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Abstract: Twenty-eight sponge specimens were collected at a shallow water hydrothermal vent site
north of Iceland. Extracts were prepared and tested in vitro for cytotoxic activity, and eight of them
were shown to be cytotoxic. A mass spectrometry (MS)-based metabolomics approach was used to
determine the chemical composition of the extracts. This analysis highlighted clear differences in the
metabolomes of three sponge specimens, and all of them were identified as Haliclona (Rhizoniera) rosea
(Bowerbank, 1866). Therefore, these specimens were selected for further investigation. Haliclona rosea
metabolomes contained a class of potential key compounds, the 3-alkyl pyridine alkaloids (3-APA)
responsible for the cytotoxic activity of the fractions. Several 3-APA compounds were tentatively
identified including haliclamines, cyclostellettamines, viscosalines and viscosamines. Among these
compounds, cyclostellettamine P was tentatively identified for the first time by using ion mobility
MS in time-aligned parallel (TAP) fragmentation mode. In this work, we show the potential of
applying metabolomics strategies and in particular the utility of coupling ion mobility with MS for
the molecular characterization of sponge specimens.
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1. Introduction

The ocean covers more than seventy percent of Earth’s surface and harbors enormous biodiversity,
largely undiscovered. Iceland is a volcanic island in the North Atlantic Ocean and it is the largest
part of the Mid-Atlantic Ridge (MAR) that emerges from the sea [1]. Around the island there are
several submarine geothermal active sites hosting a highly diverse fauna. Until now there have been
no comprehensive studies on the diversity and bioactivity of marine natural products associated with
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the organisms found at these sites [2]. Hydrothermal vent fields are known to be found around oceanic
ridges worldwide, mainly at great depths. Iceland has a unique vent field site positioned in shallow
water, composed of cones and ridges built up for thousands of years by the precipitation of SiO,.
Hot alkaline fresh water (pH 10 and 72 °C) circulates in this hydrothermal vent site. Furthermore, it is
very different from the deeper water vent fields worldwide, both chemically and biologically. These
unique vent fields are the very few in the world that are easily accessed by SCUBA diving [3,4]. Sponges
(Porifera) are sessile organisms, known to produce bioactive secondary metabolites for their protection
as well as for reproduction and communication [5-7]. In the last decade, around 300 new compounds
have been discovered on a yearly basis from the phylum Porifera [8], and numerous studies have
demonstrated a broad range of activities, such as anticancer, anti-inflammatory, immunosuppressive,
neurosuppressive, neuroprotective, antiviral, antibacterial and antifungal activities [9].

3-Alkyl pyridine alkaloids (3-APAs) are marine natural compounds widely distributed in marine
sponges of the order Haplosclerida and are most abundant in the genera Haliclona, Amphimedon and
Xestospongia [10-12]. These alkaloids contain tetrahydropyridine- or pyridinium moieties connected to
aliphatic chains of different lengths, forming monomers [13], dimers, trimers or other more complex
polymeric structures [14]. Many of these compounds possess significant biological activities such
as cytotoxic, antimicrobial, antiviral and anticholinesterase activities [15,16]. Commonly known
representatives of the 3-APA family are the cyclostellettamines [17], haliclamines [18], halitoxin [19],
manzamines [20], sarains [21] and viscosamine [22]. The search for new bioactive compounds in more
harsh environments, like circumpolar regions and deep sea hydrothermal vents, has proven to be
successful for filter feeding organisms such as sponges, tunicates and bryozoans [2].

Chemical characterization of organisms can be carried out on the level of macromolecules
using proteomics [23,24] or by profiling the primary and secondary metabolites (low molecular
weight compounds) using metabolomics [25,26]. Metabolomics aims to identify and quantify all low
molecular weight metabolites in an organism [27,28]. The simultaneous detection of a wide range
of secondary metabolites, known to be species specific, provides an immediate image of the sponge
metabolome profile. In the present study, we have used untargeted metabolomics to assay 28 sponge
specimens collected at a hydrothermal vent site north of Iceland. Our dataset pointed out a class of
compounds with in vitro cytotoxic activity that were isolated and tentatively identified by combining
mass spectrometry and ion mobility.

