rain and melt-waters along with geothermal water (Werner and Wallquist, 2008). Figs. b,c and d 

represent measured total As concentrations at the shoreline of lake Thingvallavatn and Grámelur.  
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Figure 7 Modelled and measured As speciation from 5 samples at Nesjavellir. Sites 4-7 are surface 

waters at increasing distance from the power-plant outlet and display elevated discrepancy between 

the modelled and measured results downstream indicating kinetic control of the thioarsenic 

degradation. Site 8 is well-water 800 meters downstream of site 7. 
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4.4 Groundwater flow model 

A mass balance scheme, as proposed by Werner and Wallquist (2008) for the fate of 

CO2 in the groundwater system, was used in the present study to determine input and 

fate of As in the groundwater system (Figure 2b). The system boundary was chosen to 

frame the disappearance of the geothermal wastewater at Laekjarhvarf (site 7, Figs.1,2a) 

to the Grámelur pumping station (site 15, Figs. 1,2a) close to the shoreline of Lake 

Thingvallavatn. Groundwater flow rate was calibrated against changes in measured 

chloride concentrations in the Grámelur pumping station (outlet water) during the time 

period 1996 to 2008 (Fig. 5). The following assumptions were made: 

1. Chloride acted as a conservative ion in the groundwater (Gislason and Eugster, 

1987; Arnorsson and Andresdottir, 1995). 

2. The water pumped up in Grámelur during the years 1991-1997 was assumed to 

be “pristine” ground waters without the influence of anthropogenic geothermal 

effluents from the power plant (Figs 3a and 5a). 

3. The water pumped up in Grámelur from 1998 onwards had increasing effluent 

signature (Cl- concentration) with a complete breakthrough of the effluents in 

July 2000 (Fig. 5a). As a result, one pore volume in the system was replaced in 

3320 days (9 years and 36 days). 

4. The inlet solution for the reactive transport modeling was produced by mixing 

Lækjarhvarf and pristine Grámelur waters in 1:4 ratio to produce the chloride 

concentrations measured at Grámelur after one PV had been replaced in the 

system. 

Once boundary conditions for the groundwater flow had been established a 4100 m 1D 

column was defined by a series of forty one 100 m long cells as shown in Fig. 2b. The 

column was a scaled up column from Sigfusson et al. (2008) maintaining identical 

physical characteristics such as specific surface area, solid/solution ratio and 

dispersivity.  All cells had the same physical properties (Table 3). A prediction of As 

movement was then carried out based on adsorption coefficients generated from 

laboratory experiments on the interaction between basaltic glass and dissolved arsenite 

and arsenate (Table 3) (Sigfusson et al., 2008) into the one dimensional (1D) reactive 

transport model PHREEQC-2 (Parkhurst and Appelo, 1999) (Fig. 8). According to 
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Column properties
Number of cells 41
Cell Length 100 m
Liquid in each cell 5 liters

hydraulic conductivity, K 5.86E‐04 m s‐1

dispersivity 14 m
=> Column timestep 7000000 s
=> one Pore Volume (PV) 79722.22 hours
=> shifts in each year 5 shifts

Solution composition
BackgroundLækjarhvarf Input mixture

pH 7.71 8.64 8.62
pe 1.54 0.38 1.1

HS‐ 0 0.002 0 mmol l‐1

SO42‐ 0.085 0.486 0.165 mmol l‐1

CO32‐ 0.699 0.862 0.73 mmol l‐1

F 0.005 0.033 0.011 mmol l‐1

Cl 0.264 2.243 0.66 mmol l‐1

Si 0.389 5.77 1.467 mmol l‐1

Na 0.454 3.712 1.108 mmol l‐1

K 0.0274 0.395 0.101 mmol l‐1

Ca  0.219 0.206 0.217 mmol l‐1

Mg 0.217 0.113 0.196 mmol l‐1

As 0 0.882 0.1765 μmol l‐1

Fe(2) 0 236 72.3 μmol l‐1

Fe(3) 1000 2263 1300 μmol l‐1

Al 2.48 32.2 8.43 μmol l‐1

B 83 16.6 μmol l‐1

Basaltic glass:
Mass in each cell 10 kg

Specific surface area 1.5 m2 g‐1

Surface sites 4 sites nm‐2

Arsenic surface reactions on BG (Sigfusson, et. al., 2008)
Reaction log K (25°C)

As(III)
2Glass-OH + H3AsO3 = (Glass-O)2AsOH +2H2O 4.7
Glass-OH + H3AsO3 = Glass-H4AsO4  2.78
As(V)
Glass-OH + H3AsO4 = Glass-OAsO3

-2 + 2H+ + H2O -2.4
2Glass-OH + H3AsO4 = (Glass-O)2AsO2

- + H+ + 2H2O 2.3
2Glass-OH + H3AsO4 = (Glass-O)2AsOOH + 2H2O 4.3

Table 3 Properties of the 1D transport model in PHREEQC-2



Chapter 4 – Field study 

132 

thermodynamic calculations and measurements showed that all As in the ground waters 

was on the arsenate (As(V)) form. However, since As is anticipated to exist as arsenite 

in geothermal waters which are immediately disposed of into the ground after utilisation 

without flowing on the surface, predictions were made for arsenite by blocking 

(increasing the logK for arsenate reduction to 100) the oxidation of the arsenite from the 

inlet solution in the model. At the pH conditions encountered in the model (pH 8.5 – 

8.6) arsenate in Grámelur would be close to that of the inlet mixture towards the year 

2100 whereas arsenite bound more strongly to the basaltic glass surface and would still 

be very low (Fig. 8a). Predicted traverse of the groundwater system for the year 2009 

indicated the concentration of arsenate in well NK-1(site 8) should be 0.09µM 

compared to the measured concentration of 0.031 μM (Table 1). The heterogeneity of 

the aquifer is clear from these figures and shows that some part of the effluent waters 

travels through crevasses with limited contact to the aquifer matrix (Figs. 5b-e and 8b) 

although the As was always retained compared to Cl- (Figs. 7a,d).Two sets of 

calculations were done for traverses of the years 2050 and 2100, one assuming 

continued disposal of all effluents into Lækjarhvarf (dashed lines) and the other 

assuming a complete disposal of effluents into deep wells (Figs. 8c and d). Continued 

injection of geothermal wastewater would result in saturation of the aquifer matrix 

surface soon after the year 2100 with the arsenate concentration at the lake shoreline as 

high as the concentration in the inlet mixture. Disposal of the effluents into deep wells 

is a clear advantage since the As peak from the 20 year seepage period commencing in 

1990 would smear out resulting in lower eluted concentrations at the lake shoreline as 

may be inferred from comparing the arsenate peaks in Figs. 8c and d. The arsenate 

already adsorbed at the proximal end of the column, will elute slowly into the 

groundwater over but the concentrations will always be low as opposed continued 

effluent seepage into Lækjarhvarf.  
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Figure 8 Predicted breakthrough of arsenite and arsenate at Grámelur pumping station if all 

effluent water would have been disposed off into Lækjarhvarf (a). Predicted traverse of arsenite 

(red curve) and arsenate (blue curve) in January 2009, circles represent total As measurements (b). 

Predicted traverse of arsenite (red) and arsenate (blue) in the year 2050 assuming all effluent water 

is disposed off into Lækjarhvarf (dashed lines) and assuming all effluent water is disposed off into 

deep wells after 2010 (lines) (c). Predicted traverse of arsenite and arsenate  in the year 2100 

assuming all effluent water is disposed off into Lækjarhvarf (dashed lines) and assuming all 

effluent water is disposed off into deep wells after 2010 (lines) (d).  
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4.5 Conclusion 

The Nesjavellir geothermal power plant has been in operation since 1990. During this 

time increased proportion of the separator water has been directed into deep wells. Prior 

to deep well injection, majority of the effluent waters with elevated Si, Cl-, SO4
2- and As 

concentrations seeped into a lava field in a proximity to the power plant. These effluent 

waters mixed with the ground water and flowed trough faults and crevasses and as 

matrix flow towards Lake Thingvallavatn. The As in the geothermal effluents existed 

primarily as thioarsenic species with decreasing S:As ratios as the water flowed from 

the source. Although dithioarsenic and trithiorsenic were the main As species in the 

seepage water to the lava field, arsenate was the only As species measured in the ground 

waters towards Lake Thingvallavatn. Two scenarios for groundwater movement 

modeling were assumed, i) continued seepage of all separator waters into the lava field 

and ii), discharge of all separator water into deep wells after the year 2010. 

Geochemical modeling predicted a complete breakthrough of arsenate into the lake soon 

after the 2100 while arsenite breakthrough would take about 900 years assuming all 

effluents would seep into the lava field.  Increased proportion of deep well injection will 

lead to increasingly retained discharge of arsenate from the lava field compared to 

dissolved conservative compounds and the eluted arsenate concentration always be 

much lower than that of the seepage phase in Lækjarhvarf.  
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Abstract 

The November 2004 eruption within the Vatnajökull Glacier, Iceland, provided an 

opportunity to study elemental fluxes from volcanic eruptions into the environment. On 

28th October, Lake Grímsvötn started draining sub glacially with the floodwater 

entering River Skeiðará 50 km south of the lake. Following four days draining of Lake 

Grímsvötn with subsequently increasing discharge in River Skeiðará an eruption started 

at 21:50 GMT on 1st November 2004 forming an eruption column up to 12-14 km. This 

vigorous stage continued until the morning of 3rd November with continuous plume 

rising to 9 km. Maximum discharge of the glacial flood rose from 50 m3 sec-1 base flow 

to 3,300 m3 sec-1 on 2 November at 16:40. The volume of the actual flood peak was 

0.45 km3 and further 0.35 km3 of floodwater discharged until 7th of December as new 

melt water due to the eruption was generated. A distinct change in the floodwater 

chemistry was observed between 8:20 and 12:15 on 2 November where dissolved S2O3
2- 

and Hg were first detected with corresponding peak flux of Na, Cl, B and V. Further 

change occurred between 12:15 and 19:15 where all other elemental fluxes peaked with 

concurrent decrease in δ34S values from 7.5‰ to 3.5‰. According to geochemical 

modeling by PHREEQC-2, lowering of pH due to magma gases during the eruption led 

to rapid tephra dissolution with corresponding change in flood water chemistry. 

