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ABSTRACT

1. Over the last two decades, there has been increasing public and political recognition of society’s dependency
upon natural habitat complexity and ecological processes to sustain provision of crucial ecosystem services,
ranging from supplying potable water through to climate regulation. How has the ecosystem-services perspective
been integrated into strategies for aquatic habitat conservation?

2. Literature on conservation of diverse freshwater and marine habitats was reviewed to assess the extent to
which past and current strategies specifically targeted ecosystem services, and considered ecosystem functions,
potential trade-offs and social issues when formulating protection measures for conserving aquatic habitats.

3. Surprisingly few published examples exist where comprehensive assessment of ecosystem services supported
development of conservation plans. Seldom were aquatic habitat conservation objectives framed in terms of
balancing trade-offs, assessing social values and evaluating suites of ecosystem services under different strategies.
Time frames for achieving these objectives were also rarely specified. There was no evidence for fundamental
differences between marine and freshwater habitats with respect to their ecosystem services that should be
considered when setting targets for their conservation.

4. When an ecosystem-service perspective is used for setting objectives in aquatic habitat conservation, the
following actions are recommended: (1) explicitly listing and evaluating full suites of ecosystem services to be
conserved; (2) identifying current and future potential trade-offs arising from conservation; (3) specifying time
frames within which particular strategies might protect or enhance desired services; and (4) predicting how
different proposed strategies might affect each ecosystem function, service flow and public benefit.

5. This approach will help ensure that less-apparent ecosystem services (e.g. regulating, supporting) and their
associated ecosystem functions receive adequate recognition and protection in aquatic conservation of freshwater
and marine habitats. However, conservation objectives should not focus solely on protecting or enhancing
ecosystem services but complement current strategies targeting biodiversity and other conservation goals.
Copyright © 2016 John Wiley & Sons, Ltd.

Received 28 February 2016; Revised 22 June 2016; Accepted 10 July 2016

KEY WORDS: coastal; conservation evaluation; ecosystem services; estuary; protected areas; wetland

*Correspondence to: Andrew Boulton, Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale,
2351, New South Wales, Australia. Email: aboulton@une.edu.au

Copyright © 2016 John Wiley & Sons, Ltd.



964 A.JBOULTON ET AL.

INTRODUCTION

In the last few decades, there has been an
increasingly utilitarian  attitude to habitat
conservation that emphasizes improved economic
gains and benefits for human society over the
perspective that nature and biodiversity should be
conserved ‘for its own sake’. Underpinning this
utilitarian ~ attitude is the assumption that
ecosystem goods and services, defined as the
benefits for humans that are directly attributable
to the ecological functioning of ecosystems (De
Groot et al., 2002), have a quantifiable value that
can be optimized by strategic ecosystem-based
management, including  conservation  and
restoration (Daily et al., 2009; Palmer et al., 2014).
Although this perspective has its critics (Boon,
2012; Dudgeon, 2014; Silvertown, 2015), others
argue that the utilitarian approach is more
effective when garnering support for conservation
programmes (Naidoo and Ricketts, 2006; Turner
and Daily, 2008; Miteva et al., 2015). Either way,
the term ‘ecosystem services’s now appears in
conservation plans at global (e.g. Aichi
Biodiversity Targets in the Strategic Plan for
Biodiversity 2011-2020, Convention on Biological
Diversity, 2010), continental (e.g. European
Biodiversity 2020 targets, European Commission,
2011) and local (Wen et al., 2011) scales. Even the
current more-nuanced perspective that emphasizes
the two-way relationship between people and
nature (Mace, 2014) still advocates conserving
ecosystem services.

Conceptually, the ecosystem services perspective
is a complex one (Nahlik et al., 2012) that views
ecosystems as socio-ecological entities where
natural ecosystems and their biodiversity are
linked with socio-economic systems (Figure 1).
Often, this link is portrayed as a ‘cascade’ (Haines-
Young and Potschin, 2010) where biophysical
structure (e.g. physical habitat complexity) and
ecological  processes (e.g. organic  matter
decomposition)  support  various ecosystem
functions, some of whose services flow to socio-
economic systems, providing goods and services
that are valued by humans (Figure 1). Although
the cascade model is shown as unidirectional,
feedbacks to ecosystems and service flows occur
via institutional governance, management and
restoration (TEEB, 2010).

This model highlights a key point often missed in
discussion about ecosystem services: benefits must
be known to flow from ecosystems to end-users
before an ecosystem function is considered to
provide an ecosystem service (Fisher et al, 2009;
Schwerdtner Manez et al., 2014). Thus, adoption
of this perspective in aquatic conservation requires
a full understanding not only of the complexity of
the ecosystem and its biodiversity, ecological
processes and ecosystem functions, but also the
pathways and scales of service flow, the diverse
benefits (usually perceived differently by different
end-users), and the importance of using
appropriate evaluation procedures and associated
risks (Sukhdev er al, 2014; Olander et al., 2015;
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Figure 1. The ‘cascade model’ of ecosystem services (modified from Haines-Young and Potschin, 2010; Liquete et al., 2013), portrayed from a socio-

ecological perspective. The sequence of panels from left to right represents how the biophysical structure and ecological processes in a given ecosystem

(together with its biodiversity) govern ecosystem functions that flow on as services to provide benefits whose values are defined socio-economically. All
of the steps must be assessed when targeting protection of ecosystem services in aquatic habitat conservation.
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Terrado et al., 2016). We suspect that although
many current conservation plans claim to target
protection of ecosystem services, the requirements
for fully demonstrating achievement of these
targets are often under-estimated. This review
focuses on how the concept of ecosystem services
is currently integrated in marine and freshwater
habitat conservation, and complements the
broader empirical analysis by Fisher and Brown
(2014). It also explores whether there are any
fundamental differences between marine and
freshwater habitats with respect to their ecosystem
services that should be considered when setting
targets for their conservation.

Scope and goals of this review

This review is confined to assessing strategies to
conserve ecosystem services of aquatic habitats
(and by extension, their biophysical structure,
biodiversity, ecological processes and ecosystem
functions, Figure 1). Therefore, it includes studies
in which habitat conservation is only part of a
broader management plan, such as for many
marine and freshwater protected areas, that
encompasses other goals and uses (Great Barrier
Reef Marine Park Authority, 2014; Arkema et al.,
2015). Traditional management efforts may lack
the holistic focus that encompasses a range of
ecosystem services, and therefore fail to integrate
conservation in a broader ecosystem-based
management framework (Leslie and McLeod,
2007; Halpern et al, 2010). Fundamentally,
ecosystem-based management is a place-based
approach that seeks to maintain the long-term
health, resilience and potential of ecosystems so
that they can deliver a broad suite of ecosystem
services (Barbier, 2009; McLeod and Leslie, 2009).

Habitat conservation was chosen because it is a
common focus in many programmes. Habitats are
often used as management units (e.g. when
mapping ecosystem services, Galparsoro et al,
2014) and specific targets for conservation (Rees
et al., 2012; Eastwood et al., 2016). Furthermore,
many regional or global environmental policies are
aimed at conserving marine or freshwater habitats
(Secretariat of the Convention on Biological
Diversity, 2005; EU, 2008; NOAA, 2015),

Copyright © 2016 John Wiley & Sons, Ltd.

providing the Ilegislative basis for preserving
habitat-related ecosystem services.

