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Abstract

Background

Apolipoprotein E is a glycoprotein best known as a mediator and regulator of lipid transport
and uptake. The APOE-¢4 allele has long been associated with increased risks of Alzhei-
mer’s disease and mortality, but the effect of the less prevalent APOE-€2 allele on diseases
in the elderly and survival remains elusive.

Methods

We aggregated data of 38,537 individuals of European ancestry (mean age 65.5 years;
55.6% women) from six population-based cohort studies (Rotterdam Study, AGES-Reykja-
vik Study, Cardiovascular Health Study, Health-ABC Study, and the family-based Framing-
ham Heart Study and Long Life Family Study) to determine the association of APOE, and in
particular APOE-€2, with survival in the population.
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Results

During a mean follow-up of 11.7 years, 17,021 individuals died. Compared with homozy-
gous APOE-€3 carriers, APOE-€2 carriers were at lower risk of death (hazard ratio,95% con-
fidence interval: 0.94,0.90-0.99; P=1.1*1 0_2), whereas APOE-¢4 carriers were at
increased risk of death (HR 1.17,1.12—1.21; P=2.8*10""%). APOE was associated with
mortality risk in a dose-dependent manner, with risk estimates lowest for homozygous
APOE-2 (HR 0.89,0.74-1.08), and highest for homozygous APOE-¢4 (HR 1.52,1.37—
1.70). After censoring for dementia, effect estimates remained similar for APOE-€2 (HR
0.95,0.90-1.01), but attenuated for APOE-€4 (HR 1.07,1.01-1.12). Results were broadly
similar across cohorts, and did not differ by age or sex. APOE genotype was associated
with baseline lipid fractions (e.g. mean difference(95%CI) in LDL(mg/dL) for €2 versus €33:
-17.1(-18.1-16.0), and €4 versus £33: +5.7(4.8;6.5)), but the association between APOE
and mortality was unaltered after adjustment for baseline LDL or cardiovascular disease.
Given the European ancestry of the study population, results may not apply to other
ethnicities.

Conclusion

Compared with APOE-€3, APOE-€2 is associated with prolonged survival, whereas mortal-
ity risk is increased for APOE-¢4 carriers. Further collaborative efforts are needed to unravel
the role of APOE and in particular APOE-€2 in health and disease.

Introduction

Apolipoprotein E is a glycoprotein best known as a mediator and regulator of lipid transport
and uptake, but also has several additional physiological and pathological roles.[1] The APOE
gene, on chromosome 19, contains four exons and codes for a 317 amino acid polypeptide that
gives rise to a 299 amino acid long mature protein (34kD).[1] There are three circulating
APOE isoforms designated APOE-€4, -€3, and -€2, with corresponding allele frequencies of
approximately 14%, 78%, and 8%, respectively.[2] Within the central nervous system, apolipo-
protein E is produced mainly by astrocytes, while in peripheral tissue, it is expressed primarily
in the liver and kidneys in addition to spleen, adrenals, and fatty tissue.[3,4]

Various studies, dating back as far as 25 years ago, have shown that allelic variation at the
APOE locus impacts survival, and alters risk of hyperlipidaemia, atherosclerosis, cardiovascu-
lar disease, and in particular dementia.[5-7] Initial attention was largely focused on the
APOE-¢4 allele, which is associated with an adverse impact on these risk factors and outcomes,
including shortened survival compared with the more common &3 allele. More recent data
suggest that the APOE-€2 allele might prolong survival,[8-11] but other studies do not support
such an association,[12,13] and have even implicated the €2 allele as a detrimental factor in
cerebral small-vessel disease,[14] dysbetalipoproteinemia,[15] and aggressiveness of certain
cancer.[16] A better understanding of the benefits and risks associated with APOE-g2 carrier
status, above and beyond the absence of the €4 allele, could lead to novel preventive and treat-
ment options for a wide variety of conditions to promote healthy aging and longevity. Yet,
studies of the €2 allele have been hampered by its low allele frequency, which results in only
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1% of the population being homozygous €2 carriers. Larger studies are therefore warranted,
requiring collaborative efforts to design well-powered studies to address these questions.