Geochemical modeling of floodwater/seawater mixing indicated localised decrease in 

dissolved arsenic (As) and sulphur (S) due to adsorption on the suspended floodwater 

materials. As the floodwater was diluted the As desorbed and limited effect of the 

floodwater was predicted after thousand fold dilution. 
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5.1 Introduction 

Volcanic eruptions represent an important natural source of various elements to the 

atmosphere and shallow aqueous systems (Nriagu, 1989). Acids, metal salts and 

adsorbed gases on tephra (airborne volcanic particulate matter) and volcanic glass are 

highly soluble and dissolve rapidly in contact with water (Frogner et al., 2001; Flaathen 

and Gislason, 2008; Jones and Gislason 2008). During sub glacial eruptions, large 

proportion of volcanic glass does not become airborne and may be transported from the 

eruption site with the melt water generated during the eruption resulting in intense water 

rock and water magma interactions (Gislason et al., 2002). The November 2004 

eruption within the Vatnajökull Glacier, Iceland, provides an opportunity to study 

elemental fluxes from volcanic eruptions into the environment (Figure 1). The eruption 

followed a glacial flood being monitored on site and therefore provided the opportunity 

to sample a near complete dataset throughout the eruption period. Aqueous and 

suspended samples were gathered and treated only 14 h after being brought to the 

Earth’s surface. 

 
Figure 1 Location of the 2004 eruption site and the flood path in Vatnajökull glacier. Modified 

from Gislason et al. (2002). 

Soluble salts from pristine volcanic glass will dissolve rapidly in aqueous environments 

releasing anions such as chloride, fluoride, (Frogner et al, 2001) and metals such as Al, 

Fe, Mn, As, Cd, Pb, Zn and U (Flaathen and Gislason, 2007). Arsenic (As) is believed 

to primarily enter crustal fluids during crystallising of deep plutons as hot volatile-rich 

magmatic fluids escape from the plutons and segregate into vapour and brine resulting 

in formation of porphyry-style and epithermal ore deposits and fumaroles activity in 

volcanic areas (Goldschmidt, 1954; Ballantyne and Moore, 1988). Arsenic 
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concentrations in volcanic gases sampled between 400 and 900°C often range between 

1-10 ppm of the vapour condensates (Mambo et al., 1991) corresponding to As 

enrichment in the gas phase between 100 and 1000 with respect to the magma body 

suggesting an important transfer of As into the hydrosphere and atmosphere during 

magma degassing and volcanic eruptions (Pokrovski et al., 2002). Arsenic preferentially 

concentrates into the liquid aqueous phase in water dominated active hydrothermal 

systems below 350°C (Ballantyne and Moore, 1988). Arsenic mainly occurs as As(III) 

hydroxide, primarily as As(OH)3 aqueous species and to lesser extent, the sulphide H0-

3As1-3S3-6, species in natural hydrothermal solutions depending on temperature, pH and 

H2S content (Akinfiev et al, 1992; Helz et al., 1995; Pokrovski et al., 1996). 

Suspended materials constitute large proportion of the floodwaters leaving sub 

glacial eruption sites (Gislason et al., 2002; Hardardottir et al., 2004; Stefansdottir and 

Gislason, 2005) and these materials may provide a potential adsorption sites for the 

dissolved constituents. As the conditions of the floodwaters are altered, such as when 

entering the ocean these constituents may be desorbed form the suspended materials, 

forming temporary sources of nutrients and metals to the ocean (Stefansdottir and 

Gislason, 2005) similarly to when airborne tephra lands on the ocean surface (Jones and 

Gislason, 2008). 

The objectives of this study were to estimate volcanic tephra dissolution 

immediately after its formation on the Earth’s surface and predict the release of selected 

metals to the environment following short term interactions between tephra, volcanic 

gases, glacial melt waters and the ocean. To this end, fresh tephra, floodwater and 

suspended materials were collected during the 2004 Grímsvötn eruption. Experimental 

data on surface complexation and basaltic glass dissolution were used to model the 

dominant reactions. 

5.2 The 2004 eruption 

On 28th October, Lake Grímsvötn started draining sub glacially according to increasing 

tremor on seismometers (Vogfjörd et al., 2005) with the floodwater entering River 

Skeiðará 50 km south of the lake as detected by elevated river conductivity 

measurements on 29th of October (Hardardottir et al., 2004) (Figure 1). Following 4 d 

draining of Lake Grímsvötn with subsequently increasing discharge in River Skeiðará 

from 50 m3 s-1 base flow to 1435 m3 s-1 at 16:00 (Hardardottir et al., 2004) an eruption 

started at 21:50 GMT on 1st of November 2004 (Gislason et al., 2002) forming an 
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eruption column up to 10km (Oddsson, 2007) (Figure 2a). The flood peak reached 3300 

m3 s-1 at 16:40 on 2nd of November (Hardardottir et al., 2004). The vigorous stage of 

eruption continued until the morning of 3 November with continuous plume rising to 9 

km. On 4th of November the volcanic activity had greatly reduced and limited explosive 

activity generating a 3-4 km high plume was observed in the cauldron produced by the 

eruption (Oddsson, 2007). On 5th of November a steam plume rose to 500 m while on 

6th of November no activity was recorded. 
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Figure 2 (a) Flood discharge and total volume of floodwater until November 4th. The eruption 

began on 1st of November at 21:50 (hatched line). Further 0.2 km3 were discharged until December 

7th as new melt water was generated in the caldera.  (b) pH, conductivity and total dissolved solids 

(TDS) in the floodwater. 

The estimated volume of ice melted during the 33 h eruption was 0.1 km3 when 150 

-200 m thick ice sheet was melted (Oddsson, 2007). All of the erupted magma 

fragmented into tephra with total mass being 5.2±1.0·1010 kg (Oddsson, 2007). Of the 

total mass 2.7·1010 kg remained within the ice cauldron formed in the eruption and the 

rest was carried by the eruption plume into the atmosphere or was carried with the 

floodwater to the ocean. 

 About 95% of the total mass outside the ice cauldron was deposited in an 800 km2 

area and only 2% (5.4 ·108 kg) of the total tephra mass deposited outside the 

Vatnajökull Glacier (Oddsson, 2007). The total discharge of the flood peak itself was 

0.45 km3 (Figure 2a) carrying 4 ·109 kg of suspended materials towards the Skeiðará 
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Sandur plain (Hardardottir et al., 2004). The total dissolved solids flux in the flood was 

3.27 ·108 kg (Figure 2b).  

5.3 Methods 

A sampling campaign of River Skeiðará was carried out during the glacial flood event 

and subsequent eruption from 30 October - 4 November. During this period water and 

river suspended matter samples were collected for detailed chemical analyses and 

discharge was measured. 

5.3.1 Sampling of tephra 

Tephra fallout was sampled into a HDPE bag directly from the snow 50 m from the 

eruption cauldron on 4 November. The sample was stored in a coolbox and transferred 

to -18°C the same day prior to being freeze dried freeze-dried for 24 h at − 40 °C and 3 

PSI pressure. 

5.3.2 Sampling of river water 

5.3.2.1 Suspended materials 

For particle size distribution determination and mineral analysis suspended materials 

were collected into four 250 ml glass bottles with a S49 sampler (Guy and Norman, 

1970) attached to a winch which lowered and lifted the sampler to and from the river 

bottom at a constant rate (Hardardottir et al., 2003).  

For elemental analysis of selected samples, two 30 l HDPE containers were filled 

with the aid of a plastic bucket. Following the flood event, the samples were transferred 

to the laboratory and filtered using a Sartorius®, tangential filtration unit and a 

Hydrosart® 0.2 μm filtration cartridge. The remaining slurry was centrifuged for 10 min 

at 15 °C at 10 000 rpm, the remaining solids were freeze-dried for 24 h at − 40 °C and 3 

PSI pressure and stored in a desiccators until analysed. 

5.3.2.2 Dissolved constituents 

Sampling methodology followed to large extent that applied to the floodwaters of the 

1996 Vatnajökull eruption (Gislason et al., 2002). 

The first river sample (04V001) was collected from the westernmost section of the 

bridge crossing River Skeiðará (Figure 1) adjacent to the river monitoring station. All 
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other samples (04V002-11) were collected from the next section of the bridge to the 

East in order to collect water from the main flood channel. The samples were collected 

in a plastic bucket and transferred to one 5 l and one 10 l High Density Polyethylene 

(HDPE) containers. The containers were filled entirely before being closed. The 

containers were rinsed 3 times with the sample water prior to filling. The temperature of 

the water was measured directly in the river by a thermistor (±0.1°C). The containers 

were transferred to the laboratory and were prepared within 15 min from sampling.  