Our first goal was to review the extent to which
current aquatic habitat conservation strategies
target ecosystem services as one of their objectives,
and how adoption of this perspective has changed
over time. When did it start to be widely adopted?
Is it more prevalent in marine than freshwater
habitat conservation, or vice versa? Is it more
prevalent in certain aquatic habitats? Our second
goal was to assess which groups of ecosystem
services have been evaluated and incorporated
when developing aquatic habitat conservation
strategies.  Although there are numerous
classifications of ecosystem services (discussed in
the next section), the most commonly used one is
that proposed by the Millennium Ecosystem
Assessment (MEA, 2005). This recognizes four
broad groups: provisioning services such as supply
of water and food, regulating services such as
water purification and erosion control, supporting
services such as nutrient cycling, and cultural
services including spiritual, educational and
aesthetic benefits. Do most aquatic conservation
strategies target representatives of all four groups?
Has recognition of the more subtle supporting and
regulating services increased over time?

The third goal was to explore issues of scale,
trade-offs and social factors, and the extent to
which these are explicitly considered in aquatic
conservation strategies. The relevant ecosystem
functions and service flows underpinning the
provision of ecosystem services (Figure 1) occur at
multiple spatial and temporal scales, and we
sought to determine whether these scales are
specified in aquatic habitat conservation plans.
Understanding the scales of relevant ecosystem
functions and service flows helps reveal how
anthropogenic changes to ecosystems affect the
delivery  of  ecosystem  services, allowing
conservation managers to identify which human
impacts are likely to be especially severe in a given
region and therefore what mitigation strategies
might be most effective. To what extent do aquatic
conservation programmes specify  ecosystem
functions and their inferred ecosystem services? If
so, are scales of spatial and temporal responses
explicitly considered?
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Ecosystem services do not act in isolation.
Instead, ‘bundles’ of ecosystem services co-occur
(Raudsepp-Hearne et al, 2010), usually
necessitating trade-offs when seeking conservation
strategies to optimize their collective benefit. Have
aquatic conservation strategies acknowledged
these trade-offs when evaluating multiple
ecosystem services and proposing approaches to
protect or enhance particular ones? Many trade-
offs also involve social factors because these
govern valuation and prioritization of different
ecosystem services by different people and at
different times (Turner and Daily, 2008; Huxham
et al, 2015) and underpin the likelihood of
stakeholder support for proposed conservation
strategies. To what extent have social factors such
as income, geographic location, gender and health
been considered when weighing up trade-offs in
ecosystem services in aquatic habitat conservation
plans? Do the plans also attempt valuation of
ecosystem services, and is this aspect becoming
increasingly common in marine and freshwater
conservation?

Our final goal was to assess whether there are any
fundamental differences between marine and
freshwater habitats with respect to their ecosystem
services that should be considered when setting
targets for their conservation. If these differences
existed, recommendations for integrating an
ecosystem-service perspective into conservation of
marine and freshwater habitats could need to be
tailored according to specific differences in
habitats between the two realms. Alternatively, if
there are no major differences at a general level,
then the challenges facing conservation managers
may be consistent across both realms. This implies
insights gained from research in either marine or
freshwater habitats are equally relevant when
assessing literature for setting targets for
ecosystem services in aquatic conservation.

The paper begins with a brief review of relevant
literature on aquatic ecosystem services and habitat
conservation, focusing on service classifications,
scale and connectivity, trade-offs, valuation
methods and relevant social factors. This sets the
stage for interpreting the results of a bibliometric
analysis  exploring how  aquatic  habitat
conservation plans currently integrate ecosystem

Copyright © 2016 John Wiley & Sons, Ltd.

services, addressing the questions posed above. The
paper concludes with some recommendations on
setting objectives for conservation plans that seek
to target ecosystem services as an adjunct to other
goals such as biodiversity protection.

CLASSIFYING AQUATIC ECOSYSTEM
SERVICES FOR HABITAT CONSERVATION

Although the MEA (2005) classification of
ecosystem services into four groups is widely used,
it has been criticized for its ambiguity, double-
counting of some services (discussed later) and
inability to explicitly match services with people
(Fisher et al., 2009; Landers and Nahlik, 2013).
This has led to a plethora of different
classifications, including those by Beaumont er al.
(2007); Brauman et al (2007); TEEB (2010);
Haines-Young and Potschin (2010); Landers and
Nahlik (2013) and Liquete et al (2013). The
classification by Liquete er al. (2013) is especially
relevant because it focuses on marine and coastal
ecosystem services, proposing three broad groups
of services: provisioning, regulating and
maintenance, and cultural (Table 1). The second
of their groups pools the services -classified
separately as regulating and supporting services by
the MEA (2005) and replaces MEA’s largely
terrestrial ~ ‘pollination’  service  with  the
functionally equivalent ‘life cycle maintenance’
(Table 1), defined as ‘biological and physical
support to facilitate the healthy and diverse
reproduction of species’ (Liquete et al, 2013: 6).
The conservation significance of this service is
obvious because it includes the maintenance of
habitats (e.g. secagrasses, coastal wetlands, coral
reefs, mangroves) that act as nurseries, spawning
areas or migratory routes and the connectivity
among them that ensures successful completion of
the life cycle of many species, thus protecting
genetic diversity.

Another relevant classification is that of
Brauman et al. (2007) that focuses on terrestrial
freshwater ecosystem services, grouping them into
five ‘hydrologic services> improvement of
extractive water supply, improvement of in-stream
water supply, water damage mitigation, provision
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Table 1. Comparison of the categories (coloured boxes) and ecosystem services proposed by MEA (2005) and, for marine and coastal ecosystems,
Liquete et al. (2013). Nutrient cycling is duplicated in the second column because it is matched with both services in the fourth column. Three
services defined by MEA (2005) lack equivalents in the classification by Liquete et al. (2013): photosynthesis, primary production and water

cycling. Modified from Liquete ez al. (2013)

MEA (2005) Liquete et al. (2013)
Food Food provision
Fresh water it stc?rgge il
provision
Provisioning Ornamental resources Provisioning
Genetic resources Biotic materials and
Biochemicals biofuels
Fibre
Air quality regulation Air quality regulation
Natural hazard regulation
Water regulation Coastal protection
Erosion regulation
Climate regulation Climaic regulatl'on
Weather regulation
. Pollination . Life cycle maintenance
Regulating : Regulating and
e Tgliiom maintenance Biological regulation
Disease regulation
Water purification and
waste treatment Water purification
Nutrient cycling |
Supporting Nut‘r lent cyghng Ocean nourishment
Soil formation
Spiritual and religious
values
Cultural heritage values Symbolic and aesthetic
Cultural diversity values
Sense of place
Aesthetic values
Cultural Recreation and ecotourism Cultural
Social relations Recreation and tourism
Inspiration
Knowledge systems Cognitive effects
Educational values

of water-related cultural services, and water-
associated supporting services. The parallels with
the MEA (2005) classification are clear, and
Brauman et al. (2007) list the various users and
uses of these services, emphasizing that trade-offs
arise when one service is exploited at the expense
of one or more others. This paper was one of the

Copyright © 2016 John Wiley & Sons, Ltd.

earliest to propose that the ecosystem service
concept had  ‘tremendous potential’  for
conservation programmes but highlighted major
knowledge gaps in methods for mapping and
quantifying different services and identifying social
factors relevant for identifying, prioritizing and
targeting ecosystems for protection.
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Finally, there is the comprehensive classification
developed for the US Environmental Protection
Agency by Landers and Nahlik (2013) that
identifies 352 ‘Final Ecosystem Goods and
Services’ (FEGS) provided by 15 environmental
subclasses (broad habitats) and used by 38
beneficiary subcategories (e.g. irrigators,
aquaculturalists, researchers). This classification
was  developed to  underpin  consistent
measurement, quantification, mapping, modelling
and valuation of ecosystem services for policy
development and decision making at multiple
scales, and focuses on the service flows from
natural systems to socio-economic ones (Figure 1)
by matching users with FEGS in each
environmental subclass in a matrix. Six of the 15
environmental subclasses are aquatic: rivers and
streams, wetlands, lakes and ponds, estuaries and
near-coastal marine, open oceans and seas, and
groundwater.