2. Results

The aim of this study was to screen extracts from the sponge fauna at the hydrothermal vent site,
with the final objective of identifying potential compounds having in vitro cytotoxic activity against a
breast cancer cell line. Thus, a MS-based metabolomics approach aligned with the cytotoxicity data
was used as a workflow for this project (Figure 1).

After collection, sponge samples were processed, as described in the experimental section, in order
to extract the metabolomes. The 28 sponge extracts were then tested for cytotoxic effects against the
SK-BR-3 breast cancer cell line using an in vitro MTS cell proliferation assay. In vitro screening revealed
cytotoxic activity in eight specimens against SK-BR-3 breast cancer cells.

These eight active extracts were obtained from sponges that were identified as Haliclona rosea,
Halichondria sitiens, Halichondria panicea, Myxilla incrustans and Lissodendoryx fragilis. The most active
sponge extracts (CH30OH/CH,Cl,) were obtained from the Haliclona rosea species, that reduced the
viability of the cancer cells by 78%, 69% and 92% at a 33 pug/mL concentration (Table 1 and Figure 1).



Mar. Drugs 2017, 15, 52

Sample Collection

LC-MS
Metabolic Profiling

Structural
Characterization

/

Sample Collection

2428

2000 | %25
|

2%
|
i

polic]

| 1 | 2

41405
kR WIS g

3of 14

Figure 1. Experimental workflow for the characterization of cytotoxic compounds of sponges collected

at the Arnarnesstrytur vent field.

Table 1. Cytotoxic sponges collected at the hydrothermal vent site (Arnarnesstrytur). Sponge extracts
were tested in a 33 ug/mL concentration in DMSO.

Sample Name MTS Results (% Viability of Cells) Identification Depth (m)
S1 8% Haliclona rosea 24
S2 29% Halichondria sitiens 24
S3 51% Muyxilla incrustans 24
S4 18% Halichondria panicea 27
S5 31% Haliclona rosea 25
S6 31% Lissodendoryx fragilis 24
S7 13% Halichondria panicea 27
S8 22% Haliclona rosea 28

2.1. Metabolic Profiling

The LC-MS-based untargeted metabolomics approach was used for the initial screening of
sponge metabolomes in specimens collected at the hydrothermal vent site. This analysis provided
2107 features, and each of them was characterized by retention time and accurate mass. A better
visualization of the sponge metabolomes captured by the LC-MS analysis was obtained by performing
principal component analysis (PCA) that was used as a first step for data reduction and prioritization.
The principal components were ranked by the variability that they represent in the dataset, with the
first principal component accounting for the greatest variability in the data and so on [29]. The first
principal component (PC1) accounted for 46% of the total variance and together with the second
principal component (PC2) (17% of the total variance), revealed a well-defined cluster formed by
the three specimens of Haliclona rosea, S1, S5 and S8 (Figure 2a). These three specimens showed
in vitro cytotoxicity (70%-90% reduction of viability at 33 pg/mL, Table 1). The PCA clearly shows
that the Haliclona rosea specimens have different metabolomes (Figure 2). The other five cytotoxic
sponge extracts (52, S3, S4, S6 and S7, Table 1) clustered with the inactive specimens (Figure 2).
After comparing the exact masses of the features responsible for the Haliclona rosea clustering, with
MarinLit (MarinLit database. http://pubs.rsc.org/marinlit/) and Scifinder (Scifinder Database.
https:/ /scifinder.cas.org/scifinder), we found a good match with several 3-alkyl pyridine alkaloids,
some of which are known to possess cytotoxic activity.


http://pubs.rsc.org/marinlit/
https://scifinder.cas.org/scifinder

Mar. Drugs 2017, 15, 52 4 of 14

Scores Plot
o _| ® Active
™ ® Not active
LS o
o | Q@
S 4
. 0]
X
©
S o
= 9
O
o

Haliclona rosea (@)

-30

-80 -60 -40 -20 0 20 40

PC 1 (45.8 %)

Figure 2. Principal component analysis (PCA) performed on sponge extracts—the clustering of
Haliclona rosea is shown.