Samples from the five litre container were pumped by a peristaltic pump (Cole Parmer 

Masterflex Portable Sampler) through silicone tubing to a Sartorius 

Polytetrafluoroethylene (PTFE) in line filter holder with Cellulose Acetate (CA) 

membrane (142mm diameter, 0.2µm pore size).  One l of sample water was pumped 

through the filtration unit prior to sample collection and all the air in the unit was 

expelled through an air valve.  

Samples for dissolved oxygen determination were filtered into a 50 ml Erlenmeyer 

flask and the oxygen fixed according to the Winkler method (Grasshoff, 1983).  Then, 

sample for H2S measurement was filtrated into a 50 ml Erlenmeyer flask and measured 

immediately by titration (Archer. 1955). Thereafter, 60 ml were filtered into an amber 

glass bottle and pH and conductivity measured.  Filtration proceeded concurrently to the 

pH measurement and 250 ml were filtered into an amber glass bottle with specially 

designed caps to prevent air bubbles in the bottles for alkalinity titration.  After that, 1 l 

of water was filtered from the 10 l container into a HDPE bottle for the determination of 

sulphur isotopes.  Then, 200 ml were filtered into a HDPE bottle for the determination 

of anions and 20 ml were filtered into a HDPE bottle and frozen (-18°C) immediately 

for the determination of thiosulphate (S2O3
2-).  Finally, 125 ml were filtered into a pre-

acid washed (1 M HCl) HDPE bottle for the determination of major and trace elements.  

The 125 ml bottle was acidified immediately with 1 ml of Suprapure® nitric acid 

(HNO3).  Depending on the suspended material load, 1-3 filters were needed for each 

sample and sampling, filtration, treatment and measurements described above took less 

than 2 h. 
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5.3.3 Analytical methods 

5.3.3.1 Suspended materials 

The concentration and the grain size distribution of the suspended particulate matter and 

total dissolved solids were measured at the Hydrological Service of the National Energy 

(Hardardottir et al., 2004). The grain size of the suspended fraction was determined 

using sieving for material coarser than 63 μm and the sediment settling method for the 

size fraction finer than 63 μm.  

The specific surface area of the suspended material was measured by the three-

point BET method using Kr gas at University Paul Sabatier Toulouse.   

The geometric specific surface area Ageo was calculated using (Brantley et al., 1999; 

Gautier et al., 2001): 

eff
geo d

A
ρ

6
=    Equation 1 

where ρ is the glass density and deff is the effective particle diameter. The number 6 is 

based on the assumption that grains have a regular and smooth spherical shape. 

Assuming a homogeneous particle distribution, deff can be obtained from (Tester et al., 

1994): 

⎟⎟
⎠

⎞
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⎝

⎛
−

=
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minmax

ln
d
d

dddeff   Equation 2 

where dmax and dmin refer to the maximum and minimum particle size of each size 

fraction measured. The deff for each size fraction was calculated and the Ageo calculated 

as the sum of specific surface area contributed by each size fraction.  

Elemental analysis was carried out on both fresh tephra and the suspended matter 

by Analytica, Sweden. The samples measured at Analytica were digested in three 

different ways depending on which elements were to be analysed: 1) HNO3 + HF; 2) 

LiBO2-fusion; 3) Aqua Regia + 0.1 ml HF. The major elements were analysed by ICP-

AES, the trace elements either by ICP-AES or ICP-MS. Fluorine in the samples was not 

analysed but to allow for comparison of waters discharged before and after flow peak it 
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was estimated to be 100 mg/kg based on the Georoc database on Icelandic volcanic 

rocks by the Max-Planck Gesellschaft. Chlorine concentration was estimated to be 180 

mg/kg based on data from Sigvaldason and Oskarsson (1976). 

5.3.3.2 Dissolved constituents 

Major and trace elements were determined from the acidified samples by Analytica, 

Sweden.  The major elements were determined by Inductively Coupled Plasma Atomic 

Emission Spectrometry (ICP-AES) and trace elements by ICP- Sector Mass 

Spectrometry (SMS), also referred to as high resolution ICP-MS.  Mercury was 

determined by cold vapour - Atomic Fluorescence Spectrometry (AFS). The anions 

fluoride (F-), chloride (Cl-), sulphate (SO4
2-) and thiosulphate (S2O3

2-) were measured at 

the Institute of Earth Sciences, University of Iceland by Anion Exchange 

Chromatography (AEC) with a Dionex ICS-2000.  Sulphur isotope measurements were 

done at the University of Stockholm, Sweden. Dissolved sulphate was converted to 

BaSO4 for sulphur isotopic analyses (Mörth et al. 2005). The BaSO4 was mixed with an 

equal amount of V2O5 and reacted in an online elemental analyzer (EA) converting the 

BaSO4 to SO2(g), which was then analyzed in a continuous flow isotope ratio mass 

spectrometer (CF-IRMS; Finnigan Delta+).  The sulphur isotope composition was 

defined as a deviation in ‰ of the ratio 34S/32S between a sample and a standard, 

expressed in the conventional δ34S notation relative to the Canon Diablo Troilite (V-

CDT).  The accuracy of the measurements based on standard measurements was better 

than 0.2‰ for all samples. 

5.3.4 Discharge measurements and dissolved flux calculations 

The flood discharge was assessed by measuring water velocities and cross sections of 

the river channels.  The water velocities were measured on the surface only as is custom 

in flood events.  A 100 kg weight was lowered into the river to measure the depth of the 

river.  In total, eight discharge measurements were carried out and an exponential 

function was fitted to the data except for the time span between the last two discharge 

measurements where melt water due to the eruption was presumably flowing to the river 

(Hardardottir et al., 2004).  A multiplication of calculated discharge and measured 

concentration allowed estimation of elemental fluxes at the time of sampling.  The total 

fluxes of individual elements were then calculated by numerical integration over the 

duration of the flood using the trapezoidal rule. 
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5.3.5 Relative mobility calculations 

Relative mobility of selected elements was calculated in relation to Na. The calculation 

was carried out in three ways, a) The total flux of an element was divided by the total 

flux of Na in the flood. This value was divided by the element/Na ratio of the fresh 

tephra. b) The total flux of an element was divided by the total flux of Na in the flood. 

This value was divided by the mean element/Na ratio of the suspended samples V07 

and V08. c) Finally the concentration of element was divided by the concentration of Na 

in water samples V07 and V08 respectively and the value divided by the element/Na 

ratio of the fresh tephra. 

5.3.6 Model calculations 

All geochemical modeling was carried out by PHREEQC-2 v2.15.0 (Parkhurst and 

Appelo, 1999).  Two sets of calculations were done, firstly, tephra dissolution in 

geothermal water in the presence of additional volcanic gas from the eruption and 

secondly, the fate of adsorbed materials on the suspended matter once the floodwater 

entered the ocean was modelled. 

5.3.6.1 Tephra dissolution in the flood path 

No experimental data exists on the dissolution rate of the volcanic tephra generated in 

the Grímsvötn 2004 eruption. Therefore due to their similar chemical composition the 

primary phase used in the simulation calculations was basaltic glass from Stapafell, SW 

Iceland (Oelkers and Gislason, 2001). The dissolution kinetics of Stapafell basaltic glass 

were measured far from equilibrium at temperatures ranging from 6 to 300°C at pH 1 to 

11 (Gislason and Oelkers, 2003). The rate law in terms of surface area describing the 

dissolution of basaltic glass is given by: 

( )KQ
Al

Hker
a
aRT

EA

/1
3

1
3

3

−
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

+

+
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −

+   Equation 3 

Where r+ is the dissolution rate of basaltic glass in moles A is the surface area in cm2 g-1, 

k is the rate constant (10-5.6 moles cm-2 s-1) and EA represents the activation energy (25.5 

kJ mol-1) (Gislason and Oelkers, 2003). The specific surface area can then be chosen for 

the calculations depending on the data available. In the present contribution BET 

surface area and geometric surface area based on particle size analysis were available 
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and used in all calculations as representatives for minimum and maximum specific 

surface area, respectively.  The surface area varies as reactions progress according to: 

( )
V

AmmA n
n

00
3

2

/
=

    
Equation 4 

where An and A0 are the present and initial surface area (cm2 g-1) at each reaction step, 

respectively, mn and m0 are the present and initial moles of the mineral, respectively, 

and V is the volume of the modelled system in litres. 

As described by Oelkers and Gislason (2001) the initial dissolution of basaltic glass 

was characterised by preferential release of Na+, K+, Ca2+ and Mg2+ through cation 

proton exchange. Upon progressive dissolution a leached surface layer strongly 

enriched in Si, Al and Fe is produced. The thickness of this layer increases until the 

diffusion rates of the alkali and alkaline earth elements equals the dissolution rate of the 

leached layer itself. The time to reach this stoichiometric dissolution is rapid (a few h). 

Therefore the long term dissolution rates of basalt and the leached layer are equal and 

the dissolution front is the interface between the leached layer and the solution. As a 

consequence, the saturation state of the leached layer with respect to the solution 

determines the effects of basaltic glass saturation on the rate expression (Daux et al., 

1997; Oelkers and Gislason, 2001). The equilibrium constant for the hydrated leached 

layer given by the reaction: 
++ +=++ 3

44208.1236.0 36.092.008.1)( AlSiOHOHHOHOSiAl
 

Equation 5 

was estimated to be log K = 0.05 at 25°C  (Gislason and Oelkers, 2003). 