No published applications of this classification in
conservation strategies of specific aquatic habitats
were found, but its potential value is substantial
because it (1) defines rigorous boundaries around
services and environmental subclasses, (2) specifies
the user of a given service, acknowledging that
different users typically value the same service
differently, and (3) avoids double-counting
ecosystem services. This last problem occurs with
the MEA (2005) classification and others where
‘intermediate services’ are mixed with ‘final
services’ (Landers and Nahlik, 2013). For
example, consider a mangrove forest where the
trees photosynthesize as they produce wood.
According to the MEA (2005) classification, the
tree is providing both a supporting service
(primary production) and a provisioning service
(wood) even though the supply of wood results
from primary production. In contrast, the FEGS
classification excludes the ‘intermediate service’ of
primary production and wood is identified as the
only FEGS for which there may be multiple users
and associated values. A final benefit of the FEGS
classification for aquatic conservation is the
extension that maps service flows to end-users
(http://www.epa.gov/research/ecoscience/eco-
negscs.htm), providing policy-makers with a tool
to gauge different impacts to human well-being

Copyright © 2016 John Wiley & Sons, Ltd.

resulting  from  different  environmental
management options (Yoskowitz and Russell,
2015).

If a classification approach (in contrast to, for
example, causal chains and conceptual maps,
Olander et al, 2015) is to be adopted for
integrating ecosystem services into aquatic
conservation plans, it seems wise to adopt two,
related perspectives and use them for different but
complementary purposes. The first is the heuristic
perspective that groups services into three or four
broad categories (Table 1) and is familiar and
relatively simple. This aids communication and
helps ensure conservation of ‘intermediate’
services and ecosystem functions (Figure 1) as
well as the more obvious provisioning and
cultural services. The second entails use of a more
detailed and rigorous classification such as the
FEGS one so that conservation plans can specify
approaches for measuring, quantifying and
mapping ecosystem services in an area to provide
a baseline against which to assess the success of
various conservation strategies. Tools to do this
are being developed (e.g. Drakou et al, 2015)
along with protocols for prioritizing ecosystem
services (e.g. Werner et al., 2014). As needed,
these tools and the classification can be used to
weigh up different conservation options, especially
when trade-offs are necessary. Such trade-offs are
governed by spatial scales and connectivity of
ecosystem function and service flow within and
among habitats.

SPATIAL SCALE AND CONNECTIVITY OF
ECOSYSTEM SERVICES IN AQUATIC
HABITAT CONSERVATION

Strategic objectives for habitat conservation often
specify spatial criteria and the importance of
connectivity. For example, part of Aichi Target 11
is to protect at least 17% of inland waters and 10%
of coastal and marine areas that are important for
biodiversity and ecosystem services (Convention
on Biological Diversity, 2010), and recommends
that these protected areas should be well-
connected. Consequently, coverage exceeding 10%
and with good connectivity among sites is

Aquatic Conserv: Mar. Freshw. Ecosyst. 26: 963-985 (2016)
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considered beneficial for the protection of marine
ecosystem services. One of the few marine regions
where this objective has been reached is the marine
protected areas (MPAs) of the Baltic Sea (Reker
et al., 2015). However, despite a desire for
consistency in criteria for site designation
(Kelleher, 1999), many of the MPAs were
proposed to protect local biological values.
Further, there is a need for improved connectivity
across several landscape types and for some
species with limited dispersal abilities (HELCOM,
2010). These MPAs, spanning nine countries, were
designated over a period of several decades before
broad-scale ecological issues such as habitat
connectivity or ecosystem services became primary
criteria.

Ecosystem service provision and flows in aquatic
habitats often require large areas and extensive
connectivity, posing significant conservation
challenges. One solution is to create protected-area
networks to meet objectives that individual marine
or freshwater protected areas cannot achieve; i.e.
that sites operate synergistically, at large spatial
scales and across a range of protection levels
(Reker et al, 2015). However, protected-area
networks, based on diverse policies and legislation,
may not suffice to protect widely distributed
ecosystem components. Similarly, management
plans aiming to guide sustainable long-term use of
ecosystem services may not provide the desired
degree of protection. The problem is that
protected areas do not exist in splendid isolation
but connect and interact with their surrounding
waters and land areas, resulting in pressures that
weaken the capacity of the aquatic habitats to
provide the necessary ecosystem services (Ehler
and Douvere, 2009). In marine habitats, this
problem has been tackled using a holistic planning
process called marine spatial planning (also called
coastal and marine spatial planning (The White
House Council on Environmental Quality, 2010)
or maritime spatial planning (EU, 2014)). It is
defined as ‘the public process of analysing and
allocating the spatial and temporal distribution of
human activities in marine areas to achieve
ecological, economic and social objectives that are
usually specified through a political process’ (Ehler
and Douvere, 2009), and seeks to protect

Copyright © 2016 John Wiley & Sons, Ltd.

ecosystem services and their flows to diverse
stakeholders.

One outstanding example is the process that
resulted in a plan for the Australian Great Barrier
Reef (GBR), an immense area (345 000 km?)
comprising almost 3000 individual reefs and almost
1000 islands and coral cays (Day, 2002). Since the
plan’s adoption in 2004, regular assessments have
been made (Great Barrier Reef Marine Park
Authority, 2014) revealing that several key habitats
show poor and declining conditions in parts of the
region. This environmental decline has jeopardized
the World Heritage Sites status of the GBR, with
major consequences for the tourism industry and
other revenue from the region’s lucrative cultural
and provisioning ecosystem services. For example,
ecosystem services from the GBR are estimated to
be at least AUD454 million per year for reef-based
tourism, AUD108 million per year for recreational
fishing and boating, and AUD136 million per year
for commercial fishing (Stoeckl et al., 2011).

Understanding  how  connectivity  affects
ecosystem-service provision in the GBR is also
crucial. The GBR’s future not only depends on
how well the coral reefs and their surrounding seas
are protected but also on the quality of freshwater
runoff from the terrestrial habitats bordering the
GBR (Great Barrier Reef Marine Park Authority,
2014). Much has been done to reduce poor-quality
run-off by improving land-use practices (e.g.
erosion and nutrient control) but this still
continues to be one of the main threats. The GBR
still maintains its World Heritage Site status and
continues to serve as an example of how marine
spatial planning and conservation can be applied
for the benefit of ecosystem services.

Where conservation strategies focus on
protecting ‘ecosystem service hotspots’ (areas that
offer disproportionately high ecosystem services,
(Crossman and Bryan, 2009)), spatial scales are
particularly  relevant when mapping their
vulnerability to human impacts. For example, an
ecosystem-service mapping study in Massachusetts
indicated that freshwater provisioning and flood
regulation experienced local declines in response to
shifting land-uses but changed little when
measured at the state level (Blumstein and
Thompson, 2015). The same scale-dependency
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applies to mapping longitudinal changes in
ecosystem services along rivers (Large and
Gilvear, 2015), and different services are likely to
show widely variable responses to the scale of
mapping in different regions. Finally, from an
ecosystem-services  perspective  spatial  and
temporal scales must encompass both ‘point-of-
service’ and ‘point-of-use’, exemplified by the
upstream provision of services for downstream
users in river ecosystems (Green et al., 2015; Liu
et al., 2016), and this adds further challenges to
developing effective conservation strategies.

