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Abstract. This study aimed to employ artificial intelligence capability and computing
scalability to predict the velocity field of the straining turbulence flow. Rotating impellers
in a box have generated the turbulence, subsequently subjected to an axisymmetric strain-
ing motion, with mean nominal strain rates of 4s=!. Tracer particles are seeded in the
flow, and their dynamics are investigated using high-speed Lagrangian Particle Track-
ing at 10,000 frames per second. The particle displacement, time, and velocities can be
extracted using this technique. Particle displacement and time are used as input observ-
ables, and the velocity is employed as a response output. The experiment extracted data
have been divided into training and test data to validate the models. Support vector poly-
nomial regression (SVR) and Linear regression were employed to see how extrapolation
for the velocity field can be extracted. These models can be done with low computing
time. On the other hand, to create a dynamic prediction, Gated Recurrent Unit (GRU)
is applied with a high-performance computing application. The results show that GRU
presents satisfactory forecasting for the turbulence velocity field and the computing scale
performed on the JUWELS and DEEP-EST and reported. GPUs have a significant effect
on computing time. This work presents the capability of the GRU model for time series
data related to turbulence flow prediction.
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1 INTRODUCTION

Turbulence flow is observed in many industrial and natural phenomena [1][2]. Smoke
from the chimney, airflow around the car, airplane wing, wind speed, downstream flow
in wind farms, and water flow in rivers and waterfalls are examples of the everyday
turbulence around us [1][3][2]. The study of turbulence flow is essential because, firstly,
to understand the phenomena in many applications. Secondly, it is necessary to know
the turbulence flow in the next step and prediction in some cases. For example, the wind
speed drives the wind turbine, and the output is electrical power. The generated force
is proportional to wind speed, and the power grid needs to have short-term and long-
term predictions [4][5][6][7] according to the power demand in the grid. This makes wind
speed forecasting important, and, in this case, there is sometimes high-speed wind as an
extreme event called gusts which could have an impact on the power grid and electricity
production [8][9].

In fluid dynamics, many experiments have recorded the velocity fields. On the other
hand, from the Computational fluid dynamics view, Direct Numerical Solution (DNS),
Large-eddy Simulation (LES), and Reynolds-Averaged Navier Stokes (RANS) are capa-
ble methods to solve turbulence flow problems and extract the velocity field and other
properties [10][11][12]. LES presents reliable result, and DNS dictate the exact solution,
but these methods are costly, and it is necessary to run-on High-Performance Computing
(HPC). The development in the HPC is rapid, but still, we are far from solving problems
of enormous size [I1][12]. This limitation tends us to use other methods to create inter-
polation functions from available data or predict the turbulent flow in the short or long
term. Artificial Intelligence (AI) involves methods for interpolation or prediction [13].
The machine learning support vector machine (SVM) and linear regression can create a
function and hypothesis with available data and build an interpolation function.

In some cases, we could use the created function for extrapolation. However, Deep
learning (DL) networks can forecast time series data via a recurrent neural network
(RNN). Long short-term memory (LSTM) is a successful approach for prediction, and
many studies employed this method for time series, and there are combined hybrid meth-
ods with LSTM. LSTM is a comprehensive method but costly for large time series, and
it consumes extensive computing time because of its architecture. Gated recurrent unit
(GRU) is a next-generation LSTM that has a few distinctions from LSTM, and it is
reported faster[14].

Turbulence flow is a high dimensional phenomenon, and all previous studies used DL
ability via many layers to find the main hidden feature among the high dimensionality.
Then the model has been created for the prediction via extracted main hidden features
[TI][12]. This study uses time-series data, including 2D velocity field and position corre-
sponding to the specified time. This data was extracted from the experiment conducted
at the laboratory. This work aims to present spatial and temporal features of the tur-
bulent flow dataset to create a GRU model that gives a satisfactory prediction without
encountering high dimensionality of the turbulence flow. The computing time for the
GRU model is scaled, and the report showed GPUs could improve the computing time ef-



R. Hassanian, M. Riedel, A. Helgadottirs, P. S. Costa and L. Bouhlali

fectively for this model. The results from SVM and linear regression models are mentioned
and compared.