The very short residence time from the eruption source to sampling, only 14 h, 

provided an opportunity to carry out geochemical modeling of the interactions between 

fresh tephra, geothermal water, glacial melt water and volcanic gases. The following 

conditions were set for the modeling which was carried out by PHREEQC-2 v2.15.0 

(Parkhurst and Appelo, 1999): 

1.  Input solution was a one litre mixture of i) geothermal water sampled at the first 

stages of the flood prior to the eruption (sample 04V002) and ii) glacier melt 

water represented by the 1996-1997 winter precipitation on Vatnajökull Glacier 

(Gislason et al. 2002). The geothermal water was the dominant component for 

modeling of the flood peak while glacier water was increasingly introduced as 

the eruption progressed.  
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2. The solid material amount was assumed to be 11 grams which was around the 

estimated concentration in the flood peak. 

3. Geometric surface area (2600 cm2 g-1) and BET surface area (12,300 m2 g-1) 

were used in calculations and the effect of these end member values on the 

reactions was studied.  

4. The mixture was treated like a one litre batch reactor that was transferred from 

the eruption site towards the sampling site in 14 h in 140 steps, which 

corresponded to the delay time between the beginning of the eruption and the 

sampling time of water exhibiting distinct change measured in sulphur isotope 

ratio.  

5. Calculations were done at temperatures from 0-50°C until best fit to the 

measured data were achieved (2°C).  

6. Hydrous Ferric oxide (HFO) surface was used as a proxy for the surface based 

on comparisons of a surface complexation on HFO and basaltic glass (Sigfusson 

et al., 2008).  This was done to allow for competitive sorption of anions on the 

surface of which database for volcanic glass does not exist. The flood waters 

were supersaturated with respect to HFO throughout the flood according to the 

PHREEQC-2 calculations. 

7. Carbon dioxide (CO2) was equilibrated with the system at the start of reactions 

to generate the dissolved inorganic carbon concentrations measured at the 

bridge. 

8. Chloride was added into the system in the form of hydrogen chloride (HCl(g)) to 

achieve the chloride concentrations measured in the volcanic water. 

9. Sulfur was added to the system in the form of sulphur dioxide (SO2(g)) to achieve 

sulphur concentrations measured in the volcanic water. The sulphur speciation 

data from Lawrence Livermore National Laboratory (LLNL) database (version 

2335 2007-10-19), which comes with PHREEQC-2 was used to calculate all 

sulphur reactions. 

10. The following phases were allowed to precipitate reversibly in the system: 

allophane, imogolite, amorphous iron hydroxide, amorphous aluminium 

hydroxide, magnesite, calcite, siderite, dolomite, Ca-Mg carbonate, chlorite, 

celadonite, Fe-celadonite, Ca-Mg-Fe smectite (Stefansson, 2008) and moganite 

(Gislason et al., 1997). 
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5.3.6.2 The fate of adsorbed materials on the suspended matter in 

seawater.    

For floodwater/seawater, modeling was carried out by PHREEQC-2 v2.15.0 (Parkhurst 

and Appelo, 1999) assuming the floodwater to be in equilibrium with Hydrous Ferric 

oxide (HFO) surface. Results from flood path calculations were not used for the 

seawater mixing, but rather the measured chemical composition of floodwaters sampled 

at the bridge.   HFO surface was mixed with seawater (Bruland, 1983) in 

floodwater/seawater ratios between 0.1 and 100,000 and equilibrium attained in the 

solution and on the solid surfaces. 

 

5.4 Results and discussion 

The results for the suspended materials collected at Skeiðará Bridge and fresh tephra 

collected at the eruption site are displayed in Table 1. The results for discharge, 

suspended load and for chemical composition of flood samples are displayed in Table 2.  

The charge balance based on the main ionic species for the floodwater samples 04V001-

5 varied between 0 and -1.1% whereas samples 6 and 7 displayed -1.9 and -2.2% 

difference followed by samples 8 to 11 that had -4 to -7% charge balance. The 

increasing negative charge balance corresponded to the appearance of HS2O3
- in the 

waters. The charge balance of samples 8-11 converged to zero if 10-15% of the total 

sulphur was defined as the SO4
2- species instead of the IC - measured values in Table 2. 

This indicates some degradation of sulphur species to SO4
2- in the untreated sample 

bottle prior to IC analysis. 



Chapter 5 – The 2004 Grímsvötn eruption 

151 

5.4.1 The volcanic ash on the Vatnajökull glacier 

About 50% of the erupted tephra was forced through the melt water at the eruption site 

and dispersed aerially (Oddsson, 2007). Analysis of ice and snow of which fresh tephra 

lands on can indicate the existence of soluble salts on the tephra grains (Gislason et al., 

2002). No ice in contact with tephra was collected during the 2004 eruption however, 

data from recent Gjálp eruption in 1996 indicated the tephra ejected through the melt 

water did not contain a significant amount of acid producing volcanic aerosols 

(Gislason et al., 2002). These soluble salts were primarily washed away in the melt 

water and to lesser extent in the eruption column.  
Table 1 Chemical composition of suspended materials collected at Skeiðará Bridge and fresh 

tephra. 

 

 

5.4.2 Conditions at the eruption site 

The ice that melted at the eruption site and in the flow path within the Vatnajökull 

glacier was primarily purified snow (Gislason et al., 2002). Thus the dissolved 

constituents in the floodwater were primarily of magmatic, geothermal and rock origin.  

They were not brought in with the rain and snow. Prior to the eruption the floodwaters 

constituents were of geothermal and rock origin. However as the eruption commenced a 

flux of CO2, S, Cl and F from magma was introduced to the system and a distinct shift 

in the δ34S values was measured in floodwaters along with elevated levels of Hg (Table 

2). According to the concentration of these anions, the pH of melted ice in contact with 

the volcanic gases may have reached as low as pH 2. The presence of geothermal water 

in the lake however buffered the system and the pH only lowered to 6.2 from 7 

according to PHREEQC-2 calculations. 

Suspended Ageo (m2/g) SiO2 Al2O3 CaO Fe2O3 K2O MgO MnO Na2O P2O5 TiO2 Sum
solids (mg/l) Surface area Error % % % % % % % % % % %

04V002 4678 3.41 26.22 0.044 47.4 13.7 8.81 13.9 0.422 5.62 0.198 2.35 0.268 2.41 95.1
04V005 3564 3.53 19.09 0.122 47.5 13.6 9.27 13.9 0.402 5.84 0.201 2.43 0.258 2.43 95.8
04V007 11712 2.75 8.25 0.053 46.9 13.4 9.47 13.8 0.412 5.90 0.201 2.43 0.254 2.42 95.2
04V008 10444 3.63 12.37 0.047 47.9 13.5 9.26 14.3 0.433 5.91 0.205 2.43 0.277 2.54 96.8
04V009 3895 3.46 12.20 0.067 47.5 13.3 8.62 14.5 0.435 5.59 0.203 2.36 0.289 2.56 95.4
Fresh tephra 49.5 13.6 9.76 15.0 0.534 5.55 0.218 2.88 0.312 2.84 100.2

ABET (m2/g)

As B Cd Co Cr Cu Hg Mo Ni Pb S Sr V
mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

04V002 0.335 2.68 0.151 47.4 119 138 0.0103 0.667 49.8 1.26 1030 218 363
04V005 0.445 3.08 0.137 52.1 132 129 0.0101 0.705 52.7 1.05 957 218 414
04V007 0.385 2.8 0.144 52.1 137 127 0.0067 0.722 53.3 1.06 949 217 369
04V008 0.332 3.46 0.153 52.7 104 131 0.0136 0.766 50 1.07 1580 219 386
04V009 0.337 2.99 0.18 52.6 108 142 0.0282 0.767 49.3 1.5 1430 215 378
Fresh tephra 0.288 2.21 0.155 49.7 76.5 97.1 <0.005 0.971 36.2 1.18 855 238 472
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Table 2 Information on water samples from River Skeiðará during the flood 
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5.4.3 Chemistry  of  fresh  tephra,  the  suspended  materials  and  the 

floodwaters 

5.4.3.1 Solids 

The specific surface area and chemical composition of solids is tabulated in Table 1. All 

major elements except Mg were slightly elevated in the tephra compared to samples 8 

and 9 which were sampled from the river after the volcanic influenced water had arrived 

to the sampling site (Table 1). This suggests that most of the suspended materials in the 

flood were older material and/or that the new tephra leached rapidly in the flood water. 

The sum of the major elements differed between the suspended materials (mean 95.7%) 

and fresh tephra (100.2%) indicating considerable contribution of suspended materials 

eroded from the flood channel as in the Gjálp 1996 eruption (Stefansdottir and Gislason, 

2005) and hydration of the tephra in the flood channel during transport to the flood plain 

(Table 1). Results from PHREEQC-2 calculations in section 4.5 below further indicated 

that 1 to 4% of the tephra mass was leached to the floodwater using geometric surface 

area or BET surface area, respectively.  On the contrary to major elements, the semi 

volatile and volatile elements As, B, Hg and S were elevated in the suspended materials 

compared to the tephra (table 1). These elements all originate in magma gases (Bauer 

and Onishi 1978; Mambo et al.,1991;  Bagnato et al., 2009) and can be transported with 

steam in geothermal systems (Bauer and Onishi, 1978, Giroud, 2008; Bragason and 

Yngvadottir, 2009). As the magma gases and steam entered the cauldron high amounts 

of available surface was available (Table 1) to adsorb these elements but metals may 

often be adsorbed or coprecipated in the volcanic environment (Cleverley et al., 2003) 

5.4.3.2 Aqueous chemistry 

The temperature of the floodwater, as measured at the bridge, did not exceed 2°C and 

the maximum dissolved oxygen in the water was between 40 and 70% of air saturation 

at the sampling temperature which was always higher than 1°C (Table 1).  A trace of 

H2S was measured in some samples although the distinct smell was never observed. The 

partial pressure of CO2 in the samples at the sampling temperature calculated with 

Phreeqc-2 based on pH temperature and chemical analysis was always higher than in 

the atmosphere. Thus, once the water emerged from the base of the glacier, there was a 

flux of CO2 from the water and conversely influx of heat and O2 to the water. 
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The flood path shown in figure 1 may be considered to behave like a 50 km 

chromatographic column although part of the solid phase in this case travels with the 

mobile phase. The bedrock surface of the flood path though perhaps has enough surface 

area to separate some of the ions. Figure 3 displays the flux of selected elements at the 

time of sampling and figure 4 displays the relative mobility of selected elements to Na. 