Assessments of ecosystem services typically focus
on quantifying and mapping their delivery at a
single point in time (Nicholson ez al., 2009; Felipe-
Lucia et al., 2015). However, provision of most
ecosystem services changes over time in response
to biophysical and socio-economic drivers (Renard
et al., 2015). This is especially relevant as demand
is increasing for most ecosystem services provided
by marine and freshwater habitats (Luisetti et al.,
2014; Rogers et al., 2015) and there will also be
temporal changes in synergies and trade-offs
among different ecosystem services (see next
section). Therefore, applications of the ecosystem-
services perspective in conservation strategies must
include a temporal component, preferably
integrated with spatial analysis.

Most habitat conservation plans encompass only
a single environmental realm (terrestrial, fresh
water or marine), usually because of logistical,
institutional and political constraints (Stoms et al.,
2005). This is seldom adequate because all three
realms interact through processes that involve
physical, chemical, and ecological connections
essential for the persistence of many species and
ecosystem functions (Beger er al., 2010) and, by
extension, ecosystem services. Temporal changes in
the physical and hydrological connectivity and
spatial arrangement of aquatic habitats within and
among these realms underpins the provision and
flow of most ecosystem services (Syrbe and Walz,
2012). Tools for detecting the effects on ecosystem
services of impaired connectivity as well as reduced
habitat area (Ng et al., 2013) currently seem under-
utilized for aquatic habitat conservation.

Ecological connectivity among aquatic habitats
is largely mediated by mobile organisms such as

Copyright © 2016 John Wiley & Sons, Ltd.

invertebrates (larval, adult or both), fish, some
reptiles and birds, and in marine environments,
mammals such as seals and cetaceans. This
ecological connectivity sustains biodiversity and
production of many ecosystem services (Staddon
et al., 2010) as well as conferring resilience and
other desirable features that deserve conservation
(Olds et al, 2012). Ecological connectivity
mediated by mobile organisms occurs to varying
degrees in different habitats. For example, in
tropical reef fisheries where fish stocks are
typically restricted to specific habitats, ‘spill-over’
from marine protected areas often increases the
catches per unit effort outside the protected area
and connect the habitats important for these fishes
(Leenhardt ez al., 2015), although this is not the
case for temperate fish stocks such as cod and
haddock where the fish are very mobile and are
not so tightly constrained by habitat.

Understanding the mechanisms of such
connectivity is crucial when designing networks of
multiple conserved habitats to promote provision
of ecosystem services (Rees er al, 2012). Many
sets of protected areas in the marine environment
claim to be networks but their design has seldom
taken into account any sort of critical connectivity
because the focus has been on criteria such as
representativeness and geographic coverage. In
rare cases, these criteria may provide a degree of
connectivity by default but whether this translates
into flows of ecosystem services is poorly
understood. Where ecological connectivity does
occur, it potentially helps reduce the effects of
trade-offs between fisheries and conservation
reserves (Gaines et al., 2010). When applying an
ecosystem-services perspective to aquatic habitat
conservation, spatio-temporal scales and
connectivity among habitats within and among
conserved areas strongly govern the types,
provision and flows of ecosystem services, and
must be explicitly considered in conservation
strategies.

Many aquatic habitats are transitional ecotones
(e.g. marine intertidal zones, mangrove belts,
riparian zones, hyporheic zones) across which
services flow and where gradients in ecosystem
functions provide numerous ecosystem services
(Sanon et al, 2012; Clerici et al, 2013; Mugnai
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et al., 2015). Conservation of ecosystem services in
these transitional habitats, especially at the
land-water interface, is particularly challenging
because of jurisdictional ambiguities between
administrations, competing demands for ecosystem
services and inherent vulnerability to terrestrial
and aquatic pressures (Walters et al., 2008; Maltby
et al, 2013). Resolving these challenges when
conserving transitional and other aquatic habitats
requires a good understanding of trade-offs among
different ecosystem services, appropriate valuation
approaches to compare options (including in non-
economic terms, TEEB, 2010), and social factors
at multiple scales that influence access to
ecosystem services and that motivate conservation
concerns (Luisetti et al., 2014).

TRADE-OFFS, VALUATIONS AND SOCIAL
FACTORS

Ecosystem service trade-offs occur when enhanced
provision of one service causes declines in one or
more different services (Rodriguez et al., 2006).
For example, management strategies that raise
water levels in the Somerset Levels and Moors
wetland system in south-west England to increase
habitat for wetland birdlife may reduce potential
flood water storage and increase methane
emissions (Acreman et al., 2011). Trade-offs occur
in both space and time (Rodriguez er al, 2006).
Spatial trade-offs frequently entail use of a
provisioning service which is traded off against
one or more services elsewhere. For example,
enhancing agricultural production in farms along
a river by increasing fertilizer use has broad-scale
effects on water quality downstream. Temporal
trade-offs commonly focus on immediate
provision of an ecosystem service at the expense of
the same or other services in the future (e.g.
overfishing). Often, spatial and temporal trade-offs
in ecosystem services co-occur (Turkelboom et al.,
2015). Partial logging of a mangrove forest
reduces its services of soil stabilization and flood
control at various spatial scales, often with some
time-lag (Schwerdtner Manez et al., 2014).
Therefore, when planning conservation (or
restoration) strategies, it is essential to understand
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interactions and feedback between conflicting
ecosystem services so that priorities can be set
(Sanon et al., 2012; Schirmer et al., 2014). Any
change in the management of one ecosystem
service will affect the ‘bundle’ of services provided
by that system (De Groot et al, 2010). Further,
this effect varies over time and space, governed by
the spatial and temporal dynamics of the
underlying ecosystem functions (Hein et al., 2006).
Conservation strategies must consider the spatio-
temporal variance of these bundles, particularly
because this variance underpins the resilience of
the ecosystem that, if weakened, may affect its
capacity to  deliver  ecosystem  services
(Schwerdtner Mafnez et al., 2014). Tools such as
multi-criteria decision analysis have proved useful
to  quantify  trade-offs when  developing
conservation strategies. For example, multi-criteria
decision analysis was used to evaluate several
management options for the Lobau floodplain, an
urban floodplain along the Danube River, to
determine which set of trade-offs theoretically
offered the best compromise among diverse
stakeholders (Sanon et al., 2012).

Another important aspect of trade-offs within
bundles of ecosystem services provided by aquatic
habitats is their interdependence with adjacent
aquatic habitats (Luisetti et al, 2014) and
hydrologically linked terrestrial ones. Although
conservation strategies may entail inventories of
ecosystem services for specific habitats, provision
of these services are often governed by processes
occurring outside the inventoried habitat. For
example, the 2011 Las Conchas wildfires in
northern New Mexico severely compromised
water-quality regulation and erosion control
services; such large amounts of ash and sediment
washed into the Rio Grande, which supplies 50%
of the drinking water for Albuquerque, that water
withdrawals by the city were stopped for a week
and reduced for several months afterwards because
of the expense of treating water with high sediment
content (Grimm et al., 2013).