We aggregated data from six large cohorts, and aimed to determine the impact of the
APQE-£2 allele on survival in the general population. In addition, we studied potential vascu-
lar or lipid-mediated mechanisms that might account for this association.

Materials and methods
Study population

This study population consisted of participants of European ancestry from six population-
based cohort studies: the Framingham Heart Study (FHS), the AGES-Reykjavik Study
(AGES), the Rotterdam Study (RS), the Cardiovascular Health Study (CHS), the Long Life
Family Studies (LLFS), and the Health, Aging, and Body Composition study (HABC), of
which FHS and LLFS are family-based cohorts. Details of the design and characteristics of par-
ticipating studies have been described previously,[17-23] and are summarised below. All stud-
ies were approved by the relevant institutional review boards, and written informed consent
was obtained from all participants. The current study was approved by the Boston University
Medical Center institutional review board.

The Framingham Heart Study (FHS) was initiated to study determinants of cardiovascular
disease. The original cohort was recruited in 1948 and the offspring of the Original cohort par-
ticipants and offspring spouses were enrolled in 1971.[17,18] DNA was obtained for genetic
studies in the 1990s from surviving Original cohort and Offspring participants. Year 1990 is
considered the baseline exam for these analyses. All participants remain under continuous sur-
veillance and deaths that occurred through 31* December 2013 were included in the present
analyses.

The Age, Gene/Environment Susceptibility -Reykjavik Study (AGES) was initiated to
examine potential genetic susceptibility and gene/environment interaction.[19] Between 2002
and 2006, baseline exams were conducted in survivors from the Reykjavik Study. Follow-up
information was complete till 31 December 2015 via linkage to electronic medical records
and vital status registry.

Between 1990 and 1993 all inhabitants of the Ommoord district in Rotterdam, The Nether-
lands, aged >55 years were invited to participate in the Rotterdam study (RS).[20] The cohort
was subsequently expanded with inhabitants who moved into the area or reached eligible age
in 2000 (>55 years) and 2005 (>45 years). Participants were interviewed at home and exam-
ined at the study centre every 4 years. Continuous surveillance of general practitioners’ rec-
ords, hospital records, and death certificates were used for identification of deaths and health
events through 1* January 2015.

The Cardiovascular Health Study (CHS) is a prospective population-based cohort study
of cardiovascular disease and mortality in >65 year old Medicare-eligible adults living in four
United States communities.[21] Recruitment of the initial cohort was completed in 1990 and
3,267 participants fulfilled the inclusion criteria of this study and had genotyping information
available. Only European or European Americans, who consented to the use of their genetic
data, were included in the present analyses. Major incident health events and deaths were iden-
tified through several methods, including 1) questionnaires completed by participants at each
semi-annual contact during follow-up; 2) reports by family members; and 3) periodic searches
of the Medicare Utilization database, the National Death Index, and local newspaper obituar-
ies. Follow-up for the data used in this analysis was complete till June 30, 2014.

The Long Life Family Study (LLFS) enrolled families enriched for longevity via 4 field cen-
ters (Boston, New York, and Pittsburgh in the USA, and Denmark) between 2006 and 2009.
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[22] The recruitment protocol used the Family Longevity Selection Score (FLoSS) to identify
family enriched of exceptional longevity, and enrolled 583 families with a FLoSS >7 consisting
of 1493 probands, their siblings and 192 spouses in the older generation, and 2437 offspring
and 809 of their spouses. Information collected on onsets of diseases was assessed retrospec-
tively at baseline from self-reports and prospectively during in-person visit (home or clinic),
self-administration, or telephone interview through 2015. Death was assessed annually by
interview of proxies or from nationwide survival and health register (Denmark) through 2015.

The Health, Aging, and Body Composition study (HABC) is a prospective cohort study
of 3,075 community-dwelling black and white men and women living in Memphis, TN, or
Pittsburgh, PA, and aged 70-79 years at recruitment in 1996-1997.[23] Participants were a
random sample of Medicare-eligible elders within designated zip code areas. The present anal-
yses include participants of self-designated European ancestry, who consented to the use of
their genetic data. After baseline examination, participants were re-examined annually, and
surveilled through phone contacts every 6 months to identify major health events and docu-
ment functional status between clinic visits. In addition, the study collects and abstracts medi-
cal records of all hospitalizations (>24 hours) and adjudicates the occurrence of targeted
health events including all deaths. Dates and causes of death were obtained from death certifi-
cates until September 2014. A Health ABC Committee representing all the study units adjudi-
cated causes of death based on the review of medical records, proxy information and autopsy
report (when performed).