Table 3 tabulates predicted surface reactions of the dominant anionic species in the 

floodwater.  The maximum flux of B, Cl, As, Si and Na was observed in the water 

sampled at 12:15 on 2 Nov whereas the maximum flux of F, Stotal and P was observed in 

the next sample at 19:15. Boron, As and Si form large oxyanions as do P and S which 

peaked later. The relative mobility of the total elemental flux vs. the fresh tephra 

indicated that B was the most mobile element followed by Cl, S, F and then As and Si 

being much less mobile (Figure 4a).  
Table 3 Surface complexation reactions used in PHREEQC-2 calculations  

The elements, B (as borate, H3BO3) Cl (as chloride, Cl-), As (as arsenite, H3AsO3, Si (as 

silicate, H4SiO4) , S (as sulphate, SO4
2-) and P (as phosphate H2PO4

-) probably all form 

Species  Surface reaction of the dominant aqueous species  log K  Reference 
 
Borate  Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O  0.62  1 
 
Chloride  Hfo_wOH + Cl‐ + H+ = Hfo_wOH2Cl  2.24  1 
 
Silicate  Hfo_wOH + H4SiO4 = Hfo_wOSi(OH)3 + H2O  4.28  2 
 
Arsenite  Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O  5.41  1 
         
Sulphate  Hfo_wOH + SO4

2‐ + H+ = Hfo_wSO4
‐ + H2O  7.78  1 

  Hfo_wOH + SO4
2‐ = Hfo_wOHSO4

2‐  0.78  1 
 
Fluoride  Hfo_wOH + F‐ + H+ = Hfo_wF + H2O  8.7  1 
  Hfo_wOH + F‐ = Hfo_wOHF‐  1.6  1 
 
Arsenate  Hfo_wOH + H2AsO4‐ + H

+ = Hfo_wH2AsO4 + H2O  10.95  1 
  Hfo_wOH + H2AsO4

‐ = Hfo_wHAsO4
‐ + H2O  5.15  1 

  Hfo_wOH + H2AsO4
‐ = Hfo_wOHAsO4

3‐ + 2H+  ‐7.78  1 
 
Bicarbonate  Hfo_wOH + HCO3

‐ = Hfo_wCO3
‐ + H2O  2.23  3 

  Hfo_wOH + HCO3
‐ + H+ = Hfo_wHCO3

‐ + H2O  10.29  3 
 
Phosphate  Hfo_wOH + H2PO4

‐ + H+ = Hfo_wH2PO4 + H2O  11.76  1 
  Hfo_wOH + H2PO4

‐ = Hfo_wHPO4‐ + H2O  5.86  1 
  Hfo_wOH + H2PO4

‐ = Hfo_wPO4
2‐ + H+ + H2O  ‐1.80  1 

 
1 Dzombak, Morel 1990 
2 Swendlund, Webster 1999 
3 Van Geen et al. 
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surface complexes (Table 3) on the tephra surface and may be delayed in the flood path. 

The results of the flux calculations are shown in Table 4. 
Table 4 Dissolved flood fluxes 

 
 

5.4.4 Sulphur isotopes 

The δ34S values of the floodwaters ranged from +3.27 to +7.84 ‰ (table 2).The 

principal gas in equilibrium with basaltic magma at low pressure and high temperature 

is SO2 (Gerlach and Nordlie, 1975). Rapid degassing of SO2 from a finite magma 

reservoir decreases the sulphur concentration and the δ34S isotope composition of the 

magma, if the magma is reduced. Conversely, the δ34S value of the magma increases 

during degassing if the magma is oxidised (Sakai et al., 1982). Icelandic rocks generally 

range from -2 ‰ to 0 ‰ (Torssander, 1989) due to degassing at reduced conditions and 

as a consequence, the degassing SO2 gas is enriched in heavier S relative to the melt. 

Gislason et al. (2002) assumed the δ34S of SO2 gas entering the melt water in Gjálp 

1996 eruption to be 1.8 ‰. The decrease of δ34S values during the flood event strongly 

indicates flow of new light SO2 gas into the melt water.  

 A disproportion of SO2 in water produces bisulphide, sulphide and elemental sulphur 

(Kusakabe et al., 2000) according to the following reactions: 
+− ++=+ HSHSOOHSO 2233 0422   Equation 6 

Or 
+− ++=+ HSHHSOOHSO 3334 2422  Equation 7  

Elemental sulphur is stable under relatively oxidised conditions, low temperatures and 

high total sulphur concentrations whereas sulphide forms at reduced conditions, high 

temperatures and low sulphur concentrations (Kusakabe et al., 2000). The SO2 

disproportionation reaction is rapid at high temperatures (Kusakabe et al., 2000) but did 

not proceed entirely in the eruption water as high proportion of the sulphur was the 

Moles Tonnes Moles Tonnes Moles Tonnes Moles Tonnes

TDS 3.27 × 105 S2O3 1.03 × 108 6.60 × 103 NO3 4.60 × 105 6.45 Mo 1.46 × 103 1.14 × 10‐1

DIC as CO2 1.05 × 109 4.61 × 104 K 2.08 × 107 8.13 × 102 Sr 2.61 × 105 2.29 × 101 As 8.05 × 102 6.03 × 10‐2

Na 8.30 × 108 1.91 × 104 B 5.35 × 106 5.79 × 101 PO4 1.72 × 105 5.33 Ba 6.34 × 102 8.71 × 10‐2

Ca 6.76 × 108 2.72 × 104 DOC 5.28 × 106 6.34 × 101 Ti 4.53 × 104 2.17 Cr 3.18 × 101 6.99 × 10‐3

Si 3.93 × 108 1.10 × 104 F 4.31 × 106 8.19 × 101 V 3.18 × 104 1.62 Pb 9.60 × 101 1.99 × 10‐2

S 3.05 × 108 9.77 × 103 Mn 2.24 × 106 1.23 × 102 Ni 2.63 × 104 1.54 Cd 3.59 × 101 4.04 × 10‐3

SO4 2.08 × 108 6.68 × 103 Fe 2.13 × 106 1.19 × 102 Cu 1.93 × 104 1.23 Hg 4.30 8.63 × 10‐4

Mg 1.98 × 108 4.82 × 103 NH4 5.83 × 105 8.16 Zn 1.12 × 104 0.73

Cl 1.30 × 108 4.60 × 103 Al 5.16 × 105 1.39 × 101 Co 9.62 × 103 0.57
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intermediate product thiosulphate (Table 2) which was present for up to 50 h under 

experimental conditions (Kusakabe et al., 2000). 
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Figure 3 Elemental fluxes with the floodwater. The eruption began on 1. November at 21:50 

(hatched line). The Si, Na, DIC, Cl, B and PO4 had highest fluxes before the flood water peak 

whereas Ca, F, S and As had highest fluxes after the flood water peak. 



Chapter 5 – The 2004 Grímsvötn eruption 

157 

1E-006
1E-005
0.0001

0.001
0.01
0.1

1
10

100

Lo
g 

re
la

tiv
e 

m
ob

ilit
y 

to
 N

a

B
Cl

S

F Na
CaMg K As Si MoMn Sr Hg Ni

CuCo P Zn Pb V
Th Fe

Al Lu BaTmCr Tb YbHo Ti La Er Eu Pr NdDyGdCeSm

Cd

B S

1E-005

0.0001

0.001

0.01

0.1

1

10

100

Lo
g 

re
la

tiv
e 

m
ob

ili
ty

 to
 N

a B
Cl

S

Na F

Ca K Mg
AsMo Si Mn Sr

Ni Hg
CdCoCu P Zn Pb V

Th
Fe

Ba Lu Al TmTb YbHo Er La Ti Pr EuNd Cr DyGdCeSm

Cl

(a) Total dissolved flux vs. fresh tephra

(b) Total dissolved flux vs. suspended samples V07 and V08

B SCl

1E-006
1E-005
0.0001

0.001
0.01

0.1
1

10
100

Lo
g 

re
la

tiv
e 

m
ob

ili
ty

 to
 N

a

B
Cl

S
Na F

CaMg K
Si AsMoHgMn Sr Ni

CoZn P V Pb
ThCu

Fe LuTmBa Al Cr Yb La TbNd Pr Er HoCeDyGdEu Ti Sm

Cd

B SCl

1E-006
1E-005
0.0001

0.001
0.01
0.1

1
10

100

Lo
g 

re
la

tiv
e 

m
ob

ilit
y 

to
 N

a

B
S Cl

F Na
CaMg K AsMnHg Si MoSr Ni

CuCo
Zn P V Pb Fe Th

Al Ba LuTmCr Yb Ti TbHo Er La DyNdGdEuCe PrSm
Cd

B S Cl

(c) Water sample V07 vs. fresh tephra

(d) Water sample V08 vs. fresh tephra

 
Figure 4 Relative mobility of selected elements to Na. (a) The total flux compared to fresh tephra. 