The most common landscape-level trade-offs
occur between the provisioning services and nearly
all the regulating, supporting and cultural sevices
(Rodriguez et al., 2006). Frequently, conservation
strategies seek to restrict exploitation of
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provisioning services as a means of promoting the
other three broad types of ecosystem services.
Extreme examples in aquatic habitat conservation
include ‘sanctuary’ or ‘no-take zones’ in freshwater
and marine protected areas where access to fish
and other goods are prohibited or strictly limited
(Lester and Halpern, 2008; Leenhardt et al., 2015).
A major challenge for managers is demonstrating
the success of this type of management in
protecting regulating, supporting and cultural
ecosystem services (Gaines et al., 2010; Rees et al.,
2012; Castro et al., 2015), especially when criteria
for success rely on some form of valuation of the
different services. For example, when valuing the
ecosystem services provided by marine protected
areas, the limited availability of economic data at
a relevant scale usually hinders full assessment of
the influence of protected areas on the economy of
the neighbouring zones (Laurans et al, 2013)
while measurement of non-market values (e.g.
non-use value of marine biodiversity) is extremely
difficult (Leenhardt er al, 2015; Leimona et al.,
2015).

Even when aquatic habitats are exploited for
provisioning services, there may be scope to also
conserve regulating, supporting and cultural
ecosystem services by targeted management
(Fisher et al, 2011). For example, dual-purpose
aquaculture ponds can be designed to produce
economically viable quantities of fish and shrimp
yet also perform regulating and supporting
services such as nutrient absorption and bird
habitat, respectively (Walton er al, 2015).
However, it is important to remember that
provision of many ecosystem services changes non-
linearly with habitat area (Barbier et al., 2008).
When designing dual-purpose production systems,
the spatial (and, if possible, temporal)
relationships of ecosystem-service provision and
the areas of different habitats should be known, as
well as the effects of adjacent habitats that might
modify these relationships.

One common situation when aquatic habitats are
exploited is for plans to be drafted that focus on
only a few services, potentially introducing major
bias in their valuation. In the early 1980s, the
Norwegian government decided to evaluate
hydroelectric development in different catchment

Copyright © 2016 John Wiley & Sons, Ltd.

areas and compare this with other ecosystem
services. The first stage involved 310 watercourses
with 542  alternatives  for  development
(Miljeverndepartementet, 1984). Representation
came from diverse user groups with interests in
energy generation, outdoor recreation, agriculture
and  forestry, reindeer  herding,  nature
conservation, wildlife and fisheries management,
preservation of cultural monuments, and
prevention of flooding and erosion. The final plan
was legislated by the Norwegian Parliament,
resulting in, among other things, protection of the
most valuable undisturbed catchments (39.1% of
project proposals) (Miljeverndepartementet, 1984).
Despite the representation by diverse user groups,
Carlsen et al. (1993) concluded that they had little
systematic effect on the final outcome of the plan,
which has been re-evaluated twice (1987 and 1992)
(Thorhallsdottir, 2007a).

Influenced by the Norwegian plan, a programme
to evaluate and rank energy projects by
environmental impact and user interests was done
in Iceland. It covered 19 hydroelectric and 22
geothermal developments, and was developed by
four specialist groups focusing on different
ecosystem services and perspectives
(Thoérhallsdottir, 2007b). The outcome led to a
resolution by the Icelandic Parliament in 2013 to
protect the most valuable catchment and
geothermal areas, and prompted the current
assessment of a further nine river catchments with
16 alternatives for development and four
geothermal areas with seven development
alternatives. Although ecosystem services of river
catchments and geothermal areas have been
explicitly evaluated in these examples from
Norway and Iceland, functional ecosystem
components such as organic carbon dynamics and
primary  production were not considered
(Thoérhallsdottir, 2007a), potentially providing an
incomplete perspective of the situation.

Presently, the Icelandic Master Plan for Nature
Protection and Energy Ultilization is under re-
evaluation, with 17 hydropower projects, seven
geothermal projects and two wind-farm projects.
Most were new projects, but some were from the
group put on hold during the earlier phase until
more information had been gathered. Evaluation
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was completed in February 2016 (Gislason, 2016).
Final results will be sent to the Ministry for
Natural Resources and the Environment in
September 2016, followed by discussion and a
resolution on protected areas, areas for further
consideration and areas for utilization for energy
production.

Although fundamental to the ecosystem-services
concept, the idea of valuation of services relies on
the dangerous premise that ‘nature’ can be
reduced to a single (usually monetary) metric and
therefore is commensurable (Sukhdev er al., 2014).
In reality, valuation of ecosystem services is
subjective (Balmford et al, 2011; Leimona et al.,
2015), embedded in how certain people view and
value their natural environment at a certain point
in time. The various valuation methods for
ecosystem services (reviews in TEEB, 2010; Chan
et al, 2012) give very different perspectives (de
Groot et al., 2012; Felipe-Lucia et al., 2015), and
different valuation methods result in different
rankings of conservation values (Rouquette et al.,
2009). Valuing cultural services for aquatic habitat
conservation is especially challenging (Ruiz-Frau
et al., 2013).

One of the most commonly used approaches
involves payments for ecosystem services (PES),
defined as ‘a transfer of resources between social
actors, which aims to create incentives to align
individual and/or collective land-use decisions
with the social interest in management of natural
resources’ (Muradian et al, 2010: p. 1205).
Although often framed as ‘willingness to pay’
(WTP), the resource transfer can be either
monetary or in-kind, such as capacity building or
the provision of alternative livelihoods (Lau,
2013). For example, exploiting recreational
angling markets for mahseer fishes, a prized
freshwater Indian sports-fish, to advance habitat
conservation in the Western Ramganga River is
an ideal basis for a PES market to benefit river
ecosystems, local people, tour operators and visiting
anglers (Everard and Kataria, 2011). A study by
Jobstvogt et al. (2014) assessed WTP by divers and
anglers for potential marine protected areas in the
UK, highlighting the importance of cultural
ecosystem services to different stakeholders in
marine habitat conservation. User-WTP was

Copyright © 2016 John Wiley & Sons, Ltd.

influenced by a wide variety of marine spaces
whereas stewardship-WTP was most influenced by
management restrictions, species protection and
attitudes towards marine conservation.

However, PES is not universally popular
(Silvertown, 2015), and these schemes have been
criticized as a ‘commodity fetishism’ that reduces
ecosystem values to a single exchange-value
measure, obscuring the social relations embodied
in ‘producing’ and ‘selling’ ecosystem services
(Kosoy and Corbera, 2010). In particular, over-
reliance on PES as a win-win solution to the
conservation-development dilemma risks
ineffective or even counter-productive outcomes if
social context is poorly understood (Warren-
Rhodes et al., 2011; Luck et al., 2012; Muradian
et al., 2013). Our point here is that although
ecosystem service-based strategies for aquatic
habitat conservation typically require some form
of valuation approach, policy-makers and
conservation managers must recognize the biases
and constraints in such exercises and adopt
options that combine efficiency and fairness
(Leimona et al., 2015).

Furthermore, regardless of which valuation
method is used, ‘functional mismatches’ (Folke
et al., 2007) arise when management, including
conservation, is driven by a strong interest by
resource users in selected ecosystem benefits only.
Thus, social analysis of the interests and
perceptions of stakeholder groups at different
governance levels reveals functional mismatches
(Jobstvogt et al., 2014; Luisetti et al., 2014) and
indicates which institutions are needed for effective
management (Hein ez al, 2006). Most of the
ecosystem services that are being degraded are
categorized as public goods and services for which
‘market solutions’ involving buyers and sellers are
far from ideal (de Groot et al., 2012; Sukhdev
et al., 2014). Seldom is any uncertainty analysis
performed (Boithias et al., 2016), adding further to
the challenge of interpreting outputs from
valuations of different conservation strategies.
Some authors argue that multiple valuation
methods spanning diverse stakeholders are needed
(Felipe-Lucia er al., 2015) and this may partly
resolve some of the uncertainty associated with
functional mismatches.
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Who should actually be setting the values,
especially when conservation efforts will deprive
some users of immediate access to provisioning
services? Brondizio et al. (2009) argue that
choosing the institution to articulate the values is
more important than the actual identification of a
value; a more socially embedded valuation is
needed in the context of local and regional
decision making and resource management. The
values and needs of different users should guide
the application of the ecosystem service concept in
conservation (Menzel and Teng, 2010), following
an operational model like that proposed by
Cowling et al. (2008) where the three consecutive
steps of assessment, planning and management are
guided by social values and stakeholders rather
than being a predominantly scientific, expert-
driven exercise. It is beyond the scope of this
review to stray far into institutional governance
issues; we simply want to emphasize the point that
valuation and social issues are inextricably linked
in aquatic habitat conservation, and must be
considered when setting targets.