2 DATA SET FROM EXPERIMENT

Figure 1: A photo of the turbulence box taken at the Laboratory for Fundamental Turbulence Research
(LFTR) at Reykjavik University [I5][16].

The turbulent flow is generated with the action of impeller rotors in the corners of
our box turbulence facility (Figure[1]). The turbulent flow is then strained in the vertical
direction by the motion of flat circular plates. The fluid is seeded with buoyant (tracer)
particles with median diameters 8-10 um. The specific gravity for tracers was 1.1 gr/cm?
(hollow glass). The flow field properties are obtained and studied through the Lagrangian
Particle Tracking (LPT) method. Equation (1) describes the mean flow field in the facility:

(U) = (Sx,—25y, Sz), (1)

Where (U) is the mean velocity —2S is the primary strain rate in the Y-dir, and S
is the strain rate for the other two directions. The straining flow cases were created in
the experiment with mean strain rates, 25 = 4s~!. Equation (1) is based on the laminar
flow; however, we know that velocity fluctuates in the turbulence flow[15]. The Lagrangian
particle tracking (LPT) measurements were carried out in 2D, so the velocity components
in x and y direction is obtained. The turbulence in this project depends on the size of the
particles, on the rotation speed of the impeller in the tank and is applied at 1000 rpm.
The mean strain rate 4s~! was created using two circular plates - the plates driver motor
moves according to an exponential velocity profile; the same as a particle would move
by if it were moving along the y axis towards the center of the coordinate system. The
detection system was set at 10 kHz (10000 fps) for well-resolved particle velocity and
acceleration statistics. This very high temporal resolution (0.1-0.2 ms) is considerably
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smaller than the Kolmogorov time 7, (35 - 99 ms) of the smallest eddies present in the
flow; therefore, the properties of the dissipation range in the flow are solved. In general,
there were 80000 frames for buoyant particles per experiment, and an in-house LPT code.
The particle velocity and displacement data are extracted and are used to train the model.
These data are divided between test data and training data.

3 MACHINE LEARNING MODELS
3.1 GATED RECURRENT UNIT (GRU)

The data series in this work involves velocity and position corresponding to specifies
time. We aim to employ GRU to create a model with this time series to predict the
next time step in a parallel computing setting. The empirical data is divided into 80%
training and 20% test data. This modeling relies on the spatial and temporal features of
the turbulent flow. We have not used a method to find specific features, and the practical
elements are positioned during the time extracted via LPT. The advantage of this method
is that we conduct the model for every velocity component separately and perform it for
2D and 3D velocity components depending on the data availability. Figure [2| represents
the prediction result via GRU evaluated with the actual data.

1.2
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Figure 2: GRU model for turbulence flow velocity in y direction forecasts the next time step and assessed
with actual data

3.2 REGRESSION AND SUPPORT VECTOR MACHINE (SVM)

Support vector regression polynomial (SVR) and linear regression were employed to
create the model in a parallel computing setting. Figure [3| shows a prediction from
linear regression for the velocity during the straining time, and the forecast from SVR is
illustrated in Figure [ It is well-known regression and SVR consuming low computing
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and very fast than deep learning methods such as LSTM and GRU. But the result dictates
this method cannot create a prediction model for the turbulence flow velocity field with
position and time. It may be necessary to use more features as input to provide a reliable
model.
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Figure 3: A presentation is from the prediction model for particle velocity in y-dir were tracked during
the straining flow time. (a) 3D view, (b) Y component velocity vs. time. Compared to test data from the
experiment; The blue circle is experiment data. The red line has been predicted via the linear regression
model.