APOE genotyping

APOE genotype was determined directly (i.e. not using genetic imputations) in all cohorts.
Methods that were used include polymerase chain reaction on coded DNA samples (RS origi-
nal cohort, FHS 1 and 2™ generation, CHS, AGES, Health ABC) and bi-allelic Tacqman
assays (rs7412 and rs429358) (RS expansion cohorts, FHS 3rd generation, LLFS).

Other measurements

Fasting serum total cholesterol, high-density lipoprotein (HDL), and triglycerides were mea-
sured at baseline. Low-density lipoprotein (LDL) was computed from total cholesterol, HDL
and triglycerides, using Friedewald’s formula.[24] Use of lipid-lowering medication was
assessed at baseline by interview. Prevalence of heart disease (including myocardial infarction,
angina (or coronary revascularisation for the Rotterdam sample), heart failure, and cerebro-
vascular disease (including stroke and transient ischemic attack) was ascertained by interview,
and confirmed by medical records and/or electrocardiography.

Statistical analysis

For each cohort separately, we used Cox proportional hazard models (with robust variance for
family cohorts) to determine the association between APOE genotype and death, while adjust-
ing for age, sex, and center of ascertainment (if applicable). Analyses included a comparison of
each of the APOE genotypes to £3:€3, as well as a comparison of €2 carriers (£2:€2 or £2:€3)
versus €3 homozygotes, and €4 carriers (€3:€4 or e4:4) versus €3 homozygotes. For appropri-
ateness of comparison, heterozygote €2:e4 carriers were excluded from the latter comparisons.
In additional analyses, we investigated whether results were mediated by dementia, by exclud-
ing all participants with dementia at baseline and censoring at time of incident dementia diag-
nosis (upon reviewer’s request). We also explored potential interaction of APOE with age and
sex, by testing for multiplicative interaction in the Cox model. To further assess effect modifi-
cation by age, we performed a sensitivity analysis among participants aged <80 years, while
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censoring at age 80 (upon reviewer’s request). Additionally, we adjusted these models for eth-
nicity, educational attainment, and smoking (upon reviewer’s request). In studies for which
information on traumatic injury was available (all but Framingham), only a fraction of deaths
(328/14848 = 2.2%) was attributable to trauma (upon reviewer’s request).

Next, triglyceride levels were log-transformed to obtain a roughly normal distribution of
data. We then determined per cohort differences in cholesterol, HDL, triglycerides, and LDL
across APOE genotypes, using linear regression (mixed effects model for family cohorts),
adjusting for age, sex, ascertainment center, and use of lipid-lowering medication. In two
cohorts (FHS and RS), we assessed the additional variance explained by APOE genotype. We
then repeated the survival analyses with additional adjustment for measured lipid fractions,
and prevalent cardiovascular disease, as well as after adjustment for ethnicity, educational
attainment, and smoking.

We used inverse variance weighted fixed and random effects models to pool hazard ratios
and mean differences from separate cohorts. We formally assessed for heterogeneity between
studies, determining the share of variation across studies that was due to heterogeneity rather
than chance (Higgins’ I” statistic).[25] In case of substantial heterogeneity (>40%), we report
results of random rather than fixed effects meta-analysis.

Analyses were done using IBM SPSS Statistics version 23.0 (IBM Corp, Armonk, NY, USA)
or R statistical software version 3.1.1 (‘survival’ and ‘meta’ packages). Alpha level (type 1 error)
was set at 0.05.

Role of the funding source

None of the funders were involved in study design, data collection and analysis, preparation of
the manuscript, or the decision to submit for publication.

Results

A total of 38,537 participants were included from the 6 cohort studies. Baseline characteristics
of the entire sample as well as per cohort are presented in Table 1. The allele frequency of the
APOE-€2, €3, and €4 alleles was 7.9%, 78.6%, and 13.5%, respectively. Observations lay within
Hardy-Weinberg equilibrium.