Of course, all valuation methods are social
constructs and their ‘currency’ is entirely dictated
by human value systems and social attitudes
(Larson et al., 2013; Sukhdev et al., 2014). The
social dimension complements the ecological one
in defining any ecosystem service (Figure 1), and
therefore social factors must be explicitly
considered when wusing an ecosystem-services
perspective to set conservation targets in a given
area (Warren-Rhodes et al., 2011; Luisetti et al.,
2014). A striking example is conservation of
Cantareira State Park, an urban park in Sdao Paulo,
Brazil, where the close proximity of a very large
population of socio-economically vulnerable people
puts intense pressure (water theft, illegal fishing and
bathing, religious practices) on the park’s aquatic
habitats, acknowledged in its conservation plan (de
Souza Rares and Brandimarte, 2014).

In many cultures, social factors such as gender,
local religious beliefs and village customs influence
the recognition (and thus, perceived value) of
different ecosystem services. Perceptions of
ecosystem services provided by mangroves differed
between resource users in three Solomon Island
villages, associated with gender and religious

Copyright © 2016 John Wiley & Sons, Ltd.

denomination, influencing the likely success of
PES schemes for Pacific carbon credit programmes
(Warren-Rhodes et al,, 2011). Gender issues are
especially relevant because in many cultures, men
and women access and value aquatic ecosystem
services very differently (Kelemen et al., 2015),
governing their responses to different conservation
strategies. Similar principles apply to ethical and
social-justice factors (Luck ez al, 2012; Kretsch
and Kelemen, 2015). Despite the significance of
these diverse social factors on perceptions of
ecosystem services in marine and freshwater
habitats, there seems little evidence that they are
explicitly considered in current conservation
strategies.

INTEGRATING ECOSYSTEM SERVICES
INTO AQUATIC HABITAT CONSERVATION:
A BIBLIOMETRIC ANALYSIS

Habitat differences and temporal trends

To address the questions posed in the Introduction,
standard bibliometric analysis (Egoh et al., 2007,
Trabucchi er al, 2012) was done on English-
language peer-reviewed papers published before
2016 covered by the Thomson Reuters database
Web of Science (http://wokinfo.com/). All
searches were made on 8-12 January, 2016.
Searching ‘ecosystem service®’ (where * represents
a wildcard suffix) yielded 15 777 titles, adding
‘habitat®*’ reduced this to 2200 titles, and adding
‘conserv*” further trimmed the list to 1057 titles.
Finally, a list of adjectives for various aquatic
habitats (‘aquatic OR freshwat* OR marine OR
river* OR stream* OR mangrov* OR scagrass®
OR reef* OR coral* OR ocean* OR intertidal OR
groundwater OR estuar* OR wetland* OR lake*
OR riparia* OR beach* OR saltmarsh*’) was
added to refine the sample to 473 titles.

Papers considering ecosystem services always
comprised only a small proportion (< 20%) of the
total numbers of papers on aquatic habitat
conservation, collectively and within individual
habitats (Figure 2). Within specific aquatic habitat
types, papers on conservation were most common
for ‘ocean®’, ‘river®” and ‘wetland*®’ followed by
‘stream™®’, ‘riparia*’ and ‘lake*’ (Figure 2). In
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Figure 2. Number of papers that use these words in conjunction with

“habitat* conservation” (grey shading) and “habitat* conservation

AND ecosystem service*” (black shading). Note different vertical
scales between panels (a) and (b). See text for more details

contrast, the total number and proportion of
habitat-specific papers that also mentioned
‘ecosystem service®” were greatest in ‘stream™’.
Surprisingly few  papers covered habitat
conservation of groundwater, intertidal zones,
seagrasses and saltmarshes (Figure 2(b)).

Since 1986, there has been an exponential
increase in the numbers of papers published per
year that contain the term ‘ecosystem service®’ and
a more gradual rise in those that include one of
the aquatic adjectives listed above (Figure 3(a)).
The slight dips in both lines in 2015 is probably an
artefact through incomplete records for this year
at the time of the search (January 2016).
Disregarding the erratic fluctuations caused by
small sample sizes before 2000, approximately
40% of aquatic-habitat papers also mentioned
ecosystem services, a proportion that appears to be
gradually falling (Figure 3(b)). Similar temporal
trends are evident for papers containing the term
‘ecosystem service* AND habitat* (Figure 4)

Copyright © 2016 John Wiley & Sons, Ltd.
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Figure 3. (a) Number of papers published each year from 1986-2015
that use the words “ecosystem service*” (solid line) and “ecosystem
service®” with one or more adjectives listed in Figure 2 (broken line);
(b) annual changes (1986-2015) in the percentage of ‘aquatic’ papers
(lower line in (a)) mentioning “ecosystem service*” (upper line in (a)).

although the proportion of aquatic-habitat papers is
higher (approximately 45% over the last 10 years)
and not declining (Figure 4(b)).

The increasing numbers of papers published
annually on aquatic habitat conservation that
mention ecosystem services match temporal trends
identified in a similar analysis of restoration
literature by Trabucchi er al (2012) and of
literature on marine and coastal ecosystem services
by Liquete et al. (2013) who also found a sharp
rise in the numbers of papers on this topic
published after 2006. This sharp rise is probably a
response to publication of the influential MEA
(2005) report that included lists of ecosystem
services provided by various marine and
freshwater habitats. Given the exponential increase
in literature on ecosystem services in general
(Figure 3(a)), the trends in proportions of aquatic
habitats and conservation in this literature are
more revealing. The striking observation that in
the last decade, almost half the literature on
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that use the words “ecosystem service* AND habitat* conservation”
(solid line) and “ecosystem service* AND habitat* conservation” with
one or more adjectives listed in Figure 2 (broken line); (b) annual
changes (1986-2015) in percentage of ‘aquatic’ papers (lower line in
(a)) mentioning “ecosystem service* AND habitat*” (upper line in (a)).

ecosystem services in habitat conservation was from
aquatic habitats led us to analyse the 473 papers
(the data set of the broken line in Figure 4(a)) in
more detail.

Spatio-temporal  scales, ecosystem functions,
trade-offs and social factors: 30 case studies

The titles and abstracts of each of these 473 papers
were assessed for their match to four criteria: the
work dealt with conservation rather than
restoration, at least two of the four MEA (2005)
groups of ecosystem services (Table 1) were
considered, the work described one or more
habitat-level case studies (to exclude general
commentaries and reviews), and the work was not
primarily a regional valuation exercise or mapping
study (Blumstein and Thompson, 2015). This cull
resulted in a final data set (Table S1) of 30 case
studies, comprising 13 marine or estuarine habitats
and 17 inland, mainly freshwater habitats.

Copyright © 2016 John Wiley & Sons, Ltd.

Generally, each case study was described fully in a
single paper but occasionally additional papers
and information sources were pursued to
complement information from the primary
reference. Only three marine and five freshwater
case studies could be considered as field
applications of aquatic conservation plans whereas
the remaining studies were research-based (Table
S1). As there did not appear to be gross
differences in perspective between the two
approaches, they were pooled for the analysis.