2.2. Characterization of 3-APAs in Haliclona rosea Extracts

Based on the preliminary metabolomics screening results, we focused further experiments on
the identification of the 3-APA content in the Haliclona rosea specimens (Figure 3). Fractionation was
necessary to reduce the chemical complexity of the Haliclona metabolome and was performed as
described in the experimental section by solvent:solvent partitioning. We investigated the butanol
fraction by using another LC-MS method, which combines a longer chromatographic run and data
independent mass spectrometry (MSF) [30]. The longer run was necessary to separate co-eluting
3-APA compounds, whilst the MSF approach was used because it enables the simultaneous collection
of both unfragmented and fragmented ions by generating two discrete and independent interleaved
acquisition functions [30,31]. The function 1 (low collision energy) provides unfragmented ions
and accurate mass information, while the function 2 (high collision energy) provides fragmented
ions. Figure 4a shows the mass chromatogram (function 2 at high energy) of the butanol fraction of
Haliclona rosea (sample S1). We then used high energy functions and key diagnostic fragments [30] to
resolve different 3-APA compounds. Indeed, by extracting the fragment at m/z 98.0970 (CsH1oN*) we
were able to differentiate all 3-APA compounds containing the tetrahydropyridine moiety (Figure 4b).
The dimeric haliclamine A, C, D, E and H containing the tetrahydropyridine were then tentatively
identified by accurate mass and MS/MS information (Table 2). These compounds are recognized by
their characteristic doubly charged molecular ions and fragmentation patterns (F; and F;) (Table 2 and
Figures S1-S5 in Supplementary Materials). The doubly charged molecular ions are: [M + 2H]** at m/z
227.2113 for haliclamine A, [M + 2H]** at m/z 222.2222 for haliclamine C, [M + 2H]** at m/z 229.2259
for haliclamine D, [M + 2H]** at m/z 215.2089 for haliclamine E and [M + 2H]** at m/z 236.2378 for
haliclamine H.
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Figure 3. Structures of 3-APA compounds.
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Figure 4. Data independent mass spectrometry (MSE) analysis of the butanol extracts of Haliclona rosea
samples. (a) The mass chromatogram at high energy provides fragment ion information of all
compounds; (b) Extracted ion chromatogram of the diagnostic fragment of tetrahydropyrimidine
moiety, representing compounds like the haliclamines; (c) Extracted ion chromatogram of the diagnostic
fragment of pyridine moiety, representing compounds like the cyclostellettamines, viscosamine and
the viscosalines.
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Table 2. 3-APA compounds tentatively identified in the Haliclona rosea extracts.

HRMS [M + HI*

HRMS [M + 2H]**

Pyr/THP (Moiety) Oligomer Compound Name Formula (Caled. Mass) (Calcd. Mass) MS/MS Main Fragments (F; and F;)
Pyr dimer (cyclic) Cyclostellettamine P CzyHuoNy 437.3896 Appm 1 218.1909 §§;‘§§§§ Egj‘;ﬁzﬁ;
Pyr dimer (cycli)  Cyclostellettamine @ Cs;Hs; Ny 451.4052 Appm 3 2251909 §§§§§2§ E&‘z Eﬁ;
Pyr dimer (cyclic)  Cyclostellettamine N CpoHyN, 423.3779 Appm 9 211.1803 §§;‘;}Z§§ Eggﬂiﬁi
Pyr dimer (cycli)  Cyclostellettamine G Ca3HssNy 479.4365 Appm 10 239211 §i§§§§§ Egjﬁigﬁi
Pyr dimer (cyclic) Cyclostellettamine A C34Hs7Np 493.4522 Appm 3 246.215 ;21522 Egl;gizg;

THP dimer (cyclic) Haliclamine A Cs1Hs3N» 453.4209 Appm 8 227.2113 ;Zégg; Egiigzgi
THP dimer (cyclic) Haliclamine C C30Hs5N; 443.4365 Appm 8 222.2222 gg?,gggg E&:gigg;
THP dimer (cyclic) Haliclamine D C31Hs7N» 457.4522 Appm 6 229.2259 ggéii% Egigiiﬁ;
THP dimer (cyclic) Haliclamine E Co9oHs3N» 429.4209 Appm 1 215.2089 ;giggg; E&égigg;
THP dimer (cyclic) Haliclamine H Cs2HsoN> 471.4678 Appm 4 236.2378 ;ééigg; Egigiﬁi
Pyr trimer (cyclic) Viscosamine C Cs4HgoN3 260.2382 [M]** n/a gzggggg Egzgz;ﬁzg
Pyr Linear Viscosaline B, CasHgaN30, 594.4999 Appm 4 246.2191/297.7537 ig;iﬁ; Eggigi?ﬁg;
Pyr Linear Viscosaline C C39He7N30; 608.5155 Appm 5 253.2264/ 304.7621 e o pe?)