4 PARALLEL COMPUTING

In this work to implement the GRU model training, two powerful parallel computing
machines were employed to assess the scale computing. The first one is JUWELS Booster
Module and the other one DEEP-EST, Data Analytics Module (DAM), both at the
Jillich Supercomputing Centre (JSC) in Germany. JUWELS represents the fastest EU
supercomputer with 122,768 CPU cores only in its cluster module. While JUWELS and
multi-core processors offer tremendous performance, the particular challenge to exploiting
this data analysis performance for ML is that those systems require specific parallel and
scalable techniques. In other words, using JUWELS cluster module CPUs with Remote
Sensing (RS) data effectively requires parallel algorithm implementations as opposed to
using plain scikit-learn15, R16, or different serial algorithms [I7][18]. The computing
information in this study was carried out based on these parallel machines as below
18] [19]:

e JUWELS Booster Module:

- 1 node involves 2x AMD EPYC Rome 7402 CPU, 2x 24 cores, 2.8 GHz
- 936 compute nodes
- 3,744 GPUs
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Figure 4: An illustration is from the prediction models for flow velocity in the y direction that were
extracted from Lagrangian particle tracking (LPT) during the straining flow time. Compared to test
data from the experiment; The blue circle is experiment data. The red-line has been predicted via the
support vector polynomial regression (SVR) model.

e DEEP-EST, Data Analytics Module (DAM):
- 1 rack with 16 nodes, Nodes
- 2 x Intel (R) Xeon (R) CPU, 384 GB DDR4, 2 TB non-volatile DIMM (NVM), 1 Nvidia
(R) V100 (R) 32GB HBM2 GPU 1 Intel (R) Stratix 10 FPGA 32GB DDR4
- Processors: 32 x Intel (R) Xeon (R) Platinum 8260M Scalable Processor @ 2.4GHz (768
cores total)

The scalability of these two parallel machines for training models is reported in the
result section.

5 RESULTS

JUWELS booster module assessed with 1 to 4 GPUs with one node. The results in
Figure |b| show GPUs made effective speed up for GRU model training in order to with 2
GPUs, 3 GPUs, and 4 GPUs the computing time reduces 50%, 100%, and 150% rather
than one node with only 1 GPU.

Figure [0] illustrates the computing scale for described GRU model in this study on 1
node with 1 and 2 GPUs of the DEEP-EST DAM module machine. As it is expected the
GPUs significantly increased the speed of computing by more than 50

Table (1| reports the computing time for the applied parallel computing machine. Also,
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Figure 5: Computing scalability, JUWELS BOOSTER MODULE, 1 node assessed with 1 to 4 GPUs
for GRU training model.
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Figure 6: Computing scalability, DEEP-EST DAM MODULE, 1 node assessed with 1 to 2 GPUs for
GRU training model.

Table 1: Parallel computing machine scalability to create the GRU model with GPUs

Parallel Machine/Module  Nodes GPUs Computing time [s] Speed-up

JUWELS/ Booster Module 1 1 940.643 1.000
1 2 629.094 1.495
1 3 466.445 2.016
1 4 379.135 2.481
DEEP-EST/ DAM Module 1 1 881.813 1.000
1 2 548.754 1.606

table [2] shows the computing time for SVM and regression, which determines these two
methods do not require parallel computing in contrast to the GRU model and can be
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Table 2: Computing time to create the ML models; support vector polynomial regression and linear
regression

Machine Support vector poly. Regression model Linear regression model
JUWELS/ Booster Module
(1 node without GPUs) 17.165 0.016

parallel computing [s]

implemented more straightforwardly and very fast. Still, they could not provide reliable
and useful predictions with this data. GRU is significantly distinct and accurate.

6 CONCLUSIONS

This work used time-series data, including 2D velocity field, position, and time of a
straining turbulence flow generated in the laboratory. Position coordinate during the time
was concerned as the main feature to predict the velocity field. This statement determines
the spatial and temporal properties of the fluid dynamics based on the Lagrangian frame-
work. The results show the GRU model has a significant prediction for this data. For
this approach, parallel computing scalability was investigated on two powerful machines.
The GPUs can effectively speed up the GRU model, a subset of recurrent neural net-
works (RNN), with faster performance than LSTM and simpler architecture. The results
mention this model could be suggested to employ recorded data for velocity fields such
as wind speed, downstream wake profile for objects in the airflow, water flow in the pipe,
and airflow in the channel and generate forecasting for the next step time.
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