Of the 13 marine studies, five included mangrove
habitats, three were coral reefs and two were coastal
wetlands; the rest were single habitats including
offshore banks, rocky sublittoral zones and
estuarine saltmarshes. Of the 17 freshwater studies,
five were various types of wetlands, three were
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Figure 5. The spatial (a) and temporal (b) scales of 30 case studies of

marine (black) and freshwater (grey) habitats, expressed as numbers

of early (published pre-2014) and recent (2014-2015) papers to

estimate temporal changes. Spatial scale was classified as ‘local’

(LOC, < 10 kng, regional (REG, 10-1000 km?) and landscape

(LAN, > 1000 km~). Temporal scale was classified as short-term (ST,
< 10y) or long-term (LT, > 10 y).
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floodplains, two were rivers and the rest were single
habitats such as brackish lagoons and urban
streams (Table S1). Only two of the habitats were
primarily temporary, reflecting the tendency for
freshwater conservation efforts to focus on
perennially aquatic habitats (Boulton, 2014; Van
den Broeck et al., 2015; Leigh et al., 2016).

Most of the 30 studies were published in 2015
(five marine, four freshwater) and 2014 (three,
four). Therefore, to crudely assess temporal
changes, studies were divided into ‘recent’ ones
(published in 2014 or 2015) and ‘early’ ones (pre-
2014 publication date). Of course, a paper’s
publication date does not equate to when a
conservation plan was developed; our intention
was simply to estimate whether, for example,
supporting and regulating services were more often
considered in recent than early papers. We
acknowledge the limitations of this simple binary
approach but there were not enough papers to
ascertain yearly trends.
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The spatial scale of each case study was classified
as ‘local’ (study region <10 km?), ‘regional’ (10—
1000 km?) and ‘landscape’ (>1000 km?). Only one
study (Fleming er al., 2014) was local in scale
(Figure 5(a)), contrasting with the prevalence of
local-scale studies (48%) reported for marine and
coastal ecosystem services by Liquete et al. (2013).
The other 29 studies were regional- and landscape-
scale studies, with no marked differences between
marine and freshwater except for proportionally
fewer freshwater landscape-scale studies in 2014—
2015 (Figure 5(a)). Before 2014, most of the
studies were short-term whereas eight long-term
(>10 y) studies were published in 2014-2015, all of
them marine (Figure 5(b)). This increase reflected
greater use of temporal modelling, especially of
climate change predictions (e.g. effects on coral
reef ecosystem services, Rogers et al, 2015).
However, the absence of long-term studies in the
2014-2015 data set for freshwater habitats was
unexpected.
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Figure 6. The numbers of early (published pre-2014) and recent (2014-2015) papers, describing 30 case studies of marine (black) and freshwater (grey)
habitats, that (a) specified ecosystem services as conservation targets, (b) actually measured these ecosystem services, (c) included provisioning (P),
regulating (R), supporting (S) and cultural (C) services, and (d) included 2, 3 or 4 services in total. See text for more details.
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Only seven of the 30 studies did not specify
ecosystem services as conservation targets; four
published before 2014 and three in 2014 and 2015
(Figure 6(a)). Conserving ecosystem services as a
specific target appears to be gaining increasing
acceptance, indicated by the greater number of
studies in 2014-2015, especially in marine habitats
(Figure 6(a)). This also matches a rise over time of
actually measuring ecosystem services (Figure 6
(b)), correlated with the increasing numbers of
papers suggesting and validating measures for
different services in aquatic habitats. From
analysis of 25 years of conservation management
plans in southern France, Ernoul ez al. (2015) found
that ecosystem services started being incorporated
only after 2010, broadly corroborating our findings.

We expected earlier papers to assess provisioning
ecosystem services in preference to the other three

12 (@)

=10 -

Number of pape

Y N
Pre-2014 2014-2015

Y N

12 1 (C)

Number of papers

Y N
Pre-2014 2014-2015

Y N

Number of papers
o

proposed by the MEA (2005) because of their
more obvious material benefits and the greater
ease of measurement (e.g. economic value).
However, all four services received approximately
equal attention, particularly in freshwater habitats
(Figure 6(c)), probably because the main goal
was conservation rather than, for example,
exploitation for a fishery or potable water. The
slight dip in the number of papers assessing
supporting services in 2014 and 2015 coupled
with increases for the other three services
(Figure 6(c)) may reflect growing recognition that
many supporting services are ‘intermediate’ rather
than final services (Landers and Nahlik, 2013).
Finally, we also expected that each of the papers
published in 2014 and 2015 would assess more
types of services than in earlier papers; another
prediction not supported by the data (Figure 6(d)).
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Figure 7. The numbers of early (published pre-2014) and recent (2014-2015) papers, describing 30 case studies of marine (black) and freshwater (grey)
habitats, that (a) specified ecosystem functions or ecological processes underpinning targeted ecosystem services, (b) assessed trade-offs, (c) directly
measured social factors, and (d) included valuation of ecosystem services.

Copyright © 2016 John Wiley & Sons, Ltd.

Aquatic Conserv: Mar. Freshw. Ecosyst. 26: 963-985 (2016)



ECOSYSTEM SERVICES IN AQUATIC HABITAT CONSERVATION 979

Instead, most papers from both time periods
assessed all four types (Figure 6(d)).

Most papers, especially those on marine
habitats, specified the ecosystem functions or
ecological  processes  underpinning targeted
ecosystem services (Figure 7(a)). This is a
reassuring finding, especially as conserving
ecosystem functions and ecological processes
usefully complements other conservation goals
such as biodiversity (Kettunen and ten Brink,
2013). Fewer than half the papers assessed trade-
offs (Figure 7(b)), even though this issue is likely
to be common to all conservation strategies, as
discussed earlier. Oddly, most of the recent
papers on marine habitats tackled trade-offs
whereas freshwater papers did not (Figure 7(b)),
a pattern whose cause remains unclear. Few of
the early papers, particularly those on freshwater
habitats, directly measured social factors
(Figure 7(c)). However, there seemed an
increasing awareness of the importance of social
factors, especially in marine habitat conservation
(Figure 7(c)), perhaps aided by the greater
availability of non-monetary assessment tools.
Most of the recent papers included valuation of
ecosystem services (Figure 7(d)) and again, this
likely reflects the wider array of valuation
techniques (Leimona ez al, 2015). It may also be
a symptom of an increasingly utilitarian attitude
to aquatic conservation as natural resources
dwindle in the face of population growth.

None of the 30 case studies specified the spatial
scale of expected responses to conservation
strategies targeting ecosystem services in the
various marine and freshwater habitats (Table S1),
leaving the reader to infer that the response
encompassed at least the conserved area. Only one
study estimated temporal scales of response.
Luisetti et al. (2014) compared provision of three
ecosystem services (food, healthy climate and
nature recreation) in two UK estuaries over three
modelled scenarios, one of which involved
extended conservation of coastal ecosystems,
spanning the temporal scale of 2010-2110. The
remaining 29 studies either did not consider
temporal scales of response at all or used non-
specific language, typically to infer that responses
would be gradual and ‘long-term’ (Table S1).

Copyright © 2016 John Wiley & Sons, Ltd.