(b) The total flux compared to suspended samples V07 and V08 sampled around the discharge 

maximum. (c) The water sample V07 compared to fresh tephra. (d) The water sample V08 

compared to fresh tephra. 
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5.4.5 Reaction path modeling in the flood path 

5.4.5.1 Surface complexation 

Hydrated volcanic glass may be considered as a mechanical mixture SiO2, Al2O3 and 

FeO oxides in that order. The 3 most abundant surface sites contributing to the surface 

of volcanic glass are Si-OH, Al-OH and Fe-OH sites in that order. Furthermore, the 

equilibrium constants for As(III) adsorption onto Fe-OH are higher than for sorption 

onto Si-OH and Al-OH sites (Sahai and Sverjensky, 1997; Sverjensky and Fukushi, 

2006) and order of magnitudes higher for arsenate (Fukushi and Sverjensky, 2007). 

Therefore, the contribution of Fe-OH sites to the sorption was dominant as was 

observed by comparing modelled results from As sorption onto HFO (Figures 5a and 

5b) with As sorption onto basaltic glass (Figures 5c and 5d) when the number of active 

surface sites have been equalled and the only difference being the equilibrium constants 

for association/dissociation surface reactions and the As sorption reactions. Although 

the system may not have reached equilibrium, when equilibrium constants for the 

surface reactions were used to predict mobility, borate should have been most mobile, 

followed by chloride, silicate, arsenite, sulphate, fluoride, arsenite, bicarbonate and 

finally phosphate. The chemistry of the sulphur is further complicated since the 

speciation varied according to its source as will be discussed in next section. Arsenic 

may be considered to have been on the arsenite form (As(III)) in the flood path due to 

its rapid appearance peak in the flood, the low oxygen saturation of the water and the 

short reaction time. In fact, As is primarily measured on the arsenite form in geothermal 

waters in Iceland (Chapter 4, this thesis). The oxidised form arsenate should have been 

retained more according to experimental data on basaltic glass surfaces (Sigfusson et 

al., 2008). 
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Figure 5 Results of model calculations when Hydrous Ferric Oxide (HFO)  was used to represent all 

the surface (2.17mg in 1 litre water 10 g of Basaltic glass in 1 litre of water) (a and b) . Same 

calculations when basaltic glass represented all of the surface (10 g in 1 litre water). Hfo was used 

to represent the surface of the tephra in all simulations to allow for incorporation of competitive 

surface reactions of other ions. 
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5.4.5.2 Constraint of temperature 

The mean temperature in the flood path was estimated by adjusting the temperature for 

geothermal water/volcanic gas/tephra interactions between 0 and 50°C. Fifty degrees 

led to rapid dissolution rates of the tephra and a high pH rise as a consequence. On the 

contrary 0°C, led to slow dissolution rates. After few test runs, the temperature was set 

to 2°C due to sufficient pH rise of the floodwaters to measured values (Figure 6a,b). 

This was estimated to be the mean temperature in the flood path whereas published data 

have estimated that the temperature leaving Grímsvötn in the Gjálp eruption was 8°C 

(Gudmundsson et al., 1997) and measured temperature at the bridge was between 0.2 

and 1.8 °C at air temperatures between 1 and 8.6°C (table 2). The glacial outburst flood 

following the Gjálp eruption had very different characteristics to the 2004 eruption in a 

way that melt water flowed continuously for 5 weeks into Lake Grímsvötn prior to the 

glacial flood out of the lakes. No published heat and mass balance calculations exists on 

the estimation of floodwater temperatures leaving Grímsvötn in the 2004 eruption. The 

modeling, however, demonstrates that the products from chemical reactions in the flood 

path may help constrain the heat flux of eruption and flood. 

5.4.5.3 Tephra dissolution in the flood path 

The aim of the modeling exercise of the flood path water was to be able to end up with a 

pH close to the measured value at the bridge and by the means of dissolving tephra 

according to experimentally derived data (Gislason and Oelkers, 2003) and adding a 

known amount of volcanic gases based on chemical analyses at the bridge to adjust the 

major element concentration measured. This first attempt successfully reproduced the 

pH value if the specific surface area is larger than geometric but smaller than BET 

surface area. Further, allowing moganite to precipitate in the solution fixed the Si 

concentration while the modelled total dissolution of tephra corresponded roughly to the 

sum of measured oxides in the suspend matter collected at the bridge (Table 1). The 

modeling also demonstrated that the most of the silicate, sulphur and bicarbonate was 

partitioned in the solution compared to surface (Figures 6a, 6b, 6c and 7a, 7b, 7c) The 

same applied to fluoride (Figures 6e and 7e) whereas phosphate was primarily on the 

surface of the suspended materials (Figures 6d and 7d). Arsenic was primarily in 

solution which corresponds to measured values (Figures 6f and 7f). 
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Figure 6.  The eruption floodwater flowed for 14 hours before sampling at Skeiðará Bridge. The 

eruption water was simulated by dissolving  10 grams of fresh tephra with specific BET surface 

area of  12.6 m2 g-1 in 1 litre of floodwater prior to eruption (02V002 in Table 2) for the period of 14 

hours .  Dashed lines represent aqueous species concentrations, but solid lines surface species 

concentrations in (mol/kg). Open symbols on the right y-axes represent measured aqueous 

concentrations (Table 2) and closed symbols sorbed concentrations. Other sources such as volcanic 

gases were needed in addition to dissolution of tephra, adsorption and desorption to account for 

measured DIC, Cl-, SO4
2- and F- whereas excess dissolution and adsorption of P was predicted.  

Elevated arsenic concentrations in the floodwater peak could be explained by dissolution of tephra 

only. Black lines represent carbon species, blue lines silicon species and orange lines sulphur species 

in the combined figure. 
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Figure 7 Same simulation as in figure 6 assuming specific geometric surface area of 2.3 m2 g-1. Elevated 

As concentrations in the floodwater peak could not be explained by dissolution of tephra only. The actual 

reactive surface area was presumably between geometric and BET surface area. Black lines represent 

carbon species, blue lines silicon species and orange lines sulphur species in the combined figure. 
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5.4.6 Mixing of floodwaters and seawater 

Figure 8 displays the predicted fate of selected elements when the floodwater prior to 

eruption entered the ocean at 25°C. Figure 9 displays the predicted fate of selected 

elements when the volcanic floodwater sampled during the flood peak entered the 

ocean. The fate of selected elements was predicted during this mixing and is primarily 

dependent on the chemical composition and pH of the mixture as well. The pH of the 

mixture shifted from 6.7 and 6.2 to 8.2 for geothermal and volcanic floodwaters, 

respectively. The aqueous species of all elements were always in much higher 

concentrations than adsorbed species except for As when BET surface area was used 

and as a consequence the predicted impact of the floodwaters was higher. The high 

adsorbed arsenate concentration in floodwater/seawater mixtures of ~1:5 to ~1:100 

where the majority of the As was from the seawater but available surface was still 

sufficient to complex the arsenic. As the seawater ratio increased the surface was 

saturated and higher proportion was dissolved in the seawater and the effects of the 

floodwaters were negligible. The floodwater also diluted the S and P concentrations 

locally in the ocean but the effects were much more due to dilution rather than surface 

complexation (Figures 7 and 8). After extensive dilution all adsorbed S and P had been 

desorbed again indicating the localised effect of such small eruptions, a P deficiency 

only occurs after small mixing but increased mixing  minimises sorbed P (Figures 8 and 

9). The Si, C and F in the floodwaters were conversely diluted very rapidly by the ocean 

due to mixing and limited surface reactions occurred. Simple mixing calculations 

assumed no floodwater effect would be measured within 10% analytical error after 40 

fold dilution with seawater. The was no difference between mixing geothermal 

floodwater with seawater on one hand and volcanic floodwater with seawater on the 

other hand, after the floodwater/seawater ratio had exceeded 1:1000 (Figures 8 and 9) 

Therefore the effect of the floodwater on the ocean are localised in such a small 

eruption. 
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Figure 8 Mixing of geothermal floodwater and seawater prior to the eruption.  Initially, the 

suspended materials in the floodwater adsorbed SO4
2- and As from the seawater. Following a 

continued dilution of the floodwaters with increasing pH values in the mixture, all ions desorbed 

substantially to the ocean.  Figure 8a uses BET surface area and Figure 8b geometric surface area.  

8(a) Geothermal floodwater and BET surface area
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Figure 9 Mixing of floodwater and seawater during the volcanic eruption.  Initially, the suspended 

materials in the floodwater adsorbed SO4
2- and As from the seawater. Following a continued 

dilution of the floodwaters with increasing pH values in the mixture, all ions desorbed substantially 

to the ocean. Black line on the As diagram represents As concentration by mixing between the two 

waters with no surface complexation. Otherwise the same colours apply as in Figure 8. Figure 9a 

assumes BET surface area and Figure 9b geometric surface area.  

9(a) Volcanic floodwater and BET surface area
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5.5 Conclusions 

A continuous monitoring network detected signs of glacial flooding event from the Mt. 