274.7509 (C37Hg3N3)
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A similar procedure was used to resolve cyclostellettamines, viscosalines and viscosamines that
possess the pyridine moiety. In fact, by extracting the fragment at /2 106.0657 we were able to resolve
these compounds (Figure 4c). Confirmation was achieved by accurate mass and MS/MS information
(Table 2 and Figures S6-59 in Supplementary Materials). The doubly charged molecular ions are:
[M + 2H]J** at m/z 225.1909 for cyclostellettamine Q (Ca;Hs1Nj), [M + 2H]?** at m/z 211.1803 for
cyclostellettamine N (Cy9Hai7Np), [M + 2H]?* at m/z 239.2110 for cyclostellettamine G (C33Hs5N»)
and [M + 2H]*" at m/z 246.2150 for cyclostellettamine A (C34Hs7Nj). The trimeric viscosamine C
(Cs4HgoIN3) was also tentatively identified by using the characteristic triply charged molecular ion,
[M + 3H]** at m/z 260.2382. The viscosalines produce two doubly charged molecular ions (Table 2 and
Figures S11 and 512 in Supplementary Materials). Viscosalines B; and C are compounds containing
two pyridine moieties as well as one 3-alanine unit and were tentatively identified in these fractions.

Several cyclostellettamine compounds were also found in these extracts (Table 2);
cyclostellettamine C, G and N were previously reported in the literature [32,33].

2.3. Cyclostellettamine P by lon Mobility Mass Spectrometry

Among the cyclostellettamines tentatively identified (Table 2), we detected cyclostellettamine
P (C30H4gN>), a new potential analog of the cyclostellettamine family possessing Co and Cy; alkyl
chains, which to the best of our knowledge has never been reported in the literature. Therefore,
we tentatively characterized cyclostellettamine P by coupling mass spectrometry with ion mobility
working in time-aligned parallel (TAP) fragmentation mode.

The configuration of the SYNAPT system, where collision cells are placed one before and one
after the ion mobility (IM) cell, allows an acquisition mode known as time-aligned parallel (TAP)
fragmentation [34,35]. During this experiment, it is possible to select a precursor ion of interest
and achieve its fragmentation in the first collision cell, before the ion mobility cell. The fragment
ions produced can then be separated in the ion mobility cell and subjected to a secondary post-IM
fragmentation in the second collision cell. Association of secondary fragment ions to specific drift
times of primary fragment ions allows producing a pseudo-MS? experiment [34].

The doubly charged molecular ion of cyclostellettamine P was selected as a precursor ion resulting
in five fragments after the pre-IM fragmentation; m/z 393.33, m/z 204.17, m/z 232.20, m/z 218.19 and
m/z218.19. The two fragments at m/z 204.17 and m/z 232.20 represent the pyridine moieties with the
Cy and Cy; chains (Figure S6).

Each fragment ion was separated by ion mobility and dissociated again, providing further
information for structural characterization (Figure 5). We were able to separate by ion mobility the
two isobar ions at m/z 218.19 and then associate a specific fragmentation pattern to each of them.
These two ions represent the doubly charged cyclostellattamine P (Table 2). We propose that during
the ionization process the doubly charged molecular ion generates two different ions at m/z 218.19
with different mobility. The two fragmentation spectra obtained from each of the two isobars ions at
m/z 218.19 are similar (Figure 6). However, the ion at lower drift time shows specific fragments that
suggest the opening of the macrocycle leading to the fragment m/z 393.33 which results from a loss
of m/z 44.04 [C;HsNH]* from the singly charged molecular ion (m/z 437) (Figure 6). The spectrum
obtained from the ion at higher mobility suggests a more rigid structure and provides characteristic
ions at m/z 232.20 and m/z 204.17 obtained via the onium reaction [36].
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Figure 5. Time-aligned parallel (TAP) fragmentation experiment of cyclostellettamine P.