During 429,708 person years of follow-up (mean 11.7 years), 17,021 participants died. Car-
rying one or two copies of the €2 allele was significantly associated with reduced mortality risk
(hazard ratio (HR), 95% confidence interval: 0.94, 0.90-0.99, P = 1.1*107%; Fig 1), whereas
APOE-¢g4 carriers were at increased risk of death (HR 1.17, 1.12-1.21, P = 2.8*107*¢; Fig 1).
APOE genotype was associated with survival in a dose-dependent manner, such that mortality
risk was lowest for homozygous €2 carriers, and highest for homozygous €4 carriers (Fig 2).
Risk for individuals with the £2:€4 genotype was most comparable to their £3:e4 rather than
their £2:£3 counterparts.

Of all deaths, 5790 (34.0%) were attributed to cardiovascular causes, and 3922 (23.0%) to
cancer. After exclusion of patients with dementia at baseline, and censoring in the main analy-
sis at time of incident dementia diagnosis, effect estimates for mortality remained similar for
APOE-£2 (HR 0.95, 0.90-1.01), but attenuated for APOE-£4 (HR 1.07, 1.01-1.12) (S1 Table).
All associations were broadly similar across cohorts (Fig 1; for a numeral depiction see S1
Table), and there was no evidence of interaction with age at study entry (P-interaction for
€2 =0.96, and for €4 = 0.18) or sex (P = 0.63 and P = 0.49, respectively), also witnessed by simi-
lar effect estimates when restricting analyses to participants under the age of 80 (S2 Table).
These analyses were also robust to concurrent adjustment for ethnicity, educational attain-
ment, and smoking (S2 Table).
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Table 1. Baseline characteristics.
Overall sample* AGES CHS FHS HABC LLFS RS
Sample size 38537 5740 4397 9304 1712 4630 12754
Age, years 65.5 77.0 (£5.9) 72.8 (£5.6) 51.2 (+15.2) 73.8 (£2.9) 70.3 (+15.8) 65.4 (+10.0)
Male sex 17091 (44.4%) 2429 (42.3%) | 1904 (43.3%) 4242 (45.6%) 939 (52.3%) 2211 (47.5%) | 5385 (42.2%)

Current smoking
Hypertension
Body-mass index
Diabetes
Total cholesterol, mg/dL
High-density lipoprotein, mg/dL
Triglycerides, mg/dL
Triglycerides (In transformed)
Low-density lipoprotein, mg/dL
Lipid lowering medication
APOE genotype

€3/e3

€2/e2

€2/e3

€2/e4

£3/e4

ed/ed

5639 (14.6%)
19628 (50.9%)
26.9
3268 (8.5%)
216.3
54.7
129.3
4.73
129.3
6362 (16.5%)

23813 (61.9%)
239 (0.6%)
4721 (12.3%)
873 (2.3%)
8129 (21.1%)
706 (1.8%)

679 (12.2%)
4618 (81.1%)
27.0 (+4.5)
740 (12.9%)
217.5 (+44.8)
61.3 (+17.3)
108.6 (+60.7)
4.57 (+£0.46)
134.8 (+40.1)
1249 (21.8%)

3558 (62.0%)
30 (0.5%)
518 (9.0%)
115 (2.0%)

1397 (24.3%)
122 (2.1%)

489 (11.1%)
2455 (55.9%)
26.3 (+4.4)
629 (14.4%)
211.8 (+39.2)
53.7 (+15.8)
143.3 (£78.1)
4.86 (+£0.43)
130.3 (£35.6)
230 (5.2%)

2747 (62.5%)
28 (0.6%)
560 (12.7%)
104 (2.4%)
904 (20.6%)
54 (1.2%)

1424 (16.3%)
2711 (31.0%)
27.1 (+5.2)
469 (5.4%)
199.0 (+37.3)
51.7 (+15.8)
130.0 (£112.1)
4.69 (+0.56)
118.6 (£33.0)
606 (6.9%)

6015 (64.6%)
47 (0.5%)
1140 (12.3%)
183 (2.0%)
1764 (19.0%)
155 (1.7%)

111 (6.5%)

671 (39.1%)
26.5 (+4.1)