CONCLUSIONS AND RECOMMENDATIONS

Our first goal was to review the extent to which
current aquatic habitat conservation strategies
target ecosystem services as one of their
objectives, and how adoption of this perspective
has changed over time. Most current descriptions
of aquatic habitat conservation strategies
acknowledge the importance of ecosystem
services, and this appears to date back to about
2006, following publication of the influential
MEA (2005) report. Since about 2010, specifically
targeting ecosystem services as a conservation
target has become more common, especially in
marine habitats. Our second goal was to assess
which groups of ecosystem services have been
evaluated and incorporated when developing
aquatic habitat conservation strategies. Contrary
to expectation that provisioning services would
feature most prominently, we found that all four
groups of services were targeted by aquatic
conservation strategies and there was no trend of
increasing recognition of the more subtle
supporting and regulating services over time.

Our third goal was to explore issues of scale,
trade-offs and social factors, and the extent to
which these are explicitly considered in aquatic
conservation strategies. Although spatial scale
was often considered explicitly, seldom did
strategies predict temporal scales of response to
conservation measures. Fewer than half the
papers in the literature review of 30 case studies
assessed trade-offs or considered social factors,
despite the central importance of both these
aspects when weighing up conservation options.
Both factors attracted more consideration in
marine habitats than freshwater ones. Valuation
of ecosystem services in both habitats is
becoming more prevalent in aquatic conservation.
Our final goal was to assess whether there are
any fundamental differences between marine and
freshwater habitats with respect to their
ecosystem services that should be considered
when setting targets for their conservation. We
found no evidence for any such differences,
implying that experiences from both habitats are
equally relevant for informing strategies for
conservation of ecosystem services in either
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marine or freshwater habitats. More important
considerations appeared to be the spatial and
temporal extent of ecological connectivity within
and among different habitats as well as
stakeholders’” perceptions of threats to and values
of ecosystem services provided by a given habitat.

Protection  of  biodiversity,  biophysical
complexity and ecological processes has always
been core to conservation strategies of marine and
freshwater habitats; the perspective of conserving
ecosystem  services should be seen as
complementary rather than a replacement
(Ormerod, 2014). Increasing recognition of links
between these features and societal benefits
(Figure 1) has led to greater efforts to assign
economic values to ecosystem services from
different habitats (de Groot et al, 2012),
potentially favouring a socio-economic ‘utilitarian’
attitude to conservation at the expense of
conservation of nature for its own sake
(Silvertown, 2015). Debate about this dichotomy is
growing more acrimonious, especially as members
of many conservation organizations hold widely
varying views (Fisher and Brown, 2014). Tallis
et al. (2014) suggest the issue is best resolved by a
more inclusive perspective that unifies both ethical
stances. We agree, and recommend integrating
protection of ecosystem services with other
conservation goals in a way that acknowledges
diverse cultures and value systems — the ‘people
and nature’ perspective (Mace, 2014).

Our review of the literature revealed that most
studies of ecosystem services in aquatic habitat
conservation either focus on quite specific aspects
(e.g. mapping services, Clerici et al, 2013;
Galparsoro et al., 2014) or assessed only one or
two habitats (Table S1). Some habitats (e.g.
mangroves, coral reefs, floodplains) attracted
much more attention than others such as
groundwater, rocky sublittoral zones and off-shore
banks. Few studies address all the aspects and
links portrayed in Figure 1 for complete suites of
ecosystem services, and none of the 30 case studies
examined in detail was based on conservation
strategies that included a complete inventory of
ecosystem services, the ecological processes and
ecosystem functions underpinning them, and
assessment of spatial and temporal scales of

Copyright © 2016 John Wiley & Sons, Ltd.

service flow, potential trade-offs, social factors,
and values for each service.

Therefore, we offer several recommendations
when an ecosystem-service perspective is proposed
for setting targets for conservation of marine and
freshwater habitats:

1. Integrate the ecosystem-service approach with
current conservation goals (e.g. biodiversity
protection) rather than adopt this approach as an
alternative.

2. Specify each ecosystem service and its beneficiaries
as precisely as possible. Although heuristic
classifications such as the one by MEA (2005) are
valuable communication tools, they must be
supplemented with operational classifications that
explicitly combine ecological and environmental
components with social values (e.g. the ‘Final
Ecosystem Goods and Services’ classification
system described by Landers and Nahlik (2013)).
This helps ensure a comprehensive inventory of
ecosystem services specifically associated with
each  habitat and potential  beneficiary,
acknowledging the diverse array of stakeholders
deriving different values from conservation of a
particular habitat.

3. Specify spatial and temporal scales for the provision
and flow of each ecosystem service. This clarifies
which aspects of biophysical complexity and
ecosystem function are likely to be adequately
protected by a given conservation strategy,
especially where connectivity between habitats is
relevant. These temporal scales should also include
‘anticipatory management’ (Rogers et al., 2015)
that incorporates projected future changes in, for
example, climate and social pressures, so that
conservation strategies can be tailored accordingly.

4. Specify the aspects of biophysical complexity and
ecosystem function required for each ecosystem
service, providing evidence to describe the
ecological mechanism(s) underpinning the
derivative services. Poorly known mechanisms
may be supplemented by conceptual models (Wen
et al., 2011; Harrison, 2013) to generate testable
hypotheses for future work and to support
scenario-modelling of different conservation
strategies.

5. Specify current and future trade-offs among
ecosystem  services, especially where these
potentially affect the outcomes of different
conservation strategies. Identifying trade-offs
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enables policy-makers and conservation managers
to understand the long-term effects of protecting
one service over one or more others, and the
consequences of focusing only on the present
provision of a service rather than its future
(Rodriguez et al., 2006).

6. Identify social factors that might influence the flow
of services, changes in values over time, and
different expectations of stakeholders and
beneficiaries. Social factors also influence
prioritization of conservation actions, especially
the perception by stakeholders of the success of
particular strategies (Geist, 2015) and their cost-
effectiveness (Terrado et al, 2016). Choose
valuation methods carefully, acknowledging their
context-dependency, constraints and limitations
(Sukhdev et al., 2014).

7. Couch conservation goals for protecting ecosystem
services in terms of reliable and measurable
indicators that can support consistent decision
making (Olander ef al., 2015), and develop a
monitoring programme sufficiently powerful to
assess progress towards these goals. This
programme should  complement  current
monitoring and include ecological and sociological
variables to assess successful provision of desired
ecosystem services. Rapid prioritization methods
(Werner et al., 2014) may be useful to identify
indicators and guide their monitoring and analysis.

These recommendations should be supplemented
with appropriate tools and frameworks for
ecosystem-service assessment (Felipe-Lucia et al,
2015; Mongruel et al., 2015; Boithias et al., 2016).
We reiterate that aquatic habitat conservation
objectives should not focus solely on protecting or
enhancing  ecosystem  services but should
complement current strategies targeting
biodiversity and other conservation goals. The
ecosystem-services perspective helps communicate
to society some of the values of the less-tangible
benefits of natural ecosystems (e.g. justification for
conserving maerl beds for their carbon storage
potential (Burrows et al., 2014) as well as their
provision of nursery habitat for larvae of many
commercial fish species), but there are many other
reasons for conserving marine and freshwater
habitats and their connectivity. As with so many
conservation issues, a holistic perspective is the
most effective and so there is value in integrating

Copyright © 2016 John Wiley & Sons, Ltd.

ecosystem services into conservation strategies for
freshwater and marine habitats.
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SUPPORTING INFORMATION

Additional supporting information may be found in
the online version of this article at the publisher’s
web site.

Table S1. Summary table of 13 aspects of 30 case
studies of aquatic habitat conservation involving
ecosystem services, with information derived from
the references listed in the right-hand columns,
and given in full below. Abbreviations are:
Y = yes, N = No, Inf = Inferred, N/A = not
applicable. Data from this table are plotted in
Figures 3-7.
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