(a) Chromatogram of cyclostellettamine P; (b) Ion mobility separation of cyclostellettamine P
fragment ions (yellow and red dots) plotted as drift time against retention time; (c) Mass spectra
of cyclostellettamine P fragment ions separated by ion mobility; (d) Driftograms of cyclostellettamine

Pions.
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Figure 6. Ion mobility separation of the doubly charged molecular ions of cyclostellettamine P during
TAP fragmentation experiment. (a) Driftogram and fragmentation spectrum of the isobar at higher
drift time; (b) Driftogram and fragmentation spectrum of the isobar at lower drift time.

2.4. 3-APAs in Haliclona rosea

We tentatively identified thirteen different 3-APA compounds in the three Haliclona rosea extracts
investigated (Table 2 and Figure 7). Two of the Haliclona rosea specimens (S1 and S5) contained a similar
LC-MS profile for the 3-APA compounds (Figure 7). However, specimen S1 had a higher content
of cyclostellettamine Q and of the haliclamines when compared to the same concentration of the S5
specimen (Figure 7). Interestingly, the specimen S8 showed a completely different profile for the 3-APA
species. Indeed, this specimen had a higher content of several 3-APA compounds, with the exception
of cyclostellettamine N and P, haliclamine E, viscosaline B, and viscosamine C (Figure 7). Thus, a
higher composition of the cyclostellettamine P and Q in specimen 51 might be related to the highest
cytotoxic activity (Table 1 and Figure 7).

Sl S5 S8
1
05
0
-0.5
-1

Figure 7. Heat map performed on 3-APA compounds tentatively identified in the three
Haliclona rosea specimens.

Cyclostellattamine N
Viscosaline B2
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Cyclostellattamine P
Haliclamine E
Cyclostellattamine Q
Cyclostellattamine G
Cyclostellattamine A
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HaliclamineH
Haliclamine D
Haliclamine A

Haliclamine C
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3. Discussion

Metabolomics provides a detailed chemical description of complex biological samples.
Nevertheless, untargeted metabolomics data are often noisy and a considerable effort is required
to tentatively identify unknown compounds. Multivariate statistical analysis is normally used
in metabolomics for data reduction and visualization. This study demonstrates the advantage of
combining principal component analysis (PCA) and in vitro MTS cell proliferation data in order to
prioritize the metabolomics information and group together extracts with higher cytotoxic activity
based on their chemical composition (Figure 2). Indeed, the three Halicona rosea specimens clustered
together due to the presence of the 3-APAs (Table 1, Figure 2), a class of compounds known to possess
cytotoxic activities [15,37-39]. On the other hand, we were not able to differentiate the other five
bioactive sponges that kept clustered within the same group of inactive specimens (Figure 2, Table 1),
suggesting that the cytotoxicity of these species is likely due to the presence of compounds with
different chemistry.

Thirteen different 3-APAs compounds were tentatively identified in Halicona rosea by using data
independent mass spectrometry approaches (MSE) without the need to rerun sample for performing
product ion experiments. In addition, we demonstrated the potential of combining ion mobility in
metabolomics [40,41] by working in TAP fragmentation mode, which allows to produce pseudo-MS?
ions that were used to tentativly characterize and confirm the presence of cyclostellettamine P.
Nevertheless, further confirmation is needed by nuclear magnetic resonance (NMR) spectroscopy.

To date, this is the first study focused on the chemical characterization of sponges collected at a
shallow water hydrothermal vent site north of Iceland, providing a deeper understanding of the 3-APA
composition of Haliclona rosea sponges. These sponge specimens were collected during three different
periods of the year (March (specimen S8), August (specimen S1) and November (specimen S5)) and
each extract exhibited cytotoxicity against the SK-BR-3 breast cancer line. Therefore, a replicated
collection over a different timespan would be an interesting approach to study the chemical variation
in sponges [42] throughout the year, to optimize the collection of sponges in order to obtain the highest
yields of secondary metabolites.