194 (11.3%)
201.5 (£37.6)
51.9 (+16.3)
152.6 (+87.6)
4.90 (+£0.48)
119.8 (+33.2)
880 (51.4%)

1082 (63.2%)
13 (0.8%)
212 (12.4%)
28 (1.6%)
353 (20.6%)
24 (1.4%)

313 (7.3%)
2252 (48.4%)
27.1 (+4.9)
180 (4.3%)
199.7 (+42.2)
58.8 (+17.3)
113.4 (£72.1)
4.59 (+0.51)
118.6 (£35.8)
2169 (43.4%)

3031 (65.1%)
33 (0.7%)
695 (14.9%)
87 (1.9%)
762 (16.4%)
48 (1.0%)

2623 (21.2%)
6921 (55.1%)
26.9 (+4.1)
1056 (8.6%)
238.0 (+47.9)
53.1 (+15.2)
135.9 (£75.1)
4.80 (+£0.45)
139.4 (£35.9)
1228 (9.7%)

7434 (58.3%)
89 (0.7%)
1605 (12.6%)
357 (2.8%)
2965 (23.2%)
304 (2.4%)

N = sample size; APOE = apolipoprotein E; Values are depicted as mean +SD for continuous variables, and absolute numbers (%) for categorical variables.

*derived from summary statistics

https://doi.org/10.1371/journal.pone.0219668.t001

APOE genotype was associated with all measured lipid fractions, generally in a dose-depen-
dent manner (Figs 3 and 4; for full results per cohort, please see S3 Table). Compared with
homozygous €3 carriers, levels of total cholesterol, LDL, and HDL were lower in €2 and higher
in €4 carriers, whereas both €2 and €4 carriers had higher levels of triglycerides. The €2 allele
was therewith associated with greater absolute changes in lipid levels than the €4 allele.
Accordingly, levels in those with £2:€4 genotype were generally more consistent with €2 rather
than €4 carrier status (Fig 4). These associations were similar after additional adjustment for
ethnicity, smoking, and educational attainment, except for attenuation of the relation between
€2 and HDL levels (S4 Table). Comparing €2 and €4 carriers with €3 homozygotes, standard-
ised mean differences in LDL were larger than differences in triglycerides and HDL (S5 Table).
APOE genotype explained 1.6-3.2% of variance in total cholesterol, 3.9-5.5% for LDL, 0.3-
0.4% for HDL, and 0.8-0.9% for triglycerides.

Effect estimates of APOE carrier status for mortality risk were not attenuated by adjustment
for LDL (pooled estimates, 95%CI, for €2 carriers: 0.91, 0.86—0.96; and for €4 carriers: HR
1.19, 1.14-1.24). Similarly, adjustment for prevalent cardiovascular disease did not materially
change risk estimates of mortality (pooled estimates, 95%CI, for 2 carriers: 0.95, 0.90-1.00;
and for €4 carriers: HR 1.16, 1.12-1.21).

Discussion

E2-CHARGE is the largest collaboration of cohort studies to date to determine the impact of
APOE and, in particular, the APOE-€2 allele, and aggregates data of 38,537 individuals from 6
population-based cohort studies. In this first analysis of the data, we found that the APOE-£2
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FHS — 1.20 [1.07; 1.34]
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LLFS ’ 1.20 [0.98; 1.46]
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Fixed effect model - 117 [1.12; 1.21]
2= 0% [0%: 32%] | ' '
0.8 1 1.2 15

Fig 1. Association of APOE-g2 and APOE-£4 carrier status with mortality per cohort, and meta-analysis.
https://doi.org/10.1371/journal.pone.0219668.9g001

allele is associated with prolonged survival, whereas APOE-€4 is associated with increased
mortality. Adjustment for the prevalence of cardiovascular disease or measured lipid fractions
had trivial effects on these estimates.