Grímsfjall volcano in Vatnajökull glacier. As a consequence a sampling campaign could 
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be launched prior to initiation of the November 2004 eruption of Grímsvötn. Floodwater 

and suspended material samples were sampled less than 14 h after the tephra entered the 

Earth’s surface providing unique opportunity to study volcano glacier interactions. The 

melt water flowed sub glacially for 50 km and there was evidence the sub glacial tunnel 

may have acted as a natural ion chromatograph. Geothermal melt water in Lake 

Grímsvötn buffered volcanic gases emitted in the eruption, therefore slowing down 

dissolution of the tephra. The As dissolved from the tephra in the eruption was adsorbed 

to the suspended materials in the flooding event. Once entering the ocean, the 

suspended materials probably caused local decrease in aqueous As concentrations. 

Upon prolonged dilution of the floodwater by seawater the As was desorbed from the 

surface and the floodwater chemical signals were not predicted to be measurable once 

they had been diluted thousand times by sea water. The selection which surface area 

measurement to use highly influences predicted effects of floodwaters entering the 

ocean. 
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6.1 Introduction  

Basaltic rocks are the primary product of magma processes at ocean ridges and they are 

further associated with mantle plumes (Jerram and Widdowson, 2005). Evidently, being 

formed by volcanic eruptions, basaltic rock occurrence is inherently associated with 

geothermal activity at some point in time. The activity may be non existent in old 

geothermal areas and far from volcanic regions whereas active areas are always 

associated with elevated temperatures near the Earth’s surface compared to eg. 

Continental crustal areas. These elevated temperatures in combination with presence of 

abundant ground waters and rock permeability promote more rapid dissolution of the 

host rocks than at low temperature, therefore facilitating release of metals that may or 

may not precipitate into secondary minerals depending on the environmental conditions. 

One of these metals is arsenic (As) which varies from 0.18 to 113 mg kg-1 in basaltic 

rocks (Smedley and Kinniburgh, 2002). 

The toxicity of arsenic is a well documented phenomenon (e.g. (Squibb, Fowler 

1983, Lintschinger et al., 1998; Chakraborti et al., 2002; Mukhopadhyay et al., 2002; 

Hopenhayn, 2006; Cifuentes et al., 2009; Ventura-Lima et al., 2009). The oxidation of 

arsenite (As(III) to arsenate As(V) is commonly assumed to be carried out by 

microorganisms to derive energy from the oxidation of As(III) or it is presumed to be a 

detoxification mechanism (Salmassi et al., 2002). The toxicity of As(III) results from its 

affinity for sulfhydryl groups: various enzymes can be inactivated when As(III) binds to 

the cysteine residues of these proteins (Ferguson and Gavis, 1972; Summers and Silver, 

1978). Arsenate, exerts a lower level of toxicity by substituting for phosphate in 

membrane transport systems and in ATP (Summers and Silver, 1978). Although the 

species may have different toxicity, there is evidence that the speciation once ingested is 

not the deciding attribute on the toxicity, but rather the transformations of arsenic 

species that may occur in the body after ingestion (Naranmandura et al., 2008). 

Regardless of transformations in the body, the speciation though always plays an 

important part on the mobility of As and determines the availability of the metal to the 

receptor. 

The occurrence of As in ground-waters is of high concern throughout the world 

(Smedley and Kinniburgh, 2002) and while the source of As to these waters is not 

always understood numerous studies have been conducted on As removal from drinking 

waters with the aid of natural minerals, being either primary minerals in rocks (Singh et 
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al., 1996) or secondary minerals in soils (Lin and Puls, 2000; Herbel and Fendorf, 

2006). Traditionally, the adsorption of arsenic (and other pollutants for that matter) was 

determined under set environmental conditions and an empirical relationship between 

the arsenic and the sorbent established, hence providing limited applicability of the data 

to other environments (Limousin et al., 2007).  As analytical and computational power 

has advanced, the shift towards mechanistic models on adsorption has been observed in 

the literature (Sverjensky and Fukushi, 2006; Fukushi and Sverjensky, 2007). These 

models rely on stoichiometric reactions taking into account the chemical composition of 

the medium where they occur. Results generated on As sorption in the laboratory, which 

are validated by a mechanistic model taking into account competition of other ions and 

the ionic strength of the solution may be applied to other environments with confidence. 

The widespread occurrence of basalts and the toxicity of As make research on 

their interaction important. While a considerable effort has been made on As research 

through the years the source and fate of arsenic in basaltic terrain is poorly understood 

(Arnorsson, 2003; Cabral and Beaudoin, 2007; Giroud, 2008).  Therefore the aims of 

this thesis were: 

• To provide an overview of the mobility of arsenite, As(III) and arsenate, As(V) 

oxyanions in contact with basaltic glass surfaces by carrying out laboratory 

experiments under controlled pH, Eh and ionic strength conditions. 

• To use the coefficients generated to predict As transport where high temperature 

geothermal water is released into the natural environment. 

• To quantify the percentage of thioarsenates in high temperature geothermal 

water and estimate the effect of thioarsenate complexation on the mobility. 

• To combine experimental and field results to describe As cycling in a glacial 

outburst flood (jökulhlaup) following a sub glacial basaltic eruption. 

In order to fulfil the aims of the thesis, the As/basalt interaction was studied in the range 

from small scale laboratory experiments in both Iceland and Scotland to field 

measurements in the vicinity of geothermal power plants and rivers draining from active 

volcanic eruptions. The data were then integrated by means of geochemical modeling in 

order to broaden our understanding on the release and transport of As in the basaltic 

crustal environment. 
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6.2 Key findings of this research 

The work may be summarised into these key findings. 

1. Arsenate (As(V)) mobility in basaltic porous media is highly dependent on the 

pH of the system. At low pH arsenate is nearly immobile and much less mobile 

than arsenite (As(III)). At high pH arsenate is highly mobile and much more 

mobile than arsenite. Arsenite was least mobile at near neutral conditions. 

2. Arsenic is primarily bound to sulphur in high temperature geothermal waters in 

Iceland. These species are unstable at the surface and degrade rapidly once H2S 

has been oxidised or degassed and as a consequence, the mobility in some non 

sulphidic environments may be predicted from experiments on arsenite and 

arsenate oxyanions. 

3. Volcanic eruptions are a source of As Earth’s surface. However basaltic 

eruptions may cause localised decrease in As concentrations in the ocean due to 

surface adsorption reactions. 

 

6.2.1. Arsenite and arsenate mobility in basaltic porous media 

In this thesis, basaltic glass has been considered as a mechanical mixture of 

amorphous silica-, iron- and aluminium oxides (Gislason and Oelkers, 2003). 

Consequently the surface of the glass has been assumed to derive it’s properties in 

stochiometric proportions to the chemical composition of the glass. Of the three 

elements, Si is in highest abundance (16.8%) followed by Al (5.92% and finally 

Fe(3.28%) (Table 1, chapter 2). However when considering the equilibrium constants 

for surface reactions of arsenite on these surface sites it may be seen that the most 

important inner sphere surface reaction is the binding of As(III) to Fe sites (log K = 5.6) 

followed by adsorption to Al sites (log K = 4) and finally to Si sites (log K = 0.63). 

Similar tendency applies to As(V) adsorption and is due to different effective dielectric 

constants of the solids explaining the different magnitude of log K values (Fukushi and 

Sverjensky, 2007). This treatment of the basaltic glass allowed prediction of As 

transport in the laboratory, a necessary precursor for any reliable prediction under field 

conditions. 

Arsenite is least mobile under near neutral conditions in basaltic aquifers. Near 

neutral conditions are though not very common in ground waters as the pH is raised 
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relatively fast to above 9 due to water/rock reactions by consumption of protons and 

there is not a resupply of bicarbonate from the atmosphere to neutralise the pH. 

Conversely, the pH of soils with basaltic parent material may be lower both due to a 

steady supply of bicarbonate and also due to formation of organic acids that may lower 

the pH (Sigfusson et al., 2006). Volcanic gases may lower the pH in ground waters 

(Delmelle et al., 2003) and could therefore increase As(III) mobility. Since the volcanic 

gases often include high proportion of H2S the sulphur may effectively remove all As 

from the solution by formation of As-sulphides. The very high mobility of arsenic in 

basaltic terrain is presumably due to the fact that high pH is usually maintained and at 

high pH, both As(III) and in particularly As(V) are mobile and additionally formation of 

aqueous thioarsenic species is favoured over formation of As-sulphides (Planer-

Friedrich et al., 2007). 

Basaltic glass is one of many rock and soil constituents exhibiting variable charge 

on its surface. The variable charge is due to the surface’s ability to accept and donate 

protons from its surrounding solution. This property leads to varying adsorption 

potential of ions with pH. Furthermore, the adsorption potential relies on the 

protonation of the anions in question. 

 Typically, peak sorption of oxyanions such as sulphate, carbonate, silicate and 

phosphate is observed at low pH and a complete sorption is essentially observed until a 

critical pH value is reached. For arsenic, this behaviour may be explained by the 

formation of two types of As(III) surface complexes (Sverjensky and Fukushi, 2006): 

1) Formation of a strong inner sphere complex by ligand exchange. Here the 

surface complex is formed when two water molecules are replaced by the anion on the 

surface through two reactions, first the surface is protonated and H3AsO3 is adsorbed 

and deprotonated. In a second reaction water molecules are desorbed and an inner 

sphere surface complex is formed.  

 

2) The formation of an outer sphere complex is essentially through hydrogen 

bonding. The surface is protonated to –OH2
+ and the protonated surface site forms a H 

bond to the -OH group of the oxyanion. The formation occurs primarily around and 

below the first pK value of the oxyanion. Once the oxyanion has dissociated the H bond 

is not stable and as a consequence the oxyanion will not form an outer sphere complex.  
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The ratio of As inner sphere to outer sphere complexes depends on the surface. 