4. Materials and Methods

4.1. Chemicals

Acetonitrile (CH3CN), chloroform (CHCl3), dichloromethane (CH,Cl,), butanol (C4H9OH),
n-hexane (CgHj4), formic acid and methanol (CH3OH) were of analytical grade and were purchased
from Merck (Darmstadt, Germany) and Sigma Aldrich (Seelze, Germany). Water (H,O) was obtained
using an 18 Om Milli-Q system (Millipore, Temecula, CA, USA).

4.2. Collection, Identification and Extraction of Sponges

The sponge specimens were collected by SCUBA diving (25 m depth) at the Arnarnesstrytur
hydrothermal vent field in Eyjafjordur N-Iceland (65°51.055" N-18°11.583" W). All sponges were
identified by using standard morphological methods (gross morphology, spicule size and morphology
and organization of the sponge tissue). The identifications were based on [43—45]. The samples were
kept frozen for 1-2 weeks and lyophilized before extraction. The specimens (S-sponge sample name)
are also deposited at the Faculty of Pharmaceutical Sciences, University of Iceland. Frozen sponge
specimens were lyophilized (30 g dry weight) and extracted three times with 700 mL CH3OH/CH,Cl,
(1:1) using kinetic maceration at room temperature. The extracts were concentrated under reduced
pressure at 22 °C using a rotary evaporator to remove the solvent and the residue was re-dissolved in
CH3O0H to be subjected to LC-MS/MS analysis of the extracts.
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4.3. Partition of Haliclona rosea Extracts and Isolation of Cyclostellettamines

The first step was to subject the extract for a solvent:solvent partition called modified Kupchan
partition [46]. The dried extracts were dissolved in 90% aqueous methanol and partitioned against
300 mL of n-hexane (v/v). The water content of the hydro-methanol phase was adjusted to 20% (v/v)
and then to 40% (v/v) and the solutions were partitioned against CHCl3 (500 mL) twice (combined).
The hydro-methanol phase was concentrated using a rotary evaporator to remove the methanol and the
remaining water extract was partitioned against (150 mL) butanol. The resulting four extracts: hexane
fraction (A), chloroform fraction (BC), butanol fraction (D) and water fraction (E) were evaporated to
dryness and ready to undergo further chromatographic purifications. The butanol extracts were then
used for the data independent mass spectrometry and ion mobility experiments.

4.4. MTS Assay—Measurement of Cell Viability (Cytotoxicity)

Effects on cell viability after treatment with marine fractions were measured with a MTS assay on
SK-BR-3 breast cancer cell line (obtained from the American Type Culture Collection (ATCC) through
LGC Promochem) that overexpresses the HER2/c-erb-2 gene product. SK-BR-3 cells were seeded at
a 10* cells per well in 200 uL into 96-well tissue culture plates (Becton Dickinson Labware, Franklin
Lakes, NJ, USA). Sponge extracts (CH3OH/CH,Cl,) were dissolved in DMSO and solvent control was
added in 33 pg/mL concentration and incubated for 72 h. After incubation for 69 h, 20 puL of the MTS
reagent was added per well and incubation continued for a further 3 h (72 h in total) and absorbance
at 490 nm was measured (SpectraMax Plus 384 Microplate Reader: Molecular Devices Corporation,
Sunnyvale, CA, USA ). The results were expressed as percentage viability compared with solvent
treated control cells. Each experiment was carried out in triplicate and repeated twice. Extracts that
showed more than 50% decrease in cell viability were selected for secondary screening.

4.5. Mass Spectrometry Based Metabolomics

The metabolic profiling of sponge extracts was performed using a Waters ACQUITY UPLC system
(Waters, Milford, MA, USA), coupled to a Waters Synapt G1 mass spectrometer equipped with an
electrospray ionization (ESI) probe (Waters, Wilmslow, UK). The chromatographic column used was
an ACQUITY UPLC BEH C18 (2.1 mm x 100 mm 1.7 um) (Waters, Milford, MA, USA), which was
maintained at 40 °C in a column oven. The gradient system mobile phase consisted of solvent A:
H>0 in 0.1% formic acid and solvent B: CH3CN in 0.1% formic acid, at a flow rate of 0.40 mL/min.
The injection volume of 6 pL was followed by a linear gradient starting at 85% mobile phase A for
1.0 min up to 100% of mobile phase B in 14.0 min. The gradient was held for 4.0 min before returning
to the initial conditions at 18.5 min and then held for another 2.1 min. The total chromatographic run
time was 21 min. The sample manager temperature was maintained at 20.0 °C. The mass spectrometer
was optimized for analyzing the extracts using LC-MS/MS method. The ionization source parameters
were: capillary voltage 3.5 kV; cone voltage 15 V; source temperature 120 °C; desolvation temperature
450 °C at a flow rate of 700 L-h~! (Ny); cone gas flow rate 50 L-h~!. Data acquisition was carried out
using MassLynx 4.1 software (Waters, Wilmslow, UK).