Since the first implication of APOE in longevity,[26] several genome-wide association and
candidate gene studies have aimed to confirm a role of APOE in survival. While most of these
studies indeed show that APOE allele frequencies shift with age,[27] or confirm that APOE is
associated with longevity as study endpoint, they did not reach genome wide significance,[28-
30] or were unable to distinguish effects attributable to variation at the APOE locus from that
at the TOMM40 or APOCI loci.[31,32] Several cohort studies have examined the association
of APOE genotype with survival and longevity, but with contrasting findings. Two Scandina-
vian studies reported hazardous effects of the €4 allele,[8,12] while one of the two studies also
found a protective effect of the €2 allele.[8] These findings are supported by a lower prevalence
of €4 and a higher prevalence of €2 in offspring from long-lived families compared to spouse
controls,[9] as well as in the very elderly compared to middle-aged populations.[10,11] Never-
theless, neither €2 nor €4 were prospectively associated with survival in a very elderly U.S. pop-
ulation, the 90+ Study.[13] We found dose-dependent associations of APOE genotype with
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survival, which were consistent across participating cohorts. Our pooled effect estimates sug-
gest prior studies were likely underpowered to detect these differences, in particular for the £2
allele. Survival and selection bias at older ages, whereby €4 carriers die prior to entry or are less
likely to be enrolled due to poor health, may have led to underestimation of hazardous effects
of the £4 allele in others.

After accounting for dementia in our study, associations with mortality attenuated for
APOE-€4, but were virtually unaltered for APOE-£2. This suggests that a vast part of excess
risk for APOE-g4 is via its effect on dementia pathology, but that other mechanisms also play a
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Fig 4. Meta-analysed effect estimates of the associations between separate APOE genotypes and lipid fractions.
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role in carriers of the APOE-€2 and to a lesser extent APOE-€4 allele. Mounting evidence
indeed suggests pleiotropic effects of APOE on various organ systems. In addition to the well-
established link with dementia, more recent clinical and population studies have linked APOE
gene variation to atherosclerosis,[33] cerebral amyloid angiopathy,[34] stroke,[33] lung dis-
ease,[35] multiple sclerosis,[36] and neoplasia.[37] Preclinical studies have put forward
intriguing hypotheses of molecular pathways, relating to cerebrovascular function,[38,39] neu-
ronal growth regulation,[40] inflammation,[3] functions as a protein chaperone,[41] type III
hyperlipoproteinemia,[15,42] prostate tumor aggressiveness,[16] and epigenetic regulation of
the transcriptional pattern at the APOE locus by DNA methylation.[43] The associations we
found of APOE genotype with lipid fractions align well with those in a prior European study.
[33] We investigated circulating lipid fraction concentrations as a potential underlying mecha-
nism of prolonged survival in APOE-€2 carriers, but found no evidence of mediation. In addi-
tion, estimates changed only minimally after taking into account clinically manifest vascular
disease at baseline. Although this may in part reflect limitations of single measurements of
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lipid fractions, it suggests other (potentially age- and sex-specific) mechanisms could be
involved.[44]

Certain limitations should be taken into account. First, although we only determined APOE
genotype directly rather than by imputation, we did not investigate other genetic variants that
might modify the effect of APOE through epistatic interactions. Second, (impact of) serum
lipid levels on health and disease may differ over time, which is not captured by one-time mea-
surement at study baseline, and may cause underestimation of any mediation. Third, Friede-
wald’s formula for computation of LDL levels assumes that all triglycerides are carried on
VLDL, and that the triglyceride-to-cholesterol-ratio of VLDL is constant at 5:1, which may not
apply in all individuals. Fourth, although the mean age of participants at study entry was only
65 years, we cannot rule out attenuation of effect estimates, in particular for e4 carriers, due to
selection bias at older ages. Fifth, albeit the largest study of APOE-€2 in relation to mortality to
date, precision may still be lacking with respect to separate genotypes to fully reveal a dose-
effect response. Finally, the study population was entirely of European ancestry, and findings
may not be applicable to other ethnicities.

In conclusion, E2-CHARGE brings together data from several population-based studies
worldwide. In this paper, we describe the details of each population and the first analysis of the
data. We find that APOE-g2 prolongs survival in the general population of European descent,
which appears only in part explained by commonly determined lipid fractions, or prevalent
vascular disease. Further studies are needed to determine the role of APOE-€2 in vascular, as
well as other types of disease, above and beyond the absence of the APOE-€4 allele. Various
other population studies have collected or are collecting data on APOE genotype and disease
outcomes, and inclusion of these data-in particular from ethnically diverse populations—-may
aid in elucidating the role of APOE-€2 in health and disease.
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