According to modeling carried out by Sverjensky and Fukushi (2006) on As(III) 

adsorption, inner sphere complex was prevalent on magnetite (Dixit and Hering, 2006) 

up to pH 4.2, on goethite (Dixit and Hering, 2003), ferrihydrite (Jain et al., 1999) and 

amorphous Fe (Goldberg and Johnston, 2001) over the whole pH range, on HFO (Dixit 

and Hering, 2003) up to pH 8.9, on amorphous Al (Goldberg and Johnston, 2001) up to 

pH 6.5 and gibbsite (Weerasooriya et al., 2003) over the whole pH range. The crossover 

points were though dependent on the As concentration, ionic strength of the solution 

and solution composition. In general it may though be said that As(III) inner sphere 

complexes predominate at low pH values and As(III) outer sphere complexes are 

increasingly important at high pH. However, on most oxides the As(III) inner sphere 

complex becomes more predominant over aqueous As(III) as pH is shifted from 3 

upwards towards neutral pH. 

Similarly, for As(V) three inner sphere surface complexes may be assumed from 

spectroscopic data (Fukushi and Sverjensky, 2007). The formation of these complexes 

occurs in similar manner as the inner sphere complex of As(III), that is the release of 

water molecules from the surface and adsorption of arsenate ion. Together, these 

surface complexes are primarily formed at low pH values whereas decreased sorption is 

observed as pH is increased and the arsenate dissociates. In all cases the highest 

tendency to form surface complex is on HFO, followed by ferrihydrite, goethite and 

then the aluminium bearing phases (Fukushi and Sverjensky, 2007). 

6.2.2.  The  stability  and  mobility  of  thioarsenic  species  in 

geothermal powerplant wastewaters 

Arsenic sulphur relationship was studied under three types of field conditions: 

1) In high temperature geothermal water leaving a power plant with the arsenic 

primarily being on thioarsenic form 

2) In surface stream with thioarsenic being both adsorbed to sulphides and degraded 

stepwise to arsenite and arsenate before being finally discharged into: 

3) a shallow groundwater stream in a basaltic lava flow where the primary mechanisms 

for arsenic removal were presumably adsorption to basaltic glass and iron oxides in the 

absence of H2S. 

Field measurements confirmed published literature that As is primarily bound to sulphur 

in high temperature sulphidic waters at high pH (Planer-Friedrich et al., 2007; 
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Nordstrom and Archer, 2003). These thiorarsenic species were rapidly degraded in the 

absence of H2S although the degradation was kinetically controlled and considerable 

discrepancies were observed between thermodynamic calculations and field 

measurements. The As levels in geothermal waters and ground waters were compared 

against the highly conservative chloride (Giroud, 2008) and the As was highly mobile in 

the in the presence of H2S when it was mainly on the thiorarsenic form. However, 

surface discharge, associated with decrease of H2S due to sulphide formation, degassing 

and oxidation promoted degradation of thioarsenic species and formation of arsenite and 

later arsenate presumably along with some incorporation of As into sulphides 

(Cleverley et al., 2003). The As oxyanions were then removed from ground waters 

relative to chloride due to a combination of surface adsorption reactions on basaltic 

glass and iron hydroxides since no sulphides were stable at these latter conditions in the 

postglacial lava. 

During the field trials of the thesis the author sampled geothermal waters (pH 3-

7.8) from boiling mud springs in Krísuvík and Hveradalir, Iceland. The mineralogy of 

these mud springs is characterised by iron sulphides and in a total of 14 samples 

acquired from 0-50 m from the source total arsenic concentrations were never above 0.2 

μg l-1 although the waters in Hveradalir are derived from the same source as geothermal 

waters in the Hellisheiði Power plant where the author repeatedly measured As 

concentrations around 150 – 200 μg l-1. 

It may therefore be inferred that although As can be highly mobile under reservoir 

conditions at high temperature and pressure it can be efficiently removed from the 

solution initially by incorporation into and onto sulphides and later onto oxides and 

basaltic glass provided that H2S has been removed from the solution.  

6.2.3 The fate of volcanically derived arsenic in a glacial outburst 

(Jökulhlaup) event 

A modeling exercise was carried out to speculate on the fate of As from entering the 

Earth’s surface until being discharged in the ocean few hours later.  The 2004 

Grímsvötn eruption was used for this purpose. The model could be verified to some 

extent by the means of sampling campaign on river water and suspended materials that 

was carried out during the volcanic eruption. The fresh unweathered tephra was also 

sampled allowing for prediction of mobility of various trace elements. According to 

geochemical calculations the dissolution of volcanic materials that travelled through the 
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flood-path was sufficient to explain the elevated flux of dissolved and adsorbed arsenic. 

No volatile arsenic was needed during the eruption as an external source. However, As 

from degassing magmas may reach the volcano’s caldera (Pokrovski et al., 2002). This 

As is then presumably carried by steam being formed near the magma body and later 

dissolved in the Grímsvötn lake (Ballantyne and Moore, 1988). The 2004 Grímsvötn 

eruption was presumably too small to have any significant impact on the ocean due to 

dilution. Geochemical modeling of suspended material sea water interactions predicted 

adsorption of arsenate and phosphate from the ocean immediately upon mixing. The 

phosphate desorbed rapidly and was effectively not sorbed once floodwater had been 

diluted ten times with sea water. The arsenic was however adsorbed on the tephra 

surface until 1000 fold dilution had occurred. This means that a subglacial eruption or 

the much more common discharge of rivers with high suspended matter load may cause 

much more widespread localised decrease in aqueous arsenic than phosphate 

concentrations. These adsorption reactions may overcome the supply of anions leaching 

from the suspended particles as a result of chemical weathering thus making the 

suspended materials a short term sink followed by a long term source of nutrients to the 

ocean (Frogner et al., 2001; Jones and Gislason, 2008; Gabrielli et al., 2008; 

Stefansdottir and Gislason, 2006, Stefansdottir and Gislason, 2005).  

6.3 Future work 

The current research project merely touched on the subject of arsenic basalt interactions 

and it is evident that more research is needed in order to better understand the primary 

mechanisms responsible for arsenic mobility in basaltic terrain. The following projects 

are suggested to better understand arsenic – basalt interactions. 

Conduct Synchrotron radiation spectroscopy to qualify arsenic surface interactions. 

Although a great variety of possible surface species coordination geometries may be 

proposed from these spectroscopy studies (Waychunas et al., 2005) and they cannot 

determine the protonation state of surface complexes (Fukushi and Sverjenski, 2007) 

they provide insight on the structure of surface complexes and may shed the light on 

weather simple surface complex modeling may be applied to such a complex matrix as 

basaltic glass. In other words, is it justifiable to assume basaltic glass is a mechanical 

mixture of three surface site types that don’t interact or are other methods needed for 

modeling. 



Chapter 6 Final discussion 

180 

Carry out laboratory experiments in more complex solutions to quantify the effect of 

competing ions on As sorption. Numerous authors have studied the effect of competing 

ions in solution (Arai et al., 2004) and although silica, carbonate and chloride form 

weaker bonds than arsenic on eg. HFO (Dzombak and Morel, 1990) their concentrations 

exceed those of As by far in high temperature geothermal waters and as a consequence 

can have substantial impact on As mobility. 

Instigate experiments with AEC-ICP-MS attached to the experiments outlet instead 

of HG-AAS or HG-AF. This allows for the determination of thioarsenic basaltic glass 

surface reactions. A concern has been put forward on the applicability of HG techniques 

to study arsenic speciation due to the instability of As aqueous species in the analytical 

system and formation of As-sulphides at low pH (Planer-Friedrich and Wallschlager, 

2009). The usage of AEC-ICP-MS will eliminate that source of error and provide more 

robust data for interpretation. 

Study arsenic dynamics on weathered rocks and also crystalline basalts. This would 

increase the applicability of the findings. The need for those experiments is though 

somehow determined by results generated from project 1 mentioned above. If basalt 

may in fact be considered to be a mechanical mixture of Si, Al and Fe –oxides, more 

weathered systems may be studied by altering the ratio between the abovementioned 

sites. 

Carry out further modeling and measurements of the fate of trace elements adsorbed 

to river suspended materials once they enter the ocean. A considerable effort has been 

made to quantify the release of trace elements form suspended materials once entering 

the ocean, (Frogner et al., 2001; Jones and Gislason, 2008; Gabrielli et al., 2008; 

Stefansdottir and Gislason, 2006; Stefansdottir and Gislason, 2005) although less is 

known on the adsorption of some elements onto tephra grains. Initially a desk study 

might be carried out to revise data from experiments that does not take into account 

surface complexation reactions since they may be responsible for variable release rates 

of elements into solution rather than different leaching rates from the crystal lattice of 

bulk materials. 

Deploy HPLC-ICP-MS at geothermal power plants to accurately quantify of As in 

geothermal waters and, hence, provide further insight on the transport of As in fluid 

dominated high temperature geothermal systems. This deployment prevents most 

uncertainties about sample preservation and analysis (Planer-Friedrich et al., 2007, 

Planer-Friedrich and Wallschlager, 2009, McCleskey et al., 2004) and would give a 
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deeper understanding of processes occurring within high temperature geothermal 

regions. Field application of AES-HG-AFS as in this thesis and AES to quantify sulphur 

species (Stefansson et al., 2009) have already demonstrated the limited usefulness of 

sample preservation with regards to redox sensitive species and all sulphur containing 

species in geothermal fluids.  
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