4.6. Data Processing and Analysis

Progenesis QI (Nonlinear Dynamics, Newcastle, UK) was used for processing metabolomics data.
Isotope and adduct removal was applied to reduce the number of features detected. Marinlit was used
as the main database to search for known compounds previously identified in sponges.

Principal component analysis (PCA) was performed by using MetaboAnalyst [47]. Before PCA,
data was normalized by the sum, log transformed and then scaled by using unite variance.
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4.7. Ion Mobility Mass Spectrometry

An UPLC system (ACQUITY UPLC Waters, Milford, MA, USA) was coupled in line with a QTOF
mass spectrometer (Synapt G2, Waters, Wilmslow, UK) operating in positive mode. Data was acquired
in data independent mass spectrometry mode (MSF) from m/z 50 to 1200 generating two discrete
and independent intervaled acquisition functions. Argon served as collision gas and in the collision
energy in the trap cell was 4 eV (Function 1, low energy); in the transfer cell, it ramped from 30 to 40 eV
(Function 2, high energy). UPLC separation was performed using a BEH C18 1.7 pm (2.1 x 100 mm)
column. The capillary and cone voltage were 1.5 and 30 V, respectively. The source and desolvation
temperature were 120 and 500 °C and the desolvation gas flow was 800 L/h. Leucine enkephalin
(2 ng/pL) was used as lock mass (m/z 556.2771). Ion mobility experiments were performed using
nitrogen as ion mobility gas, which flowed at a rate of 90 mL/min (3.2 mbar), with a wave velocity
of 600 m/s and a wave height of 40 V. The EDC delay coefficient was specified as 1.58 V. Data was
acquired in time-aligned parallel (TAP) fragmentation mode [34] from m/z 50 to 1000, generating MS®
fragments. Argon served as collision gas and the collision energy in the trap cell and in the transfer
cell ranged from 20 to 30 eV.

Supplementary Materials: The following are available online at www.mdpi.com/1660-3997/15/2/52/s1:
Figure S1: Mass fragmentation of haliclamine A induced by ESIMS (positive mode) on Waters Synapt (QTOF),
Figure S2: Mass fragmentation of haliclamine C induced by ESIMS (positive mode) on Waters Synapt (QTOF),
Figure S3: Mass fragmentation of haliclamine D induced by ESIMS (positive mode) on Waters Synapt (QTOF),
Figure S4: Mass fragmentation of haliclamine E induced by ESIMS (positive mode) on Waters Synapt (QTOF),
Figure S5: Mass fragmentation of haliclamine H induced by ESIMS (positive mode) on Waters Synapt (QTOF),
Figure S6: Mass fragmentation of cyclostellettamine P induced by ESIMS (positive mode) on Waters Synapt
(QTOF), Figure S7: Mass fragmentation of cyclostellettamine Q induced by ESIMS (positive mode) on Waters
Synapt (QTOF), Figure S8: Mass fragmentation of cyclostellettamine N induced by ESIMS (positive mode) on
Waters Synapt (QTOF), Figure S9: Mass fragmentation of cyclostellettamine G induced by ESIMS (positive mode)
on Waters Synapt (QTOF), Figure S10: Mass fragmentation of viscosamine C induced by ESIMS (positive mode)
on Waters Synapt (QTOF), Figure S11: Mass fragmentation of viscosaline B2 induced by ESIMS (positive mode)
on Waters Synapt (QTOF), Figure S12: Mass fragmentation of viscosaline C induced by ESIMS (positive mode) on
Waters Synapt (QTOF).
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